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Gas filtration through porous coal medium
Effect of the gas constrained in micropores

D. LYDZBA (WROCLAW) and J.L. AURIAULT (GRENOBLE)

Gas FILTRATION through the macropores in porous coal media, with diffusion of a gas constrained
in micropores, is investigated by using the homogenization process for periodic structures, This
technique leads to the macroscopic model of the considered phenomenon by starting from the
description at the pore level. No prerequisite is imposed at the macroscopic scale. Three different
macroscopic models are obtained. Their ranges of validity are defined by appropriate dimensionless
numbers that describe the geometrical structure and the physico-chemical properties of the coal.
In two of these models, the micropore diffusion is coupled to the filtration process by a source
term in the macroscopic mass balance. Finally, we investigate a one-dimensional flow through a
semi-infinite coal seam, when the coal is assumed to be composed of grains. This simple example
demonstrates the strong influence of the characteristic sizes of the grains and of the macroscopic
sample on the filtration process.

1. Introduction

ONE OF THE GREATEST DANGERS occurring in some underground coal mines are
gas-coal outbursts. During this violent process, gas moving with a high velocity
and crushed coal mixture endangers the health and lives of the miners. To reduce
the hazard connected with such disastrous explosions, it is necessary to know their
causes.

The mechanism of a coal outburst is investigated in several papers [e.g. 1-4].
Many factors are shown to be responsible for its occurrence. Large pressures,
the kind of gas, the exploitation stresses, the physico-chemical and physico-me-
chanical properties of coal and internal structure of the coal porous medium play
here the most important role. Many factors lead to the numerous formulae for
an outburst danger. For instance, the influence of the geometrical structure on
the outburst peril is represented by the following empirical relation [5]:

Py + 107, + 10075

(1.1) S D A

where P is the mass of the grain fraction of a diameter greater than 4 mm,
is the mass of the grains of a diameter within the range 0.5-4 mm, and P is the
mass of grains of a diameter smaller than 0.5 mm. All these values are obtained
from the grain size distribution of a coal specimen that was primarily crushed
according to definite prescription. When & > 13, the presence of an outburst
danger is assumed.
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However, a quantitative model describing such an instantaneous phenomenon
is not available. We limit ourselves to the investigation of the early stage, before
the explosion.

One of the most important factors is the gas seepage through the porous
coal structure, representing a triple porosity system, with three different pore
scales [6]:

¢ The scale of network sorption is characterized by capillaries with the pore
radii up to 0.3-0.5nm, in which the absorption process resembles the phe-
nomenon of dissolution.

e The scale of micropores comprises capillaries with the radii up to 1.2- 1.5 nm.

o The scale of macropores comprises pores with greater radii, where single-
and multilayer adsorption takes place and where free gas is present.

Only a small part of the gas is in a free state. The main part of the gas is
constrained at the two smaller scales, i.e., the scale of micropores and the scale
of network sorption. Depending on the magnitude of its pressure, the free gas in
the macropores may be or may not be in a thermodynamic equilibrium with the
constrained gas. When the equilibrium is disturbed, the constrained gas acts on
the gas filtration in the macropores by its emission through the internal surface
of the coal. The intensity of gas emission through the internal surface directly
depends on the geometrical structure and the physico-chemical properties of
the skeleton [7]. Therefore it often results in a strong coupling between the gas
filtration intensity and the parameters mentioned above.

The aim of this paper is to show the influence of the geometrical structure
and the physico-chemical properties of the skeleton on the gas filtration pro-
cess. The description of such complicated systems as porous media, with strong
heterogeneities of high density, is practically possible at the macroscopic level
only, where an equivalent continuous medium is defined. This can be obtained in
the following two ways. The first way is the phenomenological approach. It was
used in [3] to investigate the behaviour of the gas-coal system. The second way
includes all the different averaging (homogenization) processes for investigating
the passage from the local to the macroscopic level. The main characteristics of
these processes can be found in [8].

Here we use the multiple scale asymptotic method. This technique has been
already used in several papers to model porous materials. Some of them con-
cern multiple porosity media. Deformable double porosity media saturated by an
incompressible fluid are investigated in [9], by starting from the Navier - Stokes
equations in the micropores and in the macropores. The analysis is extended to
compressible fluids in [10]. In [11], the authors assume a rigid skeleton and a
compressible fluid, with Darcy’s law satisfied in the micropores and in the macro-
pores. The analysis presented here is an extension of these works to the study of
a porous coal medium.

In the Sec. 2, after introducing the local description of the gas-coal system, we
briefly present the homogenization process. The flow in the macropores is de-
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scribed by the Navier -Stokes equations for compressible fluids. Because of the
small radii of micropore capillaries, we assume that the mass transport of the gas
constrained in the micropores is a molecular diffusion process. For simplicity, the
porous matrix is considered to be rigid. Since random and periodic microstruc-
tures lead to the same macroscopic description, [14], we assume a periodic porous
matrix. Then, the homogenization process is applied to our problem and different
macroscopic equivalent descriptions are obtained. The main result consists in the
fact that the macroscopic gas filtration can be modelled by three different kinds
of macroscopic descriptions. Their respective ranges of validity are defined by
the values of appropriate dimensionless numbers. The reader who is not familiar
with the mathematical approach used in the Sec. 2, can directly go over to the
Sec. 3, where the results are summarized.

The quantitative influence of the gas constrained in the microporous part is il-
lustrated in Sec. 4 of the paper. For this purpose, a one-dimensional flow through
a semi-infinite coal seam is investigated, when the geometry of the internal struc-
ture of coal is assumed to be composed of spherical grains. In particular, we
investigate the distribution of the gas pressure and its gradient near the long-wall
head, depending on the grain radius. Determination of the small parameter of
scale separation in each point of the seam enables us to show the domains of
validity of the three descriptions.

2. The homogenization process

Let us introduce the physics at the different capillary and pore scales. We
assume that these scales are well separated from the macroscopic scale. The
local physics and the separation of scales represent the basic assumptions that
lead to the macroscopic descriptions. The method of multiple scale developments
does not introduce any prerequisite concerning the macroscopic scale.

2.1. Local description

Let us simplify the coal system to a single porosity medium composed of a
solid part V; and pores V). The solid part V, comprises the porous matrix of
coal and the capillaries of the two smaller scales. Pores V), are the macropores
introduced in Sec.1. We assume that:

a. Flow of the gas in the macropores (in V) is described by the Navier - Stokes
equations of a barotropic liquid.

b. Motion of the constrained gas (in V}) obeys the Fick molecular diffusion
law.

c. The solid is undeformable.

http://rcin.org.pl
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With these assumptions, the local description (at the pore level) is given by:
e the Navier - Stokes equation:

(2.1) Av+ (A + p)grad(divy) — gradp = g-g—: + o(vgrad)v in V,,

e the equation of mass conservation for free gas:

do

2.2 — 4+ divpr =0 in V,,
ot v
e the ideal gas law for isothermic processes:
Oa . ,
2. = — V ,
(2.3) 0 . p in V,

e the equation of mass conservation for molecular diffusion:
ac . . ‘

(2.4) e div(Dgrad (') = 0 in V,.
Here v is the velocity vector of the free gas in the macropores, p is the gas
pressure, o is the gas density, (' is the overall concentration of constrained gas in
the solid, D is the effective micropore diffusion coefficient, p, is the atmospheric
pressure, o, is the gas density at atmospheric pressure, and p and A are the gas
viscosities.

The set (2.1)-(2.4) is completed with the boundary conditions on the interface
I’ between the solid and the macropores, i.e. continuity of the mass flux:

(2.5) (ov+DgradC')n =0

and continuity of the gas pressure. Due to relation (2.3), it is reduced to the
condition of continuity of the density. The overall gas concentration C' in the
solid part can be equated to the overall gas density ¢ 0. Therefore, the condition
of continuity of the gas pressure on /" is written in the form

(26) C = ¢g0.
The adhesion condition:
2.7) vy = 0.

Here n and 7 are unit vectors, normal and tangent to the common surface [,
respectively. ¢, is the volume occupied by the gas constrained in the unit volume
of the solid. In addition, we assume the thermodynamic equilibrium between the
phases at the initial instant.

In many practical cases the bulk volume of the considered porous medium is
very large compared to the size of the heterogeneities. Therefore a very good sep-
aration of scales exists which enables us to determine the equivalent continuous
macroscopic description.

http://rcin.org.pl
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2.2. Homogenization principle

The separation of scales implies the existence of an elementary representative
volume (ERV). In the very particular case of a periodic medium, the spatial
period represents the ERV. If [ is a characteristic length of the ERV and if L
is a characteristic length of the sample of coal or of the phenomenon under

consideration, we have

l
£ = — 1.
L<<

If the order of magnitude of { is known for a given material, L is determined by
the solution of the macroscopic boundary value problem (see Sec.4). Therefore
the value of ¢ is known a posteriori only. It is generally assumed that ¢ = 0.1 is
the limit for the separation of the scales to exist.

When the medium is random, the separation of scales implies a local asymp-
totic invariance. The volume averages of physical quantities in the ERV remain
constant under a translation O(/). When the medium is periodic, it results in the
local periodicity of the physical quantities. However, independently of whether
the medium is random or periodic, the structure of the macroscopic equivalent
description remains unchanged [14]. Therefore it will be assumed that the medium
is periodic, since in this case the process is much more powerful. Nevertheless, it
must be mentioned that the determination of effective coefficients needs a priori
different approaches for the two kinds of media considered. A periodic medium
is shown in Fig. 1. §2 is the unit cell, £2, is the solid part of 2, 12, is the porous
part of 2 and I' is the interface. The geometry of the pores inside the unit cell
can be chosen arbitrarily. Variation of the geometry does not modify the structure
of the macroscopic description, but only the effective coefficients appearing in it.

X
¥
2
¥
%

| |

FiG. 1. Schematic view of the medium at the microscopic level: unit cell (2D case).
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Two characteristic lengths / and L introduce two dimensionless space variables
x, y and each physical quantity F' is a function of these two variables and time ¢.

X X
= == F = F(x.y,1).
L’ y l’ (XY)

Variable x is the macroscopic space variable well suited to describe the macro-
scopic variations, while y is the macroscopic space variable well suited for the
local description.

The existence of two dimensionless space variables has to be taken into ac-
count in the expressions of the differential operators. Two equivalent descriptions
are then possible. The first description corresponds to the microscopic point of
view. We get:

X =

1
grad = T(E grad, + grad,),

oL fa, J (9 ;
(2.8) A= 7 (v Ay + 28 7z, (Oyj) + _\y) ,
div = %(s div, + divy).

The second description corresponds to the macroscopic point of view:

grad = l(gradx + 7! grad,),
1 a 0
. NN = — —l_1+25—1— a_ +S_2Jf 3
(2.9) A 12 ( dz; ((')yj ) “)

dv=-%mwf+s”dwﬂ.

Subscripts = and y denote partial derivatives with respect to @ and y, respectively.
By taking advantage of the small parameter ¢, all the physical quantities are sought
for in the form of asymptotic expansions

(2.10) F(x,yt) = FOxy, 1) + e FO(x,y,0) + 2 FO(x,y. ) + ... .

where F() is Q2-periodic in y.

The method consists in incorporating such expansions into the set of equations
that describes the phenomenon at the local scale, and in identifying terms with
the same powers of <. Before that, it is necessary to normalize all equations of the
local descriptions. This means that the local description is made dimensionless
and the dimensionless numbers are evaluated according to the powers of €. A
quantity ¢ is said to be O(eP) if P! « ¢ <« P71

The result of the homogenization process is a set of equations satisfied by
the first terms of the asymptotic expansions, that represents the macroscopic
description, within an approximation of the order of «.
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2.3. Estimations

Equations (2.1), (2.2), (2.4) and (2.5) introduce the following dimensionless
numbers:

lgrad p| [(A + p)grad(divy)|
Q = =—1, =
1] PEY
l v
_ %o _ le(vgrad)v|
Ry = , R, = ———
211) Ay |1 Av]
(2. do ocC
, ot ot
S = ——, M= ————
“7 divoy| “ 7 |div(D grad )|
_ _ lovl
Fe = IDgradC'|’

Let us use the microscopic point of view. Therefore [ is the characteristic
length for estimating the dimensionless numbers (2.11). Using the characteristic
values v, p., 0., C., t. of the velocity, pressure, density, concentration and time,
respectively, the dimensionless numbers (2.11) can be expressed by

(21 = L’ ][l = ! )
JLve 7
)12 .l
Ry = 9‘[ . R, = 2%
253 e H
e g, = M, = e
Dl = T Map = D’
0.1
o EEE
R ;T

We limit our study to the case when the gas flow in macropores is slow and
quasi-permanent. It means that the Reynolds numbers E,; and 2, are assumed
to be small, i.e.,

Ra € 0(¢) and Ry < O(¢).

We assume that the gas viscosities A and ;o are of the same order of magnitude
(with respect to ¢). The dimensionless number //; becomes

11, = 0(1).

The number @, can be estimated by physical considerations [15]. The gas flow is
forced by a macroscopic gradient of pressure. Therefore,

lgrad p| = O (%) .

http://rcin.org.pl
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Since the gas is flowing through pores of size /, the characteristic length in evalu-
ating the viscous term is [:
HU:
|pAv| = O ( 7 ) )

For slow and permanent flows, the pressure term in Eq.(2.1) is equilibrated by
the viscous term. It follows that
JLv, De
=0((=
{& ' ( [,) ’

and the dimensionless number (); becomes

pel

Q=0 ( ) = 0(™).

Je

C

Estimates of the dimensionless numbers 5, and A, are obtained from the con-
ditions for the homogenization to be possible. As it was shown in [16], number
Su should fulfill the following inequality:

(2.13) Su < 0(e).
In the same way it is easy to obtain a similar restriction on M:
(2.14) My < O(1).

Now, by taking into account the definitions (2.12) of 4, S, and Ay, the following

relation can be written:
""[” 0(‘.

‘S‘lf ("1‘ )
Assuming that p. and C. are of the same order of magnitude, and assuming
for the moment that

])cl =

My = O(™) and Su = 0(<*),
the following estimation of F; is obtained:
P =0(E"7),

where m and s are non-negative integers.

It is well known that the filtration coeflicient is very much larger than the
coefficient of the micropore diffusion, and that the main flux of the gas flow
through the porous medium is due to the filtration process. Therefore we confine
our study to the case

Pa > 0(1).
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This restriction, together with the above estimation of P, leads to the inequality
for m and s:
m—s<0.

In the following, numbers m and s will be used to distinguish between different
types of the considered phenomenon.

On the other hand, it is interesting to introduce two characteristic times 7p
and Ts of the fluid diffusion and fluid seepage, respectively:

2 L

TS -1 D -1 S‘[[ —m-1
2.1 A= € =c =g
( 6) fTD [l.',: A[“
Finally, by defining the dimensionless variables
— - P gy | wo ©
(2.17) " = B P B 0 5 ( c.

and by taking into account the above estimates of the dimensionless numbers
and the relations (2.8), we obtain the following dimensionless form of the local
description:

(2.18) (szﬂr + 2¢ ;) (39_) + _\U> v' + (cgrad, + grad )(c div, + divy v
dx; \dy; ‘ :

()V_ + eo"v"((c grad, + grad )v"),

—(grad, + 5‘1grady)p‘ = ¢cp” 5
do™

(2.19) e’ 0‘{* + (e div, + div,)(e"v") = 0,
* Pe Lo« :
2.20 =—=—p in 2,
( ) g g(:‘ pa] !
m ()C* : . . -
(2.21) i v (¢ div, + div,)D(¢ grad, + grad, )C™ =0 in {2,
(2.22) (€™ 7°0"v" + D(c grad, + grad )C")n = 0,
(223) €= Zo,

(2.24) vinp=20 on [.
At the initial instant of time, the thermodynamical equilibrium requires that

*

C*= &d)sn

AL everywhere.
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2.4. Macroscopic description

We introduce into the normalized set (2.18)-(2.24) asymptotic expansions
(2.10) for v*, p*, p* and C*. Grouping the terms with the same powers of ¢, we
get sets of equations to be satisfied by the consecutive terms of the asymptotic
expansions. For the sake of simplicity, the asterisk marking the dimensionless
variables is omitted in the following considerations.

From Egs. (2.18), (2.20), (2.23) and (2.24) we obtain:

gradyp(o) = 0.

(2.25)
AV + grad, (div, )V — grad,p° — grad p(") = 0,
(2.26) 00 = ”—flé’ﬂp“’) in 2,
Oc Pa
(2.27) o0 = ;’ bs0 ),
(2.28) vOp =0, viUy=0 on I

Equations (2.19), (2.21) and (2.22) directly depend on the values of the par-
ameters m and s. Therefore, to obtain the sequence of equations for the con-
secutive powers of ¢, it is needed to assume the accurate values of m and s.
Different values of m and s lead to different sets of equations and, as a conse-
quence, to different equivalent macroscopic descriptions. Four cases of interest
can be distinguished:

Case 1. Model 1. Diflusion-filtration coupling with memory effects, s = 1
and m =0, A =0(1), Tp = O(Ts).

Case II. Model II. Classical diffusion-filtration coupling, s = 1 and m = 1,
A=0("), Tp > O(T5s).

Case III. Model III. Classical seepage law, s > 2 and m > 0, A = O(¢),
Tp < O(Ts).

Case IV. Non-homogenizable situation, s = 0 and m = 0, A = O("").
Clearly in this case the condition (2.13) of homogenizability is not fulfilled. Case
IV leads to a non-homogenizable situation, i.e. a situation where an equivalent
macroscopic description is not possible. A direct proof of that is presented in the
Appendix.

Model I. Diffusion-filtration coupling with memory effects, s = 1, m = 0,
Su = O(E), ﬁfu = 0(1), Pd = O(E_I), TD = ()('1‘5).
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With this estimation we get from (2.19), (2.21) and (2.22) the following equa-
tions:

div, (Q(O)V(O)) = 0,

(2.29)
90D | OO0 4 div (DO 4 O :
T + div,. (") + div, (o' VY + V) = 0 in £,,
aC©
(2.30) o — div,(D grad, CO) =0 in 0,
(2.31) ¢Ovn = 0,

(9(0)\'“) + orWy(O 4 DgradyC(O))n =0 on [

Equations (2.25)-(2.31) give a sequence of boundary value problems for the
first terms of the asymptotic expansions.
The first problem following from (2.25), (2.26) leads to:

2O = Oy p).
(2.32) / ] )
y(o)(x. ) = 5 é)l;r)(o)():(, t).
O¢ Pa

The first terms of the gas pressure and of the gas density are locally constant over
the macropores §2,,.

The second problem is given by (2.27) and (2.30). It is similar to that discussed
in [17]. To solve it, the following substitution is applied:

0.
U(x,y,t) = c = %g‘)sg(o)(x.().

This leads to the set of equations

au . o, 00O
',—t' = dlvy(DgradyU) = —agDSU—l

Ux,y,t) =0 on [I.

in f2,,
(2.33)

The thermodynamic equilibrium at the initial time gives
U(x,y,0) = 0.

By using the Laplace transform, we obtain

) »(0)
aL(U) — div, (D grad, £(U')) = —%“—(,‘asz: ((}gt ) ’

(2.34)
LWU) =0 on [

http://rcin.org.pl
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where a is the complex Laplace variable and
LU) = /Ue“” dt.
0

The right-hand side of (2.34); does not depend on the microscopic space vari-
able y.
Therefore the solution of (2.34) is a linear function of this forcing term:

9 ,(0)
(2.35) L) = - £6,L(G 6. D) (‘)g, )

where L£(G(y,t)) is the solution of (2.34), when the right-hand side of (2.34), is
equated to unity. We use now the volume average defined by the formula

= %/nm,

and we apply the inverse Laplace transform to (2.35). We obtain from the con-
volution theorem

e Loy [229 G0
(2.36) ) = -2, / - 90D it - ryyar.
0

Finally, introduction of the concentration gives the solution of the considered
second boundary value problem in the form:

(2.37) (CY = =24 ((1 ~ ¢)o® — j g S(O (Gt - T))(zr) ,

0

where ¢ is the porosity, ¢ = §2,/f2. The average is evaluated by assuming the
concentration C'”) to be zero in £2,.

Relation (2.37) shows that the gas concentration depends on the history of
the first time-derivative of the gas density. Function (/(¢) represents a memory
function.

The third problem to be solved is given by the equations (2.25);, (2.28)4,
(2.29)1, (2.31); and the condition of R2-periodicity of p(!) and v("). By taking into
account the relations (2.32), this set becomes

AN — grad p© - gradyp“) = 0.
(2.38)
div,v@) =0, v =0
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The system (2.38) represents the classical problem of flow of an incompressible
fluid through a rigid porous medium. At this stage, p{?) is considered as a known
function of x. The unknowns v(¥ and p(!) are linear functions of the macroscopic
gradient grad ,p(® (see for example [18, 19]). In what follows, only v(?) is needed:

9,,(0)
©) _ 4 o Op -
v] Y —ki; (y) Or, in £2;.

By taking the volume average of v{?), we obtain the well-known Darcy law:

O\ _ 0])(0)
(2.39) (o) = —(ky; T

The fourth problem leads to the macroscopic mass conservation law and is
given by (2.29),, (2.30) and (2.31),. By integrating (2.29), with respect to y on
2, and by using the divergence theorem, we obtain

<¢>(')§(IO) + div, (Q(m <,'(0)>) 3 |!1_2| / (0“’V“’) i g‘o)v“)) —

52,

By taking now into account (2.30) and (2.31),, the above equation leads to the
following form of the macroscopic mass conservation law:

000 (O
i i (0) /(0) -
(2.40) Y + div, (Q (v >) + T 0

The last term in the mass balance equation (2.40) represents a source term due
to the diffusion process in the micropores.

Equations (2.32), (2.37), (2.39) and (2.40) represent the macroscopic descrip-
tion. Returning to the physical variables, they assume the form

p© = ],((')(xﬁ 15,
0q
Q(O)(X, t) = ;)_2)(0)()(‘ 1),

@

t
9000
(241) (C®) = o, ((1 - ¢)e® - ] %,—(G(r - r)>dr) ;
0
SR (V)
(2 = _ (ki) p 0070
‘ oo 0X;
2o® (')(C'(O))
, 00 v (0 (0 "
1) T + divy (g (\ >)+ T = 0.

The set (2.41) exhibits the memory effects, similarly to [9, 10] or [11].
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Model II. Clasical diffusion-filtration couplings, s = 1, m = 1, 5y = O(¢),
My = O(¢), P = O(1), Tp = O(s 7' T5).

In this case we get from (2.20), (2. ”2) and (2.23) the following sequence of
equations.

div, (6@v©®) = 0

@)
% + div, (o) + div, (0O + o) = 0 in 0,
243) div, (D grad,C'¥) = 0,
’ o) .
(()( —div, (D grad,C®) - div, (D grad,C'” + D grad, ") =0 in £2,,
040 4 Oy =
(2.44) (o™v D grad,C"")n = 0,

(eOv) + oWy 4 D grad, CO + Dgrady('(”)n =0 on /.

Case II is described by the above system, together with Eqgs. (2.25) - (2.28).

As before in the Case 1, the first boundary value problem to be investigated
is given by (2.25); and (2.26), and it leads to the relations (2.32).

Equations (2.43); and (2.27) constitute the second boundary value problem.
By using an equivalent variational formulation, [17], and by taking into account
the equation (2.31),, we obtain

(2.45) CO = £ ( 00, 1)  in £0,.

The third problem is described by (2.25),, (2.28);, (2.42), and (2.44),. The
above result (2.45) transforms Eq.(2.44), into the relation (2.31);, and the set
under consideration becomes equivalent to the corresponding one investigated in
the Case I. Therefore the Darcy law (2.39) is valid in this case too.

The macroscopic mass conservation law follows from the fourth boundary
value problem. Tt is given by the set (2.42),, (2.43), and (2.44),. Using the above
results, the considered system can be rewritten in a simpler form:

(0)
‘)S[ + div,. (0Ov?) + div, (o'Dv® + pOy(Dy = 0,
ac® , ,
(2.46) T div, (D grad O 4 D grad ¢ 1y =0,

(0 OV + pMyO 4 pgrad, O + Dgrady('“))n = 0.

By applying the same method as in the Case I, the set (2.42), (2.46) yields the

macroscopic mass conservation law:

00
ot

+div, (69 (V) +.1- 9% <o

(2.47) )
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As in the Case I, the last term occurring in the above equation is a source term
due to the diffusion process. Therefore, as in Case I, the gas constrained in the
micropores interacts with the filtrating gas. However, the coupling is now clasical,
and it does not introduce the memory effects.

The macroscopic equivalent description is given by Eqgs. (2.32), (2.39), (2.45)
and (2.47). When they are expressed in terms of physical variables, they have the
following form:

p(ﬂ) = p(O)(x t),
o NX, 1) = 220X, 1),
p

a

(2.48) C® = ¢, 00X, 1),
<v(0)> - _ (kij) u)lzoi)(o)
! ) 0xX;
900 0((0)
¢ ;f + divy (Q(O)<V(O)>) + (1 -9) =0

Model III. Classical seepage law, s > 2 and m > 0, 5y < (’)(52), My < 0(Q),
Pa > 0(1), Tp = O(Ts).

For simplicity, we do not present here the homogenization process. The pro-
cedure is very similar to that of the Cases I and II. Tt results in a macroscopic
description similar to (2.48), without the time derivatives.

The Case III describes, at the macroscopic level, the stationary gas filtration
in the micropores, without any influence of the diffusion. The macroscopic equiv-
alent description is given by the following set:

Op(0)
< (0> B /t 2(()])\

divy (g(0> (W”)) = 0.

Moreover, the gas concentration in the solid is given at the first order of magni-
tude by
for M, < O(¢)

(2.49)

CcO = ¢,60(X, 1);
for My = 0(1)

F 000
() =9, ((1 -0 - [

0

(G(t—T)) (lr) i

where R
PO =X, 2O )= ;)—”p“”(x, t).

a
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3. Remarks on the macroscopic behaviour

The passage from the pore scale to the macroscopic scale shows three different
equivalent macroscopic descriptions, depending on the value of the dimensionless
numbers:

Caske 1. DiflTusion-filtration coupling with memory effects

(0) -
JL

ot
ap® J ()1) ()
7—(,955[- J () ((r(f—T))([T —0,

(CO) = ¢, ((1 - ) - / ‘);1 2 (it - 7)) f‘f) -

0

(3.1) + ¢5(1 - ¢)

Case II. Classical diffusion-filtration coupling

0 p(O)
ot

)[)(0)

O—F = 0,

~ div (Uz L graa 0 )2) N
(32) (,(0) = O,sQ(O)(x'f)'

o
ap . As in the Case I,

The coupling is represented here by the term ¢4(1 — U)
the coupling term disappears when ¢, = 0.

Case III. Classical seepage law

(3.3) div (U v 1L grad (p\") ) = 0,

and, additionally,
for My < O(¢)
clO = c)_sy(m(x. 1);

for My, = 0O(1)

t

(CO) = ¢, ((1 — ¢)o® - / ‘)(’; (=) dr) '

0

The above equations have to be supplemented by suitable initial and boundary
conditions for p(®,
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We remark here that the physical meanings of the macroscopic quantities p(®,
0@ and (C©) do not pose any problems since they are equal or proportional
to the corresponding local quantities. Relations (3.1); and (3.2), represent the
constitutive equations of the gas. They give the concentration in the micropores as
a function of the gas density in the macropores. The gas filtration is governed by
the classical Darcy law. The macroscopic mass balance is represented by (3.1); or
(3.2); or (3.3);. Their respective ranges of validity are obtained from the values of
the dimensionless numbers. However, the description I is the most powerful since
it comprises the descriptions II and III as particular behaviours. The descriptions
IT and IIT are obtained in the limit from description I for slow and rapid transient
excitations, respectively.

Let us now study the total mass flux of the gas. It is the sum of the filtration
flux and the diffusion flux,

= p(v) — (Dgrad C).

To determine the contribution of filtration and diffusion in the total {lux, we use
again dimensionless variables. For the sake of clarity of the description, we do
not omit now the asterisk which denotes the dimensionless variables. Within the
approximation of O(<), the above relation becomes:

DC. e

FO = .0, | 0" <v‘m)> - — (5 grad (") + (grad, ("(('))) .

0(’”\71 v
Now, from the definition (2.12) of the surface Peclet number

DC'.

~1
= P R
0U:1 &t

[fong

we have
F? = g0, [g*(o)(v*m)) o (s grad (C~O) + (grady(,"‘(o)))] :
By using the estimations presented in the Sec. 2, it becomes in all cases
[FO = 000 O(v )| < Oe).

The total mass flux is equal to the pore filtrating flux within the approxima-
tion O(g).

4. One-dimensional problem

To emphasize the influence of the gas diffusion, let us consider the one-dimen-
sional macroscopic boundary value problem. Consider the gas filtration through
a horizontal and semi-infinite coal seam. In addition, we assume that:

e the coal stratum is an isotropic and homogeneous porous medium of constant
thickness,

e the roof and the floor are impermeable to the gas,
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e the mine opening is maintained at the atmosphere pressure p,,

e the initial pressure p; in the coal seam is constant,

o the long-wall head moves with a constant velocity w.

With the above assumptions it is possible to change the problem to a steady
state problem. We introduce the moving system of coordinates (&;. &. &3), Fig. 2,
with £, = 27 — wt and & = 0 on the long-wall head. The derivatives are trans-
formed into the form:

8 d d )
4.1 N S A
ehll) dr, 0§ at . Yog
Jlxz ¥ gz

impermeable layer

wt t1=X,-owt
X1

FiG. 2. Geometrical scheme of the one-dimensional problem.

We investigate three boundary value problems where one of the three descrip-
tions is assumed to be valid everywhere throughout the seam:
I. Gas filtration with diffusion in the solid part and with memory effects (the
model (3.1), Case I).
II. Gas filtration with gas diffusion in the solid part and without memory effect
(3.2), Case II.
ITI. Gas filtration without any gas diffusion in the solid part (the classical
model described by (3.3), Case III).
The solution of the Problem IIT can be obtained by direct integration of the
differential equation describing this case. Taking into account the boundary con-
ditions
dp o " )
a¢, = P =i at & >0,

P=DPa at & =0,

gives the gas pressure distribution and its gradient in the form [4]:

(k)1

Pi— Pa
4.2 = e —p+piln( =—2),
(4.2) 3 Ppw [p P (Mi))]
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(43) L= 2B -]

06— (M Lp
Consider now the Problem II. Tt is easy to conclude that its solution can be

obtained by changing ¢ into ¢ + ¢,(1 — ¢):

_ 0k [ N (p,- - pu)]
(4'4) El = (¢ s (,7)5[] - Q')])/Iu) ])u. = p 3 1"! ln ?)I - 7) 3
dp _ [¢+ ¢,(1 — @)]wpn []i ]
@) G T we p

Solution of the Problem I necessitates the memory function ((/(¢)). It is de-
fined from the set (2.34), where the right-hand side of (2.34), is equal to unity.
In order to present a closed analytical (not numerical) form of the memory func-
tion, we confine our study to a very simple model of the periodic cell. We assume
spherical grains with radii /. The spatial structure of the grain packing is shown
in Fig.3. The grains are assumed to constitute of a homogeneous and isotropic
microporous medium.

['1G. 3. Micro-gcometry of the porous coal medium.

By using spherical coordinates and by putting // (r.t) = G/(r,t)+r, the set (2.33)
can be written in the form:
2L (r, 1)
dr? -
L(H(r,t)=0 for r=20 and r=R,

where 7 represents the radial coordinate.

al(H(r,t))— D
(4.6)
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The eigenvalues and eigenfunctions associated with the set (4.6) are:

mm\ 2 2 mm
Am =D ; m = ‘
(1{) 4 15“”(1{ )

By looking for L£(#(r,t)) in the form:

L‘(II (l,[)) = Z (lm‘romﬂ

m=1

we obtain
{ 2 s cos(mm)
Uy = — mm),
a+ A, mw
and

cos(mm) . mm
( ) Sin ( ‘ ) i

m mT I

o0 1
L(H(r, 1) = -2R =
m=1 !

The Laplace transform of the function (.'(r, 1) is

e 2R cos(mmw) . [(m~w
L(G(r, 1)) = —— Z e /\ - sm( 7 r).
m=1 m

Finally, by taking the volume average of the above equation and applying the
inverse Laplace transform, we obtain ((/(/)) in the form

al — 1 - mir 2
(4.7) Gy = > —¢ Dimuf Ry

m=1

Let us return to the Problem I. The memory effect in Eq.(3.1) is given by
the convolution product of the memory function by the time derivative of the
pressure. By integration by parts, this product can be presented in the following
equivalent form:

t

(4.8) / %(G(i —r))dr

0

= 1 R J"p Jd"p 2
n+l 1 ! _|vP —D(kr/R) 1}
Z Z( ]) o l: (””_) ] {[UT”},:[ [(')T,,_]rzo" .

n=1m=1

By using the transformation rules (4.1) and by taking into account the above
relation, we reduce the mathematical model of the Problem T to

(49)  —gwat - TSR (- gk
1 1

RZn )IL+1P
n+1 =
—Ps Zw’ [rgintl [” )571—1—1 =0,
1

n=1

http://rcin.org.pl



(GAS FILTRATION THROUGH POROUS COAL MEDIUM 467

where
o0 1 n+l
dn = 721 (mz) '

Clearly, Eq. (4.9) is too complicated for analytical solution. Therefore, a numerical
iteration procedure is introduced to obtain an approximate solution. It gives the
distributions of the gas pressure and its gradient. The results are plotted in Fig. 4
and 5, together with the results of III and II. The gas is carbon dioxide. The
following typical values have been used in the calculations:

¢ macropore porosity: ¢ = 0.05,

¢ micropore porosity: ¢s = 0.11,
4

(k)2 _
=10 MNs’

o coeflicient of filtration:

. . . _ym
e diffusion coefficient in the micropores: D = 1071 —,

s
o radius of grain (three cases): Ry = 1073 m, Ry = 2x1073m, B3 = 4x10~3 m,
e initial gas pressure in the coal seam: p; = 4 MPa,
e velocity of the long-wall head: w = 8 x 10~ m/s.
)
(MPal

it L " 1 T 1

0 i 5 10 5 20 €iml
FiG. 4. Distribution of the gas pressure in the coal scam: 1 - Solution II, 2 — Solution 1
for B = 1mm, 3 — Solution I for 2 = 2mm, 4 — Solution I for = 4 mm, 5 - Solution IIL

Figure 4 and Fig.5 show that II yields larger values of the gas pressure and
of its gradient, whereas III gives lower values. The solutions TIT and II can be
considered as bounds for the solution I. When there is no available information
about the geometrical structure of the coal, they can be used as rough approxima-
tions of the pressure and its gradient. Note, hovever, the large difference between
the two solutions IIT and 11, in particular between the pressure gradients at the
long-wall head.

The most important factor responsible for the occurrence of a gas-coal out-
burst is the gradient of the gas pressure at the long-wall head [4]. Tt is shown in
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grad (p)
(MPa/m]
5 -

0 o5 a0 a5 020 ¢im]

F1G. 5. Distribution of the gradient of the gas pressure in the vicinity of the long-wall head:

1 — Solution II, 2 — Solution I for R = 1mm, 3 - Solution I for R = 2mm, 4 — Solution I for
R =4mm, 5 - Solution III.

Fig. 6 as a function of the grain radius. We conclude that the solution I converges
to the solution IT when the radius of the grain becomes smaller and smaller, and
converges to the solution III when the radius becomes larger and larger. The
curve in Fig.6 shows also that a smaller radius yields a larger value of the gas
pressure gradient at the long-wall head. We can immediately see the important
role played by the grain radius or, more generally, the geometrical structure of
coal. Our results agree with the empirical relation (1.1).

grad(p)
[MPa/ml]
5 -

]0 7 2 3 4 g 6 R (mm]

F1G. 6. The gradient of the gas pressure at the long-wall head versus the grain radius.

It is interesting to investigate the domain of validity of each description in the
seam. It is now possible to estimate the macroscopic characteristic length L(£) in
each point of the seam, by using

0])/()2])
— o6/ oer
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The solutions I, IT and ITI give approximately the same result. The resulting pa-
rameter ¢ is shown in the Fig.7. It is seen that ¢ is small everywhere, except in
a thin layer at the long-wall head where it goes to infinity. In this region there
is no separation of scale and, consequently, there is no macroscopic description.
The solutions I, IT and TIT remain valid outside this boundary layer, i.e., approx-
imately where ¢ > 0.1. The results in Fig. 6 are nevertheless valid because of the
momentum balance applied to the boundary layer.

£
art

oor t

0001 ¢

00001 1 \

I WA S S | L 'l L L I 1

. ) 60 80 ¢

Fia. 7. Distribution of the paramcter of scale separation ¢ in the coal scam.

The domain of validity of each description can be investigated by using the
dimensionless number:
Tp _ 6_15” _ B

A= —

Ts My v’

where v, is given by
lcl Jap
Ve = — 1 —.
p 96
We have A = O(1), O(¢~!) and O(¢) in the Case I, 1T and III, respectively. A, ¢
and ¢! are plotted for comparison in the Fig.8. The figure shows four regions:

& < 0.01 m, i.e. &> 0.1,
corresponds to the boundary layer where no macroscopic description is possible.
0.0Im< & < 0.3m,

near the boundary layer, A = O(¢), Tp = O(<Ts), and the classical description
IIT can be applied.
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03m< & <20m, A=0(1), Tp = O(Ts).
and the description I, with memory effects has to be considered.
£>20m, A=0("1), Tp=0("'Ts),

and the description II, classical coupling, is valid.
NH
ur I 1

70000

100 3

aor ¢

G 001 o1 i 10 100 1000,

FiG. 8. Domains of validity of the three models. I: A = O(1), Model I IT A = O(=~") Model 1.
I A = O(¢), Model TII. NH: non-homogenizable.

5. Conclusions

The above study shows that the influence of the diffusion process in the mi-
cropores on the gas filtration in the macropores depends on a source term in the
macroscopic equation of mass conservation. The filtration and the simultaneous
diffusion of the gas are modelled by three different macroscopic descriptions.
Appropriate dimensionless numbers, related to the physico-chemical properties
and the geometrical structure of the coal, determine the model to be used. In
particular, it is shown that the gas concentration exhibits memory effects if A, the
ratio of the diffusion to the convection characteristic times, is of O(1). When A
decreases to A = O(¢), the memory effects disappear and the model converges
to the classical filtration model. The diffusion in the solid part is ignored. When
A increases to A = O(¢~"), the memory effects disappear too, and the model
converges to a filtration-like model. The behaviour is described by an equation
similar to the classical filtration process, but where the porosity of the macropores
is replaced by the total porosity of the micropores and the macropores. The two
last behaviours, i.e., the filtration without any diffusion and the filtration with
the classical difTfusion process, give bounds for the solution of the filtration with
memory eflects.
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Appendix
Non-homogenization situation: s = 0, m = 0 (Case 1V)
From (2.19), (2.21) and (2.22) we get
0@

(A.1) T div,(6 v =0 in 2,
'(0)

(A.2) 8((5” - divy(DgradgC(n)) =0 in {2,

(A.3) (e VO + DgradyC(O))n =0 on I.

The above set, together with Egs. (2.25)-(2.28), yields the sequence of the bound-
ary value problems to be solved.

The first one is described by (2.25);, (2.26) and leads again to the rela-
tion (2.32).

Equations (A.2) and (2.27) determine the second problem. They are equiv-
alent to the corresponding ones in the Case I. Therefore the first term of the gas
concentration satisfies the relation (2.37).

Now we solve the fourth boundary value problem described by (A.1), (A.2) and
(A.3). Taking the volume average and using the divergence theorem, Eq. (A.1)
takes the form:

Do®
Ay

1
= OOy /¢ =
+ 7 /(y vindS = 0.
A5,
The condition (A.3) transforms the above equation into:

(')Q(O) 1 . .
¢ T m /(D grady(-(”))n dS = 0.
df2.

Now, by using (A.2) and again the divergence theorem, we obtain the following

relation:
000 i)(('(o))
o= == )
)l ot

Substitution of (2.37) leads to

a0 o, D0 9 / 20
= 5. — &b > — — s l' -— = Uu.
o T % ((l o T m U g \GAE ~ Thhdr .

0

Application of the Laplace transform and the convolution theorem leads to the
equation

()1)(0) D¢ 0.
g Bt p— = do(1 — B) + =28, L((C =
L( . )[ 26,(1- )+ a 20, L(GOD)] =0.

C

where a is the complex Laplace variable.
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The above relation must be valid for any values of « and for any geometry of

the period (2. Therefore, it is clear that
d00)
® ] =0
ot
and then

Thi

09(0)
a
s condition leads to the rescaling of the dimensionless number S,;. This one

becomes of the order of magnitude O(<), that is in a contradiction with our initial
assumption Sy = O(1). Remark that Sy = O(1) does not satisfy the condition
(2.13). We conclude that the case under consideration is not homogenizable.
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Influence of the Schulgasser inequality on effective moduli
of two-phase isotropic composites

S. TOKARZEWSKI and J.J. TELEGA (WARSZAWA)

Tue amm of this paper is to study the effective transport cocfficients A. of macroscopically isotropic
two-phase composites for the case, where diclectric cocthicients Ay and \; of components are
real. As an input we take: (i) NV cocthicients of the power expansion of A\.(r) at = = 0, where
z = (M\p/ A1) — 1; (ii) the analytical property of A.(z), namely A.(—1) > 0; (iii) the Schulgasser
incquality Ae(x)A.(y) = (M)% y = —x/(x + 1). By starting from (i), (i) and (iii), an infinite st
of bounds on \.(z) has been established and compared with the corresponding ones reported in
litcrature. As an example of illustration of the obtained results, the regular arrays of spheres has
been investigated numerically.

1. Introduction

THE EFFECTIVE TRANSPORT coeflicients A, of composite materials may be evaluated
by the method of bounds [5, 6, 7, 8, 12, 19, 20]. The bounds become increasingly
narrow, when more information concerning the geometrical properties of the
medium is available.

Milton has derived in the complex A.-plane an infinite set of narrowing bounds
on A.. The calculation of his bounds requires the knowledge of successive terms
of the power expansion of A, in Ay — A;. The coefficients of the expansion are
geometrical in nature and their values are determined by the correlation functions
of disordered geometry. Milton’s approach is based on an analytic representation
of the effective dielectric constant due to BERGMAN [4]. The problem of complex
bounds was also discussed by FELDERHOF [12], who obtained the estimation of A,
with the help of four characteristic geometrical functions introduced by BERGMAN
[5]- Recently, interesting continued fraction representations for the set of complex
bounds on A\, were presented by BERGMAN [6] for three-, and by CrLArRK and
Micron [8] for two-dimensional systems.

The fundamental estimations of A, («) reported in literature [20] do not exploit
the well known Schulgasser inequality A\ (:)A.(y) > (\)% y = —o/(x + 1) [22].
Direct links of this inequality with bounds for isotropic, inhomogeneous materials
has been advocated by MiLton [20, p. 5297], see also [7, p. 927]. He suggested
that some of the existing bounds on A, (x) are not the best, cf. [20, p. 5297]. A
simple case of incorporation of A, ()A, (y) > (A)? into the second order bounds
on A.(x) only, was studied in [6].

The main aim of this paper is to include the Schulgasser inequality A.(x)A (y) >
(M)% y = —x/(x + 1) into an infinite set of fundamental real-valued bounds on
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Ac(z) reported by Micton [20]. This aim is achieved by applying Padé apprexi-
mants and continued fractions to the formulation of a method of incorporaton
of Schulgasser inequality into lower and upper bounds on scalar, bulk transport
coefficients of two-phase media, see Theorem 2.

2. Basic definitions and assumptions

This study is concerned with the effective dielectric constant A, of a composite
consisting of two isotropic components of dielectric moduli Ay, A; and volume
fractions ¢, and ¢, = 1 — ¢, respectively. The overall dielectric coefficient A, is
defined by the linear relationship between the volume-averaged electric field (U)
and volume-averaged displacement (D):

(2.1) (D) = A,(U).

The value (-) is averaged over a representative volume or a basic cell. In general,
A, will be a second-order symmetric tensor, even when A; and A; are both scalers,
and will depend on the microstructure of composite. Our consideration will be
limited to one of the diagonal element of A., say A., which has a well known
Stieltjes integral representation [4, 9, 10]

1

= dvy(u)
(2.2) G(z) 0/ o
where
(2.3) z=h-1, h = ﬂ
2\

Here G'(2) is defined for @ € (—1, ), cf. [6, 12]. The spectrum ~(u) appearing
in (2.2) is a real, bounded and non-decreasing function determined for 0 < u <
oo. The representation (2.2) was introduced by BERGMAN [6] and referred to as
characteristic, geometrical function.

Let us consider the power expansion of (2.2)

(2.4) G(z) = Z Gz,
n=1
where
(2.5) &, = - /'u.”_l dy(u).
0
For composite materials the coefficients &/, (n = 1.2...., ) are finite and series

(2.4) is convergent for |z| < 1.
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Now we are in a position to introduce the Padé approximants to Stieltjes series
(2.4). To this end we consider the following rational functions

(N, () _M+J
L 3 -+ a x
(2.6) (M + /M) = @) “-‘”+(-’,I . J=0,1,
Pr(x) 1+ 0" ) + o) M

with the power expansion of [M + J/M]ata =0

(2.7) [M + /M) = Guz",  J=0,1

n=1
The functions (2.6) are the subdiagonal (J = 0) and diagonal (J = 1) Padé
approximants [M + J/M] to the Stieltjes function (2.2), provided that

(2.8) Guy=Gn for n=12,..2M+J,  J=01

Padé approximants (2.6) can also be expressed in the form of S-continued frac-
tions

Nnr o gar G2 +J%
2.9 M+ J/M@) =82 22 SN T=08,
@9 MM =TT BT R

equivalent to the following explicit expression, see [1, 26]
91z
g2
g2 1
1 4 J2M+d-
I+ gonr 412

[M+ J/M](z) =
T

The coefficients g1, ..., g2as+s appearing in (2.9) are positive and uniquely de-
termined by the 2M + J coefficients &, (n = 1,2,...,2M + J; J = 0,1) of a
Stieltjes series (2.4).

After this preparation, we can recall the infinite set of fundamental bounds
on A.(z) derived by MiLton in [20]. By expanding his estimations Uy o(e) and
Vno(e) (o = z/(z +2); 2 = A\y/A — 1) [20, p. 5296] into S-continued fractions
dependent on z, we obtain:

THEOREM 1. For two-phase inhomogeneous media, the S-continued fractions
(2.9) generated by power expansion (2.4) obey the following inequalities:
(i) If > 0 then

(2.10) Vno(z) 2 (= 1)’\' -2 (- DY N ().

(i) If =1 < x <0, then

, Ae .,
2.11) Vivole) < 1 < Unol),
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where C'n 41 is given by the following recurrence formula

(2.12) Ci=1, Co=—2L_ p=172..N,
l—(p+'l

while Uy o(x) and Viy o(x) take the following S-continued fraction forms

Uno(z) = 1+ 5= = i,
(2.13) A :

r 91T gNT ~N+1%

Vno(@) =1+ — ——

N.o(z) 1 + 1 4...4 1

Here Uy o(x) is a Padé approximant given by (2.9) to power series (2.4), N denotes
the number of known coefficients of a power series expansion (2.4), while @ =
(A2/A) - 1.

For macroscopically isotropic composites the well known Schulgasser inequal-
ity holds [22]:

Ac(2) Ac(y) . %
> 1, if y=—
- + 1

(2.14) and x> —1.

The main purpose of this paper is to incorporate the relation (2.14) into S-fraction
bounds (2.10)-(2.11).

3. Schulgasser inequality A, (2)\, (y) > (\)?
Let us consider the following class of S-continued fractions

‘ VARG b X NI GN+1T
3.1 dnei(e gna) =1+ 75— 22 '
(3.1) UN+1(T, gN+1) T & & ese 1 ¢ 1

Here g; > 0 (j = 1,2,...,N) are uniquely determined by N terms of a power
expansion of A. /Ay, while g4 is a free parameter belonging to the interval

(3.2) Rys10= {'Lv+1 | gn+1 > 0}«
Now we will seek the interval 17y 1(x) of admissible values of ¢y defined by
(5.3) Rysra(z) = {fl.\'+1 | Vv s1(T g )N+ 1 (5 gy +1) = 1}-

where y = —a/(z + 1). Tt is obvious that ¢y, determined by (3.3) satisfy the
Schulgasser relation (2.14)

(3.4) Un+1(T av )N 1Y av 1) 2 1.
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Of interest is the equality

(3.5) YN +1(T, qv+D)UN +1(Ys av+1) = 1, y=—af(x +1),
ie.
g1z gNT  4N+17 g1y gN+1Y AN+1Y
3.6 1+ — {4 £ JNH1J INYLY )
(3-6) ( 1 smat 1 4 1 )( 1l owe 1 4 1 )

The recurrence formula for S-continued fractions reported in [2, Chap. 4.2] yields

(3.7) (1 4 82 L (["V“z) _ AnG) + Avai(2)ev

I +...4 1 4+ 1 © By(z) + Byoa(Ravar
where An(z) and By(z) are polynomials determined by

(38) A1 =1, Ap=1, .f:l_/'(:) = /lj—l(:) e Zgj.flj_z(:), 7=1,2,...,N,
(39) B_1 =0, By=1, B(:)=DB;1(2)+zg;B;-2(2), j=12,...,N.
On the basis of (3.7), relation (3.6) takes the form

An(@) + 2 Ay _1(@)gv+1 An(y) + yAv_a(y)an 1

= T.
By(a) + aBy_1(x)an+1 Ba(y) + yBy-1(y)gn +1

(3.10)

Here y = —a/(x + 1). Simple rearrangements of (3.10) yield

(3-11) an+1(@)ax 41 + Bre1(@)an+1 + v (e) =0,
where

(3.12) ans1(x) = ay[Anv(@)An_1(y) — Byoa1(@)By_1(y)]
(3.13) Br+1(x) = a [Ayv_1(2)ANn(y) — Byo1(2) By (y)]

+y[An(e)Av-1(y) = By (@) By-1(y)]
(3.14) In+1(a) = An(a)An(y) — Ba(2) By (y).

The solutions of (3.11) are given by

' BN +1 (I) 4oy 41 (.l')(sN +1 (l)
(8] = BT g :
AN +1 (l ) 2(1’,\1+](.2,‘) 'dlz\" i (L) J
(3.15)
" By +1(2) dan+1(2)dn+1(r)
@)= —————= |1 — /1 - .
N +1(1) 2”N+l(-'l") { \/ D)“2\V+1(3,)
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On account of (3.3) and (3.15) we have
(i) if an4+1(2) <0, then

(3.16) Ry+11(2) = {an+1 | df(@) < oy € dva@)},
(ii) if an41(z) > 0, then

(3.17) Ryi1(z) = {’INH lgne1™ < g V av 1T 2 fI;vH}-

According to definition (3.3), a class of bounds given by

(3.18) Y +1(T, gv+1),s qN+1 € By 11(2)

satisfies the Schulgasser inequality (2.14).

4. Inequality A.(z)/A; > A(x)

Let us assume now that for fixed « = (Ay/A;) — 1, the lower bound A(z) on
the effective modulus A (x)/A; is known,

(4.1) Ac(2)/ A = A2).
By using (3.1) we can write
(42) ‘l,f’N+1(.l‘, '1N+1) 2 1(1)

Of interest is the equality, cf. (2.10), and (2.14),

4wl Cyey= (1485 I EN)
T g 1 4+ 1

By applying recurrence formulae (3.8)—-(3.9) to continued fraction (4.3), we ob-
tain

An(@) + 2 An_1(2)Cn 41

(4.4) Az) = Bn(z) + 2Bn_1(2)Cn41
Hence
(4.5) Cnaiz) = A(z)Bn(x) — An(x)

a[An-1(z) = A(x)By-1(2)]

Now we are in a position to introduce the interval 12y 4 2(¢) of admissible values
of qv+1 given by

(4.6) Rys12(2) = {av+1 | enai(@,aner) > A@)}.
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On account of (4.5) and (4.6), Ry +12(x) takes a form

(4.7) Ry s12(2) = {fl;-\v'+1 | gv+1 < CNH(-'-')}-
Note that, according to (4.6) and (4.7), a class of bounds determined by

(4.8) YN +1(Z, qv+1), qN+1 € Rn412(2)

satisfies the inequality (4.2).

5. Bounds exploiting Schulgasser inequality
Let us introduce an interval Ry .1(z)
(5.1) Rn+1(z) = Rn4+10N By 411(2) N Ry 2(2),

where Ry 410, Ry+1.1(2) and Ry 422(2) are defined by (3.2), (3.16)—(3.17) and
(4.7), respectively. Note that the class of functions

(5.2) Un+1(T N +1)y gN+1 € Rna(e)

satisfy the inequalities (2.14) and (4.1). For = — —1% the lower estimation of
Ac(2) is well known, cf. [4, 5, 6, 23]

(5.3) A(=11) = 0.
For such a case it is convenient to introduce the notation

(5.4) lim Q@) = Q(-17) = Q(-1).

consequently used in the sequel. Now we are ready to formulate the theorem
solving the problem of incorporation of the Schulgasser inequality (2.14) into
bounds (2.10)-(2.12).

THEOREM 2. For macroscopically isotropic two-phase inhomogeneous media, the
S-continued fractions (2.9) generated by power expansion (2.4) obey the following
inequalities:

() If 2 >0 (x = (A2/ A1) — 1), then

,rAg b )
¥t Evan) 2 GOV > (1) oy (o)
g1 ga gNT
5.5 dwle) = 1+ 15 82 L
B3) in () 1T+ 1 4...4 1
g1t gz gNT  Eniiz

Y ' E e ] 4 21
YN +1(2, En+1) 1 4 1 doeeh 1 2 1
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(i) If =1 <2 <0 (z = (A\y/Ay) — 1), then

Ae(2
d’N(-L') > /\(] ) > d’N+2(Iw E.r'\'+]w [[z\r’+2)~
e oo nr gnt
(5-6) yn(e) =1+3= .3
g1 gNT  Exqiz Hniox

o Enat, Hyeo) = 14+ 22
Y+, Enyr Hneo) = 1 T A |

Here the coefficients H 42 and Ey 41 are given by

An(-1) - Eny1An-1(-1)
An(=-1)

(58) Dyt = max{qy i (-D.akn(-D},  Cne

(5.7) Hy+2 v Ens1=min{Dyni,Cni1},

A,\'(“])
An-1(=1)°

where ¢y (=1). g} 1(=1) are determined by (3.15). Relation (5.8); is a conse-
quence of (4.5) and (5.3). while N appearing in (5.5)— (5.8) denotes the number of
known coefficients of power series (2.4).

P ro o f. It follows from Appendix A that ayi1(=1) < 0 and dn41(=1) > 0.
Thus the roots of (3.11) ¢, ; and ¢%,,, have opposite signs, cf. (3.15). On account
of (5.1), (5.7) and (5.8), we get

Il

(59) 1(‘[\/4.](—1): {TlOS TS E;\’-H}'
Hence the class of bounds (5.2) takes a form
(5]0) k’f’N+l(JT,T) =14 ’“—[ L 0 S i S l‘,‘;\r+1 ¥

1 goonk 1 4 1°

The first derivative of x4 (x, 7) with respect to 7 satisfies

M >0, for 2€(0,<), 0<7< Eysy and N =0,2,...

Jr

(5.11) 9 ,
QZN—:)](F’L) <0, for v€(0,00), 0<7< Eyyy and N=1.3,....

-

Hence the continued fraction ¢y 4 (2. 7) (¢ € (0, <)) defined by (5.10) assumes
its extremal values for

(512) =0 and T = IJJ\J_H 3

By substituting (5.12) into (5.10) we obtain the formula (5.5).
If —1 < 2 <0, the inequalities (5.6) result from the relations:

(5.13)  0< gn+1 £ Ensts A/ M 2 ¥ns2(2,Cni2) 2 Yns2(2, Envr, HNg2),



INFLUENCE OF THE SCHULGASSER INEQUALITY ON EFFECTIVE MODULI 483

where

) gD gnz gn+12 Cnsoz
14 Un+2(2,COngg) = 1+ = ’
(5.14) Yn+2(z, Cns2) T +...4 1 + 1 + 1

. g1z gy Enya Hngow
5.15 by +2(x, Enyr, Ha =1+ =— ;
( ) Un+2(z, Ens1, Hn+2) 1 4wk 1 4 1 4 1

Note that for Dy4; > Cpny4q, the bounds determined by Th. 2 reduce to the
existing ones defined by Th. 1, since the parameters C'y 4 given by (2.12) and
(5.8)2 coincide, while /[y4+; = 0. Hence the estimations (5.5)-(5.6) obtained
in the present paper can not be worse than the previous bounds (2.10)-(2.11)
reported in literature [20]. Moreover, for some cases they have to be better. In
the next section we demonstrate the analytical form of a low order bounds on
Ae(z)/ Ay given by (5.5) and (5.6).

6. Low order bounds on A,

To illustrate Th. 2 we will evaluate bounds on an effective dielectric constant
Ae(r) for the cases, where (i) no coefficients (N = 0), (ii) one coefficient (N =
1) and (iii) two coefficients (N = 2) of the power expansion of A (x)/A; are
available.

(i) The recurrence formulae (3.8) and (3.9) give:

(6]) f‘_2 = 0, :\_l =1, .'l() =1, I))_z = (), “—l = 0, ]J’(] = 1.
Then relations (3.12) - (3.14) yield
(6.2) ar(x) = 2y, gi(x) =x + y, 01(x) = 0.

Hence from (3.15), (4.5) we get

T+ 1
(6.3) 7 = - '—;"1, =0, Ci=-—.y=-z/(x+]1)
Ty .
For = —17% the equations (6.3) reduce to
(6.4) q =1 qf =0, ¢y =1L

From (5.7) and (5.8), it follows that
(6.5) D=1, E =1

Hence, on the basis of Th. 2 the bounds on A, are given by

>

2 . A( .
(6.6) 1> —>1+uz, if -1<z2<0; 142>—2>1, if 2>0.
1 Al
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(ii)) N = 1. Then
(67) A_2 = O, A._l . 1, Ag = l. B_] = 0, H() =i
az(z) = 0, [a(x) = 2g1zy,
©68) 2(x) 2 2(r) = 2912y
o(z) = g1z + g1y + giry, Yy =-—z/(x+1),
- v _ 01T+ gy +giey . —=(1+g2)
(6.9) G = —00, g = Sy ; Cy = . ;
For z = —1% we have
1—
i = —0oq, ’/g = 2(1I 1 C‘Z =1 =41,
(6.10)
D, = 1= 91 B, = 170 =1
2 = 2 L] A gL = 2 5 2 = 2 3

From (5.5), (5.6) and (6.10) we readily obtain
gz (1-g)e/2 A
1 + 1 - /\1
(iii) N = 2. Now we have
(6.12)  a3(@) =2y[Q + )T+ qiy) - 1], y=—z/(@+ 1),
(6.13)  B3(x) = zgi[z + y + (91 + 92)xy] + yoolx + y + (91 + g2)2y]s
y=—z/(z+1),

(6.11) 1+ <1+ ga.

(6.14)  b3(x) = g1z (1 + g2y) + g1y(1 + gox) + 2927y, y=—z/(z+1).
Thus forz = —1%
r_1=q1—g2 " 1—g91— 92
-1 = —= = (, Cy = ———=
(6.15) q3 1—g 43 3 1-g
Hence
(-9 —gp)
14902 08 1@ Ay 01T BT gopqq,
1 +1 4+ 1 A 1 4 1
(6.16)
(1-g1 -9z
nr gt 1-q Ae g1 gax .
1+=— =— —= < —<1+— = if z>0.
T+ 1 + 1 =R 41 * %=

It is interesting to compare the low order bounds existing in literature (Th. 1) with
the bounds incorporating the Schulgasser inequality (Th. 2). The basic bounds
(6.6) are the same, the estimations (6.11) are more restrictive than the well
known Wiener bounds [27] (Fig.1), while the inequalities (6.16) coincide with
Hashin - Shtrikman bounds reported in [14].
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AN

271

0t Vg

—
-

1
100 x

F1G. 1. Existing (—) and improved (- — —) bounds on the cffective diclectric constant of
a face-centered lattice of spheres for volume fraction 2 = 0.71. Upper bounds ¥ (z)
(N =1,3,5) coincide, while lower ones ¥y 41 (x, Cnir) and Wy (x, Fyiy) differ
significantly for N = 1 and slightly for N = 3,5.

7. Even number of terms of a power expansion of A,

In this section we will compare the known (2.10)-(2.11) and obtained (5.5) -
(5.6) bounds calculated from an even number (N = 0.2,4,...) of coefficients of

power series (2.4). To this end we prove that forz — —1%, thusy = —z/(z+1) —
~ (N =0,2,...), the expressions (3.15) reduce via (3.12)-(3.14) to
(7.1) lim 205 .41(x) # 0,

deorm ] Bn+1(x) 1+ 11 dansi(2)dnsr(x) \ _ An(-1)
N+1 = s - =

e—=1%  2an4(x) 5% ,.62) An-(-1)
(7.2) T N+1

q;(/,_H = ; lim Mﬂ_ (I . \/1 B 4(1’;‘\’+](.I‘)(51\r+1(.1-) ) =ifl

——1%+ -"2(1'N+1(.?') ,[j%\,_*l(.lf)

P roof. The recurrence formulae (3.8) and (3.9) for S-continued fractions
[2] and the Schulgasser inequality (3.4) yields

An@)AN()
Ba(@)Ba() =
(7.3) An(2)An(y) > 0, By(2)Bn(y) > 0,
. An (y) 3 By (l/) ‘
rETﬁ An-1(w) rl"—nv Ax(y) e

< o0

o Ay
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For even N, on the basis of (3.12), (3.14) and (7.3), we have
Av_1(@)Av_1(y) )

vyBy_1(x) By -

“y By (@) '\—1(!/)(b’.\’-l(-l')”\' 1(v) Y L

, B (y)
An() (rhvux(i) By-1(x)- (J))

An_1(9) (W () = By_1(a )B:%%"D
By l(’]))

(7.4) ans1(z) = zydn(2)

| —

Bn+i(z) _
7.5 lim ————~—
7= lm, Zan+1(2)

=

(v - By

! A1)  _ An(=D) ‘
" (.-1,\-_1(,1-) By_1(a )U\::g;) Ana(-1)

lim ay+1(2) v () _ . any(r) . dna(a)
r—-1* Bn+1(2) Br+1(a ) r—=1* Bn+1(x) e—=1* Bn+1(v)
An(-1) i Pve+i(e)
— Anoi(=1) e—-1* By (e)

(7.6) Sv(z) _
.tlr—nl" f\+1( ) JETI+
(4x) - By 32)
= (.
- ' BN L vAva) (o By-1(y)
! (AN_l('l)ﬁHN_I(J)/L\'(!/))+ An(y) (:l:\('() ”\() —1('/))

From (7.4)-(7.6), follow the relations (7.1) and (7.2). O

For A(—1) = 0 and even N (N = 0.2,...), the relation (4.5) coincides with
(7.2);. Hence inequalities (5.5) and (5.6) agree with (2.10) and (2.11). Conse-
quently for even N, the S-continued fraction method based on the Schulgasser
inequality (2.14) does not provide better bounds than the approaches neglecting
this inequality. Therefore an improvement of the existing bounds on A, () can
be expected for odd NV (N = 1.3...) of coeflicients of power expansion of A, (x)
only.

8. Regular arrays of spheres

Now we are prepared to apply Th. 2 to regular lattices of spheres embedded
in an infinite matrix. By A., A; and A, we denote the dielectric constants of the
composite, spheres and matrix, respectively. The first three coefficients of the
power expansion of (A./A;) — 1 are as follows [4], cf. (2.2), (2.4):

Ae 1
(8.1) /\_1% 1= — 1P 24 0@,
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INFLUENCE OF THE SCHULGASSER INEQUALITY ON EFFECTIVE MODULI 487

where, as previously, = (A2/A)— 1. Here 3, ¢ denote volume fractions of the
spheres and matrix. On the basis of (2.6), S-continued fractions (2.9) associated
with (8.1) are expressed by

(8.2) [0/0]=0, [1/0]= ¢§$ . /1= 5912-1' (¢1/3)x
where

(8.3) g1 = 2, g2 = @1.

Hence from (6.6), (6.11) and (6.16) we have:
(i) for N =0

1 2 /\E//\] 2 1 + z, if /\2 /\1
lg)\e//\lgl'*'.’l'. if Ay > Ay

(8.4)

(i) for N =1

et P2 A 221
. ¢ 28 &
(8.5) 1+ P _’\l_1+1,
(iii) for N =2
4228 A3 A e pief3 20/3 if Ay <A
(8.6) + 1 ha /\14 1 + 1 4+ 1 T
' > nz/3 A st )3 213 ,
|4 P28 9t/ s {42 F f A > A
14+ 1 i = 1+ 1 + 1 = s S

According to the results of Sec.7 valid for even N, the bounds (8.4) and (8.6)
agree with the existing bounds following from Th. 1, where (8.6) are Hashin -
Shtrikman bounds. Of interest is the case (8.5). For N = 1, from Th. 1 follow
the well known Wiener bounds [27]

(8.7) i A PN

1 4 1

/!>«
_’Q

By comparing (8.5) with (8.7) we conclude that incorporation of the Schulgasser
inequality (Th. 2) improves lower bound of WIENER [27], while the upper one
remains the same (Fig.1). To determine bounds more exactly, further terms of
the power expansion of A (r)/A; are required. For simple, body-centered and
face-centered, cubic lattices of spheres, MCPHEDRAN and MiLTON [16] evaluated
the coeflicients of a power series expansion of A.(a)/A, a = z/(x+2) ata = 0,
and gathered them in tables as discrete functions of . In [25] we derive a
simple formula relating the terms of a power series of A, (x)/A; to the terms of
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Table 1. Low order coefficients G ., ¢, Cn41y E'n+1y H v 42 for evaluation of S-continued fraction
bounds for the effective conductivity of regular arrays of spheres.

Arrays of
spheres

w2 = 0.52 Gn 0.52 0.0832 | 0.0248 | 0.0102 | 0.0050 | 0.0028
Simple In 0.52 0.1600 | 0.1380 | 0.2420 | 0.1727 | 0.2579

n=1 =2 n=3 n=4 n=3 n=6 n=7

cubic Cn 1.00 0.4800 0.6667 0.7930 | 0.6949 | 0.7514 0.6568
En 1.00 0.2400 0.6667 0.7427 0.6949 | 0.7473 0.6568
Hy 0.0000 0.5000 0.0000 | 0.0634 | 0.0000 | 0.0055
2 = 0.67 Gn 0.67 0.0737 0.0155 0.0053 0.0025 0.0015
Body- gn 0.67 0.1100 0.1009 0.2761 0.2020 | 0.2566

centered Cn 1.00 0.3300 0.6667 0.8486 0.6747 0.7006 0.6337
En 1.00 0.1650 0.6667 0.8082 0.6747 0.6960 0.6337
Hy 0.0000 0.5000 0.0000 0.0476 0.0000 0.0066

w2 =0.71 Ga 0.71 0.0686 0.0147 0.0058 0.0030 0.0018

Face- In 0.71 0.0967 0.1171 0.3342 0.1221 0.3168
centered Cn 1.00 0.2900 0.6667 0.8244 0.5947 0.7947 0.6013
En 1.00 0.1450 0.6667 0.7794 0.5947 0.7889 0.6013
Hy 0.0000 0.5000 0.0000 0.0546 | 0.0000 0.0074

the power expansion of A.(a)/s), @ = z/(x + 2). From the coeflicients given
in [16, Tabs. 6, 7, 8] we have calculated, by using the algorithm proposed by us
in [25], the coefficients ¢, of power series (2.4). The coefficients ¢,, Cn 41 and
En 41 gathered in Table 1 are evaluated by means of the numerical procedure
proposed in [25]. Note that for even n (odd N), the coefficients Ex 41 (n = N +1)
are smaller than 'y 41, while for odd n (even N) they take the same values. For
face-centered cubic arrays of spheres (fcc) the existing bounds and the improved
ones are presented in Tables 2 and 3.

Table 2. Existing {¢n (), ¥n+1(x, Cnyr), The 1} and improved
{Vn(r), ¥ naa(z, Envgr, Hyiz) Th, 2} low order bounds on A.(r)/ A
for the fec lattice of spheres.

©2 N z vn(z) | Yneas Ener, Hna2) | ena(@, Cna)
1 -0.5 0.6450 0.607011 0.584795
0.71 3 -0.5 0.6258 0.624909 0.624863
5 -0.5 | 0.6255 0.625497 0.625497
1 —0.7 | 0.5030 0.411030 0.376512
0.71 3 -0.7 0.4634 0.457736 0.457466
5 —0.7 | 04621 0.461837 0.461835
1 -0.9 0.3610 0.162217 0.135318
0.71 3 -0.9 | 0.2921 0.252278 0.250850
3 -0.9 | 0.2872 0.282345 0.282319
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Table 3. Existing {¢'n(z), ¥n+1(x, Cn 1), Th. 1} and improved
{¥n(z), ¥ns1(z, Ensr) The 2} low order bounds on A, (2)/A
for the fcc lattice of spheres.

V2 N T Un(r) | Yns1(z, Enst) | vnei(r,Cna)
1 50.0 36.500 5.303030 3.290323
0.71 3 50.0 21.817 7.806020 7.768516
5 50.0 13.861 8.872180 8.870695
1 70.0 50.700 5.457399 3.333333
0.71 3 70.0 29.629 8.206098 8.163556
5 70.0 17.539 9.442256 9.440478
1 90.0 64.900 5.548043 3.357934
0.71 3 90.0 37427 8.449407 8.403644
5 90.0 21.133 9.796655 9.794679

9. Concluding remarks

By starting from: (i) N coefficients of the power expansion of A (z) at ¢ = 0,
(ii) — the analytical property A.(—1) > 0, and (iii) — the Schulgasser inequality
(2.14), an infinite set of upper and lower bounds on the effective transport coefli-
cient A.(2) of two-phase, isotropic composites have been established (Theorem 2)
and investigated in detail.

With respect to the corresponding estimations reported in literature (Th. 1),
the improvement has been obtained for the case of lower bounds on A.(x) con-
structed from an odd number N of coefficients of a power expansion of A.(x), cf.
Fig. 1, Tables 2 and 3. For even N the incorporation of the Schulgasser inequality
(2.14) does not provide better bounds in comparison to the approaches neglecting
this inequality [7, 8, 22].

As an example of illustration of Theorem 2, the existing and improved bounds
on the effective dielectric constant for regular, face-centered arrays of spheres
have been evaluated and depicted in Fig. 1, Tabs. 2 and 3. A significant improve-
ment has been observed for N = 1. For N = 2 the difference between the bounds
reported in the literature [20] and in the present paper is relatively small, while
for N = 3 it is negligible (Fig.1). Note that the above conclusion is valid for a
special geometry of two-phase composite, namely a regular array of spheres. For
such a composite and for n = 4, 6, from Table 1 we have £, /C', ~ 1. In the
case of other geometrical structures, when the ratio F, /', satisfies for instance
E,/C, < 0.5 (Tab. 1), it is possible to get much better improvement.

Appendix A

In this Appendix we demonstrate the lemma indispensable for incorporating
the Schulgasser inequality (2.14) into the bounds on A,.
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Lemma A.1. If a Stieltjes function

1
Ac(r) [ dy(u)
il AN BRSE / 1+ 2u
0
satisfies the relations
A(z) A,
(A.2) ——/\(1) _A/\(y) = 1 y=—a/(1+2), x € (-1,x),
I 1

then Padé approximants Ax(2)/ By (2) to A.(z)/A; obey the inequalities
An(z) An(y)
e >1 (N=0,1,2..), y=—-za/(1+2), z€ (-1,00).
BN(.’I')) BN(.U) = ( ) Y L/( I) € ( }Y')
Here An(2z) and By(z) are polynomials determined by recurrence formulae
(3.8)-(3.9).

P ro o f. The analytical properties of Ax(z)/Bx(x) (N =0,1,2...) yield:

(A.3)

o Al AN
A4 B s =t
( ) r——l* B[\,’(-l') BN(.‘/)

An(r) An(y) .
then ' — > 1 in z € (-1,x),
B!\:(.I') ”‘\'(‘lj) - ( )
where y = —a/(x + 1). Hence of interest is the inequality (A.3) taken for + —

—1%*. On the basis of Theorem 1 we have:
(i) if N is odd, then

An(=1%) _ A (-17) An(x) _ A(x)
> : >
12 an o WM B M

(ii) If N is even, then

An(=1%) | A(-1*)

(A.5)

Ban(=1%) = A

(A.6) "_( .) \ :
An() . Ac(o0) £ >0
1;(\/(00) o 1\1 ’ .

According to Th. 1 and Th. 15.2 reported in [1], Padé approximants Ax(—1%)/
By(=1%) and Ax(o0)/By(x) (VN = 0,2,...) are the best bounds for Stieltjes
function A, (=1%)/A; and A (~0)/ A with respect to a given number of coefficients
of a power expansion of A, («)/A; at @ = 0. Hence the relations

..l‘\,(-]+) :l_\-(x) o
Br(=17) Ba(x) = 1, N=(02.)

have to be satisfied. From (A.4)-(A.7) one can easily derive the inequality
(A.3). O

(A.7)
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Surface stress waves in a nonhomogeneous elastic half-space
Part I. General results based on spectral analysis
Existence and analyticity theorems

T. KLECHA (KRAKOW)

EXISTENCE of surface waves in a nonhomogeneous elastic half-space is proved on the basis of the
stress elastodynamics formulation (cf. [1]). It is demonstrated that in the case when nonhomogeneity
depends on depth of the semi-space, both the velocity and amplitude of a surface wave are analytical
functions of the wave number.

1. Introduction

IN 1971 (cf. [1]) J. IaNaczAk showed that the problem of surface wave propagation
in nonhomogeneous isotropic elastic half-space can be reduced to the following
eigenvalue problem: find a positive number A and a real-valued symmetric tensor
field

a;; = a;j(ra) (o € CHO.),  i,j=1,2)

satisfying the following equation:

(1.1) A(s) o — ABa = 0,

together with conditions

(1.2) a2(0) = a12(0) = axp(x) = app(x) =0,
where

(1.3) a(az) = [an(r2) an(r2) a(e)]’,

- “2 -
— 0 —-D
0 Y
1 1
(1.4) A = A(s,p) = 0 -D-D sD—
0 0
1 s & 1
—sD— —-D ——-D-D
L e o o .
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rl—uw —v .
24 2_;.', ¢
- 1-v
. B = W) = —
(1.5) B(u,v) 2 o 0
0 o 1
/l J

Tensor o defines the stress tensor amplitude and symbol D denotes differ-
entiation with respect to z2 (2 = d/dx;). Number s is the wave-number, and

= p(z3), 1 = p(z2) and v = v(a;) are density, shear modulus, and Poisson’s
ratio, respectively (0 < zg < ).

The formulation (1.1)-(1.5) is based on a pure stress method of classical
elastodynamics.(!)

In an earlier paper [4] J. IGNACzAK showed, that the problem of surface wave
propagation in a nonhomogeneous isotropic elastic half-space with shear moduls
j¢ and Poisson’s ratio » depending on x5, and with constant density, can be reduced
to the following one: find a pair (cg,#(x)) satisfying the ordinary differential
equation of the fourth order

11 1 2 (5 K
(1.6) (;51)1—_?1) = 1) e i (0?2 - (1 - 2n)] B
1

5 i i
P PP | A= v
+4[2_Qn 1)]_91)2%2] 0 for ;€ (0.00),

and the boundary conditions

(0) = A(cc) = 0,

(1.7) 1 2 1 2 1- 0
D? - s*(1 - k)| A — 442 ,3} =0,
.RZ(Z—Q)D{Z—Q 1-x [ ( ’)] 2- " [|a=0
where
1 — 2u(as) %
(z2) = ;s X(z) = ——.
(1.8) K(z2) 2 —-2u(xy)’ £2(x) ji(a2)

(') The problem (1.1)=(1.2) can be discussed in a class of square integrable functions, i.c.:
o =[ay an o]’ € LA0,0) x LA(0,50) x L2(0,00) = [L2(0,)]> A B € [L3(0,0)),
and it is correctly posed when the condition [?(A) = R(B) is satisticd; F2(A), F(B) denote the ranges of
operators A, B (cf. |2] p. 16). From cquality /2(A) = R(B) it follows that:

R(A) = R(B) = {(u“,(zu,u]:) € [CH0, ) :
[ - Vo, " ."" (32 — Vg, o2 ! 3
- [ausren), Mmoo, Jon) g o ya),
2u 21 1

The differential equation (' = D) in brackets corresponds to the compatibility condition (cf. [3] p.345) for the
problem.
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The surface wave velocity ¢p is the eigenvalue of the problem ((1.6)-(1.8)).
Function 3(z) describing the variation of normal stress is the eigenfunction as-
sociated with eigenvalue cp, (3(22) = an(xz)). In 1967 C.R.A. Rao [S5] extended
the formulation (1.6)—(1.7) to the case when density p, shear modulus s, and
Poisson’s ratio v are arbitrary functions of x;. In the particular case, when

(1.9) o(zy) = 1, p(a7) = const, e>0;
vy = v(0), Voo = 1(00),
(1.10) 0 = v(0) (o) |
v(za) =1-(1-ve) |1+ u(l + )7
1 -1

J. IoNAczAk (cf. [4]) obtained an analytical closed-form solution. C.R.A. RA0 (cf.
[6, 7]) investigated the problem in case:

(1.11) o(xz) =1, v(aa) = 1y, f(a2) = fioo + (o — poc)e™ 2

using the power series expansion method.

The problem (1.6)-(1.7) was also investigated by T. Roznowski, (cf. [8, 9,
10]).

In [8] a solution was found under the assumptions that density and Poisson’s
ratio are constant, and shear modulus 4 is a “weakly” variable exponential func-
tion such that the term

1 d? d 1 d 11— 2(x7)
1.1 d|o—bnr——5 - — e 3
1) (2 — 2(z7) ([.1'% dag 1 — 2(xq) dry 2 — 2(x3)

can be neglected.

In [9] T. RozNnowskr analysed the equations of motion for a transversely
isotropic nonhomogeneous elastic semispace, using the stress motion equations,
and formulated the problem of surface wave of the Rayleigh type. He showed
that the problem can be also reduced to an ordinary differential equation of
the fourth order with variable coefficients. T. Roznowskr in [10] analysed five
particular cases of the wave phenomena:

a) transversely isotropic body with a “small nonhomogeneity”,

b) “weakly anisotropic” nonhomogeneous body,

¢) “weakly anisotropic” body with a “small nonhomogeneity”,

d) transversely isotropic homogeneous body,

e) isotropic nonhomogeneous body.

The surface wave problem can be formulated in an alternative way starting
from the displacement equations.

A.G. ALENITSYN (cf. [11, 12, 13, 14]) investigated the equations of motion in
the displacement formulation for large wave numbers using asymptotic methods.
As a result, he obtained an approximate dispersion relation (cf. [15]).
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In this paper some new properties of the surface waves will be presented.
The stress formulation will be used. This paper consists of four sections. Sec.2 is
devoted to general formulation of the problem. In Sec. 3 qualitative properties of
the solution are discussed. It is demonstrated that for density, shear modulus, and
Poisson’s ratio being bounded and of class C'z[O, o0), the wave velocity and stress
amplitude are analytical functions of the wave number. In Sec. 4 it is shown that
at least one solution exists (and at most a finite number of solutions) under the
assumptions, that density and shear modulus are constant and Poisson’s ratio is a
bounded function from C?[0, ). The obtained results are limited to the surface
waves propagating in a nonhomogeneous half-space under isothermal conditions.

2. Stress formulation of a surface wave problem

Let us consider the two-dimensional stress equation of the linear elastody-
namics (cf. [1]) for a nonhomogeneous isotropic medium (%)

0? 0* _
C,A_—g(;l,‘. /) - l/(_-)-)(ﬁl.”»gmrﬂ‘, (.‘l‘, I):| — [0 1(.1-)7'”,7‘,} (.1', /)] 8

077'
- [T @)t 0)] =0,

e

(2.1) N (2)

where
Tap = Tap(Z, 1), (o, B) = (1,2), [ = (21, 22)]
denotes nondimensional stress tensor, y(x), o(+) are nondimensional shear mod-
ulus and density, v(x) is Poisson’s ratio. Nondimensional time is defined by the
formula
1/2
T/lo/

.r?o_{_)(l)/z

(2.2) [ =

where 7 is real time and s, 09 and zg are units of stress, density and length,
respectively. Moreover

. e UT{:U = UT(: 3
Tcx,j == ()t

’ TaB~y = - .
(‘ dx.,

It is assumed, that the functions o(x), s(x) and v(2) depend on x; (27 € [0, ))
and o(z7), pu(a2), v(zz) € (5[0, ), and
0 < pg < o(a2) < 01 < o0,
23) 0 < o < pu(z) < iy < o,
“l <y <v(e) <y <1/2 for a, € [0, x).

(*) Sce lanaczak [4], Rao [5].

http://rcin.org.pl



SURFACE STRESS WAVES IN A NONHOMOGENEOUS ELASTIC HALF-SPACE. PART I. 497

The triplets (og, tto, ¥0) and (o, j11, 1) represent minimal and maximal values of

(o, p,v).
The solution 7,5 of Eq.(2.1) will be considered in the half-space

(2.4) U= {(z1,22): 2220, —00<z< 00},
for every t € [0, 00). We shall look for a solution in the form:
mi(z,1) = Reay(z2) exp[i(sz; — V)],

(2.5) m2(z,t) = Reaxn(x;)exp[i(sz; — I\/X)],
ma2(z, 1) = Reiapp(zz) exp[i(sz — tvV/A)],

where i = /-1, s > 0, A > 0 and Re stands for the real part of a complex-valued
function. Moreover it is assumed that the solution satisfies the conditions

(2.6) m2(21,0,t) = 12(21,0,0) = 0 for z) € (—o0,x), t>0,
2.7) (21,00, 1) = 22y, 00, 1) = (21, 00,1) =0
for @) € (—0,x), t2>0.

The wave velocity, wave period and wave length are cp = VA /s, T = 21 /VA,
and | = 2r/s. The functions oy (z,1), ax(x,t), aja(z,t), and the velocity cp
should be chosen in such a way that tensor field T(z,t) defined by (2.5) should
satisfy the field equation (2.1) and the conditions (2.6)—(2.7).

Introducing (2.5) to (2.1), (2.6), (2.7) we obtain (cf. [1])

o™ (san + 54 12) = AQ@p) o = vag,) = 0,
(2.8) ~ o7 (dn — son)] = M@)oz - vay,) = 0,
= [9_1(--“"-'Y 12+ Sﬂn)] "= 5o (fap — san2) = M2u) 12012 = 0
for a7 € (0, ),
and the boundary conditions
(2.9) a(0) = a12(0) = axn(o) = ap(x) =0,

where
a=[a;; axn 1112]1 € [C'Z[O,oo)]z'_

Starting from Eq.(2.8), the dot over a symbol will denote differentiation with
respect to z;. We shall also use the symbol D for the operator D = d/dx.
C.R.A. Rao showed (cf. [5]) that the linear eigenvalue problem (2.8)-(2.9) can
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be further reduced, by elimination of a;; and a3, to the nonlinear eigenvalue
problem

(2.10) [{[D - (!h - 22_’10)] gy 1 5[0 — (1= 20)iI] - 1}

{ 2 (1)2+hD-o)}

2-21-k

2h 1 a?
- D—([[l—z_ﬂ) v 2[D—(1—2h)”] 5 apn =0

for x5 € (0,0),

1 2
gy + 4 {m(]) Tt hD)

(2.11) an(0) = ap(x) =

(2.12) {(21 (D - -20)h]5— g__1 {1)2+hl)—b
-

e? 01—«
442(1 — &
_(_Q_)}} =i

12w e < L= 2662)
(z2) 2 - 2u(xy)’ (v2) 2 — 2x(x,y)’
- ('%‘)y(.l'z)
(2.13) h = oD(e™), @) = - e
= (1 - 0), b = s5(1 - Ris),
I = [2/2 - D)[h/Q2 - 2x)], e? = DIl - (1 - 2x)11E.

From a solution (A, a22(22)) of Egs.(2.10)-(2.12) one can obtain the functions
aqi(x2) and ajz(x2) using the formulae

— 1 2 2 -
214 oulrs) = _m{[ Q+ 2D+ 1 1))] et

+/za21(“ ———[D e —2h)1r11]2 5 1i [1) +hD - 12
4(1“(1 - K)
__!)_——]“22}‘
(215) - Zsaa(ea) = D — (1 — 26) 13 ] —— —]—[/r +hD = 12
La—— 2—-021-

4(12(] — h‘)]
2

Q2%..
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For the special case when the density is constant, p = 1, h = pD(p™') = 0
and Egs. (2.10) - (2.12) reduce to (cf. [4])

(2.16) (—71—1)—1—1) 1) ! L[uz—,@(l—m)]an

271-0 1-52-02
i 1=
= T P, - %
+4[2 e Pl QJ“” e
(2.17) a22(0) = axp(x) =0,
21, -0 B
[D{z—ﬁ? [0 - (1 - )] oo — 4?3 Q””}] e =0
Typ=00
1

(2.18) an(zg) = —m (32.(2 + 2[)2) a7,

(2.19) ayz(x2) = 83(;_1 )] D{ & ! [DZ - .42(1 — .Qh‘)] a9

2-21-k&
1- 12
—4.\'22 - an} :

Clearly, in the eigenvalue problem (2.10)-(2.12) (or (2.16)—(2.17)) the eigen-
value A enters in a nonlinear way. Also, note that the problem (2.1), (2.6), (2.7)
is not a regular one (*). Indeed, writing (2.1) more explicitly, we have:

rl—v —_!/ g - d__ . -
7 U o2
= i= 92
(2.20) - E B | s
H H ot
1 92
0 0 . LT 2
L ped Lgat2 ]
r. 0 0 J J h
L -1 — 2—po~ 1=
()110 day 0 (').t'1£ o
: ; 7 3 LBS!
s 0 2.iy_1.~(i- Z.LQ_l.L T2 |-
().l'z J 2 ().1‘2 ()7'1 T2
0 0"1 0 () -1 () () {)_l () + () _1 ()
R 4 2 s i b
L duy™  day iy € ()12 dry”  dura ()11 dry
The characteristic determinant associated with R.H.S of (2.20) takes the form
—20~ 12 0 -20716,6
(2.21) 0 -2071€¢ ~207166
—07'6G o0& —oTN(EG +€)

(%) See [16, 17, 18, 19],
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and it is equal to zero for any point (£;,&). It can be shown that if suitable restric-
tions are imposed on T at ¢ = 0, Eq. (2.20) implies the compatibility condition of
the two-dimensional elasticity theory (4)

{u_l[(l —v)m — 1/7“22]}‘22 + {,u_l[(l — V)T — m'“]}‘“
-2 {,u"'lrn}‘lz =0 (z,t) € U x [0, ).

So, the system (2.20) subject to the condition (2.22) can be considered as a regular
one.

The condition (2.22) follows from (2.20), if the stress field 7,5 is sufficiently
smooth on U x [0,00), and the L.H.S. of Eq.(2.22) together with its first time
derivative vanishes for ¢t = 0. The last conditions are equivalent to the assumption
that deformation and its velocity satisfy the compatibility condition for t = 0.
Vanishing of the determinant (2.21) implies that the operator

(2.22)

for

r, 0 _, 0
2—o  — 0
} 3:1:19 dxy
Jd 0
2.2 oy ,r’l‘_ = Do -1_7
(223) ZTﬁ(q ) 0 dry™  day
R R )
L ('?;1:2( day oy dxy
J J T
dxy dxy
: . T11
Z,Ll I.L T22
Jdry dry e
_‘().. _li ._(l.)_.n_l_i
dzy-  dagy  dxy”  dxy

defined on the domain
Dy(Z) = {(ri1, 722, 712) € [CAU x [0, %)) :
m22(21;0,1) = T12(21;0, 1) = ma(x1500,1) = Tp2(21;00,1) = Ti(21;00,1) = 0}
or
D) = {(ri1. 722, 712) € [LA(U % [0, 50)) :
(2130, 8) = Tia(2130.8) = Toa(a1; 00,1) = T3 00, 1) = Ty3(w1300, 1) = 0}
is not invertible, unless the condition (2.22) is satisfied.
" (%) The compatibility condition restricted to the ficld o takes the form:

{;f‘l[(l — oy — uazz]} —s {u—l[(l — v)a — uu;l]} +2s {jl_lﬂ-lz}’ =0,

(-%)
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3. On the analytical dependence of velocity and amplitude of the surface wave
on the wave number

In this section we shall analyse the problem (2.8)-(2.9) using B-holomorphic
perturbation theory for linear operators proposed by T. Kato (cf. [2]). We will
demonstrate that velocity and amplitude of the wave are analytical functions of
the wave number s.

In the complex Hilbert space /I generated by the scalar product (°)

(3.1) (a,p) = f(ﬁnﬁn + @y + @i2f2) day
0
with norm
(3.2) llex|? = /(|f-m\2 + |an|? + |aia|?) day < o,
0

Eq. (2.8) can be written in the operator form

(3.3) A(s)ae — ABa = 0,

or in the expanded form

(3.4) A(s, p)or — AB(p, v)a = 0.

The domain of operators A and B may be defined as follows

(3.5) D) = {a: ai; € CH0,00) a12(0) = a22(0) = ara(o0) = an(0) =0},

3.6) D®) ={o:a;eC0.x)},  ij=1.2

The sets D(A) and D(B) are dense in /1 since the set C5°[0,0c) x C§°[0, 00) x

C5°[0,00) is dense in /I and is contained in P(A) and D(B). We have
ProprosITION 1. Operators A and B are symmetric in the Hilbert space /.
The symmetry of operator A results from the fact that operators on both sides

of the principal diagonal are formally adjoint, e.g. > D with —sl);, —;;D with
o £
1

sD—.
o

) In oder to be able to apply Kato’s perturbation theory, we have to extend the problem to the complex
: PPlY P! Ty, p
plane.
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For arbitrary a.3 € D(A) C /I we have
(Aa.P) = j{Q_l(L”z?Tn + 5w )i - [U—](ﬁzz + Wtz)} B2
0

- [o—l(f_\‘ 2+ Sﬁn)} Bz — so” (@12 — san)Bia)drs.
Integration by parts with the use of boundary conditions shows that

(Aa.P) = (. AB).

The symmetry of operator B is obvious. Matrix B is positive definite and for
every o € D(B) C I we have(®)

Bo,a) > ko, o),

where

k= min (

1-2v 1 1 )
12€[0,00) '

2 o 2
Let us consider the forms U[a] = (Ao, &), Bla] = (B, o) described by the
formulae

o0

(Ao, o) =_/%

0

d — s+ |+ sanf] doa,

0o

(Ba, o) = /(2,1)—1 (1= »)anl + (1 = v)|an? + 2ja1* - 2vRe (ana)|dey.
0

In view of (2.3) we have (AOL OL) > 0. Operators A and B being symmetric,

are closable in the space //. Let A, B denote the closures of operators A and B.
Let us set in /] the form:

(3.7) Ula] = ZU(E)(-“O)[O‘](J — sp)'

i=0
for = belonging to a certain neighbourhood of the real semi-axis s, sq € (0, 0c)(’),
where

oo

3.8 UOTa] = (Alsg)t. ) = [ 07 (| &9y — sgars|? + | 61y + sgapy|?) das |
0 0 22 012 12 01 2
0
2 ; i 1-2v 1 1
(°) The cigenvalues of matrix B are B g = . The symmectric matrix B is positive definite iff all its
iz o

eigenvalues A, are positive and (Ba, a) > min \, (e, o) (cf. [20]).

1 1
(") The neighbourhood is a set: V' = {v. |z — sql < and z € (—no, ()]} where b = -, ¢ =
+c €

2
e > 0. We can expand the region of holomorphicity by t.hoosmg a suitable . The meaning of b, ¢, £ will be
made clear in the sequel.
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o '
3.9)  UD(sp)e] = / ;{2~“’0|“l2|2 + 2sglaqy|® - 2Re (012 @ )
) e

+2Re (a & 12)}(11:2 :

(3.10) U (sp)[a] = /% (|n12|2 + |(y“|2) dzy ,

0
(3.11)  U(s)[a] =0, n=3,4,....

The form UM (sg)[a] is a derivative of (A(s)a,a) with respect to the real
parameter s at s = s,

U (so)[e] = lim Al o) = Also)a, &)

S 1] 8 — 80

Similarly,

U o] = lim Ao = UGN

8==+8) s =8

UM (so)fe] = lim

S=8() 8§ — 8

We shall prove the following lemma:

Lemma 1. The closure 1?(:) of the form {/(>) generates a family of operators
A(z) which is B-holomorphic(®).

In order to demonstrate that A(z) is a B-holomorphic family of operators we
shall use Kato’s B-holomorphism criterion(”).

Let 24" (s0)[a] be a sequence of sesquilinear formin /1 (n = 0.1,2...), and let
the form 24 (sg)[a] be sectorial('?) and closable, and with the domain D) =
D. Assume that the forms ) (sg)[e] for n > 1 are bounded with respect to
UO[a), ie. D C DUM™), and

0 ol < alle? + sRet O (so)[a).
aeD, n>1, ab>0, ¢>0.

Then operators A(=) corresponding to the forms Z/(=)[a] are a B-holomorphic

family of operators for |z — sg| < e
v
To show that the assumptions of this criterion are satisfied, let us observe that

U = YO (s)[a] = (A(so)et. @) is a non-negative, symmetric and hence the

(®) (cf. [2] p. 395 -397).
() (cf. [2] p. 398).
(*°) (cf. [2], p. 310).
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sectorial form fixed in the dense set 1. The density of D results from the fact
that the set P(A) C D C H and D(A) is dense. Thus the form /(%) is closable.
From the inequalities('")

o0
1y _ . . _
(312) |u(1)(30)[c1]| = f Z)—[—a'lz( 2 — S()Cl‘]z) = (G 22 — SoQx |2)('I'12
+511(d22 + soan) + (a2 + -“0511)0'11]!11’2
oo 1/2
1 2
S /—|(¥12] (112 /— (lfzz— ‘~0012| (l.’l‘z
0
5 ¢
o0 no 1/2
i [ 2
+ [—](112| day (f — | vgp — .401112‘ day
0 0
0 0
+ /— (l]llz dasy /
0
0 0
1/2 /oo 1/2
71 2 1. »
+ —!n”[ day —| 12 + spaq|© dag
) 0
0 g 0 -
[/ o 1/2 /g 1/2
1 1. .
=2 /_’('IZIZ(L"Q /—l Qg - -*0“12|2f1~t‘2)
0 0
| \o 0
o0 1/2 /oo 1/27
1 1 -
+ / —|01]|2 day f —| @vy + spar “|2 ([.1'2)
0 0
0 0 |
o0
< ( [ (1ol + lal? + laraP?) e
0 o) 0
0
1 °°1 1
4= / - | iap — sonnlz + |+ .30(,111\2) dauy = ’:—0||0.||2 + :H(O)(s()[u]
) e 0 5

(“) To prove inequalitics (3.12), (3.13) we use the incqualitics

el (JEn)" (2]

1
2ab < cal + —1)2,

where v; and «; are complex function, a and b are real functions, and ¢ > 0.
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and

(3.13) lll(z)(SQ)[a]‘ =

“"\g

2
= (lan? + lazal?) da
0
27
< max = [ (jan + oz + anl?) dos

qGW@o)QO

(> ]
2 17 s 5
+—2] ~ (l dop — soanz|® + | dyp + Soﬂ'n|2) dy
€ o
0

2 2
= —||a||* + SRel(so)[ex],
20 g2

Im

it follows that D) > DU®), n = 1,2,3,..., and that there exist « = —,

0
1 2 ~ .
b = —, ¢ = —. Thus the operator A(z) forms a holomorphic family of type (B).

)

E -
From Lemma 1 it follows that the following Proposition is valid.

ProrosiTiON 2. The form 24(z) given by (3.7) is defined for |z — sg| < €/2, and
for |z — sg| < £/3 it is sectorial and closable. The closure () of the form ()
generates a B-holomorphic family of operator A(z) where A(z) is the maximal
and closed operator.

Now we shall consider eigenvalue problem given by
(3.14) A(z)x — ABa = 0,
where A(z) is the operator defined in Proposition 2 and B is the closure of B.
From Kato's theorems (cf. [2] p.416-423) it follows:

THEOREM 1. If the pair (A(2), (=) is a solution of the eigenvalue problem
(3.14), then it is an analytical function with respect to = for z € V = {z 1 |z — 5| <
£/3 and z ¢ (—00,0]}.

THEOREM 2. If the pair (\(s), & (x2, 8)) is a solution of the eigenvalue problem
(3.3), then it is an analytical function of the wave-number s.

It means that
(A(s),o(ag,s)) = (Z Au(s — 50)", a = Z o, (a)(s — 50)”) ,
n=0 n=0

where

1 /d™A 1 /0"
we () e = (G8) - me@e)m 0
o S=3p =50

dsm n! \ dsn
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The proof of Theorem 2 follows directly from Theorem 1 and from the fact
that each solution of (3.3) is also a solution of (3.14).
Natural approach to the considered eigenvalue problem

Ao — ABa =0
is investigation of the generalized resolvent
(A-¢€B)~L.
Let us introduce the spaces X' and Y defined by
. . 3 oy —va;l”
X =<&a“,nu.au)E[L%OxxH{ €20, 00)|": —[—3757——]
_ : /
pFoB T, [“—12] =0, i=1,2 forevery x> 0},
2u I
Y = {(gn.92.90) € [L20.00)F, [CY0,0)P: iy (r2)

+.s'2_(/23(.r2) — 5§ 12(x2) = 0, for every a > U}.

It is easy to check that the spaces X} are linear subspaces of [L?(0, )] and
[C?[0, 00)].

Let C(X,Y) be a space of closed operators from .\ to V.

Let B(.X,Y') be a space of bounded operators from .\ to }'.

Since A € C(X,Y), B e B(X,Y)and B-! € B(X,Y), thus B-1A € C(X, X) =
C(X), AB~! € C(Y,Y) = C(Y) and the eigenvalue problems

A - ABa =0, B lAa- =0, AB'a-la=0
are equivalent (cf. [2] p. 417, 418).
To investigate the resolvent (A4 — £3)71, let us take the homogeneous case
o = const, ;¢ = const, ¥ = const, as an illustration.
A solution of the equation Aax — EBa = 0, a € DA)N D(B) C X is
a = [0,0,0]" if £ & {w),ws, w3}, where wy, wy, w3 are the roots of equation

@-wl-4fl-w)(1-wi)=0, s=(01-22)2-2)".

To prove this, note that a solution of the equation Aa — {Ba = 0, takes the
form:

— / ‘—'.l‘j_ll_ﬂ_ 2 + f(] B 2"") ‘—1'21!1
ayp = —fI |c - 7—5—( ;
ax = [f’_”’” = r‘_"zl"] )

2 .’30

ap = — iy [( —azhz _ 6‘—”/1'} ;

s2—¢

hy = s\/1—E€r, hy = s\/1 = E.
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Introducing such o to the compatibility condition (cf. [6] p. 7) we get

2 -
e A GRS GREIRLD]

/JO*“Z )—1‘25\/l—_£h' -
- 00=1 [o1=0.

Therefore if £ € {w;,wr, w3} then (2 - €)? —4,/(1 -6 - £&x) # 0 and Sy = 0.
In this case (A — £B)~! exists.

Let us consider the multiplicity of eigenvalue A = 0. This problem can be
written in the form

A(s)a = 0.
As the domain of the operator A we take the set:
D) = {0 = [ anap]” € [20,x)P, [C?[0.x):
an(0) = a12(0) = an(x) = ap() = ayy(x) = 0}.
We have

' !
: aqp(r2) = C19"(22),
sapp+ ap =0 2
A(s)aa =0 & R & { an(rz) = —sCip(a2),
—sapp+ apn =0 i
ay2(r2) = —sC19'(22),

where ¢ = ¢(r3) is an arbitrary differential function. Selecting »(.r2) in such a
way as to meet the boundary conditions, we obtain

ker A: anlaz) = C1(2 - ey + afad)e™ w2,
an(ry) = —sPa3Cie k2,
apa(ag) = —sC (202 — nk;r%)r_““?

where
Ci e R, a9 € [0,00). ag > 0.

It is clear that in this case
dim kerA = ~.

Note that in the case, when the domain of the operator is a subspace of the
functions satisfying the compatibility condition,

dim kerA = 0.
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4. Existence of surface waves in nonhomogeneous isotropic elastic half-space
with arbitrary variation of Poisson’s ratio

The problem of propagation of surface waves in a nonhomogeneous isotropic
elastic half-space with variable Poissons’s ratio can be reduced to the follow-
ing eigenproblem (cf. [4]): find a nonvanishing pair (cp, a22(r2)) satisfying the
relations:

(4.1) [———1——-—132 N 1] 1 [D? = 52(1 = Qpi(a2))] ez = 0
' s2(1 — £20) 1 - k(z2) ‘ WREZIL TR
for z; € (0,0),
a(0) = ap(x) =0

(4.2) { 2 1 2 201 Ornilzs)y] _ds2 i %0 } _
P\ Tosieg) [D (1=l (“))] e (T
TP=0
Here
gy = L 2V(x2) o Ch _
(3) k(@) = 2 —2u(xy)’ )= o i dry’

v(z2) and j are the Poisson’s ratio and shear modulus, respectively; symbol
cr = p/s,where 2r /p is the wave period and 27 /s is the wave length, denotes the
velocity of surface wave. The eigenvalue ¢ corresponding to the eigenfunction
a7 is to be identified with the Rayleigh velocity.

Now we consider the case

@.4) { r(x2) € C20, ), B < sy < nlzs) < my < 34,
o = 1, )= 29 = (.%{_

These hypotheses assure that the elastic energy of the half-space is strictly
positive. We shall look for an eigenfunction ay € ', where

K := {6122 = ('122(.1'2) € C4[0 ), (\22(3@) = ()}

The system (4.1)—(4.2) subject to the conditions (4.4) is equivalent to

1

[D? = (1 = Qor(22))] a2
= (') exp (—.w\/l — flo.rz) for 23 € (0, ),
(4.6) axn(0)=0,

4.7) D {1_—!3)(17) [1)2 - .~.-2(1 - Qoh‘.(.lfz))} a9y — 452(1 - QU)”’ZZ} - = 0.
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It is shown in [1] that if there exists a solution of eigenproblem (4.1)-(4.2),
the eigen-value 2y = % is strictly positive. This fact with (4.5)~(4.7) implies that
an admissible 2y belongs to the interval (0, 1). Consider now the homogeneous
differential equation corresponding to (4.5):

N
1- H(.I'z)

which, by virtue of (4.4), is equivalent to

(4.8) (D2 — (1 = 20(22))] oz = 0

4.8) [D? = (1 - 2or(x2))] a2 = 0.

We have the following theorem

THEOREM 3. Equation (4.8) subject to (4.4) has two linearly independent solu-

tions: (1 2
a 22)(.1'2. 12, s), “(22)(-7'2~, £20, )

of the form:
(4.9) o) = a$(0, 2y, 5) exp / Elrs Bl G=1,2)
0

where £(7, 52, s), &(r, 2. s) satisfy the inequalities

(4.10) a<§ <b<e<hH<d
for every (7, $20, 5) € (0,20) x (0,1) x (0, ).

Constants a, b, ¢ and 4 in (4.10) are defined by

a = —s\/1 — kg, b= —sy/1—- Ky,
¢ = s\/1 = (K, d = s\1 - {Kg.

The proof of this theorem is based on a theorem due to OLecH (cf. [21], p.323)
and will not be given here.

It follows from Theorem 3 and the conditions (4.6), (4.7) that an admissible
solution of Eq. (4.5) takes the form

(4.11)

(4.12) an(za, 29,5) = Ay exp (/f,(T s, £29) ([T)

0 v

'y exp (—-51'2 \FQO) s

B 1252

where (125, s) € (0,1)x (0, o). Clearly, this solution belongs to the class C*[0, 0c).
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Therefore, applying the theorem (cf. [21], p. 56) on analytical dependence on
the parameters to the equation

(4.13) ty —s2(1 = Qgr(x2))az =0
subject to the conditions

ap0) =1, apek,

we conclude that the solution of (4.13) given by u(zg) = exp (j{;jr s, §29) dr) is
0

analytic with respect to (12, s) € (0,1) x (0, o). ol
Therefore &,(r, £29, s) is also analytic for (£2g, s) € (0, 1) x (0, ).
It is clear that analyticity of «o; satisfying (4.13) subject to a92(0) = 0, ag; €
%0, oc) implies analyticity of ay; satisfying (4.5) - (4.7). Substituting (4.12) into
(4.6) and (4.7), and using condition ('; # 0, we arrive at the dispersion equation

AWT=06(0.2.5) _

(4.14) (2- )" +

Since
—sv 1= kg < &(0, 29, s) < s/ 1 = 9K,
for every (£2y, s) € (0,1) x (0, o), thus

v
—gN3 s
4,/1 Q(,:l((). QO“)+(2_L)0)

(4.15)  —4,/(1 — 2)(1 - Qro) +(2-2)* <

< —4/(1 - Q)1 - Qomy) + 2 - Q)

for every (129, s) € (0,1) x (0, ).
Now, introducing the notations

fo(f20) = —4/(1 = 20)(1 = 2ori0) + 2 — 2)*,

f(.QO‘S) _ 4,/1 — .()051(0 .Q(jﬁ) + (2_ .Qo)_(—’ & 9

Ni(f0) = ~4/(1 — 20)(1 - Rory) + (2 — D)%,

S

we reduce (4.15) to the form

(4.16) Jo(R0) <€ f(20.5) < f1(£0).

It follows from the definitions of fy, f and f;, and from the analyticity of
&1(0, £29, s) that the functions fy, f and f; are analytic for every ({2, s) € (0,1) x
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(0, ). Moreover, fy and f; vanish for 29 = 0 and for 2y = c%, 2 = c%, respec-
tively. c% and ¢} are the squares of velocities of surface waves in the semi-space
with k(z) = ko, ¢ = 1 and k(z) = k;, p = 1, respectively. Therefore, the analyt-
icity of f(£2y,s) for every (£2y,s) € (0,1) x (0, oc) together with the inequalities
(4.16) imply that there exists at least one root (or at most, a countable number
of roots) of the equation f(£2y,s) = 0 for every (g, s) € [¢},¢3] x (0, o). This
completes the proof of existence of at least one solution to the eigenproblem
discussed in the present section. The Fig. 1 shows the graphs of fy(§2) and f;(?)
corresponding to kg = 0.1 and x; = 0.7, respectively, as well as a hypothetical
graph of f over the interval 0 < 2 < 1.

/()

£ A(0.2637; —0.1907)
B(0.4780; 0)
C(0.5215; —0.4044)
D(0.8991; 0)

fn § = const
0 B / I

FiG. 1.

We have the following theorem:

THEOREM 4. For every s > 0, the equation [(£2g,s) = 0 has at most a finite
number of solutions.

P ro o f. If the number of the solutions of the equation f(f2y,s) = 0 for a
given s > 0 is infinite, then the set 5 = { f(2.s) = 0} has an accumulation point
in [c3, ¢7]. Since the function f(f2, s) is analytical in the domain (£2y. s) € (0,1) x
(0, cc), f vanishes in the interval [¢3, ¢3] which contradicts the inequality (4.15).

REMARK. If the branches of the dispersion relation (4.14) intersect, then the

intersection points are algebraic branch-points (cf. [23] p. 119 part II), (cf. [24]
p.174-181).
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Surface stress waves in a nonhomogeneous elastic half-space
Part II. Existence of surface waves

for an arbitrary variation of Poisson’s ratio

Approximate solution based on perturbation methods

T. KLECHA (KRAKOW)

TwoO APPROACHES to the solution of the nonlincar eigenvalue problem of propagation of surface
waves in a nonhomogencous isotropic elastic half-space are considered. In Scc. 1 the nonlinear
eigenvalue problem is transformed to the equivalent integral equation, and the method of solving
this equation is proposed. In Scc.2 Friedrich’s perturbation theory [6] is used to solve an cigen-
value problem describing the surface stress waves in a “weakly” nonhomogencous isotropic elastic
half-space. Two cases are discussed in detail: a) a half-space with a “weak” variation of density,
b) a half-space with a “weak” variation of the shcar modulus. In both cases an asymptotic solution
is obtained and numerical results are given.

1. Effective form of amplitude of surface stress waves in a non-homogeneous
isotropic elastic half-space

1.1. Formulation of the problem

IT1s sHOWN in [1] that the problem of propagation of surface waves in a non-ho-
mogeneous isotropic elastic half-space can be reduced to the following eigenvalue
problem: to find a nonvanishing pair (/3(z), ¢;z) satisfying the relations

(1.1) (]D : 1)—1) i [/)2—52(]—.(2.‘{)]/3

21— i—=n2Z=0
1 2 1 1—.0]/ _ N
+4[2—F—§I) - 1)1__31)2_0 ,J‘—O for z E(0,00),
and
3(0) = B() = 0,
(1.2) 1 { 7, 1 2 2 Noa 21-02 } _
-0 \2-0 e e Ul L T
.12=KX)
Here
1-2v(z) . _ C} _d
(1.3) () K(x), 2(x) = ) D = T
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514 T. KLECHA

in which v(2) and p(z) are the Poisson’s ratio and shear modulus, respectivaly,
while the symbol ¢z = p/s, where 27 /p is the wave period and 2r /s is the wave
length, denotes the velocity of surface wave. The eigenvalue ¢ corresponding to
the eigenfunction / is to be identified with the Rayleigh velocity.

Next we consider the case

B € C40, ),
(1.4) & = k(z) € C?0, ), 0< kg <k(x) <Ky <3/4,
p(z) = po =1, Az)= 0y =C5.
These hypotheses assure that the elastic energy of the half-space is stricly positive.

The system (1.1) - (1.2) subjected to conditions (1.4) is equivalent to the following
equations:

1

(19) oy [P =570 - Q0] 6 = Crem VIR 4 oI,
(1.6) 3(0) = () = 0,
0 " ey 4
D {T%(l) [1) ~.8°(1 = QO,‘(.I))] B — 4s*(1 - rzo)n} = 0,
" p{ 0 [p2_ 21~ o)) § - 4201 = )3 =0
{m[ ~g(l= 0'-(-'))]f —~45°(1 - 0).-} = 0,

=00

where (') is an arbitrary constant, (' = 0, g € ([0, ~), #(>0) = 0.

The aim of this section is to transform the problem (1.5)-(1.7) to an equiva-
lent integral equation and to construct an iteration method of solving this equa-
tion. To this end consider the differential operator L associated with (1.5):

(1.8) L3 = =D*3 + s2(1 — 2ok(2)),
(1.9) B(0) = B(oc) = 0.
Let g = g(x.t;820,5); (x,1;52,) € [0,0¢) x [0,x) x (0.1) x (0,0c) be the

Green function for the operator I with a “frozen” coefficient «. In other words,
the Green function ¢ fulfills the relations:

d%g

(1.10) e~ 21— k()9 =0 for t#z,
(1.11) g=20 for =0,
dg dy _
(1.12) = = = -1.
t=x+0 t=x-0
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For the operator with a variable coefficient «, the Green function ¢ = G/(z,t;
129, s) satisfies the following equation (c.f. [2], 123-149):

(1:13) G(x,t; 29, 5) = g(x,1; 29, 8)

=20 [ g, 90, 9)(2) — KOIGE 1 Do, 5) de
0

for every (z,t; £29, s) € [0,00) % [0,00) x (0,1) x (0, 00).
It is easy to show, that the function ¢ = g(z,¢; 2, s) fulfilling the conditions
(1.10)-(1.12) has the following form

( 1 [ —s\/ 1=Qyr(z)(t—z) _ —s\/ ]—ﬂ(,n(.r)(t-i-r)}
27/ T—T20r(2) L ‘

(1.14)  g(x, 42, 8) = 1

2s\/1— k()

for = <t < oo,

[(,—s\ [1=2yx(z)(x=t) _ 5 / 1—.Q|,K(J:)(t+1')]

for 0<t <.

In the subsequent part, the properties of the Green functions (' = G/(a, t; £29, s)
will be investigated and the solution of eigenvalue problem (1.5)-(1.7) will be
expressed using the function .

1.2. Integral equation for Green function

Let us denote by X' the Banach space of real functions A(a, 1), (z,t) € [0,00) x
[0, 00) with norm ||«|| x given by

(1.15) A Ol = ] {f|.,|(.1-,r)|2m} dz < 00

0o \o
Let N be the operator in X of the form:

(o<}

(1.16)  NA(z.1) = s*92 / gz, s Do ¥ izl = w(E)] AE, ) dt.,
0

where g(z,&; 2y, s) is defined by Eq. (1.14).
One can observe, that for every (2,£) € [0,00) x [0, ) there exists such m,
that

(1.17) |k(x) — K(E)| < m|x - £|.

The existence of m follows from assumption (1.4) and from the fact, that x(z) €
('?[0, oc). It can be assumed that

dr

m = sup

2€[0,) dx
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The following lemma is valid:

LemMma 1. If the inequality
(1.18) g = Qom(1 — Qor) %71 < 1
is satisfied, then operator N is a contraction in the space X, i.e.
IV Allx < gllAllx
Proof. Due to (1.16) and (1.4) we obtain
NA(z,t) = M(z,t, £, 3)

= %590/(1-00ﬂ)-1/2 [e—sv‘-f’nﬂffﬂ? - c-s\/l-f?"““*f)} [£(x)—r(E)]A(E, 1)dE

+%SQO /(] _Qoh,)—l/z [F—s\/ 1-2pk(z—£€) _ (‘—'h/ l—n(,r:(.z'+£):| [h‘(.’?‘)— h({)]l(f. f)(lé-
0

= a(x, t; 29, s) + b(z, t; £, s).
Hence, the following estimate can be deduced
(1.19) |M(z,t; £29, 8)| < |a(z, t; 29, )| + [b(x, t; 20, 5)|.

Estimating from above the function a« we get
1 T
(1.20) a*(z,t; 2, 5) < Z.HZQ(Z,-{/(I — oK)~ V2

[a*vﬁjﬁﬁ“—“——w*v“f55“+°]-b«w)—fwsnwfu&r»ds}{
From the inequalities (1.17) and (1.4) we have
(1.21)  (1—=2x)" /2 [e—sm&'-” - r“*\/“—“'““*“] - [k(2) =K (O]-|AE, 1)
< (1= Ogry)™ VeV 1= €D (6 — )u| A(E, 1),
and finally

(1.22) a®(z,1; 02, 5) < -1—.92171205(1 - o5y) !

o0 2
-{ja—ryﬂv“mﬂ*”MGJN&}.

http://rcin.org.pl



SURFACE STRESS WAVES IN A NONHOMOGENEOUS ELASTIC HALF-SPACE. PARrT I1. 517

Integrating inequality (1.22) with respect to 2 on the interval [0, oc) and chang-
ing the variables we obtain

(1.23) /(12(1" t; 29, 8)da < 3—1”12()(2,(1 - QUH])—:;l‘:—z/I/“(.‘I'.f)lz(lﬂf.
0 0
Integrating the inequality (1.23) with respect to ¢ on the interval [0, c0) we get
1 —3/2 —
(1.24) llagz,t; 20, 5)llx < 5 20m(1 = L2o51) 27 A, )| x -

Now we shall estimate the norm ||b(z, {; 29, s)||x. From the definition of the
function b(z, t; 129, s) we have:

1 r
(125) bt 20,9) = 352 [(1 = Q)2
0

[emVIte=0) =T 0). [u(a) — w1 A, O] de.
The inequalities (1.26) and (1.4) lead to

(1.26)  b*(z.t; 2, 8) < 3—152.(20;712(1 - Qkp)”!

T 2
{f(I _ E)C—s\/l—n()Nl(l'—ﬁ)I‘,.l(é"f)l rlE} .
0

Similarly to the case of inequality (1.22), from (1.26) we get the following estimate

1
(1.27) 166, 5 20 9)lx < 520m(1 = Dor1) 274G, D)l

From the inequality (1.19), (1.24) and (1.27) it follows that the operator N is
a contraction in the space .\, if
(1.28) g = Qom(1 = Qor1) 271 < 1

which ends the proof of Lemma 1.
In the further analysis it will be convenient to introduce two other Banach

spaces .\';”. .\']("1/2) with the following norms
(1.29) lAG@ Ry = sup [ [AG. o) do,
2 .'/EIQ-%)'0
[ 1Ay
1.30 A, Pl ciym = su /—I—J——([.L‘.
( ) 1 A( y)”\: 1/2) .’IGIO-I:‘;')O _,‘.2[] — 2or(x)]

http://rcin.org.pl



518 T. Kiecna

The following lemma are valid:

LemMMA 2. The operator N given by formula (1.16) is a contraction in Y (1),
ie,

(131) ”Ar.rl“.\,;l) < (]l”.’l“/\,il] s if q = \/(7 < 1.

Here ¢ is defined by the formula (1.18).
LemMA 3. The operator N given by formula (1.16) is a contraction in ‘\.5_1/2)
i.e.

’

(132) [l;”VAH \""’“ _<_ ([”l” \,(_1/7_) . if q < 1.
| |

Here ¢ is defined by the formula (1.18).

The proof of Lemma 2 and 3 is given in the Appendix I (/.. [, I; and iy).
We need the following lemma:
Lemma 4. For every (£2p,s) € (0,1) x (0,0c) the functions g(z. t; £y, <),

ag(lf,t;ﬂn..‘i) (.)2_{/(.’1‘,1;.0(]..«) (1) - (=1/2)
ot ) BT belong to X, ", X s

dg(a.,t; 82y, 8) \(1)

P r o o f. First, we show that the function belongs to

Indeed, differentiating the functions defined by (1.14) wnlh respect to ! we odtain

715 [(—s\/1_n‘,h—(,4-)(1+_,-) i -.s‘/142.,,‘-(..4)(:‘.:-)]

“

133 @62 for z <<,
’ ot 5[ s/ 1= Qor(x)r—t) _ —s\/I—II(,ri(J‘)(1+J‘)}

for 0<t <z,
and we obtain the estimate:

(1.34) /
0

dg(x. 1529, 5) s)
ot

(s o]
l]l s/ T=2ur (et +r) _ ,,—s—\/l—rz..»e(.r)u—s)‘,,,

=2
0

( —s\/l 2urn(x)(t— J)([f+/ \/1—.0”.?{(.1‘)(.1‘—{){[’

—s\/ 1=8yn(a)r—t) _  —s\/1=0yr(x)(x+t)
(i

dt

Yy
2

<

[N e

0
;1_ ( —sv/ 1=k (1~ J)‘[[
2

r

—s\/l Dgk(x)(t+r) (“)

0
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(1.34) + /(—s\/l—!](,h'l(r—.')(“ + /'()—s\/l—m,h-,(wm-)(“)
[cont.] )
0 0
_ 1 ( -1 PRIV (B ‘='”+ =i/ T=aq(i=a)]*
2 \sy/1 = 29Ky t=r  s\/1 - QOM t=0
+____;1_€ gy == f?[;h|(£+1) 1 ( 1 1
sV 1 — $2yK t=0 i/ 1 — .Q()hl sy 1 — fgkq
. 1 6s\/ -4y 1 F—Zs 1-2prx 1z
sV'1 = k4 sV/1 =k
K] 1 6—5\/1—!)“»{1.1') & }_ ( 3 )
sv1 = Ky ~ 2 \s/1 = 29k
due to
1 es s\/ 1=k 1z < 0 . 1 (,—zs\fl—f?mcll‘ < O,
\/1 = .Q()h, S\/l = .Q()hil
and

And finally

It < 8 < X
( .
1 = polu

(1.35) sup / ‘_

J:E[O,-.\)

Dy (s, t; £ .
This implies that : (/(—mﬂ _-\él).

For the other functions the proof is similar.
Using the formula (1.16), Eq.(1.13) can be written in the form

(1.36) G(s,t; 20, 8) = g(s, 6, 20, 8) — NG(s,1; 20, 5)

and a solution to this equation can be obtained by the iteration procedure
([3] pp- 30-31)

(]‘37) .(frrf—] = —N{jn + gO-
where
(1.38) 90 = 9(s,4; £29. 5).
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1.3. Time derivatives of the Green function ¢/

From Eq. (1.13) by formal differentiation with respect to ¢, we obtain:
IG(s,t;20,8) _ g(s.t; 2. 5)

(1.39)

dt Jt
—SZ.QQ/Q(.S, t; £29, 8)[K(z) — h(f)]z%(l({, t; £29,5) dE.
) .

From Lemma 2 and Lemma 4 it follows that the solution of Eq.(1.39) beongs
to the Xé” space. It is easy to show:
dG (s, 1; 129, 8) .
dt
(x,1; 92, 8) € [0,00) x [0,00) x (0,1) x (0,1)

THEOREM 1. Function is continuous for every

such that t # .
P r o o f. Equation (1.39) may be written in the form:
IG(s,t;920,5)  Dg(s,1; 12, 5)
ot ot

= _.4290/;/(.1-,6; 20, ) () = K(E)]
0

(1.40)
()(,’(£ 42 QQ s)

oo

JC(EL T 2. s dg(€,t; 12, s
~22 [ (a,& 20, K )—h(&)]{ AL AL }m.

0

Applying the estimates similar to those used in the proof of Lemma Z one
can show, that the function

dg(& 5%, 5) |

(1.41)  I(a,t;29,8) = —s Qo/(/(l & 120, s)[r(x) — k()] T

0
is continuous with respect to ¢, for every 2 € [0, o) and (£2,s) € (0,1) x ({, o).
Indeed, the integral is uniformly convergent with respect to £, due to the estinates
used in the proof of Lemma 2.

Continuity of { with respect to ¢ and Eq. (1.41) imply that (f}({ 3! beongs
to X, X3 or X7/? if the condition (1.18) is fulfilled.
Applying the iterative procedure to Eq. (1.40) one can show, that the furction
g{-(;’(:z:, t; $20,5) — (%_q(‘v, t; 29 s)

is continuous with respect to t, for ¢t # x, which ends the proof.
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One can prove:

THEOREM 2. The function (,%( i(x,t; 29, s) has the same points of discontinuity
as the function (_%g(.r, t; 29, 3).

P roof. From formula (1.33) it follows that

g(z, t; 20, 3) =-1.

)
(1.42) 3790, Do, .s)‘ -y

10()!

oG (z, t; 29, 5)

Due to Theorem 1 the function is continuous with respect to

t, except ¢ = x, where the discontinuity of the first kind appears, i.e.
dG (x, 15 829, 8) AG(z, t; £29, )
ot t=r+0 Ol
The type of discontinuity of function ¢ follows from the definition of the

Green function for the operator L. In order to establish the properties of the
second derivative with respect to t, we shall transform Eq. (1.39) to the form

(1.44) Lz, t;20,5) = I(x,1; 2, )

=-1.

(1.43) e 3

> o]

—s%1 / g(x, & 29, s)[s(x) — k(E))L(E, t; $20, 3) dE,
0
where
. d d
L(x,t;82,8) = m(r'(ll‘.[;.()(),éi) - _—_:/(,t'.r;Qg,s),
(1.45) B
- IL(E,t; 2, 8
.15 00,9) = 200 [ g€ 00, )ste) — w(OFEELEA D
0
Taking the derivative with respect to ¢ we obtain
ac _ al i
(1.46) TR T “290/0(7 & £20. s)[K(x) — K(£)]
0
A WAY f G T3 g
.()1‘(“'—""09’_'_2([6 for { # T,

ot
Denote the first term on the R.H.S. of Eq. (1.46) by m(z, t; £2y. s) and consider
the equation

(1.47)  M(x,t; 2, 5) = m(z, t; 2y, s)

o0

_2 0 / o, € Do, $)[K(x) — K(ENM(E, t; 2o, s) dE

0
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in which M (z,t; £2y, s) is an unknown function. It can be shown that the function
m € X{_lm. The proof is analogous to that proposed by KosTuCENKO [2].
From Lemma 3 it follows that if

g = '(20’”(1 o {201{1)_3/25_1 & ]_

then a solution of Eq. (1.47) belongs to .\'f'l/z). We are to show that this solution
for ¢t # =z is identical with the function

9?
5}7[(7(:17, t; 20, 8) — g(x, t; 20, 8)].

In order to do this we integrate (1.47) with respect to ( over the interval [0. ]
and we get

t
(1.48) / B, B iy, el == / s, B 4, il
0 0

—5.'2!?()/.’!(.1'1 &; 20, 8)[n(x) — K(E)] {f M(E.1; Qo,.w)llf} d€
) 0

From (1.44) it follows that the equation

(1.49)  L(x,t;20,5) — L(x,0; 20, 8) = 1(x,1; g, 8) — 1(x,0; 2, )

o0

usz.Qg/_q(.z:,{; 20, 8)[x(e) — w(E)[LE, L 29, 8) — L(x,0; £29, $)] dE,

0
and existence as well as uniqueness of the solution of Eq. (1.48) imply that

t
(1.50) /M(;r,?; O, 8yl = Ll i B, H— £z, 0 T, 9.
0

The last relation implies

)
(1.51)  M(a,t; 2. 5) = 5[.(;1‘.!;!?0..\')

J
=5 ((1 t; 2. ~)—~r/(z 5 20,)]
0* PG
Because 2J(T.l,00 s) for @ # t belongs to \ ) therefore — vT belongs

G

YT € 4\'1_1/2) and Eq.(1.51) we obtain:

to XI(_I/Z). From
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THEOREM 3. If ¢ = Qqm(1 — 29r1)" 32571 < 1, then G(x,1; 1. <) satisfies the
equation

DG (x, t; 2. R
_‘(iu‘z%) = 551 = Lor(1))C (e 15 20, 5),
(1.52) |
G(:L‘,i;.()(),.s') = (,'(!,.Ir;QQ,,‘;)_

and conditions

G, t; 20, 8) =0 = 0,

f)(;'(.l‘. t; .Q(), .Q)
t=x+0 (JI

153
( ) G (2, t; 2. 8)

ot

Il
|
—_—

t=2-0

In other words, (/(x, t; £2y, ) is a Green function for the boundary value prob-
lem:

La(x) = 0,

Sk 3(0) = 0.

Clearly, a solution to (1.5)-(1.6) expressed by ¢/ takes the form

(1.55)  B(a; 29,5) = C /(.’(,r, t; 2. )1 =w()]e™*VI=Ptqt  (Cy = const).
0
Since condition (1.7) can be written in the form

(156) ;J(O, .Q()..“) = —('l.(z()\/ 1 - .(.)[)/4\(] == .(2()),

a solution to the eigen-problem (1.5)-(1.7) is defined by the pair (2, #(z)) in
which {2y is a solution to the equation

(1.57) [ [%(J [1— w(D]e™VI=Pdt + 29/T = 2p/4s(1 = ) = 0,
ol =0
0

and f(x) is given by the formula (1.55).

Using the formulae (1.37)-(1.38), (1.55) and (1.57), we get a solution of the
eigen-problem if ¢ < 1, e.g.
(1.58) Rom < s(1 = Qory )2,

In general, the Eq. (1.57) has a finite number of solutions 2y = 24(s), (cf. [4]).
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2. Surface waves in a weakly nonhomogeneous isotropic elastic half-space
The problem of propagation of a surface stress wave of the form

(a1, 22,) = ap(x2)cos(szy — 1VX),
(2.1) T2(zy, 22,1) = a(xz)cos(szy — i\/X),
mia(zy, x2,t) = —aqa(zg)sin(szy — t\/X),
in a nonhomogeneous elastic half-space
X = {(z1,22): 22>0, |29| < o0}
reduces to the following eigenvalue problem [5]: find a real symmetric tensor field
a;; = a;j(z2) (a;; € C?*0,); i,j = 1,2) and a real number A (A > 0) satisfying
the system of equations
o~ (sPaqy + sd2) — A2p) (o — van,) = 0,
(2.2) —[o7 (dp + sa)]” - AM2p) (an - va.,) = 0,
—[o7 (8% G 12 + sapp)]” — s (G — saq2) — A2u) 2a1; = 0

for 2, € (0.x) (y=1,2)
and the boundary conditions
(2.3) an(0) = aip(0) = an(x) = ap(x) =0,

s being the wave number (s > 0), and ¢ = o(27), jt = ju(x2), v = v(r;) denoting,
respectively, the density of the medium, the shear modulus, and the Poisson ratio.
The functions are assumed to be of the ("?[0, ~c) class, and to satisfy the following
inequalities

0 < g0 < 0(22) € 01 < x,
(2.4) 0 < po < pfxr) <y < o0,
1<y <v(r) < <1/2

A dot over a symbol denotes differentiation with respect to the variable z,; we
will also use the symbol D to denote the derivative.

The aim of this paper is to give an approximate solution of the eigenvalue
problem (2.2)-(2.3) in the following two cases:

1) density 0 = o(z7) is a “weakly” variable function, and p and v are constant;

2) shear modulus g = p(x;) is a “weakly” variable function, and ¢ and v are
constant.

In both cases we obtain the approximate solution by using the perturbation
method proposed by FRIEDRICHS in [6].
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2.1. Analysis of the case el = !
o(r2) o

Let us consider in the real Hilbert space H generated by the scalar product

¥ Tizj n(rz) = py, v(r2) =

(a,0) = /(“‘11/311 + anfn + apfz)dx
0

and satisfying the condition

o0
”Q”z — /(O%l + ﬂ%z + (P%z) (l-'l'z < 0.
0

Equation (2.2) written in operator form

(2.5) Aa = ABa =0,
where
(&3]
a= ((\22) s
a2
2 . 7
i 0 *p
0 0
1 1
A= A(s;p) = 0 -D-D sD-
0 o
1 S i | 52
—sD—- —=D -D-D+ —
L 0 0 0 0 |
rl—w —v
2w
) -V 1-v
B = B([l,f/) = 2—# 2” 0
1
0 0 —
L 1

The domains of operators A and B may be defined as

D(A) = {a: a;; € C0,00), a12(0) = ax(0) = ajp(oc) = az(wx) = 0}~

2.6
el D(B) = {(r: a5 € C'z[().oc)} , Ly =1,2.

The sets D(A) and D(B) are dense in H since the set C5°[0, 00) x C§°[0, 00) x
C§°[0,00) is dense in H and is contained in D(A) and D(1).
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It can be demonstrated that operators A and I3 are symmetric. The symmetry
of operator A results from the fact that operators on both sides of the principal

; - 1 S =3
diagonal are formally adjoint, e.g. —sD— and - D, sD— and Z2D. For any a, 3 €
2 2 2 e
D(A) we have

o0

(A(Y,ﬁ) = /{0_1(52(1“ + s ('1' lZ)f/jll R [Q—l((‘l' 22 — 3(_112)] '/322
0

— [9_1( g+ .sm-n)] B2 — 59-1(52 (g — s(.rzz)ﬂn}(l.vz.
Integration by parts with the use of boundary conditions shows that
(Aa,p) = (a, Ap).

The symmetry of operator I3 is obvious. Matrix 3 is positive definite and for
every a € D(B) C 'H we have (1)

(27) (1’_5’(\.()) > /.'(n.n),

where

I mi (1 -2 1 1 )
b = n y —p =] .
22€(0,20) 24 Lo 2u

If in Eq.(2.5) we put p = § = const, g = i = const, v = U = const
(homogeneous medium), the problem has precisely one solution (a.A) of the
form

o T )/ o1 — 2% 2
_[10 [(_J.th_ (..'f"w(] 1_.}\)(—_“/,1]
/ o
(28) (7(5,/7.17) = ."j() [(v—.r'zlq _ [?_J-Zf,l]
2 Bn o~ - N
= 'j(~h] [(—Jg/lz —(‘I’I'l}
$ 2—w
where

1- 20 : "
Ro= - ho=sVI—0R, hp=s/1-o

2-2p"

and @ is a root of the equation

~x 2 . -
2.9) 2-5) = 4/(1 - 2)(1 - TF)
: 3 1-2v 1 1 o ; :
(') The cigenvalues of matrix B arc T T g From the theorem in [8] saying that a symmuetri: matrix
B 2p

B is positive definite iff all its cigenvalues are positive and (Ba, o) > min A, (o, o), results the Eq.. (27).
1
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such that 0 < & < 1; ,[}0 is an arbitrary real number. The surface wave velocity in
this homogeneous medium is given by

Cr=

=

The relation between A and C'p is of the form

V3 = sCr.
Let us consider the case when

1 _i+ I3
o(x2) o1 o(x2)

(2.10)

v =, o= ji

and ¢ is a sufficiently small positive real number. Moreover, p; is a positive
constant, and o(z,) is a positive function (cf. (2.4)). After substituting (2.10) into
(2.5) we get the equation

(2.11) Aga + eVa = NBa,
where

:10 = »l(g, 01 ),
V = V(s; d),
D= ”(/11;1’1)-

The constraints on p (cf. (2.4)) and (2.10) yield the constraints on p for 3 €
[0, 00). Hence for every a € D(A) =D(V)C H

(2.12) (Va,a) < x.

Moreover the operators Ay, V" and 3 are symmetric in the space ‘H. From the
fact that A(oq. i1, 1) is a simple eigenvalue (the eigenspace is one-dimensional)
it follows that (A9 — AB)~"' is defined in the subspace H orthogonal to the
vector a(oy..v1) (?). Hence for sufficiently small ¢ in a neighbourhood of
(X(m.ul.;t;).5(91,1/1.;11)) there exists a solution (\.,a.) satisfying Eq.(2.11),
analytical with respect to ¢, of the form

X+f/\1+52/\2+....
& +coy +etag+ ...,

(2.13) A

(2.14) e

() Friepricus [6] formulates the following assumptions of a perturbation theory; the operator must be
symmetric, it must allow for a spectral decomposition, it must have a simple cigenvalue \ with the corresponding
cigenvector a. Hence the equation [y — XB]W = ¢ has a solution for any right-hand side of & orthogonal to
a in the space H. It is easily scen that Friedrich’s assumptions are satistied for the problem (2.5)-(2.6).
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where -
211

a=]a |, i=123....
af?

Substituting (2.13) and (2.14) into (2.11) and comparing the expressions appearing
at suitable powers of ¢ we get

(Ag — AB)a@ =0,
(Ag — AB)ay = —(V = A\ B)@,
(2.15) (Ag — AB)ay = —(V = AiB)ay + A\ Ba,
(Ag — AB)az = —(V = A B)ay + A\ Ba; + A\3Ba,

Multiplying the first equation by a; and the second by a, and subtracting we
get

_ (va,a)
& (Ba,a)

(2.16)

Analogously, multiplying the first equation by a,, and the third one by a and
subtracting we obtain

("”(1’1. (T) == /\l(lﬁ)lh N (71)

In general, we get A; ( > 3) by multiplying the first equation by «;, multiplying
the (i + 1)-th equation by a and subtracting both sides of the relations.

Equations (2.13), (2.16) and (2.17) effectively determine the approximate
eigenvalue in the problem with weakly variable density in the considered half-
space.

We now proceed to construct the series «;. It is easy to demonstrate that the
right-hand sides of the system (2.15) are elements of a subspace H orthogonal
to the vector 5~. The construction of the series «; is thus reduced to finding an
operator [Ag— Aot 1, v1) B(pe1,v1)] 7! on a subspace orthogonal to a(oy, i1, ).
To this end, let us consider the equation

(2.18) Apé — Mer, 1, 11)Béa = g,

apy g1
a =1 a |, g=1921,
45p) q12

where
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and g is a vector of the subspace H satisfying the condition

(2.19)

(g.d) = 0.

The vector o, given by (2.14) should belong to D(A). Thus to construct a; it is
enough to find & satisfying (2.18), (2.19) such that @ € D(A). It can be shown
that vector a is of the form

(2.20)

where

(2.21)

(2.22)

[ Ki(zq, ) F(t)dt
a1(x2) > Gri(z2)
a = {&22(-’52)} = | [ Koz, )F (D)t | + {G'zz(fz)} ;
aiz(z2) % Gia(22)
' [ K3(za, ) F(1)dt
L0 ]

1\'1(1’2, i,) =

Ka(22,t) =

[3P—5\/ l—wry(t—22) + 14("“_'9‘/ 1—;(!—1‘2)
" [2(1 — @k + :J] a]e—s\/l—;rcl(t+r2)

w -2
+ [2(1 — wkKy) + ;] dre— sV 1=Gt+/1=Tny22)
-2 &

—b](‘_s(v l—;KlH-\/l-:J.rg) . bzf’_”/ 1—u~J(f+1‘2) for t > 23,

]3(J—5\/ 1—wny(z2—t) + 146—.9\/ 1—w(zy—t)
4 [2(] - C)Hl) + :’:} “1()—3\/ 1—wry(t+a3)

7 —

+ [2(1 — wKy) + :1] ”2(,-5(\/1—$z+\/1-5,.-._”)
G2 28

“‘,JI("_S(V l—writ+\/1—@as) - {)2(‘-3\/ 1—-@(t+zs) for Ty >,

1165\/1_—7”:(”—” + lze_sm‘”'t) + alﬁ_sm“*”)
+a2(,—5(\/1——_$6+ V1-Gniaz) e ble“s(mt+mrz)
+1)2€_smu+”) for t >z,

LV 1m0 ooV 1=t 4 g = sV 1=mi(t4e)
+”2€—S(\mt+m:2) + blg's(\/l—T"l“"\/l——;Iz)

Hhge sV 1-w(t+a2) for z, >,
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f (—S\/ 1—3»\-,(1—12) + l(,(‘_s\/ l—;(l—d'g) e ”l[7(—.5\/ l—;H|(1'2+I)
+”217(‘—5(\/ l—wt+\/1-ok23) + blls(—s(\/ l—writ+v/ 1—51‘2)

+bylge™*V LS for t > a3,

(2.23) KNi(zq,t) =
_IS(,S\/l—wml ry) 8/ —-w(l .i_)+“ll7( s\ 1— wn|(12+t)

+aylye (v It/ 1-wrza) 4 bylge™*(V =i+ v 1-Gr)

+bolge™*V L—wit+zr) for ap >,

(2.24) F(t) = —m Dz—kﬂ gaa(t)+ gli_l [2—25-2k1 +0k] [1)2 -+ lu%] g1 (1)
+2015(2 = S)(1 = 51)Z7 Dga(1),

2()]

(2.25) Gi(ag) = %—_‘_2—)(922 — g
(2.26) Gix(x2) = 0.
(2.27) Gha(ra) = 0.

The coefficients !y, (2, ..., l3, A'lz.l.'g, ay, az, by, by, appearing in Eqgs.(2.21)-(2.27)
are given in the Appendix II.

Using Eqgs. (2.18)—(2.27) and the relations (2.16) and (2.17) we can find suc-
cessively (A, a;).

Let us now analyse the eigenvalue A. (cf. (2.13)) in the case when the function
0 = o(x3) (cf. (2.10)) is a monotonic function of the half-space depth coordinate.

Assume that

1 1 €
. = o _ ,—0r) 3 > ) A’\;’ .
(2.28) o) - o + E).1’(1 e ) (« > 0) (00 > 0)
1 1 1 1 1
Since — < < — we have on the one hand max = — and on the
or — o(r2) T oo 22€]0.c) n(1 2) 00
1 1 5

other hand, max = — + —. Comparing these values we get
23€]0,00) f)(lz) 123 Do

(&)
“Nog o/’

(2.29) 5 B

)

where o1/09 ~ 1.
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Substituting (2.28) and (2.29) into (2.16), taking into account the relations

. T . 1-2v
de =(CHNs®, A=6% =(Chd  m = 5= 21}1

and limiting ourselves to two terms in Eq. (2.13) we get for the square of surface
wave velocity the relation

~ 1 1 na
(230)  (Ci)e=Ch+ (5,0 01) 2(1 - )

Po(=) Pi(©)
\/l—whi(a—l—Qs\/l—u,nl) V1=03&(a + 251 = &)

2(<)
(\/1—w+\/]—wnl)(a+s\/l—w+s\/l—_dh1]
3@ k1) |, (@) Ps(E. k1) -
X[\/lm.u \/l—@'.‘;1+\/l—i+\/l—¢3ﬁ1]

(the polynomials Fy, Py, 12, I3, P4, s are given in the Appendix IT). Introducing
the following notation

01 i2 1 § i
f=—, C5="—, = — 0. 0)),
. 5 - a = 1 (a € [0,))
~12 2
W= Qﬁ W= ((‘H
C3 3

we rewrite the formula (2.30) in the form

i I
(2.31) w=w+(0- )2(1 ~ ) {\/_wr(u +04n V1—=3Tny)

&)

L = B = %d] — b

&
+
(VI=-G+ V1T-3Cr)(a+2rv1 -0+ 2r1 - 'Z‘ﬁl}
[ P3 Py I’ ]~1
\/ \/l—l—v:‘\l \/l—w“}'\/l—w:‘\l I

It is easy to demonstrate that the function w = w(a, . xy) described by (2.31) is
for every fixed # and «; an increasing function of the variable @. Figure 1 shows

the function w for: 1) xy = %, =11 2)x = :’IZ 0 =101; 3)n; = %, #=1.
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03 0.6 09 1.2 a

Fig. 1.

2.2. Surface wave in an elastic half-space with a weakly variable shear modulus (*)

Assume now that

1 1 €
2.32 —_— =t —, = 01, V=uy.
(2:32) e IR Ty R :
Substituting (2.32) into (2.5) we get
(2.33) A(s, 01)a — A[B(puy, 1) + € B(ji, )] = 0.

Operators A(s, 1), B(u1,11), B(ji, 1) are symmetric in H. Moreover, I3 is a
positive definite operator. According to the perturbation theory, there exists a
solution of the eigenproblem (2.33) determined in some neighbourhood of (X‘ @)
which is an analytical function of the parameter <. The pair (A.,a.) is given by
(2.13) and (2.14), while (X, &) is given by (2.8) and (2.9), where 5 = oy, Ji = u1,
v = vp. Substituting (2.13) and (2.14) into (2.33) and comparing the values at

suitable powers of ¢ we obtain the following system
[A(s, 01) = AB(uy, m)]a =0,
[A(s,01) — ABQu . v)]aq = [ABGi, 1) + M B(uy . n))a,

(2.34) [A(s,01) — AB(u1, v1)]az = AB(ji, 1)ay + M[B(uy, 1) + B(ji,v)a)
+ Ao By, 1),

Performing scalar multiplication of (2.34); by «, of (2.34); by & and subtracting

by sides, we get

_ —AIB@i.n)a.a]
(2.35) M= TG, ma, )

(*) This problem was also analysed in [7], using another approach.
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Proceeding similarly as in the derivation of the series (2.16) and (2.17), we get

_ —X[B(ﬁ,ul)(\-i,ﬁ] - /\l{[l}(/ll,l/|)(!|.('~l] + [B(ﬁu])ﬁ,ﬁ]}
a [BGu,m)a,a)

A2

(2.36)

The vectors a; are defined by the equations

ay = [A(s, 01) = AB(uy,v0)) ' AB(, 1)@ + M B(uy, n)a,
(2.37) ag = [A(s, 01) = AB(u1, )] HAB(@, v1)aq + M[B(u,v)ay
+ B, vr)al + M B(py, v)al,

We continue similarly to the case of the half-space with “weakly variable” density
and we assume

1 1

m(z2) floo

o ( 1 1 ) 1
£ = /lrx. — T T | ™ 1‘
Mo 4 Ho

From relation (2.35) for the square of wave velocity we get

(1 -e7%2) (@>0), v=ur, o=o,

where

~ 1 1 & P
2.38 2. = (2 — (_ B _) 2 an 2
( ) ( R) R 1t i R = J}(“ " 2Hm)

P,
+
(VI -3 +T=30r)(a + svV1 -0 + s/1 - 0Kp)

s
+ :
(V1 = @r(a + 2sv/1 - J)r;l)]
p) > -1
[ B [5~ " § Py _ ]
VI-o VI-0rk1 V1-0+ /1T-ar

Introducing the following notations

I l .
'l—l=C'§, 9=l——1-, ¢ = —a,
01 1o 21
~12 (12
s=28, =0
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we reduce (2.38) to the form
I
VI=3&(@@ + 41 -03)
Py

+
(V1-5 ++/1=0r(@ + 2r/1 =0 + 251 = OR))

(2.39) w=5—$@~]ﬁ[

Ps
+
(V1 —wkri(a + 4rv/1 — :)H])]
1)3 PS [74 :|Al
X * + .
[\/1—& V1I-Gr V1-G+/1-030k
The function w given by (2.39) for a fixed # and #; is a decreasing function

of the argument a. Figure 2 shows the diagrams of the function w(#,x,a) for
1) KL = 05, 6= ]], 2) K1 = 05, 0= 101, 3) K] = 05, g = 1.

Appendix I

I,: To obtain (1.23) from (1.22) we calculate the integral

o 0 2
(A.1) I, = /rl.zr [/ a(é - :I')()(E)(!’f} 5

0
where
(A2) a(p) = pemsVI-fmp,

b(p) = [A@.O] (> 0).
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Changing the variables in (A.1) and using the Fubini theorem, we obtain

00 o 2
(A.3) I, = /(LL' [] a(p)b(p + :zf)d’p]

0 0
= 7!1.1‘ [7(1.(]1)()(1} + ;l')u’]}] . [7(1(/7)11(17 + .r)(lﬁ]

0 0 0
= f alp) dp-» / By d5 + / dz[b(p + z)b(F + 2)).
0 0 0

From the Schwartz inequality it follows

& o0 1/2 S
(A4) ]b(li + 2)b(p + 2)dx < [] V(p + .1')([.1'1‘ . [/ bA(p + -T)’I‘L]
0 0 0

1/2

1/2

o0 1/2 oG oo
= { f 5,2(5),15] . / Ve de) < / b2(€) dE.
i 0

P

Finally we obtain

o 2 55
(A.5) I, < [ / ”(,;)(1,)] : ] B2(€) de.
0

0

Similiarly we estimate the integrals /,, /., /1

(A6) I, = /(1;1.- {/(;y — &)V (e, 1Y) de
0 0
. f(l o El)('_s‘/ 1= 24y (2=£") . |."(E’, ’)] ([El}
0

A, O da,

<57 o) [

0

_ . Py |  Oam N=3/2 =1 [ Al :

(A7) Ie = [ |a(x,t; 0. )| do < 5 02om(1 — £29a1)™7%s [A(z, )| dx,
0 B 0

(A8) L= f (b8, &)l < %f)ozu(l — Qgar) s ] Az, )] de.
0 0
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Integrating the inequality (cf. (1.19))
(A.9) INA(z, )] < |a(z,t; 29, 8)| + |[b(x, t; 20, 5)|

with respect to = over the interval [0, o) and using the estimate of the integral
I. and I;, we obtain

o0 o0 o0
(A.10) /INA(x,t)| o & /|a(m,f;!?0,s)| (lx+/|b(r,t; 20, 5)| e
0 0 0

< om(1 = Rgzy) 32571 / |A(z, V)| dz,

and finally

(A.11) ||N.4(1-,i.)||";\,m= sup | |[NA(z,t)| dx
2 lE[O,r.\b)D

oo

< ym(l - Qgh’|)3/2ﬁ_1 sup |A(x, 1)
lEIO.rx-)O

= Nym(1 - QO,;,)3/23—1||,1(;1-,f)||i,§.,.

From the last inequality it results that N A is a contraction operator in X} M if

(A.12) =<l

Let us consider the integral

.
I, = / M dz.
(1= 2r)

Due to (A.12) we get

Al I, 25m? /
(A19) 4(1 Ter) 1-,00h

2
. /(.r — £)exp [—sm(.r - g)] | A, )| (15} de.
0

Hence, by making estimates similar to those for the integral /, we obtain

162 2 2 [ lAGA
(A14) ]e S ZQQ‘”I (l - Qoh‘]) S -O/mdl "
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and
(A15)  lb(x,t; 20, 8)|% -1 = sup I,
2 | )
1
< Z.ng.z(l — Q1) s A, O -2 -
i |

Applying a similar procedure to that used for integral /,, we get

7 21‘,1,0,6
(A16) Iy —f-Z(T(iQO+(J;)I

) Az, 1)
. - 3 2/ _ 8@t
4()0111 (1 - 2ok1)” 2(1 = 2or(a)) e

Since
(A.17) N A(z, 1) = a(a, t; 29, 5) + b(z, t; 29, 5)
and
lla(x, t; 20, )3 -1m = sup 1.
! te[0.5¢)
5 %{)5,,,2(1 Qor1) 2572 A, ’)“\( 12 s
(A.18)

“l')(a-,t;f20,3)||2\,(_,,3) = sup [
-1 te[0,00)

1 -3 _
< 98m* (1= Qor) s A Ol v
1

y(-1/2)

the operator N is a contraction in X if the following condition is fulfilled:

(A.19) q = 2om(l — (]0,.-1)_3/25"1 < 1.

Appendix II

P(@) = 25°(1 - o) + (Z—w @,
P(@) = %4(1 ~)R -3} + §(z - )4,
P(3) = —[43%°(1 - &)2 - &) + (2 - &)%),
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Py(&, K1) = 8 — 45 + &F — 45Ky,
Py(©,51) = =32+ 85 + 245k, — 4%k,
Ps(@,K1) = 8 + 5,0% — 83Ky,

b
Ll 8
I

= 5 1[4s2(1 = &)1 = k1)@ - By — 1)],

k2 = $2(1 - @)1 — 251)5[2 - 25 — 261 + &kq]7Y,

I = [28%5(1 - 5))(1 - Gr)Y3,

I = —[2535(1 — k(1 - &)V3],

I3 = [2(1 - Gry) + D)[2635(1 — k1)@ - 2)(1 = @ry) /2],
lg = [28°5(1 = k)1 = )37,

Is = [-2(1 = Tr1)(1 = K15 + (1 = 251)(@ - 2)5 — 4@ — 2) — D21 - K1)]
x[85°(1 — k1 )*(@ — 1)@ - 2)3]7,
ls = [8s°(1 — k1)@ - 1)@ - 23] [-2@ - Do - (1 =26 (@ - 2)&
+4(D - 2) + 5% - Ky)),
Iy = (-2 - k)G - DE - 27250 -5k -5 — 26 (& - 2)
+4(1 — k)@ - 2) + &7,
i = {1 — Gri) Y61 — 516 — DG - 201 —oxi)]
X[83(1 — &k )2 — G(1 = 26 )@ — 2)° + 41 — 1)@ - 2)° + SH@ - 2)3,
a3 = [8s3(1 = £1)2(1 = G )G = 137201 - 5k — (@ = 2)(1 — 261)&
+2(Z - 2)(@ + 6)(1 — 1)),
az = [1653(1 — £1)2(1 — Gx)V2(@E — DSE - 227 [-4(1 — Srp)3(E - 2)°
+2(3 — 21 - 251)0 + 16(1 — Bk )@ = DA = K1)
8@ — (1 — ) — B - 2)(1 — #1)],
by = —[1683(1 — k1)2(1 = r))V3(& = DI = k)3 - 1)
—2(5 = 2)(1 - 251)% + 8(& — 2)(1 — k1) + TH(1 — K1) +4(E — 11 = Tky)],
by = [1653(1 — 51)2(1 = TG — DSE - 2)7]7 % [4Q0 - &rp)HE — 2)?
—2(@ — 2)°(1 = 2r1)3 + 8(D - 2)°(1 — k1) + SHE - 2)°(1 — K1)
+16(1 — &))@ — DA = 1))
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Symmetrization of a heat conduction model
for a rigid medium

W. DOMANSKI, T.F. JABEONSKI and W. KOSINSKI (WARSZAWA)

THE SYMMETRIZATION of the equations of a heat conduction modcl for a rigid medium in time
and three space dimensions is performed. The gencral symmetrizability condition is formulated in
terms of the entropy function. Examples of particular models (e.g. Debye’s model) are discussed.

1. Introduction

MOST OF THE KNOWN DYNAMIC (non-equilibrium) problems in nonlinear continuum
mechanics and thermodynamics lead to quasi-linear hyperbolic systems of par-
tial differential equations. The problem of well-posedness, i.e. existence, unique-
ness and continuous dependence (stability) of a solution on the initial data, is
fundamental for any system of equations. It is well known [1, 2] that Cauchy’s
initial-value problem for symmetric hyperbolic quasi-linear system is locally well-
posed in the Sobolev space I7°, with s > n + 1, where n is a number of space
variables. The quasi-linear systems of continuum mechanics usually are not for-
mulated in symmetric forms. To make use of the above well-posedness result, it
is desirable to transform such systems into symmetric forms, by the appropriate
change of the unknown variables.

The aim of this paper is to symmetrize the equations describing a non-equi-
librium heat conduction problem in a rigid conductor governed by a modified
Fourier law. The system of equations is of the second order in the scalar variable
A3, called internal state variable (or a semi-empirical temperature), and of the
first order in the absolute temperature 6. In the general 3D case, this system
can be transformed into the first order system in five unknowns. We symmetrize
this system with the help of entropy function using some results of FRIEDRICHS,
BoiLLAT, RUGGERT and STRUMIA [3-5]. Instead of deriving the exact form of the
entropy function from thermodynamics, we postulate the family of suitably cho-
sen entropy-like functions that are then used to get the new dependent variables
(the main fields).

In order to pick up the entropy from our family of postulated functions we
formulate a general symmetrizability condition. It turns out that this condition
is in fact the model compatibility condition which, on the other hand, can be
obtained from the second law of thermodynamics. This symmetrizability condition
can be easily fulfilled not only in the Debye’s model, which we analyze in details,
but also under some more general assumptions.
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2. Model with semi-empirical temperature

Recently in a series of papers [6-9] a thermodynamic, phenomenological the-
ory of heat conduction with finite wave speed has been developed and applied
to thermal wave propagation problems, mostly 1D. The theory is based on the
concept of a gradient generalization of the internal state variable approach, in
which the gradient of a scalar internal state variable 3 (called a semi-empirical
temperature) influences the response of the material at hand. The quantity /3
cannot be measured directly. Here it is considered as a potential, with the anal-
ogy to the classical heat conduction Fourier law. In the new model the heat flux
is proportional to the gradient of /3, instead of to the gradient of the classical
absolute temperature 6.

In the model considered (cf. [7, 9]) we assume that the evolution of 3 is
governed by the following equation:

@.1) O = 10.5) = ;) + 1Y)

(with f}, f> being real functions such that df;/d3 < 0), while the energy balance
law reads:

dos .
(2.2) % +divqg™ = o,

where (') o is the mass density, ¢ — the specific internal energy, » — the body heat
supply, and q~ is the heat flux vector. We also assume that the second law of
thermodynamics

don*

Jt
is satisfied, with 7" being an entropy. Moreover, in our model we make the two
additional simplifying assumptions:

=}

(2.3) + div % >

7

(A.1) q~ depends linearily on V3,
(A2) ¢ is a function of ¢ only.

From the second law of thermodynamics (2.3), under the assumption (A.1) we
can express the heat flux as:

(2.4) q = -a () V3,

where o~ is a positive function of dimension of the thermal conductivity coeffi-
cient. Also from (2.3) and from the assumptions (A.1), (A.2) we can derive the

(') Throughout this paper we use dimensionless variables. However, the following units have been assumed:
temperature (6 and /3) in ', length in cm, time in s, speed in cmijjis, encrgy in J.
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following form of the entropy function:
(2.5) (6, V3) = n’(0) - %c V32,

with ¢ being a positive constant.

3. Basic equations in a quasi-linear form

In order to express the system (2.1), (2.2), (2.4) in the conservative form we
introduce the following vector of new dependent variables u:

u(@, ) =[e,q. 8, 2eR, teR, q=[n, e al

where e = pe is internal energy and q = —V /3 is the rescaled heat flux vector
(cf. (2.4)). Moreover, we introduce the flux matrix F(u) and the vector of external
influences b(u) as:

ale)q
Fu)=| fil)I3 |,  b(u) = g-r.%(]. fi(e) + (D]
o .

where I3 is the 3 x 3 identity matrix, « is a positive function of dimension of the
thermal conductivity coefficient, and the function f is /; from (2.1) expressed
as a function of e. In what follows we denote:

divA = VA’

. g d 0 . . .
with V = [— — —} and A being an arbitrary 3-column matrix. Now, af-
day day’ dus

ter some calculation, we can describe the process (2.1), (2.2), (2.4) of the heat
conduction in a rigid medium in the form of the following first order system of
balance laws:

(3.1) % + divF(u) = b(u).
(
The quasi-linear form of this system is:

3.2) U—“+iA(.)f')“ = b(u)
G- ar o g T
with: i

T al) &
A(u)y = | ¢ ] 1=1.2.3
dfy o1 0
= 2
de

where 04 is the 4 x 4 null matrix and §, = [1,0,0.0], £, =[0,1,0,0], &§; =
[0, 0,1, 0].
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4. New dependent variables

In order to symmetrize our quasi-linear system (3.2) we make use of a well
known fact [10, 3, 5] that a system of hyperbolic first order balance laws can be
symmetrized, provided that it is equipped with a convex entropy function satis-
fying supplementary conservation law. More precisely, such a system of balance
laws becomes symmetric in the Friedrichs’s sense when one takes the gradient
components of the entropy function 5 as the new dependent variables (main
fields) v:

v = grad, 7.

In the case of our system (3.1), having in mind the formula (2.5), we take as
the candidate for the entropy 7 the family of functions that can be expressed in
the following form:

1
(4.1) (e, q) := ne(e) + 5¢19-q,

where ¢; > 0 and 7, is the so-called equilibrium entropy that will be detailed in
the next section. Consequently, we obtain:

dn,
grad, n = {I_' C1q1, €192, €143, 0] ;
(e

Since semi-empirical temperature /3 is not involved in the divergence term in
the quasi-linear system (3.2), we are free to put an arbitrary function as vs (e.g.:
vs = cz/3 with ¢3 = const). Hence, our main fields v are:

dy
(4.2) v=[vg,...,vs] = [ d; L CL1s C1g2, €13 (:2/1] .

Using the main fields (4.2) we obtain the symmetrizing matrix H for our quasi-
linear system (3.2) in the form:

d*y,

(43) H= graduv = d:ag [F €14 €15 C1, ('2] N

where grad, v = [grad, vy, grad, vy, ..., grad,vs]? and diag[-] denotes a diagonal
matrix with the diagonal [-]. We can choose an appropriate sign of the constant
¢ to make our symmetrizing matrix H positive definite.

5. The symmetrizability condition

The matrix H of the form (4.3) symmetrizes our quasi-linear system (3.2) if
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and only if, by the definition, the following matrices B;, ¢ = 1,2, 3 are symmetric:

da (12115 l Te
/l . 2

(5.1) B; = H-A, = f‘; e . i=1,2,3.
ffl &1 0

Since the equalities of the corresponding off-diagonal elements of the matrices
B; do not depend on ¢, the condition (5.1) is reduced in fact to a single, general
symmetrizability condition in the form:

5.2) ale )d 77£/df1

de

We remind that ¢; is a constant appearing in our family of functions (4.1). It
can be shown that ¢; evaluated from (5.2) coincides with the constant ¢ from
(2.5) which, on the other hand, is evaluated on the basis of the thermodynam-
ical considerations. It is also worth mentioning that under our assumptions the
equilibrium entropy 7. is a convex function of ¢, provided that df; /de > 0.

6. Specification of the equilibrium entropy

Under our assumptions the equilibrium entropy 77, as a function of the clas-
sical temperature 6, is the derivative of the Helmholtz free energy vy:

di
i1 “(0) = ——
(6.1) ) = -,
where 1, satisfies the following ordinary differential equation:
(IL " i
o L SN
0 70 + Uy ’ e(0)

with € being e as a function (?) of 4. Hence, v takes the form:

0 .
¢

Substituting the solution ¢, into our postulate (6.1) we obtain the the equilibrium
entropy as the following function of #:

(6.2) n(8) = 6(9) ] 2) ds — ¢.

6

(6) = g — ¢y = const.

IS

=]

(*) In order to distinguish between a variable (e.g. €) and the same variable treated as a function of another
variable (c.g. e as a function of §), introduce the symbol  to denote the function (e.g. €(6)).
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All that we need now is to express the equilibrium entropy as the function of the
internal energy ¢ only. To this end we introduce the specific heat ¢, that relates,
by the definition, e to # in the following way:

_ 1.dé(b)
(6.3) =

Hence, e as a function of # reads:
&d) = o / co(8) 6.

Under the assumption that the specific heat ¢, is a positive function of 6, so that
€(0) is monotonic, the inverse function

0:e—0,  O(c) =)

exists and the equilibrium entropy 7. as the function of the internal energy
takes the following form (cf. (6.2)):

= — L
(6.4) sl = sl = “6(()+0 / I

In terms of such 7,.(¢), our general symmetrizability condition (5.2) takes the
form:

)
alé) {/(l(()
(6.5) e = ”_"_({—l'
0 (00 !
(e
and the symmetrized matrices B; are:
da
0% @ ¥
(6.6) B, = % (I{ de . i=1,2,3
de o
¢ a &ll 0

7. Specification of f; for various a(c)

We may reformulate the symmetrizability condition (6.5) to obtain, after inte-
gration, the general form of the function f; such that it allows the symmetrization
by our method. The function f; in this form is expressed in terms of a(¢) and
the constant ¢;:

a(e) 1 1 da(e)
- de .

(1:)(}(() 1o . (}(() de

(7.1) fi(e) =

http://rcin.org.pl
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Now we specify f; for two different functions a(c):

Case 1
(7.2) a(c) = ag(0(e))?,  ag> 0.
Then the function f; has the form:

file) = *% .

CaSE 2
(73)  a(e) = —ag(l(c) - ) (B(c) = B2), g >0, 616, <0.
Then the function f; is the following:

ag {6(c) = (61 + 62)In(0(c))} g iy
e1g cro8(c)

Ni(e) =

8. The example: Debye’s model
8.1. Arbitrary a(e)

Our general symmetrization formulas can be further specified if the explicit
form of the #-dependence of the specific heat ¢, is assumed. For example, in
Debye’s model with

(8.1) e, =4c 08, >0,

the inverse function # becomes:

- e \1/4

(8.2) f(c) = ( ) ;
Cy0 0

the symmetrizability condition (5.2), (6.5) reads:

_ (l(() Cu0 1/4
(&3 T T (r503)

4 W -
de

and the equilibrium entropy 7, (¢) takes the following form (cf. (6.4)):

Co €2 e
(8.4) ne(c) = (4 = ) = (co + ¢.0/3).

303

http://rcin.org.pl
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8.2. Specified a(r)

Let us recall that o is a positive function of dimension of the thermal con-
ductivity coefficient. Now we specify the symmetrizability condition, symmetrized
matrices B;, i = 1,2,3, and the function f; for two different a(¢) taken from
Sec. 7.

Cast 1 (cf. (7.2))

(8.5) a(e) = ag (8(e))* = ag — ap > 0.

0 Cy0

=

Then the symmetrizability condition reads (cf. (5.2), (6.5), (8.3)):

_ ag 1 i/
(8.6) €1 = —454/'_1 ((‘UO (,3 05) .

de

the symmetrized matrices B, are (cf. (6.6)):

ag { i =47 2(‘“4/3&]
. 2

8.7 B & ———r 1 =1,2,3,
( ) 8((’1,0 95)1/4 5 e=4/3 £‘1 0

and the function f; has the form (cf. (7.1)):

it = -ao (=)™

cu €1 00

(8.8)
(1()6

fl-(H)=—;T;-

Cask 2 (cf. (7.3), (8.2))

e N\ 1/4 e \ 174
(89) (l((i) = — (( ) — 0[) (( ) — ()2 A (l() > 0. ()102 & 0
! Cy0 O Cyo 0

Then the symmetrizability condition reads (cf. (5.2), (6.5), (8.3)):

o= 20 (Bi(cw o)/ = e/%) (Ba(c0 0)'* - €11Y)
'y (con ¢S )17 ‘
de

(8.10)
the symmetrized matrices B; are (cf. (6.6)):

, b b2 &,
(8.11) B, “—“[ N '2€‘} g 1. 23,

= ]G(Cuﬂ !_)5)1/4 bl2£;r 0

http://rcin.org.pl
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where

bit = —qie72 {(c,0 0)'* (61 + 62) — 2¢'/%},
bia = 4e7>/*(B1(c0 0)'7* = /%) (B2(cr0 0)'/* — €'Y,
and the function f; has the form (cf. (7.1)):

fite) = 22 { () e (S)" - QDL

(8.12) er | \(cwo 2%) co 0
" Qg 6, 6,
16 = = fo - 22— 0y + 6) a0 7w0) |

9. Conclusions

The equations of a heat conduction model for a rigid medium in time and three
space dimensions are analyzed. Using the internal energy, the heat flux vector
and the semi-empirical temperature as the dependent variables, we formulate the
conservative, and the quasi-linear hyperbolic forms of these equations.

We successfully symmetrize our quasi-linear system by introducing the family
of suitably chosen entropy-like functions that are then used to obtain the new
dependent variables, and by formulating additionally a general symmetrizability
condition that allows us to specify the physically justified entropy function.

It turns out that this symmetrizability condition is in fact the model compati-
bility condition which, on the other hand, can be obtained from the second law
of thermodynamics.

We illustrate our approach on a detailed example of the Debye’s model with
specified different forms of the thermal conductivity coeflicients.

Our approach is effective when the classical temperature is an invertible func-
tion of the internal energy. Then we can always symmetrize our system of equa-
tions and the symmetrizing matrix is diagonal.
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On the extension of Newton’s second law to theories
of gravitation in curved space-time

M. ARMINJON (GRENOBLE)

WE INVESTIGATE the possibility of extending Newton'’s second law to the general framework of
theories in which special relativity is locally valid, and in which gravitation changes the flat Galilean
space-time metric into a curved metric. This framework is first recalled, underlining the possibility
to define uniquely a space metric and a local time in any given reference frame, hence to define
velocity and momentum in terms of the local space and time standards. It is shown that a unique
consistent definition can be given for the derivative of a vector (the momentum) along a trajectory.
Then the possible form of the gravitation force is investigated. It is shown that, if the motion of
free particles has to follow space-time geodesics, then the expression for the gravity acceleration is
determined uniquely. It depends on the variation of the metric with space and time, and it involves
the velocity of the particle.

1. Introduction

THIS WORK COMES from an attempt to explore the possibility of extending the
“logic of absolute motion”, which prevails in the Lorentz-Poincaré interpreta-
tion of special relativity [8-9, 15, 20-24], so as to obtain a consistent theory of
gravitation. Thus, a theory with a preferred frame has been tentatively proposed
[1-4]. Just like general relativity (GR), this theory endows the space-time with a
curved metric. Just like in GR, special relativity (SR) holds true locally in this
tentative theory. However, an extension of Newton’s second law, or rather of
its modified expression valid in SR, has been defined for a test particle (mass
point or photon) in the most general situation within this investigated theory
[4]. As it will be reported here, the way used in this theory to define Newton’s
second law in a “curved space-time” turns out to be both natural and general
in its principle. Hence, it has been tried to find in the literature such a natu-
ral and general extension, but this quest has not been really successful. Apart
from approximate equations occurring in “post-Newtonian” treatments, two ex-
act extensions of Newton’s second law to relativistic theories of gravitation can
be found among well-known textbooks: LANDAU and LircHiTz [11, §88] define
this law for a constant gravitation field, and MoLLER [18, §110] “tries to write
[the equations of space-time geodesics] in the form of three-dimensional vector
equations” in a general case but, as his sentence suggests, and as will be dis-
cussed below (note 1 and Sec.4), his attempt is not fully satisfactory. JANTZEN
et al. [10] review and unify the various attempts, including the important work
of CATTANEO [6-7], to “split space-time into space plus time” and to rewrite
the relativistic equations of motion with “spatial gravitational forces”. It appears

http://rcin.org.pl
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from their review that three different definitions have been introduced, by vai-
ous authors, for the time-derivative of the momentum. These definitions will e
examined in Sec.4. It will appear that one does not obey Leibniz’ rule, whle
none of the other two does involve only the separate ingredients “space metri:”
and “time metric” in a given reference frame, as should be true for a natumal
extension of Newton’s second law. However, it seems that one has good reasois
to search for such extension and hence to find this “missing link” [17] betwe:n
classical and relativistic mechanics.

Indeed, the Lorentz-Poincaré construction of special relativity [15, 20-2'],
fully developed by JANOssY [8-9] and PROKHOVNIK [22-24], obtains the “rel-
tivistic” effects as being all consequences of the “true” Lorentz contraction s-
sumed to affect all bodies in motion with respect to the “ether”. As it has be:n
recently reestablished [27] against contrary statements, it is impossible to mea-
sure consistently the anisotropy in the one-way velocity of light. This makes tie
Lorentz-Poincaré version empirically undistinguishable from the Einstein ver-
sion of SR [22]. The Lorentz-Poincaré interpretation allows to concile specal
relativity with our intuitive notion of distinct space and time, and thus with tie
most crucial concepts of classical mechanics. However, special relativity does rot
describe gravitation: for gravitation, general relativity is the current tool. Butin
GR, the laws of motion become a consequence of the space-time curvature, eg.
the “free” particles are assumed to follow the geodesic lines of the space-tine
metric. Thus, at least as long as the geodesic formulation of motion has not be:n
derived from a generalization of Newton’s second law, one is enforced to give a
physical status to space-time in GR. On the other hand, despite the experimen-
tal success of GR, it leaves unsolved problems as regards gravitation. We may
mention the problem of the singularity occurring with the gravitational collapse of
very massive objects, and the need to postulate huge amounts of “dark matter”in
order to explain stellar motion in galaxies. We should also mention the questims
on the influence of the coordinate condition in GR, which were raised a long tine
ago (e.g. PAPAPETROU [19]), but that have been newly discussed by LoGuNov et i,
[13-14]. LoGunov er al. present detailed arguments against the usual agreement
that, in GR, the choice of the coordinate condition has no physical consequen:e.
It thus may be worth to investigate alternative, speculative theories and to sk
questions on the formulation of motion.

In this paper, an extension of Newton’s second law will be given for theores
of gravitation in curved space-time in which SR is locally valid, including GR.In
doing so, care will be taken to maintain space covariance in a given refererce
frame, in order that the force be properly defined. However, no attempt will be
made to investigate the transformation of the force from one reference frane
to another. Section 2 will be focused on the definition of the right-hand side of
Newton’s law, i.e. the time-derivative of the momentum: it will be shown that tiis
may be defined from rather compelling principles, up to the same parameter A
as in the tentative theory [4], and which also must be A = 1/2 if Leibniz’ rile

http://rcin.org.pl
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is to apply. In Sec.3, it will be investigated which form of the gravitation force
is compatible with Einstein motion (for “free” particles), i.e. the motion along
space-time geodesics. In the first step, Leibniz’ rule will not be imposed but it
will be assumed, in analogy with the Newtonian theory, that the gravitation force
depends linearly on the spatial derivatives of the metric and does not depend
on its time-derivative. In the second step, Leibniz’ rule will be assumed, but no
restriction on the gravitation force will be imposed. In Sec. 4, the three anterior
definitions of the time-derivative of a spatial vector, reviewed by Jantzen et al.,
will be examined from the point of view of “consistency” (validity of Leibniz’
rule), and “naturalness” (space plus time separation).

2. Definition of Newton’s second law for a (pseudo-) Riemannian
space-time metric

2.1. Some clarification on the kind of theories considered

We suppose that, according to some gravitation theory, the physical standards
of space and time are influenced by a gravitation field, but that SR holds true
locally (GR is the prototype of such gravitation theories, of course). It will be
useful to recall in some detail what is meant by this, not the least because it will
make clear that this framework does not preclude to consider a preferred-frame
theory, nor does this framework imply that a fundamental physical meaning must
be given to the mathematical concept of space-time. It will also give the way
to separate the force into a gravitational force or rather a mass force, and a
non-gravitational force.

i) According to a theory of this kind, our space and time measurements
may be arranged so as to be described by a metric 7 with (1,3) signature on
a 4-dimensional, “space-time” manifold. This may be done as follows. Any possi-
ble reference frame F, physically defined by a spatial network of “observers™ (each
one equipped with a ruler and a clock, all made in the same factory, say), al-
lows one to define (in many ways, actually) an associated coordinate system ()
(a = 0,...,3), with 2¥ the time coordinate and 2' (i = 1,2,3) the space coordi-
nates, so that each observer has constant space coordinates. Moreover, { = 20 /e is
the “formal date” assigned to an event occurring at a point specified by the space
coordinates z' (¢ has in general no immediate relation to real time-measurements
made by the observer at this point). The observers in the same frame F are
not necessarily at rest with each other, i.e. they may find that their mutual dis-
tances are not conserved (case of a deformable frame). The manifold structure
of the space-time means simply that the same physical events will be given dif-
ferent space and time coordinates by different networks of observers, say («%)
and (z'“), and that the correspondence between (x®) and (2'") is locally smooth
(for smoothly deforming networks). So we have a space-time manifold A%, The
elements (points) of the spatial network cannot be identified with points in that
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manifold but with “world lines”, thus with /ines in space-time. Hence, from the
point of view of “space-time”, a reference frame is a 3-D differentiable manifold
N whose each point is a (time-like) differentiable mapping from the real line
onto the space-time M*; moreover, N is diffeomorphic to any spatial section of
M* (this is only the sketch of a rigorous definition; from the point of view of
“space + time”, a much simpler definition may be proposed [1]). Note that many
new coordinate systems (z'*) do not change the reference frame (network) spec-
ified by one system (x®): the frame remains unaltered if and only if the change of
the space coordinates does not depend on the time coordinate, i.e. du" /0" = 0.
Up to this point, it seems that no physically restrictive assumption is involved
(except, of course, for the fact that “classical” physics, not quantum physics, is
envisaged here).

The assumption that SR applies locally is the one which allows to define a
(1,3) space-time metric. This assumption means, in the first place, this: in any
reference frame, the velocity of light, as measured on a to-and-fro path between
infinitesimally distant positions, is always the same constant ¢. Under this con-
dition, the link between physical space and time measurements and the metric
5y may be described as in LaNpAU and Lircuitz [11], it is based on using the
Poincaré - Einstein synchronization convention for infinitesimally distant clocks.
Thus the proper time along the trajectory of a mass point (“time-like” line in
space-time), i.e. the time 7 measured by a clock bound to the moving point, is
directly given by metric 7:

(2.1) ds? = 2 dr? = v, da d2”.

Also, the distance dI between neighbouring observers (of a given frame F, spec-
ified by a coordinate system), as they find by using their rulers, or by measuring
the interval dr of their proper time that it takes for a light signal to go forth and
back, is expressed by a space metric tensor h = hr (it depends on the frame F):

(2.2) di* = (e (/T/2)2 = /r,', dat da’, /l,‘_/' = -9, + (vo: 7()1'/7()()).

Moreover, a synchronized local time /() may be defined along any open line in
space-time (i.e. a piecewise differentiable and one-ro-one mapping £ — (£ (£))
defined on a closed segment of the real line), such that its variation along the
given trajectory is given by:

23) dly _ /oo ((/_,“ L0 (/.r")

g€~ e \dgE T qm de

As emphasized by CATTANEO [6], the interval (!, is invariant under any coordi-
nate transformation that leaves the reference frame unchanged (“internal trans-
formation™) and has thus an objective physical meaning. If the vy; components
(¢ = 1,2.3) are identically equal to zero, the synchronization convention implies
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that events occurring at a given value of +U are simultaneous in the frame F,
independently of their spatial coordinates (this may be seen in Eq.(2.3)). Hence
2% is a “universal time” in the frame F. As a consequence, if one uses such coor-
dinates (z“), then the trajectory of any test particle may always be parametrized
with the coordinate time ¢ itself and, moreover, the local time has the simple
expression

(2.4) diy/dt = /300 = B.

The expression (2.4) of the local time has the immediate physical meaning of
showing how clocks are affected by the gravitation field (usually they are slowed
down, i.e. ygo decreases towards the gravitational attraction). The property vg, = 0
holds true after any coordinate transformation of the form 2 = ¢(2?), 2" =
(!, 22, 2%). Thus it is indeed a characteristic of a given frame F. The restriction
to space-independent transformation of time, /0 = ¢(x0), reflects simply the
global synchronization. Using this time transformation, one may impose that the
local time at a given point bound to the frame, xo = (ro'), coincides with the
universal time (i.e. 700(2", (v¢')) = 1 ¥ 20), and then only a shift of = is left free.
The yp9 component is invariant under the remaining, purely spatial coordinate
changes.

i) The other assumption involved, in saying that SR applies locally, is that
the laws of non-gravitational physics are “formally unaffected” by gravitation, in
the following sense: in the absence of gravitation, any such law must (or should)
be formulated in the frame of SR. Then, in the absence of gravitation, it may
be expressed in a generally covariant form, in replacing the partial derivatives,
valid in Galilean coordinates, by the covariant derivatives with respect to the flat
space-time metric 7? (Galilean coordinates are the ones in which the flat metric 5 °
has the canonical diagonal form, ¢",, = Nue With (n,,) = diag (1, -1, -1, -1)).
Now the assumption is that, in the presence of gravitation and hence (according
to a theory of the class considered here) with a curved metric v, the expression
of any such law is extended to this situation simply by substituting + for v°. This
assumption is quite natural: physics must be described in terms of the local space
and time standards which (cf. point (i)) are ruled by metric 5 in the frame of SR.
And at the local or rather at the infinitesimal scale, the presence or absence of
curvature plays little or no role, i.e. any metric behaves (in many respects though
not in all) as a flat metric in the infinitesimal. Some ambiguity may yet arise when
trying to use this assumption, if differential expressions of order greater than one
are involved: since Schwarz’ theorem does not apply to covariant derivatives for
a curved metric, different higher-order expressions may become identical for a
flat metric and yet remain distinct for a curved one (e.g. WiLL [26]). In a such
case, a comparison with experiment may either decide between the possibilities,
or show that they do not differ significantly. Such empirical procedure might lead,
of course, to different choices for different gravitation theories, i.e. for different
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metrics v in the same physical situation, and thus could create a bias when testing
alternative theories.

2.2. Extended Newton law for a constant gravitation field

Let us first consider the static case, i.e. the case where a frame F exists,
defined by a coordinate system (x®), in which all components 7,5 of metric
v are independent of 29, and moreover the 7o; (i = 1,2,3) components are
zero. The first property holds true after any coordinate transformation of the
form z0 = az® + ¢(z!, 22, 23), 2" = ¢'(a!, 22, 23), thus in a different range for
the time transformation than for the second property, discussed above. Then,
the right-hand side of Newton’s second law, valid for SR, i.e. dP/dt with P the
momentum including the velocity-dependent mass, is easy to extend to any such
theory of gravitation. The velocity v of a test particle (relative to the frame F)
is measured with the local time ¢, of the momentarily coincident observer in the
frame F, and its modulus v is defined with the point-dependent (Riemannian)
space metric h in the frame F. Thus

(2.5) vl = dat/dly, v = [h(v.v)]"/% = (h;; o' v")V/2,
The momentum is hence for a time-like test particle (mass point):
(2.6) P = m(v)v, m(v) = m( = 0)+7y, = m(0) (1 — v?/c?)~1/?

(using the mass-velocity relation of SR) (!). For a light-like test particle (photon),
one substitutes the mass content of the energy for the inertial mass m(v). Then we
must define the derivative of the momentum with respect to the local time. Thus
in general we have to define the derivative of a vector w = w(y) attached to a
point x(\) = (¢'(y)) which moves, as a function of the real parameter y, in some
Riemannian space: here this space is the 3-D domain N = N constituted by the
spatial network which defines the considered frame 7. Hence the points in NV are
specified by their constant space coordinates «*, i = 1,2,3,and N is equipped with
the space metric h. The derivative must be defined as the “absolute” derivative
(e.g. BriLLouiN [5], LicHNEROWICZ [12]), which is a space vector and accounts
for the (merely spatial) variation of the space metric along the trajectory:

Dw\' duw' : - dak
5 Y 2L g Pl
Lot} (1)\') dy 7k dy

(') Equation (2.6) implicitly assumes that the rest mass m(0) is the same constant m, independently of the
gravitation ficld. This may be seen as an immediate consequence of defining the inertial mass m as the ratio
P/v (= P'/v') and assuming that the P' are the spatial components of the 4-momentum, this being in turn
assumed to have the form P* = g da® /dr with a constant my. This is consistent with Lanpau and Lirchirz
[11]. On the other hand, M@rLLer [18] defines the inertial mass as the ratio m' = P/v; with vy = dx/dt,
thus m' = m dt/dtx, hence his rest mass m'y = m'(vg = 0) = mydt/dix depends on the gravitation ficld.
However, the definition of v and hence that of m' depend on the chosen time coordinate ¢ even in a given
frame, while the velocity v used by Landau and Lifchitz (and used here) depends only on the reference frame,
as it should.
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where the ['';; are the Christoffel symbols of metric h in coordinates (x').
As shown in ref. [2], the use of Eq.(2.7) is enforced if one wants to know
that Leibniz’ rule applies, and that the derivative cancels for a vector w that
is parallel-transported (relative to the space metric h) along the trajectory. This
is considered to be important, because it means that Eq. (2.7) is not merely one
possible formal rule to obtain a space-contravariant vector, but the unique consis-
tent definition for the time-derivative of a vector along a trajectory, in the case of
a time-independent metric. Now the left-hand side of Newton’s second law is just
the force. This may be decomposed into a “non-gravitational” force Fy, which
should have the same expression for any gravitation theory in the considered
class (%), and a “gravitational” force F, whose expression, of course, will depend
on the theory. Note that Fy will generally contain “inertial” forces as well (since
a general reference frame is considered here), hence “mass force” would be a
more appropriate denomination [1]. Thus finally:

(2.8) Fo + Fy = DP/Dt,.

Using the same equations (2.3) and (2.5) to (2.7), the same definition may and
must be used in the stationary case, in which the v,4’s remain time-independent,
but the 7o, components may be non-zero: although a synchronized local time
cannot be defined in the frame F as a whole if the v¢,’s are non-zero, what matters
is that it is uniquely defined along the trajectory followed by the considered
particle (provided that it follows an open line in space-time: a closed line would
mean a travel back in time).

2.3. Extended Newton law for a general gravitation field

In the general case where the gravitation field is not constant in the frame
F, the new feature is that now the space-time metric v depends also on z°.
Hence also the space metric h (Eq.(2.2)) varies, not only as a function of the
space coordinates ' (what is natural for a general Riemannian metric in a space
depending on these coordinates), but also as a function of the time coordinate
20, What is relevant for Newton’s second law is, more precisely, the variation of
h along a trajectory (of a test particle), i.e. the fact that our spatial network N
is equipped with a metric field h, that changes as the parameter \ evolves on the
trajectory, thus for any value of y and at every point .\" € N we have a covariant
tensor h, (X). In our case, the variation of the metric field with y is due to the
variation of h with the point in space-time, thus in coordinates:

hyii[(@*r=1.23] = hi[2%(0), (@F)mr23)-

(*) The expression of Fy is taken from the situation without gravitation: thus, as recalled in point (ii) of
Subsec. 2.1, it involves the ficld ~ (in the place of the flat metric 4”), and it depends on the non-gravitational
ficlds; in practice, these are the electromagnetic ficld and/or thermomechanical fields (the nuclear ficlds are
very microscopic matter ficlds and moreover, their current theory does not belong to classical physics, i.c. their
influence cannot be described in terms of deterministic trajectories of mass points). A “free” particle is one
which crosses a region free from matter and electromagnetic field: for such a particle, the force Fy will be zero
independently of the reference frame considered.
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Moreover, we have a preferred parameter \ = [, on the trajectory. It is easy to
convince oneself that nothing needs to be changed in Eqgs. (2.3), (2.5) and (2.6),
because they involve only the local components of the metric (which now become
its local and “current” components), not its variation. In order to define properly
an extension of (2.7), let us list the properties that should be satisfied by this
searched derivative of a vector on a trajectory in a manifold equipped with a
variable metric:

a) It must be a (space) vector, i.e. it must be contravariant for any coordinate
transformation of the form z* = z"*(a/).

b) It must be linear in w. More precisely, it must obviously have the form

(Dw/Dx)' = (dw'[d\) =\, + L';jw’ (x0).

with \o the point of the trajectory where the derivative is to be calculated, and
where L', behave as a mixed second-order (space) tensor (transforming a (space)
vector into another one), for linear coordinate transformations.

¢) It must reduce to (2.7) if the metric field h, does not depend on .

d) It should account for the variation of metric h, as a function of y.

e) It must be multiplied by \ /d¢ if \ is changed to ¢ = ¢(y).

f) Tt must satisfy Leibniz’ derivation rule for the derivative of a scalar product,
Le.

d Dz Dw
2.9 —(h(w,2)) =h (w——) + h (—ﬁz)
(2:9) dy (h\(w.2)) . Dy Y\ Dy
in which it is understood that, on the left, the variation of metric h with 20 is
accounted for, as becomes obvious if one writes down explicitly the scalar product:

(2.10) hy(w.z) = h;; [(+"(\)a=0,...3] @' ()7 (V)

(Hence, it is likely that (f) implies (d)).

First, we note that definition (2.7) still makes sense, and satisfies requirements
(a), (b), (c) and (e). Of course, it is now specified that the Christoffel symbols of
metric h are those at the relevant position and “time”, thus in (2.7)

(2.11) = LV =123 = ol (D)e=o....3]-

The “candidate” thus defined by Eq.(2.7) will be now denoted by Dow/Dy. It
does not satisfy (d) (nor (f), in fact), for it amounts to substituting the metric
h,, of the “time” a = 2%(\p) for the variable metric h,. From (a), (b) and (c), it
follows that we have to search an expression in the form

(2]2) DW/ Dy = 1)()W/ Dy + t-w(y\p),

in which t is a mixed second-order space tensor (indeed, the ordinary derivative

dw/dy = (dw'/dy\) is already involved in Dow/ Dy, Eq.(2.7)). But to satisfy (d),
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it is hence necessary that this tensor should involve the variation of metric h
with y, due to the variation of h with 2¥;
dhyij  Ohy dad

175% dx0 dy -’

Thus, tensor t must contain either h;, o terms or A ; ones, with (h*7) the inverse
matrix of (h;;). In order to be a mixed tensor and satisfy (e), t should have the
form

(2.13) i =h'ho(da®/dy),  or  fi =k g(da®/d\)hj,

or any linear combination of these two tensors. But since h'/h,, = &';, we have
t+t' = 0, so that, without imposing Leibniz’ rule, we are left with a one-parameter
family of candidates:

(2.14) Daw/ Dy = Dow/ Dy + Atew.

Finally, nearly the same short calculation as in Ref. [4] shows that Leibniz’ rule
(2.9) imposes A = 1/2, hence only one definition of the derivative remains:
dh

oh da®
(2.15)  Dw/Dx = Dow/Dy + (1/tew,  t=h .S =p 1. 208
J\ ¥ dy

or in coordinates:

Dw\' _ du! Y da?
2.16 —_—) = —% + —hiih,
(2.16) (l)\) dy jhu G > ,/A.(l—(/\ i

Thus, a theory of the kind considered should provide an expression for the mass
force F,, and this expression would depend on what the theory considers as “the
gravitation field” (this may include the space-time metric 7, in any case it must
determine 7). Then one and only one “Newton law” can be consistently stated
in such a theory: it is Eq. (2.8), where the momentum P is given by Eq. (2.6) and
its derivative DP/ DI, is calculated using rule (2.16). The trajectory £ — (27 (£))
being defined with the help of an arbitrary parameter &, the variation of the local
time \ = {y along the trajectory is given by Eq. (2.3).

2.4. Comments and link with the investigated preferred-frame theory

It is seen that the derivative of the momentum is defined in any possible
reference frame (and it depends on the frame). Hence, if a theory gives a covariant
expression for Fy and 7, the extended second Newton law does not restrict the
covariance of the theory. On the other hand, a preferred-frame theory may give F,
and v in one reference frame only; if one were able to calculate the transformation
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law of the derivative DP/ Dy, then this same law would apply to the force, so
the law of motion would be reexpressed in a covariant form.

The investigated ether theory [1-4], which is indeed non-covariant, starts
from a heuristic interpretation of gravity as Archimedes’ thrust in a perfectly
fluid “micro-ether” (the rigid ether frame & considered by Lorentz and Poincaré
would be defined by the average motion of this “micro-ether” at a very large
scale). The transition to account for “relativistic” effects is based on a formulation
of Einstein’s equivalence principle, natural in this preferred-frame theory: the
equivalence is stated to exist between the absolute metric effects of uniform
motion and gravitation. This leads to postulate a gravitational contraction (resp.
a dilation) of the space (resp. time) standards, depending on the field of the “ether
pressure” p,, thus getting a curved (Riemannian) space metric g and a local time
tx in the ether frame &£, which together build a curved space-time metric v [2-3].
This theory gives Fy and ~ in the ether frame & only, as a function of the scalar
gravitation field p,, or the associated fields f and /# with

(2.17) f=p3%= (pe/p ) <1,

where p.~ = p.~(T) is the reference pressure (which, for an insular matter
distribution, is asymptotically reached at large distance from the matter. Here, T
is the “absolute time”). The gravitation force is assumed to be

(2.18) F, = m(v)g.
with g the gravity acceleration, given by
orad . rad /3 2
(2.19) g = -(-25_1)9.’_ = 42ng = ——grady/ .

where g = hg is the physical space metric in the frame &, and where gradg (resp.
gradp) is the gradient operator relative to metric g (resp. relative to the “natural”
metric g°, with constant curvature, of which the “ether” network (3-D manifold)
M = Ng¢ is assumed to be equipped with). And the line element of the space-time
metric v, affected by gravitational contraction of the space standards (relative to
metric g”) and by gravitational dilation of the time standards (relative to the
“absolute time” 7T'), has the form

(2.20) ds? = g3(da®)? - di?, 2% =T,
where dl? is the line element of metric g. This has the following simple expression
in “isopotential” coordinates (y“), i.e. coordinates such that, at a given time 7,

y! = const (in space) is equivalent to p, = const, and that the natural metric g’
is diagonal, (g;;) = diag(a",):

(2.21) (g;;) = diag(a;) with ay=d/f, ar= a% . a3 =da%.
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For a time-dependent field p., such coordinates are not bound to the ether frame
[4]. From Eq.(2.20), it follows that, if one selects any coordinates (z“), with
29 = ¢T, that are bound to the frame &, then the components vy, are zero. Thus
a simultaneity is defined for the frame & as a whole; in other words, the absolute
time 7" is a universal time in the frame £. For the important case of an insular
matter distribution, the absolute time 7" is the local time measured at any point
xg which is bound to £ and far enough from matter so that no gravitation field is
felt there. Moreover, the global synchronization condition (yg; = 0) does not hold
true in a frame that rotates rigidly with respect to £, nor in general in a frame
that moves uniformly with respect to & (*) (the condition yy; = 0 holds true for
any frame in uniform translation, in the case that no gravitation field is present,
thus for the flat metric ¥ = 7). These considerations justify the denomination
“absolute time” for 7'. Hence, the ether frame &, which is already a global inertial
frame in the sense that the mass force in & (2.18)—(2.19) is purely gravitational,
is really a physically privileged reference frame (according to this theory).

3. Extended Newton law and geodesic motion
3.1. A possible form for the gravitation force in a globally synchronized reference frame

We now investigate the possible form of the gravitation force. In order to
make some meaningful induction from the Newtonian theory, it is very useful to
work in a reference frame F, in which the 44, components of metric y are zero
(Subsec. 2.1). The concept of global simultaneity is indeed so deeply involved in
any Newtonian analysis, that any induction from the Newtonian theory to the
general situation with curved space-time, where a simultaneity is defined only
along a trajectory, would seem dangerous. Whereas, if one works in a frame such
that 5o, = 0, the only change in the time concept is that now the clocks go dif-
ferently at different positions and times (Eq.(2.4)). We note that the existence
of a frame F, in which the 5, are zero, is not a physically restrictive assump-
tion, since it breaks down only for rather pathological space-times: in “normal”
space-times it is even possible to select a “synchronous” frame which not only
enjoys this global synchronization, but in which the 759 component is uniform,
i.e. the local time flows uniformly (Lanpau and LircHiTz [11], MAVRIDES [16]).
Thus there “normally” exist many different frames such that vo; = 0. Which form
of the gravitation force could one consistently state in such a reference frame?

For the class of theories considered in Sec. 2, what is considered by any such
theory as “the gravitation field”, has been assumed to determine the space-time
metric vy (for non-covariant theories, we should add that this has only to be true
in some preferred reference frame which is like &, i.e. such that yy; = 0). Here,
we will assume, in a more restrictive way, that the metric field v contains the

(*) Here, rigid rotation and uniform motion can be defined, at least if the metric manifold (M, @) has zero
curvature, i.e. if it is Euclidean.
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gravitation field (at least in the preferred frame). This is true in any reference
frame for GR and for the “relativistic theory of gravitation” (RTG) proposed by
LoGunov et al. [13-14], and this is true in the ether frame & in the tentatively
proposed theory. On the other hand, in order that SR would hold true locally and
that the inertial and (passive) gravitational mass might coincide, the gravitation
force must have the form

(3.1 Fy = m(v)g,

with g being a space vector in the considered frame. If we want the metric field
to play the role of a potential, we must ask g to depend linearly on the first
derivatives of v, and bearing in mind the Newtonian theory we should add that
only the spatial derivatives v, are allowed. But, in a frame where v, = 0, we
have v;; = —h;; with h denoting the space metric in this frame, i.e. the metric
v reduces to the joint data v = (f,h) with [ = ~5g9. Thus, we are looking for
a space vector g depending linearly on the spatial derivatives of f and h. To be
contravariant by a general space transformation, g must depend linearly on the
covariant derivatives of [ and h (with respect to the space metric h!). But, as is
known, the covariant derivatives of metric h with respect to h itself are all zero
(in other words, one may cancel all spatial derivatives h;; ;. at any given point by
a purely spatial coordinate transformation). Hence, g should have the form

(3.2) g = a(/.h)grad, [,

where « must be a given function of the values of the metric fields at the con-
sidered point (2®) in space-time, f = f(2®) and h = h(+") in Eq.(3.2), thus
a(f,h) is completely independent of the variation of [ and h with time and
position.

Now we add the condition that geodesic motion (Einstein’s assumption) miust
apply to free particles (Fy = 0) for a static gravitation field. This is exactly equivalent
to assuming the following expression for the gravitation force in the static case:

(33) F,= -m(,,-)(-?gi'?bi = m(v)grad,(—2Log5),  where 3= /0.

Indeed, it was already proved (and it will be proved again below, in a different
way) that Eq. (3.3), which occurs naturally in the ether theory, implies geodesic
motion for mass particles in the static case [2]; this is also true for photons [3],
substituting in that case the mass content of the energy ¢ = /v for the inertial
mass m(v). Conversely, it is proved in LANDAU and LircHiTz [11] that geodesic
motion implies the expression (3.3) for the force in the static case, defined as the
derivative (2.7) of the momentum (2.6) (*). Thus the reason for assuming geodesic

(") Actually, LANDAU and Lirciirrz |11, § 88| derived from geodesic assumption the expression of the foree in

the stationary case, using the same definition for the force (what is consistent with the present work, Subsec. 2.2).
They found an expression involving an additional term which cancels if ~, = 0.
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motion in the static case is that it is indeed so for the tentative ether theory as
well as, of course (and in any situation) for the usual theories of gravitation with
curved space-time, in particular GR and the RTG. So we must have, by Eqs. (3.1),
(3.2) and (3.3):

2

3 2 ore
—chad“‘ =_Z L“d“‘f. ie. a(f.,h)= '2C_

8 2 i

when fo = 0 and h = 0. But since «(f, h) depends only on the local values of
f and h, not on their variation, Eq. (3.2) implies then that g keeps the form (3.4)
and thus Eq.(3.3) holds true in the most general situation.

(3.4) g=

3.2. Expression of the 4-acceleration for a “free” particle using the extended Newton law

In theories with a (pseudo-) Riemannian space-time metric, two well-known
space-time vectors may be defined for a time-like test particle (i.e. a mass point).
These are the 4-velocity U, which is the velocity on the world line of the particle
in space-time, when the world line is parametrized with the proper time 7 of the
particle,

(3.5) U = da® /dr,

and the 4-acceleration A, which is the absolute derivative AU/ A7 of the former
relative to the space-time metric 4. Thus

i AUNT  dU* : dav  dU"
: A= — ) = " Ut— = + [ U
(5:6) l (._\T) dr L dr dr Ha
symbols ] being the Christoffel symbols of metric 5 in coordinates (x“).

i) Spatial components of the 4-acceleration in a globally synchronized refer-
ence frame.

It is recalled that we use coordinates () that are bound to a “globally syn-
chronized” frame . Thus vy, = 0 (i = 1,2,3), from which it follows immediately
that:

(37) h!f = —%ij» I‘iﬂc = l‘l:,k g
hence

AU\ dUY ; cerle s g gy @i ;
68 (F) =G U (U + 20000
In this equation, we note that, in view of Eq. (3.7); (and since h"/ = —~% is always
true):

" Yook + Yok0 = Yoka) 05k _ 1, {20
(3.9) 1‘“0}\-{“'0("‘ — ,}u-( 0,k ‘)L.(’ 10k, )( U(‘l. = T)h"‘h_,k'ﬂ(;(’k
2 2 dr
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By (2.4) and (3.5) we get:

U° = (d2/dty)(dty/dT) = e(dty/dT)] /700 »

but, using Eqs. (2.1)—(2.3) and (2.5), it may be proved (cf. LANDAU and LiFcHITZ
[11]) that, independently of the fact that v, = 0, one has always:

It,
(3.10) Ox o,

dr

as was already noted [2] for the tentative theory. Hence we obtain

3.11 po= v =
( ) V700 I}

so we reexpress another term in Eq. (3.8), calculating I} as for 1‘61, in Eq. (3.9)
and using again Eq. (2.4):

4 2.2 Al . pla? ad. 3)
i3 1005 €Ty _ pij 238, ¢35 = Az(,z(g"ddh‘g)“

o prr0N2 !
loo(U7)" = h 2 32 2 B2 o B

We recognize here the component g' of the assumed gravity acceleration (Eq.
(3.4)), thus

(3.12) Fga(U°? = —v2¢".

It is now possible to calculate (AU/A7)" with the Newton law, for a “free” particle
(Eq.(2.8) with Fy = 0 and with F, given by Eq.(3.1)). In a first step, let us
calculate with the incompletely defined Newton law, which is obtained if one
uses the derivative D\P/Dt, with the unspecified parameter A (cf. Eq.(2.14)).
Using (3.10), we may write this in terms of 7:

(DAP/Dty) = (DAP/ D7) /70 = mov04’
and we have by Eqgs. (2.5), (2.6) and (3.10):
(3.13) Pt = mgy, vt = mgy, de' Jdty = mgdzt/dr = moU*,
so the “unspecified” Newton law has the form
(3.14) (D) D7y =+l

where u’ = (U/') means the spatial part of the 4-velocity U. Applying definition
(2.14) which involves terms given by Eqgs. (2.13) and (2.7), we get

D' U’ : ok 7 120
(315) ( Al ) = L + F’j,\.UJ(,f“ + /\huhjk,()(;

— Uk,
Dt dr dr
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Hence, the unspecified Newton law imposes the following values to the spatial
components (in coordinates bound to a globally synchronized frame F) of the
4-acceleration of a free test particle (Eq. (3.8) with (3.9) and (3.12)), depending
on the parameter A:

AU & o2 s da®
i . i Tk = (1 = A)AY
(3.16) ( T) 21 = WMo UU* = (1= Mhhj0——

IF*.

In particular, the spatial part of the equation for space-time geodesics is satisfied
for a variable gravitation field (h;.o # 0) if and only if the parameter X has the
value A = 1.

ii) Time component of the 4-acceleration in a globally synchronized frame
For the time component, we have simply

AUN® QU0 , ' o o o oo
317) A= (F) =—+ I (U%? + 2", UU* + ;U U7 .

Using Eq. (3.7); and the fact that vo9 = 3° (Eq. (2.4)), the [0, are easily calcu-
lated:

o /5_0 1--./9 — ﬂ I‘IU _ f/-U
0="g k=g Y24
By Eq.(3.11), which implies also that U* = (y,/3)(da* /dt), one then rewrites
(3.17) as

3.‘

11/0

l‘-)

dt 2(:2dz 3 ot dt di

I d (”,,.) ¥ ('),.‘i 'yl da* 1 % Bhy dr' da?
= —| =]+ l).k
vy di

(3.18)  A°
At this point, we may insert the energy balance deduced from the “unspecified”
Newton law for the free test particle (Eq. (4.21) in Ref. [4]):

( gy 9B, 5 1=200h
(3.19) Z(671) = N + Brv—g 5 (V)

with v = (dz'/dt)/3 by Eqgs.(2.4) and (2.5)(°). We have thus in Eq. (3.18):

d (v d ( 1, 1 d, d (1 ) ( 1 dz*
£ Ty i) = = =B+ B = (=) + [ =] 2
a (/j) a\7 “) a1 * o laz (/32 ! ;sz)k a

(0/1 N (u-k) L dv 1=2X0h; dat da?

(*) Equation (3.19) is derived using the fact that some derivation rule of a scalar product can be obtained
even with the “unspecified” Newton law, although it does not obey the true Leibniz rule (Eq. (2.9)) unless
A = 1/2. However, if A # 1/2, this balance equation cannot be rewritten as a true conservation equation, at
least in the scalar theory [1-4].
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so that some cancellation occurs in (3.18). We obtain finally:

i Oh;; da' dx? (1= ) -
320) A0=oq_nZ T 0 U A Ui =201-A
( ) ’ (‘/34( ) Jdt dt dt 32 il 2(1-M)1

w0
L)

Ui,

In particular, the time part of the equation for space-time geodesics, as well as
the spatial part, is satisfied for a variable gravitation field (h;; o # 0) if and only if
the parameter A has the value A = 1. However, it is recalled that the value A = 1
specifies the Newton law in an incorrect manner, since it means that Newton’s
second law is based on a vector time derivative which does not obey Leibniz’
derivation rule.

Let us summarize the results of Subsecs. 3.1 and 3.2, which concern Newton’s
second law and geodesic motion:

(NGM1) Consider a theory with curved space-time metric v and locally valid SR,
and assume that in some “globally synchronized” reference frame F (yo; = 0), the
gravitation force (3.1) involves a space vector g depending only on the metric field
v. More precisely, assume that g does not depend on the time variation of v and is
linear with respect to the space variation of . In order that free particles would follow
space-time geodesics in the static case (7,0 = 0), it is necessary and sufficient that
the general expression of vector g in the frame F should be

(3:21) g= 28I _ _ < grady/

3 5 J = 700 = 6%,

with h the space metric in F. This expression implies Eqgs. (3.16) and (3.20) for
the 4-acceleration, thus it implies that, for a time-dependent ficld, geodesic motion
corresponds exactly to the incorrect Newton law (A = 1).

3.3. Characteristic form of the gravitation force associated with geodesic motion

The assumption that the metric field v plays the role of a potential for the
gravity acceleration g seems quite natural, if one thinks of a “soft” generalization
of Newtonian gravity. The foregoing result implies, among other things, that Ein-
stein’s assumption of a motion following space-time geodesics is not such a soft
extension. But, after all, in Maxwell’s theory the electric field involves also time
derivatives of the electromagnetic potential, besides the usual space derivatives.
Moreover, the Lorentz force depends on the velocity of the charged particle.
A more general expression than we assumed for the gravity acceleration might
hence be correct also, the more so as we now have empirical reasons to think that
the gravity interaction indeed propagates, as does the electromagnetic field, and
with the same velocity (TAvLor and WEISBERG [25]). That gravitation propagates
with the velocity of light was first envisaged by Poincaré in his “electromagnetic”,
Lorentz-invariant theory of gravitation [20-21] and, as is well known, it is pre-
dicted by Einstein’s theory.

http://rcin.org.pl



ON THE EXTENSION OF NEWTON'S SECOND LAW 567

Thus we now investigate the possible form of the vector g, subjected to the
unique constraint that geodesic motion should occur with the correct form of New-
ton’s second law, i.e. A\ = 1/2. We continue to work in a globally synchronized
reference frame and, in order to simplify the expressions, we take g in the form

rad,, 3 c?
- _ng h g =

gradhf /
: =-— =21 4
Starting from Eq.(3.6) as before, nothing changes until Eq.(3.12), which now
becomes

(3.22) f =700 = p%

(3.23) U0 = =k - ).
And again nothing changes until Eq. (3.16), which is modified into
~ AU\ ’ d? ,
! = _— — - Uph. —— ,-’k 2 n
(3.24) A (AT) (1= Moh 0 U + 424"

Hence, the spatial components of the 4-acceleration cancel with A = 1/2, if and
only if
- =1 . 0hy . -1 Jh -1 Jh
3.25 N ___pua 2Rk '= — gl iy = —p- L2,
(3-2) "= ggh 250 o T 2 oY
But does this expression also cancel the time part of the 4-acceleration? To check
this, one must reexamine the energy balance derived in Ref. [4]. Proceeding in
the same way, we find easily that the energy balance resulting from the expression
(3.22), (3.25) of g is (with A = 1/2)
d 03 By, Oh

3.26 —(B37,) = y,— — - —(v,v),
( ) dt (F1) =1 J! 2¢2 (')[( )
instead of Eq.(3.19). Thus, with the correct Newton law (A = 1/2), the same
expression is now obtained as it was obtained before with the incorrect Newton
law (A = 1). Therefore, the time part of the geodesic equation, A? = 0, is satisfied
for A = 1/2, as it was previously for A = 1. We have proved the following:

(NGM2) Consider a theory with curved space-time metric v and locally valid

ie. g

SR. and assume the correct time derivative (2.15) in the extension (2.8) of Newton'’s
second law. In order that free particles (Fo = 0 in Eq. (2.8)) might follow space-time
geodesics, it is necessary and sufficient that, in any globally synchronized reference
frame F (vo; = 0). the gravitation force (3.1) should involve the following expression
for the gravity acceleration (space vector g):

sgradyd 1y dh

h 'S 3= /0 .
3 23 ol #

with h being the space metric in ¥ and v — the velocity vector (Eq. (2.5)).

(3.27) Bpcod = —¢

This result provides the general link between Newton’s second law and Ein-
stein’s geodesic assumption.
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4. Comparison with the literature
4.1. Magller’s work and the relation between covariant and contravariant form of Newton’s law

Among attempts to define Newton’s second law in the case of a variable
gravitation field, a well-known one is that of M@LLER [18]. However, Mgller uses
the absolute derivative with respect to the “frozen” space metric, thus A = 0 in
Eq.(2.14), so that Leibniz’ rule is not satisfied with the actual, time-dependent
metric. In connection with this, he notes that this derivative does not commute
with raising or lowering the indices with respect to the space metric h. As a
consequence, when he rewrites the equations for space-time geodesics in the form
of Newton’s second law with gravitational forces, the latter look very different in
covariant and in contravariant form. We show that this difficulty is absent with
our definition.

Indeed, it is easy to adapt our line of reasoning so as to define the time-
derivative of a spatial covector w*. One finds in exactly the same way that, apart
from Leibniz’ rule, a one-parameter family of time-derivatives may be defined as:

(4.1) Dxw™ /Dy = Dow™ [ Dy — AMew™,
with

(4.2) (tw™);, = h,vj_o((l‘r'o/(l\)hfk T
= (dz®/d\)(hgeh ) Fwy = (d2°/d\ ) (b Lehg)rw™ e = o™y,

and where Dgw™/ Dy is the absolute derivative using the “frozen” metric. And
one finds that Leibniz’ rule imposes A = 1/2. It is also easy to verify that, for this
correct value A = 1/2 and, for a time-dependent metric h, only for this value, the
time-derivative D,/ Dy does commute with raising or lowering the indices with
respect to the space metric h, that is

(4.3) | Dyjp(hew)/ D\ = he(Dyw/ D).

Therefore, if one takes the covariant components of the momentum instead of
the contravariant ones, thus substituting P~ = h-P for P, then the corresponding
“covariant Newton law” will involve just the covariant components of the force,
F* = h.F = h.(Fy + F,) in Eq.(2.8).

4.2, Newton’s second law with the “Fermi-Walker” time-derivative

From now on, we will discuss the work on “Newton’s second law in relativistic
gravity” as reviewed and unified by JANTZEN et al. [10]. They define the equivalent
of what we call a frame (spatial network) by a 4-velocity vector field u, and they
name it “observer congruence”. What they call “observer-adapted frames” is a
very different notion from that of adapted coordinates as defined by M@LLER



ON THE EXTENSION OF NEWTON’S SECOND LAW 569

[18] and Carttaneo [6, 7]. Here we continue to work in adapted coordinates,
i.e. such that the observers of the network (or congruence) have constant space
coordinates. In such coordinates, the contravariant and covariant components of
u are given by

(44) ()= (_\/%’0‘0‘0) ' () = (mm’ (\/ﬁ%)ﬁl,za)

(we keep our notations, except for the fact that we set «® = dz®/ds and adopt
the (3,1) signature as in Refs. [6-7] and [10], until the end of this Section). It
follows that the spatial projection tensor IT = II(u) [7, 10], which is a space-time
tensor defined in general by

mnm*, =6, + v'u,,
has a simple expression:
(4.5 I;=6;, My=0, H%=—y/v0, %=0.

It corresponds to the projection of the local tangent space to space-time onto
the hyperplane which is y-perpendicular to the local 4-velocity u of the observer
congruence. In connection with this, what is called a “spatial tensor” by CATTANEO
[7] and by JANTZEN et al. [10] is also a very different notion from that used by
M@LLER [18] and in the rest of this paper. For us (and for Mgller), a spatial tensor
is just an element of a tensor space at the relevant point of the spatial network
(3-D Riemannian manifold) V, thus its components depend on the three spatial
(Latin) indices only, : = 1,2,3, in adapted coordinates. In Refs. [7, 10] and in
the remainder of this section, a spatial tensor is a space-time tensor which is equal
to its projection, the latter being generally defined by Eq.(2.2) of Ref. [10]. E.g.
for a 4-vector (space-time vector) X, the projection reads:

(4.6) (M%) = 7, K%
Hence in adapted coordinates, by (4.5):
(4.7) (LX) = X', (I1-X)" = —50;X7 /700,

so that the “time” component X' is not equal to zero for a “spatial vector” (ex-
cept for a “normal congruence”, i.e. the case where 79, = 0 in some adapted
coordinates). We also note that the “rescaled time” 7y, considered in Ref.
[10] (for a time-like test particle with 4-velocity U), as well as the “standard
time” 7" considered in Refs. [6—7], is the same variable as our “local time” iy,
synchronized along the trajectory of the test particle, with their v = 5 ) be-
ing our 7, (Eqgs.(2.3) and (3.10) here). On the other hand, what is called the
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“Fermi- Walker total spatial covariant derivative” (fw TSCD) in Ref. [10], has
the following expression for an arbitrary parameter \ (although it is defined only
for x = 7(yu) = tx in Ref. [10]):

(4.8)
We have thus in adapted coordinates, by Eq. (4.7):

Disn X7 AX\ ¢ dX? ; da”
(tw) g ,
4.9 —— ) =— ) = —+ X# . =1, 2 95
( ) ( Dyx ) (J\‘) (d\ [‘“’ ([\) . 1,23

and the “time” part of the derivative is not independent of the “space” part:

. ,
(4.10) (D"‘”’X) = -2 (—D“‘”’X)J.
Dy 00 Dy

What corresponds to Newton’s second law in [10] is the evaluation of the spatial
projection of the 4-acceleration A of the test particle. Apart from the different
notation, it amounts almost exactly to Eq.(2.8) here, with the same definition
(2.6) for the momentum, involving the same relative velocity (2.5), though with
the derivative defined by Eq. (4.8) instead of Eq. (2.15). One difference is that the
velocity v and momentum P are now spatial 4-vectors which turn out to be the
respective projections of the 4-vectors U’ and P/, with U’ the 4-velocity U, rescaled
to the local time, and P’ the usual 4-momentum. Thus the spatial components
of v and P are the same as in this work, and the “time” components obey the
general rule for a spatial vector X, i.e. such that II-X = X:

(4.11) X = —99;X /700

Another difference is that the gravitational force, which is the total force for
a free particle, is necessarily deduced, in the frame of GR and other “metric
theories”, from the geodesic equation, i.e. A = 0, whereas here geodesic motion
is one possibility among others.

Having thus recognized that the spatial part (4.9) of the derivative (4.8) plays
exactly the same role in Ref. [10] as the derivative (2.15) plays here, we may
comment on the difference between the two derivatives. Since the spatial com-
ponents (4.9) are just those of the space-time absolute derivative AX/Ay, the
Fermi - Walker TSCD involves space-time coupling in a generally inextricable way,
in that it cannot in general be defined in terms of only the spatial metric h and
the local time ty. Hence, this derivative cannot be used in an arbitrary reference
frame to define a “true” Newton law as it has been defined here, i.e. precisely
a law involving only the separate space and time metrics in the given reference
frame, thus allowing to “forget” the concept of space-time as long as one does
not change the reference frame.
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4.3, The “normal” and “corotational” Fermi—Walker derivatives obey Leibniz’ rule

Surprisingly, the question whether the introduced time-derivatives satisfy the
Leibniz rule is not investigated in Refs. [6, 7, 10]. However, it is not difficult to
show that the two Fermi - Walker derivatives do verify Eq. (2.9) for spatial vectors.
The spatial metric in those works is of course the same thing as here, except for
the signature and the fact that it is now a space-time tensor (for a given observer
congruence u):

hop = VoI5 = Yap + Wattp = hij = 7ij — 0iT05 "
700

(4.12)

Equation (4.12); implies immediately that, for any two space-time vectors X
and Y:

(4.13) h(X.Y) = 7(X.TI-Y) = y(I1.X.Y).

On the other hand, the absolute space-time derivative obeys the Leibniz rule:
d AY AX

4.14 — X Y)] =7 (X, — | + — X .

(414) b= (x50 +1(5Y)

Using Eq. (4.13), we rewrite Eq. (4.14), if both vectors X and Y are spatial, as:

d AY AX
7 Y] = h (x. II-J—\) +h (H-_\—\.Y) .

With the definition (4.8), this gives the Leibniz rule for the Fermi- Walker deriva-
tive:

d I)(fw)Y /)(fw)x )
4. —[h({X.Y)] = (. ——— | + h Y.
(4.15) - [n(x.V) h(x o ) ( o

The “corotational” Fermi- Walker (cfw) derivative, when acting on a spatial
vector X, is related to the “normal” Fermi- Walker derivative by [10]:

D P A% D fW)X & cdly .
4.16 J“—)—) = ( ( ) + W =X
( ) ( Dy Dy "oy

Here w®,, are the mixed components of the “spin-rate” space-time tensor. This
comes from the decomposition of the covariant “spatial 4-velocity gradient”,

(417) k=k) = -II.VOut, b =(u,), kap= 11" M gup,,
into symmetric and antisymmetric part:

(4.18) kag = —baptwas, =03 = (kapt+ksa)/2, Was = (Kap—Kpa)/2,
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and the mixed components w®, are obtained by raising the index a with metric
7. It appears that, just like the ordinary one, the corotational Fermi- Walker
derivative cannot in general be expressed in terms of the spatial metric h and
the local time ¢ only. Moreover, it is difficult here to refrain from asking the
question: with respect to what does the “spin rate” w measure the rate of relative
spin of the considered reference fluid (network)? Already the understanding of
the strain rate @ is difficult: without any preferred reference fluid, we may only
define, so to speak, the “strain rate of the fluid with respect to itself” due to
the evolution of the spatial metric h, and this is precisely what measures the
t = h~l.hy (dz¥/dt,) tensor in our derivative (2.15) (with y = #,) — but the
tensors t and ¢ are two different objects.

As to Leibniz’ rule, it applies to the cfw derivative, at least if both vectors
X and Y are spatial. Indeed, due to the antisymmetry of the covariant tensor w
(Eq. (4.18)3), the definition (4.16) gives

X, ——— |+ ——.Y) = v (X, -y —,Y
’( D\) f(/h ) ’( n\) ’(u\ )
cdiy e diy

= o Y (XYY W YOXE) = I (g XYY+, YOXT) = 0.

The Leibniz rule follows from this by (4.13) and (4.15), the two vectors X and Y
being assumed to be spatial vectors:

DictnY Dcfun X
(cfw) (cfw)

.19 . + h .
12 h(x Dx ) ( Dy Y)

Digs¥ DX !
=h (x‘—“‘”) + h( i .Y) = [h(X.Y)].
Dy Dy dy

4.4. The case of a globally synchronized frame and the “Lie” time-derivative

We consider the particular case of a globally synchronized frame (or “normal
congruence”), in which the y; components of the space-time metric are zero in
some adapted coordinates. Then the spatial projection tensor 11 (Eq.(4.5)) is
written simply

(4.20) (r*,) = diag (0,1,1,1)

in such coordinates. Hence, in such coordinates, substituting its spatial projection
IT(u)-T for a space-time tensor T amounts exactly to taking its space components
only. In particular, the “time” component of a spatial vector X is now equal
to zero. Moreover, the spatial Christoffel symbols of the space-time metric are
equal to the Christoffel symbols of the spatial metric (Eq. (3.7)). This implies that
the Fermi- Walker derivative coincides, for the case considered and for a spatial
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vector X (thus X? = 0), with the D, ; derivative. Indeed, using Eq. (3.9), we find:

D gy X AX Xt 1a i odaf
(4.21) ("w)) ( ):‘— 1m”—+1" &

Dy Ay dy dy 90 dy
_ (L\‘ d.l, 1 & Jdl _ Dy X! i

with X’ = (X9).
For the non-zero components of the k tensor (Eq.(4.17)), we obtain using
Egs. (4.20), (3.9) and (4.4) (and since h;; = v, with the (3,1) signature):

2 ik 1 o _ 1 da®
(4.22) — ki; = u;;j = hu® g =hil OJ” = -ih,-j_gu = Zhuocdlx
Therefore, the “spin-rate” tensor w is nil for a normal congruence [6], so that
the corotational Fermi- Walker derivative coincides, for spatial vectors, with the
“normal” one, and thus with the proposed derivative, 1) = D;;;. On the other

hand, we have from (4.18) and (4.22):

1 dz?
f, =-k,' = SR
iy J 2 J ¢ {“1

What is called “Lie” TSCD derivative in Ref. [10], is not a Lie derivative in the
usual sense but the projection of a Lie derivative [10], and is defined in general
by [10]:

Dy X\ D s X Ity )
(lie) (fw) c( i Pl T
423 — w ‘\J “\I
e ( Dy ) ( Dy ) dx S wX*)

(extending again the definition [10] to an arbitrary parameter y). Hence, we have
here:

D gies X\ ° DienyX\' 1 cdty, . da¥ DoX\*
(lie) (fw) X, ik - 0
4.24 - —— —Xpikp X3 = f 20N
(4.24) ( Dx ) ( Dy ) 2 dy | M%Cd, ( Dy )
In other words, the so-called “Lie” derivative coincides in that case with the

absolute derivative with respect to the “frozen” spatial metric, and so does not
obey Leibniz’ rule.

5. Concluding remarks

1. From our bibliographical research, it would appear that it had not yet
been proposed in the literature, as it is proposed here, to introduce a consistent
definition of the time-derivative of a vector, in the following relevant situation:
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the vector is moving along a trajectory in a manifold equipped with a metric field
h, (the spatial metric in a given reference frame) that changes with the parameter
x on the trajectory. Indeed, of the three different notions of frame-dependent
time-derivatives that have been reviewed and unified by JANTZEN et al. [10], the
two first ones (the Fermi- Walker derivatives) involve the whole space-tinie metric
in an unseparable way, while the so-called “Lie” derivative does not obey Leibniz’
rule. In our opinion, this would mean that no consistent and natural extension
of Newton’s second law to the case of a variable gravitation field in a general
reference frame (in a theory with curved space-time as envisaged here) had yet
been proposed either. It seems as if, from the orthodox relativistic point of view,
it would be considered to be a priori impossible to define Newton’s second law
“really as before” — because the absolute priority is to maintain consistency with
the notion that the 4-dimensional space-time is the essential physical reality.
However, it turns out that the two Fermi- Walker derivatives coincide with the
proposed derivative in the important case of a globally synchronized frame (or
normal congruence).

2. We find that there is one and only one natural extension of Newton’s second
law to any theory with curved space-time metric, in the most general situation.
In particular, one may uniquely identify that gravity acceleration gy.oq Which is
necessary to obey Einstein’s assumption, i.e. to obtain geodesic motion for free
test particles. In doing so, we did not merely rewrite the three “spatial” equations
for space-time geodesics as the space-vector relation “force = time-derivative of
momentum”: we also proved that the latter relation implies the “time” equation
of geodesics, and this does not seem to have been done in earlier attempts.
This “geodesic™ gravity acceleration gy.,q depends on the reference frame, as is
natural in a “relativistic” theory (since the acceleration is not Lorentz-invariant).
It may seem more surprising that g,.,q depends on the velocity of the particle
(Eq. (3.27)). However, this is also the case for the Lorentz force which a charged
particle undergoes in an electromagnetic field. The striking difference is that the
magnetic force does not work, whereas the velocity-dependent part of gy.oq does
work. In the investigated case of a normal congruence, it has the same form
as the Newtonian inertial force that appears in a reference frame undergoing
pure strain with respect to an inertial frame [1]. But here this “inertial” force
comes from the straining of the reference frame “with respect to itself” (i.e. due
to the fact that the spatial metric evolves with time) and it cannot in general
be cancelled in a finite region by changing the reference frame. Thus, theories
with geodesic motion inherently do not allow global inertial frames, although
such global inertial frames do appear in their Newtonian limit. We also note that
any velocity dependence of the gravity acceleration, g = g(x.v), implies that the
definition of the passive gravitational mass, i.e. i, = F,/g with F, the gravitation
force, becomes indissolubly mixed with that of the gravity acceleration itself: one
may change g and iy to ag and mg/a respectively, with a any scalar function of
the velocity (e.g. a = 7, where » is any real number), so that m is operationally
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defined up to the arbitrary function a only. Hence, although Newton’s second
law can be defined in a “curved space-time” after all, the statement “mg =
inertial -mass m(v)” still remains partly conventional. Indeed, the only testable
statement is then the universality of the gravitation force (which is really a crucial
point, of course).

3. The identity between inertial and gravitational mass would have a stronger
meaning if g depended only on the position of a given test particle. However, for
the kind of theories considered here, this could be true only in some preferred
reference frame (this is, of course, in contrast with the Galilean situation). To
check this identity, one might e.g. define g for particles at rest in the preferred
reference frame, thus g(x) = Fy(v = 0)/my, and check experimentally whether
or not the gravitation force Fy is indeed equal to m(v)g for an arbitrary velocity.
In the scalar ether theory which has been tentatively proposed [1-4], a vector
g depending only on the position, Eq. (3.21), has been found to occur naturally,
consistently with the notion that g should be determined by the local state of some
substratum. Thus this theory predicts “strong identity” between inertial and grav-
itational mass and, in connection with this, geodesic motion does not hold true in
the general case in this theory. If one were to modify this theory so as to obtain
geodesic motion, one would have to postulate Eq.(3.27) instead of Eq.(3.21).
Then, the modified g-field would still be determined (in the preferred frame &)
by the scalar field p. or g (together with the particle velocity!) However, this
would lead to the energy balance (3.26), which has been seen to be incompatible
with the derivation of a true conservation equation for the energy in this scalar
theory [4]. On the other hand, this theory could happen to predict unobserved
post-Newtonian effects of absolute motion.
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Non-uniform stagnant motions of materially non-uniform
simple fluids

S. ZAHORSKI (WARSZAWA)

INON-UNIFORM STAGNANT motions of materially non-uniform (inhomogeneous) incompressible fluids
are reconsidered in greater detail. These motions may be used in many practical situations, such
as fibre spinning and drawing processes. It is shown that the corresponding constitutive equations
are very similar to those describing motions with constant stretch history or, in particular, stcady
extensional flows.

1. Introduction

THERE ARE AT LEAST three reasons for reconsidering non-uniform motions of ma-
terially non-uniform (inhomogeneous) simple fluids. The first reason is connected
with pretty weak interest of the researchers involved either in the continuum
theories or in the rheology of polymeric liquids. Existing references are rather
devoted to what may be called inhomogeneities (dislocations, aeolotropy etc.) in
materially uniform simple bodies (cf. [1]). The second reason results from seri-
ous needs for such considerations in the rheology of polymers when the material
non-uniformity may be caused by a sensitivity of material properties to various
temperature, viscosity, structure, etc. variations in the flows considered. The third
reason, but not of minor importance, is the fact that the Referees of my previous
papers on the necking phenomenon in fibre spinning processes [2, 3] had some
doubts about the possibility of applying the constitutive equations in a form very
similar to that describing uniform steady elongations of incompressible simple
fluids [4].

In 1962 CoLeMAN and NoLL discussed the class of substantially stagnant mo-
tions [5] or motions with constant stretch history (MCSH) [6].

According to Noll’s definition, a motion is called a MCSH if, and only if,
relative to a fixed reference configuration at time 0, the deformation gradient at
any time 7 is given by

(1.1) Fo(7) = Q(r)exp(rM).  Q(0) = I,
where Q(7) is an orthogonal tensor and M is a constant tensor such that M = N,
[Ng| = 1, and « a constant parameter. The above definition shows that in all

MCSH, the history of the relative deformation tensor is one and the same function
of t — r for all current instants ¢.

Moreover, it results from WaNG's theorem [7] that in all MCSH, the extra-
stress tensor can be expressed as an isotropic tensor function of at most first three
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Rivlin - Ericksen kinematic tensors, i.e.

(1.2) To(t) = h(A;(1). Ax(1). A5().),  tr Ty =0,

where by definition

(13) A =LT+L,, Ai=A.+AL+LTA,, a>1,

and the velocity gradient amounts to

(1.4) Li(t) = Fo(OF;' (1) = Q()Q" (1) + QUM Q” (1).

In the present paper we generalize the above results for the case of non-
uniform stagnant motions (hereafter called NUSM) of materially non-uniform
(inhomogeneous) incompressible simple fluids. It is shown that the corresponding
constitutive equations are very similar in form to those valid for MCSH.

2. Non-uniform stagnant motions (NUSM)

Consider a more general class of motions for which the deformation gradient
at any time 7, relative to a configuration at time 0 is of the form:

(2.1) Fo(X,7) = Q(X. ) exp(rM(X)),  Q(X.0) = 1.

where Q(X, 7) is an orthogonal tensor, and M(X) depends only on the position X
of a particle X in an arbitrarily chosen reference configuration K (not necessarily
at time 0). Thus, the non-uniformity of the quantities involved can be expressed
either by X or X' (X = k(\)).

According to the definition (1.4), we obtain the following velocity gradient:

(2.2) Li(X.1) = Q(X. QT (X, 1) + L(X, 1),
where
(2.3) L(X. 1) = Q(X. HM(X)Q” (X, 1),

is called the rotated parametric tensor (cf. [8]), and ¢ denotes the current instant
of time.

The deformation gradient, relative to a configuration at the current time 1,
amounts to

a4 F/(X,t — s) = Fo(X, 7)F; (X, 1) = Q(X, ¢ — s) exp(-sM(X))Q” (X, 1).
. r=1-—3s, 0<s< o,



NON-UNIFORM STAGNANT MOTIONS OF MATERIALLY NON-UNIFORM SIMPLE FLUIDS 579

what leads to the following history of the relative deformation tensor (cf. [8]):
(25 CUX.3) =CdX.1-s)=FF, = exp(—sLT(X. 1)) exp(—sL X, 1))

In full analogy to the case of MCSH, we may ask what will happen if L;(X)
defined through Eq.(2.2) is steady (independent of time ¢) but non-uniform in

space? The answer results from the following differential equation based on
Eq.(1.4):

26) L Fo(X,7) = Li(X)Fo(X. 7),

with the initial condition: Fy(X, 0) = 1. The corresponding solution can be written
as

2.7) Fo(X.7) = exp(rL(X)).

The above expression evidently belongs to the class (2.1) with Q = 1. It is obvious
that for steady flows in an Eulerian sense

(2.8) L1(x) = V(x) - VL;(x),
where V is the velocity and V denotes the gradient with respect to place x.
It is worthwhile to mention that Noll’s classification of MCSH based on the

tensor M(X) (or L(X. 1)) can be generalized to the case of NUSM. Therefore, in
certain parts of a fluid, we may have the following classes of flows:

(T) non-uniform viscometric {low
M? = 0;
(IT) non-uniform doubly-superposed viscometric flow
M? # 0, M3 = (;
(TIT) non-uniform triply-superposed viscometric flow and extensional flow
M" # 0 forall n=1,2,....
The non-uniform extensional flows, because of their technological validity, will

be discussed separately in Sec. 4.
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3. Constitutive equations of materially non-uniform (inhomogeneous)
simple fluids

As mentioned at the beginning, in many practical situations, instead of solv-
ing the usually complex problems, it is more useful to assume a priori that
unknown temperature, viscosity, structure, etc. distributions lead to a material
non-uniformity (inhomogeneity). In other words, such a non-uniformity means
that the mechanical properties of a fluid vary from particle to particle.

The constitutive equations of materially non-uniform incompressible simple
fluids can be written in the form (cf. [9]):

3.1) Tu(X, 1) = j}o(C:(X.s);X),

where Tg is the non-uniform extra-stress tensor, and H denotes a constitutive
functional. Such a definition is not in contradiction with the principles of deter-
minism and local action. Equations (3.1) also satisfy the principle of objectivity
(invariance with respect to the reference frame) since all the tensors involved are
objective (cf. [8]).

For non-uniform stagnant motions (NUSM) defined by Eq. (2.10), after intro-
ducing Eq.(2.5) into Eq.(3.1) and taking into account the properties of tensor
exponentials,

s 1 o ,‘
(3.2) epA=) LA (QAQY =QA"Q",
n=0 "

we arrive at
(33) T].;(X. t) = h(L(X, 1); X),

where h is an isotropic function of the tensor argument. In particular, if the
rotated parametric tensor L(X) is a steady one, the particle position X may be
replaced by its place in space x. This leads to

(3.4) T (x) = k(L(x); ).

Since for the motions considered (NUSM) the following relations are also
valid:
(3.5) Ail=LT+L, A,nq=AL+LTA,, a>1,
the corresponding representation theorem analogous to that derived by WaNG [7]
can easily be proved (cf. [8]). Thus, it can be shown that the extra-stress tenscr
in the most general case amounts to

(3.6) Te(X. 1) = f(A (X, 1), As(X. 1), As(X, 1); X),
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where all the quantities depend on the particle position X. Similarly to the case of
MCSH, a knowledge of the first two kinematic tensors A; and A; is sufficient to
determine C|(X, s) uniquely, if either A, has three different eigenvalues, or two
of them are equal but differ from the third one and, moreover, [A;] = [A?] in
the same basis in which A; has a diagonal form. Such a generalization is possible
since the proof of the theorem is based on the geometry of matrices involved,
independently of whether they are functions of X or not.

4. The case of non-uniform steady extensional flows

The non-uniform steady extensional motions, under the assumption of quasi-
elongational approximation (cf. [2, 3]), may be useful as applied to various fi-
bre spinning and drawing processes [10]. For example, any temperature distri-
bution may lead to observable material non-uniformity (inhomogeneity). We will
show that the above motions are particular cases of those described by Eq. (2.1)
(NUSM).

To this end, consider the following exponential deformation gradient at time 7

(4.1) Fo(X. 7) = exp(vM(X)),

where X, like in Sec. 2, denotes the particle position at an arbitrary reference con-
figuration, and the time-independent tensor M(X) is of a diagonal form. Instead
of Egs. (2.2), (2.4) and (2.5) we arrive at

J

(4.2) LX) = O'—TF,(x.r) = LG = M(X),

(4.3) F/(X,t — 5) = exp(—sM(X)). T=1-s, 0<s< oo,
and |

(4.4) C!(X,s) = C(X,t — s) = exp(—sLT (X, 1)) exp(—sL(X, 1)).

Therefore, for the flows considered, the velocity gradient L;(X) is equal to the
parametric tensor L(X) and also to M(X).
Now, the constitutive equations (3.1) lead to

(4.5) Tr(X) = g(L(X); X),

where g is an isotropic function of the tensor argument, or to Eq.(3.4), if the
spatial description of material non-uniformity is used.
Since for general extensional flows with diagonal A; we have

(4.6) A, =(A)"=QL)", n>1,
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we can write instead of Eq. (4.5)
4.7) Tr(X) = k(A (X); X).

After taking into account the relevant representation of an isotropic tensor func-
tion of one symmetric tensor argument (cf. [8, 9]), we finally obtain

(4.7) Te(X) = £1A1(X) + BAX(X), trA; = 0,

where the material functions /3; and /3, depending on the invariants of A, are
also explicit functions of the position X (or the place x in steady flows).

5. Conclusions

Non-uniform stagnant motions (NUSM) are some generalization of the well
known motions with constant stretch history (MCSH) defined by Coleman and
Noll. In the case of materially non-uniform incompressible simple fluids, the
constitutive equations take a form very similar to that valid for MCSH.

In the case of non-uniform steady extensional flows the corresponding consti-
tutive equations simplify considerably and, of course, are independent of time.
Those equations may be used in many practically important quasi-elongational
flows such as fibre spinning and drawing processes.
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