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Porous media at finite strains
The new model with the balance equation for porosity

K. WILMANSKI (ESSEN)

THE pURPOSE of this work is the presentation of the governing equations describing the two-com-
ponent porous material as the mixture with the additional field of the porosity. The additional field
equation for this field is proposed. The governing equations are formulated in the new Lagrangian
description. The constitutive relations under arbitrary elastic deformations of the skeleton are
proposed. Various simplified modcls and their basic properties such as the propagation of sound
waves are discussed. The work should be of interest for scientists working on continuum mechanics
(problems with the free boundary), on numerical methods in continuum mechanics and on the wave
propagation as the method of diagnosis of media with microstructure.

1. Introduction

THE THEORIES of porous materials have been developed primarily within the frame
of soil mechanics. For granular soils (e.g. sand), clays and rocks, various engineer-
ing models were proposed to describe the flow of water or other fluids through
the pores. The extensive literature concerning this subject as well as the intro-
duction into the nomenclature of porous media can be found, for instance, in the
excellent classical book of J. BEAR [1]. The connection of continuous models of
porous materials with the modern theory of mixtures is explained in the review
article of R.M. BoweN [2].

R. DE BoER [3] presents in his major historical paper not only many details
concerning the pioneering works of Terzaghi, Fillunger and some other engineers,
who have contributed to the practical soil mechanics but he discusses also some
new tendencies in the theories of porous media. Another practical aspect of these
theories stems from combustion problems of granular materials which describe
the behaviour of solid fuels. The review article on this subject has been written
by S.L. Passman, J.W. Nunziato, E.K. WaLsH [4]. Much less has been done on
the subject of multicomponent continua with large deformations of solids. Large
elastic deformations which appear, for instance, in foams damping the sound
waves or some filters in the chemical industry, were investigated experimentally
but very little has been done from the continuum-mechanical point of view. Large
plastic deformations, which accompany almost any loading of sands, are still de-
scribed by means of the one-component models and, for instance, the influence of
the changes of porosity is usually entirely neglected. Even the problems of large
static deformations with the small dynamical disturbance (e.g. diagnosis of soils
by propagating sound waves) are understood much better from the experimen-
tal standpoint than through some theoretical description. As an example, let us
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mention a very competent book of T. Boursig, O. Coussy, B. ZINSZNER, [5] who
give the account on the wave experiments on porous materials but describe them
theoretically by means of the old model of Biot in which the multicomponent
character of the medium is accounted in a very poor and deficient manner.

The purpose of the present work is the presentation of the mechanical two-
component model of the porous materials in which the skeleton may undergo
arbitrary large elastic deformations, the fluid is inviscid but it may interact with
the skeleton in an almost arbitrary way, and the porosity can change according
to its own field equation. The irreversibility of processes in such a model follows

_from the diffusion and from the pore relaxation.

In the next section we present the necessity of the formulation of additional
equations in the theory of porous materials when compared with the usual theory
of mixtures of the same number of components. The third section is devoted to
the brief presentation of the new consistent way of description of porous materi-
als when the reference configuration of the skeleton is chosen as the reference for
all other components as well. Apart from the advantages of this Lagrangian de-
scription in cases of large deformations, it is also a very convenient starting point
for the numerical investigations of the model of porous media. In the fourth
section we present the family of fields and field equations for this Lagrangian
description of the two-component porous medium with the elastic skeleton and
an ideal fluid component. The fifth section is devoted to the thermodynamic
restrictions imposed on the constitutive relations assumed in the section four.
The sixth section limits further the constitutive relations by the assumption of
isotropy. One of the most important and rather surprising, very restrictive results
follows in this section for the flux in the balance equation of porosity. In the
seventh section we discuss some possibilities of further restrictions of constitut-
ive relations by simplifying the way in which the components interact with each
other. These simplifications are motivated by experimental results for rocks and
granular materials.

The presentation of the model is supplemented in the eighth section with the
discussion of the dynamic compatibility conditions and their connection with the
boundary conditions for the porous medium. The most important part of this
section concerns the conditions for the case of the free outstreaming fluid which
yields the necessity of the additional scalar boundary condition describing the
free boundary.

As an example of applications of the model we present in the ninth section
the analysis of the propagation conditions for the sound waves. It is shown that
the model indeed describes all these waves which are observed in reality. We
present as well some possibilities of the application of this model to the diagnosis
of porous media. The tenth section contains one of the possible linear models
following from the general formulation. It is shown that quasi-static solutions of
some boundary value problems for such a linear model are identical with the
corresponding solutions of soil mechanics.
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2. Closure problem: constitutive relations vs. differential equations for volume
fractions

The main difference between the classical theory of mixtures of fluid-like com-
ponents (miscible components) and the theory of porous materials (immiscible
components) is connected with the existence of additional fields - a sort of in-
ternal variables — for the porous material, which describe the volume fraction
of each component in the total microscopic control volume. For the A differ-
ent components these volume fractions must satisfy the obvious normalisation
condition

(2.1) Z n® =1,

where n® denotes the volume fraction of the a-component, 1 < a < A.

This relation is sometimes called the saturation condition. This name stems
from the soil mechanics in which the porous materials with pores partially filled
with water are frequently considered. In such cases the air is not accounted for
as the third component and the medium is considered to be not fully saturated.
The sum of volume fractions of the solid and of the water is smaller than one. It
is quite obvious that it is not necessery to do so in the construction of the model.
Particularly in processes of phase transitions such as the evaporation (drying
processes, cavitation) the role of the gaseous phase is important. This gaseous
component cannot be left out of the model even if its kinematics is identical with
this of the fluid component.

It is easy to see that, in contrast to the classical theory of mixtures of miscible
components, a theory of porous materials requires additional field equations. The
continuum models of miscible components have been constructed by means of the
partial balance equations of mass, momentum and energy for each component.
In the Eulerian description these laws together with apppropriate constitutive
relations were sufficient to yield the field equations for the partial mass densities
0%, the partial velocities v* and the partial temperatures ©@“. These balance laws
are also used in models of the immiscible components but we have to supplement
the theory with relations for the volume fractions.

A few solutions of this problem have been proposed. They can be divided into
two classes:

1) additional constitutive relations are introduced,

2) additional differential equations in the form of either evolution equations
or balance equations are proposed.

The simplest example of the model of the first class is the model proposed by
R.M. BoweN [6]. Its prototype can be found in the papers of J.J. VAN DEEMTER
and E.R. van DER LAAN [7] as well as of J.O. Hinze [8]. Also the work of R.S.
Sampaio and W.O. WiLLiams [9] is based on the similar notions. In this model
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it is assumed that the volume fractions are proportional to the corresponding
partial mass densities

oo &
(22) n —F, ISQ’SA,

where p°f are constants. These constants are called true mass densities and the
corresponding components are called incompressible. In the Bowen’s model this
notion of incompressibility has nothing to do with the usual incompressibility of
one-component continua. The classical incompressibility is the constraint requir-
ing the sustaining reaction forces (e.g. reaction pressure). Such reaction forces do
not appear in the Bowen’s model. There is however a reaction force due to the
saturation condition. Namely the relations (2.2) specify all volume fractions in
terms of partial mass densities but they cannot be arbitrary due to the constraint
of the saturation condition (2.1). This model has been extensively applied. How-
ever the recent results concerning in particular the boundary value problems for
dynamic processes and the relaxation properties seem to indicate that the model
has many very serious physical flaws.

Another model of the same class has been introduced by J.L.W. MORLAND
[10]. He has assumed the constitutive relations describing the volume fractions.
The model presented in the paper [11], concerning the two-component porous
material belongs as well to this class. In the latter paper the saturation condi-
tion reduces the number of independent volume fractions to one. The additional
constitutive relation has been proposed in a quite general form

(2.3) 7(C) = 0,

where 7 denotes the arbitrary scalar function and C denotes the collection of all
constitutive variables of the model. The thermodynamic considerations as well
as the construction of the boundary value problems for such a model have been
presented in the above mentioned paper. No practical applications have been
made as yet.

Recently the much more sophisticated version of such a model is being inves-
tigated by J. BLunm and R. pE BOER (see: [3, 12]). It is based on the semi-micro-
scopic considerations referring to the “true” components. The local configuration
of each component is assumed to be described by the so-called realistic deforma-
tion gradient F** which is mapping the material vectors of the a-component from
the reference configuration to the current configuration. These gradients are not
assumed to be integrable. However one assumes that there exists the supplemen-
tary gradient F*V which combines with the realistic deformation gradient into
the integrable partial deformation gradient F* of the a-component

(2.4) Fe = peiNpek,
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The constitutive relations are assumed to hold for the objective combination
of the realistic deformation gradients

(2.5) c*f=cFc), CR=pHPR

In particular these relations define the constitutive relations for volume frac-
tions and the saturation condition becomes again the constraint. It has been
shown that in some particular cases this model describes the phenomena which
have been observed in the experimental soil mechanics. Moreover the model
seems to be an appropriate starting point for the description of anisotropic struc-
ture of pores. Nothing has been done yet in this direction.

It should be mentioned that the models of this class do not describe the
pore relaxation processes because the volume fractions are controlled by other
macroscopic deformation variables.

Within the second class of the models, the most commonly used one seems to
be that started by the M.A. GoopmaN and S.C. CowiN [13] who have proposed
an additional balance equation for a scalar quantity with a rather obscure phys-
ical interpretation. This equation is called the balance of equilibrated forces and
in various versions it has been extensively used to describe the two-component
granular materials (e.g. see: JJW. Nunziato, E.K. WALsH [14], D.S. DRUMHELLER,
A. BEDFORD [15], A. BEDFORD, D.S. DRUMHELLER [16], S.L. PassMaN [17], S.L.
PassMaN, J.W. Nunziato, E.K. WaLsH [4]). In particular the results for the com-
bustion problems (solid fuels) indicate that such a model is quite reasonable in
spite of its rather unclear microscopic foundations.

The same sort of the model has been investigated by J. BLunM, R. DE BOER
and K.*WiLmMarski [18]. They have considered the model with balance equations
for true mass densities . These were not assumed to be constant any more
as it was the case for the “incompressible” model of Bowen. The purpose of
this work was however solely to show that the incompressibilities in the Bowen’s
model, if considered in the same way as in the classical continuum mechanics,
yield the structure of the partial stress tensors which eliminates some flaws of the
original Bowen’s model. The local properties of this model have been investigated
in order to check the appearance of sound waves. It has been proved [19] that the
so-called P1- and P2- longitudinal waves may appear as required by experimental
observations if very specific constitutive restrictions on fluxes are satisfied.

Another type of the model in this class has been introduced by R.M. BOWEN
[20] who postulates the evolution equation for each volume fraction. This pro-
cedure is quite common in thermodynamic theories with internal variables (e.g.
macroscopic theories of mixtures with chemical reactions). It yields the sponta-
neous pore relaxation.

It should be mentioned that most of the above models admit large deforma-
tions of the skeleton. Although thése have not been investigated in the above
quoted papers, the problem has been recognized rather early. Some of its aspects
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were mentioned, for instance, in the early papers of J.E. Apkins [21] and A.E.
GRreeN and J.E. ADKINS [22]. These works do not contain however any proposi-
tions concerning the changes of volume fractions. An extension of these works
under the Bowen’s “incompressibility” assumption has been proposed by J. Kusik
[23]. His work contains also many references connected with the problem of large
deformations.

In the present work we shall discuss in some details a new version of the
two-component model with the balance equation for porosity. It will be shown that
the model easily admits large deformations of the skeleton (the solid component
of the porous medium). Simultaneously it complies in the limit cases with the
early engineering models of soils and rocks. The semi-microscopic motivation
and thermodynamic details can be found in the paper [24]. A brief presentation
of these arguments is contained in the Appendix to this paper.

3. Lagrangian description

The continuous theory of mixture with fluid components relies usually on the
Eulerian description of the motion of components, similarly to the classical fluid
mechanics of the single component. In the case of one solid component such
as the skeleton of the porous medium this method is also possible but not very
convenient. Namely, to describe the large deformations of the skeleton in the
Eulerian way we have to introduce the deformation gradient F¥ of the skeleton
as the field in the space of actual configurations and then use the integrability
condition for this gradient as the additional tensorial field equation (e.g. see:
[25]). The attempts to use the mixed description — the Eulerian one for the fluid
components and the Lagrangian one for the solid components (see: R.M. BOWEN
[2]) — does not seem to be appropriate either. It yields certain basic technical
difficulties in the evaluation of the second law of thermodynamics and, most
important of all, it is not suitable for the analysis of the boundary value problems.
In the latter case, the field equations must be first transformed to the same
independent variables — either Eulerian or Lagrangian and this transformation
leads again to the technical difficulties apart from the fact that the problem can be
formulated in the uniform description from the very beginning. In addition, the
numerical analysis based on the finite element methods is simplified considerably
when we use the same reference configuration for all components to define the
spatial (Lagrangian) independent variables.

The most natural choice of such a reference configuration is the configura-
tion of the skeleton for which its deformation gradient is the identity. Then the
description of the deformation and of the kinematics is Lagrangian as in the
nonlinear mechanics of solids. It remains to clear the question how to describe
the fluid components in such a reference. This question has been answered in
[11] (see also [26] for many details) where the two-component porous material
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has been considered. We present here briefly these results limiting the further
considerations of this work to the two-component porous materials as well. The
extension to the cases of larger number of components is straightforward.

Let us begin with the motion of the skeleton. In the Lagrangian description
it is given by the function of motion

3.1) x= x5(X,t), xekE) XeB,

where x denotes the current position of the material point X of the skeleton, £3
is the three-dimensional Euclidean space of motion and B denotes the reference
configuration of the skeleton which, for the purpose of this work, can be identified
for instance with the real configuration of the skeleton at the instant of time
t = tg. Then the deformation gradient and the velocity of the skeleton are defined
as follows

(3.2) F(X,1) = Gradx°(X,1), x(X,t)= a—ts(X,t).

In the case of the fluid component described in the Eulerian way, the kine-
matics is given by the velocity field defined on the current configuration

(3.3) ¥ =¥ (1), x € X5(8,1).

It is rather obvious that the kinematics of the fluid is defined solely within the
domain of the current configuration of the solid x* (B, t). We are not interested
in the motion beyond this domain except for the phenomena appearing on the
boundary of the skeleton. This problem shall be discussed in the sequel. We
proceed to transform the relation (3.3) into the Lagrangian description of the
skeleton. Let us concentrate the attention on the material point of the fluid which
occupies the position x at the instant of time ¢. For the small time increment At
the position of this material point is given by the relation

(B4)  x(t + At) = x(1) + v (x(1), ) At = x(1) + F5 (X, 1)AX + x"°(X, 1) At
where

X = X{t) = %* (), 1),

(3.5)
AX = x5 Nx(t + At),t + At) — x5 (x(2), ).

The second part of the relation (3.4) follows certainly from the fact that the
material point of the fluid has changed the material point of the skeleton X with
which it had shared the position at the instant of time ¢ into the material point of
the skeleton X + AX, as indicated in the relation (3.5) (diffusion!). Consequently,
after easy manipulations in (3.4) we see that the image of the material point of the
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fluid in the reference configuration of the skeleton B moves with the following
velocity

XF(X,1) = llm % = F*-1(x'F - x'%),

X = v X, 1), 1).

We call this velocity the Lagrangian velocity of the fluid component. It is obvious
that this velocity together with the velocity of the skeleton and with the deforma-
tion gradient of the skeleton, determines uniquely the usual Eulerian velocity of
the fluid component v¥". Hence both ways of the description of kinematics of the
fluid component are equivalent. However the Lagrangian way has the advantage
that all fields are defined in the same domain B.

(3.6)

4. Field equations

We proceed to specify the basic fields of the two-component model and the
appropriate field equations. We limit our attention solely to isothermal processes.
Then the processes in the skeleton are described by the initial mass density ¢°
which is assumed to be constant (independent of the position in B — homogeneous
material) and by the function of motion %°(-, +). In addition to this vector field
for the skeleton, the process in the porous medium is described by the vector
field of the Lagrangian velocity X'¥'(,.) as well as the mass density of the fluid
component and the volume fraction of the fluid. We have to find the Lagrangian
representation for the last two fields.

The usual current mass density of the fluid component ol (x, t) satisfies the
following mass conservation law

(4.1) VP, c X5(B,1): /0, dv=0,

P
where P; is material with respect to the motion of the fluid. It has been assumed
that there are no mass sources which could appear in the case of the exchange of

mass between components. The above relation can be easily written in the image
on the reference configuration B of the skeleton. Namely

V”PCB:E/QF(IUE/ULF(M+ngX'F-Nds=O
dt J ot ’
oP
(4.2) g
dv = Js'ldv,

where

4.3) of =J%F, JS=detF5, P=x5"YP,1),
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and dP denotes the boundary of the set P, material with respect to the fluid
component. The presence of the surface integral is certainly connected with the
fact that the image of fluid on B changes in time according to the field of the
Lagrangian velocity of the fluid component.

It remains to introduce the representation for the volume fractions. It can be
done, for instance, by the consideration of the true mass densities defined by the
relations (2.2). If these are going to have the meaning of the mass densities then
they have to transform in the same way as o’ in the relation (4.3), i.e.

(4.4) o = SR & uF =

where of® and pf'® denote the reference value and the current value of the true
mass density of the fluid component, respectively. The implication in the relation
(4.4) follows, certainly, from (4.3). Consequently, we have the following relation
for the volume fraction of the skeleton

(4.5) n=1-n=n?, n=af.

In the above relation the saturation condition for the two-component porous
medium has been used. The volume fraction of the fluid component n* is fre-
quently called the porosity of such a medium and it is denoted by =, as indicated
in (4.5). According to the above choice of the transformation rules preserving
the geometrical meaning of the volume fractions, the porosity in the Lagrangian
description is identical with that in the Eulerian description.

The above considerations yield the following set of fields which must be de-
termined by the mechanical model of the two-component porous medium

(4.6) X0 {o" nx" X"} e vt Xes,

where V3 is the eight-dimensional vector space of values of the fields.

For these fields we have to formulate the field equations. As usual we shall
make use of the conservation laws. Obviously, the conservation of mass of the
solid component is identically satisfied in the Lagrangian description. The local
conservation of mass of the fluid component follows easily from the equation
(4.2). We obtain

F
4.7) 92" | DivefXF = 0.
ot

The balance laws of momentum for both components are not conservation
laws due to the interaction of components in the relative motion (diffusive force).
We write first the integral form of these laws. Namely

d - . L
E;/gsx'b dv = fP"Nds + ](p" + 0°b%) dv
P aP P
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for YP C B - material with respect to skeleton,

(4.8) %fgpx’Fd'v = fPFNds + f(—p* + oFbF) do
P 3P P

for VP C B - material with respect to fluid,

where PS and P denote the partial Piola-Kirchhoff stress tensors related to the
reference configuration of the skeleton. They are related to the Cauchy stress
tensors of the current configuration by the relations

(4.9) P’ =TT, PP = PTIFT

TS and TF being the partial Cauchy stresses in the skeleton and in the fluid
component, respectively.

The vector p* denotes the momentum source (diffusive force) resulting from
different velocity fields of the components. These, in reality, two sources for two
momentum balance equations differ solely in sign as required by the continuum
theory of mixtures.

The vector N is the unit vector orthogonal to the boundary P and oriented
outwards.

In any regular point of the domain B, the above balance laws yield the fol-
lowing local equations

QS E)X’b
at

— DivP® = p* + 0°b°,
(4.10)
E(L)FX'F) + Div(e"xF @ X' — PF) = —p~ + o"bF.

These equations and the mass balance for the fluid component (4.7) form
the basis for the formulation of field equations if supplemented with constitutive
laws. However we are still missing one equation for the eight fields (4.6). This is
the closure problem which we have presented in Sec.2. As indicated already we
solve it by adding the balance equation for the porosity n. The semi-microscopic
motivation of this equation can be found in the paper [24] and in the Appendix. In
the present work this equation can be considered on the purely phenomenological
footing (see as well: [27]). Namely we assume

on )
(4.11) 0 +Div] = v,
and call J the flux of porosity and v the source of porosity. Their physical meaning
shall be presented in the sequel (see, also: [27, 28]).

In order to formulate the field equations we have to introduce the constitutive
relations for the following constitutive quantities

(4.12) Z = {J, g Fs-lps,Fs-lpF,Fsarpm}7
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where the Piola - Kirchhoff stress tensors were multiplied by the deformation
gradient for the objectivity reasons. We do not need to discuss this problem in the
present work because it does not differ from the same problem of the nonlinear
continuum mechanics of single-component media. However it is worth noticing
that the vector J is also assumed to be independent of the observer which can
be easily done in the Lagrangian description as we see further in this work. It
is connected with the fact that the Lagrangian velocity is independent of the
observer being defined by means of the relative velocity (see: (3.6)).

Further in this work we consider the simplest possible two-component porous
medium for which it is assumed that the skeleton is elastic and the fluid is ideal.
This certainly does not mean the reversibility of processes which are influenced by
the diffusion and the sources of porosity, both these factors yielding dissipation.
In terms of our fields the collection of constitutive variables in such a case is as
follows

(4.13) C = {QF,n,CS,X’F}, CS = FSTFS,

where C¥ denotes the right Cauchy-Green deformation tensor of the skeleton.
Finally we have the following constitutive relations

(4.14) Z = Z(C),

all these functions being assumed to be twice continuously differentiable with
respect to all arguments.

Equations (4.7), (4.10) and (4.11) together with the constitutive relations (4.14)
form the closed set of eight field equations for the eight fields (4.6). It remains
to formulate the boundary and initial conditions to obtain the initial-boundary
value problem for the set of differential equations. We shall discuss the boundary
conditions after the presentation of some thermodynamic admissibility conditions
for the constitutive relations (4.14) which are as yet almost arbitrary except for
the above mentioned mathematical regularity conditions.

5. Thermodynamic restrictions

We proceed to present the restrictions of the above described constitutive
relations following from the assumption that the processes must satisfy the second
law of thermodynamics.

Any solution of the field equations is called the thermodynamic process. Ac-
cording to the second law of thermodynamics, the thermodynamic process is ther-
modynamically admissible if the following inequality

S F , S
(5.1) gsag’ +QF(W x'F-GradwF)—PS-aF

a1 TR i
—PF. Gradx* - F*Tp*. X" <0
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is identically satisfied. In the above inequality ¥, ¥ denote the partial Helmholtz
free energies of components. These are assumed to be the constitutive quanti-
ties, i.e.

(5.2) vS=vS5c), wF=uFQ).

The simple derivation of the inequality (5.1) from the entropy balance equa-
tions and the entropy inequality for isothermal conditions can be found, for in-
stance, in the work [11].

In the standard way we eliminate now the constraint on solutions of the in-
equality (5.1) that it should hold solely for the thermodynamic processes. Namely
we introduce the Lagrange multipliers for the field equations and require that
the inequality

ows ovF OF°

S F 1F F b

(5.3) &5 + 0 ( T + X"« Grad ¥ ) T
—PF.GradxF - F¥Tp*. x'F

3 F
— A€ (% + Div QFX,F) - A" (% + Div] — )

1S
i (953; —DivPS —p* — sts)

[

17 . . F ; . ;
—T*, (%(QFX’F) + Div(ofx" @ X'F — P+ p* - Qer) <0
C
should hold for arbitrary fields. The multipliers are functions of the same consti-
tutive variables as all other constitutive functions, i.e.

Ae
LS

Ae(C), A™ = A™(C),
F3L§ (C), L¥ = F3LE(C).

(5.4)

The solutions of the above inequality are constructed in two different ways.
In early 60-ies B.D. CoLEMAN has proposed the method in which it was assumed
that the class of volume forces was large enough to accomodate arbitrary changes
of the other terms in the momentum balance equations. This means that these
equations do not constrain the class of solutions of the entropy inequality. In
such a case

(5.5) =0, LF=0.

However, if the class of volume forces is not large enough (e.g. if b% = b¥
as it is the case for the gravitational forces), the inequality must be exploited
by the absence of these forces. This has been investigated for the first time by
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I. MULLER in 70-ies. It can be easily shown that the second way is less restrictive
for the multicomponent media and both methods yield the same results for the
single-component continua.

For the purpose of this work we rely on the CoLEman's method. Consequently
the results remain on the safe side as far as the thermodynamic restrictions are
concerned.

Bearing in mind the constitutive relations (4.14) and (5.2) and making use of
the chain rule of differentiation in (5.3) we obtain the inequality which is linear
with respect to the following derivatives

do" On IxX'F S IF
(5.6) {c’)t T ,Grad "', Grad n, —— 5 ,GradF°,Grad X }

Consequently the inequality can hold for arbitrary fields solely in the case when
the coeflicients of these derivatives vanish. We arrive at the set of the following
identities

ows ouF sOWS awF
P ™ S 1-___ L F
A= doF * doF A" =g On A T
LOUS aJ ~OUF ]
SYT yiF n == s n
(5.7) G FX A F =0 X+ Am2= =0,
ows owr
5 F o
o oxF t O gxr =0
A LOwF
P’ + P = 2F° +of —
( acs T ¢ 9cs )
owF ) I
STpF — _ F pe FY¥Y o x!/F _ n
(58) B = - A 4o per @X ’1(0xF)’

owr o3 \T"

23pF IF 2 eS| F 1F _ pn

sym~P" @ X sym {ZF ( ()Cb@X (0C5) ;
There remains the residual inequality which defines the dissipation D of the

process

(5.9) D=FTp.XF - A >0

The above relations determine the Lagrange multipliers, relate partial stress
tensors to the partial Helmholtz free energies and to the flux J and introduce cer-
tain additional restrictions on the constitutive relations. We do not try to exploit
these results in their full generality and restrict our attention to the particular
case of the isotropic porous media. This is the subject of the next section.
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6. Isotropy

The assumption of the isotropy does not seem to limit the applicability of the
present model very considerably because we have already assumed the porosity to
be described by the volume fraction. Such an assumption eliminates any influence
of the geometrical anisotropy of the pore structure from the model. In this respect
the full isotropy assumption concerns solely the mechanical responses of the
skeleton and reactions to the relative motion.

The constitutive relations for scalar functions of the isotropic medium must be
invariant with respect to an arbitrary orthogonal transformation of the reference
configuration. In our model there are three scalar functions (see: (4.12) and (5.2))

(6.1) {v, 05,97},

and these functions of constitutive variables (4.13) satisfy the above requirement
if they depend on these variables solely through their invariants

(6.2) Cio = { 0", n", L ILTIL IV, V, VI},
where

I=1.C5 I = %(12—1.(:52),
(6.3) I = detCS = J52, IV = XF.XF,

VvV = (CS. (X'F ® er)’ VI = C52. (X’F ® X'F).

Simultaneously the model contains two vector constitutive functions for which
the general isotropic representation is of the following form

J = (¥l + 8,C° + $,C5H)X'F,

(6.4) ]
F°Tp* = (ml + m,C5 + mCSH)X'F.

In the above relations the coefficients are arbitrary isotropic scalar functions, i.e.
(6.5) b, = 9,(Ciso), 7o = Ta(Ciso), a=0,1,2.

Further we do not need the isotropic constitutive relations for the partial stress
tensors because these follow from the identities (5.8) whose right-hand sides are
determined by the isotropic scalar and vector functions.

Bearing in mind the thermodynamic relations (5.6) and (5.7) as well as the
symmetries of the partial Cauchy stress tensors T*, T¥ we obtain the following
results.
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The flux in the balance equation for the porosity must be parallel to the
Lagrangian velocity X'¥

(6.6) J=0XF, & =¢6,=0.

The dependence of the Helmholtz free energies and of the coefficient ¢ on
the invariants is restricted by the relations

ows od
S + AP —2 0
¢ doF do¥
ovr 0P
F n 0
o 54 Vaa

(6.7) powr owF
I3 (g 70 - + 2I11 ()III)

0 P d ¢
_An./ F _T0 0 =
alhis [Q dol (\/III) + 2mam (\/ )] 0

where the multiplier A™ is given by the relation (5.7),. Simultaneously

=0,

=0, Ay =, LILIV, VI,

F
sOUS | p0ut

(6.8} ® 9 A, 9.4,

=0, Ay =1V, V, VL.

The Piola - Kirchhoff partial stress tensors have the following form

LOwE oS -
(6.9) PF=—|:QF(QPW+Q:’0 ,_) + A" %]F =3

+2 o doiv + A"?)f/?] FPx'F @ XF),
(6.9) pS = 2pS-T {g [O?WI CS + ( I({)Lllb + IIIZI—W;)
—IIIO;I’I gLy 2%‘; X" % x’F]
+A" a3';0(:5 (II% + ngﬁ‘;) }= III?;{’CS‘I
+2%CSX’F ® CSX’F] } .

The proofs of these relations are rather technical; they are based on the spec-
tral representation of the deformation tensor and of the Lagrangian velocity.
They shall not be quoted in the present paper. The details can be found in the
work [25].
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In spite of the complexity of the above relations, some important properties
of the isotropic model are immediately seen.

First of all the relations (6.6) yield the considerable simplification of the addi-
tional field equation (4.11) of the model. The collinearity of the flux of porosity
and of the relative Lagrangian velocity of components couples the diffusion pro-
cesses with this surface mechanism of changes of the porosity which is absent in
the models based on the evolution equations for porosity. This property simplifies
as well the problem of an additional boundary condition which is necessary for
this field equation in the fully nonlinear case of the present model. The latter
problem shall not be discussed in this work.

Simultaneously the scalar coeflicient @ in the relation for the flux J plays
the crucial role in the “static” coupling between the components. This “static”
coupling is understood as the description of the interactions between components
reflected by the dependence of the free energy of the fluid ¥ on the deformation
of the skeleton through the invariants I, II, III of the Cauchy - Green deformation
tensor, as well as the dependence of the free energy of the skeleton ¥~ on the
mass density of the fluid . The former is easily seen in the relations (6.7)3
and the latter in the relations (6.7),. The additional most important “static”
coupling is reflected by the dependence of both partial free energies on the
current values of the porosity n. The dependence on n of at least one of these
energies is necessery for the non-triviality of the relation (5.7); for the multiplier
A™. This multiplier is solely responsible for the additional static interaction terms
in all relations quoted above. For instance in the case of lack of diffusion, the
vanishing multiplier A™ would yield the classical relation for the stress tensor in
the one-component ideal fluid and the classical relation for the stress tensor in
the one-component neonlinear elastic solid. In addition, all these interactions of
components are described by the model independently of the fact whether the
particular process is connected with the relative motion of components or not.

The above relations for stresses show also a rather complicated influence of
the relative velocity on the mechanical responses of the two-component medium.
Quite clearly this influence is at least quadratic. This means that the small diffu-
sion velocity yields primarily the explicit linear dependence of the diffusion forces
(momentum source) p* and of the porosity flux J on this velocity, and the partial
stresses contain solely the influence of the static interactions of components. In
such a case the partial Cauchy stress tensor for the fluid component is reduced
to the spherical form (pressure!).

Let us finally mention that the residual inequality (5.9) is in the isotropic case
of the following form

v > 0.

awnS g F
(6.10) (mol + 7, C° + 1, C%) - (XF @ X'F) - (QSOL + FO¥ )

dn e dn

Obviously the first term of this dissipation inequality describes the dissipation
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due to the diffusion, and the second one — due the changes of porosity caused by
the source v in the field equation of porosity. In the thermodynamical equilibrium
the relative velocity as well as the porosity source must vanish. These are the two
mechanisms of the thermodynamical relaxation in the present model.

Let us briefly review the above results for the general case. The thermodynamic
admissibility and the isotropy reduce the constitutive problem of the model to
the following scalar constitutive functions

(611) {wsa WF,¢0,TI'0,7I'1,71'2,N},

which, in general, may depend on the constitutive variables (6.2) and are subject to
the conditions (6.7), (6.8) as well as (6.10). The vector fluxes and the stress tensors
are then determined by these functions through the appropriate differentiation.
Further in this paper we discuss some possibilities of the effective construction
of these functions for certain real porous materials.

7. Simplified nonlinear models

The purpose of this section is the construction of some simplified models
based on the general considerations of the sixth section. We shall not discuss all
important particular cases because the research on this subject is still in progress.
We want solely to illustrate the connection of the general mechanical model
of large deformations of the porous two-component medium with some other
models whose range of applicability is more restricted and with observations of
some real materials.

We begin with the assumption that processes deviate not too far from the
thermodynamical equilibrium. The latter is defined as the state with the vanishing
dissipation. According to the inequality (6.10) we have in such a state

(7.1) X'Flg =0, vig =0, — n|g = ng = const.

The above assumption means then that the relative velocity of components is
small and the deviation of the porosity from the homogeneous initial state ng is
small as well. In this approximation

IS ia
v = ﬁ(sdﬂ’ +nF()w),

~oF on  ~  dn

(7.2) &
N(ng, LTI I, o) > 0,

N

and the functions 7y, 71, 72 must be dependent on the same variables as \.
Simultaneously the state of the thermodynamical equilibrium is the state in
which the dissipation reaches its minimum. Consequently

9 ; & s s o E
(7.3) %(QSW‘S + 0P U e, = 0, 75" # o" I )y, > 0.
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Bearing in mind the identities (6.7) in the first approximation of the deviation
from the state of equilibrium, we obtain after easy calculations

_ 1
S = g5 + 5slfzs(n — ng)?,

v+ 30 (0~ o)

&y = ['y(no) + Qﬁ(li(n - ’Il())] VIII |

(7.4) D2

where
5} g = ¥ (no, LILI), ¥ = & (no, o)),
of = o112,
and
F F
n — ng 0 i - T e 0
(7.6) y=——, T = (%% + oF0f)!, A =W(n—n0).

The material parameter 7 has the interpretation of the relaxation time of the
porosity and, according to the condition (7.3), of the stability of the thermodynamic
equilibrium, it must be positive. It creates the damping of the acoustic waves in
addition to the damping connected with the diffusion.

Simultaneously

1 gou5  of —0d)
=0 s o VIII — = 0,
2¢ Dol TN dof i

1o9f 1 Ob}
fuciad” SRRy k| S 1 As = LTI IIL
2043 TN 0A;
It is convenient to use further the spatial representation of the constitutive
variables and functions. In order to do so we introduce the current mass density
o7, the left Cauchy - Green deformation tensor B¥ and the real relative velocity w

(1.7)

(7.7)1 gf — QSJS_I, Qf = QFJS-I, Bb = FSFST, W= (X,F*XIS).

The invariants I, II, III are certainly identical for the tensor B® with those
of the tensor C°, and the invariants IV, V, VI are immaterial under the present
simplifying assumption of the small deviation from the thermodynamical equilib-
rium,

The partial Cauchy stress tensors, related to the Piola - Kirchhoff stress tensors
by the relations (4.9), are in this case given by the following relations

- TS = Z,BS + Tyl + 7_,B° 1,
7.8
TF = —pF1,
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where
ows
— ~,59%
Il 29: OI 3
COUS
- SZ70
(7.9) Iy = -2mg ot
g ows vy n—-mn
5.8 0 0 F 0
o = 20 (H oIl ”Ham) tre o
and
our n—n
1 Fo(oFR% . F 0
(7.10) po= (1) 20F T T

We have used the relations (7.5) and neglected terms quadratic in the deviation
of the porosity n from its equilibrium value ng. The latter causes the symmetry
of interactions in the partial stress tensors.

The similarity of the relations (7.8) to the classical relations for nonlinear
elastic materials and for the ideal fluids is, certainly, only apparent. The response
coefficient Iy depends in the present case not only on the deformation invariants
I, II, III, as it is the case in the classical one-component model but also on the
mass density of and on the porosity n. Simultaneously the partial pressure in
the fluid p* depends not only on the current mass density o/ but also on the
invariants I, II, IIT and on the porosity n. Crucial for this coupling of components
is the presence of the constant v which is the part of the flux of porosity as well
as the presence of the two additional material parameters 7 and A, both of them
connected with the changes of porosity.

Let us finally mention two other simplified models which may have the prac-
tical bearing on the soil mechanics. In both models we assume the linearity with
respect to the diffusion velocity.

The first one follows from the assumption that the balance equation for the
porosity (4.11) reduces to the evolution equation which describes the changes of
the porosity along trajectories of the fluid. Then

(7.11) &y = n, ie.  v(ng) = no, $l=1 TM=1.

In such a case the identities (6.7) yield

wS = w5 (ng, 1,11, TIT),
(7.12) pl = WF(TIO,Q{:,H), k=nl>1,
N ~OwF
A* = of

ok’
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and the partial Cauchy stress tensors have the form

SOWS ows ows ow
' L S S _ S S— 1
TS = 2] —-B° + 2] (II a1 am) ~ 211g; aHB
(7.13)

TF

owr owr
Fy2 F
- + n| 1.
[(91 ) 60{? Oy a'{
Hence the interaction of components is not symmetric in this case. The changes
of porosity influence the stresses in the fluid but not in the skeleton.

The second simplified model follows from the assumption that the evolution
equation of porosity is carried by the skeleton, i.e.

According to the identities (6.7) we obtain then

wS = @5(n,1,11,1II),
(7.15) v = wF (ng,0l),
;O
n _ .S
Am=e dn ’
and the partial Cauchy stresses are
ows ows o> ows
S _ .S s s + S
T 20; B ——B” + 2p; (II oIl IHUHI) — 211y, B

(7.16)
TF

Il

our
- \k(QtF)z (‘)QF“ 1

t

Consequently the interaction of components is again non-symmetric. The changes
of porosity influence solely stresses in the skeleton through the dependence of
the free energy ¥5 on the porosity.

We rest here as far as the discussion of the construction of nonlinear models is
concerned. In the next section we present briefly the boundary conditions which
are necessary to pose the mathematical problem for the field equations. Some
physical properties of various models will be discussed in connection with the
wave propagation.

8. Boundary value problems, permeable boundary of the skeleton

The set of field equations for the fields (4.6) requires — similarly to the mix-
ture theory — two vector conditions on the boundary, connected with the vector
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equations following from the momentum balance laws and, in general, one scalar
condition for the scalar balance equation of porosity. The latter may not appear
in particular cases when the coefficient of the flux of porosity @ is identical with
n itself. It is easy to show that it may appear at least in two cases. The first one
concerns the skeleton whose interactions with the fluid vanish entirely from the
Helmholtz free energy ¥ as discussed in the previous section. This seems to
appear for some rocks in the range of moderate porosities. The second one fol-
lows from the relation (7.4); as the approximation of the small volume changes
of the skeleton: III = 1, y(ng) = ng and &} = 1. In both cases the stress tensor
in the skeleton does not contain contributions from the fluid - it is indeed purely
elastic. We skip here the details justifying these assumptions in some practical ap-
plications whose main purpose is to estimate the order of magnitude of the new
material parameters. We shall accept them however in examples to be considered
further in this paper. The general case has not been considered as yet.

In addition to the above boundary conditions one has to describe the motion
of the free surface if the fluid flows out of the porous skeleton and the boundary
is identified with the boundary of the skeleton. We proceed to present some
elements of these problems.

Let us begin with the so-called dynamical compatibility conditions. These are
the jump conditions for fields and their functions which follow from the general
balance equations in the limit on singular surface. The derivation is standard and
we shall not present here any details.

In order to simplify the considerations let us assume that the surface is material
with respect to the skeleton. This means that its velocity is identically zero in the
Lagrangian image used in the work. The general case has been considered in the
paper [11]. Then the mass balance for the skeleton does not yield any non-trivial
conditions. The mass balance of the fluid (4.2) leads to the following relation

mf = ("XT)"-N = ('X")*. N, e
["X*)-N=0, [[.I=()" -,

where (...)” is the limit of the expression in parenthesis from the negative side of
the surface (this is the internal side of the surface if the surface is the boundary),
and (...)" is the limit from the positive side (the exterior for the boundary) for the
other quantity. The quantity mf describes the amount of the mass of the fluid
which flows through the unit surface in the unit time. According to the above
condition, the mass is neither produced nor does it sink on the surface. Such
surfaces are called ideal.
The momentum balance equations (4.8) yield the following conditions

(8.1)

[P*)] -N =0,

(8.2)
[[PF]] N = mf [[X'F]] )
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where the first condition does not differ from the classical Poisson’s condition of
continuity of the stress vector in the skeleton. The presence of the right-hand
side in the relation for the fluid means that due to the non-material character of
the surface, it is not the ideal surface for the fluid with respect to the convective
transport 6f momentum.

The surface balance for porosity is determined by the equation (4.11) which
holds for an arbitrary regular point but can be easily written in the integral
form and then extended to hold also in the limit on the singular surface. The
corresponding jump condition is then of the form

(8.3) [[0x]] -N = 0.

We shall not discuss this problem any further in this work.

We proceed now to formulate the boundary conditions for the boundary of
the skeleton on which the external load is given and the boundary is permeable
for the fluid. Many details concerning this problem as well as its applications in
the weak formulation and numerical codes for the two-component porous media
can be found in the work of W. Kemra [30].

The first vector boundary condition follows from the assumption that the
external load, say t., is given on the boundary of the skeleton 98. We assume
that this load is taken over by the resultant stress vector of both components on
the positive side of the boundary, i.e.

(8.4) {@Ny + "Ny~ + " [¥]] } los = tex,
where the sum of the dynamic compatibility conditions (8.2) has been used. Apart
from the limits of fields from the interior, this relation contains as well the un-
specified quantity (x’F)*. We relate this vector to a scalar quantity in the sequel
(Eq. (8.6)1).

In order to expose the most essential feature we consider the second vector
condition under the additional assumption that the Cauchy stress tensor in the
fluid is spherical, i.e. we neglect the higher order contributions of the relative
velocity. In such a case we can assume that the tangential component of the
relative velocity is continuous on the boundary of the skeleton and the fluid does
not flow tangentially to the skeleton in the exterior. In the Lagrangian description
we have then

(8.5) (XF - (XF N)N)"|s5 = 0.
Solely two components of this vector are independent. For this reason we need

in addition one scalar condition. We formulate this condition assuming that the
flow of the fluid m” on the boundary of the skeleton is controlled by the pressure
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difference between the fluid inside of the porous material (p*')~ and the pressure
of the surrounding p..;. Consequently

[x"1)
oo om[[3]

4
mF = —a(pex — "),

e [ ]

~J5CSTL (Ne N) [

where the relation (8.4) has been accounted for, as well as the following relations
for the unit vector n normal to the boundary in the current configuration [11]
and for the pressure in the fluid have been used

4 1 _
(8.7) n=(C"LMNeN) ’FIN,  pf = -2J5@FT)1,

and the parameter a is constitutive. If this parameter as well as the mass density
(¢F)* and the pressure pe were known, the relations (8.6) would complete the
formulation of the boundary value problem. We shall not go into any further
details referring an interested reader to the work [30]. Let us solely notice that
the constitutive relation for the boundary (8.6)3 does not contain any influence
of the pressure gradient projected on the normal to the boundary. Sometimes
it seems to be necessery to have this type of condition. The linear combination
of the jump of pressure and such a normal derivative would yield the boundary
condition similar to that appearing in the heat conduction problems with the
boundary characterised by its own thermal conductivity.

9. Acceleration waves in two-component media

The model constructed above in this paper contains a number of constitutive
quantities which must be measured in experiments. In the case of porous materials
such experiments are usually of the two different types. Either the measurements
are done by means of devices which are in contact with real components or
they are delivering the mean quantities in which the contribution of separate
real components is not clearly specified. To the first type belong, for instance,
the measurements of true mass densities of components separated from each
other or the measurements of the real pore water pressure. The most important
class of measurements of the second class are the measurements of speeds of
propagation and the attenuation of acoustic waves in porous materials. The waves
propagate in the multicomponent porous media and they deliver an information
on the whole system rather than on separate real components. Many examples
of such measurements can be found in the book of T. Boursig, O. Coussy,
B. ZINSZNER [5].
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In this section we present the most fundamental properties of acoustic waves
described by the present two-component model. We follow here the papers [19,
27, 28]) where also the extensive discussion and the comparison with the experi-
mental data can be found.

Within the continuum mechanics the acoustic wave is defined as the so-called
weak discontinuity wave in which the motion and the velocities are continuous and
the accelerations suffer the jump on a singular surface. This surface is assumed
to be orientable and it is called the wave front. It moves through the material
with the speed of propagation of the wave.

According to the above definition we assume in the case of the two-component
medium the following relations to hold on the wave front of the acoustic wave

Oy [ =0, [¥)]=0, [¥)=0, [mN=0

Under these conditions the so-called iterated geometrical and kinematical com-
patibility conditions yield

] =0, [x7) =0 [["]] =0,
[P N=0, [P]N=0,

181
[ g = 372, [[GradFS]] =a*@NQ®N,
ot ||
ST
[ O_F_ =-Ua’@N,
ot |
(9.2) F_‘
ox’ — oF 72 ] — F
“_a't_ =afU2,  [[Gradx”]| = -Ua" ®N,
[[Grad x'F]] = (U -XF.N)F’-1a° g N- UFS-1af @ N,
doF ] = I onll _
HW = -Ur, [[Gradg ]] =N, [ W]] = -Un,
[[Grad n]] = nN,

where N denotes the unit normal vector to the wave front and a®, a*, r and n
denote the so-called amplitudes of discontinuity of the acceleration in the skele-
ton, the acceleration in the fluid, the fluid mass density gradient and the porosity
gradient, respectively. The speed of propagation of the wave front is denoted by U.

In order to find the speed of propagation U and the relation between the
direction of the amplitude and the direction of propagation, it is now sufficient
to evaluate the limits of field equations on both sides of the wave front. This
evaluation for the mass balance in the fluid (4.7) and for the balance equation of



POROUS MEDIA AT FINITE STRAINS 615

porosity (4.11) yield

1F 1F
rU (1 - %"—) -ofUu (1 — XTN) FF-T.@°@N)

+o"UFST.@F @ N) = 0,

0Py X} X — L R
(9.3) nlU (1 — an U - agFT.XN - 2‘\N ﬁ.(F a’ ® N)

r,F'
—&oU (1 - ATN) F5-T. (a5 @N) + $UF5-T.(a"* @ N) = 0,

Xi§ =XF.N.

In most cases of the practical bearing the relative velocity of components is
much smaller than the smallest speed of propagation of the acoustic wave. For
this reason we can make the simplifying assumption

~IF
Xy
U

(9.4) <13

the usual order of magnitude of the left-hand side is 10~4. If all other terms in the
relations (9.3) are of the same order of magnitude then we have approximately

(9.5) r=oFT.a°-a")eN, n=¢FT.@°-a")@N.

Hence the amplitudes of the mass density gradient in the fluid and the am-
plitude of the porosity gradient are determined by the amplitudes of the accel-
eration. They do not yield their own waves and are carried by the other sorts of
waves. This would not be the case if we did not make the simplifying assumption
(9.4). A rather unusual type of waves appears if we make a better approximation
(see: [28]) but there is no experimental evidence that such waves do indeed exist.

We proceed now to investigate the momentum balance equations (4.10) from
both sides of the wave front. We limit the attention to the case of small relative
velocities for which the Cauchy stress tensor in the fluid is spherical (see: (7.2)).
Then bearing in mind the simplification (9.4) and the remaining constitutive as-
sumptions we obtain easily

S.85772 o« 15(6S=T (a8 _ oF FIT? aTs G- 5.8
p’a”U = J°(F"~ " «(a°—a" )®N) 1o E)QF+450 o «(FP"'N)+Q~a”,

N 0)17 a.F
FoFpd _ 18] 8- e85 _F F Yl ol A
(9.6) o"a"U J {(F (a° —a")®N) (9 90F %9 Bn)

+2£- (a® @ F°N) s F¥-TN
IBS ;
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where

TB
S — S Q.T__S S-T S
9.7) Q*=2/%(555) (FNGFN).

This tensor of the second order is called the acoustic tensor in the classical theory
of acoustic waves in single-component nonlinear elastic materials. Its eigenvalues
determine the wave speeds, and its eigenvectors — the relation of the directions
of amplitude to the directions of propagation in this classical case. It is not so in
the case under considerations.

Let us notice that the second relation (9.6) implies that the amplitude a* must
be parallel to the vector n which is given in the current configuration by the rela-
tion (8.7) and which is perpendicular to the wave front. Consequently the waves
carrying the discontinuity of the acceleration in the fluid must be longitudinal.

It is also easy to check that the amplitude a® can have an arbitrary direction.
As pointed out in the work [27], these solutions of the set of algebraic equations
(9.6) determine three types of acoustic waves: two longitudinal so-called P1- and
P2-waves and one transversal S-wave.

We shall discuss some properties of these waves for the linear model in the
next section. However it is important to stress that all three waves are observed
in porous materials. The fastest one is the P1-wave. It propagates, for instance, in
soils with the speed 3 — 5 km/s. The second fastest is the transversal wave carried
primarily by the skeleton. The slow P2-wave (Biot’s wave) has, for instance, in
soils the speed 0.5 — 1.5km/s. These speeds as well as other properties of the
waves (for instance — attenuation) are dependent on the deformation of both
components and on the current porosity. This delivers the in site methods of
diagnosis of porous materials by propagating acoustic waves and measuring the
arrival time and amplitudes of various sorts of waves. To a certain extent such
methods are already used, for instance, in geology. The difficulties are connected
with the analysis of the available data for which the old models of porous materials
were not adequate.

10. Linear models, some simple analytical considerations

For the purpose of illustration we close this work with a few remarks con-
cerning the linear version of the model. It is obvious that the construction of any
analytical solution of the fully nonlinear boundary value problem shall be almost
impossible. We can expect, however, that the numerical codes shall be developed.
The work on this subject is already in progress. For this reason it is convenient to
have some simple hints from the linear and simplified problems in which we do
not have to eliminate the artefacts connected with the numerical approximations.
We consider now a few examples of such problems.
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Let us consider the case in which the following assumptions are satisfied

1
E° = E(CS -1),  |[E°] = sup [E°.-(n@n)|,

n,|n|=1
sup [|E°|| < 1,
Tt
(10.1) ,
of — of

26

sup <1,

x.t

ng

sup £1 A=n-—ng,

Tt

where g(’f and ng denote the constant initial values of the mass density of the
fluid and of the porosity, respectively.

Under these assumptions the constitutive relations for the source of porosity
(7.11) and for the partial stresses (7.2) become

A

v=——, T = 1(ng),
T
TS = MSES. D1+ 24565, XM =25(ng),  p® =4 (ng),
(10.2) g
T = —pFl , pF = I\'FQF + __ngg() A,
TN

EF = K¥(ng), N = N(n).

In the above relations we have used the assumption mentioned in the section
on the boundary conditions and concerning the form of the flux ¢9. Namely it
has been assumed to be equal to the porosity n itself. In the linear model this
assumption yields the constant flux of the value ng. The coupling of stresses is
then one-sided: the stress in the skeleton is independent of the presence and
properties of the fluid in pores.

The fields in this case

(10.3) {" a0V}, W =xT(X0)-X,

where u® is the displacement of the skeleton, are described by the following fully
linearized set of field equations

do*

- & od Div(v!') = 0,
A /
(10.4) %—t + ngDiv(v") = —é .
Sazus

g (A5 + 1%)Grad Div(u®) + 5 Div Grad(u®) + m3w + 05b°,
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[cont.]

(10.4) povt PR, M0y FF
where

(10.5) 3 = mo + 7 + 7 = w3(ng).

We can now make the analysis of the propagation condition of acoustic waves
completely explicit. We obtain the following equations for the amplitudes

r+g{;aF-n=0,
n+nga’+n=0,

(10.6) Srr2.S s S\r.S S.S
e’U”a” = (A” + p”)(@”-n)n + p’a”,

F
) noo
ggUZaF={—I\FT— 00n}n.

TN

Consequently the amplitudes of the mass density gradient r and the amplitude
of the porosity gradient n are not connected with their own waves — as it was
already the case in the nonlinear problem. The amplitude of the acceleration wave
in the fluid possesses solely the normal component and the speeds of propagations
are given by the following relations

AS + 2u5
U = 7“— longitudinal P1-wave,
S
(10.7) Ui == transversal S-wave,
o
72
Uf =\/KF + ﬁ longitudinal P2-wave.

Hence the measurements of these three speeds of propagation deliver immedi-
ately three relations for the material parameters in function of the porosity ng.
These data are easily available and we show further a numerical example.

In order to analyze the attenuation of waves it is easier to consider a one-
dimensional example of the monochromatic wave. Let us denote by v the
z-component of the velocity of the fluid, by v¥ — the z-component of the ve-
locity of the skeleton and by £¥ — the extension of the skeleton in the z-direction.
These three quantities together with of and A fully describe the one-dimensional
process. We look for the solution of the set of field equations in the following
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form
of = of + eRF exp(i(wt — k™)),
of = eVF exp(i(wt — k™2)),
(10.8) vS = eV exp(i(wt — k*z)),
A = eDexp(i(wt — k™z)),
€% = eES exp(i(wt — k*z)),

where o}, RF,VF VS D, ES are constants and
(10.9) O<e<l.

In the above relations the frequency w denotes the real frequency of the
monochromatic wave which is considered to be given. The wave number k* is
assumed to be complex. Namely

(10.10) =k +ia,

where k is the inverse of the wavelength and « denotes the attenuation of the
wave.

Substitution of the relations (10.8) in the field equations yields the following
dispersion relation for the monochromatic waves

2 il m
10.11 2 _ UFZL_*Z 4 "1—1‘0—2_.16‘2 = _3‘
(HEIl) {w £ Nw+il/r zegw

2 52;%2 .73 3 T3 2
qw”=Ur%k —z—,w}+ (—) (T)“’ =0,
{ 0% 05/ \ ef

which is the equation for £* as a function of w. It is easy to check that the limit
case of almost empty pores for which we can neglect the influence of diffusion
yields the frequency-dependent speeds of propagation of two different types of
waves corresponding to the two longitudinal waves discussed above. Moreover
the limit w — oo yields the same speeds of propagation as before.

As far as the attenuation coefficient « is concerned we obtain the following
relation

1.0 g 1y _%
(10.12) r'zQ{(Q—zz)W
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where

10.13 -
( . ) = E y

is the so-called the quality factor of the monochromatic wave (see: Sec.3.3.3.
of [5]). Hence the relaxation time 7 for the porosity is indeed one of the two
parameters describing the attenuation of waves. The second one is the classical
diffusion coefficient w3. The quality factor is also easily attainable to the mea-
surements. This yields the possibility of measuring the additional parameter 7 of
the model discussed in this section.

In order to illustrate the above considerations we present the numerical results
for the Massillon sandstone. For the porosity n, = 23% and the water saturation
Sw = 0.1% we have the following experimental data [S] and the results of the
wave analysis

1000

Measurements: | Uf 3.1 x10° m/s | UF = 0.9 x 10° m/s 5 = 40 for w =2x10* Hz
U =21.6x10° m/s | Uy 2 0.3 x 10° m/s | 0% = 2.4 x 10° kg/m’

Results (the A¥=10.776 | u=6.144 | K¥ =09 N =17.347 = 3.699

wave analysis): x10° MPa x10° MPa | x10° m?/s? | x107® s?/m? x107% s

These values check well with the available experimental results obtained by
the standard methods of measuring the material parameters.

In addition, the above simple examples justify to a certain extent the assump-
tions made in the nonlinear model. For instance the measurements of the speeds
of the P1-wave in many rocks show that they are almost independent of the wa-
ter saturation in pores. It means that these speeds do not react to the art of the
substance in the pores — they are independent of o/ and A. This justifies for such
materials the assumption of independence of the free energy of the skeleton of
the mass density of the fluid and of the changes of the porosity which we have
mentioned in the section on the boundary conditions.

We complete this section with another standard example stemming from the
soil mechanics (see: [29] for further details). First of all let us notice that the
equations (10.4); 2 can be combined in the following way

0A A ng 0"
— ==
at 1t py Ot
If the mass density of" were known, we could find the changes of porosity from
this equation. Consequently the formal solution can be written in the form

(10.14)

t
ng

10.15 A=l F_ Femtir _ 1 [ Fy pyemtt-mr gy
0 T
0

~
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As expected, the equation for porosity yields a sort of memory effect which
in the linear theory is described by the Boltzmann integral. It means that the
present value of the porosity depends not only on the present value of the mass
density but also on its past history. The influence of the past history is, however,
modified by the exponential function. Hence, in the first approximation, we can
neglect these effects entirely. We obtain

n 7
(10.16) A Q—,f{(gF =25 )
0

Substitution of this relation in Eq. (10.14) shows immediately that this equation
is satisfied solely in the case of the infinite relaxation time. In such a case there is
no dissipation due to the changes of porosity. The porosity changes according to
the change of the mass density of the fluid. The similar property appears under
the assumption of the incompressibility of real materials of components which
has been discussed by R. BoweN [6]. However in contrast to the work of Bowen,
in our case it is only the approximation which does not lead to any reaction forces
on constraints.

Bearing in mind the above approximation we solve now the one-dimensional
quasi-static consolidation problem which has been solved for the first time by
Frohlich in 1938 within the frame of the Terzaghi model of consolidation. Namely
we consider the compression of the semi-infinite prism of the porous material
filled with water with the free flow of the water through the boundary = = 0. The
external pressure p, is atmospheric and the loading is given as the body force on
the skeleton

qH (1)o(z),

(10.17) o
0" =0,
where II(+) is the Heaviside distribution and é(+) is the Dirac distribution. The
constant ¢ is the load in the direction of the z-axis.
Simple manipulations of the field equations yield the following set of equations
for the pressure p/ and the normal component of the stress ¢ in the direction

of the z-axis
a [apF 9% [opf _ :
ot (07) =Bz (W = Myini=),

do®  opF
P 0r - —qH ()d(z),

(10.18)
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where
/)
FlgF 4o
“ ( \ TN) S s s
M= .  ES=X%+245
ES + of (A'F + n—/&)
-
(10.19)
of Ix"F+n—% ES
95 0 T'N
3 n
ES + oF [ KF + =2
o (1 + %)

The equations (10.18) can be easily solved. For instance, we obtain the fol-
lowing result for the so-called hydraulic gradient i

2 H 1 12
VT : = exp S 5
Mg N 4t

F

% , t' = 12,- ) '

dz Iz

and I is a constant with the dimension of length.
7-

(10.20)

1=

z
H’

6_

1.[\ -

0.2 04 06 08 1 12 1.4 16 18 2
L

FiG. 1. Time changes of the hydraulic gradicnt ¢ for z/# = 0, 0.25 and 0.75.

This solution is shown in the Fig. 1 for various values of the depth. The result
complies quantitatively with the results obtained for the model of Terzaghi for
times shorter than app. 1.5.
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For large times the decay in the present model is much slower even though
both solutions approach zero for the infinite time. This is most likely the result
of approximations applied by Frohlich.

The above results allow also to find the last material constant of the linear
model - the coefficient of diffusion 73. Consequently the model can be used in
the practical applications to describe processes of small deformations and small
changes of porosity. Little is known about the constitutive functions for nonlinear
cases. This is however also the deficiency of the experiments which are available
at the present time.

11. Final remarks

The simple examples of the last section have demonstrated how strong must
be the simplifying assumptions to lead to the classical results of the theory of
porous materials. Almost nothing has been done yet as far as the solutions for
large deformations are concerned. At the present stage of research there seems
to be a good chance for obtaining the first numerical results in the case of purely
mechanical processes in materials with the elastic skeleton and the ideal fluid.
However even in this case there are no mathematical results available and the free
boundary may yield difficulties connected with the existence of classical solutions.

Even less developed are the models combining the large deformations with
non-mechanical variables. Particularly important are here the non-isothermal
problems. There exist already the first attempts to incorporate these effects, par-
ticularly in connection with the phase transformations (e.g. drying processes in
ceramics). The situation is, however, not very satisfactory. The thermal variables
connected with the problem of free boundaries yield difficulties with the con-
struction of the model which would contain physically measurable quantities (e.g.
see [11]).

On the other hand there seems to be no doubt that the modern continuum
theory of mixtures of immiscible components is the only possibility to obtain the
mathematical models of porous materials. The purely structural theories may
deliver some important hints concerning, for instance, transport coefficients but
they are hardly in the position to be applicable in numerous engineering prob-
lems of geology, chemistry, acoustics etc. independently of the capacity of future
computers. The new chance for the continuum theories is certainly connected
with the unified Lagrangian description of all components. Its application in this
work has shown that the relatively complex model can be handled without many
technical difficulties and the first experience with this description in numerical
methods also indicates considerable simplifications.
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Appendix: Motivation of the equation for porosity (4.11)

In this Appendix we present the brief semimicroscopical motivation of the
balance equation for the porosity (4.11). Mathematical details of the derivation
of this equation are rather involved due to the lack of smoothness. We discuss
them elsewhere [24].

It is assumed that the skeleton, the solid component of the porous medium,
is a continuum on the semimicroscopical level of observation. This means that
each point X of the macroscopical manifold B is connected with a certain time-
dependent microstructure M x which is schematically shown in Fig. 2.

a) b)

c)

FiG. 2. The semimicroscopical mechanisms yielding the changes of porosity. The centre of the
magnifying glass is located in all three cases at the same point X; a) initial microstructure,
b) changes of microstructure due to the pore relaxation (micromotion and microsources),

¢) changes of microstructure due to the macroscopical flux (motion of microstructure
relative to the macroscopical skcleton).

The instantaneous geometry of this microstructure is established by the real
solid body B,., embedded for each instant of time in the three-dimensional
Euclidean configuration space R>. The hull which is identical with the closed
boundary surface of the geometrical three-dimensional figure M x (the frame of
the magnifying glass in Fig. 2) is now shifted over the configuration space and the
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average properties of the part of the real body contained in the interior of the
hull are prescribed to the point of the space R? coinciding with a chosen internal
point of M x (the centre of the magnifying glass in the simple example of Fig.2)
and occupied at the same instant of time by the material point X of the skeleton.
For simplicity one assumes that the shape of the hull does not change in time.

This type of the volume averages are used quite commonly in the theories of
bodies with microstructure. For instance the volume averages of material prop-
erties of composites are calculated in this way. In the theory of porous materials
with diffusion processes there are also numerous attempts in this direction (e.g.
F. DoBran [31], W.A. Gray, S.M. HassaNiZADEH [32], J. BEAR, Y. BACHMAT
[33]). None of them seems to be yet effective and reliable enough to yield the
macroscopical model without any need for additional macroscopical constitutive
relations. For this reason we use the above described construction solely to mo-
tivate the equation for the porosity.

Instead of constructing averages in the configuration space R* we use the
procedure on the reference configuration B of the macroscopical skeleton. This
corresponds with our Lagrangian approach.

We seek the equation describing the volume changes of the part of the real
skeleton which at a given point X € B and at a given instant of time ¢ lies inside
the hull of the figure M x. The arbitrary point Y from My can be described by
the location vector

(A.1) Y=X+¢Z, XeB, YeMy,

where ¢ is the small parameter of the order of the cubic root of the ratio of the
volume of microstructure to the characteristic macroscopic volume. If we denote
by H(.,t) the characteristic function of the real skeleton contained in M x

for Y belonging to the domain of the real skeleton,

1
(A.2) H(Y, 1) = { 2

otherwise,

then the porosity is defined by the relation

1
(A.3) 1-n(X,t) = 7 / H(Y,1)dV, Ve = / dV = const,
CMX M x

where V, is sometimes called the control volume of the averaging.

We want to find the time changes of the porosity. The changes of the micro-
scopic geometry of the real skeleton are due to the two factors:

e The redistribution of the real solid material in the domain My due to
its microscopic deformation. This may follow from the compressibility of the real
material and/or from the microscopic motion of the skeleton inside of this domain
which shifts the solid material to the parts of the pore space. Such processes are
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not controllable on the macroscopical level and yield the pore relaxation processes.
They are schematically shown in Fig. 2b. The material of the real skeleton in the
microscopic configurations of Fig. 2a and 2b (the interior of the magnifying glass)
is the same but its distribution within M y has changed due to the above described
mechanisms;

¢ The flux of the real material through the hull of the microstructure into the
neighbouring regions of the real body. This is demonstrated in Fig. 2¢ by the shift
of the real material relative to the magnifying glass whose centre still lies in X.

The balance equation for the whole microstructure describing these changes
of the geometry has the form

(A4) % f HCY, 1) dV = f HY, Voo ndA + ] H(Y, t) dV,
My Mx Mx

where v, denotes the velocity field for the points occupied in the microstructure
by the real skeleton. This field is highly singular and usually cannot be integrated
to describe any smooth trajectories (see: [24]). The operations performed on the
above equation, which must be understood in the distributional sense, require cer-
tain additional smoothing procedures which we do not present in this Appendix.
The vector n is the outward normal vector of the boundary of the microstructure
IMx and H(Y,t) is the intensity of the source of the domain occupied by the
real skeleton. The latter is due to the changes of the volume of the real skele-
ton in the microstructure caused by the changes of the real mass density of the
skeleton (see: Fig.2b).

The surface integral in (A.4) can be transformed into the volume integral
under the above mentioned smoothing procedures. Subsequently we apply the
multiscaling indicated by the relation (A.1) and obtain

(A.5) }( H(Y, t)v3, - ndA = Divy / HX, Z, 5., (X, Z, 1) AV
Mx Mx

2 / Divy (H(X, Z, VS o (X, Z, ) dVz ,
My

where the differentiation and integration with respect to the microvariable Z
has been separated from the differentiation with respect to the macroscopical
Lagrange variable X.

The first term on the right-hand side of this relation describes the macro-
scopical flux of the porosity defined by the relation (A.3). Simultaneously the
second term follows from the microscopical motions of the real skeleton within
the microstructure and contributes to the pore relaxation processes — indepen-
dently of the fact whether the real components are assumed to be compressible
or incompressible.
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Consequently, if we introduce the notation

1 ..
-3, = o / HX, Z, 005 (X, Z, 1) dVy b
Mx
1
(A.6) -n(X,t) = Vo € / DivzH(X,Z,t)via,(x,z,z)dVZ

Mx

Ll f H(X,Z,t)dVz p,
Ve
Mx

we obtain from the equation (A.4) the balance equation of the porosity (4.11).

The above considerations must be considered solely as the clarification of
certain microscopical mechanisms yielding the “internal” variables and the mo-
tivation of this balance equation and not as its derivation because, apart from
the above mentioned smoothness problems, the relations of this Appendix are
not effective if we do not have the full set of microscopical field equations. The
problem must be still closed by constitutive relations and this is obviously simpler
on the macroscopical level as we have done in the paper.
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Double-diffusive convection in compressible fluids
with suspended particles in porous medium

R.C. SHARMA (SHIMLA), TRILOK CHAND (NALAGARH)
and V.K. BHARDWAJ (SHIMLA)

THE DOUBLE-DIFFUSIVE convection in compressible fluids with suspended particles in porous me-
dium is considered. The suspended particles are found to have destabilizing effect whereas stable
solute gradient, rotation and compressibility have stabilizing effect on the system. The medium
permeability has a destabilizing effect in the absence of rotation but has both stabilizing and
destabilizing effects in the presence of rotation. The stable solute gradient and rotation are found
to introduce oscillatory modes in the system which are non-existent in their absence.

1. Introduction

THE PROBLEM of thermosolutal convection in fluids in a porous medium is of im-
portance in geophysics, soil sciences, ground-water hydrology and astrophysics.
The development of geothermal power resources holds increased general interest
in the study of the properties of convection in porous media. The scientific im-
portance of the field has also increased because hydrothermal circulation is the
dominant heat transfer mechanism in the development of young oceanic crust
(LisTER [3]). Generally it is accepted that comets consist of a dusty “snowball” of
a mixture of frozen gases which, in the process of their journey, changes from solid
to gas and vice-versa. The physical properties of comets, meteorites and interplan-
etary dust strongly suggest the importance of porosity in the astrophysical context.
A mounting evidence, both theoretical and experimental, suggests that Darcy’s
equation provides an unsatisfactory description of the hydrodynamic conditions,
particularly near the boundaries of a porous medium. BEAVERS ef al. [10] have
experimentally demonstrated the existence of shear within the porous medium
near surface, where the porous medium is exposed to a freely flowing fluid, thus
forming a zone of shear-induced flow field. The Darcy’s equation however, cannot
predict the existence of such a boundary zone, since no macroscopic shear term is
included in this equation (JosepH and Tao [11]). To be mathematically compatible
with the Navier - Stokes equations and physically consistent with the experimen-
tally observed boundary shear zone mentioned above, Brinkman proposed the
introduction of the term gVZV in addition to — (:—L) V in the equations of fluid
motion. The elaborate statistical justification of the 113rinkman equations has been
presented by SAFFMAN [12] and LUNDGREN [13]. SToMMEL and FEDOROV [14] and
LiNDEN [2] have remarked that the length scales characteristic of double-diffusive
convecting layers in the ocean could be sufficiently large for Earth’s rotation to
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become important in their formation. Moreover, the rotation of the Earth distorts
the boundaries of a hexagonal convection cell in a fluid flowing through a porous
medium, and the distortion plays an important role in the extraction of energy in
the geothermal regions. BRAKKE [1] explained a double-diffusive instability that
occurs when a solution of a slowly diffusing protein is laid over a denser solution
of more rapidly diffusing sucrose. NASON et al. [5] found that this instability, which
is deleterious to certain biochemical separations, can be suppressed by rotation in
the ultracentrifuge. SCANLON and SEGEL [6] have studied the effect of suspended
particles on the onset of thermal convection.

The conditions under which convective motions in double-diffusive convec-
tion are important (e.g. in lower parts of the Earth’s atmosphere, astrophysics
and several geophysical situations) are usually far removed from the considera-
tion of a single component fluid and rigid boundaries and therefore, it is desirable
to consider a fluid acted on by solute gradient and free boundaries. The com-
pressibility and suspended particles are important in such situations. SHARMA and
SHARMA [7] and SHARMA and VEENA KuMARI [8] have considered the thermoso-
lutal convection in porous medium under varying assumptions of hydrodynamics
and hydromagnetics.

Keeping in mind the importance in geophysics, astrophysics and various ap-
plications mentioned above, the thermosolutal convection in compressible fluids
with suspended particles in a porous medium, in the absence and presence of a
uniform rotation, separately, has been considered in the present paper.

2. Formulation of the problem and perturbation equations

Consider an infinite horizontal, compressible fluid-particle layer of thickness
d bounded by the planes z = 0 and z = d in a porous medium of porosity ¢
and permeability k;. This layer is heated from below and subjected to a stable
solute gradient such that steady adverse temperature gradient 3(= |d7T"/dz|) and
a solute concentration gradient §'(= |dC'/dz|) are maintained.

Let p, u, p and V(u, v, w) denote respectively the density, viscosity, pressure
and filter velocity of the pure fluid; V4(7, t) and N (7,1) denote filter velocity and
number density of the particles, respectively. If ¢ is acceleration due to gravity,
K = 6rpve’ where &' is the particle radius, V, = (I,r,s), 7 = (z,y,2) and
A1 = (0,0,1), then the equation of motion and continuity for the fluid are

Zley 1 = _Vp-— (E z_ﬁ) N
2.1) : [01 + . (v V)V] = —-Vp—ogX + SV I V+ : (Va=V),
(2.2) (e% + V-V) o+ oV-V=0.

Since the distances between particles are assumed to be quite large compared
with their diameter, the interparticle relations, buoyancy force, Darcian force and
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pressure force on the particles are ignored. Therefore the equations of motion
and continuity for the particles are

JdV4

(2.3) mN |5 + g(vd.vm = KN(V-V,),
(2.4) s%—’:i + V+(NV,) = 0.

Let ¢y, ¢p, €51, T', C and g denote respectively the heat capacity of fluid at constant
volume, heat capacity of fluid at constant pressure, heat capacity of particles,
temperature, solute concentration and “effective thermal conductivity” of the
clean fluid. Let ¢, c,, and ¢’ denote the analogous solute coefficients. When
particles and the fluid are in thermal and solute equilibrium, the equations of
heat and solute conduction give

(2.5) [ocoe + 0sc5(1 — €)] %—T; + 0¢,(V-V)T

+mNcy, (E% + V,pV) T= (]VzT,

(2.6) [oche + osci(1 — )] aa—? + ocl (V-V)C

+mNc), (% + vd-v) C = ¢'ViC,

where p;, ¢, are the density and heat capacity of the solid matrix, respectively.
SpiEGEL and VERONIS [9] have expressed any state variable (pressure, density
or temperature), say X, in the form

X =X, + Xo(2) + X'(2,9, 2,0),

where X,, stands for the constant space distribution of X, X is the variation in
X in the absence of motion, and X'(z,y, z,t) stands for the fluctuations in X
due to the motion of the fluid. Following SpieGEL and VERONIS [9], we have

T(z) = -fz+ T,
p(z) = Pm — g](@m + 90) (lZ,
0
Q(.’L‘) = Qm [l - CI(T - 711)1) + Gl(Cv - Cm) + a”(P - pm)] ]
__(15_0) nf_(lf)_@) au_(l?ﬁ)
o dT)’ ) 0 0C)’ o dp)’
Thus p,,, o stand for the constant space distribution of p and p and Tj, g stand

for the temperature and density of the fluid at the lower boundary (and in the
absence of motion).
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Since density variations are mainly due to variations in temperature and solute
concentration, Egs. (2.1)-(2.6) must be supplemented by the equation of state

(2.6") 0(2) = om [1 = (T - Tp) + a'(C - Cp)] .

Let éo, ép, 0, v, V, V4 and N denote the perturbations in fluid density p,
pressure p, temperature 7', solute concentration C', fluid velocity (0, 0, 0), particles
velocity (0,0, 0) and particle number density N, respectively. Then the linearized
perturbation equations, under the Spiegel and Veronis assumptions, are

)
e MO e

e Ot Om kl Om€
V.V =0,
A
mNg—— = KNo(V — Vy),
ot
2.7)
ON
60— + V. (NogVy) =
E —_—= _— hs) + K 20
(B +he) 5, (,@ ) (w + hs) + KV,
(E' + h’e)%} = f'(w + h's) + kV2y.
Here ,
QSCS / gbc
= - E=e+(1-c¢ v
b=es (1 E)Qm(u ‘ (1 )QmCL ’
! 7
I LA
Cy Cy Om OmCy OmCy
and

b0 = —pn(ab — a'y).

Using d, d?/k, k/d, ovk/d?, 3d and 3'd to denote the length, time, velocity,
pressure, temperature and solute concentration scale factors, respectively, the
linearized dimensionless perturbation equations become

- 1 1
(2.8) pl—lg‘; =-—V"6p" + RN — Sy N + (;V*z - F) V' + w(V; - V),

(29) V.V =0,

0 * £

(2.10) ('rat* + 1) V=V,
(8M
at-

2.11) + V. v*) 0,
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6" -
(E+ he)g? w l(w' + hs*) + V29",
2.12
( ) ] ] 07' * ! = 1 x2_ =
(E +h£)-(,—)?;=(w +h5)+xv 3
where
Kk _ B _Ev _ gapBd* _ go'Bd?
P-E‘)_'s G’gw pl"'Rs R= v S = !
eN K Nod? me mNy K
M=To, w=S0 Tega Set=rer ad A=,

and starred (*) quantities are expressed in dimensionless form. Hereafter, we
suppress the stars for convenience.

Eliminating V4 from Eq. (2.8) with the help of (2.10) and then eliminating u,
v, 6p from the three scalar equations of (2.8), and using (2.9), we obtain

[LI—LZGVZ—;-))]V% Ly(RV30 — §V3y),

J G-1 Jd
w wfeewd-ele (5 (e
(2.13) Lz[(E+z), v]e ) (ro 4 1) w,
L@ ewod 1oy = (-2 + )
¥ A ot d
where
(’)2 0 0 0? 9%
— =1 - . 2 4
2 2 2
V2=5%+38_y2+%» F=f+1, H=h+1, H =h"+1.

Decomposing the perturbations into normal modes by seeking solutions in the
form of functions of z, y and ¢

(2.14) [w,8,9] = [W(2), O(z), I'(z)] exp(ikzz + ik,y + nt),

where n is, in general, complex, and k = (k2 + k2)!/? is the wave number of
disturbance.
Eliminating 8, v between Eqs. (2.13) and using expression (2.14), we obtain

@15y [0, + % . %( 2)] [D? = k2 = n(E + he)
< [D? = 12 = an(E + We)| (D - KW
- (%) (rn + H)RK? [D2 — k2= (B + h’e)] w

—A(rn + H')SK? [D? — k% - n(E + he)| W.
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where

Ly
[

p]_l(v'n2 + F'n),

Ly=mm+1 and D=—.

3. Principle of exchange of stabilities and oscillatory modes

Let

31 U= W and X = [L1+1;32 Lz(Dz—kz)]U

In terms of X, the equation satisfied by W is
(32)  [D? =K = n(E + he)] [D* = k2 = An(E' + W'e)| X
= k? (GG ) R(rn+ H) [Dz k2 - An(E' + h’s)] w

~ME2S(rn + H') [D* = k? = n(E + he)| W.

Consider the case of two free surfaces having uniform temperature and solute
concentration. The boundary conditions appropriate for the problem are

(3.3) W =DW =0, O=I=0 at =0 and 1.

Multiplying Eq.(3.2) by X*, the complex conjugate of X, integrating over the
range of z and using the boundary conditions (3.3), we obtain

(3.4) L +n[(E+he)+ MNE + he)| I + M*(E + he)(E' + he)3
= k? (GG ) R(rn + ) (L LZ) [Is + An(E" + h'e)Is]

~M2S(rn + H') (L’{ LZ) [Is + An(E + h'e)Is)
A2L62 [(C’G 1) R(rn+ H) = AS(rn+ H )] Is

+k2)\n%§- [(%) R(tn+ H)YE"+ h'e) - S(rn + H')(E + he)] I,

where
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1
B = /(11_)2,\'12 + 2K DX + kX P)dz,

1
L= /'(|DX|2 + KX |Ddz,

1
Iy = /(|X|2)dz,
0
1
(3.5) B = / (U 2)dz,
0

1
& = /(|DW|2+ KW [2)dz,
1
Is = f(|DU:2 + K2|UP)dz,
0

1
I = ]([1)2w|2 + 262 DWIE + KW |P)dz.
0

The integrals I; — I7 are all positive definite.
Putting n = ing, where ny is real, into Eq. (3.4) and equating imaginary parts,
we obtain

(36  nf= {[(E +he) 2B 4K B+ [ (S5) R (S + )

-AS (};'IF “ %’)] Iy + k2 [S(E‘ + he)H' - (G—(;—l) R(E' + h’s)H]
(32 2) [5G mes] o)
/{,\k2 {— (%) R(E' + h’e){r(f B 4 %}

+S(E+h){ (fl )+FHIS+%{( )R ,\s}

Iy
k22 =
¥ ; [— (GG1>R(E’+h’5)+S(E+h5)] 17},
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or
3.7) ng = 0.

In the absence of stable solute gradient, Egs. (3.6) and (3.7) become

) (%) (E + he)l, + k*R {p;’HF+ %}L;+ szTRhlﬁ
38) ny=- kzrzli’,pl'lh 3
or
(3.9 ng = 0.

Since the integrals are positive definite and ny is real, it follows that ng = 0 and
the principle of exchange of stabilities is satisfied, in the absence of stable solute
gradient. In the presence of stable solute gradient, the principle of exchange
of stabilities is not satisfied and oscillatory modes come into play. The stable
solute gradient, thus, introduces oscillatory modes which were non-existent in its
absence.

4. Dispersion relation and discussion

When instability sets in as stationary convection, the marginal state will be
characterized by n = 0 and Eq. (2.15) reduces to

G—1
(4.1) % = %(1)2 — K| (D? - 3w = (—-—) FERHW — AK*SH'W.

1
) §

Considering the case of two free boundaries, it can be shown that all the even
order derivatives of W vanish on the boundaries and hence the proper solution
of Eq. (4.1) characterizing the lowest mode is

4.2) W = Wysinrz,

where Wy is a constant. Substituting the solution (4.2) in Eq. (4.1), we obtain

G 1 2 + k2 2 242 Y
e — + + k A
(G l)[(P . )(W L)+/\I»HS

kzi

If R. denotes the critical Rayleigh number in the absence of compressibility and
R. stands for the critical Rayleigh number in the presence of compressibility,

then we find that p
1{,5 — (m) Rc .

4.3) R=
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Since critical Rayleigh number is positive and finite, so G > 1 and we obtain
a stabilizing effect of compressibility as its result is to postpone the onset of
double-diffusive convection in a fluid-particle layer of porous medium.

It is evident from Eq. (4.3) that

dR _ (GG ) (7% + k%)?

dP —1) BOP:’
(4.4) N
LT+ 24 22 4 ak2s
ar _ ( G ) p -
di G=1 k2H? ’
and
dR G \NH
(4.5) E—A(—G_I)F.

The medium permeability and suspended particles have thus destabilizing
effects, whereas the stable solute gradient has a stabilizing effect on the ther-
mosolutal convection in compressible fluids with suspended particles in a porous
medium.

5. Effect of rotation

In this section, we consider the same problem as that studied above except that
the system is in a state of uniform rotation €2(0, 0, 2). The Coriolis force acting
on the particles is also neglected under the assumptions made in the problem.
The linearized nondimensional perturbation equations of motion for the fluid are

du d 1 1 1
=(g% . O _ ml/2 R vZ
P13 6151)+w(1 u) + T, v+ (EV P) u,
dv d 1 1
=1 _ .1/2 2
(5.1) g T —a—y5p+w(r—v)—7,1 u + (EV _F) v,
pl_l%% = -%(51) +w(s —w)+ RO — Sy + (%Vﬂ - %) w,
2,74
where T4 = —— is the nondimensional number accounting for rotation, and

g%y
Egs. (2.8)-(2.12) remain unaltered.

Eliminating V4(I, r,s) with the help of (2.10) and then eliminating u, v, ép
between Egs. (5.1), using (2.9) we obtain
( 5 Is

Li+ —=-—=
1 P €

*w

d22
B Iy
L . |
(Lt 2- 2

2
(5.2) vz) Viw + LT,

vz) V(RO - AS7).
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Eliminating 6 and v between Egs. (2.13)3 and (5.2) and using expression (2.14),
we get

(53)  [D?= K= n(E + he)| [D* = i = Mn(E' + i)

P

O [y GOy

«(rn+ H)R = A{D* = k? - n(E + he)} (rn + H’)S] W.

2
{.L1 NECN %(D2 - kz)} (D* - k%) + LgTADZ] w

For the stationary convection, n = 0 and Eq. (5.3) reduces to

1 D*-R

(54) (D*-kH {{F - 4%

2
} (D? — k%) + T4 D?

2 _ 32 -
=kz{%_ D E k }[(GGI)RH—,\SH'] Ww.

Considering again the case of two free boundaries with constant temperature and
solute concentration and using the proper solution (4.2), we obtain from Eq. (5.4)

1 724 k? .
2 (1 PR
(m +k)(P+ . ) Ty

G 1r2+k2 H'
. — +A5=|.
65 r=(g27)|"wr (1 ,rz+k2) ST
. =+
P €
It is evident from Eq. (5.5) that
dR _( G ) 7(x2 + k?)
dTa  \G-1 2442 ’
A (l+ w2+ k )szl
P £
2 4 12\?
LIPS s (T2 + kY + 12Ty
a8 (—G—)( 242y [\ s
o am T T \a-1)" 1 m2+8%\ , , |’
sE—— |¥E
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Therefore the suspended particles have a destabilizing effect, whereas the ro-
tation and stable solute gradient have stabilizing effects on the system under
consideration.

Equation (5.5) also yields

dR _ ( G ) (72 + k%) | 7%+ k2 72Ty

6D =\e-1) ®r |TTE YT
2
p(_+—)
ot €

Y (1 x2+k2)°
— e

then dR/dP is possitive.

If ,
K\ (1 =2+k?
— st i m—

cofir B {Ls LEY

then dR/dP is negative.

Thus the medium permeability has both stabilizing and destabilizing effects,
depending on the rotation parameter, on the thermosolutal convection in a com-
pressible fluid with suspended particles rotating in a porous medium.

If
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Stability of the wall jet formed by the impingement
of a single-phase jet

I.B. OZDEMIR (iSTANBUL)

THis PAPER DESCRIBES a theoretical investigation of the possibility that the large structures of the
wall jet flow formed after oblique impingement of an axisymmetric jet were generated by the
flow instabilities, so that the experimentally reported discrete frequencies were synonymous with
instability modes. The wall jet flow was triple-decomposed into a time-independent, pseudolaminar
motion defined by the time-averaged velocity field, upon which incoherent and coherent turbulent
fluctuations were superimposed. Solution of the inviscid, one-dimensional flow equations with
large coherent structures, which were modelled by spatially evolving waves, was given in detail
and revealed that the distribution of the radial fluctuation intensity and the frequency of large
structures compare well with the experiments justifying the deterministic nature of the coherent

motion.
Notations
Symbols
Ap, A, Az, Ay amplitude modulation functions,
f  real-valued frequency,
F(f) complex amplitude of the rotating vector defined in Eq.(4.2),
H  nozzle-to-plate distance,
i V-,
m  real-valued azimuthal wavenumber,
p paramecter defined in Eq. (3.2),
p coherent pressure fluctuation,
p'  incoherent pressure fluctuation,
P instantancous value of pressure,
P time-averaged value of pressure,
P(f) total power associated with frequency f,
r  radial coordinate defined from geometrical impingement point,
rw wetted radius defined in Eq. (2.3),
Re Reynolds number,
s paramcter defined in Eq. (3.1),
t time,
ur, u;,us components of coherent velocity fluctuations in three directions,
uy,uy,uy components of incoherent velocity fluctuations in three directions,
U,,U;, Uy components of instantaneous velocity ficld in three directions,
U,,U.,Us components of time-averaged velocity ficld in three dircctions,
U, n maximum of the time-averaged radial velocity component,
z  coordinate normal to the plate,
zos  wall distance at which time-averaged radial velocity

Or

attains half of the maximum value,
superscript refers to nondimensional form of variables.
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Greek Symbols

a  complex-valued wavenumber,
imaginary part of a,

real part of a,

real-valued circular frequency (2« f),
parameter defined in Eq.(3.1),
half-cone angle of the inflowing jet,
wavelength of the educed coherent structures,
kinematic viscosity of the air,
azimuthal coordinate,

density of the air,

parameter defined in Eq.(3.2),
angle of impingement,

parameter defined in Eq.(3.2),
parameter defined in Eq.(3.2).

R

R
-

AT N B - A R - )

1. Introduction

THE RADIAL WALL JET formed after impingement of an axisymmetric jet on a flat
surface has been of interest in many engineering applications, including heat or
mass transfer to or from the flow, and the interaction between the pressure waves
radiating from the plate and coherent structures of the inflowing jet. In response
to these enquiries, time-averaged flow fields have been explored for normal im-
pingement usually in the vicinity of the stagnation region, but knowledge of the
downstream evolution of the flow has remained elusive. Recently, the radial wall
jet has attracted particular attention in terms of instantaneous patterns of large
structures (Ho and Nosselr [1, 2], LANDRETH and ADRIAN [3]) whose charac-
teristic dimensions are commensurate with the width of the wall jet and lead to
the time-averaged flow field with higher turbulence intensities (POREH, TSUEI and
CERMAK [4]) than in aerodynamic boundary layers. OzpEMIR and WHITELAW [5]
investigated the downstream evolution of the time-averaged and instantaneous
flow fields of a radial wall jet formed after oblique impingement of an axisym-
metric jet, and showed that the symmetry of the toroidal vortices (DipDEN and Ho
[6]) was distorted as impingement deviated from normal, resulting in a complex
cluster of concentric yet asymmetric toroidal vortices.

It is known (Ho and HUERRE [7]) that the evolution of vortical structures in
laminar and turbulent shear layers is governed by essentially the same dynamical
processes, so that the concepts of hydrodynamic stability can be applied to turbu-
lent shear layers. Inflectional instability of the shear layers has taken a great deal
of attention, as for example GREGORY, STUART and WALKER [8] and STuART [9],
because disturbances generated near the point of inflection could dominate the
fluctuations and propagate at a speed smaller than the corresponding velocity at
the inflection point. HOWARD [10] and Tsuit et al. [11] argued that the number of
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distinct unstable disturbances associated with the inflection points could not ex-
ceed the number of neutral modes. The roll-up of travelling instability waves into
the periodic array of vortices in a plane mixing layer was studied by MICHALKE
[12] and MicHALKE and HERMANN [13] in that the evolution of disturbances in
the basic flow direction seemed to be better modelled by spatially growing dis-
turbances and, when the width of the flow region varied considerably, quantities
controlled by the history of the flow development required an additional scaling
parameter to account for the coordinate stretching (BoUTHIER [14], GASTER [15],
CRIGHTON and GASTER [16]).

The purpose of the present study was to examine the possibility that the large
vortical structures observed by Ozpemir and WHITELAW [5] in their radial wall jet
were generated by the flow instabilities, so that the discrete frequencies measured
were synonymous with instability modes. The conjecture that the wall jet flow was
not so obviously nonlinear gave impetus to the present linear analysis and should
not be far from reality, since the array of vortices observed was discrete and
no nonlinear vortex interaction processes, such as vortex pairing or tearing as
described by HussaiN [17], were observed.

2. Equations for coherent structures

It can be envisaged that large scale motion of the wall jet was caused by deter-
ministic instability waves which were, together with stochastic background fluc-
tuations, superimposed on the pseudolaminar flow defined by the time-averaged
velocity field. Therefore, since the wall flow was temporarily stationary, an instan-
taneous quantity can be decomposed into a time-independent mean, a coherent
and an incoherent turbulence quantities (Hussain [17], HussaIiN and REYNOLDS
[18]) and, in cylindrical coordinates, the instantaneous velocity vector can be given
as (see Fig. 1, for the coordinate system and the flow domain)

FiG. 1. Schematic of the flow configuration.

U,-(T, d)y 2, t) = UT(T, @, 2) + i,(r, @, z, t) + 'H-:-(T, d’, 2y t)v
(2.1) Uy(r, ¢, 2,t) = Uy(r, ¢,2,t) + uy(r, ¢, 2,1),
U.(r,d,2,t) = U,(r,$,2) + U(r, ¢, 2,t) + u)(r, ¢, 2,1),
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with the pressure field
P(r,¢,2,t) = P(r, ¢, 2) + p(r, ¢, 2,1) + p'(r, $, 2,1),

where the over-bar, tilda and prime refer the quantities for the mean flow, the
coherent (wave motion) and incoherent (random) turbulent fluctuations, respect-
ively. Note that, based on the surface flow visualisation experiments [5], the mean
azimuthal velocity, U 4, was assumed to be zero. Provided there is a large differ-
ence between the length scales of the coherent and incoherent motions (STRANGE
and CRIGHTON [19]), the incompressible Navier-Stokes equation can be used
with the triple-decomposition to yield nonlinear equations for the wave motion
(Ozpemir [20]). Linearisation of such equations implies that the space-time evol-
ution of one wavenumber associated with a given eddy size will not affect that of
the others so that the coherent structures develop independently. Although the
question often arises as to the extent of validity of linearised theory, MiCHALKE
[12] points out that the error due to the linearisation of the disturbance equations
is larger for higher disturbance frequencies than for lower ones. This justifies the
present linear analysis since the frequencies measured in the wall jet were fairly
low.

Provided that the deterministic motion is associated with the discrete part
of the spectrum accessible by the modal equations, the coherent components of
fluid motion can be represented by instability modes even though the set is not
complete (BeErcHov and CRIMINALE [21], DrAzIN and REID [22]). For the present
analysis, disturbances travelling and evolving in the basic flow direction were
of interest and, since the growth rates obtained from a stability calculation for
temporally growing disturbances cannot be transformed linearly with the phase
velocity into spatial growth rates (MICHALKE [12]), solutions to the linearised
equations can be assumed of the form

i, = A (2)exp{i(ar — ft + mé)} + (+),
iy = Ag(2)exp{i(ar — Bt + mp)} + (),
u, = A,(2) exp{i(ar - Bt + 7”95)} + (+),
5 = Ay(2)exp{i(ar — ft + m@)} + (+),

where () refers the complex-conjugate term, A,, A;, Ay, and A, are the (com-
plex) amplitude modulation functions of ., 4., ug, and p, respectively. 3 is the
real-valued circular-frequency (2 f) and « is the complex wavenumber defined as

3
<
|

2.2)

|

=
I

a = o, +1q;,

where a;, is the spatial wavenumber (27/)), and «; is the rate of spatial evolution
of a given component. It should also be pointed out that the curvilinear coor-
dinate, ¢, introduces a direction which can permit the evolution of the discrete
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azimuthal modes of instability similar to the helical modes of the axisymmetric
shear layer (STRANGE and CRIGHTON [19], PLascHkoO [23], COHEN and WYGNANSKI
[24]). Indeed, the azimuthal instability modes of the wall jet flow could be a con-
tinuation of the helical shear layer structures of the inflowing jet which were,
in some cases, known to survive after impingement (WIDNALL and Tsar [25],
Lucrt [26]) leading to large correlation between the wall jet and inflowing jet
turbulence. The above formulation, therefore, accounts for the presence of the
spinning modes (with azimuthal wavenumber, m) which, in some cases, have been
as unstable as the axisymmetric modes (CoHEN and WYGNANSKI [24]).

Since the stability of the flow is a local characteristic, the radial velocity maxi-
mum, U, »(r, ¢), has to be selected as the velocity scale, and the wall distance, z,
is assumed to scale with the half-velocity thickness, zg 5. It was shown by OzpEMIR
[27] that the azimuthal symmetry of the wall flow was distorted due to the angled
impingement of the inflowing jet and, therefore, it was necessary to take into
account the azimuthal variation of the radial spreading. However, transforming
the distorted coordinates of the wall jet flow of the angled impingement to those
of the normal impingement, which can be treated analytically by the cylindri-
cal coordinate system centered at the geometrical impingement point, required
knowledge of the function relating the azimuthal and radial coordinates, which
is difficult to deduce from the contour plots of surface pressure, as for exam-
ple Ozpemir and WHITELAW [5] (their Fig. 2.6). Here a heuristic approach was
followed in which the radial distance from the geometrical impingement point,
r, is assumed to scale with a so-called wetted radius, (8, ¢), which varies azi-
muthally as

(23)  ru(8,¢) = H{sin(0 cos §) + cos(6 cos ¢) tan(0 cos(180 - ¢) + ) },

where 7 is half the cone angle of the spread of the inflowing jet and was taken
as 15 degrees from the flow visualisation pictures. The distributions of r,, are
shown for § = 0 and 20 degrees in Fig.2 and assumes elliptical shapes with

o1t arr

#=-90°

orr ort
F1G. 2. Polar plot of the azimuthal distributions of the wetted radius for the impingement angles
of 8 = 0 and 20 degrees.
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increasing distance to the geometrical impingement point along the ¢ = 180-
degree direction as impingement deviates from normal.

Further simplification of the formulation occurs when Reynolds number is
large so that the viscous effects become very small, finally leading to

continuity:

* > lAn-
Ay oA 28 g BTS00 e 0, -
2

) T

=0,

*
¢t

r-momentum:

E— . T am 205 U* BU, M 8? B
2.4 - Al + A+ — | =L = + ~ 1A
( )2 1’48 T 4= Ur T Tw (Ur,}\.l 6.,.- 31.: T
20.5 —UT: U,y  OU. —.dA* U, )
+ i 2 + T A* + r $ rAt + *Ax =
" (U,,M 3¢ T op )Wt tap i =0,
¢-momentum:
e A a o Tk s DaROE yu o Tl . SCEGE b
(24)3 -1 A¢+IO' UTA¢+ pegy A¢+Uz?+ W;—AP =0,
z-momentum:
o R 205 U: 0(_/1',,’” HU: "
(2.4)4 — 1A, +ia”U, AL + iy ([_]r'M o + Sre A
20.5 U: OU,- M OU; - — % dA: UU: - dA;
+ — 2 4 AL+ + =0
Ty (U,.'M ¢ do $ ¥ H, dz* oz* Ay F dz* 0

Letting A7 =Y}, A} = Y2, A7 = Y3, A =Y}, and rearranging, the following set
of first-order ordinary differential equations can be obtained

dvy _ 1 | .. g 205 (U, 8U.m | OU,
dz* _[7: {I'B Yy Ay Tw (Ur,M or* + or* i

1w \Urpr 00 a6 ) 2 Bz

(2.5) T -
B s d 870 — 0 T — UT’_TO-S ¥ — Sy Y

Y3 == ia‘Y4} y

dz* U = ™ T
dY- . # im*z

3 - —za*Yl - 0-5 Yl = 05 )/ :
dz* r*ry i
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25) dYy ., g zos { U, OU.p = OU,
i, AR U Ya= 222 | == M z
[cont.] dz* P =ials Tw \Urp Or* ar= H
z0s (U, dU.m | OU,
- - M 4 Y,
Ty (U,,M d¢ 3¢ | *
+T; (m*yl y 2By 2 U Yz) _ sy,
it P dz*

Note that when U, — 0, Egs. (2.5) 2 have singularities which were introduced by
disregarding the terms in Re~!. The singularity due to diminishing value of U,
occurs at the wall (2* = 0) and can occur at an interior point if there is a local
vertical flow reversal within the flow domain. Indeed, the vertical flow reversal in
radial wall jet was first observed by LANDRETH and ADRIAN [3], and there is a clear
evidence that flow reversal becomes stronger in oblique impingement (OzDEMIR
and WHITELAW [5]). The difficulties associated with the singularity are discussed
in detail by OzpEMir [27] and here the emphasis is given to one-dimensional
mean flow for which the equations have no singularity. If the basic flow field is
assumed to be locally parallel so that U] is the only velocity component of the
undisturbed wall jet, with U, = 0 everywhere, the set (2.5) further simplifies to

dY- . z m*zys
: 3 = ity - S0y 05y,
z* 7-‘7-‘“} 7-*7-u)
(2.6)
dY4

i3*Y; — ia*U. Y3

dz*
with Y] and Y, defined as

—% ATT -Tr Tk
¥ = { 205 (_UT Wrm O r) Y, + dUrYs 4 ia*}’,;}

™ Tw Ur,A'! ()(25 (‘)(;b dzx
1
(@4 : AT A%
. % T _ 205 r T,A«f r
13 — " U, = (UT,M e + 87“)

tm*z05 ., coe e TR U:ZO.S
Y, = Ys P — iU, — —|.
T*Tw ™Tw

3. Mean flow, boundary conditions and solution procedure

In order to obtain the full transverse eigensolution at each radial position, the
coefficients of the modal equations, which are functions of the mean flow par-
ameters, are required. The streamwise development of the mean flow, therefore,
affects the evolution of the instability modes, which has been considered with
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multi-scale expansions defining the divergence of the mean flow (GASTER [15],
CRrIGHTON and GASTER [16], PLascHko [23]) and, since the local mean velocity
profiles are the results of the nonlinear interactions, an implicit nonlinearity is
imposed on the solutions. In the present analysis, mean flow parameters and
their variations were provided in the form of empirical relations (OzpEMIR and
WHITELAW [5]) as representatives of the pseudolaminar motion upon which the
perturbations were superimposed. The mean radial velocity profiles nondimen-
sionalised by the local maximum were similar at large radial distances

S (2/205)"! z/z05\" , n-1
ey T= g - L eo{-(72) + 45
Urm (77—1)() 1)/"(\/55),,-1 V2s U]

n

(see also Table 1) with the streamwise evolution represented by

Table 1. Variation of 5 and s.

¢ (°): 0 90 180
7 ! 1.42 1.38 1.32
3 : 0.54 0.52 0.54
— r — C ¥
3.2 Urar = 7(r — ()P ex {—( )}/\/Eaf
(32) m=rlr=Pepi- () | /(20
which fits the experimental data (Fig.3 and Table 2).
Uu
(mss]
6 -
faY
5 -
Fa
‘ -
3 -
2 -
lra
g =0° =— g =160°
920 a0 rtml 008 ass

F1G. 3. Variation of the maximum of the mean radial velocity along the line of incidence.
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Table 2. Parameters of Eq.(3.2).

6 (°): 0 180
¢ : 0015  —0.015
p & 049 0.22
oo 126 1.15
o 0.045 0.078

The set of first-order differential equations requires a condition to be specified
for each equation to obtain the transverse eigensolution. The vertical velocity
component at the wall should be zero due to the impermeable plate and, thus,

(3.3) A =0 at 2" = 0.

The eigensolution is defined over a semi-infinite interval [2* = 0, 2z* = 0]
with the upper boundary occurring at infinity but, for numerical purposes, it was
replaced by a finite interval in which the condition at z* = oo was assumed to
occur at some finite z* = z7_, so that the domain of the transverse eigensolution
was forced to coincide with that of the mean flow where U, = 0 and the pressure
attained the ambient value, i.e.,

(3.3 A", =0 at 2t =25

The eigenvalue problem defined in Egs. (2.6) includes two coupled first-order
linear ordinary differential equations. The solution was sought for the eigen-
values, a, and the corresponding transverse eigensolutions, Yi(z*,a), given the
mean-flow parameters and the values of § and m. The solution procedure was
similar to that of KeLLER [28] with the reformulation of the equations, resulting
in a nonlinear two-point boundary value problem. In order to avoid the grow-
ing solutions during the integration through the entire domain (BETcHOV and
CRIMINALE [21]), the length of the domain of integration was divided into two
in which a parallel shooting algorithm was used with the integration proceeding
to an intermediate point by launching initial guesses from both ends of the in-
terval and a matching of the solutions at the midpoint. The computations were
performed on a DEC 5000 workstation in double precision and iterations for the
multidimensional Newton-Raphson root finding technique concluded when the
discrepancy vector was within some specified accuracy (typically 10~1%).

4. Numerical results and comparisons with experiments

For the first ten azimuthal modes and temporal frequency from 0 to 100 Hz,
the set of inviscid equations (2.6) was solved along the line of impingement at
radial positions where the experimentally observed vortices were most apparent
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and the mean radial velocity achieved the similar form. The nondimensional
amplification rates at r/r,, = 2.274 along the ¢ = 0 degree direction, Fig.4 a, are
negative for all the waves considered, indicating decaying characteristics. Except
for the axisymmetric (m = 0) and the first three helical modes (m = £1, £2
and +3), the curves show similar trends where —a;z s first increases with f and
tends to a constant value which is lower for higher helical modes. For these
four exceptions, there is a slight peak at around 7.5 Hz before the subsequent
fall to a constant level, indicating a narrow range of frequencies at the lower
end of the spectrum with the least damping relative to the other waves. It is
interesting to note that the axisymmetric and the first helical modes have almost
the same frequency response, which is consistent with the findings of CoHEN and
WYGNANSKI [24]. In order to trace the evolution of the waves, with attenuation
occurring in the streamwise direction, the calculations were repeated for r/r,, =
3.324 and the results of Fig.4b show similar trends but, as would be expected,
the least damped wave was shifted to a lower frequency, f = 3.1Hz. This is
consistent with the measured spatial evolution of the one-dimensional spectrum
of radial fluctuation component of OzpEMIR and WHITELAW [5] in which a discrete
frequency of 3.25 Hz was dominant at the same radial position. The results show
that an increase of the width of the shear layer with the corresponding decrease
in the mean energy along the streamwise direction, is accompanied by a negative
amplification rate, i.e., attenuation with a continuous shift of the least attenuated
instability waves towards lower frequencies.

The wavenumber-frequency spectra of Fig.5 reveal that the wavenumbers are
positive in the frequency range, where —a, 2y s has a maximum, and that a phase
reversal occurs for the axisymmetric and some helical modes (-6 < m < 6),
so that negative wavenumbers at large frequencies indicate upstream moving
waves. The least attenuated waves move downstream with a positive phase velocity
and indicate convection of the coherent turbulence along the mainstream with
a decay quantified by the rate of attenuation of the waves. The relatively higher
attenuation of the upstream moving waves is interesting in that the propagation
of disturbances from the edges of the wall jet cannot interfere with the turbulence
structure of the wall flow, and this is consistent with the fact that wall jet is not
dependent on the conditions downstream, but affected by the initial conditions
of the inflowing jet even at large radial distances. It is clear that if different
frequencies were dominant at different wall distances, a transversal (vertical)
eigensolution structure with a phase reversal occurring at a certain wall distance
could lead to a situation which would be similar to the spatial phase reversal
observed by Saro [29].

An attempt was made to compare the calculated distribution of the one-sided
power spectrum of the radial fluctuation intensity for axisymmetric structures
(m = 0) with that of measurements at r/r,, = 2.274 and 3.324 along the ¢ = 0
degree direction. From the Eq. (2.2);, with a = «, + ia;, space-time variation of
the radial fluctuation that would be measured with a probe fixed at a point in the
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Eulerian coordinate, can be written as
(4.1) u, = [A,(2)exp {ta,r — a;r + im@)}] exp(—ift) + (*),

where the term inside the bracket represents the complex amplitude of the vector
rotating at a circular frequency 3 so that

4.2) F(f) = A-(2)explia,r — oy + im¢)}.

As previously argued in Sec. 2, the complex conjugate term, (x), in Eq. (4.1) im-
plies that each component at a frequency f is matched by a component at — f
which has equal amplitude so that, except for the case of f = 0, the total power
associated with frequency, f, is given (RANDALL [30])

FUP _ [A () exp {iaer — air + im@)}]
2 2 '

(4.3) P(f) =

Since the eigenfunctions were determined except for the arbitrary multiplica-
tive constant, the axis for the power spectrum in Figs.6 and 7 has an arbitrary
scale. A remarkable feature is that the large peak at the outer layer diminishes
as the wall is approached and shifts towards slightly higher frequencies, and this
is more evident in the contour plots. This trend is consistent with the measure-
ments of OzpEMIR [27], where it was attributed to the restriction imposed on the
growth of the inner vortex close to the wall by the outer free shear layer vortices,
and the calculated values of the peak frequency are very close to those of the
measurements particularly for r/r,, = 3.324.

Figure 8 shows radial fluctuation intensities calculated from the one-sided
power spectrum with f ranging from 0 to 100 Hz for axisymmetric and spin-
ning modes, m = +1, +2, +3, +4, +5, +6, +8, and +10 at a radial position
r/ry = 3.324, where the radial fluctuation intensity completed its evolution to-
wards two-peaked profile. By matching the amplitude of the radial velocity fluc-
tuation component to the corresponding experimental value at the wall distance
z* = 1.25, favorable agreement was found between theory and experiment for
the whole vertical eigenstructure of the radial fluctuation intensity, with large
magnitudes occurring near the outer inflection point. The satisfactory agreement
of the theoretical radial fluctuation intensity with the experiments was expected,
since the slightly attenuated waves were known to correlate over a large distance
of the order of the inverse of their damping ratio (LANDAHL [31]), and tend to
dominate the non-wave-like disturbances and the whole turbulent flow field. The
upper subfigure shows the relative contributions of different spinning modes with
respect to the axisymmetric mode, so that the first helical mode is almost as
important as the axisymmetric mode and the contribution was almost negligible
for m > 10. It is also of interest to note that the calculations performed at the
previous radial position, r/r,, = 2.274, along the ¢ = 0 degree direction yielded
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F1G. 6. One-sided power spectrum of radial fluctuation intensity for axisymmetric structures
m =0, r/r, = 2.274 (a* axis has arbitrary scale).

very much the same fluctuation profile, although the measured fluctuation profle
was different. Since the vertical mean profiles were different at these two radal
positions, the results indicate that the mean radial velocity was dominant in the
perturbed mean flow field but was not sufficient to describe the whole mean vor-
ticity field which was responsible for the generation of the fluctuations (STuaArT
[32]). Thus, it appears that the evolution of the mean vertical velocity needs to
be included in the analysis to account for local changes of the fluctuation disiri-
bution when the streamwise component of the mean flow field was similar. Alio,
contrary to the stability calculations of BREWSTER and GEBHART [33] for natu-al
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F1G. 7. One-sided power spectrum of radial fluctuation intensity for axisymmetric structures,
m =0, r/r, = 3.324 (u> axis has arbitrary scale).

0

convection over a vertical hot plate, the present profiles of radial fluctuation in-
tensity do not tend to diminish very close to the wall. This is to be expected since
the present results are based on simplifications of inviscid equations.

Profiles of the induced pressure fluctuations, Fig.9, reveal that the pressure
fluctuations can attain a value of 63% at the wall. Again, the relative contribu-
tions of different azimuthal modes are similar to those of the radial fluctuation
intensities. It is interesting to note that the radial velocity fluctuations exhibit far
more structure than is displayed by the pressure fluctuations but, since pressure
was not measured across the wall jet, it is difficult to be conclusive about the
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F1G. 9. Pressure fluctuation intensity for f from 0 to 100 Hz and m from 0 to £10.

shape of the profiles. The azimuthal fluctuation intensity, on the other hand, ex-
hibited a finite value at the wall and this violation of the no-slip condition must
be due to that the fluctuation intensity was predicted by linear, inviscid stability
analysis of one-dimensional basic flow, whereas the measured intensity was gen-
erated by apparently two-dimensional viscous basic flow. For the same reasons
the agreement between vertical velocity fluctuations and the measured ones was
poor.
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5. Conclusions

The coherent turbulence characteristics of the radial wall jet were studied
using discrete instability waves and linear analysis based on the assumption of
a one-dimensional inviscid flow which was represented by time-averaged radial
velocity. Calculations were performed in a region where the energy of mean flow
was decaying so that the instability waves were attenuated with a phase reversal
in frequency, in which the least attenuated waves were convected downstream
while the others moved upstream. The trend of spectrum of the radial fluctua-
tion component was well predicted with the dominant frequency shifted towards
higher values close to the wall, and a good agreement was found in the evolution
of the spectrum of radial fluctuation intensity in that the spectral information was
closely correlated with the decay of the mean flow energy.

The shape of the calculated radial fluctuation intensity exhibited a trend with
larger magnitudes at the outer inflection point, consistent with the experimentally
observed array of vortices. The success of the inviscid predictions was attributed to
the fact that the large coherent structures of the wall jet were associated with small
wavenumbers, far remote from the viscous subrange, so that viscous dissipation
did not play any important role in their dynamics (TownsenD [34]). However,
the shape of the radial fluctuation intensity repeated itself at different positions
despite the variation observed experimentally, and this led to the conclusion that
the observed variations in the shape of intensity profiles were caused by the
influences of the other components of the mean flow field and particularly the
mean vertical velocity, whose profiles varied with the radial coordinate, even
though the radial velocity profiles were similar. In other words, the mean vorticity
was the determining factor for the overall performance of the stability predictions.
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Two-dimensional tensor function representations
involving third-order tensors

Q.-S. ZHENG (BEUING)

AMONG THE PHYSICALLY possible infinitely many material symmetries of all kinds in a two-dimen-
sional space, there exist eight kinds, i.e., the isotropy C oo, hemitropy Coo, two symmetries Cy and
(3 in the oblique system, Cy,, and Cy, in the rectangular system, and C3 and C3, in the trigonal
system, that can be characterized in terms of tensors of orders not higher than three. In this paper,
the complete and irreducible representations relative to these eight symmetries are established for
scalar-, vector-, second-order tensor- and third-order tensor-valued functions of any finite number
of vectors, second-order tensors and third-order tensors. These representations allow to obtain, in
the case of two-dimensional problems, general invariant forms of the physical laws; in particular,
the constitutive equations involving thrid-order tensors.

1. Introduction

RECENTLY, the complete and irreducible representations in two-dimensional space
were established by ZHENG [7] relative to every kind of material symmetry for
scalar-,vector- and second-order tensor-valued functions of any finite number
of second-order symmetric tensors Aj,...,Ay (denoted by A,), second-order
skew-symmetric tensors Wy, ..., Wp (denoted by W) and vectors vy, ..., vas (de-
noted by v,). In contrast to these general results, complete and irreducible rep-
resentations for tensor functions involving tensors of order higher than two are
much less well understood (Pennisi [4], ZHENG [9], ZHENG and BEeTTEN [10],
BerTEN and HELiscH [1]). In particular, the problem of constructing of general,
complete and irreducible tensor function representations which contain any fi-
nite number of third-order tensor agencies Ty,...,T; (denoted by T)), even for
L = 1, is still open, although its importance can be seen in many modern physical
contexts (cf., PENNISI [4]).

ZHENG and BoEeHLER [11] have described and classified the physically possible
infinitely many material symmetries of all kinds in two dimensions (and also in
three dimensions). Among them, there are eight symmetries that can be charac-
terized in terms of vector(s), second-order tensor(s), and/or third-order tensor,
as shown below in Table 1.

In this paper, notation is based on the following conventions. We denote by
1 the second-order intensity tensor, € the permutation tensor (a second-order
skew-symmetric tensor), R(6) the rotation tensor of angle 6, a and b two unit
orthogonal vectors, Ry, the reflection transformation in b direction, and

(1.1) P=aQa®a-(a®b®b+b®a®b+b@bqa).
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Table 1. All kinds of two-dimensional material symmetry that have structural tensors
as vector(s), second-order tnsor(s), and/or third-order tensor.

system Schoenflies symbol | generators of symmetry group | structural tensors
oblique Cy R(0) =1 a, e (ora, b)

(o) R(r) = -1 M, e
rectangular | C), Ryb=a®@a—-b®b a

Cy, = orthotropy R(7), Rp M=a®a-b®b
trigonal Cs R(27/3) P e

Cs, R(27/3), Ry P
circle Cw = hemitropy R(#) (0<8 <2 €

Cocy = isOtropy R(#), Ry (0 <8 < 2x) 1

The operators ®, -, :, and : mean tensor, scalar (or dot), double dot and triple
dot products, respectively. Components of vectors and tensors are referred to an
orthonormal frame, say {e;}, lower-case Latin indices (i, j, k,...) range from 1 to
2, repeated indices are summed from 1 to 2, and the abbreviations e;; = e; ® e;
and e;;; = e; ® e; ® e; are used. The prefix tr indicates trace.

A tensor H is termed as irreducible, if it is a completely symmetric and traceless:

(1.2) Hijkon = Hjig.q = Hijioa = ... = Hijk.i, Hyomk.d = Ok,

where 0., corresponds to the zero-tensor of the relevant order. It is well known
that any irreducible tensor H in two-dimensional space has only two independent
components (e.g. 111 and Hyyy.1). In particular, the relations among the
components of an irreducible third-order tensor T are:

(1.3) T =Taa =Ty = T, Twa=Tin=Tm=-Tm.

We can decompose any third-order tensor D into an irreducible third-order tensor
T and three vectors D;ye;, Dje;, Dyie; in the form:

(1.4)  Tijx = 4Dij — B3Dux — Dixg — Dy)bij — 3Duji — Dju — Duj)bik
~(3Dit = Diit = Dui)biie

where é;; denotes the Kronecker symbol. An elementary method of reducing
tensors of any order to sums of irreducible tensors is described by SPENCER [6]
and HANNABUSS [3].

In view of (1.4) we further postulate that the third-order tensors T, (i.e.,
Ti,...,Tr) are all irreducible. In this paper, we determine the complete and
irreducible representations relative to the eight symmetries in Table 1 for scalar-,
vector-, second-order tensor- and third-order tensor-valued functions of A,, W,
v, and T,.
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2. Isotropic representations in different cases

In order to provide compact procedures of determining complete and irreduc-
ible tensor function representations relative to the eight symmetries given in Table
1, we derive in this section representations with respect to different cases of the
variables A,, W¢, v,, T). The method employed here is described by ZHENG [7, 8].

It is profitable to introduce the following abbreviations and relations:

tA =T:A= T,-J-kAjke,-
= (Tner + Taner)(An — An) + 2(Taner — Tinex)Arz,
t'=T:(v®v) = T;jrz;zre;
= (Tiner + Tanea)(af — 23) + 2(Taner — Tinex)e122,
T"=Twv= T"jkﬂ:ke,‘j
(2.1) = (Tinzy + Tanz)(en — e2) + (Tanzr — Tinzz)(enz + €21),
T:S = TiiSkijei;
= 2(T11S1m + TanS210)1 + 2(TinSain — TannSinn)(erz — e21),
TW = T Wikeix
= [Tin(enz2 + ez + €11 — e222) + Toni(er22 + €212 + €221 — €111)]Wha,
and
T:S = Ty Sije = 4TS + TannSoan),

(22)  (x-t)? + (x-et,)? = (T:T)(x-x)*/4,
(tas Ata)? + (ta- €A ta)? = (TIT)*[2tr A% — (trA)*]*/64,

where T and S denote any two irreducible third-order tensors, and A, W and
v any second-order symmetric tensor, second-order skew-symmetric tensor and
vector, respectively. Let D be any third-order tensor. The symbol {D} denotes as
a set of the following three tensors:

(2.3) D;jieijk , D;jiejki , Dijkekij,
and (D) is the summation of the above three tensors, that is,
(2.4) (D) = Dielesn + €5 + €x:5).

2.1. Representations when there exists a non-zero vector v among v,

We can choose an orthonormal frame {e;} so that v = vye; with v; > 0. Thus,
we can write
VeV =g, vV=e, VeV, = Uy (v, # V),

(25) vy, ]:>ella €2, V‘AOV, [rAa = Acxlla AaZZv
vavav, {ve 1} = e, {en}, vet) = Thanr -
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In this paper, the notation .A = B means that B is uniquely determined by .A. It is
evident that the alternative of +e; does not affect (2.5). Thus, the undetermined
quantities remain

Vo2, Aa12, Werz, Thanns €; ezt ey; €222, {e1n12}.

If all vy, Aa12, Werz, and Tho1p equal zero, we do not need to determine
e, €12 £ €71, {e112} and ey. Otherwise, keeping (2.5) in mind, we consider the
following cases 1-4.

Case 1. Wy, # 0 for a tensor W among W,. We alternate te; so that Wi; > 0
and then give

trw? = Wy, Wy = e, v-Wy, = vy (vo # V),
vIWVv+WvQRv=epn+ e, viAWv= A2,
(2.6) W= ep—e, trWW; = Wi (We # W),
(vRveaWy) (or Wy@WvaWy), {Wv®l}=en, {e2},
veWtl  (or v-WtY) = Ty

Case 2. up # 0 for a vector u among v,. We can select +e; so that u; > 0
and then have

u-u= up, u= e, Urv, = Uy (v, # v, u),
VOutu®v=etey, veA,u = A2, veWeu = Weqa,

(veveu) (or u@ueu, if v} #3ud), {(uel}=em, {en},
u-ty  (or u-ty, if 11%%311%):%’1‘,\2“.

2.7)

Case 3. Az # 0 for a tensor A among A,,. By alternating +e; we can arrive
at A > 0 and

trA?z = Aqz, A = e+ ey, trAA, = A.12 (Ao, % A),
2.8) Av= e, VAV, = vy (vo # V),
' VRIAV—AVRV=epn—ey, ve AWev = Wy,

(v A), {Ave 1} = em, {en2}, vt} = T

Case 4. Th; # 0 for a tensor T among T). Choosing +e; so that 7517 > 0
can follow

T:T= Tou, tY = e, VotV = vy (Ve # V),
T = e + €1, vetha = tr(AaT") = A,12,

(2.9)
vRt—t'Qv=>en—e, v-Wit':>W5,2,

T, {'®@1} = e, {en2}, T:T\ = Thon (Ty #T).
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2.2. Representations when all vectors v, equal zero, there exists a tensor A among A, which has
two distinct principal values, and there exists a non-zero tensor T among Tx

By selecting +e; and +e; as orthogonal principal directions of A, we can
express A = Ajje;; + Axpey and then we have

trA, trA2 = Ay, Ay, 1, A= e, e,

(2.10)
trA,, trAA, = As11, Aax (Ax # A).

Note that choices of t+e; and of +e; do not influence (2.10). Since T is a non-zero
irreducible third-order tensor, without loss of generality we can suppose that
Ty11 > 0 by alternating e; and e; and choosing te;. It follows

(2.11) TiT, At = Ty, TS,
For the remaining undetermined quantities:
Voi s Aa12, Werz, Thans € e ey sk (i,7,k=1,2),

we consider the following cases i—iv.

Case i. Wy # 0 for a tensor W among W:. We choose +e; so that Wiz > 0
and then we have

trw? = Wy, AW = Ty, A, Wt = ¢,
AW-WA= e +e, trAA W= A2 (Ax # A),
(2]2) W= e —e, tFWW£ = “VEIZ (Wﬁ 7’-‘ W),

T, TW, {A@1}, (W*®1} = e,
T;T,\, tr (T . T\)W = 71,\,'“ (T)\ # T)

Casg ii. Ty11T211 # 0. Alternating +e; can yield T2;; > 0 and then

T:T, " At* =Ty, b, A = e,

ARt = e+ ey, A A= AL (Al #A),

(2.13) ARQAr —AA QA = ep + e, AW = Wy,
T, A®A), {1}, {AR®1} = e,

TET)\, tA-Atﬁ‘ﬁT,\ill (T,\ #T)
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CAaSE iii. T31; = 0 and By # 0 for a tensor B among A,. Selecting +e; so
that By; > 0, we have
trB2 = B, ¢ 8=,
B= e +ep, trBA, = A.12 (Aa # A, B),
(2.14) AB-BA=e;— e, trABW; = W2,
T, T(AB-BA), {*®1}, {21} = e,

TET,\ , tr (T M T,\)AB = T (Ty # T).

Case iv. T51; = 0 and S3;; # 0 for a tensor S among T). Selecting +e; so
that 5,11 > 0 can follow,

T:S, S:S=> S11, 5211, A, A= e,
A(T:S)—(S:T)A = ej2 + 1,
tr (T:SAA, = Asn2 (Ay # A),
T:S—S:T=e;— ey, tr (T : S)We = W2,
T, S, {QA®1}, {SAQD 1} = €k,

(2.15)

T:Tx, :Ta=Tunn (Ta#T, S).

2.3. Representations when all v, are null vectors, all A, have not two distinct principal values,
and there is a non-zero tensor T among T

Since A, have not two distinct principal values, we can express them as A, =
(tr A,)1/2. Tt is known from Table 2 of ZHENG and SpENCER [12] that any rotation
tensor R(yp) leaves 1, ej2 — ex, A, = (trA./2)1 and W = Wepa(en — e21)
unaltered. Then, we have the following transformation relations

(er + 12) > exp(£ap)(er + 1e2),
{(e1 + 262) ® 1} > exp(Ee0){(e1 + 1e2) @ 1},
(2.16)  (enn — ex) + w(erz + ex1) — exp(Li2p)[(enn — ex2) + re12 + €1)];
(e111 — (e122)) + e({en12) — e222)
— exp(£3¢)[(e111 — (e122)) + e({er12) — e22)],

where : = /(1) is the unit imaginary number. Thus, we can rotate {e;} until
Ti11 > 0 and T%;; = 0, and then giVC

(2.17) T:T= T, T = e111 — (e122), T:T) = Tan (Tx & T).

From (2.16) we can see that R(27/3) leaves e;;; — (e122), (e112) — €222 and Ty
unaltered, but it varies e;, e;; — e, €2 + €2 and {e; @ 1} so that they do not
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need to be determined in view of the isotropy condition. In other words, we only
need to determine

Weiz, Th2ii, en2—e, (en2) —exnn.

If there exists a non-zero tensor W among W, or there is a non-zero tensor S
among Ty, we select te; so that Wy, > 0 or S3;; > 0, and then we write

tr W2 = Wia, W= e — ey, trww, = sz (WE # W),

(2.18)
TW = (6112) — €222, tr (T : S)W{ = Tha11 (TA # T),

or

(219) SES=>52“, T:S—S:T= en— ey, tI(T:S)W{#”/Eu,

S = (e112) — e, S:Ty=Taon (Ty#T, S).

Otherwise, if all T21; and Wy, equal zero, we do not need to determine ej2 —ey;
and (ej12) — €.

2.4. Representation when all vectors v, and third-order tensors T, are equal to zero

Since the central inversion — 1 leaves tensors of even orders unaltered but
changes the sign of tensors of odd orders, the isotropy condition requires that any
isotropic vector- and third-order tensor-valued functions of second-order tensor
A, and W; should be only a zero-vector and a third-order zero-tensor, respect-
ively. The complete and irreducible representations for scalar- and second-order
tensor-valued functions of A, and W, can be seen, for example, in Tables 2, 4
and 5 of ZHENG [8].

3. The complete and irreducible tensor function representations

The complete and irreducible representations were established by ZHENG [8]
for scalar-, vector-, second-order symmetric and skew-symmetric tensor-valued
functions of A, W, v, with respect to all kinds of symmetry, particularly, to the
eight symmetries shown in Table 1. With these known results and the representa-
tions derived in the preceding section, we determine in the sequel the complete
representations for the eight symmetries shown in Table 1. The irreducibility of
the derived representations is verified in the next section.

3.1. Representation for isotropy Coo.

The complete representations for isotropic tensor functions of A,, We, v,
and T) can be obtained by considering all the cases in Secs.2.1-2.3 i.e., from
(2.5)-(2.19), as summarized in Tables 2 and 3.
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Table 2. Irreducible function bases.

COOJI

C3v

Cu

clu

trA, tr A%, trAB, tr W2, trABW, trWV, vev,
veAv,veAWv, veu, veAu, ve Wu; TET,

A A B, TA AW vet', ve i, veWe,
uet', T:S, A+ As?, tr(T: S)AB, tr (T : S)W

tr A, tr A%, p“‘- Ap", trAB, p'\- Bp"‘, tr W2,

PP AWDPA tTABW, tr WV, vev, ve pY, v Ay,
vept veWp', ve AWy, veu, usp', ve Wu;
TiT,PiT, pre AtA, tr (P: T)W, ve t¥, v tb,
ve(P:T)u, tr(P:T)AB, T:S

trA, trA%, trMA, trAB, t W2, tr MAW, trWV,
vev, v My, veAvy, ve MWy, veu, veMu, veAu,
veWu; T:T, Me MM MoaM Momwi™,
vet, vetM verA vewM T:5, (MMM,
tr(T: S)MA, tr (T : S)W

trA, trA?, a+Aa, trAB, trW? a-AWa, tr WV,
vev,asv,acAv, a* Wy, veu; T:T, 2 (®, a~th,
a W' vet®, T:S

C;

trA, trA?, trAB, trABe, tre W,
vev,ve Av, ve Aev, veu, veeu;
T:T, A AtA, A Acth, vet",
veet", TES, tr(T: S)e

trA, pA-ApA, pte Aep?, trAB,
trABe, treW, vepY, veep",
veAv,veAev, veu, veeu,

P: T, tr(P: T

trA, trMA, trMAEe, treW,
veMv, veMev,veu, veeuy;

T:T, Me MM MeMet™,
vetM veet™ TS, tr(T: S)e

a*Aa, b* Ab, a: Ab, tre W,

ary, bev;art®, be t?

In Tables 2 and 3, the following abbreviations are employed:

(3.1)

A=A,,
V=1v,,

B=Aﬁ,

u=y,,

‘V=WE,
T=T,\a

V=W,
S=T,,

witha,d=1,...,Nanda< f;&(=1,....M and £ < (; p,o = 1,..., P and
p<oyand A,u=1,...,L and A < pu.

An explanation of the redundancy of one of u-t" and v- t* may be required.
Without loss of generality, we set T = ej;; — (e122). Denote by (v,u) and (v,u)
two solutions of the equations

(3.2)

vev, ueu, vot', u-t", vou, u-t' = const.

Because of vev = v v and u- u = u- u, we may assume that v = cosfe; + sin fe,,

cospe; + sin pey, Vv = cosfle; + sinfe; and u

= cospe; + sinPep. The

equations v- t", u- t", v- u, u- t" = constans yield immediately.

(3.3)

It follows that cos(f + 2¢) = cos(d + 27), ie., v "

cos 36 = cos 34,
cos(f — @) = cos(d — P),

redundant.
In a similar manner we can verify the redundancy of one of t*-Bt* and

t8. AP, and one of (v@ v®u) and (u@uv).

cos3p
cos(26 + ¢)

= c0s 3,
= cos(20 + P).

= V. tY. Therefore, v-t" is



Table 3. Complete and irreducible tensor-valued function representations.

vector-valued

Coov | v, Av, Wv; tA ALY, WA 1Y Coo | v, ev; tA AEA

Cs, | p* Ap® WpA v, Wy, p%; 1" Cy |v,ev; phept

Cy |V, Mv, Av, Wy, IM,MIM, lA,WlM C; |v,ev; tM,etM

Cy, |a Aa, Wa,v; t* Cy |ab

second-order symmetric tensor-valued

Cov | LALAW-—WA vQV,VOAWV+WvQ®y, Co [1,A,Ae — €A, v,
vou+u®v;, At A(T:S)— (T: S)A VOEVHEVRY

Cn |LAp*®p", AW-WA vov,P, C3 |1,A Ae—cA vov,
VOWv+Wvey; TN AP:T)—(P:T)A VREV+EVQRY

Cyp |[LM,AMW-WMvOVv,vRu+u®yv; C; |1,M, Me
T, Mo M, M(T:S)— (T:S)M

Chn |1,a®a A, a@Wa+Wa®a, a®@v+v®a;, T C, |la®@a,b®b,a@b+b®a

second-order skew-symmeric tensor-valued

Cov |AB—BA, W, vQAV—AVOV,VOuU—Uu®@v, Cx | €
roAtr — At vt —t'®@V, T:S—S: T

Cun |PP@APA—APA®PA AB-BA W, vep —p'@v, | Cs |e
VRIAV—AVV,vQu—u®yv, P:T-T:P

iCy, |[WMA-—AM, vOMV-MvVvRVv,vQu—u®@yv; Cy |e
vatM - Moy, oMt —-Mt"®t", T:S—S:T

Cn |[a®Aa—Aa®a, W,a@v—vQRa; a@t? —t?®a |[C; |e

third-order tensor-valued

Coor |VOVOV, {vR 1}, (VR A), (AvR 1}, (vEAVOWY), |Cx |VRVRAY, (VRVREeV),
Wy 1}, (veveu)y; T, (At*@A), {(t* @1}, {(v©1}, {evel); T, Te,
{(At* ©1}, TAB — BA), TW, (Wi* @1}, {t' ©1} {*o1)}, {et* @1}

Ci |P,(Ap* @A), {p* @1}, {Ap* ®1}, PAB-BA), |G [P, Pe, p* o1},

PW, (Wpr @1}, veavey, {(vel}, {p'@1}, (v®A), {epP @1}, {v@ 1},
(Wyv@1)},P6bQu—-u@v), T, {t'el}, {t*®1) {eve 1}

Cu |VOVOY, (vOM), {v@1}, {Mv® 1}, (v®A), Cy; | (v@M), (ev@M), {v@1},
{(Ave 1), Wy M), (Wye1}); T, MM g M), {ev@l); T, Te, (M1},
(Me1}, (MMe 1}, TW, TMA - AM), {eMe1)
wiMe1), (* 1)

C.n |a®a®a, {a®1}, (a®A), fAa®1},(a@a@Wa),|C, |a®a®a, {al)},

{(Wa®1),(a@a®v), {(v@1; T, {t*®1)}

b@b®b{b®1}

[667]
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3.2. Representations for hemitropy Co. ()

From the fact that € characterizes the group C', it follows that the hemitropic
functions of A, W, v and T may be considered as isotropic functions of A, W, v,
T and €. Noting that € is a non-zero second-order skew-symmetric tensor, from
(2.5), (2.6), (2.10) - (2.12), (2.17) and (2.18), by substituting € for W in (2.6), (2.12)
and (2.18), we obtain complete representations for hemitropic tensor functions
of A,, W, v, and T, as shown in Tables 2 and 3.

3.3. Representations for Cs,(P)

To determine the complete isotropic tensor function representations of A,
W, v,, T» and P, we consider the following cases instead of the cases in Sec.2.1.
First suppose that P,;; = 0. We have the following invariants and form-invariants
instead of those in (2.5)-(2.9), respectively.

VeV, Vev,, VeALv, trA,, vepY, P:Ty; v; v@v, 1; P, {v® 1},
trWz, VeWyv,, trWWe, v:A Wy, tr(P: T\)W; Wy;
vOWv+Wvayv, W, PW, (Wv@ 1},
u-u, uev,, u-pte veWen, ve (P Ty)u; u;
(3.4) P vOu—-u®v, PvQu—-u@v), {ul},
trAZ, trAA,, vp-pt, veAWey, vothy; p?
A; VRAV-AVRY;, (vRA), {p*®1)},
T:T, v, (P: T)v, v-t** tr(P: T)W, T:Ty;
£ T: B:T-T:F; T; {C &1}
Second, suppose that P51 # 0. Instead of (2.5) and (2.9), respectively, we have
VeV, Vev,, VoAV, trA,, vepY, vetl; v VAV, 1; vOVRYV, {vel},
R8) Vor B, vephe, veWep', PiTy; pY; P vep' -p'@v; P, {p'®1).

Finally, from (3.4), (3.5) as well as (2.10) - (2.15), replacing T by P, we can obtain
the complete representations for tensor functions of A,, We, v, and T, under
(4, as shown in Tables 2 and 3.

3.4. Representations for C3(P, €)
If there exists a non-zero vector v among v,, we can write, instead of (2.5)

and (2.6), the equations

(3.6)  vev,, veev,, v-p', veep', trA,, v-A,v, v-A.ev, treW,, P:T),
tr(P:The; v, ev; 1, vRv, vRev+ev@y; € P, Pe, {v@l}, {evel},



TWO-DIMENSIONAL TENSOR FUNCTION 669

where the obviously redundant invariant v-v has been removed because of the
identity (v-v)® = (v.p")? + (v+ p*)? according to (2.2). Setting T = Pand W = ¢
in (2.10)-(2.12), (2.17) and (2.18) together with (3.6), we arrive at the complete
representations under C'3, as shown in Tables 2 and 3.

3.5, Representations for C3, (M)

To determine the complete isotropic tensor functions of A,, W¢, v,, T and
M, we consider the following cases instead of the cases in Sec. 2.1. First, suppose
that M}, = 0. We have the following invariants and form-invariants instead of
those in (2.5) - (2.9), respectively.

VeV, Vev,, V- My, trMA,, trA,, v-ty; v; M, 1; (v@M), {v®d1},
trW2, veWy,, trWW;, trMA W, v- WM, Wy,
MW-WM;, W; (WyvaM), {Wv®1},
3.7 u-u, uev,, veAu, veWeu, u- My up veouzuey; (ueM), {ue1},
trA?, veAv,, trAA,, trMAW,, vetry; Av;
A; MA-AM;(v@A),{Av® 1},

TIT, vpe tM, vety,, ve WetM, TiTy; ™ T; MT'-T'M; T, {Me1).
Second, suppose that A, # 0. Instead of (2.5) and (2.7), respectively, we have

VeV, Vev,, Ve ALV, Ve My, trA,, vot'y; v; vav, 1; vevey, {vel},

(3.8) trMA,, v.Myv,, v- MW,v, vs My Mv;, M;
vOIMy-Mveyv, (vdM), (Mv 1}.
Finally, from (3.7), (3.8) as well as (2.9)-(2.14), replacing A by M, we can obtain

complete representations for tensor functions of A,, W, v, and Ty under C5,,
as shown in Tables 2 and 3.

3.6. Representations for C2(M, €)
Instead of (2.5) and (2.6) we have

(3.9) v-Mv, ve-Mev, vev,, v-ev,, trA,, trMA,, trMA,e, vetM,
veetMy, treW; v, ev; 1, M, Mg; ¢;
(veM), (eve M), {vel}, {eval},

where the redundant invariant v.v is removed due to the identity (v.v)? =
(v+Mv)? + (v+Mev)? Setting A = M and W = ¢ in (2.10)-(2.12) together
with (3.9), we immediately obtain the complete representations under C3, as
presented in Tables 2 and 3.
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3.7. Representations for C,,(a)

Setting v = a in (2.5)-(2.9) yields immediately the complete isotropic tensor
function representations of A,, W, v,, T) and a; namely, the complete tensor
function representations of A,, W, v, and T, under Cy, as given in Tables 2
and 3.

3.8. Representations for Ci(a, €)

Settting v = a and W = € in (2.5) and (2.6) yields immediately the complete
representations with respect to C1, as given in Tables 2 and 3, where €a is replaced
by b because of ea = +b.

4. Proof of the irreducibility of the derived representations

To verify the irreducibility of the representations established above in Sec. 3,
we employ the technique developed by Pennist and Trovato [5]. It is obvious
that the representations in Tables 2 and 3 with respect to ('}, C; and C3 are
irreducible. With respect to Cw,, Coo, C3,, C2, and Cy,, the irreducibility of
all invariants, vector form-invariants, and second-order tensor form-invariants in
Tables 2 and 3 when T, = 0 has ben proved by ZHENG [8]; the irreducibility of all
additional invariants and form-invariants when non-zero tensors exist among T),
is verified in Tables 4 and 5, respectively; and the irreducibility of all third-order
tensor form invariants is confirmed in Table 6.

Table 4. Irreducibility of the function bases.

variables invariant variables invariant
CCK)U

T=0and P T:T T=P,v=uW=+e vewt'

T=P,A=14M the Al? T=P,v=bu=b+3a | u-t"

T=P+Peg, A=M, tAep it T=P, S=+P T:S

B=M=+3Me

T=P+Pe,A=M,W=1+¢ | " AWt | T=P,S=Pe, A=+Me | t*-As?
T=P,v=2a vet' T=P,S=Peg,A=M, trT:S)AB
B=M=+3Me
T=P,A=M,v=z=a vetd T=P,S=Pe, W= e tr (T : S)W
Coo

T=0and P T:T T=P,v=+b veet"
T=P A=1M the Ath T=P,S=+P T:S
T=P+Pe,A=M t"+Aet® | T=P,S=+Pe tr (T : S)e

T=P,v=*a vet'




Table 4 [cont.]

variables invariant variables invariant
Ci
T =0 and Pe T T=Pe v=1b vet¥
T=+P P:T T=Pe,A=M=zV3Me,v=a|v-t?
T = Pe, A = +Me, preAth T=Pe,v=a,u=a++3b us(P:T)v
T =Pe, W= te tr(P: T)W [T =Peg, S =4Pe, T:S
T=Pe,A=M,B=M=3Me | tr(P:T)AB
Ca
T =0and P + Pe T:T T=Pe, A=4Me,v=a veth
T =P and Pe MMM | T=Pe, W=de,v=2a vewM
T=R+Pe A=+M MoAM T=P+Pe,S=+P+Pe) |T:S
T=P+Pe W= e tM.MWIM | T=P+Pe, S =+(P-Pe tM. MM
T=P+Pe,v==x(a—b) vet' T=P,S=Peg A=tMe tr (T:S)MA
T=P+Pe,v==x(a+h) vetM T=P,S=Pe, W= ze tr (T: S)W
Clu
T =0 and Pe i T=Pe W=+¢ a Wi
T==P a-t? T=Pe, v=+4b vet?
T =Pe, A= +M asth T = Pe, S = +Pe T:S

Table 5. Irreducibility of vector- and second-order tensor-valued function representations.

variables form-invariant | variables form-invariant
vector-valued
Cor | T=P+Pe,A=M | t* T=P,A=MW=¢ | W
T=P+Pe,A=M | At} T=P,v=b t*
Co |T=P,A=M tA T=P,A=M eth
Ca, T=Pe,v=a tY
Con |T=P+Pe M T=P,A=Me A
T=P+Pe MM T=P,W=c¢ wiM
Cn | T=Pe a, t* T = Pe t*
second-order symmetric tensor-valued
Coov |T=P+Pe,A=M | t"@t* T=P,S=Pe, A=M | AT:S)—(S:T)A
T=P+Pe,v=a | T
Cy, |T=Pev=a y s T=Pe,A=M A(P:T)—(T:P)A
Cun |T=P+Pe Mo M T=P, S="P¢ M(T:S)—(S: T)M
T=Pev=a 1"
Cn | T=Pe T®
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Table 5 [cont.]

variables

form-invariant

variablcs

form-invariant

second-order skew-symmetric tensor-valued

Coov

CJV
Cun

Clu

T=P+Pe, A=M
T=P+Pe,v=2a
T = Pe

T=P+Pe
T=Pe, v=a
T =Pe

QA —AN
vt —t'®v
P:T-T:P
IM®MIM—
votM_ Mgy
at*-1"Qa

M (M ® IM

@t T=P,S=Pe

T=P,S=Pe

T:S-8S:T

T:S-8:T

Table 6. Irreducibility of third-order tensor-valued function representations.

variables form-invariant | variables form-invariant
Ciowr a VRVRY T=P+Peg,A=M T
v=a {(ve1) T=P+Pe, A=M (A ©A)
A=Me,v=a (Ve A) T=P+Pe,A=M {*e1)
A=Mev=a {Ave 1} T=P+Pe,A=M At @1}
W=¢gv=a (v ve Wy) T=P+Pe, A=M, T(AB —BA)
B=M+/3Me
W=¢gv=a {Wyv@1} T=P,W=e¢e TW
v=a,u=a+V3b | (v@vau) T=P,A=M,W=¢ Wit @1)
T=P+Pe,v=a {t'®1}
Coo v=a VRVOY T=P,A=M T
v=a (v v@ey) T=P,A=M Te
v=a {(val} T=P,A=M {*e1}
v=a {ev@ 1} T=P,A=M {e*®1)}
Cy | A=Me P A=M,B=M+3Me | P(AB — BA)
A= Me (Ap* ® A) A=MW=¢ (wpt @1}
A= Me (P*e1} A=M+V3Me,v=a | (v®A)
A= Me {Ap* @1} W=¢gv=a (Wv® 1)
W=e¢e PW v=au=a+3b PvRu—-u®v)
v=>h VROVYRY T=Pe,A=M T
v=b {(ve1} T=Pe,A=M (P @1}
v=b {p*®1} T=Pe,v=a {t" @1}
Cy v=a+b VRVRY T=P+ Pe T
v=a+b (ve M) T=P+Pe MM o M)
v=a+b {(vel} T=P+Pe (Me1}
v=a+b Mve1)} T=P+Pe (MT™ ©1}
A=Me,v=a (v® A) T=P, A=Me T(MA — AM)
A=Mev=a {Ave 1} T=P,A=Me {t*e1}
W=¢gv=a (Wv@M) T=P,W=¢ T™W
W=¢v=a {(Wyve 1) T=P,W=¢ wiMe 1}
Cu A= Me a®a®a W=e¢ {(Wa® 1}
A+ Me (a® A) v=D>b (a@a@®v)
A =Me {a@1} v=Db {ve 1}
A=Me {Aa@1) T=Pe T
W=e¢ (a@a®@Wa) | T=Pe {t' ®1}
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Travelling wave solutions to model equations
of van der Waals fluids

K. PIECHOR (WARSZAWA)

WE CONSIDER the existence and uniqueness of travelling wave solutions to the model hydrodynamics
equations (without capillarity) obtained from a four-velocity kinetic model of van der Waals fluids.
We analyze both the Euler and the Navier-Stokes equations. The Euler equations are shown to
change their type. The Rankine-Hugoniot conditions are discussed in detail. It is shown that the
Hugoniot locus can be disconnected even if the equations are hyperbolic. Using the Navier-Stokes
equations we show how to modify the Oleinik-Liu conditions of admissibility of shock waves to such
situations, The shock-wave structures are found numerically. In particular, the so-called impending
shock splitting is obtained.

1. Introduction

THE vAN DER WAALS fluid is such a hypothetical one whose equation of state
reads [1]

RT a

(1.1) p(w,T) = S X

where a, b are positive constants characterizing the fluid, p(w, T') is the pressure,
R is the gas constant, 7" is the temperature, and w > b is the specific volume. Now
much more sophisticated equations of state are known [2, 3, 4], but Eq.(1.1) is
still in use since it describes qualitatively correctly the thermodynamic behaviour
of real one-component fluids.

If

81 a

then the isotherms in the p—w plane are monotonically decreasing convex curves.
This is the case of classical gases. The mathematical background is the Lax theory
of hyperbolic conservation laws [5].

If

8 a 81 a
(13) '2-7@—1*{'< <E6"b—f-i,

then the isotherms in the p— w plane are still monotonically decreasing — but they
are no longer convex. This occurs in the so-called retrograde or Bethe-Zeldovich-
Thompson fluids. Such materials were considered in many papers [6-17].
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The third case is when T satisfies

1 a . 8 a
(L) s < <7

The left-hand inequality guarantees that the pressure is positive for all w >
b. Now, the isotherms are nonmonotone curves in the p — w plane, and the
Euler equations are of mixed hyperbolic-elliptic type. In this case there is no one
prevailing theory, and various approaches can be found [18-35]. Closely related
problems are met in the theory of elastic rods [36—48].

The equations studied in [4-48] are those of phenomenological thermody-
namics. However, at least as fluids are concerned, such a theory cannot describe
correctly the structures of neither the shock waves nor the phase boundaries
because, in those regions, the gradients of the flow parameters are very large.
Hence, the use of kinetic theory seems to be inevitable. Usually one proceeds
as follows: the Boltzmann equation is used in the gaseous domain and the fluid
bulk is treated as a source (evaporation) or sink (condensation) of particles. Ref-
erences [49-51] represent three of many papers on the topic.

We propose a more radical approach consisting in the use of one kinetic equa-
tion both to the liquid and the gaseous phase. Thus, in a sense, we attempt to
follow the lines of the van der Waals’ philosophy of fluids [1], which is used in the
quoted papers [2-35] on liquid-vapour phase transitions. In the papers, one sys-
tem of hydrodynamic equations with one equation of state suited for liquid-vapour
systems is used without any splitting into liquid and gaseous domains. The es-
sential difference between this approach and that of ours consists in that that we
want to replace the hydrodynamic description of the system with a Kinetic one,
and next to compare the results.

The fundamental trouble is the lack of such a universal and fully satisfactory
kinetic equation. But this does not mean that there are no models that could be
suitable for our purpose. We have chosen the Enskog - Vlasov equation because:
i) it is relatively simple; ii) there are some results in [52, 53] suggesting its useful-
ness. Recently, we showed in [54] that the capillarity equations used in [18-21,
28, 32] can be deduced, at the formal level, from this equation.

Unfortunately, if we want to investigate any flow by means of the Enskog - Vla-
sov equation, we find it to be too complicated. That is why we elaborated its
discrete velocity models (see [55, 56]). In this way we obtain a more tractable
system of equations. Basing on the successes of discrete kinetic theory of ideal
gases ([57-59]) we hope that this approach will not be a failure in the case of
interest.

There are many problems which can be posed. First of all we have to give
evidence that our discrete velocity model can be successfully applied to at least
some of the phase transition problems. The next question is the relation between
the results of our approach and those of [49 - 51], where kinetic theory was applied
to the gaseous phase only.
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Another group of problems concerns the connection between the fluid dy-
namic and kinetic descriptions of phase changes. We know from the theory of
the true Boltzmann equation [60] as well as from the theory of its discrete veloc-
ity models [57, 61] that the phenomenological fluid dynamics describes correctly
the shock wave structure only if the shock is sufficiently weak. In the case under
consideration the situation seems to be much more complicated. Namely, in [56]
we considered the stagnant phase boundary problem. It turned out that both the
model kinetic and generated by it fluid dynamic equations have exactly the same
solution. The description of the phase boundary obtained in [56] agrees both
with the physics of equilibrium phase transitions and the theoretical analysis of
[18], hence it favours our model. But, on the other hand, this result is in con-
trast with the results of kinetic theory of ideal gases ([57, 60, 61]), because the
stagnant phase boundary by no means can be treated as a “weak” shock wave.
The explanation of this apparent paradox must be sought in the structure of the
local equilibrium, i.e. the Euler equations. In the case of the ideal gases both the
true and the model Euler equations are strictly hyperbolic, and the characteris-
tic speeds are either genuinely nonlinear or linearly degenerate in the sense of
Lax [5]. It is worth to add that all the existing papers on the hydrodynamic limit
of the true Boltzmann [62, 63, 65] or the Enskog equation [64, 65], or else the
discrete Broadwell model [66—-68], and more generally some hyperbolic systems
of similar structure as the latter ones [69, 70] make an essential use of the strict
hyperbolicity of the local equilibrium conservation equations. Very clearly it is
pointed out in [70].

In our problem, as we show it later in this paper, the local equilibrium equa-
tions, i.e. the Euler equations, can change type from hyperbolic to elliptic. The
question arises: how important is it? This will be discussed in our future papers,
but for the time being let us notice that: i) the stagnant phase boundary discussed
in [56] is admissible only due to the change of the type of the Euler equations;
ii) if the formally deduced local equilibrium equations are elliptic, then they can-
not serve as an approximation, as the Knudsen number tends to zero, to the
kinetic equations if the latter are strictly hyperbolic. A brilliant example is given
in [70]. Hence, the Euler, Navier - Stokes and other equations deduced from the
kinetic theory should, with a great caution, be treated as “approximation” to the
corresponding kinetic equations.

With the present paper we open systematic studies of various “approxima-
tions” to the model kinetic equations. Now we limit ourselves to the Euler and
Navier - Stokes equations only, but most of the present results will be used in the
future.

In the next Section we classify the Euler equations and give sufficient and
necessary criteria for their being of a definite type.

In Sec.3 we consider shock waves and discuss the solvability of the Rank-
ine-Hugoniot conditions. The properties of these solutions are investigated in
Sec. 4.
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Section 5 deals with the shock waves in the Navier - Stokes equations. The most
important result is Theorem 5.8 stating the sufficient and necessary conditions for
existence and uniqueness of the travelling wave solutions to our equations.

In Sec. 6 we give some numerical results concerning the structures of the shock
waves discussed in Sec. 5. Our results agree qualitatively with those of [4]. In this
way we obtain a consecutive confirmation of usefulness of our model for the
qualitative analysis of the dynamic phase changes.

2. Classification of the Euler equations

In the lowest order of approximation to a four-velocity model of the En-
skog - Vlasov equation, we obtained in [56] the following system

ow Ju
(=0 o 0x

Ju  Op _
(2.2) = h o= =0,

where ¢t > 0 is the time, z € R is the Lagrangian mass coordinate, u is the
velocity, w is the specific volume, and p is the pressure.
The pressure formula reads

1—u? a
(2.3) p=plw,u) = w0 w’
where a and b are positive constants; a is the ratio of the mean value of the
potential of the attractive tail to the mean kinetic energy, and b can be taken to
be unity.
Equations (2.1)-(2.3) form the Euler equations for our model hydrodynamics.
We consider them in the following domain:

el 2,1-2%
(2.4) w > b, % <1, <1 5
The set of (w, u) satisfying (2.4) is denoted by D.
Condition (2.4), is obvious: the density 1/w does not exceed the close-packing
density 1/b. The remaining constraints result from the physically reasonable de-
mand that the pressure p is positive. Indeed, the immediate consequence of that

and (2.3) is

1-u?  a(w-0b)
2 ” w?

But for every w > b the following estimates hold

(2.5)

B (L(w—b)< a

w? = 4h°
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Hence, if for some ug
1- u(z) a
L y
2~ 4b
then there is wg > b such that p(wg, o) < 0, contrary to our assumption. There-
fore we have to admit only such values of » that (2.3); holds.

It we denote

(2.6) T = ,

then (2.3) takes the well-known form of the van der Waals equation of state (1.1)
provided that T' given by (2.6) is interpreted as the temperature.
We rewrite the Euler equations in the matrix form

J [w J [w
@7 E(u)+M(w,u)-a—$(u)—O,
where
0 ~1
(2.8) M=| 1-& 20 _ _u
2(w-b)? w3 w—b

The eigenvalues of M are called the characteristic speeds. They are solutions of

Ip(w, u) dp(w, u)
y_ Y I -
(2.9) A 9u A+ 90 0,
or explicitly
9 u _ 1- Uz _ ?ﬁ _
(2.10) A" — b)\ [2(w 0y w3] = 0.

The system (2.1), (2.2) is called strictly hyperbolic if Eq.(2.9) has two real
solutions, and elliptic if both solutions of (2.9) are complex.

We have
LemMMA 1.
i) If
a 27
(2.11) % < 37

then for every (w,u) € D the Euler equations are strictly hyperbolic;
i) if
27 o 27

(212) ﬁ<ﬁ<3_2,
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then they are hyperbolic-elliptic. The domain ‘H of hyperbolicity is simply con-
nected and separates the two components of the domain of ellipticity &;

i) if

27  a
(213) 3—2' < Z <1,
then the Euler equations continue to be hyperbolic-elliptic, but the domain of
ellipticity £ is simply connected and separates the two components of the domain
of hyperbolicity H.
Cases ii) and iii) are shown in Figs.2 and 3 where the domain of ellipticity is
shaded.

P r o o f. Equation (2.10) has two real solutions if and only if

2~ it* 8a
(214) A(U),’tt) = a}—_—b)z = w—3
is positive. This is equivalent to
da(w — b)?
(2.15) w < |1- “(l%—)—] ‘
w

However, for any w > b

» 4a(w — b)2 2 16 a

0 w3 =295’

and the equality sign takes place for w = 30 only. Therefore, if a/b is such that

iey- 2 _Eﬁ)
u” <1 2b<2(1 273

then we have i). If

16 a 9 a
0<2(1—§E)<u <1—2b,

we have ii), and if

we have iii). The proof is complete.

The change of type of the Euler equations is physically interpreted as the
phase transition. Case iii) of Lemma 1 is of particular interest since it resembles
the situation met in the theory of the true van der Waals fluids (see [18 -48]).
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PrROPOSITION 1.
i) If (wo,ug) € &, and (w,u) € &, then

p(w,ug) — p(wo, up) u%
(2.16) m—— 4(w — b)(wg — b)”

ii) If (wo, uo) € M, (w,u) € H, and the interval ((wo, ug), (w, u)) C H, then

p(w, o) — p(wo, uo) uf
(=17 w — wy 4(w — b)(wg — b)

P r o o f. First, let us notice that if (wg, ug) € &, (w,u) € £ then the interval
{(wo, ug), (w,up)) C €. On the other hand, if (wg, up) € H, (w, up) € H then, in
general, this is not true, and that is why we have to strengthen the assumptions
in the hyperbolic Case ii).

Secondly, let us notice that the left-hand sides of (2.16) and (2.17) are symmet-
ric in their arguments w and wq. Therefore it is enough to prove these inequalities
in the case of w > wg only. We have

p(w, ug) — p(wo, ug) _ 1 /wi q
= = o OC])(C, ug) d¢.

w— Wy

wp

CASE i)
For every wy < ¢ < w, we have A((, up) < 0. Therefore

d 1 dp(C, 'u()))z u%
(2.18) acp(C,uO) > 2 ( Tu Tk
Hence
p(w, ug) — p(wy, ug) S u% i d¢ B u%
w — w dw—wg) ) (-2 4(w—>b)wg—">)’
wp

and (2.16) is proved.

To prove (2.17) we proceed in a similar way, the only difference being that in
(2.18) it is necessary to change the direction of the inequality sign. The proof is
complete.

3. The shock speed problem

A discontinuous solution

(wi, ) for =z < st,

(3.1) (w,u)(z,t) = {

(wy, uy) for z > st,
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of Eq. (2.1), with shock speed s, is called a shock wave. Here, (w;, w) and (w,, u,)
are some constant values. To simplify the notation we write (w, u) for (w;, u;) or
(wr, u,), and (wo, ug) for (wy,u,) or (wy,u;), respectively. These values have to
satisfy the Rankine - Hugoniot conditions

sw+u = swy + gy,
(32)
—su + p(w,u) = —sug + p(wo, uo)-

Eliminating u, and making use of (2.3) we obtain an equation for s = s(w; wy, ug)
which reads

w2+w0—2b32+ u 1-u} a(w + wp) —0
2(w — b) w—b 2(wg — b)(w — b) wiw? |

(3.3)

This equation has two real solutions if and only if

(w + wg — 2b) — (ud(w — b)_Za(w + wo — 2b)(w + wyg)

B4 Dlwiwo,ug) = —— s wiw(w — b)

is positive.
LemMa 2. Let (wy, ug) be such that p(wg, ug) > 0. Then the set
{w >b 1 D(w;wp,u) < O}
is either empty or it is a finite interval contained in {z € R: z > b}.

Proof. Werewrite D(w;wg,ug) in the form

D(w; wg, ug) = Ps(w — b),

w2(w — b)?
where P(z) is the polynomial of grade three.

(1 -ud) 4a

P3(z) = 2p(wo, ug)z> + []+ = - z?
204 __ 2.2 b
+ 2[)(1_3)+M+2% z + b2
b wg——b wy

Since P3(0) = b% > 0, P3(z) > 0 for sufficiently large positive z, and P3(z) < 0
for sufficiently large negative z, then this polynomial can take negative values in
the domain z > 0 in a finite interval only. The proof is complete.

In principle, we could make use of the theory of the cubic polynomials to get
the precise answer to the question of the sign of P3(z). Unfortunately, in our
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case, the coefficients in P3(z) are so complicated that we are unable to draw any
conclusions. Therefore, we present only partial answers to the question of the
sign of D(w; wo, up).

LeEmMMA 3.
i) If
(35) P(UJ,O) = p(LUO, 0) > 0’
w — Wy
then D(w; wo, ug) < 0;
ii) if
(36) p(w’ ’ll(]) - p(w07 uO) < 0’
w — Wy

then D(w;wy, ug) > 0.
P ro o f. We have the following identity

Dws g, ug) = — [ M) = Pltnt0) , w022 p(n B - P, B

w — wy w—b w — wy

The assertion follows immediately from the above and the estimate

37 p(w, up) — p(wo, ) 35 p(w, 0) — p(wo, 0)

w — wy w — wg
for w > b, wg > b, u} < 1. The proof is complete.

CoroLLARY 1. If 0 < u} < 1 — 16a/27b, then for every w > b, wg > b,
D(w; wg, ug) > 0.

P r o o f. If the assumption is satisfied, then dp(w,ug)/0w < 0 for every
w > b. Hence, (3.6) holds. The proof is complete.

LemMA 4. If (wg, ug) € &, (w,ug) € £, and w > wy, then D(w; wp, ug) < 0.

Proof. We write

ud _wHwy—2b 4p(w, ug) — p(wp, ug)

(w — b)? 2(w—b w — wy ’

(38) D(w; wo, uo) =
Making use of (2.16) we obtain

u%(w — ’wo) < 0

D(w; g = .
(w3 w0, u0) < =50 "~ yw — b

The proof is complete.
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LEMMA 5.

i) There are such pairs (wg, ug) € &, (w,up) € £ with w < wy that
D(w; wo, ug) > 0;

ii) also, there are other pairs (wg,ug) € &, (w,up) € &, w < wp such that
D(w; wo, ug) < 0.

Proof Letwy> b be such that
(3.9) 0<2-

and let € > 0 be sufficiently small. We take

A AV
(3.10) = B

)

Of course, then A(wy, ug) < 0. Using (3.7) in (3.4) we obtain

@11 D (w5 w0, vg) = = u;J_—U;)O (wo — b;(w -b)
2a [(Bwg — 4b)(w — wp) + 2wo(2wy — 3b)] 3 €
s CEDCED)

Owing to D(wo; wo, ug) < 0, there is w such that b < w < wq and
(3.12) D(w; wg, ug) = 0,
and D(w;wg,up) < 0 for w < w < wy. From (3.11), (3.12) we obtain

e(wg — b)
4a(wy — b)*(2wg — 30)
1- o
0

(3.13) W= wpy — + 0(ed).

We assume additionally that

— b2 _
(3.14) 1 dalwo —b) §2wo 3) o

Wy

for, of course, sufficiently small ¢ > 0 and @ < wy.
Let us evaluate A(w, ug). Using (3.10) and (3.13) in (2.14) we obtain

I 12ab(wq — b)?
wg
i 4a(wy — b)2(2wy — 30)

wg

AW, ug) = —¢ + 0(e?).
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If there is wy satisfying (3.9), (3.14) and

b — kY2
(3.15) L) g

Wy

then we obtain i), since it is enough to take (w, ug) € £ such that w < w. On the
other hand, if there is wq such that

12ab(wq — b)? N

4
Wy

(3.16) 1 0,

then we obtain ii) because then there is W < w < wy satisfying our demands.
Hence, it remains to show that there is wy satisfying (3.9), (3.14), (3.15), and
that there is, possibly different from the previous one, another wy satisfying (3.9),
(3.14), and (3.16).
The positive answers are readily available by noticing that (3.14) and (3.15)
can be rewritten as

 Aa(wo — b)? ~ Aa(wo — b)*(wo — 3b) 50

14/ 1
(3.14) ’, w;; |
_ b2 N2
(3.15") 1- "'“(U«’O3 b) + 4a(wy b)4(wo 3b) -
wy w

whereas (3.14), (3.16) can be rewritten in the form (3.14’) and

_ 4a(wo — b)? 4 da(wg — b)?(wo — 3b) i

4

(3.16') 1 = -
0 0

The proof is complete.

LemMA 6. If (wp, ug) € H, (w,ug) € H, w < wy, and the interval
((w, ug), (wo, ug)) C H, then D(w;wy,ug) > 0.

Proof. Use (3.8) and (2.17).

LEmMA 7. If
27 a 27

AT
then there is ug such that A(w, ug) > 0 for every w > b, and there are (wyg, ug) €
H, (w,ug) € H, w > wp such that D(w; wy, ug) < 0.

Proof. Lete > 0 be sufficiently small. Let us take

(3.17) wo = b3 — ¢),
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and

a(wp — b)(wy + b)?
b'wg ’

(3.18) wy=2-

Then 0 < u3 < 1 - (a/2b), and

_ 2 da(w — b)? ud
A(w, ug) = TR [1 S— - @
1 32¢ 16ae? s
>~ -2 _ @2l — _(1-—
= (w -0y [2 27 ”"] 81bw3(w — b) (1 125) =0
for ¢ sufficiently small.
Next, we rewrite D(w; wp, up) in the form
(3.19) D(w;w,u) = ! (w+ wo —2b
) P 2(wg — b)(w — b)? T e )
a(wg — b (w0+b)2
—u% (2 - u(z) - ( bzug + (wg — w)u%

+ a(w + wo — 2b) [(wg — b)w — 2bwo]2
2bwiw?(w — b)? ’

We take also
- wao
(3.20) w= "
Then 3
w— wy = ebo—" > 0.
2—¢

Inserting (3.17), (3.18), and (3.20) into (3.19) one gets

Ebwou%
2(wo — b)*(w — b)?

D(w; wy, ug) = < 0.

The proof is complete. The profiles s(w; wo, ug, @) for some values of wy, uy and
a are shown in Fig. 1. We can see that these profiles depend very strongly on the
values of the three parameters. They can be nonmonotonic or even undefined for
some values of the specific volume w. Also, the change of sign of s(w; wq, ug, a) is
noticeable. On the other hand, the profile in Fig. 1c is very much like that in the
case of ideal gases, despite the fact that now the system of the Euler equations
is hyperbolic-elliptic, and the domain of hyperbolicity is disconnected.
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F1G. 1. The function s(w;wy, ug, a) versus w for some values of wq, ug, a. a) a = 1.65, wy = 2.25, up = 0.25;
b)a =165 w =23, u=025¢)a=19 wy=17,4u=0;d)a =19, wyg =6.5,uo=0.
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4. Properties of shock speed and the Hugoniot locus

In this Section we investigate properties of the shock speed s(w;wyg, ug) as-
suming, of course, its existence.

PROPOSITION 2. Let 3 = s(wW; wo, ug) be given. If

bHJO
(4’1) wO _ b ]
and
(4.2) 0 < 60Ty, o) < 2000 = Bl + )Y

waaiﬁ:’
then there are exactly two w; > b, w; > b, W) # w, wy # w such that
(4.3) s(W1; wo, ug) = s(W2; wo, wo) = s(W; wo, o).
In other words, any value of s can be taken at most three times.
Proof. Let3s = s(w;wp,up) be given. Then the following identity is true

(4.4)

E+wg—2b§2 u 1-u} _a(w+w0) -0
2(T+ b T-b 2w -0)@-0b)  ww? |

Now, let us consider Eq. (3.3) with s = 3, but with unknown w. Using the identity
(4.4) to eliminate u(3 from Eq. (3.3) we obtain

iy a(wWwy — b(W + w))

52 — 2i2 (w - b)

UFO w

42 [;2 % 2a(w + wo)]} —o.

272
wow

4.5 (w-) {32(w —b)?*+2

One solution is trivial: w = w. This equation has two other solutions if and only
if (4.2) holds. These two solutions are of the same sign. They are positive if
additionally

wwy — b(w +
B a(Wwg — b(W + wy)) .

(4.6) :

gyl
bwom

This condition is not contradictory if the term on the right-hand side is positive.
In turn, it happens if and only if (4.1) holds. We show now that (4.1), (4.2) imply
(4.6). Indeed,

a(wo® — b(wp + W)?) _ 1 (1 b 1}_) a(wo® — b(wy + W))
2bwiw? -2 bwlw?

wy w
a(wow — b(wo + W))
bw%ﬁz ’

The proof is complete.
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ProPOSITION 3. If A(wg,ug) > 0, then the equation
4.7) s(w; wo, ug) = A(wo, uo)

has at least one solution, namely w = wy. If additionally

(4.8) wg > 20,
and

2 a(wg — 20)*
(4.9) A™(wo, up) < W,

then there are two other solutions w;, w; satisfying w; > b, wy > b, wy # wy,
wy # wo.

P r oo f. Since D(wg; wg,up) = A(wp,ug), then w = wy is a solution of
(4.7). If (4.8) and (4.9) hold, then @ = wy, and 5 = A(wy, ug) satisfy (4.1), (4.2).
Therefore, making use of Proposition 2 we obtain the second thesis. The proof
is complete.

LEMMA 8. If
d
(4.10) ES(w, wo, 'uo)‘w=E =0,
then w satisfies
__ 2bwg
(4.11) > m .

Moreover, there is exactly one w # w such that s(w; wg, ug) = s(W; wo, ug); @ is
given by
bwow
= 2 > b.
w(wy — b) — 2bwy

(4.12) B =

P r o o f. Differentiating Eq. (3.3) with respect to w we obtain

DB, o i mel g, s
(4.13) [ w—b s wo — b] dw - 2(w — b)zs * (w = b)?
1 —ud _a(w + 2wy)
2(wp — b)(w — b)? wgw3 .

We use Eq.(3.3) to eliminate ugs and obtain

[w + wo — 2b ug ] ds 1 2 2a[(wp — b)w — 2bwy)
s+ = 8" — ;
w—b wg— b ww3

dw 2w - b)
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Hence, (4.10) holds if and only if

2a[(wo - b — 2bwg]

23

(4.14) (3 wo, uo) =

The right-hand side is positive for

2bwy
wg — b

T >

only.

Inserting (4.14) into Eq. (4.5) we find easily that it has one double solution
w = W, the third one is given by (4.12). The proof is complete.

Let (wo, ug) be given. The Hugoniot locus H (wg, up) is defined as the set of
all states (w,u) € D which satisfy (3.2) for some real s. For any (wy, ug) and
w > b, if D(w;wg,ug) > 0, H(wg,ug) consists of two branches 14 (wg, ug), and
each of them is defined by

H (w0, uo) = {(w,u) : u = ug — s(w; wo, ug)(w ~ wo)},

where

. _ w-—2b ug "
(:18) s (w; wo, uo) = w + wy — 20 [ w— b s o L wg,uo)] ’

Of course, (wq, ug) € Hy(wg, ug) N H_(wq, ug). However, there can be other
states (w,u) belonging both to H 4 (wq, up) and H_(wp,up). As it is seen from
(4.16), it occurs if D(w;wg, ug) = 0, w # wg. Then H (wq, ug) forms loops. Also,
let us notice that the Hugoniot locus can be disconnected.

The shapes of the Hugoniot loci for a few values of wyg, up, and a are shown
in Figs.2 and 3. Figure 2 presents them for the case when the domain of hy-
perbolicity is connected. As we can see, the curves can be either connected or
disconnected. In the latter case they can form loops, and enter the domain of
ellipticity where the speed of sound is complex.

In Fig.3, four examples of the Hugoniot loci are given for the case of discon-
nected domain of hyperbolicity. The ineresting thing is that they can traverse the
domain of ellipticity. Also, loops to the right (Fig.3b) or to the left (Fig.3d) of
the point (wy, up) can be formed. In Fig.3c the point (wy, ug) belongs to the do-
main of ellipticity. In this case, the Hugoniot locus consists of three components:
the left-hand branch, the sole point (wyg, ug), and the right-hand branch.

We have to add that these do not exhaust all possible interesting situations.

We establish two auxiliary results.
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F1G. 2. The Hugoniot loci for some values of wy, ug. The domain of hyperbolicity is connected. a) a = 1.65, wg = 1.7, ug = 0.25;
b) a = 1.65, wo = 1.95, up = 0.25; ¢) a = 1.65, wy = 2.25, ug = 0.25; d) a = 1.65, wy = 2.3, ug = 0.25.
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FiG. 3. The Hugoniot loci for some values of wg, ug. The domain of ellipticity is connected. a) a = 1.9, wo = 1.7, ug = 0;
b)a =19, wy =18 up=0;¢)a =19, wy = 2.5, up = 0; The cross x denotes the position of (wy, ug) in the domain of ellipticity.
d)a =19, wg = 6.5, up = 0.
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PrOPOSITION 4. Let s = s(w; wy, ug) be a solution of Eq. (3.3). Then

@17  (w-1wg) { 2(‘;’5: :)252 + (wu_osb)z

_[ 1-4} +a(w+2w0)}

2(wo — b)(w — b)? w%w:"

=_{(w—b)2+(w0-b)2 2, uo.s(wg—b)d{ 1—u? 2a:|}'

2w-b2  (w-b? |2w-bZ w3

Proof. Let £ be the left-hand side of (4.17). We have trivially: £ = £ -0,
and substituting the left-hand side of (3.3) for zero we obtain the right-hand side
of (4.17). The proof is complete.

ProposiTION 5. If (w,u) € H(wq, up), then
(4.18) [s(w; wo, ug) — A+ (w, u)] [s(w; wo, ug) — A—{w, u)]
_(w— b)? + (wo —b_)z_sz " sup(wg — b) [ 1- u} Za]

2(w — b)? (w — b)? 2w - b2 w3

where A4 (w,u) are the solutions of (2.10)

hatw) = 3 (5t R

Proof. Setting u = ug — s(w — wg) in Eq. (2.10) we obtain

(4.19) Xow, ) + A_(w,u) = -0 20

and

2w — wo)?:  sug(w — w 1- u? 2a
G} Asfaapln )= 2((w - b;)Z) - (015) = b)ZO) - [Z(w = 1?)2 - E] :

Equation (4.18) is an immediate consequence of these identities. The proof is
complete.

LemMA 9. Let D(w;wq, ug) > 0.

i) If (w,u) € H4(wy, up), then

d3+ . i dS+ )
(w— wO)E >0 (respectlvely : (w— wp) T S 0

if and only if

' A_(w,u) < s4(w;wp, up) < A4 (w,u),
(respectively: s (w; wo, ug) < A-(w,u) or s4(w;wp, ug) > A4 (w,u)).
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ll) If (w, u) € H_ (wg, uo), then
ds_ ; ds_
(w - wO)E >0 (respectlvely : (w- wO)Eu_) < O)
if and only if s_(w; wp, ug) < A—(w,u) or s_(w;wg, ug) > A4(w,u)

(respectively: A_(w,u) < s—(w; wo, ug) < A4+(w,u)).
Proof. Owingto (4.13), (4.17), and (4.18) we have

(4.21) L S ]d—‘“ =)=

w—b w—>b] dw w — wy

But on H 4 (wy, ug)

+ wg — 20
= wwi)b s + wu_o > = \/ D(w; wo, ug) .

Therefore on H 4 (wq, ug)

\/ D(w; wo, up) (w — wo)% = —(s54 — A)(S+ — As).

Assertion i) is an immediate consequence of this identity. To prove ii) we use

D(w; wop, up) (w — wo)% = (s — A)(s- — Ag)

on H_(wg,ug). The proof is complete.
Lemma 10. If

d
(4.22) H)—s(w; wo, uO)’w:ﬂ,T: 0,

then s(w; wo, ug) = A+(w,w) or A_(w,u), where (w,w) € H(wp, ug).

Conversely, if for some w = @ # wq with (@, %) € I (wo, up), D(W; wp, ug) > 0,
and s(@; wg, ug) = A+ (W, W) or A_(w,w), then (4.22) holds.

P ro o f. The first part of the Assertion is a consequence of (4.20) and the
Assumption. Conversely, if s = Ay or s = A_ then ds/dw = 0, since D > 0. The
proof is complete.

Lemma 11. Let (w,u) € H (wq, ug). Then
du 1 =% Ay

dw 2 Ao+ AL
$———>—

(4.23)

where s = s(w; wop, up); A+ = Ax(w,u).
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P r o o f. Differentiating
u = ug — s{w — wy)

we obtain
du ( . )ds
— =—(w—-w
dw 0

Next, making use of (4.21) we get

— 8.
dw

wo—bz up
du_ w_bS +S(m+/\_+A+)—A_/\+

dw B
2s+w—b

Applying (4.19) we obtain (4.23). The proof is complete.
Lemma 12. Let D(w;wg, ug) > 0, and let

d
E;U—s(w, wo, u0)|w=_u7— 0.

Then

i) s(w; wp, up) attains a local minimum at @, provided that (w — wg)r-VA < 0
at (w,n);

ii) s(w; wo, up) attains a local maximum at @, provided that (w — wg)r- VA > 0
at (w, ).

Here, @ = ug — $(w; wo, up)(W — wg), r = ry(w,u) is the right eigenvector of
the matrix M corresponding to Ay respectively, and A = A, or A_ according to
whether s = Ay or s = A_.

P r o o f. Differentiating (4.21) and using the Assumption we get

d’s 1 dA 4 dA_
LN, L L S O P
B~ A+)dw2 w — wy (#=2) dw Hla—ds) dw

Let s = A4, then the above reduces to

d2s 1 dAy
dw?  w—wy dw

But, making use of (4.23) we obtain
d/\+ _ 81\4. 0)\.{.. du _ 3)\+ A\ ()/\+

dw ~ dw ddu dw ~ ddw T odu

Hence, at w =w

= r+'V)\+ s

d?s _
wZ

d
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Similarly, if s = A at w = w, then
@
dw? ~ w— wy
The proof is complete.

ProrosITION 6. Given w,, w;, u; with (w;, w) € D, then (wy, w) € H(w,,u,),
and

(4.24) s(wi; wr, ur) = s{we; wy, up)
where
(4.25) Uy = up — s(wy; wy, w)(w, — wy),

provided that s(w;; wy, u;) exists.
Proof If(w,u)€e H(w,,u,) then
u = u, — s(w; wy, u,)(w — w,).
Setting here w = wy, and using (4.25) we get
U= u — [s(wr;wg, w) — s{wg; wy, u,‘)] (w, — wy).

It follows from the above that it is sufficient to show that (4.24) holds in order
to have (w;,uw;) € H(w,,u,). We introduce the shorthands s; = s(w,;w, ;)
and s, = s(w;; w,,u,). These quantities satisfy Eq. (3.3) with w = w,, wg = wy,
ug = w, and w = wy;, wg = w,, ug = u,, respectively. Substituting (4.25) into the
equation for s,, and using Eq. (3.3) for s; we obtain

2 . 2w — si(w, — wy)] 3w — w, — 2b 2 2u8) _
31. +4 = 8 — = 0
w, + w; — 2b w, + w; — 2b wy, + wy — 2b

This equation has two real solutions, one of them is given by (4.25). The proof
is complete.

ProprosITION 7. Given w, wy, ug with (wg, ug) € D. Then
(4.26) s4(w; wg, —up) = —sx(w; wo, up).
P r o o f. Equation (4.26) is an immediate consequence of (4.16) and the
identity
(4.27) D(w; wy, —ug) = D(w; wp, ug).
The proof is complete.

The graphs of the shock speed as a function of the specific volume w are given
in Fig. 1 for a few values of a, b, wg, and u,.



TRAVELLING WAVE SOLUTIONS TO MODEL EQUATIONS 697

5. Travelling waves in the model Navier-Stokes equations

Within the Euler equations, the shock wave is a jump discontinuity propa-
gating along the line z — st = 0. Let (w;,w) and (w,,u,) be the given states
to the left and to the right of the line of discontinuity. They have to satisfy the
Rankine - Hugoniot relations. However, it is not enough to accept such a jump
as physical. It is well known that some additional conditions have to be im-
posed. Various ideas were used to formulate such additional admissibility criteria
[10-48].

We remind that our principal task is to investigate different approximations
to the model kinetic equations of [56], and the Euler equations (2.1) are the last
but crucial term in the sequence. Hence no freedom of choice of admissibility
criteria is left to us, and we have to turn to the next order approximation, i.e. to
the Navier - Stokes equations.

The Navier - Stokes equations read

a_w 0u_0
ot oz
5.1
oD 0y = e (20)
En 811)(w,u —EBI ,ul_ s

where t, z, w, u, and p(w, u) are the same as previously, but ey is the coefficient
of viscosity, ¢ > 0 is a parameter, and p = p(w,u) is given by

1 —u? + 2b%w?p*(w)
8w?p

(-2) w(w,u) =

w
, ew)= —.

A travelling wave solution to (5.1) is a solution of the form

T — st

(5.3) (w,u)(z,t) = (W, u)(2), zZ = - eR,
where s = const is the wave-speed, such that
(5.4) Z_lir_noo(zﬁ,ﬁ)(z) = (wr, w),
(5.5) liToo(tﬁ,ﬁ)(z) = (wy, tr),
and
Lood
(5.6) Jim (@, 2)() = (0,0).

A discontiuous solution (3.1) to Egs. (2.1) is said to be admissible, if Egs. (5.1)
admit a travelling wave solution (5.3) - (5.6) for sufficiently small £ > 0.
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We substitute (5.3) into (5.1), perform one integration with respect to z, use
the limit conditions (5.4) —(5.6), and obtain

(5.7) u = — s(w—w),
du - A
(5.8) pe = —s(d = w) + p(@, @) - plui, w),
as well as
sw, + u, = sw; + uy,
(5.9)
—su, + p(wy,u,) = —suy + p(wy, wy).

Equations (5.9) have the form of the Rankine-Hugoniot conditions (3.2),
which were discussed thoroughly in the preceding sections.
Using (5.7) to eliminate # from Eq. (5.8) we arrive at the problem:

find a solution to

di _

(5.10) sﬁd—‘: + fi(@)=0, €cR,
such that

(5.11) lim @(z) = wi, lim @(z) = w,,
(5.12) Jim @'(6) = lim_@(6) =0,

where the prime ’ denotes d/dz, and where

(5.13) fiw) = *(w — wy) + p(w, w — s(w — wy)) — p(wr, w),
(5.14) fitw) = fi(w;) =0

and g = pu(w,u; — s(w — wy)). The subscript [ in f; is used to mark that f(w) is
related to the left state (w;, w;) which is treated as given. We have

LemMMA 13. Problem (5.10)-(5.14) has a unique solution if and only if
fi(w) < 0 between w; and w, for s(w, — w;) > 0,
fi(w) > 0 between w; and w, for s(w, — w;) < 0.

Proof. If w, > w, then we must have w'(z) > 0. Hence, if s(w, — w;) > 0,
then sw'(z) > 0, therefore f(w) has to be negative between w; and w,. The
second case is analyzed in a similar way. The proof is complete.

THEOREM 1. The problem (5.10)—(5.14) has a unique solution if and only if:

i) for s(w, — w;) > 0O, the chord joining (w;, p(wi, ur)) to (w,, p(w,,u,)) lies
above the graph of p(w,u; — s(w — w;)) between w; and w,;
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ii) for s(w, — w;) < O, the chord joining (w;, p(wi, w;)) to (wy, p(w,,u,)) lies
below the graph of p(w,u; — s(w — wy)) between w; and w;.

Proof Rewrite f(w) < 0 in the form p(w, u — s(w — wy)) < s*(w — w;) +
p(wy, u). The case of f(w) > 0 is analyzed similarly. The proof is complete.

This theorem reminds the similar ones of [18] or [19] for the isothermal case.
The essential difference between the latter case and that of ours is that in the
isothermal case p does not depend on s. Therefore changing s we change only the
slope of the Rayleigh line, i.e. the chord joining (wy, p(w;)) to (w,, p(w,)), and the
graph of p(w) remains intact. In our case, when changing s we change not only the
slope of the Rayleigh line but the graph of p itself, since p = p(w, w — s(w — wy)).
Hence, the use of this very intuitive theorem is a little bit troublesome in the case
under consideration.

The assertions of Lemma 13 and Theorem 1 were essentially independent
of the specific form of p(w,u). If p(w,u) is given by (2.3), then we can obtain
analytical criteria for existence of the travelling waves. Namely, we have

Lemma 14. Let p(w, u) be given by (2.3). Then, there is a unique solution to
(5.10)-(5.14) if and only if:

i) for s > 0O:
2 2
u; (w —b)

. — r <
(5.15) (s s Br 20) fio+ 5 — ) D(w; wi,ur) <0
between w; and w,;

ii) fors < 0
2 2
w (w—b)

: s+ = D(w; >

(5.16) (s — 2()) (o + wr = 20)? (w; wy,w) > 0

between w; and w,, where D(w;wy, ;) is given by (3.4).

Proof. Using (2.3) we write

_(w—w)w + w; - 2b o 2
filw) = 2(w —b) [(S w+ wy — 2())
(w - b)? ,
_mD(w, w, ’u:) .

From this identity and with the use of Lemma 13 we obtain easily (5.15) and
(5.16) by considering separately four cases of s > 0, w, — w; > 0, etc. The proof
is complete.

Let us notice now, that the necessary condition for (5.15) to hold is D(w; wy, ;)
> 0 between w; and w,. Hence, (w,, u,) has to belong to the same component
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of H(wi,w) as (wi,w;) does. Next, (5.14), means that s satisfies Eq.(3.3) with
(wo, wo) = (wi,w;) and w = w,. Thus, s = s(w,; w;, w;) Therefore we can rewrite
(5.15) as follows

(5.17) s—(w; wi, w) < s(wpywi, w) < s4(w;wy, up)

between w; and w,.

This is a generalization of the Oleinik - Liu condition [10, 13 -15] to the present
problem.

Summing up we have

CoroLLARY 2. If the wave speed s = s(w,;w, ;) is strictly positive, then
(5.10)-(544) has a unique solution if and only if

i) (wy, u,) belongs to the same component of I (w;, u;) as (w;, w;) does;

ii) the Oleinik - Liu condition (5.17) is satisfied.

On the other hand, let us notice that if s < 0, then the case when D(w; wy, u;)
takes negative values is not excluded and (w,,u,) and (w,w) can belong to
different components of H (w;, u;). If so, then sy (w; wy, u;) becomes complex for
some values of w between w; and w,. Consequently, the Oleinik - Liu condition
is violated.

This asymmetry can be understood on physical grounds. Namely, if s > 0,
then the left-hand state (w;, ;) is the state after the wave, and the right-hand
state (w,, u,) is that before the wave, whereas if s < 0, the situation is opposite.
We can see that by treating the right-hand state (w,,u,) is given. Then, instead
of (5.7) we have 4 = u, — s(w — w,), and Eq. (5.10) is replaced by

(5.18)v s;t,(ﬁ)% + f,(w) = 0,
where u,(w) = p(w,u, — s(w — w,)) and

(5.19) fr(w) = $*(w — w,) + p(w, uy — s(w — w,)) — p(wy, u,),
(520) fr(wl) = fr(wr) =0.

Instead of Lemma 14 we have

Lemma 15. Let p(w, u) be given by (2.2). Then, there is a unique solution to
(5.11), (5.12), (5.18)-(5.20) if and only if

i)fors>0

Ur 2 (w—b)z
L - y Wry Up 2
(2.21) (” w+w,—2b) (w + w, = 25 (Wi ) 20

between w; and w,;
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ii) for s < 0

Uy 2 (w - b)?
] + B D(w; wy,u,p) <
=) (s w+ w, — 2(;) (w + w, — 20)? (wswr,ur) < 0

between w; and w,.
We have also

CoroLLARY 3. If the speed s = s(w;;w,,u,) is strictly negative, then the
problem (5.11), (5.12), (5.18)-(5.20) has a unique solution if and only if

i) (wi, w;) belongs to the same component of / (w,,u.) as (w;,, u,) does;

i) the Oleinik - Liu condition in the form

(5.23) s—(w; wyr,u,) < s(wp;wy, w) < s4(w;wy, uy)

holds between w; and w,.

LemmMA 16. Conditions (5.15) and (5.21) are equivalent, as well as (5.16) and
(5.22) are.

Proof Let L denote the left-hand side of (5.15) and (5.16), and let £,
denote the right-hand side of (5.21) and (5.22). Since s = s(w,; wy, u;), then using
Eq. (3.3) with w = w,, (wg, ug) = (w;, ;) to eliminate ;s from £, we obtain

w — w, { 5 2a[w(w,w; — bw; — bw,) — bw;wr]}
L= ———m (s — .

w+ w—2b w2wiw?

Similarly, using the fact that s = s(w;; w,, u,) (cf. Proposition 6) we can write

w — w) {52 _ 2a[w(w,w — bw; — bw,) — bw,w,]} _

w+ w, — 2b w2wlw?

L, =

Let £ < 0; then either

2 2a[w(w,w; — bw; — bw,) — bww,]

«a w—w, <0 and >0
) "= wiwlw? -
or
2a[w(w,w; — bw; — bw,) — bww,]
w—w, >0 and 8= < 0.
A) "= 'wzwlzwg -

Let us consider a). The inequality w < w, implies w; < w < w,. Hence
w — wy > 0. Therefore (5.21) holds. In the case /), it must be w; — w < 0, and
again we obtain (5.21).

If £, > 0, then we proceed similarly and obtain (5.15). The proof is complete.
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To unify our considerations we introduce the following definitions:

(w;, u;) for s> 0,
(wa’ ua) =

(wy, u,) for s<0,
(wr, u,) for s> 0,
(wi, up) for s <0,

(wp, up) = {

and call (w,, u,) the state after the wave, whereas (ws, u;) the state before the
wave.
We have

THEOREM 2. Equations (5.1) admit the unique travelling wave solution (5.3)—
(5.6) if and only if

i) (we, us) belongs to the same component of H(wg,u,) as (w,, u,) does;

ii) the Oleinik—Liu condition:

$_(w; wa, ug) < s(Wp; Wa, Ug) < 84(w; Wa, Ug)

is satisfied for every w between w, and wy,.

This theorem is a compilation of Corollaries 2 and 3, and as such it needs no
proof.

6. Shock-wave structure

The problem (5.10)-(5.14) with pu(w,u) given by (5.2) and u given by (5.7)
admits an explicit solution. To determine it we perform some transformations and
substitutions. Let w,, w;, w; be given, and let s denote the shock-wave speed, i.e.
s = s(wr; wy, up).

First, from (5.2) and (5.7) we obtain

4
(6.1) fi(w) = B_Mh iZ:(j)Afw",
where

Ay = bz(l — (u + swl)z),

Ap = =2b[1 = (w + sw)? = bs(w + swy)|,

(6.2) Ay = 1— (u + swy)? — 4bs(uy + sw;) — b2s?,
2s (u; + s(w; + b)),
Ag = 20 - §%.

=
w
Il
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Hence, ji(w) is a rational function. Also, fj(w) is such. To show this we make use
of (2.3), (5.7), (5.13), and (5.14) and obtain

(w—w)w—-—w,)| 52 o 2a(ww, —bw — bw,) 2ab
— w+ .
2w?(w - b) wiw? wiw,

(6.3) filw) =

Using (6.1), (6.3) we rewrite Eq. (5.10) in the explicit form

4
E A;w;
=0

(6'.4) w(w — wy)(w = w)(w? = 2aw + ﬁ)dw

= —4sd¢,

where

a(wyw, — bw; — bw,)

stwiw? ’
2ab

s2ww,

(6.5)

are constants.

Equation (6.4) can be easily integrated. The result depends significantly on
the sign of

(6.6) W =j-a’

Casel. W > 0.

Under this assumption, the equation fi(w) = 0 has exactly two real solutions
w = w; and w = w,. Hence, the general solution of Eq. (6.4) is

(6.7) Alnw+ Bln|w — w|+ Cln|w — w,| + %Dln(w2—20w+ﬁ)

E w+ a . .
+T arctan —\/ﬁ = —4sz + integration constant,
—: s, Y
where
A
A
puwjw,
B = A — wiAy
(w, — w)(w? — 2aw; + )’
C = Ay — wr Ay

(v, — w))(w2 - 20w, + )’

w; + w,
b

Ay = A4w1wr(w1 + w,.) + Azwyw, — A} — Ap
ww,
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Ap
ww,

Ay = —A4(w,2 + wyw, + wz) + As(w; + w,) + Ay —

D=A-A-B-C,
E = Ay(w + w,) + A3 + 2aA + BQ2a — w) + C2a — w,).

The explicit analytic solution (6.7) was used to obtain a series of shock profiles
shown in Fig.4. The input data were so chosen as to receive results resembling
those of [4, 7]. Our Fig.4 is qualitatively similar to Fig. 10 of [4]. In particular,
we see that so-called impending shock splitting can be derived from our model
equations. The notion of “impending shock splitting” was first introduced in [4]
and refers to shocks having two inflexion points instead of one, what is usual.

10 T T T -~
v
5
oY
as
I~
2
T
06+
]
5 o |
Qz v
35
7
g 3
PR

FiG. 4. Impending shock splitting. Normalized profiles V = (w — w()/(w, — w¢) versus z x 1074,
a=05w =10, ur =0; I —w; = 1.623,2 — w; = 1.653,3 — w; = 1.683, 4 — wy = 1.713,
5w = 1.743.

We omit all details of how to choose the entry data to obtain such phenomenon
since it is fairly well done and explained in [4].

Case II. W <.

Under this assumption the equation

w*—2aw+ =0

has two real solutions w_ < wy; what means that f;(w) has two additional zeros
w = w_ and w = wy, except the “old” ones w = w; and w = w,. The existence
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of shock connecting (wy, u;) to (w,,u,) demands w_ and w4 not to lie between
w; and w,. The result of integration of Eq. (6.4) depends however on additional
detailed relations between the zeros of f;(w).

i) w # wy, w, # wg, wo < wy. In this case, the general solution of Eq. (6.4)
reads

Alnw+ Bln|lw - w| + Cln|jw— w,| + DIn|w —w_| + Eln|w — wy|
= —4sz + integration constant,

where now
A
A=,
ﬁwlwr
B = Ay — wi Ay
(w; — w,)(w} — 2aw; + 3)’
- Ay — wr Ay
(v = w, ) (w2 = 20w, + 3)’
w; + w
A = —Agww(wp + w,) — Asww, — Ay + AU;
ww,
2 9 140
Ay = Ag(wi + ww, + w)) + Az(w; + w,) + Ay — s
ww,
1
D= ——— [A4(wl +w, +w_)+ A3+ Awy + B(w; — wy) + C(w, — w+)],
W — W4

E=A-A-B-C-D.

This case we illustrate with a series of expansion shock profiles presented in Fig. 5.
A shock wave is called expansion shock if the graph of p(w, w — s(w — wy)) lies
entirely above the Rayleigh line joining (w;, u;) with (w,,u,). Our Fig.5 can be
treated as a counterpart of Figs. 3 and 7 of [4]. We can notice easily that the shock
thickness increases rather than decreases, with strength. Also this phenomenon
was discovered first in [4] and it is thoroughly discussed in the cited paper.

ii) Either w; = w4 or w, = wg, or both. In this case we have one-sided or
two-sided sonic shocks, i.e. shocks moving at the speed equal to the characteristic
speed before or after the shock, or else all three of them are equal. In a situation
like that, the asymptotic states of the shock are achieved algebraically rather than
expenentially and shock thickness is much greater than in the previous cases. This
is very similar to what is discussed in detail in [6]. Therefore we omit a discussion
of the case.

Summing up, we can say that our model equations produce results qualita-
tively similar to those obtained within the framework of the true Navier -Stokes
equztions.
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04 |

0 I

.,} -§ 2 7] ‘ 4 &
z <107
F1G. 5. Rarefaction shocks. Normalized profiles V = (w — wi)/(wr — wi) versus z x 107%;
a=05w =104, =051 —w;, =6.5,2 -w; =17.25,3-w = 8.0.

References

1.

J.D. vAN DER WAALS, On the continuity of the gaseous and liquid states, Edited with an introductory essay
by J.S. ROWLINSON, Studies in Statistical Mechanics, vol. XIV, North-Holland, Amsterdam 1988.

2. P.A. THompsON and K. LAMBRAKIS, Negative shock waves, J. Fluid Mech., 60, part 1, 187-208, 1973.
3. M.S. CRAMER, Negative nonlinearity in selected fluorocarbons, Physics Fluids, Al, 11, 1894-1897, 1989.

4, M.S. CrRAMER and A.B. CRICKENBERGER, The dissipative structure of shock waves in dense gases, J. Fluid

10.

11.

12,

Mech., 223, 325-355, 1991.
P.D. Lax, Hyperbolic systems of conservation laws II, Comm. Pure Appl. Math., 2, 537-566, 1957.

. A. KLuwick, Small-amplitude finite-rate waves in fluids having both positive and negative nonlinearity, [in:]

Nonlinear Waves in Real Fluids, A. KLuwick [Ed.], CISM Courses and Lectures 315, 1-43, Springer-Verlag,
Wien 1991.

. M.S. CRAMER, Nonclassical dynamics of classical gases, [in:] Nonlinear Waves in Real Fluids, A. KLuwick

[Ed.], CISM Courses and Lectures 315, 93-145, Springer-Verlag, Wien 1991.

. M.S. CRAMER, A general scheme for the derivation of evolution equations describing mixed nonlinearity, Wave

Motion, 15, 333-355, 1992.

. M. Brio and J.K. HUNTER, Asymptotic equations for conservation laws of mixed type, Wave Motion, 16,

57-64, 1992.

O.A. OLEINIK, Uniqueness and stability of generalized solution of the Cauchy problem for a quasilinear
equation, Amer. Math. Soci. Transl., 42, 285-290, 1964.

B. WENDROFF, The Riemann problem for materials with nonconvex equation of state. I. Isentropic flow,
J.Math. Anal. and Appl., 38, 454464, 1972.

L. LEBOVICH, Solutions of the Riemann problem for hyperbolic systems of quasilinear equations without
convexity conditions, 45, 81-90, 1974,



TRAVELLING WAVE SOLUTIONS TO MODEL EQUATIONS 707

13.

14.

15.
16.

17.

18.

19.

20.

21.

22.
23.

24.

25.

26.

27.

28.
2.

30.

31.

32

33

34.

35.

36.

37.

38.

T.-P. Lw, The Riemann problem for general 2 x 2 conservation laws, Trans. Amer. Math. Soc., 199, 89-112,
1974.

T.-P. Liu, The Riemann problem for general systems of conservation laws, J. Differential Equations, 18,
218-234, 1975.

T.-P. Liu, Admissible solutions of hyperbolic conservation laws, Memoirs of AMS, 240, Providence 1981.

R.L. PEGO, Nonexistence of a shock layer in gasdynamics with nonconvex equation of state, Arch. Rational
Mech. and Anal.,, 94, 2, 165-178, 1986.

M. SEVER, A class of hyperbolic systems of conservation laws satisfying weaker conditions than genuine
nonlineanity, J. Differential Equations, 73, 1-29, 1988.

M. SLEMROD, Admissibility criteria for propagating boundaries in a van der Waals fluid, Arch. Rational Mech.
and Anal., 81, 301-315, 1983.

R. HAGAN and M. SLEMROD, The viscosity-capillarity admissibility criterion for shocks and phase transitions,
Arch. Rational Mech. and Anal., 83, 333-361, 1983.

R. HAGAN and J. SERRIN, One-dimensional shock layers in Korteweg fluids, [in:] Phase Transformations and
Material Instabilities in Solids, M.E. GURTIN [Ed.], 113-127, Academic Press, Orlando 1984.

M. SLEMROD, Dynamics of first order phase transitions, [in:] Phase Transformations and Material Instabilities
in Solids, M. GurtiN [Ed.], 163-203, Academic Press, Orlando 1984,

M. SLEMROD, Dynamic phase transitions in a van der Waals fluid, J. Differential Equations, 52, 1-23, 1984.

H. HarTORL, The Riemann problem for a van der Waals fluid with entropy rate admissibility criterion. Isother-
mal case, Arch. Rational Mech. and Anal., 92, 3, 247-263, 1986.

H. HarTORL The Riemann problem for a van der Waals fluid with entropy rate admissibility criterion —
nonisotermal case, J. Differential Equations, 65, 2, 158-174, 1986.

V. RoYTBURD and M. SLEMROD, Pusitively invariant regions for a problem in phase transitions, Arch. Rational
Mech. and Anal., 93, 1, 61-79, 1986.

H. HarToRl1, The entropy rate admissibility criterion and the double phase boundary problem, Contemp.
Math., 60, 51-65, 1987.

M. SHEARER, Dynamic phase transitions in a van der Waals gas, Quarterly of Appl. Math., 46, 4, 631-636,
1987.

M. GRINFELD, Nonisothermal dynamic phase transitions, Quarterly of Appl. Math., 47, 1, 71-84, 1989,

M. SLEMROD, A limiting “viscosity” approach to the Riemann problem for materials exhibiting change of phase,
Arch. Rational Mech. and Anal., 105, 4, 327-365, 1989.

L. Hs1a0, Admissible weak solution for nonlinear system of conservation laws of mixed type, J. Partial Differ-
ential Equations, 2, 1, 1989.

L. Hs1A0, Uniqueness of admissible solutions of the Riemann problem for a system of conservation laws of
mixed type, J. Differential Equations, 86, 2, 197-233, 1990. :

K. MISCHAIKOV, Dynamic phase transitions: a connection matrix approach, [in:] Nonlinear Evolution Equa-
tions that Change Type, B.L. KEYFITZ, M. SHEARER [Eds.], 164-180, Springer-Verlag, Berlin 1990.

H.-T. FAN, A vanishing viscosity approach to the dynamics of phase transition in van der Waals fluids,
J. Differential Equations, 103, 179-204, 1993.

D. Horr and M. KHODJA, Stability of coexisting phases for compressible van der Waals fluids, SIAM J. Appl.
Math., 53, 1, 1-14, 1993.

H.-T. FAN, One-phase Riemann problem and wave interactions in systems of conservation laws of mixed type,
SIAM J. Math. Anal., 24, 4, 840865, 1993.

R.D. JaMmEs, The propagation of phase boundaries in elastic bars, Arch. Rational Mech. and Anal,, 73,
125-158, 1980.

M. SHEARER, The Riemann problem for a class of conservation laws of mixed type, J. Differential Equations,
46, 426443, 1982.

M. SHEARER, Nonuniqueness of admissible solutions of Riemann initial value problem for a system of con-
servation laws of mixed type, Arch. Rational Mech. and Anal,, 93, 45-59, 1986.



708 K. PIECHGR

39.

41.

42.

43.

45.

47.

49,

50.

51.

52

53.

54.
55.

56.
57.

58.

59.

61.

62.

63.

R.L. PEGO, Phase transitions in one-dimensional nonlinear viscoelasticity: admissibility and stability, Arch.
Rational Mech. and Anal., 97, 4, 354-394, 1987.

. L. TRUSKINOVSKY, Dynamics of nonequilibrium phase boundaries in a heat conducting nonlinear elastic

medium, J. Appl. Math. Mech. (PMM), 51, 777-784, 1987.

M. ArrouF and R.E. CAFLISCH, A numerical study of Riemann problem solutions and stability for a system
of viscous conservation laws of mixed type, SIAM J. Appl. Math., 51, 3, 605-634, 1991.

H. Harrori and K. MISCHAIKOV, A dynamical system approach to a phase transition problem, J. Differential
Equations, 94, 340-378, 1991.

R. ABEYARATNE and J.K. KNOWLES, Kinetic relations and the propagation of phase boundaries in solids,
Arch. Rational Mech. Anal., 114, 119-154, 1991.

. R. ABEYARATNE and J.K. KNOWLES, Implications of viscosity and strain-gradient effects for the kinetics of

propagating phase boundaries in solids, STAM J. Appl. Math., 51, 5, 1205-1211, 1991,

TJ. PENCE, On the mechanical dissipation of solutions to the Riemann problem for impact involving a
two-phase elastic material, Arch. Rational Mech. Anal,, 117, 1-52, 1992,

. P. LE FLocH, Propagating phase boundaries: formulation of the problem and existence via the Glimm method,

Arch. Rational Mech. and Anal,, 123, 2, 153-197, 1993.

L. TRUSKINOVSKY, Transition to detonation in dynamic phase changes, Arch. Rational Mech. and Anal,, 125,
4, 375-397, 1994.

. R. ABEYARATNE and J.K. KNOWLES, Dynamics of propagating phase boundaries: thermoelastic solids with

heat conduction, Arch. Rational Mech. and Anal., 126, 203-230, 1994.

T. YTREHUS, A nonlinear half-space problem in the kinetic theory of gases, [in:] Lecture Notes in Mathe-
matics, 1048, C. CErCIGNANI [Ed.], 221-242, Springer-Verlag, 1984.

Y. SonE and H. SuciMoTo, Strong evaporation from a plane condensed phase, [in:] Adiabatic Waves in
Liquid-Vapor Systems, G.E.A. MEIER, P.A. Tuompson [Eds.], 293-304, Springer-Verlag, Berlin 1990.

Y. OnisHt, On the macroscopic boundary conditions at the interface for a vapour-gas mixture, [in:] Adiabatic
Waves in Liquid-Vapor Systems, G.E.A. MEIER, P.A. Thomrson [Eds.], 315-324, Springer-Verlag, Berlin
1990.

J. KArkneEck and G. SteLL, Kinetic mean-field theores, J. Chem. Phys., 75, 1475-1486, 1981.

J. KARKHECK and G. STELL, Maximization of entropy, kinetic equations, and irreversible thermodynamics,
Physical Review A, 25, 6, 3302-3326, 1982.

K. PIECHOR, Kinetic theory and thennocapillarity equations, Arch. Mcch., 46, 6, 937-951, 1994.

K. PIECHOR, Discrete velocity models of the Enskog-Viasov equation, Transport Theory and Stat. Phys., 23,
1-3, 39-74, 1994.

K. PIECHOR, A four-velocity model for van der Waals fluids, Arch. Mech., 47, 6, 1995.

R. GATIGNOL, Theorie cinetique des gaz a repantition discrete de vitesses, Lecture Notes in Physics, 36,
Springer-Verlag, Berlin 1974.

T. Peatkowskl and R. [LLNER, Discrete velocity models of the Boltzmann equation: A survey on the mathe-
matical aspects of the theory, SIAM Review, 30, 213-255, 1988.

R. MonAco and L. PRez10sI, Fluid dynamiic applications of the discrete Boltzmann equation, World Scientific,
Singapore 1991.

. W. FiszpoN, The structure of a plane shock wave, [in:] Rarcficd Gas Flows, Theory and Experiment,

W. Fiszpon [Ed.], CISM Courses and Lectures, 224, 447-524, Springer-Verlag, Berlin 1981.

R.E. CAFLISCH, Navier-Stokes and Boltzmann shock profiles for model gasdynamics, Comm. Pure and Appl.
Math., 32, 521-554, 1979.

N. BELLOMO, A. Parczewskt and G. ToscAnt, Mathematical topics in nonlinear kinetic theory, World
Scientific, Singapore 1988.

C. CERCIGNANL, R. [1LINER and M. PULVIRENTL, The mathematical theory of dilute gases, Springer-Verlag,
New York 1994.



TRAVELLING WAVE SOLUTIONS TO MODEL EQUATIONS 709

64.

65.

66.

67.

68.

69.

70.

N. BELLomo, M. Lacnowicz, J. PoLewczak and G. Toscant, Mathematical topics in nonlinear kinetic
theory II. The Enskog equation, World Scientific, Singapore 1991.

M. Lachowicz, Asymptotic analysis of nonlinear kinetic equations: the hydrodynamic limit, Uniwersytet
Warszawski, Wydzian Matematyki, Informatyki i Mcchaniki, Preprint 1/94, Warsaw 1994,

R.E. CarLiscH and G.C. PapaNicoLAv, The fluid-dynamical limit of a nonlinear model Bolizmann equation,
Comm. Pure and Appl. Math., 32, 589-616, 1979.

Z. XiN, The fluid-dynamic limit of the Broadwell model of the nonlinear Boltzmann equation in the presence
of shocks, Comm. Pure and Appl. Math., 44, 679-713, 1991.

M. SLEMROD and A.E. TZAVARAS, Self-simular fluid-dynamic limits for the Broadwell system, Arch. Rational
Math. and Anal., 122, 353-392, 1993.

G.-Q. CHeN and T.-P. L, Zero relaxation and dissipation limits for hyperbolic conservation laws, Comm,
Pure and Appl. Math., 46, 755-781, 1993.

G.-Q. CHEN, C.D. LEVErRMORE and T.-P. Liu, Hyperbolic conservation laws with stiff relaxation terms and
entropy, Comm. Pure and Appl. Math., 47, 787-830, 1994,

POLISH ACADEMY OF SCIENCES
INSTITUTE OF FUNDAMENTAL TECHNOLOGICAL RESEARCH.

Received December 12, 1995,



Arsch. Mech., 48, 4, pp. 711-745, Warszawa 1996

Boundary value problems for Poisson’s equation
in a multi-wedge — multi-layered region
Part II. General type of interfacial conditions

G.S. MISHURIS (RZESZOW)

THE BOUNDARY VALUE problems for Poisson’s equation in the plane domains represented by wedges
and layers are considered. Conditions of a general form along all the interior and exterior bound-
aries are prescribed. The analysis is significantly simplified by incorporating the geometrical features
of the layers and wedges: they present chain-like systems. The essence of the method applied con-
sists in using the Fourier and Mellin transforms for the corresponding regions, and in combining
the transformations of respective functions along the common boundaries. The problems are re-
duced to systems of functional or functional-difference equations, and later to systems of singular
integral equations with fixed point singularities. The results, concerning the solvability of the ob-
tained systems of the integral equations are presented. In the Appendix the formulae are also given
making it possible to use directly the results obtained from this and the previous paper to solve the
boundary value problems for linear partial-differential equations of divergence form in a similar
domain, corresponding to physical problems for anisotropic nonhomogeneous bodies.

1. Introduction

IN THE PREVIOUS PAPER [12] we have considered the boundary value problems for
Poisson’s equation in the plane domains represented by wedges and layers. Linear
conditions of general form have been prescribed on the exterior boundaries and
all the interfaces except the one between the regions of different geometry (layers
and wedges). Along these interior boundaries Iy we assume now general inter-

— . au —_

g = [+, ([u] — (rar + T)u%) |f'i: =gy
(t+,7> 0). These relations generalize the usual “ideal” contact conditions (7, 74 =
0) considered in the previous paper [12]. They appear, for example, if we pre-
suppose that there are special thin intermediate regions between the layered part
and the wedge parts of the domain, and which are represented in turn by a thin
layer and two thin wedges. Thus in the case of Mode III problem it can be proved
that 7 = h,/pa, 7+ = 0 /uE. Here p,, p¥ are the shear moduli and h,, 6% are
the respective geometric parameters of these thin elastic adhesive regions (u is a
piecewise constant function prescribed for the shear modulus of the materials).
Moreover, from the assumptions (the intermediate regions are thin) it follows
that r, 74 < 1.

These general conditions can be independently considered on the particular
model of a thin interconnecting adhesive surface. Then the parameters 7, 74
can be interpreted as a measure of flexibility of the adhesive. The mentioned
models have been discussed and investigated in details in [13]. Particularly, it
is shown that when a crack terminates at the bimaterial interface prescribed

facial conditions in the form: [;.z?]
n
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by the “nonideal” contact, the asymptotic behaviour of the stresses is different
in comparison with the case of the “ideal” contact and essentially depends on
the parameters 74, 7. Consequently, a priori estimations of the solutions in the
general case (72 + 72 + 72 > 0) should be corrected. Moreover, in spite of the
fact that the method of investigation is similar to that proposed in [12], all the
problems can be reduced (using a common scheme) to systems of functional
(r = 0) or functional-difference (r > 0) equations, contrary to [12], where only
the systems of the functional equations appear. However, even if we deal only
with the systems of functional equations (r = 0) and reduce them (following
[12]) to the systems of integral equations, then some of the systems obtained
lead to ill-posed (incorrect) problems. If this takes place (for certain values of
the remaining nonzero parameters 74 and the exterior boundary conditions),
there are two possibilities: the symbols of the corresponding singular integral
operators with fixed point singularities are degenerate at infinity, or the systems
of integral equations degenerate from the second kind to the first one at zero
point. Hence, the respective systems are incorrect problems, in general.

Returning to the systems of the functional-difference equations (r > 0), they
cannot be uniquelly transformed, in the general case, to the systems of integral
equations. The process depends essentially on the external boundary conditions,
and the parameters 74, 7. Nevertheless, all the systems of functional-difference
equations for all values of the parameters are reduced to a similar class of systems
of singular integral equations with fixed point singularities investigated in [10,
11]. In the majority of cases the systems obtained are degenerate. Taking this fact
into account, other procedures to reduce the systems of the functional-difference
equations to the systems of integral equations for certain cases are also proposed.
For all cases of the boundary conditions under consideration and all values of the
parameters 74, 7 characterizing the “nonideal” interfacial contact, the systems of
the integral equations are investigated. So the indices of the nondegenerate op-
erators in Banach spaces of summable functions with a weight are calculated for
different parameters of the spaces. In the cases when the operators are degener-
ate, the theories developed in [18, 19] are used to investigate the corresponding
systems, and the indices of normalized operators are calculated.

In the first section we formulate the problems. In the next one, all the prob-
lems are reduced to certain systems of functional-difference equations. In the
third section, the systems obtained are transformed to systems of singular inte-
gral equations for such values of parameters for which the initial systems are of
functional type only (7 = 0). The symbols of the corresponding integral opera-
tors are investigated and theorems concerning the solvability of the systems of
equations are presented. Separately we consider those systems for which the cor-
responding integral operators are not normally solvable. In the fourth section, the
general functional-difference systems (r > 0) are reduced to systems of integral
equations and the symbols of the corresponding operators are investigated for
nondegenerate operators as well as in opposite cases.
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So, all problems of Poisson’s equations under different exterior and interior
boundary conditions have been solved. In the Appendix the formulae are given
which make it possible to use the results of this paper and [12] in solving the
boundary value problems for linear partial-differential equations of divergence
form. Such equations prescribe Mode III problems or similar physical problems
(e.g. heat conduction and mass diffusion in solids, theory of consolidation and
the like [16]) in anisotropic nonhomogeneous bodies.

2. Problem formulation

Let us consider the infinite domain presented in Fig. 1 consisting of a layered
!
part £2f, = CJ £2; and two wedge parts 2% = |J Qj“, T o= [n) .
=1 =1 k=1
1
Fy InaDilialy 0 t nt,

2, 75 2,
) Yn Yn—-1 Y2 n
hy ha

FiG. 1. Domain {2 under consideration.

By I (: = 1,2,...,n—1) we denote interior boundaries between the regions
©; and ;4. Similarly, I't (5 = 1,2,...,/-1) and I'); (k = 1,2,..,m~1) are
the interior boundaries between the corresponding wedge regions. Thus, by I,
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I'y and I'; we denote the exterior boundaries of the layered region (§21), or
the wedges (£2%), respectively. Besides, let Iy = I} U Iy denote the interior
boundary between the different parts of the domain 2.

We shall seek the function u(z;,z;) which satisfies Poisson’s equation (2.1)
inside the corresponding regions 2;, 2, 12,

—pi Auy = Wy, (z1,22) € 1%,

(2.1) —;L;' Au;' = W]-+ " (r,0) € .Qf ;
Mg =Wy, (RO e,

with certain positive constants s, pu}, s .
Along the interior boundaries of the layered domain §2;, the conditions hold:

o
(u.'u - U — I‘iri(,—_)m—zui) 'r. = bui(zy), = €R,

d
92, (is1%is1 — pitt) .

2.2)
= (5(1,'(171), Iy € R, t=12,..,n-1.

Analogous relations for the interior boundaries of wedged domains 2% are given
in the form:

J
( ;-+l '”J 7 55"?)
(2.3)
1 d ¥ +, 4
r 90 (#J+1"J+1 Hj "j)

tin
s buj (r), reRy,

M;(r), reRy, i=1,2,..1=1;

r+
J

du, (r), re Ry,

_ R .
(“k+1 U BTy %“k) re
24)
19 o 2 —~
r 00 ()uk+luk+l Hi uk)ll"k_ - 6(11; ("‘)* LS R'H k= ],2,...,”1—1,

where 7, 7}, 7 > 0 are certain constants.
Finally, the last of the interior conditions between the regions of different
geometry (along the boundaries I, I'y) are of the general form:

6u+(171),

(u ul — T — ? —-ufT i )
1~ % — M | T+5p

9" )lrs
2.5) (9‘1‘20 d :

—(‘E (1w — ,uf' u?’) 6q+(:z:1), z, > 0;

ﬂ+

(u uy y70u+p Ou) du(zy)
1= ¥ —H1 1 1 T- 1 = 1)
(2.6) de2 9=/

d - _
0_1:2 ()u'lul - My ul) r- = (5(] (El)v T < 03

0

with the constants 7, 7o > 0.
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Now we define the exterior boundary conditions for the domain 2. So, on the
wedge boundaries I, I, one of the following relations holds:

(a) ufl,w = 5“(‘; (r)v re R‘H
2.7) 10 ,°

(b) ﬂ1+; 8—9“1+|r0+ = bqg (7), r € Ry,

(a) u;llr— = —51!,_“(7‘), r € Ry,

(2.8) 19 .
®)  Bnlggtml,. = “dm(),  reR..

On the exterior boundary I, we shall consider conditions (a), (b) analogous to
(2.7), (2.8) and the relation (c):

(a) Un|,, = —bun(zy), z; € R,
0
(29) (b) uﬂa_xzun|pn = -6(]71('7:1)a T € R,
(c) lim wu,4+; = 0.
Ty 00

In the case (c) we assume that the last region §2,4; is a half-plane. Then the
condition (2.9), means that the solution of the problem tends to zero both at
z3 — op and z; — oo. Consequently, we have here nine different combinations
of exterior conditions. The corresponding problems (2.1) - (2.6) with the boundary
conditions (2.7)-(2.9) are denoted by (7*,7,7), where (J* = 1,2, 7~ =
1,2; 7 = 1,2,3). Here the value of 7% is 1 (or 2) if the condition (2.7), (or
(2.7)) holds. In an analogous way, one can define the values of 7~, J from the
conditions (2.8) and (2.9), respectively.

We assume that all known functions which appear in the equations and the
boundary conditions are sufficiently smooth and their behaviour near zero and
infinity points is specifically defined (for details see (1.10) in [12]). In the opposite
case (when the defined functions are not smooth and have some singularities), it
is easy to find special solutions of the problems accounting for these singularities.
Then due to the linearity of the problems, the solution of the initial problem can
be represented as a sum of the solutions.

We shall seek the regular solutions of the problems (7%, 7~,J) in the class
of functions LW({2) such that u € LW({?) if the following relations are true:

(210, vy € C¥G);

u(zy,z7) = O(r™™m),

rgradu(r) = O(r™m), (z1,22) € G, 1= \[a}+ 2] - o0}

(2.10), {
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u(zy, z2) = u. + O™ In* 7), (z1,22) € 21,
u(II’IZ) = ’Ui+0(7'70), (1:1,1'2)6 'Qi, r— 0.

(2.10)3 {

Here G denotes all regions of 2, and v9, 71, 2 (0 <7 £ 1; 71,72 > 0), k+1 € N
are certain constants which will be found by solving the problem. Besides, in the
cases of the first type boundary condition, at least on one exterior boundary of the
wedge (71 J~ < 4), additional relation corresponding to the respective notch
surface holds:

(2.11) el 75T TI=0  (rFE=1)

It has been shown in [12] for the case of the “ideal” contact conditions along
the interfacial boundary Iy (7,7+ = 0) that vy = u,, & = 0. In spite of the
fact that the values of parameters 7, 7, 72 are different for the “ideal” contact
and the “nonideal” one, they are positive. Therefore, all problems (2.1)-(2.9)
in the class LW(f2) have unique solutions, because functions of that class belong
to “energetic spaces” ([14]) of the respective boundary value problems. The fact
that v+ = 0 in the same problems follows from the corresponding boundary
conditions and from the properties of the functions belonging to LW(12).

3. Reduction of the problems to systems of functional-difference equations

Applying the Fourier and Mellin transforms to the Poisson’s equation (2.1) and
to the exterior and interior boundary conditions (2.2)-(2.9) in each respective
composite domains £2;, 2%, and using the sweep method [7], we obtain the
following relations between the transformations of unknown functions and their
derivatives along the boundary Iy (see Eqgs. (A.22), (A.45), (A.46) in Appendix
A [12)]):

(3.1) uy(A) = M,(M)py(A) + my (A) + my (A,
(3.2) vi(s) = My(s)qy(s) + my(s),
(3.3) wi(s) = M, (s)r}(s) + m,(s),
where
W) =Ty, ) =T, W) = U,

J _ d . - F
Py(A) = 150, Piny: q(s) = b 50 1 () =y 55T I

Here, the Fourier transformation f(\) and Mellin transformation f(s) of a func-
tion f are defined in the usual way (see (A.2), (A.28) [12]). Functions M,, m%,
M,, m,, M,, m, are obtained in [12] (Appendix A (A.23), (A.47)). Their be-
haviour depends essentially on the exterior boundary conditions (2.7)-(2.9) (see
Lemma Al, Lemma A2 of the mentioned paper).
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Define the unknown odd and even functions z_, z; by the relation:

d
(3.4) z4(z1) + 2-(21) = Mg Bl

then, applying the line of reasoning used in Sec. 2 [12], the remaining contact con-
ditions (2.5), (2.6) can be reduced to the following systems of functional-difference
equations:

(3.5)  Y(s)-pitZ(s—1) = B(s)Z(s)+ F(s), max{0,1—7} < RS < Yoo,

where we introduce the symbols: u(s) = u(—s), d.(s) = 27 I'(s),
Yoo = min{l$7l»72}’

YQ) = mAMZ(N) + Hz(A),  Z(\) = [Z(:\))] ’
Mpzf o
Hz(,\):IJIA 1+A2 mP ,
m;

P

F(s) = F(s,t4,t_,T) 3 ((d+(s) + [sMy + st_ + 7]d.(s))sin ¥)

" T(s)sinas (d_(s) — s[M_ + t+]d.(s))cos§
—s[M_(s) + t+]tg¥ —s[M.(s) +t_]
SIMa() + 1] S[M_(s) + taJetg ™ ’

M) =2 W) -2 A+, (@) = 2(a) - 2 rexp(-|zl),
2My(s) = My(s) £ M,(s), 2yx=r%41",
2d3(s) = [M, — 7716¢ (s + 1) F[M, +7*]bq (s +1)

+m, + mg + bu (s) % g?ﬁ(s).

B(s) = B(s,t4,t-) = (

The unknown constant z} = 7, (0) for some types of the boundary conditions
can be defined from a priori estimates (see (A.24), (A.49) [12]):

1
.Z—TEW’ j+=j—=21 J=l’2’3’

G5 W=\-E, T=23, Jt=12,
unknown, for remaining problems.

Here 25, Ew = =}, + Sy are the resultant vectors of all the exterior forces
in the respective regions £2;, 2%, and are defined in Lemma Al, Lemma A2
[12]. Besides, an additional condition should be satisfied

(3.7 2rSL +Sw =0
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for the solvability of the problems (7,7%,77), J* = 2; 7 = 2,3 (see Remark
A1l [12]). But, for the remaining problems (1,1,1) and (1,2,1) the value of z}
can not be calculated from a priori estimates and will be obtained by solving the
problems.

A priori estimates (A24) [12] following from the properties of the functions
from the class LW(f2) lead to the result that the vector-functions Y(s), Z(s) are
analytic in the strips —y9 < s < 7; and —7yp < Rs < 77, respectively. Using
Lemma Al and Eq.(2.17) from [12] it can be seen that

(3.8) YN +Z(\) = 0(\7%), - .

Taking this fact into account, we rewrite the systems of functional-difference
equations (3.5) inside the strip max{0,1 - 7} < R s < 70, in the form:

(3.9)  [Y+Z](s) = urZ(s — 1) + .()Z(s) + F(s),  D.(s) =1+ B(s);

then the left-hand side of (3.9) is an analytic vector-function in the strip -2 <
s < 7Yoo, Which is wider than the analyticity strips of ?(s), i(s).

These systems for the case 7,7+ = 0 have been investigated in [12]. Note
that in the general case 7,74+ > 0 not only there exists the term with the shifted
argument, but the behaviour of the matrix-functions €.(s) (depending on the
values of 74 ) is different from that in [12].

4. Analysis of the system of equations (3.9) in the case 7 =0, 4 >0

First of all let us note, that the system of Eqgs.(3.9) in this case is not a
difference system, but a functional system only:

(4.1) [Y + Z](s) = @.()Z(s) + F(s), 0<Rs < oo
We need the following Lemma generalizing the corresponding one from [12]:

Lemma. For each problem (7%, 7, J) there exists v = voo (T, T7) (0 <
Veo < 1) such that a matrix-function ®'(s) inverse to ®. is analytic in region
|Rs| < veo (T T, T ™), and satisfies the estimates:

L
x+1 + x-Etg(ns/2), t_- =ty =0,
&71(s) = { Qwe) [IFEtg(rs/2)], t_=TFty, t+>0,p+P.(s)
T(s), = #iE, 130
O(e~cl9sly, t_ =ty =0,
®..(s) = ¢ O(Ss|™D), t.=mghy, do30 3, |S 5| — oo;
O(ISs]72), 2#2, ty>0,

I
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0(1), i_ = t+ = O,
det®;'(s) = < O(Ss|™Y), t_=Fty, t+>0,3, |88 — oo;
o(Ss|2), 2 #12, 1. >0,

for all problems (7+,7°,7), J*=1,2; J=1,2,3;
2.
¢:1(3)={A1+alsE, R o =_1, J =1,2,3,
Ay+asE, JYJ->1, J =123,
b, Jt=1, J=1,23,
0, JF*F->1, JT=123

} +0(s?), s—0;

det®!(s) = { } + 0(s?), s — 0.

Here the constants and the matrices are calculated by the relations:

_ w-t w4 b iy
A w? + @i’ g T+ (s + - +2t4)°
11y ¢ T it
= = ) i by =
4l 2 (3 = 9+ 2), & cy + oo+ mwpge_cy’
il i H1
= — b =1+ we =14+
az 2 ct + e 2 w ltl— ) + 1 “'?. ]
v = (I -1, o =T 1)y,  e=min{¢], ¢},
T(s) 1 —t4tg(rs/2) t
) = ————— )
sm(t2 —13) ~t- ~tetg(ms/2)

o (01 Ao (10 o[t 0
“\-1 0/ 7 \o 4 )’ 2= Lo 0)?

but the values of constants (', (i, n+, n— are defined in Lemma A2 from [12].
l 1271+ 7

As one can see, the behaviour of the matrix-function ‘D:l(s) at infinity de-
pends on the type of the interfacial contact conditions (on the values of the
parameters ¢4, t_). The corresponding three cases (see 1) we shall denote by the
upper index j = 1,2, 3. However, the behaviour near the zero point depends on
the conditions along the boundaries of the exterior wedges (on the values of the
parameters 7%). The respective two cases (see 2) we shall denote by the lower
index k =1, 2.

REMARK 1. Let us note that the function det ®.(s) has in the strip (0 < Rs < 1)
one zero in the first case of Lemma (t+ = t_ = 0) only, and this zero is real
(see [12]). In the remaining cases (¢+ > 0) the determinant has two zeros with
different real parts in this strip. It means that the gradient of the solution of the
corresponding boundary value problem will have two singularity terms near the
wedge tip.
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ReEMARK 2. When all geometrical and mechanical parameters of the bound-
ary value problem are symmetrical with respect to the OX>-axis (see Corol-
lary A2 [12]), the systems of the equations (3.9), (4.1) split into two indepen-
dent equations, because the matrix-function ®.(s) is diagonal in such situations.
Then one can conclude that v (71,7 %) = min{ws(1, 7 "),we (2, T %)}, where

Woo(1,T 1), weo(2, T*) are zeros of the corresponding diagonal elements of the
matrix-function ®.(s).

Typical graphs of the function det®.(s) in the interval (0,1) for the prob-
lems (2,2,7) (J = 1,2,3) when the wedge regions 2% are represented by two
symmetrical wedges with angles r /2, and the mechanical parameters are symmet—

rical also with respect to O Xy-axis (uf = uy, 7t = 77), ave presented i the
Fig.2a, b.

det®. (s) a) det®.(s) b)
10
_____ et g
RS p + —_——
1.0 \\ \\ #1 1-+ //7( .\.
. 0 <> <
V| — o0 s |
05 | oas ‘ \
Y/ v
mfuy =02 W | —- 005 |10 7 e =50 A\
Al om 7 |
0 ' ’l y ' |
] : i ¥
i 2002 L
0.4 0.6 08 s 10

0.6 0.8
F1G. 2. Graphs of the function det €.(s) in the interval (0,1) in the case pf = p, 74 =

@

-
I

Here continuous lines correspond to the “ideal” (4 = 0) contact, but dashed
and dotted lines correspond to “non-ideal” contact with respective values of di-
mensionless parameter uf 74 = 0.01,0.05,0.25.

Let us note that the values of the first zero v, (2, 2) for small magnitudes of
pi 7+ < 0.1 differ but little from the values of the unique zero for the “ideal”
contact condition (74 = 0). Numerical results for the values of the mentioned
two zeros of the function ®.(s), for certain geometry and exterior boundary
conditions, are presented in [13].

Taking into account the results of the Lemma, we can rewrite the systems of
the functional equations (4.1) in an equivalent form:

42)  ®I'(s) [Y+Z|(s) - BI)F(s) = Z(s), 0 < Rs < min{voo, Yoo}
Note that the vector-functions ®71(s)[Y + Z](s) and Z(s) are analytic in the

strip — min{ve, Y0} < Ns < min{y, Vo0 }, at least. However, the vector-function
& 1(s)F(s) can have, in general, a pole at the point s = 0. By investigating the
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behaviour of the vector-function F(s) near the zero point in a similar way as
in [12] (we do not present the respective results in this paper) it can be shown
that the vector-function ®_'(s)F(s) is analytic in the strip —ve < Rs < veo for
the value of the parameter z} defined in (3.6). Besides, ®_!(s)F(s) has also no
pole in this strip in the problems for which this parameter can not be known
from (3.6). Finally, this vector-function tends to zero in the strip along any line
parallel to the imaginary axis for all the considered problems.

Further, it is evident that the first pole of the vector-function Z(s) which
is the nearest to the imaginary axis in half-plane Rs < 0 coincides with the

cowresponding pole of the vector-functions & (s)[Y + Z](s), 7" (s)F(s), hence:
(4.3) Y = Voo(j+vj_)'

The other parameters from the definition of the class L W(2) can be also found,

vy = U,
(4.4) - -
2
W= / NS = 0] M(Nz(3) + (u A RP )] da,

where yy, 74, h(zl) are the first components of the vector-functions Y, Z, Hz (see

(3.3))-

4.1. Reduction of the systems of functional equations to systems of integral equations

Let us recall that the system (4.1) under the first assumptions t4+ =0 (7% = 0)
has been investigated in [12]. For the cases t; > 0 these systems can be also re-
duced to systems of singular integral equations, taking into account the behaviour
of the matrix-functions ®_'(s) at the infinity point.

Thus, in the case t_ = Fty, ty > 0 (j = 2 see Lemma), system (4.2) is written
in the form:

..(s) [T +2] (5) + [—Y + (E;_:l: . 1) Z] (s)

1 715, 5 T, |
Fro 87 E ¥+ 2] () = @7 () F(s).
Then, applying the inverse Mellin transform to this system, and using a line of

reasoning similar to that used in Sec. 4 [12], we obtain a system of singular integral
equations:

BTt I . NL=GY, T=13, Jt=12

(45) B® @
BYTY T J)Y Gy J=23 Jr=12
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where

(87, ul) = u() + / 1;3(’,,)()\,5)~p(2>(A,5)u(g)dg
0

Z(Y)(A f) (§)A2 52 ]

-(2) _ 2w4(1 + 1EM,(£))
Kz 0 = MM, (N + 1 2y’
KO €) = 2w1(1 + (i EML(E)™")
1+ (1 = Zwi)(/\lep(/\))—l ’
)

AptMp(A) + 1 - 2wy

% (ﬁ 70»@;1(.5)1?(5)(13 ~ [BQ 1] (A)) ,

—100
2wi

@ (y) =
= (1 = 2@ )(Apg Mp(A))~1 + 1

( / N® N ($)F(s)ds — [BP Iy () + Hy(A)) :
1

VA R

A €) = %15- 70<b“(s) (%)Sds, Hy()) = —

=100

(B = ~

—u(h) + [ ¥, Ou() de £ ——E / B

In the third case (13 # 2, t4+ > 0, see Lemma) the inverse Mellin transform
can be directly applied to the system (4.2). Consequently, the systems of the
integral equations are found:

st g amedl, F=L5 P =Lk

(4.6)
BRI, I Y = 6f, T=23 Jt=11%

where

(BRI = L20n W) + [ K @FD 0, 0u(e) de,
0



BOUNDARY VALUE PROBLEMS FOR POISSON’s EQUATION. PART II 723

N =1,  fr()= /\m;m)
00 = o [0 (3) as
KPE© = ~(1+ meMy(©), KD = ~[1+ (uéMy(©) ™)
GP0) = —— / A& () F(s)ds + / WO, ) Hz(6) de,
) = 2m f NDIL () F(s) ds + / WO, &)y (€) dE — Hy (M)

—100

Basing on the results from [2, 10, 11] it can be shown that the obtained oper-
ators B2 (”(j+ S L 3 l’( 2 )(J+ J~,J) for all of the problems (7%,7,7)

are bounded in the spaces L5 “(R4) [10] with any values of the parameters
Voo (T, T )< a< B < um(;fﬁj‘), 1 < p < oo. The right-hand sides of
systems (4.5), (4.6) belong to the spaces wgg;f(&) for any m € N. Besides, all
these systems of the integral equations are of the second kind, but the operators
BS)(J+,,7“,2) are degenerate to the first kind in the point A = 0, in view of
the behaviour of the function M,(\) (see Lemma Al from [12]).

From a priori estimates for the solutions of class LW({2) it follows that the
inclusions should be true:

YeW, P (Ry), ZeWy’(R:), -v<ai<0, 0<B<0.

Moreover, taking into account the smoothness of the kernels of the integral
operators and the reasons given in Appendix B [12], it is sufficient to assume that
for arbitrary p € [1, o0):

(4.7) YeLlZ*(R,), ZeLZ*’(R:), -—7i<ai<0, 0<pB<7.

Let the matrix-function B (a — it, 7+, 7-,7) (t € R, j = 2,3, J* = 1,2,
J = 1,2,3) denote the symbol of the corresponding operator BU( T+, 7~,.7)
in the respective space (for definition of the symbol of singular operator see, for
example, [3, 18]). Then, basing on the results from [10] one can conclude that:

B (o —it, 7*,77,1) = I - & (a — it),
(4.8) B )y y(a —it, 7+, 77,3) = 1 - (1 — #"—‘H) & (o - it),

BP(a—it,7*,T7,2) = ® ' (a - it).

http://rcin.org.pl
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Taking into account the fact that formulae of symbols of the operators B(Zz()y)

(7%, J-,7)and Bgzy)(J+, J=,J), (J = 1,3) are of similar form, we will not
use the upper indices (j = 2,3) when it does not involve difficulties. Note only
that the matrix-function ®(s) depends on j (on the values of 7).

REMARK 3. Strictly speaking, all the operators B(J*,7~,.7) (as well as the
operators from [12]) are isometrically equivalent (with the accuracy to compact
operators) to some pair systems of integral equations on the axis with the kernels
depending on the difference of the arguments [10]. Their symbols are represented
in the forms (t € R, 6 = £1):

Symb B(T*, T, T)|z.s(t,0) = Bla - iz,J*,j*,j)l—;—o + 11—5—0.
Hence, it is sufficient to investigate only the matrix-functions B(a—it, 7+, 7, 7).
Thus we have denoted the symbol of the operator B(7*,7~,.7) by the corre-
sponding matrix-function B(a — it,J%,7~,J) instead of that written above.
Besides, these matrix-functions are continuous in R, but can have a point of dis-
continuity at infinity. Hence, they are not the symbols, but presymbols, in general
(for details see [2, 8, 18]).

Note that the operators B(Z’) (J*,77,3) (J = 2,3) are isometrically equivalent
to the operators Bﬁ’(] +,77,3) (see Remark B2 [12]). Consequently, it is suffi-
cient to investigate only the first of them. Moreover, in the case y; = .4 these
operators are the Fredholm ones (they can be represented in the form I + K,
where X is a compact operator), and we will not consider such situation below.

One can see that the symbols B{,z)(a —it, J*, 7, 2) of the operators 35}’(:/ *
J~,2) are degenerate at the infinity point for any values of a. Hence, these op-
erators are not normally solvable in the considered spaces (see [18]) and the
corresponding systems of integral equations are ill-posed problems [19]. The the-
ory of such singular integral equations in classical spaces is constructed in [18].

4.2. Investigation of symbols of the nondegenerate operators

Let a = 0, then by 1o(J7+,7~,7), (J = 1,3) we denote the real parts of
zeros of the determinants of the matrix-functions Bz(—it,J*,7~,7) (J = 1,3),
which are the nearest to the imaginary axis (inside half-plane ®s > 0). Besides,
by v.(7*,7~,J) we denote the real parts of the next zeros (v. > 1g). It can be
shown that

(4.9 0<1n(2,2,1), wI*J,3)<1, Jr=1.2
and all zeros are real and simple. For other problems

vo(1,1,1) = 1(1,2,1) = 0,
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and the orders of multiplicity of these real zeros are equal to two. Thus the
problems with nondegenerate symbols are divided into two groups, depending on
the values of the respective zeros.

First of all consider the first group (all of the problems for which vy(J*, 77, 7)
> 0). Denote by a.(J7*,77,.7) = min{vg(T*, T, T),vee(T ¥, T 7)}. Then it is
easy to see that for all values of |a| < a.(7 %, ™, J) the indices of the respective
operators are equal to zero:

(410) k = —ind detBZ(y)(a— it,j+,j_,j) =0, |a| < a.(j+,J",j).

However, when we deal with the systems of integral equations, the partial indices
K1, k2 play also an important role [4]. Using a line of reasoning similar to [12] it
can be shown that the symbols of operators are definite matrix-functions [4] for
these problems. Hence, we can prove the following theorem:

THEOREM 1. Let 1 <p<oo,me€ N, »(T*,T-,7) >0, B8 < v (T+,T7),
B-—a>0 |la|l < a(Tt, T ,J) then;

1) the operators Bzyy(J*, T, T), in the spaces Lg’“’[i(R+) are normally solv-
able, and their indices and all partial (left-hand and right-hand) indices are equal to
zero;

2) there exist the unique solutions of the corresponding systems of equations from

WESAR) C LE* (Ry).

Results concerning asymptotics of the solutions near zero and infinity points,
and the convergence of numerical method can be obtained analogously to those
presented in [12].

Now, consider the operators for the problems (1,1,1) and (1,2,1) when vy =
0. In these cases the index and partial (left-hand and right-hand) indices are
calculated:

K

—ind det BZ(y)(a -, 1,77, 1) = +1,
Rl(laj—sl)= —‘J:Iv HZ(lyJ—a1)=0a

depending on the value 0 < +a < min{v.(7+, 77, 7), veo(T*, T 7)}. For these
problems the values of z} are unknown (see (3.6)). Moreover, the right-hand
sides of the systems (4.5), (4.6) can be represented in the form Gz = G, + 27 G%,

where the vector-functions G} and G% belong to the spaces WE’;?;_‘;(RQ. So we
can prove the following theorems:

THEOREM 2. Assume 1 <p< o0, V. <a <0, f< vy B—a >0, meN;
then

1) the operators Bz(1,1,1), Bz(1,2,1) in the spaces L’z""”ﬁ(R+) are normally
solvable with the index k = —1 and the partial (left-hand and right-hand) indices
K1 = =1 Ky =0
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2) for these problems there exist unique values of z} for which the systems of
equations (4.5), (4.6) have (unique) solutions Z(\) in the spaces Wf,’,f‘)'g(R+) C

L2*P(R+).

Let us note that the systems of the integral equations in these cases can not
be solved by applying numerical methods directly to the systems, as it has been
stated in Theorem 1. To remedy this, the systems should be regularized (see
[3, 9, 18]). Then the systems obtained will have unique solutions for arbitrary
right-hand sides (for any values of z}). Thus, solving the regularized systems for
the right-hand sides corresponding to the individual vector-functions G}, and G2
the unique values of z} can be found from the conditions (2.11) and relations
(4.4). For these values of 2} the right-hand sides of the equations belong to
kernels of the corresponding conjugate operators.

THEOREM 3. Let 1< p< oo, 0<a< v, B< Vo, B—a >0, meN, then

1) the operators Bz(1,1,1), Bz(1,2,1) in the spaces L’z”a'ﬁ(R+) are normally
solvable with the index x = 1 and the partial (left-hand and right-hand) indices are
ki=1 k3=0;

2) for these problems there exist unique nontrivial solutions Zy of the homogene-
ous systems (4.5), (4.6) which belong to any spaces W‘ a # (R4 :

Py, 3
ZO € ﬂ w(:rl)Z(R+
p,a,B

The asymptotics of the solutions from the Theorems 2-3 can be obtained
analogously to [12]. Note that nontrivial solutions of homogeneous boundary
value problems which can be constructed from the nontrivial solutions of the
corresponding homogeneous systems of the integral equations (Theorem 3) do
not belong to class LW({2). They tend to infinity (as In») when r — oo. Such
solutions play an important role in the asymptotic method theory (see [15]).

REMARK 4. For the symmetrical problem (1,1,1) the operator Bz(1,1,1) splits
into two scalar operators (Remark 2). Then, one of them has the index which is
equal to zero (see the values of partial indices) and for the corresponding singular
integral equation the Theorem 1 holds also true.

4.3. Investigation of the degenerate problems

Now we consider the operators 5 2)(;7‘“,;7‘.2) (7% = 1,2) which are not
normally solvable in the spaces Ly J(lI-h) (the symbols are degenerate at infin-
ity). They can be presented in the form:

BOIT*,T,2) = BP + Q+ K.
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Here P, Q are complementary projectors (P + Q = [) of multiplying by the
characteristic functions of the sets (0,1) and (1, o), respectively. The opera-
tors B, are isometrically equivalent to the Wiener-Hopf integral operators in

the classical spaces L5(R) with the symbols B(,?)(a —-it,J%,7°,2), but K are
compact operators. We shall “normalize” the corresponding systems of integral
equations following for the theory developed in [18]. First of all let us note, that

the matrix-functions Bg,z)(a —it, J*,J~,2) can be represented depending on the
value t_ = Ft; (see Lemma) in the following manner:

| ) t+i)"1 0 1 0
BP(a-it,T*,J ,2)=Az(i)(( OI) 1)(:ti 1)’

where the matrix-functions A;(¢) are not degenerate at infinity.
Let us consider the operators:

DP+Q 0 PGP +Q 0
4.11 D= , g={"" ,
11) ( +iP 1) 7 ( FiPGIP 1)

in the spaces Lz”'“‘B(R+), where the scalar operators Dy, G, are of the form

A
[P1u](A) = i!%u@)df, [Giu](\) = i [[1 — 0% s(M)]u(X) - ,\u'(A)].

By u’ we denote the distributional derivative of a function v € L»*“#(R,), but
functions connected with the weight of the spaces are defined as follows:

A% 0< A<,
eas(A) = {Aﬁ, 1< A< oc;
Aob (A [a, 0<A<,
0a,6(A) B 1z Xz,

Introduce spaces f,z“"ﬁ(R+) = G(LQ‘”‘KJ(RWL)), Lﬁ‘“”j(R+) C @'O"ﬂ(ﬂh).
One can directly verify that the relations are true: ¢ D = [, DG = I, and the
spaces Ly™#(R ) with the norm:

[l

(4.12)
0552 =

= || D]l

L]

TP.a,B p.a,B
L2 l.2

become the Banach spaces.
. P T P, P, 0
Represent the initial operators By’ (7%, 7~,2) from L7 (R4 ) to Ly*"(R )
in the form:

BT, T7,2) =BT+, 77,2p, BT, T7,2)= AP+ Q+K..
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Here the operators A; = Ay(J*,J~,2) are isometrically equivalent to the
Wiener - Hopf operators with the symbols A;(t). Besides, we can prove that the
operators K.: Lg'“'ﬁ R4) — Lg’“'ﬁ (R4) are also compact. By investigating the
symbols of the operators E()lz)(j+, J~,2) it is found that they are normally solv-
able in the spaces Ly*?(R,) with the indices x(.7*,J~,2) and partial indices
Ki,Kp:

k(1,1,2) = 0, K1 =Ky =0 0 < |a| < min{p(1,1,2),v(1,1)};
K(j+,J",2)=:t], k1 =0, Ky = %1, b i >1,

depending on the value 0 < +a < min{v.(J*,77,2),ve(T ¥, T 7)}.

Now we can solve the normalized systems of equations:

Bt 7,9V =6,

instead of systems (4.5). Theorems which are similar to those proved above can
be formulated for these systems. Then relation (3.7) is the usual condition of
solvability of the corresponding boundary value problems. Recall that G(z)
wm{’,mg and consequently, the solutions Y belong to spaces W (1) 5 S(Ry), at
least. Then the solutions Y = GY of the initial systems (4.5) belong to the spaces
L*?(R4) € L2*P(R,), because the operators G : W"”i')g(Rﬂg) — WEE 1)2(IR+)
are bounded for any m € N. Consequently, condition (4.7) has been satisfied.

Taking into account the volume of the paper we shall not present here the
integral form of the operators Z»"()?)(jj*,j‘j)/\',, and the analytic structure of
the spaces Lg'a’ﬁ(RJr).

The remaining degenerate operators Bg?’(j*, J~,2) (J* = 1,2) will be in-
vestigated in the Hilbert spaces L%‘”’ﬁ(R,L). To this end we apply the method of
solution of ill-posed (incorrect) problems [19]. Consider the Tikhonov functional

(a > 0):
(4.13) FY,GP) = 15PY ~ Gl + @Yz

Let Y, be the minimal element of the functional 7, in the spdce L2 = /}(R+) with
the parameters —v.(J7,77,2) < a < 0, a < 3, f < veo(T*,T7). As it has
been shown above, the equation me (.(3) can have a unique solution only in
the mentioned spaces. Consequently, Y, — Y weakly when a — 0 (see [19]). The
minimal element Y, of the functional F, for any a« > 0 can be calculated by any
standard variational methods [8]. Moreover, we can also write Euler equation for

this functional:
1
(4.14) [A3Y.](A) =

———[BGP(\
a+ f}z(,\) JO),
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where B* is the formal operator conjugate to the operator Bg?):

[ w©
w(})

[B*u](Y) = Sr(Mu()) + KON (e, 0)  u(e) de,
w(A) = 024-125-1(A),

[Asu](h) = u() + [ @, () ds,
0

-1 3)(eyp ) w(§) 3) 3
Q0. = s ORP OV, O+ 2 1 R P (#0e
“((i))fr PR “’({)(\If”’(t,A))T\Il(3)(t,§)dt}.

Here the functions fy (A), 1\'9)(,\), 0a.5()\) are defined in (4.6), (4.12).
Basing on the results of [10], it can be shown that the symbol of the operator
Aj in the space Lg'“‘ﬂ(RJ is of the form (sece Remark 3):

~1(g -1 YT !
SymbA3|17p.a,;s =I+a (q)_ (a + 1.1)) b (a - at),

and for a = 0 it is the real matrix-function. Moreover, its determinant is the
even real function which is not equal to zero along R. Consequently, the index
of the operator Az is equal to zero for any |a| < 1. Further note that for
a = 0 the symbol of the operator is the Hermitian matrix-function (the transposed
matrix-function is equal to the complex conjugate one). Then, taking into account
the fact that the symbol is the definite matrix-function in the point ¢t = 0 (or at
infinity), we can conclude that it is definite in any point (see the corresponding
theorem from [4]). Hence, for the system of equations (4.14) all partial (left-hand
and right-hand) indices are equal to zero and the Theorem 1 holds true. Note
only that the value of the first zero of the determinant of the operator symbol
vy = vg(a) depends essentially on the value of a > 0. Besides, we should choose
only negative value of o; then the convergence of the solution Y, to the solution
of system (4.6) has been justified.

So, the systems of integral equations (4.5), (4.6) which are obtained under the
assumption 7 = 0 have been investigated for all problems (7+,7,7) (7% =
1,2, J = 1,2,3) and for all values of the parameters 74 > 0. The values of the
unknown parameters y..(= min{y1,92}), & = 0, 70, u.(= v4) of class LW({2)
have been obtained (see the Theorems, a priori assumptions (4.7) and relations
(4.3), (4.4)). Besides, the relation between the values of the parameters vy, 7, are
given in Corollary A.1 [12].
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5. Analysis of the system of functional-difference equations (3.9) in the case
>0

It is easy to prove by contradiction that the terms of systems (3.9) can not
have any pole, the real part of which lies between 0 and 7., and, consequently,
70 > 1. Consider the equivalent systems

5.1 S (S)Y + Z)(s) = i r®IN()Z(s — 1) + Z(s) + D (s)F(s)

in the strip 0 < Rs < min{v, 7o }. Taking into account the results of the Lemma
and a priori estimates for the vector-functions [Y + Z](s), Z(s) (see arguments
before (4.2)), one can easily see that the vector-function Z(s — 1) can only have
a simple pole in the point s = 0, and for some 6 > 0

0
(5.2) Z(\) = x~? ( . ) +0(M\17%), A— .
£
Here the constant z* is defined for some of the problems as follows:
0, ;,7i=1y =11213’
63 == S ’
unknown, % i 3 J=1,2,3.

For the remaining problems 7* 7~ > 1, 7 = 1,2, 3, this constant will be calcu-
lated below from an additional condition.
Introduce a vector-function Z.(A) by the relation:

(5.4) Z.0\) = Z()) - 1+;A\2 (?) .

Note that the inverse Fourier transformation of Z.(A) is of the form:

+

FUZ) (1) = (;t((?l))) Fe ( - sign )

1z sign(zy)

where the functions z+(z,), 2_(z1) and the constants =], 27 are defined in (3.4),
(3.6), (5.3). Using a priori estimates of the solutions belonging to the class L W(£2),
and properties of the Mellin and Fourier transforms, we can obtain the values of
the parameters from the definition of L W(2):

(5.5) Vi = Us — 27‘/11()\)([/\ —xr{zt ¥27),
0

where the value of u, is given by (4.4), but the integral of the first component of
the vector-function Z (or Z.) is bounded in view of (5.2).
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Rewrite the systems of equations (5.1) as follows:
(56) DTN+ Z(s) = @I (9)Zu(s — 1) + Zu(s) + Fy(s).

Here the vector-function

— HTrz, - £ X 0
Fy(s) = 27U (FE) + 35 mom® 1(“)( ) W(l)

tends to zero at infinity, but systems (5.6) are true in the strip —¢é < Rs <
min{Ve, Yoo }- Note that F3,(s) = Fi(s) + 2 Fa(s) + 27F3(s), in general. Be-
sides, the vector-functions multiplied by the unknown constants z}, 2] are always
bounded in the zero point.

Now we can reduce the systems of functional-difference equations (5.6) to
systems of singular integral equations. The way to do that essentially depends on
the behaviour of the matrix-function ®'(s) at infinity. Using the Lemma, let us
rewrite the systems for the first case (t+ = t_ = 0) in the form:

[x+1+ X-Etg(rs/2) + Bo.()I[Y(s) + Z(s) — juZu(s — 1)] = Zu(s) + F3(s).
Then, applying the inverse Mellin transform, we obtain

67 D+ 2=z ~ 2]

2y Ad
X E/[Y+Z—;¢1T£Z](§) ‘E

+ [¥OQO +Z - mirZ.] ©) dg
0

1 100 )
= / Fy(s)\° ds,

—100

where

vy ) = 'Z:T 7@.,.(3) (g) ds

—100

It remains to leave in systems (5.7) only one of the unknown vector-functions
using relations (3.5), (5.4) between Y(A), Z()), Z.()). For the exterior boundary
conditions along I, of the first and the third type (7 = 1,3 see (2.9)), it is
convenient to leave the vector-function Xz(\) = Z.(A)(1 + A). This is because
the matrix-functions belonging to the kernels of the obtained operators (which
are different from the homogeneous matrix-functions of the degree — 1) should
be bounded at zero and infinity. The corresponding systems of integral equations
are of the form:

(5.8) ¢TI, T, NXz=0Q%, T=13, Jt=1,2,
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where
[€Pu]()) = u(\) + ] LY, T, e)u(e) de
0

A dE

2 E[L“’(A OO

(I + D[+ M) — €]

LPo,6 = ,
2/ (48 A+ O)x+(Q + g AMH(A) — pu7A) — 1]
- 2Z2A(1+ mAM,) /0
HZ—flz-i' 1+ 22 (1),

) 1+ A
A) =
LAY X+ + mAM,(A) = pyrA) -1

x (51— j N (s)Fy(s) ds — [Q%"H;](A)) :

—100

[C§u]() = x+u(d) + / WO, Qu)de — 2B ] O3

However, when we deal with the problem (7%, .77,2), systems (5.8) are not
suitable, because in this case the function M,(\) = O(A~2) as A — 0, and con-
sequently the corresponding integral operators are not bounded in the spaces
L>*#(R ) under consideration. For these problems the method of reducing the
systems of functional-difference equations (5.1) to systems of integral equations
should be similar, but slightly different.

Namely, from (3.8) and (5.2) it follows that

(5.9) Y(\) = -2~} (ZQ ) +0( 1%, Ao

Then denote " /\ "

and rewrite systems (5.1) in the strip —6 < Rs < min{rs, 7o} in an equivalent
form:

(5.10) &7 (s) [V + Z| (5) = r® T ($)Z(s — 1) + Z(s) + Fy (),

Here the vector-function

Fi(s) = TP () + oo @) (1)
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is analytic in the mentioned strip in view of the Lemma and tends to zero at
infinity.

Repeating the former line of reasoning we are led to systems of integral equa-
tions with respect to vector-function Xy (A) = Y.(A\)(1 + A):

(5.11) eI, T Xy =QY,  T7=23, J*=12,

where

a1 = u) + [ 190, OFO0, u(©) de
0

~2xE ] PO O 57
(14 001+ (M) — 701,
(T + OO0+ GuAMLE) T = (007 - GaXdL,() )
1+A
X+ AR, ()T = 7L, 00) T = Gu A, ()

LY, 8 =

Q) =

% (,,im f N®I (s)F5 (s) ds — [CSVHY (M) + 11;,(,\)) :

—100

= z: O
Hy = Hy (14 A2)M,(N) (]) '

For the second case ({4+ > 0, t_ = +t,), the systems of integral equations are
analogously obtained, because the behaviour of the matrix-function at infinity is
similar to that in the first case (t4 = 0). Then the corresponding operators and
systems of integral equations can be obtained from (5.8), (5.11) by replacing the
upper indices 1 with 2, and the constants y+, y_ with the constants (2e4)~!,
F(2wy )™, respectively.

In the third case (t4+ > 0, 12 # t%), the procedures of reducing the systems
(5.1) to systems of integral equations are the same as in proving (4.6), (5.8) and
(5.11). The corresponding systems are of the form:

Cgs)(j+’j-7 j)xz = Q('3)1 '«7 = lv3a ji = 1,2;

(5.12)
T, T TRy = QY J=323 Jt=1%

where

[CuI() = gz (MDu()) + j LT, e)u(e) de,
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1
gZ()‘) = _+—/\a

1

) = LA Ty

Gy — 1+ m€M(§) — té
LZ (E) - 1 Z_E )
Gy 1+ (€M) = 1(My(E)~!
LY (E) = - £ 1+£ . y
| 100 100
QP = —5 [ ¥R + [ FO0 O3 e,

—t00 0

QP = — 27rz ] NS (s)FS (s) ds + f WO, )13 (€) dE — T (N).

—100

Here the matrix-function W®)()\, £) and the vector-functions Hz(A\), Hy ()\) have
been previously defined.
Basing on the results presented in [2, 10, 11] one can show that the obtained

operators C(ZJ()},)(J+ s J=,TJ) (G = 1,2,3) for all of the problems (7*,7~,.7) are
bounded in the spaces Lg'o"ﬁ(R+) with the parameters —vo (77, T )< a < <
Voo (T*,T7), 1 < p < o0. As before, the right-hand sides of the corresponding
systems of integral equations belong to the spaces Wf;f)'g(RJr) for any m € N.
All these systems of integral equations are of the second kind, but the operators
C(B)(j*' JT) (T =1,3), C(3)(J+,J_,3) are degenerate to the first kind at

infinity, and the operators Cf)(j*, J~,2) are degenerate at zero and at infinity.
Note that the vector-functions Xz(y)(A) should belong to the spaces:

Xy € LB*VA(R,), Xz e L3**(Ry,),

(5.13)
-1 < a; <0, 0<p<é,

for arbitrary p € [1,00) and some § > 0, in view of a priori estimates (5.2), (5.9)
for the vector-functions Z(\) and Y(\) and the choice of Z.(\) and Y.(\).

REMARK 5. By assuming 27 = 0 in the systems obtained in this section, one
can equivalently investigate all these systems in the spaces (5.13), however with
the negative values of 3 (-6 < § < 0) only.

Using the results from [10] we can write the symbols szj()),)(t,é?,j+,j‘,j)

(t € R, 8 = +1) of the nondegenerate operators C(Zj()y)(f/'*,j“,j) G =1,2),
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which are represented in the form C = AP + BQ + K.

cP(t,6,7%,77,1) = [1- & '(a - it)] 1+9+¢ @ — it)] 0
(5.18) €Y, \t,8,7%,97,3) = [I— (1 - “—‘) ® (o - u)] L
Hn+1
+d>,“(ﬁ—z‘t)1 =8
1-6

cﬁi’a,a,y*,y-,z) =& a- it)l ol +®7 13-

"Note that the symbols of the operators C(72()) )(.7 *+,77,J) in the spaces L3

(R.) are degenerate for any values of 3 (det (3 —it) tends to zero as t — o).
Hence we can directly investigate the operators C% (I, T~,T) only. Thus the
indices and the partial indices of the operators ('9()} y(J*,TJ~,T) in the spaces

L.’z"“'ﬁ(R+) for some |a| < a., |3| < B. are calculated as follows:

signa; (s =signa, s =0), TN =1,

(e, B, T, T, 1) =4 signa—signf; (k1 = signa, n = —signf), J*J~ =2,
—sign/j; (k1 = 0,k = —signf3), TtT- =4

U; (51,52 = 0), Jr*I =1,

: + 7- 9y =

Alesbud T2} {signa—sigr1/3; (k1 = 0, Ky = signa—signg), J*J~ >1;
0; (h‘l,h'2=0) j+7_=1

5, T T 3) = { —signf3; (k1 =0, Kk = —sign3), J*T- > 1.

After ehminatmg, when the occasion requires, the index and the partial indices
of the operators Cd(),)(j’r,J“‘,J) (and the constituent operators A, B) by the
methods presented in [18], we can solve the corresponding systems of equations
. 8), (5.11). The unknown constants z}, z* (if they are presented in the respect-
ive systems) are obtained from the conditions of solvability of the systems. For
example, if the parameters «, 3 of the spaces L;"“‘ﬁ(llh) satisfy the conditions
a < 0 < g (see (5.13)), then we have r(a,3,1,1,1) = =1 (k) = —1,k3 = 0),
and the corresponding system contains the unknown constant =% only. But in the
problem (1,2,1) x(e, 3,1,2,1) = =2 (k] = k2 = —1) and two constants z%, z* are
presented. However, if we choose the values of the space parameters in a different
way: a < 0,4 < 0, then for the mentioned problem (1,2,1) s(a,3,1,2,1) =
(k1 = —1,k2 = 1) and there is only one constant 27 (see Remark 5) in the
corresponding system.
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5.1. Investigation of the degenerate problems

The degenerate systems with the operators C(Zz()y)(j*,j‘,J) and Cg()y)

(7*,TJ~,J)can be analogously transformed, and investigated as it has been done
in the previous section for the operators b‘g,z)(jﬂj‘,?.) and b’g?)(j“,j‘,Z).
But we shall investigate them in a different way.

Namely, return to systems of functional-difference equations (5.1) and de-
note by Zy(A) a new vector-function, using the relation similar to (5.4) with the
constant zj:

_ A 0)
(515 Zo(\) = Z(3) ——“(1“2)2(1 ,
such that the additional condition

0,1)Zy(-1)=0, J*J- =1, J=123,
(0,1)Zy0) =0, J*7->1, JT=1.23,

™

% {unknmyn, JrF= =1,
07 | -4r~16(0), J*JT >1,

(5.16)

is true for the problems (7 *, .7, 7). Here f,(s) is the second component of the

vector ®7'(s)F(s). In the case 7+, 7~ = 1 the unknown constant zg will be
calculated below. Note that the vector-functions Zg(A) and Z(A) are of a similar
behaviour (see (5.2)). It means that the systems:

(5.17) S (S)Y + ZI(s) = ir P () Zo(s — 1) + Zo(s) + Fo(s)
are true in the strip 0 < s < min{r.,, 7.}, in general, but the vector-function
= &) F(s JITTZS - 4 : 0) zg (1 + s) (0)
Rols) = B IFG) + g sy Be (3 (1 T dcos(rs/2) \ 1

is analytic in the strip |%s| < v, and its second component is equal to zero when
s = 0 for the problems (7*,7~,7) (7*J~ > 1) in view of (5.15).
Now introduce a new vector-function V() by the relation:
Zo(s) = Rj3()V(s),
s (1 0
R3i(s) = I'(s + l)cos? (0 x;_.(s)) 3
1/ T(s+ l)cos? +I'(s + 1)cos?1‘k(s)
(5.18)  Ryu(s) = 5 )
2
1 Fai(s)
1 0
R1) = (0 1)
—tg(rs/2), k=1 J*T =1,
z(s) =
ctg(rsf2), k=2 J*T >1,
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where choice of j = 1,2,3 depends on the behaviour of the matrix-function
&7 !(s) at infinity (see Lemma). Besides, in the case j = 2 the sign is defined
from relation t_ = Fti. The value of £ (k = 1,2) depends in turn on the
behaviour of ®_(s) in zero point (see Lemma).

One can see that the vector-function V(s) has no poles in points s = 0 and
s = —1 in view of (5.2) and (5.16). Consequently one can assume that

(5.19) Ve L2’ (Ry), -mi<a<0, 0<pf<1+4é

Besides, for the problems (7*,7~,7) (J*J7~ = 1 what is equivalent to k = 1,
see (5.18)) the additional condition should be satisfied to calculate the unknown
constant zj:

(5200 ((-1y*''-1,2V0)=0, J*T- =1, T=1,23 j=1,23.
From (5.18) one can obtain the relations between the vector-functions Zy and V:

(5:21) Zo(A) = [R;xVI(A),

(T 0 (B I =(B 0
Rl'k—(O Sk)’ Rz'k‘—(i'fz,k ?Sk)’ Rs'k_(o TM)’

where [ is the unity operator, but the other scalar integral operators are defined
as follows:

2 Oo/\u(f)(lf
= ) 2\

[S1u]()) = [Sau](N) =

oo

62) BN = 2 [sn/0u©F [l = 2 [eoshOuOF
0

0
(Baul) = 75 [ [Si0/€)cos(h/€) + ci (/€)sinA /€] u©) g
0

Here the singular integral operators Sy, 22, 73 : LP*A(R,) — LP*#(R.) and

S, Iy ¢ fp'a‘ﬁ(R_) — LP*A(R,) are bounded. But fp'a'ﬁ(R.) C LrP(R.) is

the set of functions from L7*#(IR.) which satisfy the respective condition (5.20).
Revwrite the systems (5.17) in an equivalent form:

(5.23)  Njk()Y + Z)(s) = s M, .(s)V(s — 1) + V(s) + Rj 1 (s)F% (),
in the strip —é < Ns < min{ve0, Yoo} for some value 6 > 0. Here we denote

(5 24) vak(s) = Rj'k(s)@:l(s) = N_(T-I)(.S) + N_(j,zz(s),
M, i(s) = Riu()®I (DR 1 (s - 1) = MY + MOs).
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Note that the matrix-functions of these representations satisfy the estimates
(zt) = oft~1/2), M(z)(zt) = o(t™1) as t — oo, but

Mgy = [ X+ x—tg(WS/Z)) M(1>=(X+ —x-)
o= (X Xhms) M= (50 ),

My L (0 0 ) m_ 1 (m 0).
N W) = 5 (1 rigrs/2)) M2 T o\ 0 2umty )

. 1 t —t
N(l) = O, M(l) = ——s = ( + —') .
3 ) PomE -2yt

Then substituting (5.23) in systems (5.20), and applying the inverse Mellin
transform, we obtain the systems of integral equations:

525) WY+ 2))00) + VY + )0
= [14 mrAMIVQ) + i r[MEUEVENIN) + Go(V),

where the operators N(l) N(z) are defined analogously to M(z):
2 2 2 26t
MPu]()) = ] MO /oue)de/e, M) = j M@ (s)t* ds,
Do x+I x-S ) An o 1 (0 0 ) VD =g
Nl( (—X—f -x+81/" Ny 2me \L FS1)° 3 '

Substituting then in (5.25) the vector-functions Z, Y from relations (3.5), (5.15)
and (5.21), and taking into account the fact that the matrix-function K;(\) =
(14 M)[1 4 p17AM;]~ ! is nondegenerate in R, we obtain the systems of integral
equations for the new vector-function V.(A) = (1 + A\)V(A):

(5.26) [T, T, IV = Hjx(), J¥=12 J=13,
where the operators £U)(J7*, 7, 7) and the vector-functions H; ;. are:
[EOT*, T, TR = V() + K; () (MOt + 97v.)] ()
—K;O) [(V + N2 (11 + M ©IR, (1 + 07 V.(0)(©) ] V),

Hx(\) = K ([ + A ‘”)m]@\)— Go(V)),

rog = e+ IR (7).

Go(A) = % / R; 4 (s)F% (s)M° ds.

—1i00
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These equations can not be used in the case when the gradients of the solution
are prescribed along the most external boundary I, (7 = 2) (with respect to the
layered part of the domain).

Solutions of equations (5.26) are sought in the spaces (see (5.19)):

(5.27) V.e LZ*AR,), -m<a<0, 0<fB<§;

besides, for the case k = 1 (conditions of the first kind 7% = 1 are given along
the external boundaries with respect to the wedges), the additional condition
(5.20) should be true. Basing on the results known from [10], the symbols of the
operators £U)(J*, 7, ) from (5.26) can be calculated:

1-46
2

. -1
Symb EO(T*, T, 1), ,(,0) = (MS?) " M,x(8 - it)
2

. ql1+0
+ [[= Nji(a — it)R] }(a — it)] —

(5.28) 1-6

2

Symb DT+, 77,3 (1.0) = (MP) 7 Mx( it
2

+ [I - (1 — -ﬁl-) N; (o — il)R;i_(a - t!)] 1_;9 s

Hn+1

where the matrix-functions R; x(s), N; x(s), M; x(s) are defined in (5.18), (5.24).
As it follows from (5.24), the symbols of operators £U)(7*,7-,J) are not
degenerate for the values of j = 2.3, in contrast to the symbols of operat-
ors CON7*,7-,7) from (5.14). Moreover, one can see that the identities:
det [I—yN; x()R; 4 (s)] = det [I-y®['(s)], det M, 4(s) = —(sctg(rs/2)) 'z} (s)
det ®_'(s) are true for any y € R. Then the indices and pair indices of the corre-
sponding operators £@(J*, 7~,.7) in the spaces L2 (R ) can be calculated:

signa — signf3; (k1 = signa, x; = —signB), JtJ- =1,

i, B, T T 1) = signa; (%1 = signa, Ky = 0), J*F- =2,
4 (k1 = £y =0), TJYT- =4

. 4 - _ —Sigﬂﬁ; (Hl = 07 Ky = _Signﬂ)’ j+j— = 1,

h(ayﬁaj ,j »3)_{ 0, ('L;’l=’{2=0), j+‘7—>1'

So, for the values of the parameters a < 0, 5 > 0 as in (5.27), the indices
and the partial indices of the operators are equal to zero or negative. In the
last case there exists exactly || unknown parameters (zj or (and) z2}) which
are found from the additional condition (5.20) and the corresponding condition
(2.11) together with (5.5). Note here, that only one of the conditions (2.11) is
independent, when both external boundary conditions along the wedge surfaces
are of the first type (7+ = J~ = 1), because 27 = 0 in (5.5) for this case.
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The remaining problems (7*,.7~,2) for the second and the third combina-
tions of the parameters 7+ ( = 2, 3, see Lemma), which have not been considered
as yet, can be investigated on the basis of systems (5.11), (5.12). The correspond-
ing degenerate operators C?(7%,7-,2), C3)(7*, 7~,2) could be analyzed sim-
ilarly to operators B® (7+, 7-, 2) and B®)(7*,7,2) in Sec.4.

Finally, the systems of integral equations (5.11), (5.12), (5.26) obtained under
the general assumption 7 > 0 have been investigated for all problems (7%, 7, .7)
(J7* =1,2, 7 =1,2,3) and for all values of the parameters 74 > 0. The values
of parameters wu., v+ of the class LW(£2) have been found (see (5.5)), 70 = 1,
k = 1, but the value of 4., = min{y;,72} is calculated from the symbols of the
corresponding operators (as in the theorems presented in the previous section).

6. Conclusions

We have considered all different combinations of the external boundary con-
ditions, and values of the parameters 7, 7+ > 0 determining the interfacial condi-
tions near the wedge tip. As it could be expected, the singularity of gradu near the
wedge tip depends essentially on the models of the interface. Thus, if the model of

interface is of the form: ([u] > TTiﬂ%) =0, [ O,ﬂ
|l"t ‘ 'y

#0

to the adhesive region represented by two thin wedges only), the main exponent
of the singularity is in the interval (—1,0). It has the value close to that of the
case of an “ideal” bimaterial contact for small values of the normed parameters
py Ty uf it Besides, there is a second exponent in the interval (-1,0), which
has the value near zero. Nevertheless, the corresponding term of the asymptotic
expression should be also taken into account in the process of fracture mechanics
analysis.

When the geometry of the adhesive is assumed to be of the general form
au] & ([ fi= o ) Ou)
[Lan |rt = U, Uj —\T7+ T jtan

= 0 (corresponding

=0, (r,7+ > 0) or in the case of a

r

thin layer only (where 7 > 0, 7. = 0), igrad u increases in the neighbourhood
of the wedge tip as Inr inside the domains 2 only. But inside the domains 24,
the value of gradu is bounded as well as the normal derivative du/dn along the
interface.

Note that the cases, when at least one of the parameters 7, T4 is negative, are
not considered in this paper. Such situations appear on the declining segment of
curve ¢ — o and are often connected with a loss of stability of bodies in contact.

Let us remark that all the used functions M, (X), mE(X), M,(s), M,(s) can
be effectively calculated by the recurrence formulae presented in Appendix A
[12], and the asymptotics of these functions have been analytically obtained.
Moreover, an effective way of finding the complex zeros of determinants of the
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matrix-functions €.(s) (and the symbols of the singular integral operators) has
been proposed in [1].

In Appendix it is shown that the method developed makes it possible to solve
not only Poisson’s equations but also the equations of second order of a general
form. It is only necessary that the method of integral (Fourier and Mellin) trans-
forms could be applied to these equations. Hence, the results of [12] and this
paper completely solve such problems under arbitrary boundary conditions.

Appendix

Consider similar problems for the following equations:

O%u; 0 0
i—— ¥ — iUy = =Wy, i 05
v a:c% 31‘2” al_zu (z1,22) € 12

a@+a+a+

+ _ 7 i

(A.l) ’UJ- -TET a.: ﬂi)ﬁ“-f -O—HUJ = —”j+ ) (1,6) &€ Q:- ’
_ 0 Jdug a _0 _ _ -

oo t gt g = Wi, WO ER,

instead of the equations (2.1). Here v;, p; = vy, pi(2), vi, puf = v, ¥ (0), are
known bounded positive functions. Without any loss of generality we can assume
that:

(Az) vi, ﬂiecz(yi—lvyi)v U;vﬂjecz(gf—lagf)a U;,/l; ecz(g;_]!elz),

and they can be extended to closed intervals.

All external and internal boundary conditions are prescribed in (2.2)-(2.9).
Such problems can be solved by using the mentioned method. We shall find in
this Appendix only the necessary conditions which make it possible to use the
formulae given in [12] (Appendix A) in order to obtain the equations similar
to (3.1).

Applying the Fourier and Mellin transforms in the corresponding regions we
obtain:

-2, + s e T = -Wi, AeR, z2€(%i-1,%)
& .0, — "
(A3) ofPa) + ot oouf = WS, 0<Rs<m, 8e(@f1,0)),
- B oo o -
v s2Ug + + gtk ggte = ~Wi, 0<Rs<yi, 0€(04,07)

Let pE()\, z2), qji(s,ﬂ), ri(s,0) be the linear independent solutions of the
corresponding homogeneous equations (A.3). Besides, these functions can be
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chosen so that they will be even functions with respect to the new variables (),
and s). Consider in details the solutions of the first equations.

From the VKB method [5] the behaviour of the functions p¥ (), z,) for large
values of the parameter A can be justified:

1
Vvi(z2)pi(z2)

, [NEGY . .
exp il)\|y.{l ol troa]. Ase,

uniformly with respect to z; € [y;—1, v:]. These solutions can be found, for exam-
ple, from the following initial (Cauchy) conditions:

(A4) pjt (A, z2) =

BE()) 0 _ (o
+ by . i = [ ]
p; ( !yi) W [3/1 4 ( Yt ) 4 U ,ll :t| ! i 41’1#:

where y+ = yi—1, y- = yi, but

BXf(\) =1, B (\)=exp|-|) / */::8(15

We can also obtain asymptotic expansions of these functions for small values of A:

BEQ) 1 g Gt
Yo 'Y+ ! 4o

J-'z
v
: +00?), A — 0.
FIA |\/H y& ﬂ({) (\%)

Consequently, the functions p (), z;) are absolutely continuous near points
(0, z;), and are sufficiently smooth in any other points (), z;) from the corre-
sponding region (|A| € Ry, =3 € [yi—1, ui])-

Now, we can write the solutions @;(\, z3) of the first equations (A.1):

(AS) (’\’ 2)

(A6) @\, z2) = Aypl (N z2) + ApT (A, 22)

pr (A OWI(A, )
(OWEFp)A6)

i) / = pi A OWi(A )

€ — p7 (A, 3 s
E—pi(\z {(OWF,p7)A ) :

y'
_p|+ ()‘a 272)/

where W(p}, p;)(A, z2) is the corresponding Wronskian.
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Following [12], denote functions

i 90 _ i -
p:(A) = Hi gy il ui(A) = u,
(A7) 9
p;,(,\) = /,l.,'-a-—:;—z-ﬁ,'|r'_l, u;,(/\) = ﬁi'ﬂ'_;’ 1=1,2,...,n.

Then, substituting (A.6) in (A.7), and eliminating the constants Ay from these
equations, we obtain the relations between functions u) and Piv) in the form:

wo () -meo () () o= (i )

where coefficients are calculated from the equations

J
u'. /"L!—pn_(/\syl) 0
(uzo) = [ren] o 0 9 S\ yie1)
b0 Him—P; (A Y1
Dy

(Pf(f\,u) 0 )]([j)
0 P\ viz1) L)’

v
. PEOL O, €)
Ly = / HOWEF, 2 )0
WP im1)
1D\
DO, yi_1, v:)

(A9)  Ri(N) = -

() = bl

O @)D

; DO, yi, yi1)

() = - IRl
pi(u)) DY (V)

wiyi1)) D)

Finally, the functions D()(\, a,b), D{()) are expressed in terms of the solutions
+
P; (Aa IZ):

DO a,b) = p:(,\,a)a_f’_,,;u,b) — 7 O )5 pT ),
T2

i a _ 0
Dy'(Y) = —p,( i 1)0 PEOV W) = b7 O si1) - O ).
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Hence, we can use all the results of Appendix A [12] in order to obtain
the functions M,(\), m*()) in the first relation of (3.1). For some functions
vi(z2), pi(z2), the mentioned solutions pE (), z;) can be calculated exactly (see
for example [17]). Anyway, the functions pF (), z;), and consequently, all func-
tions from (A.8) as well M,(\), m(A) can be numerically calculated. Moreover,
their asymptotics at the zero and infinity points with respect to the variable ),
which play an important role in the process of investigation of the systems of
functional-difference equations, can be analytically determined.

R)= — (i (9] =172 _2Br ([oiyet)] 2

AL\ 2B7 (Vi (w1712 ~[vipi(yi-1)1 12

o) ae

s upg = oA TIBT (V) A — oo
-1

Yi I _
R,()) = % / vi(€) dé (1 1) +0(1), A—0,

-1
Yi—1
-1
) ) 1 Yi U — _1
ulg, ujo(N) = 13 / vil€)de [ V.0, €) dé + O (I_AI> A= 0.
Yi—1 Yi—1

In conclusion let us note that we can always obtain the solutions p,.i()\, z7) sat-
isfying the relations (A.S), and belonging to the class C**(R x (y;_1, y;)) by correct-
ing the Cauchy data (A.4). But this makes no sense, because the matrix-function
R;()) has always the singularity in zero point, and does not depend on the choice
of the solutions pE (A, ).

In the wedge regions the relations similar to (A.8) between Mellin transfor-
mations of the solution and the tractions are constructed in a similar manner. To
this end it is sufficient to replace the corresponding functions v;(z;), p;(z2) by
vf(t?), ,uf(l?); to substitute new variable A = is; and to consider separately the
real and the imaginary parts of the solutions. The corresponding results will not
be presented here.
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Non-uniform extensional motions
of materially non-uniform simple solids

S. ZAHORSKI (WARSZAWA)

NON-UNIFORM EXTENSIONAL MOTIONS of materially non-uniform simple solids are considered in
greater detail. These motions may be useful as applied to quasi-elongational motions with tem-
perature and structure variations. In particular, the constitutive equations are discussed for steady
drawing processes of polymer fibres.

1. Introduction

IN OUR PREVIOUS PAPER [1] the results valid for uniform motions with constant
stretch history (MCSH) have been generalized to the case of non-uniform stag-
nant motions (NUSM) of materially non-uniform incompressible simple fluids.
The coresponding constitutive equations are very similar to those known for
MCSH.

In the present paper we discuss in greater detail the non-uniform extensional
motions (hereafter called NUEM) of materially non-uniform simple solids [2].
Such motions deserve more attention since in many practical situations met in
the rheology of polymers (drawing of fibres, non-uniform elongations, etc.), ther-
mal and structural effects as well as nonlinear viscoelastic properties are of major
importance (cf. [3]) and can be taken into account through the assumption of
the proper material non-uniformity. In solids, in contrast to fluids, the deforma-
tion energy cannot be neglected and may, through the corresponding dissipation
mechanisms, lead to temperature variations and, in consequence, to variable ma-
terial properties (cf. [3]).

In what follows the non-uniform extensional motions (NUEM) are defined
in general and steady-state cases. Next, the corresponding constitutive equations
are discussed for materially non-uniform simple locally isotropic solids.

2. Non-uniform extensional motion (NUEM)

Consider a class of isochoric motions for which the deformation gradient at
the current time ¢, relative to a configuration at time 0, is of the following diagonal
form:

A2 o0 0
(2.1) FoX,7)=| 0 Y2 0|, detFy=1,
0 0 A
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where the non-uniform stretch ratio A(X,t) depends on time t as well as on the
position X of a particle X in an arbitrarily chosen reference configuration Kk
(not necessarily at time 0). Thus, a non-uniformity of the quantities considered
can be expressed either by X or X, X = k(X'). Such a motion may be called the
non-uniform extensional motion (NUEM).

In general, we obtain the velocity gradient in the form:

" g § .
3% 0 0
2.2) L(X,t)= FXOF'X,0)=| o _12 g
2 A
A
| & 8 5
If, in particular, the gradient (2.1) can be presented in an exponential form:
23) Fo(X,7) = exp(rL(X)), L =L,

where 7 denotes any past time and the diagonal tensor L(X) depends only on the
position X, we arrive at the definition of steady NUEM.

From Eq.(2.3), the deformation gradient relative to a configuration at the
current time ¢ amounts to

(2.4) Fi(X,t) = Fo(X, 7)F; (X, 1) = exp(-sL(X)), r1=t-s,

leading to the following time-independent velocity gradient:

(1:)
(2.5) L,(X) = GTF(X,T)th = L(X).
Therefore, for steady NUEM we can write
1
W - L
2\ 0 0
0 0o Vv

where V/(X) formally denotes the z-component of the velocity gradient.
Equations (2.3) and (2.4) lead to the following expressions for the left Cauchy -
Green deformation tensor B and the history of right relative deformation tensor
C; (cf. [4]):
(2.7)  B(X,t) = Fo(X,1)F (X, 1) = exp({L(X) exp(tL7 (X)),
(2.8) {(X,s) = Cu(X,t — s) = FT(X,t — s)F(X,t — 5)
= exp(—sL” (X)) exp(-sL(X)),
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respectively. The above expressions can be simplified a little since the tensors
L(X) are diagonal by assumption.

3. Constitutive equations of materially non-uniform simple isotropic solids

According to our remarks, at the beginning we assume that a priori unknown
temperature and structure distributions lead to a material non-uniformity, i.e. to
the fact that all the functionals, functions and material constants depend on the
position X and vary from particle to particle or from place to place.

The general constitutive equations of materially non-uniform simple isotropic
solids (cf. [2, 4]) can be expressed as

(3.1) T(X, 1) = ?05 (Cix, s), B(X, 1), X) ,

where T is the non-uniform stress-tensor, H, denotes the non-uniform constitut-
ive functional depending on the reference configuration k and the tensors C}
and B have been defined by Eqs.(2.7) and (2.8). In the case of incompressible
materials, the stress tensor T should be replaced by the corresponding extra-stress
tensor Tg.

It can be proved that the constitutive equations (3.1) are in agreement with
the principles of determinism and local action. They also satisfy the principle
of objectivity (invariance with respect to the reference frame), if the group of
material isotropy (symmetry) is equivalent to the full orthogonal group (cf. [2,
4]). A non-uniform material may be considered to be globally isotropic if there
exists the configuration K at which its isotropy group is the same for all the
particles. In other words, in a globally isotropic non-uniform solid all possible
directions of deformation are equivalent while its material properties vary from
particle to particle.

For steady NUEM defined by Eq. (2.3), after introducing Egs. (2.7), (2.8) into
Eq.(3.1) and taking into account the properties of tensor exponentials, i.e.

3.2) expA = i :—'A",
n=0 "
we arrive at
(G3)  T(X,t)= j’jﬁx (exp(-2sL(X)), exp(2(L(X)), X) = A(L(X), B(X, 1), X),

where h denotes an isotropic function of the tensor arguments. In particular,
instead of L(X), the first Rivlin - Ericksen kinematic tensor A; = 2L can be used.
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Various reprtesentations of Eqgs. (3.3) can be constructed in the usual way. For
instance, we have

(3.4  TX,t) = a(L(X),X, Ip)1 + o; (L(X), X, Ig)B(X, 1)
+B(X, )3, (L(X), X, I5) + BX(X, t)B,(L(X), X, Ig) + az(L(X), X, I5)B*(X, ),

where the material (tensor) coefficients depend on the velocity gradient L(X),
the invariants of tensor B, and explicitly on the position X.

4. Application to steady non-uniform drawing of materially non-uniform polymer
fibres

In the case of drawing of solid polymer fibres (cf. [3]), we may assume that,
under a quasi-elongational approximation, the deformation gradient as well as
the velocity gradient are of the form (2.1) and (2.6), respectively, with

1% ) . A X )
(41) A—‘—/O, E—ln/\, V—T—XV—V,

where V(2) denotes the axial velocity depending on the spatial position z, and
the primes denote differentiation with respect to 2. The possibility of replacement
of the particle position X by its place in space x (or rather z) results from the
assumption that the motion considered is steady; then the reference configuration
can be chosen at the current time ¢.

Under the above assumption, Egs. (3.3) lead to the following stress difference:

(4.2) T3 T = o(V,V';2) = 01(\, X 2) = 0a(c, £;2).

Thus, in the case of non-uniform drawing of solid polymer fibres, the correspond-
ing elongational stress may depend at most on the velocity and its axial gradient
or on the strain and its time-derivative, respectively.

It is worth noting that the constitutive equations desribing drawing processes of
polymer fibres were also considered by CoLEmAN [S]. He proposed the particular
approximate form

(4.3) T = 7)) + BO)A? + 7 (V)N

where A is the stretch ratio. A simple comparison of the above equation with (4.2),
shows that our equation is pretty general since it admits arbitrary dependence
on A and ), and explicitly on z. Equation (4.3), however, shows a particular
dependence on A’ and moreover on \”.
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5. Conclusions

The concept of non-uniform extensional motions (NUEM) of materially non-
uniform simple locally isotropic solids leads, in the case of steady motions, to the
constitutive equations in a form of isotropic function of the deformation gradient
and the velocity gradient, depending explicitly on the position of a particle.

For drawing processes of solid polymer fibres, a simplified form of the consti-
tutive equations depending on the velocity, its axial gradient and the place along
the fibre axis may be very useful.
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Outlooks in Saint Venant theory
Part II. Torsional rigidity, shear-stress “and all that”
in the torsion of cylinders with section of variable thickness

F. DELL'ISOLA and L. ROSA (ROMA)

WE EXTEND the perturbative procedure developed in [7] to the case of Saint Venant Cylinders with
sections of variable thickness. In this way we are able to generalize the Kelvin and Bredt formulas
for torsional rigidity of open and closed sections, respectively. We recover all the results available in
technical literature. In particular we deduce an explicit analytical expression for warping function in
the cases of open sections of triangular shape [17] and of the closed section studied using numerical
methods by WANG [18].

i. Introduction

IN A RECENT PAPER [7] the authors tried to use a “perturbative development” [5]
to generalize the well known Bredt formulas in the theory of thin hollow elastic
beams. This development is possible for sections of the Saint Venant Cylinders
(SVC) constructed from a given curve (the mean curve) as the union of its ho-
motopic curves. The perturbation parameter ¢ is related to the thickness of the
sections. However in [7] the particular homotopic transformation used allows only
for the consideration of sections of constant thickness.

Here we want to overcome this limitation by generalizing the results found in
[3] and use a similar procedure, but allowing the homotopic transformation to
shift along the normal and the tangent directions both depending on the curvi-
linear coordinate along the inner curve of the sections. _

We recover all the classical formulas found by Brepr [1] (see also Viasov
[2]) considering terms of first order in ¢ in the development. The new procedure
we propose in the present paper is general enough to be applied, for instance,
to SVC whose doubly connected cross-sections are bounded by ellipses, the case
being out of the scope of applicability of the previous ones. In this way we can
check our perturbation method on the exact solutions (available in the literature,
see [4]) of Saint Venant torsion problem for the homothetic elliptic cross-sections.
Moreover, we can give an approximate expression for the warping field in the case
of the tubolar section of WANG (cf. [18]) and for the thin isosceles triangle [17].

For the reasons expounded in DELL'TsoLA and Rurta [7] we choose to state the
Saint Venant torsion problem in terms of the Prandtl stress function ¢.

Let D be the cross-section of the SVC, and let us distinguish two cases:
closed sections and open sections. In both cases D can be represented as fol-
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lows: D = D,\Dy, where D;, ¢ = 0,1, are simply connected domains, Dy C D,
and 0Dy N D = 0 but, in the case of open sections we have Dy = 0.

Prandtl function ¢ is the solution of the following elliptic boundary value
problem: ‘

Ap+2=0 in DC I,

¢ =0 on 9D,
(1.1) .
¢ =¢ on ID,
f Vo.n = =245y, .

9Dy

Here IT is a plane, A is the Laplace operator, V is the gradient operator, n is

the outer normal of the domain Dy, and Agp, is its area. The value of ¢ on 9Dy,

#, is an arbitrary constant to be determined from the integral condition (1.1)4.
We will assume that the Prandtl function ¢ [6] can be expanded in terms of ¢:

(1.2) =3 pie’
k=0

in this way we get a hierarchy of ordinary differential equations for the coefficient
¢k, which allow us to generalize the well-known Bredt formulas.

Once we have found the expansion for the Prandtl function, we can calculate
the corresponding one for the torsional rigidity R, the warping w and the tangent
stress ¢t using the following formulas [8, 9, 10]:

R = ZG/¢ + Aapua,
Dy

(13)
Vuw(y) = =7 (*Vé(y) + *(y — 0)), t=—-Gr V4,

where o € II, * is the 7 /2-rotation operator in I, y € D, G is the modulus of
elasticity in shear and 7 is the angle of twist.

To this end, we will try the formal expansions also of all the other quantities
appearing in the Saint Venant torsion theory in terms of the small parameter ¢
(for an accurate analysis of these slightly heuristic procedure see NAYFEH [5]):

(14)  R=D Ru", w(s,2)=) wuls,2)", s,2) = D tuls,2)e",
n=0

n=0 n=0

thus obtaining, in a very straightforward manner, all the known formulas of the
technical theories as terms of the first order in e. We can find all the terms of
higher order in ¢ and here we quote the next non-zero corrections to these.
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2. Families of cross-sections

Let I : [0,!] — II be the curve of equation
(2.1) ro: 8+ 1o(s).

We will consider two cases: closed sections and open sections. In the first case
we identify the two extrema 0 ~ [ (we will identify s with the arc-length of the
curve [, thus ! will be the length of Ip).

Starting from [, we will consider a family of domains, parameterized by e.
The domain D, is obtained as the union of the curves I';: s € [0,!] — I, with

z € [0,1], z-lifted from I} by the scalar fields (6,, 62): (f,I = df(m))

dz

(2.2) r(s,z) = ro(s) + ze (6;(s)rg,s — 62(8)*7q,5(s)) , D, = U (I3).
z€[0,1]

In this way 0D := Iyl I for closed sections while, of course, in the case of open
sections we cannot obtain, by means of this procedure, the whole boundary of the
domain D because we loose the edges z-lifted from the two distinct points 0, /.

For these reasons we must assume that for open section the expansion is valid
only far away from the ending edges. The expansion we obtain in this paper
is an “outer” expansion to be matched with an “inner” one (see NAYFEH [5])
accounting for some edge effect.

We can think of é6(s) = \/612 + 6% as of a thickness of the section in the point
of coordinate s measured along I, and we will call (Ig, 8;(s), 62(s)) the “shape”
of the section.

In the following we will consider the cylinder of section D = D;\Dy whose
boundary is 9D = Iy|J . [ is a closed curve for closed SVC sections and an
open curve for open SVC sections. In the latter case we have Dy = (.

Considering the couple (s, 2) as a coordinate system on D,, we get the fol-
lowing holonomic basis (when not necessary we omit the explicit s-dependence
of the various functions)

ar

el(s,z) = a = T0,s (] i 25(5l,s + 52,51\')) + 26 % 7‘0,3(1{61 . 62.3)7

ar
e2(s,2) = Pl €(ro,s61 — *719,562)

(2.3)

(K (s) is the curvature of I}, ¢ = 1,2) and the following metric-tensor:
" e2(82 + 63
@4) gi=1 ( it
g —(561 + 252(6151,5 + 6262.5))
—(651 352(5161,3 +* 6252,5)) )
(1 + 26(61, + K62))2 + 226%(65, — Kb1,)2 )
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where g = ¢2 [52 (6162‘8 — 61,62 — K(8 + 6%)) - 62]2 is the determinant of the
metric tensor.

For the sake of completeness we quote here the expression of the gradient
and Laplacian that will be used in the following [11, 12]:

V¢ = g e;,
_ i 9% o (R _ 1 [0 G
A¢_91(m_m{ij})_ﬁ('_m‘/g_gj¢")’

{ihj} are the Christoffel symbols, i,j,h = 1,2, 2y = s, 27 = 2.

2.5)

3. Formal expansion of the Prandtl function

Using (1.2) and (2.5); Eq.(1.1) becomes:

o0

3.1) S e Agn-
n=0
+ €n+l (Blgsn.z + B2¢n,zz + B3¢n,sz)
+ £n+2 [Cl¢n.z + 029'511,:: 25 CS(Pn,s + C'4¢n.,sz + Cqun,ss]
+ £n+3 [D1¢TI,Z + DZ¢u,z: + D3¢n.s + D4¢n.sz + I)5¢n.ss]}
3
= 22 [53 (6162,0 — 81,462 — K (8] + 63)) - 52] .
Here
A= _629

By = K(&f - 63) — 281824,

By = 2618y, — 326261, — 32K 65 — 2K 6},

B3 = 26,6,

C, = z(—zﬁ'2(6$52+5§)- K (83815 + 38381 5+ 2816283 ) — 2618 462, — 26,63

—K, (83 + 6163 + 836240 + 8362.44) )
Cy = zz(-sa'z.sz(a% +63) = 61, K (267 — 663) + 61 4(—381 462 + 26162.)
+6280,, (481K - 63,)),
Cs =6 (25152,, — 8K - 83K - 26,8,,) ,
Cy =22 (5?1{ + 883K + 26,656, , — 626y, + 5352,5) ,
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Cs = —§38: — 83,
Dy = —2* (5% + 6%) §3K> — 63K — 38381 (K2 — 26} K + 36,65 K* - 263 K
— (6161,5 + 8283 ) K 5 + 8161 5o K — 81 5502 5 + 6282 5; K + 61 483 55,
Dy =2 (—5;‘1{3 — 263657 — 83K — 3636y .65, K% — 38361, K — 8762 K
—362 63K — 83 62 + 36365 K2 + 3618362, K + 4816261 462, K
+816% 63,5 — 36783 K — 636,63, + 6263 K + 515;“,),

Ds z(—zalaf,,az + 28781,462,5 — 261,562,463 + 2616263, + 61 K 5 + 28763K
H O3 s + 876261 0y + 81,083 — 636245 — 616362,4,)
Dy =22 (81K + 83K + by .62 — 8162,4) (61614 + 2b2,,) ,
Ds =z (62 +8) (~61K - K + 6182, — 61,62 -
3.1. Closed section
Noticing that (2.5); Vé:n|.—¢ = —g—;qb,s + ;'51—2¢'z and using (1.2), we get for

condition (1.1)4

- n g 1, = j
(32) ngﬂf f{—ué—z(ﬁ,s + 5;([)',,} = —2-110.

Iy

In this way we get for the first three terms of the c-expansion of the Prandtl
function:

¢0,22(213) = Oa qbg(O, 5) — 80’
)
¢0(1,8) = 0! Ifgqbo — O,
¢l,zz(za S) = 05 (ibl(oa S) = 5] )
1—
(3.3) $1(1,s) = 0, %6—11’1 = 24y,
Iy :
Ay .. + By, = 263, $2(0,5) = &,
(1, 8) = 0, —$2=-j£@J-52,
7 ) P Iy

2 26167, + (63— 82) K
with Iy = f&;‘, 1(s) = /6;‘, J= (22 ) :
I 0 %
0
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Solving Eqgs. (3.3) we get

24y

¢0(s» 2) = Oa (b;(s,z . —(1 )
(3.4)
ba(s, z)—( 2) }f&z—’}(fj&/ + (2 - AO{J 263} .
0 Iy

3.2. Open sections
In this case we have (up to %)

$0,2:(2,8) =0,  ¢0(0,5) =0,  ¢o(l,5) =0
$1,22(2,8) = 0, ¢1(0,5) = 0, ¢é1(1,5) =0

(3.5) Afre: =263,  $(0,5) =0,  ¢o(1,5)=0

A3z — Bida: + Bady o + Bados, = 6263 [5251,3 — 816, + K (83 + 512)],
$3(0,5) =0,  ¢3(1,5) =0,
from which

do=0, =0, ¢ =256(z-2%,

(3.6) i ;
9 = 2) + ()G - 2),

¢3
with the following notations:

9(s) = —82 [682,81 + 2K (6T + 6D, [(5) = 62 68,061 + K (63 - &])] -

4. Torsional rigidity, warping and shear stress
Using formulas (1.3) and the expansions (1.4), we obtain the following results.

4.1. Closed sections

4G A}
Iy °

_4GA() [Oféz— f

R0=0, R1=

(4.1)

G
|
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For the warping

] s
wols2) 240—— o) /TG X 70, 5
T Iy !

0
(4.2) w’(“) /Jéz ]() f@-ﬂfj —jaz
0

Iy

Ag b
+z {2—0 e S by *rgerg s + (521‘0°T03} 5
Ty % h \

and finally for the tangential stress
to(s,z) _ (tﬂs toz) B ( Iy )
Gt er ar) = \Mg, b))

tis  t1- A e
(4.3) (é é) = 275’ [/2 + 2(62615 — 6162.5)] + 62(22 = 1)

AO [0
0y — — 261Ap—
0

The values R;, wg and {y are the usual ones quoted in the literature [14, 15,
16]; they are due to BreDT [1]. We emphasize that for the rather general cross-
sections considered here, the first non-zero contribution to the z—component of
the shearing stress is of the first order in €. This means that the procedure pro-
posed by Bredt in deducing his formulas (in which this z-component is assumed
as vanishing), cannot be applied for the sections considered in the present paper,
being valid only for the class of sections dealt with in [7].

4.2. Open sections
We find for the torsional rigidity:
Ry =0, Ry =
Ry =0, Rs_—jéaz,

(4.4) Re = 75 ${88 [f1u62 — 62,81 + K6} + )]}
Fn
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For the warping

S

wols,2) _ —/ro X 70
hS )

-
(4.5) . "
—wl(:’z = z (rg* ro,s62 — T X To,501) — /52,
0

and finally for the tangential stress

to(s,z) _ (l& i) _
Gr ~ \Gr’ Gr =0, 0),

(é‘: 27) = (=621 -22), 0).

As in this case we do not consider the effect due to the “short ends” of the
section, it seems reasonable that there is no influence of the edge affect up to the
fourth order, at least in connection with torsional rigidity, but this needs more
investigation.

(4.6)

5. Conclusions and perspectives

In this final section we consider some applications of the results found in the
previous ones. The first application concerns the torsion of a section bounded by
two ellipses: in particular we find the expression for torsional rigidity available in
the literature for sections bounded by homothetic ellipses. As a second applica-
tion we find the warping field for a section siudied by WANG [18] (who used a
rather sophisticated numerical method): we are able to supply a simple explicit
polynomial perfectly matching his numerical results.

Finally as a third application, we recover the results found in [17] concerning
torsion of the cylinder whose cross-section is an isosceles triangle, under the
assumption that its base is much shorther than its altitude.

5.1. Section bounded by two non-homothetic ellipses

Let D be the section enclosed between two non-homothetic ellipses Iy and
Iy whose parametric representations are, respectively:

ro: [0,27x] = I, rg = (acose, bsing),

(5.1) |
r: [0,2x] = 1T, v = (kacose, (k+ ¢q)bsine);
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we get for the torsional rigidity

R, = 2G7ra3b3%,

S 2 - J. 2 2
2(6% — a®)(1 - k) B a*(1-k)
Ry = Gra’p® L 1 %@ 2a% $p | — o —
2 Ta pz{ . (1+e)+2a"+¢ 2 T k+q-1D)
' _ g+ k-1 _ 2 52 (b2 — a®)(k — 1) + b%q
with ¢ = o1 and p=a” - b" + F+g_1 !
When ¢ — 0 we find
a*b3(k — 1) a3k — 1)?
- B=btmsw « Bebi—pg g

in agreement with the well-known (exact) formula.
We observe that for fixed «,b and k, the ratio R/R, is a function of g.
Choosing a = 4, b = 2 and k = 1.3 we get

Ry(k —
(5.4) 1221(( T 1)) ~ 0.135 + 0.292¢ — 0.091¢* + 0.122¢> + O(¢*);
Jo— 2
so, for example, with ¢ = 0.2 we find %—_11)) ~ 20%.

5.2. The warping field for a flattened tube

The efficiency of our asympthotic expansion is here tested on a section which
is not thin and which was studied by WANG [18] using numerical methods. For a
discussion of the limits of the present form of our expansion we refer to [19]. We
consider the linear (in 2z coordinate) terms appearing in the first four terms of
the asymptotic expansion for warping, calculated in the particular case examined,
thus finding:

w 8 S 1 . .
== (9 “3E+ 37r)) B+31) 5(1 — z)sin(2s), if s¢€(0,7/4),
w  [(4s—4—7)(384 + 80 — 27x2 + 384 + 2887z + Sdn Q)]

g 5= 48(8 + 37)?

if se(r/4,1+ n/4).

It is very easy to check that the contour plots we produce exactly coincide
with those given by Wang. Because the (s, z) coordinate-system is meaningful also
outside the section and because the Prandtl and warping functions are determined
as elementary functions of these coordinates, they can be extended outside of the
section. Thus we have a hint about the form of warping for larger sections. The
scale is immaterial for the elliptic problem determining warping (see [4]).
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T

o

o 0.5 1 1.5 .

FiG. 1. The figure shows the iso-warping contour lines for the flattened tube studied in [18].

5.3. Warping field of thin triangular cross-sections

It is easy to generate the triangular cross-section considered on page 74 of
[17] using the following values of é; and é; expressed as functions of the altitude
C and basis & of the triangle:

B 2(’1!/6')2 _ 4(/L/(,')
(5.6) W= wIor T oR

Using formulas (4.5) we prove the validity of assumption (1.3) p.6 [17] at the
first order of the ratio 2/C. The warping field we find at the same order is given
by:

w(s,z) _ ; 1 N 4h/C
.7) s o (5 _ ) T

It is easy to see that Eq. (5.7) coincides with formula (2.19) on p. 75 of [17] modulo
a rigid motion.

5.4. Conclusions

Finally we want make a few comments on the results obtained. Despite the
fact that our procedure is rather general, it is not capable of reproducing the most
general cross-section. Maybe this task can be solved by means of the Conformal
Mapping Theory [20].

In [19] are studied some cases in which the proposed expansion does not
converge. Therefore — assuming that before diverging the expansion seems to
approach reasonably the solution — a regularizing method seems to be necessary
to increase its scope of applicability.

On the other hand - from the mathematical point of view — our results seem
to open some interesting estimation problems which most likely can be solved
using the methods of the papers [21, 22].
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The stationary Stokes flow through a spherical region
with large variations of density and viscosity coeflicient

Z. PLOCHOCKI, B. KAZMIERCZAK
and Z. PERADZYNSKI (WARSZAWA)

WE ARE INTERESTED in flows of a fluid whose density changes abruptly after entering a certain
region in R3. Flows of this kind may be uscful in modclling such phenomena as propagating
flames. Assuming that the region is a ball we find a closed-form solution for the flow homogencous
at infinity in the Stokes approximation. It is compared with the analytical solution in the Euler
approximation. Such solutions can also be used as a test for numerical algorithms solving the flow
equations.

1. Introduction

For GaAs sysTEMs with strong local heat sources (e.g. flames, laser-generated or
sustained plasma) there arise at least two important problems concerning the
influence of a gas flow on heat exchange processes, and velocity of propagation of
the hot region front. In general, such problems are complicated. However, simple
hydraulic models of a gas flow through a region with large density variations based
on analysis of particular solutions, offer some possibilities of simplification of such
problems.

The first such a solution was proposed by Guskov et al. [1] as an attempt
to study the propagation of plasma front in case of laser-generated plasma. The
authors considered a stationary, homogeneous at infinity, inviscid (the Euler ap-
proximation, i.e. Re — o0) gas flow through a spherical region. The density of
the gas is assumed to be constant outside, and also constant but much smaller
inside the sphere. The gas is therefore assumed to be incompressible outside and
inside the sphere. Such assumptions allow to find an analytical solution of the
problem (by dividing the whole flow region into two subregions, finding solutions
to the continuity and Euler equations separately in each of them, and then by
matching these solutions by means of continuity conditions for densities of mass
and momentum fluxes at the surface of the sphere).

Next, Z. PERADZYNSKI and E. ZAwISTOWSKA [2] treated numerically the same
problem for a different Reynolds number, assuming however constant viscosity
coefficient in the whole flow region.

The aim of the present paper is to find an analytical solution of this problem
in the Stokes approximation (Re — 0) and to compare it with the analytical
solution of the problem in the Euler approximation, and also with the numerical
solution mentioned.
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2. Statement of the problem

Consider a stationary gas flow through the spherical region of radius 2. The
density of the gas is assumed in the form:

o= Qint + (gcxt _ Qim)[](F . 1),
(2.1) Qint
Egtl = F < 1,

where ™ and ¢! are constants representing the gas density inside and outside
the sphere, respectively; I/ (z — z¢) is the Heaviside function; and 7 stands for
the dimensionless r-coordinate in the spherical coordinate system (as referred to
the radius R). The density variation may be thought as generated by a constant
high temperature field inside the sphere and (relatively) low (and also constant)
temperature field outside. In such a case, also the viscosity coeflicient should be
assumed in the form:

n = ”int + (,]cxt _ ‘J[im)][(F - 1)7

B _,7cxt
&y = ”im <1,

(2.2)

where 7" and 5 are constants representing the shear viscosity coefficient of
the gas inside and outside the sphere, respectively. Since for an ideal gas p o< 1/7T
and 7 « /T, therefore for a gas, which can be approximately treated as an ideal
one, we have

(2:3) En = \/E,-

The flow at infinity is assumed to be homogeneous. At the sphere surface
there are no mass and momentum sources.

In order to find the solution to this problem, the method of dividing the
whole region into two subregions is applied. Then, the governing equations for
the interior of both subregions, i.e. for r < R and r > R, are:

Vev =0, Vp = nV,

where v and p stand for the velocity vector and pressure, respectively. By intro-
ducing the spherical coordinate system r, ¢, § (with z-axis directed along the flow
velocity at infinity and centered in the center of the sphere), these equations can
be rewritten in the following detailed form:

19,, 1 9,
(2.4) = E)—;(r v) + = —8—0(1)0 sind) =0,
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5 0 1 ad (. .0

[cont.] n (')rp T2 ar (T EUT) * r2sinf 00 (SIHHU—OUT)
2v,  2cosf , 2 Jvg
72 T 2sind T 72 09
19 _ lﬁ(rzi)_,,)JrLﬂ(singiv)_v_eJr 20v

P=3ar\" ar"") " Tsing 09 20°°) " rsinfe  r 06’
where v, and vy stand for the r- and #-coordinate of the velocity vector, respect-
ively, and the axial symmetry of the flow has been assumed (ie. v, = 0).

The boundary conditions are assumed in the form:

Vp = Vs COSO,

r=000 Vg = —Vs Sind,
(2.5) P = Poos
r=0: o, vl »< oo,

where v, and p, stand for the velocity modulus and pressure at infinity, repect-
ively. In order to match the solutions outside and inside the sphere, the local
conservation principles of mass and momentum are used. The equations, which
express these conservation principles, are assumed to be valid in the whole space
(i.e. — also at the sphere surface). Then the continuity conditions for the r-th
coordinates of the flux density of mass and that of momentum at the sphere
surface read:

T = R; HQ(!T]] = 0.‘
(2.6) |Ip - 27 (()}l’rﬂ =
. dvg Vg 1 0o, _
[[”(7)7"7* )] =0
where
(27) [[¢~]] o= ,";)cxt(r = ]g) _ ./,i"t(r = R),

where, in turn, the superscripts ext and int refer to the outside and to the
inside of the sphere, respectively.

3. Solution
The solution of the problem expressed by Eqs. (2.4)-(2.6) is sought in the
form:

vy = Voo f(r)cos b,

(.1)

1l

vg = —Voog(r)sind.
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Substituting Egs. (3.1) into Eq.(2.4), one obtains:

1
(32) g= 31+ 1,

where prime denotes the derivative with respect to r. Substituting Egs. (3.1) into
Egs. (2.4); 3 and using Eq. (3.2) one obtains:

L? = (j” + i_f’) cos b,
Moo OT r
m} % - = (%ﬁf”’+3;~f”+ 2}”) sin 8.

Integrating the latter equation and substituting the result into the former equation
we obtain:

(3.3) Lp =C1 + (1,.2_,:'" +3rf" + 2f’) cos b,
NVoo 2
(3.4) Y+ 82" 4 8rf" — 8 =0,
where ' is a constant. The general solution of the latter equation is:

f=Cy+Cyrt + 9+C—35,

r T
where C stand for constants. Thus, according to Egs. (3.1)—(3.3) the solutions of
Eqgs. (2.4) outside and inside the sphere, which satisfy the boundary conditions as
expressed by Egs.(2.5), may be written in the form (all the constants occuring
in the formulae describing the flow in the Stokes approximation will be denoted
by tilde, to distinguishing them from the analogous constants in the case of the
Euler approximation, which will be discussed later):

N T . Xt __ [5 /T
T..= E >1: l’:x = Voo (1 + ’IT = 27?) COS(),
D A
., EXt — i - 22 " g
vg l“’(1+2F+?3) sinf,
xt T D i
(3.5) Pt = + g cosf,
7= % 4 - oIt = o (B + 5?2) cosé,
o = _p (B +2C7)sind,

- MY 10C _
'™ = 7cosf.
R gy
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The constants A, B, C, D, E have to be determined from the continuity
conditions as expressed by Eqs. (2.6). In fact, substituting Eqgs. (3.5) into Egs. (2.6)
we obtain the following set of equations for the constants considered:

1+ D-24=¢,(B + (),

E=py,
i = 2C
D—-4A = C,

5-'"
2i=-5.
£y

It follows immediately from the latter two equations that

(3.6) D=0,

and therefore:

1-24 =¢,(B +0),
3.7) ‘(~ )
i=_ C
- "
and
(3.8) E=p.

It is seen that we have two equations for three constants: A, B and C.

Thus, in order to obtain a unique solution we should adopt an additional
condition, and the continuity condition of the tangent component of velocity at
the surface of the sphere (r = R) is assumed:

(3.9) [e]=0 ¢ =n),
which leads to the following additional equation:
(3.10) 1+A=D05+2C.

From a formal point of view the problem of an additional constant of integra-
tion, for which there is no suitable condition, follows naturally from the applied
method of dividing the whole flow region into two subregions. From the physical
point of view the assumption expressed by Eq. (3.9) may be argued as follows. The
expression in [ ] in Eq.(2.6); represents the rf—coordinate of the momentum
flux density, which should be a continuous function in the whole flow region (in
particular — at r = R). The quantities: 7, v,, vy are assumed to be limited. If the
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function vy was discontinuous (as a function of r) at » = R, then this coordinate
of the momentum flux density would be singular at » = I2, and this singularity can
not be compensated by discontinuities of the other terms. It would denote, that
at the boundary between subregions there are some momentum sources (surface
tangent forces), which are absent by the assumption. Short discussion of the as-
sumption considered, which is based on the properties of a weak solution of the
flow equations in the Stokes approximation, is presented in the Appendix. It may
be treated as a formal support for the continuity condition expressed by Eq. (3.9).
Now, solving Egs. (3.7) and (3.10) we obtain:

~ 1-¢
b Y .. N—.
24 (1 + 2, °
~ +4de, — 26,6
3.11) B = 2 den = 2ns,

24,1 +2e,
5~ 2e(1—¢p)
2+5,(1+2,"

Inserting the approximate relation ¢, = /2, into the above formulae we may
obtain the asymptotic expressions as ¢, — 0, namely:

Kzl(l—ﬁsg), I}E’%(l+i\/£_0),
2 2 2 3
(3.12) .

CE_ EQ(l_EEIJ)E_E‘

On the other hand, by putting ¢, = 1 we obtain respectively:

i= 1-¢, 21(1 é:)
T 243, 2\ 27¢)
P 7 25
i | = e =~ ]——5),
@43) e 24 3¢, 2( 14°°
1—¢

R

. 5
C__22+359 ‘_(1_5“’)'

Thus, Egs. (3.5) with Egs. (3.6), (3.8) and (3.11) represent the solution of the
problem expressed by Egs. (2.4) - (2.6), which is unique in the class of functions
specified by Egs. (3.1).

4. Results

From the formulae given in the previous section one may obtain all the infor-
mation about the flow examined. Examples of two types of such an information
will be presented.



FiG. 1. Streamlines pictures for the flow through the sphere in the Euler (the lower half) and
Stokes (the upper half) approximations under the assumptions: e, = /&g, €, = 2.5 x 1072,
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F1G. 2. Dimensionless velocity (as referred to vo.) at the flow symmetry axis as a function of the
dimensionless z-coordinate (as referred to R) under the same assumptions about e, and ¢,
as in the case of Fig.1 in the Euler (solid line) and Stokes (dashed line) approximations.
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The information of the first type concerns the flow fields at a given €,. As an
example, value £, = 2.5 x 102 is assumed as a typical one for the laser-sustained
plasma. Thus, the upper half of Fig.1 presents the streamlines pictures. Figure
2b (dashed line) presents the dimensionless z-coordinate of velocity:

v vy .
7, = — cosf — —sin 4

Voo Viscs
at the flow symmetry axis (6 = 7, 0, respectively) as a function of dimensionless
z-coordinate (z = (z/R)cos#), under the same assumptions about ¢, and ¢, as
above. Figure 3 presents the dependence of the dimensionless pressure difference:

P~ P

O Ugo

dp=2

on the dimensionless z-coordinate at the flow symmetry axis under the same
assumptions about ¢, and ¢, as in the case of Fig. 1, where the Reynolds number

DooVoo It

oo

Re =

plays the role of the scale factor only.

The information of the second type concerns the characteristics of the flow
considered as functions of ¢,, as for example: velocity and pressure on the flow
symmetry axis at the center and at the boundary of the sphere (Fig.4b, Fig. 5b)("):

&y = e, =1

114

T(1)=1-24 o

m
™

~

112

T(1)y=B+C

)
)

I

LN W W

[
=R 5

™

5

+
[39]
5 4
o S
5
R 1
(SIS B S R IR, I oS J RS, |
|

Ti(0) = B

(4.1) ér

14

[[m]] =1-2A-B-C

|
2
L~
%4
|
|
+
N
;
L~

M) =0
RE—int — é ~
EA}) 1) = > =1- 50
A—pmt(o) = 0

[[_\_p]] = _Ap™(),

(') Note that the part of the gas flux flowing through the sphere as referred to the flux incoming from
infinity is given by 7 (1).

12
|
33



F1G. 3. Scaled relative pressure at the flow symmetry axis for e, = /g5, €, = 2.5 % 1072
solid line — the Euler approximation: 2(p — peo)/(200 v ),
dashed line - the Stokes approximation: 2(p — po)/ (200 v2)(Re)/(20).

T
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Fi1G. 4. Dependence of 7(1) (solid line), 7™ (1) (dashed line) and 7/™(0) (bold line) on ¢,
for the flow through the sphere in the Euler (a) and Stokes (b) approximation

under the assumption: e, = | /2,.
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FiG. 5. Dependence of Ap (1) (solid line), 35 (1) (dashed line) and Ap "(0) (bold linc) on
€, for the flow through the sphere in the Euler (a) and Stokes (b) approximations under the
same assumptions about ¢, as in the case of Fig.3.

where the first column represents the exact formulae, the second one — the asymp-
totic formulae for small ¢, under the assumption ¢, = | /z,, the third one — the
asymptotic formulae for small ¢, under the assumption ¢, = 1;

P(1)
$(0) :

@ =7, r=R),
P =7, r=20);

and [v] is defined by Eq.(2.7).
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5. Discussion

The velocity field in the Stokes approximation is, from the qualitative point of
view, similar to that in the Euler approximation (Fig. 1). It follows from the fact
that the dependence of the velocity coordinates on 7 and @ has the same structure
in both approximations (Egs. (3.5); 2,45 with Eq. (3.6)). However, quantitative pic-
tures in both cases are different (Fig.2), because the integration constants A, B
and C in the Euler approximation (they have no tilde, for distinguishing) are given
by different functions of ¢,. Namely, in the case of the Euler approximation they
are the solutions of the set (the typing error in the sign is corrected):
_3-(Q2+¢,)B

’ s 4+¢, ;

22—, —¢€,B

45 4+¢,

3AQ2 - A) +2(1 — 24)2 = —¢,C(3B + 2C) + 2c,(B + C)%.
Solving this equation set with respect to A, B, C' one may obtain the vel-

ocity characteristics in the Euler approximation analogous to those given by
Eqgs.(4.1);-4 in the case of the Stokes approximation (number errors are cor-

rected) (Fig.4a):
1 /3
z\[z Vear

; 1 1/3 1
7Y B+C R R
7:" (eu e 2 2\/; i

; 1 31
7(0)g, = B > __ ¢ \/j i
“ 2. /€,

ﬂﬁ,]] o = 1-24-B-C & -5"(1)g,,

114

1-24

5:Xt(l)Eu

1

where the same convention was used as in the case of Egs. (4.1).

Therefore, from the quantitative point of view the velocity field in the Stokes
approximation is remarkably different (especially inside the sphere) as compared
to that in the Euler approximation. Generally, one may say, that viscosity forces
(when they are dominating over the inertia forces) accommodate the flow, al-
though (inside the sphere) not as much as it follows from the numerical results
presented in [2]. For example, the (nondimensional) internal velocity (as referred
to v.,) on the z-axis for ¢, = 2.5 x 1072 increases parabollically from about 4.35
at 7 = 1 to about 7.25 at ¥ = 0 in the Euler approximation, whereas in the Stokes
approximation (under the assumption: €, = | /&,) it increases (also parabolically)
from about 1.63 to about 1.78, respectively.

Comparison of the analytical results presented here (under the assumption:
€, = 1) and numerical results presented in [2] for Re — 0 shows some differences
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inside the sphere. The numerical results are lower and more weakly depending
on z-coordinate. For example, the analytical formulae for the internal (dimen-
sionless) velocity (as referred to v.,) on z-axis for e, = 2.5 x 10~ give the value
about 2.46 at ¥ = 1 and about 3.40 at 7 = 0, whereas the values in [2] are about
1.85 and 1.96, respectively.

The pressure field obtained in the Stokes approximation has different struc-
ture as compared to that in the Euler approximation, although variations of pres-
sure are relatively small in both of them (Fig.3). General difference in pressure
behaviour is seen by comparing Eqs.(3.5)3¢ (with D = 0) and the following
formulae for pressure given in [1]:

2
pvs, A A A
pg}=Poo+“2_‘F—3{ (2+ 3>+3(2——)c050}
int - 9 oo v—=2 2
P = po+ e, 20T { B + 72 — (3B + 207) cos? 6},
where i
PO = Doo = 500005 {AQ + A) + £,C(B + O)}.

Using these formulae one may obtain the pressure characteristics in the Euler
approximation analogous to those given by Egs. (4.1)s_g in the case of the Stokes
approximation (Fig.5 a):

ApT (s = 4A(1 - A) ®1- ggg,
——int . = 1 3
ApT (Dea = —{AQ+ A) +£,CBB +20)} = 7 —\[5 Ve,

'A—pint(O)Eu

[[Z\;]] Eu

where the same convention was used as in the case of Eqs. (4.1).

—{AQ+ A) +¢,C(B +C)}

]
112
ool
g
B | ==
P ey
%
"~

iR

3AQ2— A) +¢,C(3B +20)

Appendix

Below we will show that, if a weak solution to the conservation laws exists, then
the tangent component of the velocity must be continuous. In a Cartesian system
of coordinates the conservation laws for mass and momentum can be written as:

Ve(ov) = 0,

A.l
(A1) Ver; = 0,
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where o; is the i-th row of the matrix

J 7]
gi; = —(5,‘jp + /\(5;J‘V-V + 7 (()—.LJ‘U, + O_;c;vj) ,

n is a shear viscosity coefficient, A = ( — % and ( is a bulk viscosity coefficient.

Weak formulation can be obtained by multiplying the Eq. (A.1) by smooth test
functions and formal integration by parts. Thus, for given p, n and ¢ we say that
v € L}, i € {1,2,3}, and a distribution p € D’ satisfy the system (A.1) in the
weak sense, if for all C§°(R3) functions ¢ and v, i € {1,2,3}, we have:

Z‘/‘gv,-(j),,' dr = 0,

(A2)
Z/a,,-w,j dr =0, iel,2,3,
J

where the integrals are taken over 3. Still, the integration in (A.2); must be
understood as action of a distribution on ;, because o;; is a combination of
derivatives of the components of v and they are, in general, discontinuous. At
the beginning let us assume that 7 and ¢ are smooth functions. For the sake of
brevity, let us assume that the boundary dividing the regions of different p is a flat
surface, e.g. the plane z3 = 0. (In the case of smooth though not flat boundary,
the complication would be only technical: curvilinear coordinates and covariant
derivatives.) Let us examine the equations for the components of o, and o5. If
we suppose, for example, that vy is discontinuous while crossing the plane z3 = 0
in the vicinity of the point 2 = (0,0,0), then there exist bounded continuous
functions Ajj(x), A1,(z) and Aj3(x) with A;3(0) # 0 such that:

o13(z) = n(z)A3(z)é(as) + {bounded terms},
on(z) = AMz)An(x)é(es3) + Ay,(2)p + {bounded terms},

whereas oy, is bounded. But then Eq. (A.2), cannot be satisfied for functions ;.
To see this, let us take for example

P = 3w (é;v;) w (%\/1‘% + 1.'%) :

where w(y) is a C§°(R>) function such thatw(y) = 1for |y| < 1,0 < w(y) < 1 and
w(y) = 0 for |y| > 2, and choose ¢ sufficiently small. So, »; must be continuous.
In the same way we may prove that v, must be continuous. When the tangent
component of v is continuous, then the distributional sense of derivatives of the
components of v retains its validity even for discontinuous coefficients 7 and A
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(while crossing the plane z3 = 0). Then, however, the pressure p ceases to be
well determined even in the distributional sense, since according to the equation
(A.2)3:

/ {(—p + (/\ + 21])!)3‘3 + 53)9/)3_3 + SZ¢’3,2 + 511,1)3,1} dz =0,

where S are bounded, its singular part should be equal to the singular part of
the expression (A + 27)v; 3. Thus it must be proportional to (A + 27)6(z3) and
the last expression is not a well determined distribution (at the boundary surface
I3 = 0)
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Changes of temperature during the simple shear test
of stainless steel

S.P. GADAJ, W.K. NOWACKI and E.A. PIECZYSKA (WARSZAWA)

INVESTIGATION of the simple plane shear of stainless steel was carried out. The stress-strain curves
and the distributions of infrared radiation for various shear rates have been registered. Temperature
changes of the shearing paths were obtained on this ground. It was observed, that this temperature
increases both with the increase of the deformation and the rate of shear. The capabilities of the
used thermovision system allow us to notice the asymmetry of the thermal distribution of the shear
paths caused by the macroscopic shear bands. Finally the results were compared with the results
of numerical simulation, obtained for this kind of material deformed in adiabatic conditions.

1. Introduction

EXPERIMENTAL INVESTIGATIONS of the static simple shear are in general limited to
the analysis of mechanical curves [1, 2, 3] and examination of the texture and
microscopic pictures obtained for the material subjected to such deformation [3,
4, 5]. Theoretical approaches concern the analysis of the shear testing under the
isothermic or adiabatic conditions [3, 6, 8]. In reality, the process of shear is
accompanied by the heat emission and its almost immediate transmission to the
surroundings, that significantly influences this process. This means, that the ther-
momechanical coupling occurs in nonadiabatic conditions. There are no papers
on that problem published up to now, where the results of the investigations of the
thermomechanical coupling during nonadiabatic static shear would be presented,
though such investigations were undertaken during dynamic tests [7].

In this paper, the investigations of the static simple plane shear in nonadiabatic
conditions have been carried out. Their goal was to obtain the mechanical curves
as well as the temperature distributions in the shear areas. The results obtained
enable us to present the temperature changes of the specimens subjected to
the shear test with different rates of deformation, as well as to describe the
macroscopic shear band, developing at higher deformations. Finally, experimental
results were compared with the results of numerical simulations, calculated for
the model of elasto-plastic material deformed in adiabatic conditions [8].

2. Description of experiment

The investigations were performed on the specimens of stainless steel 1HI8N9T
of composition: 0.076wt% C, 0.89wt% Mn, 0.45wt% Si, 0.02wt% P, 17.78wt% Cr,
9.2d4wt% Ni, 0.48wt% Ti. The samples of dimensions 30 x 42.3 x 0.5 mm, cut out
from the same sheet, were placed in a specially designed grip (Fig. 1), allowing
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for replacing the compression by the simple shear. This grip was fitted in the
Instron machine. Construction of this arrangement practically eliminates sliding
of the specimen in the grip and ensures that the process of shear takes place on
two parallel shear bands (paths) of the specimen, of 30 mm length and 3 mm
width (Figs.1 and 2). A change of temperature of the surface of these paths has
been observed.

L F

!

shear Q=0Q,
bands

internal part ——

t— ™

*2

specimen

I
[
|
i

: T

external part / :
I

1

|

|

|

I

F F

F1G. 1. Project of the device for fixing the specimens.

During the deformation, the load vs Instron’s crosshead displacement, the
load and this displacement vs time and the distribution of infrared radiation
emitted by shear paths, were continuously registered. The infrared radiation was
measured using the thermovision camera AGA 680 coupled with a system of data
acquisition and conversion PTR WIN.

In order to secure higher and more homogeneous emissivity, the surface of
the samples was blackened with carbon powder.

The shear tests were carried out with various, properly chosen rates of defor-
mation: 2.77-103, 5.55-1073, 11.1- 1073 s~ These rates should be high enough
in order to provide the sufficiently high temperature increments, measurable by
the used thermovision set. The mean-square error of temperature evaluation
was 0.3°C.

The system PTR WIN allows us to obtain the thermovision pictures with
various precision. A thermovision camera scans the examined object collecting
the infrared radiation from its surface. During 0.06 s the camera creates an image
called frame. A thermal picture of the frame contains few details but, in spite of
that, it can be very valuable. Short time of creation of these frames enables us to
register more accurately the beginning of temperature changes of chosen areas
of the object. An analysis of these temperature changes can be helpful for exact
determination of the beginning of the process of shear or elongation. Four such
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frames superimposed over each other create a thermal picture, obtained during
0.24 s. This thermal picture is a basis for analysing temperature distributions
of the examined surface. Such distributions can be presented in different units
depending on the chosen curve of calibration.

The PTR WIN software enables the user to obtain the following data:

o the temperature distribution on the surface of the examined body, with the
chosen grade of discrimination: both black and white and coloured, stored on
hard disc of a computer;

 the average temperature of the selected part of the picture, its mean-square
error and the area of it;

e the real time temperature evaluation at several chosen points (up to 10);

e the temperature distribution along the line, arbitrarily chosen on the picture;

¢ the digital form of the obtained temperature distribution, which enables its
further processing by other software.

3. Experimental results

The time, force and the crosshead displacement, registered during investiga-
tions, allow us to determine the stress and strain fields and to control the rate
of shear. The stress tensor, defined in the coordinates shown in Fig. 1, has only 3
non-vanishing components: o1y, 022, o2 during simple shear. The single compo-
nent of the tensor of deformation is v = 3.

It was assumed that, in the case of simple plain shear in static conditions,
there is no change in the cross-section: Sg = const (Sg = apd, where ag — width
of the shear band, d — thickness of the specimen). Then the stress 013 = F/Sg
and deformation v = Al/ag, where Al — displacement of the grips of the device
holding the specimen (Fig. 1).

The distributions of intensity of the infrared radiation, recorded during inves-
tigation in digital form, allow us to reconstruct thermal pictures (thermograms)
of the specimens. The maximal sensitivity of the system, conditioned by the 12
bit registration, is 0.01° C. In Fig.2 an example of thermogram of the shear zones
of specimen, deformed at the rate of 11.1.1073s~1, and registered at the defor-
mation v = 1.59, is shown. A photograph of the undeformed specimen fixed in
the grips of the holding device is given as well. The thermovision camera was fo-
cused on the shear zones since the grips are rather thick (15 mm). The coloured
temperature scale is concerned with these shear zones only.

Because of the large mass of grips relative to the mass of specimen and be-
cause of the high heat conductivity of steel, there is a large temperature gradient
in the direction perpendicular to the shear direction. The areas of maximum
temperature are hence situated in the central part of the shear paths (along the
direction of shear).
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The occurence of the stress components oy and o9, is caused by the condition
a = ag = const (the internal and external jaw of the grip move parallely, as shown
in Fig.1). The existence of free edges of specimen z; = +ly/2, where the nor-
mal stress component must vanish, induces the heterogeneity of the strain field.
However, it is assumed that this boundary region is small as compared to the
length of the specimen. Theoretical considerations indicate that for ag/ly = 1/10
(lo = 30 mm) this region covers almost 5% of specimen’s length. An exam-
ple of the strain field obtained numerically by the ABAQUS code for the steel
1H18NO9T, under the assumption of elasto-plastic adiabatically deformed material
at the strain level v = 0.322, is shown in Fig.3 A. Results of these calculations
will be published in [9].

The disturbances of the stress and strain fields existing on free ends of the
specimen during shear test are visible in the temperature distribution. The tem-
perature of these areas is higher than in remaining part of the specimen. This is
easily seen in the initial stage of the process. At higher deformations this effect
is difficult to observe because of large temperature increments of the shear zones
and due to high heat conductivity of this steel.

3.1. Temperature changes of the specimens subjected to various shear rates

The temperature changes of the shear paths for three deformation rates were
investigated. Taking advantage of PTR WIN, 5 points were marked in the central
part of the thermogram of one of these paths, where the temperature seemed to
be homogeneous (Fig. 4, left picture). The coordinates of these points and their
temperatures at the end of the process are given below. The graph of temperature
evolution for these points during the shear time is shown on the right-hand side
of Fig.4.

The same approach was used for other rates of shear. The averaged values of
temperature obtained this way are presented in Fig.6 A as a function of defor-
mation . The process of shear is accompanied by the increase in temperature.
However, the temperature behaviour of the shearing specimen is a result of the
heat emission and of its instantaneous flow to the grips; more particularly, that
the used grips are solid, in comparison with the specimen. The temperature incre-
ments during shear test are not proportional to the stress of specimen. Looking
at curves AT'(y) (Fig.6 A) it can be noticed that for the deformation v ~ 0.3, an
disorder in the monotonic temperature increase is observable, and an inflection
point can be noticed. It can be related to the changes of the mechanisms of de-
formation at this stage of shear, however a full explanation of this phenomenon
requires further investigations.

Figure 6 B presents the relations between the stress o2 and the deformation
7, obtained for three shear rates. There are very small differences between these
curves; the rate of deformation has no considerable influence on the mechanical
characteristics of the material. Moreover, it is easy to notice that o2(y) curves are
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F1G. 2. Photograph of the specimen inserted in the holding device and a thermogram showing
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F1G. 4. A thermogram obtained during the shear test of 1HISNOT steel (v = 1.60) and the
temperature vs time for the chosen 5 points.
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F1G6. 5. A thermogram of the zones of shear with the 5 segments denoted. At right — the
temperature distributions along these segments.
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smooth up to v =~ 70%. It gives

evidence about the homogeneity of the process

of shear in this stage of deformation. Then, the oscillating values of the stresses
occurred, indicating the change of the character of deformation.
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Summarizing the presented results (Fig.6 A, B), it can be stated that there is
a strong dependence of the temperature of shear paths on the shear rate, while

the differences between the mec

hanical curves are insignificant.

3.2. Development of the macroscopic shear band

It follows from theoretical considerations that, during the simple shear test

at deformations higher than 70 +

80%, a localization of the deformation, named

the macroscopic shear band, appears. The macroscopic shear band develops at
a certain angle to the shear path. Figure 3 B presents a picture of this band for
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v = 1.11 shear deformation. The calculations were made for the elasto-plastic
model of the body, under the assumption of combined isotropic-kinematic hard-
ening and adiabatic process of deformation [9].

Suitable processing of thermal pictures recorded during the shear test indi-
cates, that the phenomenon of localized deformation is noticeable also in nonadi-
abatic conditions, in which the experiment has been conducted. For that purpose
the following approach was adopted.

On the thermograms obtained in non-homogeneous range of deformation
(v ~ 1.50), 9 segments were chosen, intersecting the shear path perpendicular to
the shear direction (Fig.5). A coordinate z; of the beginning of each sector was
the same (Figs. 1 and 5). Along these segments the distributions of temperature
were determined. The determination of the temperature distributions was carried
out in two approaches for each path, because the system PTR WIN enables us
to obtain such distributions simultaneously for 5 segments only.

An example of the obtained thermograms with 5 marked segments and with
the temperature distribution determined along them, is shown in Fig.5. Ends of
specimens are characterised by the inhomogeneous stress and strain state and,
moreover, the temperature distribution is there influenced by other factors than
in the remaining area. That is why these ends were omitted in the analysis of
temperature distribution.

The procedure described above of obtaining the temperature distribution was
applied to both shear paths. Subsequently, these distributions were approximated
by the product of the exponential function and the Gauss function (Fig. 7). Since
the exact scaling of the distances was very difficult, the coordinates of the points
on the picture and the distances between them were given in relative units.

In agreement with the results obtained theoretically, the macroscopic shear
bands of both paths obtained for the same specimen were directed towards each
other (Figs. 1 and 3 B). Thus, the symmetrical superposition of the points indicat-
ing the temperature maxima in both paths and calculation of the mean value of
the coordinate x; for these points (deviation of the temperature maximum from
the shear direction) should eliminate a possible error caused by rotation of the
paths relative to the shear direction.

The positions of points having maximum temperature were found for each
specimen sheared at the rates 5.55-1073s~! and 11.1.10-3s~1, These positions
were obtained for the deformations v = 0.63, 1.04, 1.59. Small temperature
increments accompanying the shear rate 2.77-1073s~! made it impossible to find
the maximum of temperature.

The results of calculations obtained for extreme values of v, where the macro-
scopic shear band occurs, are shown in Figs.8 and 9. These are the mean values
for both paths. The coordinate system was taken according to the Fig.1; the z,
axis — along the shear direction, and the 2, axis — perpendicular to this direction.
The position of maximum temperature, found for the segment lying in the middle
of the path, was assumed as the origin of the coordinate system.
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For each point, the statistical error of the determined position of maximum
temperature was calculated (Figs.8, 9). Its value depends on the relative error
of the temperature determination and decreases in accordance with a decrease
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in the temperature error. Other, nonstatistical errors of this determination were
not taken into consideration.

The obtained values of the temperature maximum positions were approxi-
mated by the straight line 2, = ma; + n, where m, n — the calculated coefficients.
Results of this approximation were marked by solid lines, while the dashed line
shows the position of the macroscopic shear band found from the theoretical
calculations [8]. These results indicate that the line describing the position of the
maximum temperature is not always situated in the middle of the shear path.

Table 1 shows the slopes, m, of the straight lines, obtained by the procedure
described above, and the error, Am, of its determination. The theoretical value
of m is 0.1.

Table 1. The values of the slope i for different shear strain levels 5.

Shear rate v =0.63 +=1.04 ¥ =1.59

[s7'] m Am m Am m Am

5.55-107% | 0.00624 | 0.00191 | 0.00979 | 0.00147 | 0.0220 | 0.0014
11.1:107 | 0.0120 | 0.0012 | 0.0136 | 0.0008 | 0.0212 | 0.0007

Results presented in Figs. 8, 9 and in Table 1 indicate that the slopes m increase
accordingly to the rate of shear deformation.

The theoretical considerations [8, 9] were related to the shear rate 2.77.1073s™ 1,
At such rate, the position of the temperature maximum was impossible to deter-
mine in experiment. Besides that, in theoretical approach the macroscopic shear
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band started and developed along the shear path. However, our results would
rather indicate the change of the slope of the macroscopic shear band with the
deformation. Discrepancies between the theoretical and experimental investiga-
tions may be caused by the immediate flow of heat to solid grips. At small tem-
perature increments it can cause an effect of apparent change of inclination of
the macroscopic shear band. Moreover, larger slope of this band obtained for
v = 0.63 and 1.04 and observed at higher rate of shear, would indicate this type
of effect (Fig. 10).
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v=5.55¢10"% 1/s
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Slope of the straight line m
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F1G. 10. The dependence of the coefficiecnt m on the strain function .

It is also possible that our experimental results are correct and that discrep-
ancies between the theoretical and experimental approaches are caused by de-
ficiency of the theoretical model. This model does not take into account, for
instance, the influence of gradients of temperature on the process of shear. In
order to clear up these doubts, further studies and correlation of the investiga-
tions of temperature evolution with the microscopic observations, carried out at
various magnifications, are needed.

4, Conclusions

Investigations of temperature distribution on the surface of the shear paths
confirm the existence of the theoretically predicted fields of strain heterogeneity.
At the ends of shear zones these heterogeneities are manifested by the increase
of temperature, particularly noticeable in the initial stage of shear. As the de-
formation continues, the line describing the positions of maximum temperature
departs from the shear direction. It gives evidence for the development of the
macroscopic shear band, running along the specimen at a certain angle to the
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direction of shear. Differences between the angles predicted by the theory and
those observed in the experiment are probably caused by the flow of heat to solid
grips, by the influence of temperature on the process of deformation, and by the
assumptions adopted in the theoretical model. Explanation of these divergences
requires further investigations.

Measurements of the temperature evolution in central parts of the shear paths
indicate, that in the considered range of deformation, the temperature of these
shear paths increases rapidly with the increase of the shear rate, in spite of the
minor changes in mechanical characteristics. The disturbance of the monotonic
increase in temperature observed at ¥ ~ 0.3 can indicate the change of the
mechanisms of deformation. However, this should be confirmed by further inves-
tigations. Moreover, the shape of o12(7) curves, obtained at higher deformations
v > 0.7, gives evidence for the changes of the character of the process of de-
formation during the shear test. Up to the shear deformation 7y ~ 0.7, these
curves are smooth; at higher deformation, jumps of stresses occur, manifesting
the heterogeneity of the process.
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