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An alternative approach to the representation
of orthotropic tensor functions in the two-dimensional case

S. JEMIOLO and J.J. TELEGA (WARSZAWA)

THE Am of this paper is to derive in a simple fashion the non-polynomial representations of a class
of orthotropic functions in the two-dimensional case. Scalar-valued, vector-valued, symmetric and
skew-symmetric tensor-valued functions of the second order have been considered.

1. Introduction

STruCTURES made of anisotropic materials are often used in engineering practice.
Constitutive modelling of the behaviour of such materials has been significantly
influenced by the theory of invariants and tensor functions, cf. [6, 18, 24]; vice
versa, development of the invariant theory has been stimulated by the constitutive
modelling. The reader interested in the fundamentals of the theory of invariants
and tensor functions and their applications should refer to [6, 13, 21, 22, 23].

The problem of the determination of the general form of a tensor function of
specified order and symmetry depending on tensor arguments consists in finding
irreducible sets of scalar invariants and tensor generators; to put it simply, in the
determination of the so-called canonical form of the tensor function. Though the
theory of tensor function representation has been developed for more than three
decades [18, 22, 23], yet no comprehensive, systematic and up-to-date study is
available in the relevant literature. The book by SmiTH [21] is restricted to the
presentation of theoretical results elaborated by this author and his coworkers,
by employing classical methods of the group representation theory. SMiTH [21]
has deliberately focussed on polynomial representations only. Many other com-
plementary contributions exist, however, concerning the general representation
of practically important isotropic [3, 14-16, 19, 20, 22-28] and anisotropic [1, 2,
4-6, 10, 12, 21, 29, 30] tensor functions.

Irreducibility of a set of invariants may be understood in two ways:

1. If one determines an integrity basis, then none of its elements can be a
polynomial in the remaining elements, cf. [22].

2. In the case of a functional or non-polynomial basis, none of its elements
can be a function of the remaining elements.

Similar characterization pertains to the irreducibility of generators appearing
in the canonical form of a tensor function, cf. [3, 6, 16]. To find the polynomial
representation of a tensor function it suffices to determine the relevant integrity
basis, because the generators are obtained by a simple process of differentiation
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[6, 22]. The problem of the non-polynomial representation of a tensor function
is more complicated, cf. [3, 19, 20, 25-30]. In the paper by the second author
[24], a similar approach was suggested for the determination of generators of
non-polynomial tensor functions. This method was next developed by KORSGAARD
[14, 15] and used in [11, 12].

In general, the determination of functional bases and generators leads to
solving complicated algebraic relations. Hence only some classes of tensor func-
tions are known explicitly. Even when the representations of scalar-, vector- and
tensor-valued functions are available, alternative methods of their determination
are still proposed, cf. [28, 29].

As is well known, two-dimensional problems are often studied in the con-
tinuum mechanics. Thus the problem of the representation of isotropic and
anisotropic functions in the two-dimensional case is of interest in itself. How-
ever, such two-dimensional representations do not necessarily coincide with those
derived directly from the corresponding three-dimensional cases.

The aim of this contribution, precisely formulated in the next section, is to pro-
pose an alternative derivation of functional bases and generators for orthotropic
functions in the two-dimensional case.

2. Formulation of the problem

The objective of our considerations is the determination of the general form
of the following functions:

s = f(A, W,, V), i=1,....,I, p=1,....,P, m=1,..., M,
t = f(A;,W,,v,,),

S = F(A;,W,,v,,), 8 =5

T = G(A:,,W,,v,,), T=-T¢,

I

(2.1)

in the two-dimensional case. Here s € R, t, v,, € E% S, A, € T* (dim7~* = 3),
T,W, e T* (dimT* = 1), T = E*@E* = T* ¢ T* (dimT = 4), E? stands for
the two-dimensional Euclidean space and 7° = {A e T |A = A"}, T* = {(W ¢
T|W=-W}

In our 2D case, the orthotropy group S satisfies the condition
(2.2) YQesS, QMQ'=M,

where M = e @ e and the unit vector e characterises orthotropy, see ([6], p.51).
Obviously we have trM = trM? = 1.

For each Q € S, the scalar-valued function f, vector-valued function f, sym-
metric tensor-valued function F and skew-symmetric tensor-valued function G
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satisfy the conditions:

J(ALW,,vi) = f(QAQ',QW,Q", Qv,,.),
Qf(A;, Wy, vin) = f(QA,Q',QW,Q',Qv,,),
QF(A;,W,,v,.)Q" = F(QA,Q",QW,Q". Qv,,),

QG(A;, Wy, v,.)Q" = G(QA:Q',QW,Q",Qv,,.).

By applying I-SHiH Liu theorem [10] (see also [17]) and taking into account (2.2),
the invariance requirement (2.3) may be written in the following way:

(2.3)

f(ALW,, v, M) = f(QAQ',QW,Q', Qv,,,QMQ"),
Qf(Aiv Wps Vins M) f(QAiQta prQt\ va- QMQt)’
QF(A;, W, v, M)Q" = F(QA,Q",QW,Q". Qv,,, QMQ"),

QG(A;, W, v, M)Q' = G(QA,Q',QW,Q", Qv,,. QMQ"),

for each Q € O, where O denotes the full orthogonal group. Now M plays the
role of a parametric tensor, and the functions f, f, F and T depend explicitly on
it. We observe that the approach leading to (2.4) has primarily been proposed by
BOEHLER [4, 5].

In the sequel we shall derive the functional basis for the scalar function (2.4),
and generators for the functions (2.4);_4. Our method of determination of the
functional basis follows that used by Smith [19, 20] and KORSGAARD [14, 15] for
isotropic functions. Generators will be obtained similarly as in [11, 12, 14, 15],
following the idea proposed in the paper by the second author [24].

(2.4)

3. Determination of the orthotropic functional basis

Since the tensor M appearing in (2.4) is a parametric tensor, the determination
of the functional basis is less complicated than in the case of isotropy examined
by KORSGAARD [14]. Obviously, in the last case S = O, because the invariance
with respect to the full orthogonal group has been studied.

To find the functional basis for the orthotropic scalar function (2.4)y, it suffices
to consider the following three cases.

Cask 1

In the set of vectors {v,,} (m = 1,..., M) there are vectors non-collinear with
the direction of e.

Case 1.1

At least one vector from the set {v,, }, say vy, is not collinear with e and v,,, # 0,
m = 1,..., M. Then we choose the coordinate system {z,} (« = 1,2) in such

a way that Or; coincides with e and vgl) > 0, *vg]) > 0; here v,, = (u,(,?)). To
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determine uniquely the representation of the function (2.4);, it suffices to know
the following invariants, since then the components of all arguments are available:
NONOIRNONF SO

(1>,,(1) £ o002 ) WD s ),

vi-Mv,, = vgl)v{m) gm),

= vgl)vgm) + vél)vém) = v (m)

Vl .vﬂ'l. =

Vl'le

ViV =

(3.1) | |
Ag'])v{l)v{l)+2/1§'2)v$1) (1) A(i) (1) (1)

Y1 -A,-vl = Uy,

vitAv, = A(lil)'vgl)v{m) + A(llz) ( il)v(m)-l— vgm)vg] )) + Agz)vgl)v;m), = A;

() y0m) 4 2 AQ ) fm) o 4G5, (), ()

Vo AV, = A(“)v Uy

5 i1 m m 1 .
vi*Wpy, = H‘l(g) (v{ )vg - ’Ug )vg )) = W](g),

(1,

)

provided that v, (m) _ vgm)v;l) # 0.

Case 1.2

Only one vector, say v = (vy,v2) € {v,,} is not collinear with e, whereas the
remaining vectors are zero vectors. We choose the coordinate system similarly
as before; then vy > 0 and vy > 0. The invariants listed below suffice for the
determination of the representation of the function (2.4);:

v-Mv = vjv; = vy (v; > 0),
vi" + /v% = vy (2 > 0),

Vv

VA Y = l(')v?‘ + 2zl( )Ull’z + A22 vz,

(3.2) .
trA; = AD + A%, =K,
_ 40
tr MA = /111,
VMW, v = v, W) = WD
where

A; = ( 13}3) (0, = 1,2).
Summarizing, we compile Table 1.

Table 1. Functional basis in Case 1.

ViV, Vi MV, VinoVn, Vi sMy,, | m=1....M, m < n,

Vi AiVim , Vi *AiVn, vm"vpvny Vm'waVnn 1=1,..., Iv P = 1:--~1P<
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CASE 2
We assume that v,, = 0, m = 1,...,M. Since M = e ® e # 0, hence the
eigenvalues are A\ = 1, A, = 0.

Case 2.1

Among the tensors A; (: = 1,...,7) there is none with non-zero off-diagonal
components in the coordinate system {z,}, such that Oz; and Oz, coincide with
the directions of the eigenvectors of M. Let W € {W, }. Then the sense of Oz, is
chosen in such a way that Wy, > 0. Now one has to know the following invariants:

trA; = A(ll_l) * Agg’ } - A(l"l) and Agz),
(3.3) TMA; = 413,
trW? = 2Wh = Wi, (Wi > 0),
trWW, = -2, W® = w,
CASE 2.2

Let B € {A;} denote a tensor with non-zero off-diagonal components. The
positive direction of Oz is chosen in such a way that By > 0. The set of invari-
ants is:

trA; = A + AL, i -
(],‘l) . = A and AY),
trMA; = A{),
trB = By + B,
By and By,
(3.4) trMB = B, = Cu aneé 5
trB2 = B3, + 2B, + B3, = B2,
trBA = B AY) + BpAl) + 28,41, = Al

trMBW, = — B,Ww® = w)
By applying formulas (3.3) and (3.4) we construct Table 2.

Table 2. Functional basis in Case 2.

trA,, trA? trMA,  trAA, Lj=1,..., I, i<,
ter7 , trWo W, trMA W, , pe=1..., P, p<q.
CASE 3
All vectors v,,, (m = 1,..., M) have the formv,, = ¢,,e. Letv € {v,.}, v = ce,
and choose the coordinate system in such way that ¢ > 0. Then we have
(3.5) vev = ¢2 = ¢ (c > 0), veMv,, = ¢t = Cppy -

The remaining invariants are derived similarly as in Case 2.

http://rcin.org.pl



224 S. JEMioro AND J.J. TELEGA

Summarizing all three cases: 1, 2 and 3, we obtain the orthotropic functional
basis for the two-dimensional problem.

The last table coincides with ZHENG’s results [29], who has however used a
different method.

BOEHLER [4, 5, 6] determined functional bases provided that functions ap-
pearing in (1) depend only on symmetric tensors A;. In the two-dimensional
case, Boehler’s results correspond to the first row of our Table 3. This author
approached the two-dimensional case through the three-dimensional one by us-
ing Cayley- Hamilton theorem, cf. also [21]. The method of determination of a
functional basis employed in [4, 5, 6] and based on Cayley - Hamilton theorem,
proves that the functional basis is also the integrity basis, see also the first row
of Table 3.

Table 3. Functional basis for the orthotropic scalar-valued function (2.4),.

trA;, trA?, trMA,, trAA, ij=1,..., I, i< g,
trw, tr W, W, , tr MA,W,, wvg =15 5 P, p<q,
V'V, Yo MVon , Vi Ve, Vi My, mn=1...,. M, m < n,
Vrn'Axvm y Ym 'Alv" ’ vm'wpvn v Ym 'wa\/m .

ADKINS [1, 2] determined integrity basis, in the two- and three-dimensional
cases, for arbitrary second order tensors, under the condition of linearity of in-
variants with respect to each argument. Consequently, two-dimensional reduction
of the invariants in the case of transverse isotropy characterized by the parametric
tensor M does not yield the invariants listed in the first and second row of Table
3. It is worth noting that the tensor M describes only one of the five possible
cases of 3D transverse isotropy, cf. [29].

Let D; € T (+ = 1,...,1) be arbitrary two-dimensional second order ten-
sors, not necessarily symmetric. Assuming that one of the axis of the Cartesian
coordinate system coincides with e, Adkins’ integrity basis is given by

(¥) (%)
Dll ? 1)0ﬁ ’
pip@. pPpY),  apy=1,2
P, g ki=,...],

pdpSipd ). ix iz ks,

By A1

(3.6)

where
D; = D)
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4. Determination of generators of an orthotropic vector-valued function

In this section we shall derive the general form of the vector-valued function
(2.4),. To this end we consider the scalar function, cf. [11, 14, 24]

(4.1) g=fA,W,,v,)d = fod,,

linear in d. Thus we may write

S
(42) g(Ai-; wpnvm,d) = .a(Iers) = ZI'/’!-"'([T)JS ?

s=1

where [, are the invariants listed in Table 3, while J, are the following invariants,
linear in d:

(4.3) dv,,, dMyv,, d-Ayv,, dWy,.

They are obtained by using the procedure outlined in the previous section. In fact,
since in (4.1) a vector d appears, therefore we do not consider Case 2. In Case
1 the invariants d-v,,, d-Mv,,, permit us to determine d uniquely. Considering
Case 3, since

dev,, = djc,, = dy,

we must additionally examine the following two situations.

Cask 3.1

At least one of the tensors, say A € {A;}, is not singular, that is it has two
different eigenvalues. Then the two invariants: d-v,,, d-Av,, determine the com-
ponents d, (a = 1,2) of d uniquely.

CASE 3.2
At least one of the tensors, say W € {W, }, is such that the corresponding axial
vector [22] is not collinear with e. Then

dv,,, d-Wyv,, = d; and d,,

and d is determined uniquely.

We observe that if in Case 3 the situations covered by Cases 3. 1 and 3. 2
do not occur, then it suffices to know the invariant d-v,, = dc,,, because the
vector-valued function has the form f = ¢e, where ¢ stands for an invariant.

The canonical form of the vector-valued function (2.4), is given by

G & Ay &
(4.4) f(A Wpo Vi) = 59 = D s(l) 50 = 2 ws(l)es
s=1 s=1

The generators g, are listed in Table 4 and coincide with the results due to
ZHENG [29].
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Table 4. Generators of the orthotropic vector-valued function (2.4),.

Vi, MV, AV, Wpvy, m=1....M, i=1,...,1, p=1,...,P.

5. Determination of generators of the orthotropic symmetric tensor-valued
function

Proceeding similarly as in the previous section we take
(5.1) h = trFC,

where C is a symmetric second-order tensor. The scalar-valued function A has
now the form

S
(5.2) h(Ai, Wy, Vi, C) = h(I, ) = Y doll;)Js

s=1

where [, are the invariants listed in Table 3, and ./, are linear in C:
(5.3) trC, trMC, trCA;, trCMW,, v,:Cv,, v,,+Cv,.

To justify (5.3) one has to consider the following three cases.

Caske 1.1

Let vy, v2 € {v,,} be such that det[if,” ,(2)] # (. Then by using the invariants
v1+Cvy, v2:Cv; and v;-Cv; we determine C uniquely. In Case 1.2 one can also
calculate these invariants, because vy and e are not collinear.

Case 2.1

Knowing the invariants: tr C, tr MC, tr CMW one determines C uniquely.

If in Case 2.1 all skew-symmetric tensors disappear or their axial vectors are
collinear with e, then it suffices to know the invariants: tr C, tr MC, because F has
diagonal form.

Case 2.2

Since the off-diagonal components of the tensor B are non-zero, it suffices to
know the invariants: tr C, tr MC and tr CB.

All in all, to satisfy the cases considered, the set of invariants linear in C has
to be specified by (5.3).

The canonical form of the tensor-valued function (2.4); is given by

5

oh  Oh o 3
54)  F(A,.W,.v,) = . L. (I)F,.
(54)  FA:;,Wp,vin) = (ac+oc7) 5c = L% a(, Z )

s=1 s=1

The results are summarized in Table 5. The generators F, are the same as those
obtained by ZHENG [29]. The case considered by BOEHLER [4, 6] is covered by
the first row of Table 5.
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Table 5. Generators of the orthotropic, symmeltric tensor-valued function (2.4);.

I M, A, i=1,...,1,
MW, — W, M, p=1,..., P,
Vin @ Vi, VY QVn + Vo @ Vi, mn=1,.... M, m< n.

6. Determination of generators of the orthotropic skew-symmetric tensor-valued
function

We begin by constructing the scalar function [14, 24]
(6.1) k= trTX,
where X is a skew-symmetric tensor. Hence we may write

S
(6.2) k(Ai, Wy, Vi, X) = k(I,, K,) = Y ¢u(I,)K,,
s=1

where K, are the invariants, linear in X:

(6.3) trMAX, trXW,, v,,-MXv,,, v,,-Xv,.
To justify (6.3) we have to examine the following cases.
Case 1.1
Voo Xv, = X2 ( () (") {")vém)) = X2
CasE 1.2
(m) (m) "
Vi *MXv, = X0, vy 7, = X2
CasE 2.1
trXw, = X1
CAsE 2.2

trMBX = — B2 X2, Bz > 0,= Xp2.

Case 3 is treated similarly as Cases 2.1 and 2.2.
The canonical form of the function T is given by

1/0k Ok
64)  T(A,W,,vm) = 3 (ﬁ N W)

81\5 OK S
s=1

The generators of T, are listed in Table 6. They coincide with those obtained by
ZHENG [29].
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Table 6. Generators of the orthotroepic, skew-symmetric tensor-valued function (2.4),.

MA, — AM, W,, i=1,...,1, p=1,..., P,

Vm ® Mvm - Mvm @Vm, Vm QVp —Vp ®Vm, m,n = i . A.’, m < n.

7. Equivalent functional bases and sets of generators

ZHENG [30] determined an alternative form of the functional basis and gen-
erators in comparison with the results of his first paper [29]. In [30] the repre-
sentations of functions (2.1) corresponding to all anisotropy groups have been
investigated. Then orthotropy group is the group 5, (cf. also [21]) and the para-
metric tensor K has the form

(7.1} K=e¢e @e —e,0ep.

Here e, (o = 1, 2) are unit vectors specifying the directions of orthotropy. By
setting e; = e, we readily obtain

(7.2) K=2M-L

This relation enables the passage from our results to those due to ZHENG [30] in
the two-dimensional case of orthotropy.

The results obtained by ZHENG [29, 30] and in this contribution can be applied
to the determination of representations of the following functions:

5= f(AiW,, v, H), i=1,..., I, p=1,.... P, m=1,....M,
?: ?A,‘,WJ,V"“H )

% . ( ! )
S

= F(Aiswpevm-H)» g = gl‘
;i" = G(Ai»wps VYo, H) i‘ = _'i:‘!v

where H is a symmetric, positive definite tensor. Its eigenvalues are denoted by
Hy and 15, Hy > IT,. Now we have

H= Hieg®e + e e,

(7.4)
H = M+ Hy(I - M).

Consequently one can easily determine the representations of the functions ap-
pearing in (7.3).

The last case is important for applications if H plays the role of a fabric tensor,
cf. [7, 8, 9]. This tensor is sometimes used to model the mechanical behaviour of
materials as different as soils [6] and bones [7-9].

In the case when 1} = I, H is a spherical tensor and the representations of
functions (7.3) coincide with those derived by KorSGAARD [14]; then the tensor
H does not appear in these functions.

http://rcin.org.pl
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Friction relations for the many-sphere Oseen hydrodynamic
interactions

I. PIENKOWSKA (WARSZAWA)

THE pAPER concerns weak inertia effects arising in the many-sphere hydrodynamic interactions.
Rigid spheres are held fixed in an incompressible fluid flowing with uniform velocity U at infinity.
The friction relations, up to the contributions of the order O(Re), where Re is the Reynolds
number, are considered on the basis of the Oseen equations.

1. Introduction

THE MoTIVATION for this work is to analyse the effects of weak convective inertia
on the hydrodynamic interactions of a finite number of spheres, immersed in an
incompressible, unbounded fluid. The present paper is a continuation of earlier
publications on the low Reynolds number hydrodynamic interactions [1]. The
O(Re) convective inertia effects, where Re is the Reynolds number of the sphere
(based on the radius a of the spheres, the kinematic viscosity » of the fluid and
the uniform velocity U of the fluid at infinity), are considered on the basis of
the Oseen equations [2]. In particular, we will consider the O(Re) contributions,
appearing in the friction tensors, describing the dependence of the forces F; and
torques T;, 7 = 1,..., N, exerted on the spheres by the fluid, on the uniform
velocity of the fluid. The study of the friction relations enables an insight into the
hydrodynamic interactions between the spheres.

To quote the literature, concerning the study of the uniform flow past a single
sphere at low Re, we recall the paper by DENNIS and WALKER [3], and by DENNISs,
INGHAM and SINGH [4]. The authors have compared the calculated drag force
exerted by the fluid on the sphere, with the results of previous investigations and
with the experimental data. In author’s opinion, the approach to Re — 0 is via
CHESTER and BREACH [5] drag, rather than via the Oseen drag, as suggested by
the experimental results of MAXWORTHY [6]. To calculate the drag force up to
terms of the order of O(Re?), Chester and Breach used the method of matched
asymptotic expansions. Recently, an arbitrary time-dependent motion of a rigid
particle in a time-dependent flow of a fluid has been examined by LovaLENTI and
Brapy [7]. The authors have calculated the hydrodynamic force acting on the
particle, including the contributions up to the terms of O(Re).

Referring to the examination of the small inertia effects appearing in the
many-sphere hydrodynamic interactions, we recall the early experimental results
of JAYAWERRA, MASON and Srack [16]. The authors have analysed the behaviour
of clusters of spheres, falling in a viscous fluid. Their observations have been
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discussed in the theoretical paper by HockiNG [17]. He has pointed out that
some hydrodynamic phenomena, observed by the authors of the paper [16], are
not explicable by the Stokes slow motion hydrodynamics. Subsequently, the in-
fluence of small nonlinear effects on the hydrodynamic interactions of spheres
has been discussed by HAPPEL and BRENNER [18]. For the particular case of two
falling spheres, these effects have been observed experimentally for the cases
of Re > 0.25.

Recently, the effects of weak inertia on the motion of particles in a viscous
fluid have been reported in a review paper by LEAL [19]. He has argued that
even small departures from the Stokes flows can have a strong influence on
the positions or orientations of the particle. Problems of the motion of a few
particles in the presence of the bounding walls at moderate Re have been treated
by means of a numerical package that simulates two-phase Navier - Stokes flows
[8]. The authors of that package have taken into account full nonlinearity and the
fluid-solid coupling. The papers concerns, however, two-dimensional flows. Kim,
ELGHOBASHI and SIRIGNANO [9] have performed a three-dimensional numerical
simulation of a steady uniform flow past two fixed spheres, at Re reaching up
to 150.

In the present paper we regard small inertial effects appearing in the steady
uniform flow past N fixed spheres, at Re < 1. The problem is considered on the
basis of the Oseen equations. To deduce the friction relations, the velocity field
of the fluid is expressed in terms of the integral equation, involving the Green
tensor acting on the forces f;, distributed on the surfaces of the spheres [1]. The
properties of the Green tensor have been recently discussed by Garpi [2]. The
dependence of the Green tensor on |U|/v leads to a nonlinear dependence of
the hydrodynamic interactions between the particles on the value of Re. How-
ever, for the particular case of the hydrodynamic interactions characterized by
Re,, < 1, where Re,, = R|U|/v, R - typical distance between the centres of
the spheres, we are, qualitatively speaking, close to the Stokes hydrodynamics.
For that régime, we confine our considerations to the O(Re) convective effects.
The hydrodynamic interactions are presented to be due to the multiple scatter-
ing processes. In terms of the multiple scattering events, such properties of the
hydrodynamic interactions as non-locality and non-addivity can be conveniently
discussed. Knowing the dependence of the hydrodynamic interactions on Re and
on the spatial configuration of the particles, we obtain the O(Re)-friction rela-
tions. These relations describe the convective corrections to the respective Stokes
friction relations. The obtained relations have the form of series expansions with
respect to o, where 0 = a/R, 0 < 1/2.

As an example, we consider the drag and side forces exerted on three spheres,
placed in the transversal and longitudinal directions with respect to the uniform
flow of the fluid at infinity. The dependence of the associated hydrodynamic
interactions on o is taken into account up to the terms of order O(o).

http://rcin.org.pl
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2. Multiple scattering representation of the hydrodynamic interactions

We adopt the idea of induced forces f;, j = 1,..., N, distributed on the
surfaces of the spheres [10], to describe the presence of the spheres in the flow.
The dependence of the induced forces on the uniform velocity of the fluid U can
be expressed in terms of the following set of integral equations [1]:

R,(2,) = V'R,(2) + [ d2TIR,(2;) - Ry ()] £,(2))

@ ¢S [40TIR (@) - R(2)] (20

k#j
Vi() = R;(2)) -V (Rj(2))) = -U,  R; =0,

where V; is the relative velocity of the j-th sphere with respect to the fluid, R; —

position coordinates of the points on the surface of the j-th sphere, 1'21- — velocity
of the j-th sphere, T(R; — R;) — Green tensor of the problem considered. The
first integral on the r.h.s. accounts for the interaction of the j-th sphere with the
fluid, the second integral is due to the hydrodynamic interactions between the
spheres.

The convolution form of Eq.(2.1) reflects the non-local character of hydro-
dynamic interactions. For the present purposes it is convenient to work with the
Fourier transform of the Green tensor [11]:

_ dk exp(tk «r) oo
23 By = f (2m)? p(k? + iwv-'U -k)(l ~ k),

where k = k/|k|, & = |k|, u — the dynamic viscosity of the fluid.

The dependence of the Green tensor on |U|/» leads to the nonlinear relations
between the induced forces f; and Re. These relations can be expressed in terms
of admissible sequences of the hydrodynamic interactions. To deduce the multiple
scatttering representation of the respective interactions, we follow the procedure
used by YosHizaki and YAMAKAWA for the case of the Stokes hydrodynamics [12].

After the two steps:

(i) expansions of V;, f; in terms of the normalized spherical harmonics,

(ii) integrations with respect to the angular variables (2,
we arrive at the set of algebraic equations, relating the expansion coefficients
f;1,m, of the induced forces to the expansion coefficients V;,,,, of the relative
velocities:

N
lam  mim
(2'3) VJJWH Z Tl,m?(o ’217!2 + Z L Tl?mf(RJk‘) 'fk-fzmz ’

lams k#j) lyma

http://rcin.org.pl
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where r; = R; = RY, r; = r;j(a,92;), Rjr = R} — R, and #? - position of the
centre of the j-th sphere,

~U, 1=0
2.4 Viim = .
(24) j -

Tensors Tff:if(o ;) are called the self-interaction tensors, representing the particu-
lar type (specified by the indices /ym;, l;m3) of influence of a single sphere on
the surrounding fluid; tensors T:IZZ?(RJ-L.) denote the mutual interaction tensors,
describing the interaction between the j-th and k-th spheres, respectively. De-
pendence of the above tensors on the spatial configuration of the spheres can be
presented in the following form:

lom lam ~m
(25) Tl?mf(RJ‘*) = Z Tlfmf,lgrng(iRJA'I))‘ﬁ 3(‘0]"\')‘

l3mg

where spherical polar coordinates R;.(|R;.|, $2,;) are used.
Next, we formally solve the basic set of the algebraic equations by iteration,

Alams
(26)  fupmy = D T2nH0;) V,itym,

lama

N
plams l3ms ) plamng
o Z Z E Z T[lml(o-’) ‘lemg(RJk) .Tl'ger](O‘\') .Vk'141n4 Fzss L)
k#j lamy lamay lymy
Al . . . . .
where T2 is the inverse self-interaction tensor. The inverse tensors can be
expressed by the following approximate formula [1]:

(27) T == Ttl = Td 'Tod 'th + Td 'Tm[ 'T(l 'ng 'T,l =5 e g

where ’fd are diagonal, and T,; — off-diagonal in { (it means, they are of the

form ’I.‘figf(ov,) and Tff;:if(OJ-), where [} # Iy, respectively). Thus the expansion
coefficients of the induced forces are expressed in terms of admissible sequences
of the hydrodynamic interactions. These sequences, depending on the properties
of the interaction tensors involved, present the allowed types of coupling of the

spheres to the fluid.

3. Weak inertial effects

Considering the weak inertial effects, we focus our attention on the low Re
properties of the hydrodynamic interaction tensors. In paper [1], the dependence
of the tensors on Re is expressed in terms of the modified Bessel functions 7; ;1/2
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and K 4+1/2. From the properties of the Bessel functions for Re — 0 it follows
that the Stokes self-interaction tensors are equal to

@.1) T30) = e Ko
where
K2, = irleh f dk(1 — KK)Y,~"1Y"y
It was shown in the paper [12], that Kff:ﬁfﬁ,am # 0 for the following sets of indices

(3.2) L+ —13> -2, L+ hL+13=2n, n=10,1,2,....

We note that the Stokes self-interaction tensors are diagonal in /.
The Stokes mutual interaction tensors, under the assumption of Re,, — 0,
can be obtained in the following form:

) o0 ; \/—7:- & |+!2+1
3.3 T ama = T ama,m - ) ¥
( ) lymy,lyms 7;0 lymy,lams 4“’“17(11 E 3/2)1'(12 + 3/2) (R)L)
ke 5> B+ 2 DT+ bt m+1/D) Q)
f]?ll] lqﬂl’; 7“_0 7”! ['(Z + ])

2 2
1 3 .
o [_m’lt thtmtgi it % by + 3 (];-A) ‘ (1;‘.) } ,
= P2 J' j.

where |} + I + 2m - 15| =0,

- 1 1 . ; 1 1
J=max(l1+l2+2m+§, l3+§), (,=mm(ll+12+2m+§, l3+§>,

and Fj is the hypergeometric series.
The allowed values of the respective indices read:

(i) m = 0, Iy + 1 =13,
(34)
(ii) m =1, LW+ 1+2=1.

From (3.3) we obtain the following leading order dependence of the interaction
tensors on R j;:

I+ +1
lamy a
(35) Tl|1n|,13m3 o ( le :

This property is characteristic for the Stokes flow régime [12].
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The next step is to consider the quadratic dependence of F; and T; on U. To
that end, we have to take into account the O(Re) contributions to the interaction
tensors. First, we have the self-interaction tensors, being of the leading order
of O(Re),

lemz ( ) - Re “ K!zma
l3+1my J Sﬁﬁ’aﬂ(lz I 1/2)(12 % 3/2) l3+1my,10
1 - e Lo 1 I 77 lom
(3.6) + (0 - i0,) KET3 100 + % (D + il JRIE o +0,
l m lr+1—m
l§+fml(01) _Tli+mz l(()J)

They are off-diagonal in [. Then, the O(Re) contributions appear in a series
expansion of the tensor T with respect to Re [1].

The mutual interaction tensors, being of the leading order of Re, under the
assumption Re,, < 1, read:

(37) le'mz _ f: lemg,m . il_i"Re\/ 2”(213 + 1)

fymadyms ™ hmalsms ™ " 16au (1) + 3/2)1'(1p + 3/2)

B(—ms3)
m :O

. N 5 1 7 1 #
{Zl 27 +1 K5|1n?f’i( ]).'j(_")(o 0 O) [f(/ (_7”3 0 3)

. v f 17 - A
~ (0. - i0,) (_;3 1 i) +(l.g.+zuy)(_;3 1 i)]}

L\t i (h+b+2m+ 1/ +l+m+1/2) ')
Rﬂ\- m! I'(Z +1)

m=0

by ds B bk b e o e\’ "2+
—m, m+ =; | =, = |1, | = -
i oL TR O R

where (:::) is the Wigner 3 — j symbol [15],

Py

[h+l+2m =13 =1;
r=1 for 3=0; r=(3-1,13+1) for 3>1;
B(s) = (—1)3+1sD/2,
In contrast to the Stokes régime, we have here the following sets of admissible

indices:

(i) m = 0, L+l—-13=1, and L1+l — 13 = -1,
(3.8) (i) m =1, h+l—13=-1, and 1+ —13=-3,

(iii) m = 2, L+ 1l—13=-3.

http://rcin.org.pl
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The above tensors exhibit the following leading order dependence on R ;;:

1+
lama a
(39) T11m|,137713 = (Rjk :

We have also the second source of the contributions to the mutual interaction
tensors, being of the order of O(Re): a series expansion of the tensor 'I‘88(Rjk)
with respect to Re,, [1].

4. Friction relations

In the present section we will examine the friction relations which express the
forces and the torques, experienced by the spheres, as quadratic functions of the
fluid velocity U. To that end, the forces and torques are presented in terms of
the respective expansion coefficients of the induced forces:

F; = —f00,

(4.1)

1
€ Z (rJ)-'mf_)'.im )

m=-—1

T;

where

a

‘ 1 : i o
I )m e = 0y 617! + 6771— — + 0 _(&m + ém— oz ol bm .
((r;)m )k 7 k1(Om1 1)\/2 k2(=0m1 1)\/2 k30m0

Using the result (2.6) for the expansion coefficients, the friction relations can be
written in the following form:

N

e TV
Fi=2 & U,
k=1

(4.2) .
T, = > &k U,
=1

where §; denote self-, and §7, j # k, the mutual friction tensors.

The above relations are of a structure similar to that of the respective Stokes
friction relations, the difference consisting in the properties of the friction tensors.
The tensors involved can be presented as a sum of the Stokes contributions and
the corrections due to weak convection. That sum accounts for the influence of
the spatial configuration of the spheres on their hydrodynamic interactions.
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The translational self-friction tensors are equal to

TV T T T - T
(4.3) =T+ T T T Ty T, + T]

[Py
+TJ * Z [le .Tl .TIJ + le 'Tl 'T[IJ] 'TJ ¥+ T.} U ZTT{ .Tl IT!J‘ 'T_]
i I#5
+T] . ZTJ! . [T} 'le ':1-1] -+ :[-‘1 'TU .T}]
1%

T30 3 X [T T, T T

I#5 n#l n#j
+TY Ty o Tip Ty Ty + Ty Ty T T, -T}lj] L RS
The Stokes dependence of the friction tensor on o is described by the first
two terms, being of O(c”) and O(o?), respectively. The Stokes hydrodynamic
interactions between two spheres contribute to the above tensors. The remaining
terms express the inertial corrections, being of O(a"), O(c') and O(c?), respect-
ively. They are due to two and three-sphere interactions. The non-additivity of
the interactions appears in the inertial corrections through the terms of order
O(c?). The self- and mutual interaction tensors entering the expression for E,LL
are equal to
(i) the self-interaction tensors

T:. = 6mnal,
(4.4) i e

;= bmpa [i}é‘ (3[ - fjfj)] Re,

(ii) the mutual interaction tensors:

.
I

1 3 . -
Tjx = - [Z(l + e./keuc)] v ek = R /|Rjif,
1 1 3 208 3 /1 : rm
(45 Tu=-c|ig (31- UD) VA s X elomLim)Y" ()
) m=-—1
1 12
—\/Eig 5 Z s(—m)La(m)Y5" (£2;1) | Re,
”l=_3
where
Ly(m) =Y ivar v 1K, (<1ye(=s) (¢} ") |vaa, [ ¢ 1
’1(771) == = t , 3(_ )“(_b) 0 O 0 z —m 0 @
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and tensors K, are given by YOsHIZAKI, and YAMAKAWA [12]:

2
Ky = &(—ereI —e,e, + 2e.e;),

Ky = ¢.¢. +¢.8; — igge, —ie,e,,
K; = e;e; —e e, —ie e, —ie e, ,
K—m = K:na
where the complex conjugate is denoted by an asterisk, and (e,,e, e.) is an
external Cartesian coordinate system.

The first two tensors describe, for the particular case of a single sphere, the
Stokes and Oseen contributions to the drag force, exerted by the fluid on the
sphere.

The translational mutual friction tensors read:

(4.6) T o= =TT T+ ) ST, Ty Ty Ty + T,

I#k 1#;
T T Ty = Ty Ty T = Ty T = T -T2, T
— 3 TH0;) T (Ryx) <Th = T, + > Toe (R) T2, (O)
+TJ‘ . Z Z [T}[ -T[ Ty + T_,‘[ ':i‘i 'Tllk} -:l:‘k + 'TJI . Z ZTJ'[ -T[ Tk -:l:'k
l#k 1#] l#k 1#5
+'i‘j i Z ZTJ{ . [:ﬂ Ty -i‘k + T( Ty °TH
I#k 1#]

-T; - Z Z Z [le T T}, +Ty +Tok

l#k n#l n#j
+T}'I -’T‘[ #Tis "i"n T + T_,‘[ -T( ':i‘[n ':i‘n 'T}lk] O'HI—‘L. AT

The Stokes contributions to the friction tensors are described by the first two
terms, being of O(a) and O(a?), respectively. For that régime, the hydrodynamic
interactions of two and three spheres occur. The remaining terms are due to the
inertial effects. They contain two, three, and four-sphere contributions. In the
Stokes régime, the property of non-additivity appears starting from the terms of
0(0?), whereas in the O(Re) régime, the three-body effect enters at O(a).

The mutual friction tensors &}k" are built up of the following interaction
tensors:

(i) the self-interaction tensors:

'i“j and ’i’l- given by the expressions (4.4),
4.7 1"’(()J) = fﬂyuRC[f( o0+ (U — iU ) - 1)+(6"I + 'il?'y)é'm(l)]l,
T (0)) = —\/—rr;mRe[\/_U 60+ (et i0, ) gty + (O =0y ) 6y | ;
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(ii) the mutual interactions tensors:

T;r and T}k, given by the expressions (4.5),
TR (Rix) = Y Todm (IR DY™ (256) + > Togam, (R DY (251,
m3

ms3

where
Tlm 1 1m
0(),1m3 3(”1 I:()()lmg vt

1 1m

48)  TER;) = —Ty™ (Rj),

2
Re B m
T;A 67 pa (R_JL) {i?\/_ Z e(=m)Lyi(m)Y{" (2;1)

2v'5 m=—1

1m -
T00,3m; =

1 Z e(—m)La(m)Y3" (£2;1)] .

m=-3

In view of the properties of the considered hydrodynamic interaction tensors,
the O(Re) contributions to the friction tensors f,f;: do not obey the symmetry
relations

(4.9) (f.;j"kv)m = (f;{::\.’)q,, :

characteristic for the Stokes contributions [13].
The rotational self-friction tensors are of the following form:

(410) £ =-¢ Z(n)-m .(0;)- > T;-T,-T; -T,

m=-1 l#;

+> Tin(0))- ST R T T TS+
my 1#]

where
Im — - lm
Tlml(OJ) = 6\/‘@1(1}(‘"]”‘00 + ...

There is no Stokes contribution to the approximation considered. The inertial
contributions consist of two terms of order O(c?), due to two-sphere interactions.

http://rcin.org.pl
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It is seen from the properties of the tensors T??H(O ;) that

1
(4.11) e Y. (1)-mT{(0;)V;00 = 0.

m=-—1

Hence we have recovered the well known result that, due to the symmetry of the
problem, the torque acting on a single sphere vanishes.
The rotational mutual friction tensors read:

1
(4.12) B=—e 3 @)-m |- Y. TP (0;) T, (Rii) -Ts

m=-—1 my

T (0;) Tjr T = 3_T7'(0;) - TY, (R;i) - T}

1m LImg
my

+;i"(1)9n(0_,) * Z ZTJ! 'T[ 'le 'Tk

£k 1#]

+ZT1'711(01)_Z ZT(IKr)nl(Rﬂ)'TI 'Tl]k -'i‘k £i LA

Im

my I#k I#]

The Stokes contributions to the friction tensors, due to two-sphere interactions,
are given by the first term, being of O(a?). The remaining four terms describe the
convective inertia effects, being of O(c') and O(a?), respectively. They contain
two- and three-sphere contributions. The non-additivity comes in at O(o?).

To conclude: the weak convection effects enhance the hydrodynamic coupling
of the spheres to the fluid. In the approximation considered, this enhancement
consists in the following effects:

(i) The Stokes interactions involve not more than three spheres, the O(Re)
interactions — four spheres;

(ii) the non-additivity effects appear at O(c?) for the Stokes régime, but at
O(c?!) for the Oseen régime;

(iii) the tensors Eﬁv, vanishing for the Stokes flows, occur in the Oseen flows;

(iv) the contributions to E,JT,CV, dependent on the angular, but not on the radial
variables, absent in the case of Stokes interactions, are generated in case of the
Oseen interactions.

5. Three-sphere effects

As an example, the forces acting on three rigidly held spheres are calculated for
two particular configurations of the spheres. Consider first three spheres with the
centreline perpendicular to the flow direction (|[Rj2| = |Ras| = R, U = (0,0, U)).
Up to the terms of the order of O(e), the hydrodynamic interaction tensors
required read:
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(i) the self-interaction tensors

'i'j = brual,
(5.1)

'i‘; = bmpa 1-36Re(3e1.ex + 3e,e, + 2e;8,)] ;

(ii) the mutual interaction tensors (¢ < 1/2, Re,, < 1)

1 3
TA_= —21«1- 8| .“.=”.
* 67r,u.aa4[ ee; +ee, +e.e), j k=123,
1 1 1 1 3
T, =T;3=Ty = - —Re [3e;e; —e,e, + 3e,e, — e.e; + 2e.e.],
6rpa 16 &t
(5.2) -
Ty =Ty =Ty = gy~ ]'—6Re [3ece. + e.e, +3e.e, + €€, + 2e¢;)],

in the external Cartesian coordinate system (e, e,, e.).
The obtained drag forces, exerted by the fluid on the spheres, are given by
the following formulae:

(i) for the side spheres:
¢

3 3
(F1): = (£3). = 6mpall [1 + —Re — 1)(7 + ~Re (1 - 20) + ]
(5.3) 8 8 4 16

(ii) for the central sphere:

3 3 3 33
), = 6rpall |1+ =Re— o+ =Re (1 - =0 | +...|.
( 2): T [ g € 20 4 e( ] rr) ]
The inertial contributions to (/). and (F3). are due to the following types of
interactions:

(i) self-interaction of a single sphere: 3/8Re,

(i) pair-wise interactions, independent of 7t: 3/4Re,

(iii) R-dependent pair-wise interactions: —(108/64)Rea,

(iv) non-additive interactions: —(63/64)Rea.

For the vector component (/3)., the respective terms are qualitatively similar,

3 3 72 27
gRe, ZRe, - (ﬁ) Reo and - (ﬁ) Reo .

In the expression (5.3), the first two terms describe the drag force, experi-
enced by a single sphere; the remaining terms describe the decrease of the drag
forces due to the hydrodynamic interactions between the spheres. The vector
components (F})., (F;),, t = 1,2,3, representing the side forces, read

(F1)r = =(F3)s = —67pal [%Re (l = %n) * o ] )

(54) (F2): = 0,
(F), =0, i=1223
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We note that the two side spheres are repelled. The side forces contain pair-wise
contributions equal to —3/8Re (3/8Re, respectively), and non-additive contribu-
tions, equal to (45/128)Rec (—(45/128)Reo, respectively).

Let us now consider three spheres in line with the flow direction (|R;2| =
|R23| =R, U= (0,0, U))

Here the respective interaction tensors read:

(i) self-interaction tensors are given by the formulae (5.1),

(ii) mutual interaction tensors (¢ < 1/2, Re,, < 1):

1 3
o — — . o + + z%z
Tk 67r,uaa4 [ece. + e e, + 2e.e.],
1 3
(5.5) T, =Th =Th = T gRe(e.e, + 3ese, + 2e.e.),

Ty =Ty = T3, = 0.
The obtained drag forces are given by the formulae,

(i) for the leading sphere:
[ , 3 9 3 9

5 : = / e == = = = PR
(F1). = 6rpal -] + 8Re 4(7 ¥ 2Re (l 20) + ] ,

i1) for the central sphere:
(5.6) (i) p

(F2): = 6brpall _l + —z—Re - 30 + %Re (1 — ?n) 3 ] A

(iii) for the rear sphere:
3 9 63
(F3). = 6rpal “1 + gRe b ERGU + } .
The inertial contributions to the drag forces, quadratic in the fluid velocity, are
generated by:

(i) self-interactions of the respective spheres: 3/8Re,

(1i) pair-wise interactions, independent of ft: 3/2Re, 3/4Re, 0, respectively,

(iii) R-dependent pair-wise interactions: —27/8Rea, —9/2Reo, —27/8Reo, re-
spectively,

(iv) non-additive interactions: —27/8Reo, —27/16Res, —9/16Reo, respect-
ively.

Let us note the differentiation of the drag forces, exerted by the fluid on the
spheres. The side forces are equal to zero, due to the symmetry of the considered
spatial distribution. N

The above examples illustrate the properties of the friction tensors &fj" and

J_rkv up to O(c'). We note that the multisphere interactions, giving rise to the
drag and side forces, cannot be described in a pair-wise additive scheme. The
approximations in the Oseen equations can in principle be refined, by using the
results presented in a series of papers by FINN [14], for a particular class of flows.
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Stiffness loss of laminates with aligned intralaminar cracks
Part I. Macroscopic constitutive relations

T. LEWINSKI and J.J. TELEGA (WARSZAWA)

THE PAPER deals with analysis of reduction of the in-plane effective elastic moduli of the [02, /902 ],
laminates weakened by aligned cross-cracks in the 90°-layer. A regular crack pattern is assumed.
The case of dense crack distribution is modelled by (hy, ly) approach, while the case of arbitrary
crack density ¢y is described by a more accurate model (hg, [). Both models have been derived in
our paper [10]. Closed-form formulae describing decaying curves Ey(cq), Ez(cq), vi2(ca), v21(ca),
(i12(cq) are found by solution of the local problems for both models.

1. Introduction

CRross-pLY LAMINATES of the [02, /907 ], type incur matrix cracking, interlaminar de-
lamination and fibre breakage. The matrix cracks observed are straight or curved,
cf. GROVES et al. [3]. The aim of the present paper is to assess the loss of effec-
tive elastic characteristics of the laminates with the straight matrix cracks going
transversely through the whole thickness of the 90°-plies. The influence of crack
curving as well as the onset of delamination is neglected. The cracks are assumed
to be aligned. The present paper is mainly concerned with the case when these
cracks are equally spaced. The assumption seems to be non-restrictive, since ma-
trix cracks form usually regular patterns, c¢f. GARRETT and BAILEY [2], HIGHSMITH
and REIFSNIDER [6], GROVES [4] and GROVES et al. [3]. The method (hg,!) to be
used has been proposed by us in [9, 10] and mathematically justified in TELEGA
and Lewinskr [15]. This method makes it possible to evaluate reduction of all
components of the stiffness matrix of the three-layer balanced (transversely sym-
metric) laminates with transverse cracks in the internal layer.

The aim of this part of the paper is to find closed-form formulae interrelat-
ing effective Young’s moduli /¢y, E°, effective KirchhofP’s modulus ¢y and
Poisson’s ratios v°,5 with crack density ¢;. The second part of the paper [11] is
devoted to placing these results into the available literature of the subject as well
as to compare the theoretical predictions of the (hg,/) model with experimental
data.

The following conventions are employed: small Greek indices (except for ¢)
run over 1, 2, while Latin ones (except for k) take values 1, 2, 3; h labels quan-
tities of the homogenized description. Summation convention concerns repeated
indices at different levels. Sometimes the same letter denotes an index and a par-
ameter (e.g. o, /3, 7, 6, etc. defined in the Appendix), which should not lead to am-
biguities. The system of notations is compatible with that employed in LEWINSKI
and TELEGA [9, 10]. Some auxiliary quantities are defined in the Appendix.
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2. A laminate composed of orthotropic plies. The case of short cracks parallel
to the axis z,

The aim of this section is to exhibit simplifications in the homogenized de-
scription of in-plane deformations of the cracked laminate considered in [10]
which take place when:

i) the plies are orthotropic, and

ii) the cracks weakening the internal layer are aligned.

Assume that the axes z;, z; are axes of orthotropy. Cracks are parallel to
the axis zj, cf. Fig.1. In view of the orthotropy assumption, the only non-zero
components of the stiffness are

Agaﬁﬁ, A(:Buﬁ; Ao Ag{:ﬁlf’ Aﬁfaﬁ

vw? ?

2.1 :
@ APE. ARCRD gW0ely Lo wfiw T 2

uwy

[}

YF

x; &

|
|
\

FiG. 1. Laminate with short aligned cracks.

Consequently, the only non-vanishing components of the tensors A2/ cf.([10],
Eqgs. (4.9)), are

WY A (3 iy B3 Ao
(22) A?Mj'j7 Agm{ /_1" ALlr,ja;d — f’l:;’h”, /l; 3 _ ‘.“1”5

- — o

Note that A}122 = A22!! but A}12 # A1,

The components of the vectors N, T are (0.1) and (1,0), respectively, (cf.
[10], Fig. 1). According to the definition (4.7) given in [10] of the tensor of crack
deformation measures €#, one finds:

52
. 1 .
(2.3) € = m/[[”,]\]dyz- =0, A=1,2
51
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Thus, regardless of the type of the scaling, the homogenized constitutive relations
have the form (cf. [10], Egs. (4.5), (5.36))

11 _ 4l111 h h y
Ny =4, ("11511 +(’12552”ﬁ11~f1)~
22 1111 h h o
(2.4) Nh = A, (0125111 + €y — 13215{1) ,

Nl 34100 (5{12 - &Efz) y

where ¢f, = ¢ (), €. €1,); the coefficients involved in (2.4) are defined by
Egs.(A.1). We cannot expect that in general ¢f, = &£ (¢t k) and €f, =
ef,(e1,), since the cracks considered are of a unilateral type.

3. Parallel cracks: effective characteristics according to the (hg,ly) approach

From now onward we shall deal with a laminate composed of orthotropic plies
and weakened by straight-line cracks in the internal layer, lying at equal distances
l. The crack lines coincide with z; = nl lines (n = 1,2,...), cf. Fig.2. The aim
of this section is to find effective stiffnesses of the laminate considered resulting
from the (hg, ly) method discussed in ref. [10], Sec.4. This method follows from
the in-plane scaling: h — h, l, — ¢l,, and hence it will also be called the in-plane
scaling approach. Results of this model apply for laminates with cracks of high
density. Predictions of the model will be independent of the value of the [/h
ratio.

,r"—'——"— "'_"""'H_ _______________
' A 7y A /{
/,4 = ,’I LA / ?
(T SRy S A R Ny &
D i’ sl ity e’ | S S S -
/ s £ &
L5 7 s oz 7 P 4
/ s s LA 4
Y s, ¢ s £ J 7
2, P A Y V4
7 2 r ra 4 P
vy 04 L4 V4 Vi
’ LA s g 4 7
/] 174 Vd ’ s 4 V'
I 7 ’ ’ ) F ARy 4
(G » I’ II ’/ s ,l 7
s
el
s 7 - ,’ 7 ]'
o i K ’ . ’ i
(8] 4 d p' V X1
o)

-4
-

=

FiG. 2. Laminate with infinite aligned cracks.

The key to homogenization is to find solutions to the local problem (P2,
formulated in Ref. [10], Sec.4. Geometry of the periodicity cell is here simple,
cf. Fig.3. For the sake of simplicity, the crack /' is located so that it divides the
cell into two equal parts.

http://rcin.org.pl
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y A

b

Y
%ghlghl 1

T . if

,_l=2gh ;

Fi1G. 3. Basic cell of periodicity.

Since the crack F' lies along the axis y;, one can guess that the solution to
the basic cell problem (F?.) of Sec.4 in [10] does not depend on y;. Similar
problem has been solved by LEwiNskl and TELEGA [8], hence only the outline of
the derivation will be given here.

The unknown fields of (Pg,.) are v} (y1), ©](y1) and v}(y1), ub(y1). It turns out
that these two pairs of functions are solutions of the independent (decoupled)
stretching and shearing problems.

3.1. Solution of the local stretching problem. Stiffnesses A2*"7

The unknown fields are v](y;) and ul(y;). Let € = y;/h be a non-dimensional
variable; £ € (0,2p); 20 = [/h. Analysis of the local equations of (F°7.) shows
that both unknown fields are piece-wise linear in &, i.e.

€+, E\& + E7, € (0, 0),
a1 e .15 2 FE 2 £€(0,0)
D\§ + Dy, e+ 1y, € € (2,20)

The stress resultants (cf. [10], Eqs. (4.11)) are given by

1 dv! du!
gl = 2 A}m 1+Aém 1 +n(1)1.

§ h dé d¢

(32) ’ ol »
i o X | oY 4111141 11
LO h [.‘2 ({‘E + .’14 (If :| + [() s

where n}!, I}! are defined by Eqs. (4.14) in Ref. [10].
The constants ¢,, D,, F,, F, are interrelated according to:
e periodicity conditions
v1(0) = v{(20), u1(0) = u3(20),

) Ng'(0) = Ng'o),  L5'(0) = Lg'(20);

http://rcin.org.pl
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¢ switching and contact conditions

vi(e—0) = vi(e +0),  Ng'(e—0)= Ng'(e +0),

(3.4) |
Li'e—0) = Li'(e +0) <0,  Ly'(e - O)[ui] =0,

3.5) [ui] = ui(e + 0) — uj(e — 0) > 0.

Analysis of the above conditions leads to

0 for i(l)1 <0,
i) =0, (") = i
'-'/—l‘in-lT for l(l)l > 0.
4
1 l
Here (-) =7 f( )dy;. Since u! is periodic, cf. Eq.(3.3);, one can make use of
0
the relation: (y},(u')) = —[u{]/L.

Hence we find a non-zero component of the crack deformation tensor (2.3)

(3.6) er

=

[[111]] { if E) <0 (the crack is closed),
Fu Eh,

[ if £, >0 (the crack is open),

where, cf. Eq. (4.14), in Ref. [10]

Flol i Alll]/,lllll E), _[11/11111

(37) J(l)l = 11111 h + 41122

€22
or, using relations (Ref. [10], Eq. (4.12),, (4.12),), (A.1) we can write
(3.8) Fy=[y=O0Yul™,  Ew=Buch + Buchy.

According to the formula (4.5) in Ref. [10] and Egs. (2.4), we arrive at the ho-
mogenized constitutive relationships for axial stress resultants

aallh aa22 h ~
(3.9) N“"—{A‘ e+ AT, for £, <0,
,’12‘“”5’{1] + A?“ZZEQZ ) for E, >0,
where
(3.10) AZePB = Acmﬁff AgallA;lBﬁ(Allll)—l‘

Relations (3.9) are continuous along the line £, = 0.
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By virtue of the symmetry relations (cf. [10], Egs. (4.9); and (4.12),)

; v - Apo3 i\ e - Nuae 3
(3.11) /1“1 H = Al‘ & AT = ..-!3” ,
we have
(3.12) AXPL = jfPac

hence the symmetry A2?!! = A!122 holds also when the crack is open.
It turns out to be helpful to write the components A2“?# in the form

(3.13) -‘1?'\”‘//'11”1 =y — /3,\1»’3;;1}1101 ’

the non-dimensional coefficients o, and /), being defined in the Appendix.
In the “technical” notation relationships (3.9) should be rewritten as follows:
e in the case of closed cracks (£, < 0)

Ny 2h E Ey] [eh
(3.14) o T T e Tl 1
N} 1 = vyoray | v Es Ey £99
e in the case of open cracks (), > 0)
e 2i B uEg] [
(3.15) [ ,’32] P Py -l g B
Ny 1= vy | v B3 £ 0
The orthotropic constants for the case of closed cracks are given by
A}lZZ .’l}]22 A Li'(V(ILY
(316) Vi = ,l{“l ) Va1 = W s I’-u = (] - “12’/2]) 2h

The components v¢,, v5, and E°¢ are defined in terms of A% in a similar
122 ¥71 a :
manner.

3.2. Solution of the shearing local problem. Stiffness 4?2

It turns out that the unknown fields v}, u} are piecewise linear functions:

1 {clfm, 1 {f:‘15+1~?2~ €€ (0,0),
= Uy =

(3.17) vy =
D&+ Dy, Fi§ + Fy, € € (o,20).

The stress resultants, cf. ([10], Egs. (4.11)-(4.14))

dvl du!
]Vgl = [[12121_2 o1 A%lzl 2

bode d¢

= o=

(3.18)

| =

o _ 1 mdyy | omduy 21
LO [Az €& + A4 de + ,0 3
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are piecewise constant. The periodicity conditions read:

(319) v3(0) = v3(20), 1(0) = u3(20),
' N§'(0) = N3'2e),  L§'(0) = L§'(20),

while the switching conditions are

v3(0 - 0) = v3(e +0),
Ng'(e—0) = Ng'(e +0),  L§'(e—0) = L§'(c +0).
Using (3.17)—(3.20) one finds

(3.20)

21
10

5%1("]) =0, ('Ygl(“l)) = T2
g

Due to the orthotropy we have A3'?! = A212! By virtue of the relation 3! =
2A3121¢h, and Eq. (4.6) in [10], one finds

(3.21) el = el

Therefore the homogenized constitutive relation (2.4)3 assumes the form

(3.22) Ni2 = 2412128, gl212/41212 _ 1 _ 5

where a is defined by (A.1)s. According to (A.2) we have 1 — a = d/h. The
effective Kirchhoff moduli of the cracked and uncracked laminate are

(3.23) G2 = A222h,  GS, = A22)2h,
3.3. The homogenized potential

Having found relationships (3.9) and (3.22), one can express the homogenized
constitutive relations in the hyperelastic form, cf. [10], Eq. (4.18)
Ovh

(3.24) e e .
del s

the potential V}, being defined by
VP for E, <0,

(3:25) Vi =
Vi for FE, >0,

where, cf. [10], Eq. (4.22)
0 3 "
2V = 3 A7 el ey + 2412 [(h)? + ()7
a,f
V5 = 3 AT el el + 2477 () + (1)) -

Saa™
ahﬁ

(3.26)



252 T. LEwINskl AND J.J. TELEGA

The formula (3.26); can be rewritten as follows
1
(3.27) Vi =V - EA}j“‘F,Ol(Eh)Z.

By virtue of (3.27) one can readily prove that V}, is of class C'! (not '?), the result
already known from Sec. 4 of Ref. [10]. We see that the line £;, = 0, cf. (3.8),,

(3.28) Briet + Baeh, =0

is a line of discontinuity of the second order derivatives of the potential Vj, cf.
Fig.4a. This figure characterizes the [0°/903]; glass/epoxy laminate examined in
detail in Sec.3.1 of the second part of the present paper [11].

h 22
€3, Nh

/\ the crack

7 X —— H: the crack
///‘ P / |is open [
///\\ N
7 ///
/

| ) ][ [ |

/ 7
7/// =1 E‘:‘T h
E. =0 —1
: Ex < 0 " I N, <0 é o
i Ny, =0

the crack /] A the crack [/Jk—

is closed : is closed [/
A s 7777

FiG. 4. a. (¢}, €%)-plane; condition Ej > 0 for the crack opening in the glass/epoxy [0°,903].
laminate tested by Hicusmimn and Rewsnioer [6); £, = 0.4298¢]; + 0.12865,. b. (N)', N7)-plane.
Condition Ny, > 0 for the crack opening; the same laminate, Ny, = 0.632N,}! + 0.0408 V2,

3.4. Inverted form of the homogenized constitutive relations

The constitutive relations (3.24) can be inverted. We shall now find this inverse
form. The main problem reduces to inverting relations (3.9). For this purpose we
introduce here matrix notation.

Let us define the following vectors and matrices

k
k = [Bi1,821], ki =[-Fau.Bu], C= [k ] !
AL

e
(3.29) A = A}nm om0 m=1 or e,

m

T if
- h _h = 11 Ar22
E = [511,522] B N = I:Ah 'Nh] .

http://rcin.org.pl
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The constitutive relations (3.9) can be written as follows

A€, for kee <0,
(3.30) N =

A€, for ke > 0.
This relation is continuous because V), is of class C''; hence
(3.31) Akl = A KT .
Let us set e = Ce, e = (e1, 7). The inverse relation reads

1
—_ -1 -1 o g

(3.32) £ =C g, C delCC .

Hence (3.30) assumes the form

B]E, for €1 < 0,
(3.33) N =

B.e, for e; > 0,
where
(3.34) B, =AC!, B.=ACL

Consequently

DN, for e <0,
(3.35) e=

D.N, for ¢ > 0,
where
(3.36) D; =CA7!, D.=CAl.

Our aim is to express conditions ¢y < 0 or ¢y > 0 in terms of N. To this end let
us define a new vector & = D|N. This definition does not depend on the sign of
e1. We express (3.35) in terms of &:

£, for e < 0,
(3.37) e=
PE, for €1 > 0,
where
1
= -1 - -15 T
(3.38) P = D.D; or  P=_—CATIACT.

One can prove that

_ detA,
detA.

(339) P]l and P12 = 0.

http://rcin.org.pl
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The last equality is crucial here. It is a consequence of continuity requirements
(3.31). The relation (3.39); implies ;; > 0. Hence we conclude that

&, for ¢, <0,
(340) €] =
P61, for ¢, >0, P >0.

The relations given above show that sign e; = sign £}, which makes it possible to
rewrite (3.37) in the form

{DIN, for £ <0
Ce =

(3.41)
DN, for £ >0

and, finally, to find

AI_IN, for
AN, for

0,
0.

I/\

| V

The condition &£; < 0 can be expressed as N;, < 0, where
(343) Nh = ([311()22 - ,[.3211121)1\[}}] -+ ((k’[]/ﬁ] - /3“(1'12)."\",?2,

and sign NV, = sign IV,
The inverted form of the homogenized relations (3.9) is
1

(3.44) ch = 2hEq

——— (N — vgaN ;fﬁ) for N, <0,

(N = u‘m N »)’ﬂ)‘ for N, >0,

2hE:

and § = 3 — a; do not sum over « and /3!
Recalling relations (4.22) of Ref. [10] and (3.22) one can easily express V), in
terms of N:ﬁ. Its line of discontinuity of its second order derivatives is N, = 0,

cf. Fig.4b. The data for this figure were taken for the laminate considered in
Sec.3.1 of Ref. [11].

REMARK 3.1

The considerations of Section 3 may be viewed as a practical procedure for
finding the complementary or dual effective potential V. Detailed study of duality
is provided by our mathematical paper (TELEGA and LEwINskI [15]). Nevertheless
it is worth noting that V; may be determined as the Fenchel conjugate of V, i.e.

(3.45) Vi(E") = sup{E™PEos — Vi(E) |E€ E}},  E"€El.

The complementary potential V; is strictly convex, of class C'! and
avy

h 2 h 2
W, A EES, N EIE,;

(3.46) et =
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4. Parallel cracks: the space-scaling homogenization approach — model (hg,[)

The aim of this section is to find effective characteristics of the laminate of
Fig. 2 according to the (hg,[) model of Sec.5, Ref. [10]. The predictions of the
loss of effective stiffnesses found in this section involve the //h ratio and apply
for arbitrary values of this ratio.

Similarly as in the in-plane scaling method, the local problem (P2.) (formu-
lated in Sec.5.2 of Ref. [10]) splits up into two: stretching and shearing problems.
The unknown functions depend solely on y; = h€.

4.1. Solution of the stretching local problem
The unknown functions are 'v,‘, u{ and w?. The non-vanishing stress resultants
are given by Egs. (5.20) of Ref. [10]; they assume the form

N = A 4 o+ By ¢
N = AN + Bau’ + Baw) + ndl,
1}(1)1 _ A;l,”l(”i:’ +yu' + Ajw) + l(l)lv

LE = A3’ + y3u' + Baw) + 15,

(4.1)

1 :
Ry = AN + M’ + pw),
1
il
Q(l) = — ;{Iljl”(u — w'). (')’ = d(')/"f'

~
where new unknowns have been introduced

(4.2) v =vl/h, w=ul/h,

(4.3) w = w?/h*+ wy, wy = :—t (;’35'{1 + ,’32532) .

The quantities n§®, [§* are defined by Egs. (4.14) of Ref. [10]. The new coeffi-

cients involved in (4.1)-(4.3) are defined by (A.1).
The equilibrium equations reduce to the form

dNJ! dL}! ' dQ}
= =/ — = —hRy.
dé ' d€ Qo d€ 1fo
On expressing the equilibrium equations (4.4) in terms of the unknowns (v, u, w),
one arrives at the following system of differential equations

(4.4)

v + au” + pu’ =0,
(4.5) av” + (yu” - du) + A\’ = 0,
—Bv' = M’ + (bw" — pw) = 0.



256 T. LEwiNsKl AND J.J. TELEGA

The strong formulation of the local problem amounts here to finding the fields
(v, u, w) defined on the interval [0, 2] such that:
o the equations (4.5) are satisfied for each £ € (0, 0) U (0, 20);
e the periodicity conditions
v(0) = v(20), u(0) = u(20), w(0) = w(2p),

4.6
o Ng'(0) = Ng'(20),  Lg'(0) = L§'(20).  Qp(0) = Q5(20)

are satisfied;
¢ the switching conditions are fulfilled at £ = p

v(o — 0) = v(o + 0), w(p — 0) = w(p + 0),
N&](L’ -0) = N(;I(Q + 0), Q(])(i’ -0) = Q(l)(g + 0);

L=Lo-0)= LY +0)<0,
L«] = 0, [u«] = u(o + 0) — u(e — 0) > 0.

4.7)

(4.8)

A detailed solution to the problem stated above will be given a little later. Suppose
now that this solution is known. Similarly as in Sec. 3, the problem can be reduced
to finding the field :{1 given by (2.3);. In the case considered here s; = 0, 53 = [,
Y| = ljl; = ll5; hence

Il] (]
(4.9) o=l B

The tilde over ¢f; indicates that this quantity is evaluated by the (hg,!) approach.
Thus the only unknown which is really needed for assessing the loss of stiffnesses
is the jump [u].

Let us proceed now to the analysis of the local problem. One can note first
that the unknown w can be eliminated from Egs. (4.5). One finds

(4.10) prv” 4 (upu” + jy3u) = 0,
. (u21v" + pov) + (uasu” + pagu) = & + ez,

where 1,4 are defined in the Appendix and ¢, are arbitrary constants; u” =
d*u/d€?. The fields v and v satisfy the following uncoupled equations

(4.11) Lu =0, Lv = pya(e1€ + ¢3),
where

d4 2
(4.12) L= al:l-:fz + (zzjf—z + as;
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the coefficients a1, a; and a3 are defined in the Appendix. Let +o, +w be the
roots of the characteristic equation

(4.13) ayz + a2’ + a3 = 0.

In general, ¢ and w can assume real or complex values. In the latter case o = &;
the bar denotes the complex conjugate.

Symmetries characterizing the problem imply that the fields (u,v) are anti-
symmetric with respect to the point £ = p. Thus we can write

- o { ur B {v., £ €(0,0),
. Uit Ir £€ (Q’ZQ)’

where

up = Bye ¢ + Bye~ =8 4 Bye ¢ + Bye~ (=)
(4.15) : - ; B
uyg = —B1e @8 _ Bre=-0) _ Bye~we-8) _ p,o—wlt-0),
v = D1+ Dy + Gre7%¢ + Gae™ (078 4 G379 + G679,

(4.16) , ' :
o = Fif + By — Grem72e=8) _ Gae=o¢-0) _ Gie~2e=8) _ G ewle—0)

here B;, i, D, and F, are unknown constants. The first equilibrium equation
(4.5); makes it possible to determine the function w, being equal to wy for & €
(0, 0) and wyy for £ € (0,20)

wy = K| + %(nb’l +Gh)e % — 7—3((1132 + Gp)e™7(@=9)

+:{—;(ﬂ By + (;3)(’:'_“}E = ;—;((1]34 + (1'4)(”_”(9_5),

4.17
( ) wi = L1 + %(ab’l -+ Gl)(.—ﬂ(ZQ“E) . %(”B2 + Gz)e—ﬂ(f—g))

+§(O’B3 + C;'3)€_w(29_€) _ %(CIB:‘ i ('14)6—w(£—g).

Having found the formulae (4.14)-(4.17) one can express the stress resultants
NgL LEY, QF in terms of the functions involved in (4.15)-(4.17) and unknown
constants D, F,, Ky, Ly, B;, G;;1=1,2,3,4; a = 1,2. We shall omit details of
the evaluation of these constants and report only the final results. The relative
opening of the crack &%, defined by Eq. (4.9) depends on sign [}! = sign Ej:

~f7 09 fOl‘ Eh S 0,
(4.18) =9 )
Fii(o)En, for E, >0,

http://rcin.org.pl



258 T. LEwiNskl AND J.J. TELEGA

where E) has been defined by Eq. (3.8); and the function /7,(o) has the form

-1

5
(4.19) Fii(e) = /u 02—2291(0&&) + g2(o,w)F(o;w,0)|
where
(4.20) a0, w) = Y01 + Ya20 2w + %:3(02 + wz)
and
o _ 0 ‘ cthwpe cth (rg)
(4.21) Foyw,0) = p R ( " . .

Parameters 7., f1; and 3, depending on the geometry and material properties
of the laminate, are defined in the Appendix.

Note that the function Fy;() preserves its form after the change: 0 — w, w —
o; moreover, g, do not depend on whether o and w are real- or complex-valued.
In fact, in view of (4.13)

(4.22) ol +w?= —az/ay, o2t = az/ay.
Ifo=p—ig,w=7=p+iq (p,q € R) we change the definition
(4.23) F(oyw,a) = Fo(o;p, q)-

After appropriate manipulations we find

s __ J(pe,q0)
(4.24) Fo(o;p,q) = 0+ )
where the function f is defined by

_ ysh2z + zsin2y
ch2x — cos2y

(4.25) f(z.y)

4.2. Assessing loss of the Z?""" stiffnesses

Having found the relation &f,(€") one can determine the homogenized con-
stitutive relationships via Egs. (2.4)

A?UIIEIILI 3 1‘?“22532» for E; <0,
(4.26) Ny = {

Apoligh 4 goolleh, for £ >0,
where the reduced stiffnesses can be expressed by a single formula

(4.27) A AT = o — BB Fri(e),
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and the coefficients ay, and /), are defined by Eqs. (A.1). The relations (4.26)
are continuous along the line £, = 0.

The constitutive relationship (4.26) can be expressed in terms of orthotropic
constants. For the case of closed cracks (E; < 0) these relations have the form

(3.14), and for the case of open cracks (£ > 0) they assume the form

Nu , E¢ I/F €
N AR ]
E22

22 — Ve VS | me me e
Nj; V=05 | 5B ES
where
F1122 q1122
TE, = AC S = Ac
2= T A7 Jam’
(4.29) -
. 1(1/(\'(70
C -
ES = (1-Vhvy) —5— 2h

The formula for Ef(g) does not coincide with the analogous formula found by
HasHIN [5], although one can note a similarity between the formulae (2.40) and
(2.46) of HasHIN [S] and formulae (4.27) for A = p = 1, (4.19) and (4.24) derived
above.

REMARK 4.1
The constitutive relations (4.26) can be inverted to the form similar to (3.44),

where instead of Ef, v, one should put Ec, i v - The condition N, < 0 or
Ny, > 0 remains unchanged

4.3. Solution of the shearing local problem
The dimensionless fields
(4.30) @=uy/h, B=uvi/h,

will play the role of basic unknowns. The stress resultants that intervene in the
shearing deformation are, cf. ([10], Eq. (5.20))

dv  _du
N = a2 (S G 42k

d€ d¢
2 . dv du
(4.31) L} = aA2? ( wtEt 2_21)
8
2 2120 =
= —A,“U.
QO B U

The equilibrium equations

dN§' 0 dL3!

(4.32) raa = E

= hQj .

http://rcin.org.pl
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expressed in terms of the unknowns (4.30) assume the form

d*s  _d%*u _d* (A d? A) -

(433) Egi+a-cl¢’_2=0’ (l’@*‘ CY@—(S a =0,

Further analysis will be confined to the case when the matrix

A2 42121
(4.34) [ N . ]

A%}}‘ AEIZl

is positive definite, which for real laminates is not a restriction. This means that
(4.35) D<@ < 1,

which is readily satisfied since @ = ¢/h, cf. (A.2). Let us pass to the strong
formulation of the local problem considered. Our goal is to find the fields (v, u)
defined on [0, 2p] and satisfying:

o the equations (4.33) for £ € (0, 0) and & € (0. 20),

e the conditions of periodicity

5(0) = 9(20), i(0) = (20),

(4.36) )
NEY(0) = NZ'(20), LEYD) = L§'(20);

o the switching conditions at £ = p

Bo—0) = 9e+0),  Ni'(e-0)=Ng'(o+0),

4.37
) L3 —-0) = Li'(e +0) = 0.

Prior to solving the local problem formulated above let us recall that the only
field we need for assessing the loss of (71, is the quantity 15, cf. Eq.(2.3). Here

(4.38)

The tilde indicates that we use the space-scaling (hg, /) method. The homogenized
constitutive relation has the form (2.4); with =f, defined by Eq. (4.38).

Bearing in mind that we are now interested only in finding the field 15,
we proceed to analyze the local problem. Equations (4.33) yields the governing
equations of the form

d?
de?”

. - d? -A
(4.39) Li=1 Li=0. L= W _ (/\)2
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The parameter

~ 1/2
(4.40) X:[ . } ,

a(l - a)

is positive, cf. Eq.(4.35). Taking into account (A.2) one can express A by the
formula

(4.41) 5 g [( 3((c/d) + 1) ]1/2‘

dGa/cGr) + 1
Thus the fields (@, ) are spanned over the basis {1,¢,exp(A€), exp(—A€)} on

both subintervals (0, ¢) and (o, 20). For the sake of brevity we omit the derivation
and report only the final result:

T e
By = ;1'12(/\0)5?27

=1
(1 +(—{$Cth;r> .
c

4.4. Assessing the loss of the Kirchhoff modulus

(4.42)

]

[‘112(.1‘)

According to the definition (2.4); combined with (4.42), one finds

(4.43) N2 = 212120, 121201212 o 1 _ F5(00),
(4.44) GSy = A% 2h,

where (5, is the reduced Kirchhoff modulus of the laminate. One can prove that
formulae (4.43) and (4.44) coincide with those of HasHIN [5, Eq. (3.22)], TAN and
NuIsMER [14] and Tsar and DANIEL [16].

4.5. Homogenized potential

Having derived the homogenized constitutive relations (4.26) and (4.43) we
can combine them to form the hyperelastic law, cf. Eq. (5.30) in Ref. [10]

raf aw/h
(4.45) NP = 5

of

The hyperelastic potential is given by

wp, for E, <0,
(4.46) W, =
W, for FE, >0,
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2' E : l /‘-ga ﬂl I 2 il : |i(c12) ("-21) ,"

(4.47) c ToaBB <1212 2 2
2w, Z AZ* e aehs + 24, [(‘12) +(e31) ]

The potential W7 for the case of open cracks can be expressed as follows
1 .y 4
(4.48) Wi = Wil = S A Fne)(En).

By virtue of the above expression one easily verifies that the potential W, is of
class C'!, E; = 0 being its line of non-smoothness of its first order derivatives.
The complementary effective potential W (N,”) can be calculated by using the
Fenchel transformation of W;,, cf. Remarks 3.1 and 4.1. The potential W}, defined
on the space lEg remains smooth, the equation N, = 0 (cf. Eq. (3.43)) determines
the line of the non-smoothness of its first order derivatives, cf. Fig. 4b. We recall
that IEz is the space of symmetric 2x2 matrices, here identified with its dual.

5. Final remarks

Accuracy of the formulae for effective moduli of the cracked laminates found
in this work is examined in the second part of the paper [11]. There we refer
to other known analytical models concerning aligned, regularly distributed cracks
as well as to available experimental data. We show that for the case of aligned
cracks the predictions of the model (/¢,!) lie closely to results of MCCARTNEY
[12, 13]. In their principles, however, these models are completely different, see
Introductions to Refs. [9, 10].

Possible generalization of the formulae found in this paper to the case of other
damage modes and, in general, to the case of angle-ply laminates would be of
vital interest. For instance one can choose a different way: use the homogeniza-
tion scheme of Caillerie — Kohn-Vogelius (cf. Ref. [7]) and then apply the finite
element method to solve the local problems. The recent paper of ADOLFSSON
and GUDMUNDSON [1] goes in this direction, yet in the manner that circumvents
the homogenization formalism of the passage from the original problem to the
effective macroscopic problem and the underlying local analysis.

Appendix

The following non-dimensional parameters depending on the quantities de-
fined in Ref. [10] are used in the present paper:

— AN 1111 AN 1111
oy = AVHEIAIL g, o g4l
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(0(,/3.,"".,6) = ( 111” /l 1 l”“,th”)/Al”l.

vu vwr 4
Al A, p) = (h2ALL piA,)/ANM, =6+ ),
l uw
(B1. B2, B3, Bas 13) = (4,22, h2AT,, W2 AT, 13,132 ALy AM,
(a ﬁ 5) - ( 12121 AZlZ] h]122)/A2121 )
Since D%t, = -~ D}, we have A212 = 41212, Hence one can prove that

A2 = 26y

and

a=73=

b= e

fesftesd]”

X = h(é/ed)'/.

The parameters appearing in Eqs. (4.10), (4.13), (4.19) and (4.20) are defined by

i = 1—ap/A, pi2 = a— fy/A, iz = 643/,
21 = a3, i = % - p, H23 = Y3,
paq = A — bz — pa, Hag = m3/p;

@y = figfi21 — M11H23, az = jy3p22,
(A3) ay = a2 + pi3jiar — f2afian s
Su = a—a/pn,
= p _ H12
Y11 = paa(B — paa), Y12 = — f11,
Hi11
6 2
Y22 = E(fll) 5 713 = faafin
é 6
Y21 = 1_3(/3 — j14g)?, Y23 = Efn(ﬂ — Mag).

The pameters a,, 5, defined by (A.1);2 can be expressed in terms of other

parameters as follows

an = 1-52/u, ap = f1— BB/n, an =1 - (B2)*/ 1,

(A4)  pn - B/ ke, B2 = PBa— BB3/ 1,
B = B4 — P2\ /1, B = 72— Bofi3/pe.

Note that a1, = ap; but 512 # 1.

http://rcin.org.pl
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Stiffness loss of laminates with aligned intralaminar cracks
Part II. Comparisons

T. LEWINSKI and J.J. TELEGA (WARSZAWA)

THE EFFECTIVE MODELS (hq, ly) and (hg, 1) [7] describing reduction of the in-plane effective mod-
uli of the [0, /902]s cross-ply composites cracked in the internal layer and subjected to in-plane
boundary forces are applied to the description of the degradation of the effective Young, Kirch-
hoff and Poisson moduli of the [0°/90°]. and [0°/905]. glass/epoxy and [0°/90;]s graphite/epoxy
laminates. It is shown that the graphs of Ey(cq) (ca represents crack density) lie slightly above the
Hashin’s curves, while G3(cq) predictions coincide with the curves of Hashin. Evaluation of the
off-diagonal terms, i.e. v13(cq), v21(cq) are incorporated in the algorithm. In all comparisons with
the experimental results of Groves, Ogin, Highsmith and Reifsnider the predictions of Ey(cg4) ac-
cording to the model (hy, () provide lower bounds, slightly better than the bounds of Hashin. Some
predictions of the model (hg, !) are proved to be similar to McCartney’s “gencralized-plane-strain”
results.

1. Introduction

THE FIRST DAMAGE mode observed in the in-plane loaded, three-layer, balanced
cross-ply laminates is usually transverse cracking along the fibres of the outer or
inner layers. When stretched along the fibres of the outer layers or sheared in its
plane, samples of the balanced [0, /90 ], laminates undergo transverse cracking
in the 90° layer, with values of crack density ¢; determined by magnitude of
the in-plane loads applied. Such cracks lead to degradation of effective elastic
characteristics of the laminate. A unified model of such degradation has recently
been proposed in Refs. [1.9, 1.10] (Roman numeral I refers to bibliography of
the first part of this paper, [7]) and in Ref. [7], where the case of aligned cracks
is dealt with in detail. The aim of this paper is twofold. First we show that the
(ho, lg) model (Ref. [I1.10], Sec. 4) concerns the case of infinitely dense distribution
of cracks. Consequently, this model provides the asymptotes for the curves of
decay of the effective moduli with respect to the crack density. Then we check
the accuracy of the (hg,!) model proposed in Ref. [I.10]. To assess its accuracy
with respect to the experimental results published in the available literature, we
analyze the decay of:

o the effective Young modulus £ of laminates of the [05, /907 ], type. Accuracy
of the (hg, 1) predictions is examined for the laminates tested by GRoVES [1.4] (cf.
LEE et al. [6]), HiGHSMITH and REIFSNIDER [1.6] and by OGIN et al. [9];

o the effective moduli of Kirchhoff (G',), Young (£3) and Poisson (v} ) for
the [0°/903], laminate tested by HiGHsMITH and REIFSNIDER [L.6].

The results concerning £ show that the (/, /) method leads to lower estimates
of the experimental data, providing the curves lying closer to the test data than the
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curves produced by the method of HasHIN [I.5] and almost coinciding with recent
McCARrTNEY’s [1.12, 1.13] GPS (generalized plane strain model) — predictions.

The formula for ({, coincides with that found by HasHin [I.5] and rederived
later by TAN and NuisMeR [I.14] and Tsar and DANIEL [1.16]. According to the
experimental results published in the last paper, concerning the graphite/epoxy
[0°/905], and [0°/903], laminates, the accuracy of this formula is satisfactory.
On the other hand, the experiments concerning graphite/epoxy AS/3502 (05/905)
laminates performed by HAN and HauN [4] do not confirm its utility, cf. their
paper and the discussion by Motoar and Fukupa [8].

Our analysis shows that predictions of the (hg,ls) model proposed in Ref.
[I.10] are comparable with the ply-discount method.

The (ho,!) method predicts a small decay of the £5 modulus of the [0°/905],
glass/epoxy laminates, very similar to that predicted by the GPS model of
Mc CartnEY [I.13]. Other methods known to the present authors do not describe
the decay of £5 or keep an open mind on the subject.

The (hg,!) method provides a unified algorithm for predicting decay of all
components of the stiffness matrix. In particular, the method makes it possible to
evaluate the decay of Poisson ratios. In the present paper the curves of the decay
of these ratios for the glass/epoxy [0°/905]; laminate are given and compared with
GPS-predictions of MCCARTNEY [1.13]. A very close juxtaposition of these predic-
tions are noted. For the laminate analyzed no relevant experimental results were
available to us. The only experimental results available to the present authors,
concerning reduction of Poisson ratios of other types of laminates, are given in
SmiTH and Woob [10]. A comparison of these results with (hg,!) predictions will
be published separately. The present paper concerns only the case of cracking
in the internal layer. A generalization to the case of the simultaneous cracking
in external and internal layers requires a reformulation of the original model of
Sec. 2 proposed by LEwiNski and TELEGA [1.9], which could probably be done by
adopting the assumptions put forward by HasHIN [5] and Tsar and DANIEL [1.16].

The system of notations is compatible with that employed in Part T of the
present paper, namely in Ref. [7]. For the sake of brevity, Roman numeral 1
refers also to equations or sections of Part I.

2. Parallel cracks. Comparison of (hg, /) and (h,[) predictions

The subject of consideration will be the same as in Ref. [7], Secs.3, 4. We
examine a three-layer laminate of thickness 2i weakened by regularly distributed
transverse cracks in the internal layer, and subject to in-plane loading; the crack
spacing equals [, cf. Fig.1.2. These cracks result in the degradation of effective
moduli. The aim of this section is to prove that decaying curves of moduli degra-
dation predicted by the (hg,{) model presented in Ref. [7], Sec. 4, tend to crack
density-independent values of the effective moduli, predicted by the (/¢. [y) model
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proposed in Sec.3 of [7], if the number of cracks tends to infinity.
2.1. Stiffnesses A% versus 4278

Let us compare formulae (1.3.9) with (1.4.26) and (1.3.13) with (1.4.27). Note
that the line of non-smoothness of the constitutive relations: Ej, = 0 is com-
mon for both approaches which makes the results of both approaches similar.
However, Eq.(1.3.10) is independent of p = [/2h. Let us examine the Af’“ﬁ"(g)
curves.

If o tends to infinity, Fy;(e) tends to zero. Hence

(21) 011[2 Aoadi = 400,&3
Thus if the crack spacing is much greater than h, the loss of stiffness will not
be observed. This effect is also observed in experiments, which will be discussed
in Sec.3. According to the (hg,lp) model, the loss of stiflness is p-independent
provided that p is small, cf. comments in Ref. [I.10].

Consider the case when the number of cracks increases to infinity; then o — 0.
One can prove that

1
lim Fo(oyw,0) = —5—,
(2.2) o "““]
Ll)l_l"n]][)(l)u./ (T) (P—zm

Since o?w? = (p* + ¢%)?, we see that both limits coincide, irrespective of whether
the roots of polynomial (1.4.13) are real or complex. Hence we have

(2.3) lim &7/ £) = Fu1(0),

for the case £, > 0, where F11(0) = lin}} I11(0) is given by
5

(2.4) 1100) = a3 ful(Brin + 0@ — Bums + v23)a2 + Brivz + 722)as] ™!
On the other hand, according to the (hg,ly) approach, for the case £; > 0 one
finds

(2.5) e By = P

F{, being defined by Eq. (1.3.8),. By using the relations between constants sum-
marized in the Appendix of [7], after lengthy algebraic calculations one can prove
that F1;(0) = F{,, which confirms the thesis of Sec.5.6 of Ref. [I.10]: the (hq. lo)
model provides asymptotes for the curves predicted by the (hg./) model, namely

(2.6) lim 98 = gcafs,
e—0

http://rcin.org.pl
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2.2. Stiffness A2 versus A2

One can prove that
s g c . R
2.7) lim Fo(re) =+, lim Fp(re) =0,

and hence, cf. Eq.(1.3.21)

(2.8) el =eh, limAP2= 42
=¥ &=
(2.9) Jlim A2 = A2,

Thus, if the crack density o~! tends to zero, the stiffness A212 tends to the
stiffness A!212 of the uncracked laminate. If the crack density tends to infinity,
the (ho,!) predlcuons tend to (hg, lg) predictions (I1.3.21) - (1.3.23). In particular,
a constant line G5, = A!212/2} is an asymptote for the 5, curve describing the
decays of the effectlve Kirchhoff modulus.

We observe that (2.6) and (2.9) imply the relation between hyperelastic po-
tentials

(2.10) WV, = limOI'Vh(g).
e
The line of non-smoothness of both potentials £ = 0 remains p-independent.

3. Degradation of effective stiffnesses of laminates [0} /907 ],. Comparison with
experimental results and with other analytical predictions

In this section we shall verify the (hg,ly) and (hg.!) models predictions for:

i) [05,/902, ]5 glass/epoxy laminates tested by HiGHsmiTH and REIFSNIDER [1.6]
and by OGIN et al. [9].

ii) [0°/905], graphite/epoxy laminates tested by Groves [I.4] (this paper was
not available for the present authors; Groves’ results are reported here after LEE
et al. [6]).

The results of Sec. I.4 will be compared with theoretical predictions of ABouDI
[1], HAsHin [L.5] and LEE er al. [6].

3.1. [0°/905]. glass/epoxy laminate

We start with the laminate first examined by HiGHSmITH and REIFSNIDER [1.6]
and then often referred to in the relevant literature. The complete characteristics
of this laminate have been recorded by HasHiN ([1.5], Sec.4). We repeat them to
make our paper self-contained. The external plies are 0°-plies, their thickness d
being equal to 0.203 mm; the internal layer composed of 90°-plies has thickness
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2¢, ¢ = 3d, cf. Fig. 1.2. The compliances ng, (n = m, f) cf. Eq.(2.3) of Ref.[1.9]
are defined by

1 1
Dy = DBn=—=, Dfu=Dhy=Dhy=D%s=—,
1111 2222 EA 1111 2222 3333 3333 ET
v
D{ip = Diin = D{133 = D3y = —ﬁv
V.
3.1 o it Pl ol
(3.1 1133 2233 Er
Dlyis = Dibiy = Dy =
1212 4GA ’
1 1
Dhis= =, DBi=Dhy=-—r,
1313 4G 4 1313 2323 4Gt

where, according to Table 1 of HasHiN [1.5],

F4 = 41.7GPa, Er = 13.0GPa, (G4 = 3.4GPa,

(3.2) _

Gt = 4.58 GPa, v, = 0.30, v, = 0.42.
The index A labels the fibre direction, while 7" indicates the direction transverse
to the fibres.

Now we can determine the generalized compliances DV, DY, DVE, D9, DFE,
DAY, DR by Egs. (2.17) of Ref. [1.9]. Then we invert the constitutive matrices of
Eqgs. (2.19) and (2.20) of Ref. [1.9] and find the stiffness matrices of the primal
constitutive relationships (2.24) and (2.25) of [1.9]. We can calculate the stiff-
nesses (4.9) of Ref. [I1.10] and then the effective moduli (I.3.16) of the uncracked
laminate. We obtain

Iy = 20.30 GPa, Ey = 34.75 GPa, (/12 = 3.40 GPa,

(3.3)
V12 = 0193. Vo1 = 0:113.

The first three results coincide with the data reported by HasHin [1.5], while re-
sults concerning I, and v, 3 coincide with those obtained by McCarTnEY ([1.12],
Appendix A).

According to the in-plane scaling ((hg,ly) approach), the reduced moduli are
crack density independent. Using formulae (I.3.13) and (I1.3.16) for the case of
v ES, and (1.3.23),, (1.3.22), we find

“0rd

E¢ = 10.70GPa,  F5 = 3453GPa, (%, = 0.85GPa,
viy = 0.0943, v5, = 0.0292.

(3.4)

According to the experimental data of HiGHSMITH and REIFSNIDER [1.6], the min-
imum value of £ achieved for 0.75 cracks/mm equals 11.0 GPa while F, =
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21.0 GPa. However, it is not sure whether the values measured in the paper cited
above are viewed as the effective Young moduli or have been defined by means
of the longitudinal stiffnesses

Ey =AY 2n, B = A2V 2

It is worth noting that the results E; = 20.76 GPa, T; = 10.73 GPa lie closer
to the values found experimentally than the quantities F;, E{ which are Young
moduli by the definition.

The experiments show that the reduction of the effective characteristics de-
pends upon the crack density. The space-scaling (/.!) approach accounts for
such a dependence. Having found the matrices involved in Egs. (3.16) of [1.10]
one can calculate the parameters defined by Eqs. (I.A.1)-(I.A.4) and then the
coefficients of Eq. (I.4.13). The roots of this characteristic equation turn out to be
complex (p, £¢), where p = 1.98025 and ¢ = 0.8934, hence the function Fj;(p) is
defined by means of F' = [y, cf. Egs. (1.4.23) and (1.4.24). The decay of stiffnesses
is defined by (I1.4.27) and (1.4.43),. The effective Young, Poisson and Kirchhoff
moduli are given by Eqgs. (1.4.29) and (1.4.44).

As it has been emphasized by LEE ef al. [6], the decay of the stiffnesses should
rather be displayed versus the crack density defined by 2¢/! (crack depth/crack
spacing). However, to compare our results with the theoretical predictions of
HasHiN [I.5] and with experimental data of HiGusmiTH and REIFSNIDER [1.6], we
quote them in some of our figures also as functions of the crack density ¢, defined
as 1 mm/l.

[u)1 [hEq
L. 7.556
.\_\‘
\'\.
150 "‘--____
g
crack density per mm, 1mm/l

0 05 10 100.0

Fig. 1. [0°/903]. glass/epoxy laminate tested by Hicusmrrn and Rewsniper [1.6]. The crack
opening [uf/h.] = [uj/h] (normalized with respect to E}) versus crack density.

The crack opening [u5/h.] = [ul/h] + 0(c) decays to zero if ¢; tends to
infinity, cf. Fig. 1. The longitudinal crack deformation £}, behaves quite differ-
ently. The curve &7} (cy) starts from zero and tends asymptotically to the [ value
predicted by the in-plane scaling method (hg, ly), cf. Fig.2. The shear crack de-
formation &7, behaves similarly, cf. Fig.3. For sufficiently large values of ¢; the
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crack deformations &7}, £{; become practically independent of the crack density.
This insensibility to large values of ¢; corresponds to the saturation of cracks
observed in experiments, cf. GARRETT and BAILEY [I.2].

in-plane scaling: E;/Eh 2.326

-

| 20 -/_/'
,/'/ Q’;/ En
P d

crack density per mm, 1 mm/l
0.5 1.0 10.0
1 l—_l.b.—_._.,

L
1

Fic. 2. The same laminate. Longitudinal crack deformation versus crack density. The in-plane
scaling prediction: ef} & e}} + 0.299%, is an asymptote for the space scale prediction £%;.

10 — Ml i B -
in-plane scaling: €2 /Ev ’ _«‘

L=
L~
-

Qs o \Eeler

Fi crack density per mm, 1mm/l

1 i}
1=

0 05 10 20

FiG. 3. The same laminate. Shear crack deformation versus crack density. The in-plane scaling
prediction 5, = e is an asymptote for the space scaling prediction €.

The decay of the effective Young modulus £{ observed in experiments by
HigusmITH and REIFSNIDER [1.6] and predicted by the method of HasHIN [L5],
the GPS method of McCARrTNEY [1.12], the method of LEE et al. [6], cf. ALLEN
et al. [2], and by the space-scaling based (hg,/) method is presented in Fig.4.
The Hashin’s curve has not been repeated after Fig.3 in HasHIN [L.5] but has
been independently plotted by the present authors. The experimental data are
placed according to Fig. 14 in HigusmiTH and REIFSNIDER [1.6] and Fig. 1a in LEE
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et al. [6]. The Hashin’s curve lies slightly below the curves predicted by the GPS
model and by the (hg,!) space-scaling method, the juxtaposition of the last two
curves being too close to be noticeable in Fig.4. The curves mentioned above
provide lower bounds for the experimental results. Small differences in these
results can be read off from Table 1a. On the other hand, the predictions of LEg
et al. [6] are upper bounds for the experimental data. The in-plane scaling method
((ho,lp) approach) determines a horizontal asymptote for the Ey/FE curve; the
conventional ply-discount assessment lies a little below and is an asymptote for
the Hashin’s curve.

Table 1. Decay of E/E,, viz as function of crack density 2c/l for the (0°/903). glass/epoxy
laminate tested by HIGHSMITH and REIFSNIDER (1982). Comparison of predictions by (hg,[)
model proposed with results due to HasmIN (1985) (case FE7/FE;) and model (GPS) of
McCARTNEY (1992, 1993).

(a) (©)
E;/E V3
2¢/1 | Hashin | McCartney | Lewinski and 2¢/l | McCartney | Lewinski and Telega
(1985) | (1992) GPS | Telega (ho. 1) (1992) GPS (ho, )
0.1 | 0.9069 0.90918 0.90914 0.1 0.09684 0.09688
0.5 | 0.6609 0.66638 0.66628 0.5 0.05375 0.05390
1.0 | 0.54782 0.55347 0.55341 1.0 0.03371 0.03393
100. | 0.52127 0.52683 0.52681 100. 0.0290 0.02922
(b) (d)
v E3/ E;
2c/l | McCartney | Lewinski and Telega 2c¢/l | McCartney | Lewinski and Telega
(1992) GPS (ho, 1) (1992) GPS (ho, 1)
0.1 0.18215 0.18223 0.1 0.99929 0.99930
0.5 0.13753 0.1380 0.5 0.99644 0.99650
1.0 0.10362 0.10432 1.0 0.99428 0.99437
100. 0.09353 0.09432 100. 0.99364 0.99374

The decaying character of the graphs v{,, 5, is reported in Fig. 5. The in-plane
scaling predictions are constants lines — the asymptotes of more realistic space-
scaling results. The GPS and (hg,!) predictions turn out to be very similar, see
Tables 1b, 1c.

A very slight decay of F5 is predicted by GPS as well as by the (/. /) method,
cf. Fig. 6. Both models mentioned lead to very similar results, see Table 1d. The
decay of E5 as well as of v]; cannot be described within the framework of
HasHins [1.5] approach, hence the lack of comparisons.

http://rcin.org.pl
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FiG. 6. The same laminate. Decay of the effective Young modulus E,.

The method of HasHiN [I.5] and the (h(./) method lead to the same for-
mula describing the decay of the Kirchhoff modulus, cf. Fig. 7. Recently Tsar and
DANIEL [1.16] have confirmed that this formula predicts values of (;{, comparing
favourably with experimental data concerning graphite/epoxy laminates, cf. Fig.5

RELATIVE REDUCTION OF THE EFFECTIVE SHEAR MODULUS

%
N
N
\'\ ®e _
L05 ‘~._ G5 /G, = Hashin's curve [1985)
~ —————
k LT
0249 i S
\ G5, /Gy, = Ply discount '
crack density per mm, 1mm/l
: I ;
0 10 20 000 105

FiG. 7. The same laminate. Decay of the effective Kirchhoff modulus, The Hasi’s [1.5] and
(hq, I) predictions coincide. Predictions based on the in-plane scaling coincide with
ply-discount result.
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in the cited paper. On the other hand, the experimental results due to HAN and
HanN [4] concerning the GFRP [0, 905]; laminates lie far away from the Hashin’s
curve. Experimental data concerning G, for the laminate considered here were
not available to the present authors.

3.2. [0°/90°]. glass/epoxy laminate
Consider the [0°/90°], glass/epoxy laminate tested by OGIN et al. [9] for which
(3.5) c=d=0.125mm, E4 = 40 GPa, Er = 11 GPa,
G4 = 5GPa, Gt = 3.87GPa, v, =03, v, = 0.42.

These data, except for the last two which are assumed here, are taken from
Asounrt [1].

ul”
S~
e
- Aboudi (1987)
gl 00 s space scaling (he, L), (GPS)
ga ————— Hashin (1985)
a in-plane scaling (hy, l,)
i —+—-= ply discount
> o Ogin et al {1985)
2L10
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R
= @
Bl
&J \\ “~* -
w N . 2
I ° L
o |09 AN L &
w - N R
Q §_‘ o] -
. o

& e
= Ny
S N
8 '\.‘ o
o “-.\.
o Nue
> B - Ty
Zros omw  Cveanogomn |
< 07904 Fo7904
o crack density: 2c/l

075 | 05 10

of the effective Young modulus £.

The Hashin’s curve as well as the almost coinciding curves provided by the
GPS model of McCARTNEY [I.12] and by the space-scaling (/¢,!) method yield
lower bounds for the experimental results of OGIN et al. [9], cf. Fig.8. The ac-
curacy, however, is not so satisfactory as for the laminate considered previously.
Better results are provided by the displacement-based method of Asoupi [1]. His
method, however, similarly to that of Hashin is based on comparing energies and
hence is uncapable of assessing off-diagonal terms of the effective stiffness matrix.
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The precise values of £/, and v§; predicted by the GPS model of McCAR-
TNEY [1.12, 13] and by the (hg, /) model proposed in the present paper are set up
in Tables 2a-2d. It is seen that both models produce almost identical results. In
particular, these differences could not be displayed in Fig. 8 concerning E{/E,.

Table 2. Decay of ES/FE., v as function of crack density 2¢/! for the (0°/90°), glass/epoxy
laminate tested by OGIN ef al. (1985). Comparison of predictions by (h,[) model proposed and
GPS approach of McCARTNEY (1992, 1993).

() ©
E£/E Vi
2¢/l | McCartney | Lewinski and Telega 2¢/l | McCartney | Lewinski and Telega
(1992) GPS (ho, 1) (1992) GPS (ho, 1)
0.1 0.96195 0.96194 0.1 0.11773 0.11789
0.5 0.83782 0.83780 0.5 0.07964 0.08030
1.0 0.79856 0.79846 1.0 0.06759 0.06839
100. 0.79333 0.79322 100. 0.06599 0.06680
(b) (d)
vi E5/E»
2¢/l | McCartney | Lewinski and Telega 2¢/l | McCartney | Lewinski and Telega
(1992) GPS (ho, 1) (1992) GPS (ho, 1)
0.1 0.12224 0.12241 0.1 0.99876 0.99881
0.5 0.09448 0.09529 0.5 0.99394 0.99421
1.0 0.08397 0.08501 1.0 0.99212 0.99247
100. 0.08250 0.08356 100. 0.99186 0.99223

3.3. [0°/903]. graphite/epoxy laminate

Let us consider the loss of Young modulus of the [0° 905]; graphite/epoxy
laminate with the following characteristics

d = 0.127 mm, ¢ = 2d, F4 = 1448 GPa, Er = 9.6GPa,

(3.6)
Gi=48GPa, Gp=329GPa, v, =031, v, =0.46.

The experimental results of GROVES [1.4] lie between the curve of LEE et al. [6]
and the curve of HasHIN [I.5]; the curves (almost coinciding) provided by the
GPS model and the space-scaling (hg. () approach lie slightly over the latter one,
but all three curves are so close to each other that practically they overlap, cf.
Fig.9 and Table 3a. As in other cases, the in-plane scaling method leads to a
line E{ = 0.8842 being an asymptote for the space — scaling curve. The Hashin’s
curve tends to the value 0.8840.

http://rcin.org.pl
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Table 3. Decay of [, /E., v, ; as function of crack density 2¢/l for the (0°/903). glass/epoxy
laminate tested by GROVES ef al. (1986). Comparison of predictions by (hg, [) model proposed and
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(a) (©)
E{/E, v
2¢/l | McCartney | Lewinski and Telega 2¢/l | McCartney | Lewinski and Telega
(1992) GPS (ho, 1) (1992) GPS (ho, 1)
0.1 0.98269 0.98270 0.1 |. 0.02688 0.02689
0.5 0.91971 0.91973 0.5 0.01609 0.01614
1.0 0.88964 0.88964 1.0 0.01094 0.01101
100. 0.88418 0.88418 100. 0.01001 0.01001
(b) (d)
Ui Ey [ Ex
2¢/l | McCartney | Lewinski and Telega 2¢/l | McCartney | Lewinski and Telega
(1992) GPS (ho, 1) (1992) GPS (ha, 1)
0.1 0.04986 0.04988 0.1 0.99936 0.99936
0.5 0.03182 0.03192 0.5 0.99683 0.99685
1.0 0.02234 0.02248 1.0 0.99550 0.99553
100. 0.02055 0.02069 100. 0.99525 0.99528
[277]
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The precise values of £/ E, and v, ; predicted by the GPS model of McCaRr-
TNEY [1.12, 1.13] and by the (hg, /) one are given in Tables 3a-3d. The results are
almost identical.

4. Final remarks

The analysis of the response of the cracked [02,,90¢] laminates did not en-
compass a stress analysis. A detailed stress analysis will be published separately.
We put only some relevant remarks concerning relations between (hg, ) stress
predictions and those found in HASHIN [L5].

Within the framework of the (g, () approach, the stresses in periodicity cells
are expressed in terms of macrodeformations ¢” 5 cf. Egs. (2.7)-(2.9) of [1.9] and
(5.19)—(5.21) of [I.10]. On the other hand, in HAsHIN [I.5] the stresses are deter-
mined by the density of the boundary shearing 7 and tensile ¢ loading. To bridge
a gap between both approaches let us introduce the following interpretations of
7 and o in terms of macro-stress resultants of the (hg,!) model:

4.1 r=1,=N2/2h, o=a,=N}/2h.

Let us focus our attention on the stresses arising at shear. According to (1.4.43)
one finds

(4.2) m= 2G4 [1 - F(e)] s

Note that within the interpretation suggested by (4.1), 7, becomes crack-density
dependent: 7, = 7,(0). A direct relation links 7, and 5’1‘2, owing to which one can
compare formulae for o)? = ¢'%(z,2), |2| < ¢, due to HasHiN [.5] with those
resulting from the (hg,/) model.

Using Egs. (2.7) of [1.9] and (1.4.31) one finds

(4.3) a3t/ = S{3(Ae. AE),

where 3 = 2(}',15?2 stands for the shear stress in the uncracked laminate and

” z(chz —chy

(4.4) Sh(z,y) = —c( ) .
_ISh r+ xcha
(

Note that 7y does not explicitly depend upon the crack density.
HasHIN [I.5] obtained the following relation

ch :\E

4.5 o2/ =1 = .
o) ch Ao
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Taking into account (1.4.42), and (4.1) one can readily prove that formulae (4.3)
and (4.5) coincide. Similarly, one can show that other components of the state
of stress appearing when the laminate is subjected to shearing are predicted in
the same manner by both models, inasmuch as a “bridging” relation (4.1) is
acceptable.

Comparison of the formulae for stresses related to tension is less clear, since
in general N7? # 0 while in HasHiN [1.5] only the case N?? = 0 (according to our
interpretation) is considered. On imposing N2 = 0 one can derive a formula for
oll = gll(z, 2), |2| < &

(4.6) o lon = f(0,6),

where o), = 0;,(0), cf. (4.1);. HasHIN [1.5] normalized the stress ol with respect
to the averaged stress in the middle layer. This formula does not coincide with
(4.6) even if the latter is appropriately rearranged. For the laminate considered
in Sec. 3.1, formula (4.6) produces results somewhat greater than its counterpart
found by HasHin [1.5], but the differences are measured in promilles.

The formulae found in the present paper for the decay of the effective stiff-
nesses and possible to find (but not displayed) formulae for stresses due to tension
are more complicated than those found by HasHiN [I.5] and McCarTNEY [1.12,
model GPS]. This is a consequence of treating the stress resultants N7 as in-
dependent unknown variables and completion of the model with displacements
v, relevant to them. Note, however, that an independent treatment of N7 is
in general indispensable when the shapes of the laminate is arbitrary and N°/
cannot be determined directly by the boundary loading.

Thus the present paper does not present any set of formulae for the analy-
sis of cracked laminates, but forms a consistent and well-posed laminate model
(ho,!) from which such formulae can be inferred. This model makes it possible
to approximate boundary value problems for a relatively large class. Tt seems that
the model constitutes a reasonable starting point to the construction of a damage
model that would take into account:

i) damage induced anisotropy, and ii) unilateral effect of damage.

According to CHABOCHE [3], none of hitherto existing theories of damage of
laminates satisfies both the conditions simultaneously.
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On finite deformation dynamic analysis of saturated soils

M.T. MANZARI (WASHINGTON)

A GENERAL FORMULATION is proposed to treat the dynamic response of saturated soils in finite
deformation regime. Considering the soil as a saturated porous medium, the formulation for finite
deformation analysis was established by extending Biot’s classical theory to incorporate finite de-
formation effects. Particular attention was given to the flow of water through the soil while the soil
skeleton undergoes a finite deformation. The derived formulation constitutes the theorctical basis
for analysis of the liquefaction induced flow failure in soil embankments. Due to the integral form
of the governing equations, they are specially suitable for application of numerical methods such

as the finite element method.

Notations
(‘B).(**2'B)  body configurations at time ¢ and t + At, respectively,
8, Kronecker delta,
0,%,"**'9  mass densities of soil per unit volume in the configurations
at time 0, ¢, t + At, respectively,
0s, 07 mass density of solid particles and pore water, respectively,
“*at,,  Cartesian components of the Cauchy total stress tensor
measured at time t + At,
o.;, 05,  total stress and effective stress tensors, respectively,
v v
o,0 corotational rates of the total stress and effective stress tensors,
respectively,
2 material spin tensor,
«Ai;ke finite deformation tensor of tangent stiffness moduli,
“+a,  i-th component of body force per unit mass measured at time ¢ + At,
t+4'%,  body force in the configuration at time ¢ + At (**2'@) and measured

Odv, I+Ald‘/' !d‘/

in the configuration at time ¢ (‘B),

volume of an infinitesimal element in the configuration at
time 0, t, t + At,

t+4te,,  Cartesian components of infinitesimal strain tensor measured at
time ¢ + At,
t+a,,  the Green-Lagrange strain tensor,

!+;Alf8 I+A!f5

CHlE | t

components of the applied body forces and surface traction,
respectively, measured at time ¢ + Af,

Al FS surface traction in the configuration at time ¢ + At (**2'8) and
measured in the configuration at time ¢ (‘B),
}:-, ,  permeability tensor,
Ks, Ky  bulk moduli for solid particles and pore fluid, respectively,
n  porosity,
p  pore water pressure,

http://rcin.org.pl



282 M.T. MANZARI

thatg,, rASn,  different portions of body surface, respectively related to prescribed
thatg, t+alg.  displacement, traction, pore pressure, and flow, measured at time ¢ + At,
t+4ls,,  the second Piola-Kirchhoff stress tensor,
u; components of incremental displacement at time ¢,
t*3%,,'u,  components of displacements at time ¢ + At, and ¢, respectively,

U components of the absolute velocity of pore water in the direction of r,,
w, relative surface velocity of pore water with respect to the soil skeleton,

(‘z1, ‘2, 'z3)  coordinates of a generic particle of the body in Cartesian coordinate
system at time t.

1. Introduction

ANALYSIS OF soOiL liquefaction and its consequences, such as permanent deforma-
tions in constructed facilities or earthen structures, requires a rational analytical
procedure. Such a procedure should be based on a proper understanding of
the physics and mechanics of soil as a particulate medium composed of three
phases, i.e. solid particles, water, and air. Due to discontinuous nature of granu-
lar soils, it appears that the best approach to study the mechanics of soil is a
micro-mechanical approach. In principle, if the behaviour of saturated granular
soils on the microscopic scale was known, it would be possible to calculate the
behaviour of granular soils on the macroscopic scale by applying appropriate sta-
tistical methods. In practice, however, such calculations are extremely difficult
and, at the present time, limited to some simple cases. On the other hand, our
knowledge of mechanical behaviour of soils is mainly based on observations and
experimental studies of the samples of soils whose dimensions are large com-
pared to those of an individual particle. In particular, most of the experimental
results available in the field of soil mechanics are expressed in terms of the overall
macroscopic quantities, such as confining pressure, axial stress, axial strain, etc.,
which indicate a wide acceptance of continuum approach in the study of soil be-
haviour. In a continuum approach, the particulate nature of soil is ignored and it
is assumed that material is uniformly distributed throughout the regions of space.
For dry soils or in the case of drainage processes for saturated soils, the regular
equations of continuum mechanics may be used to formulate the problem. But in
the case of saturated soils which are subjected to disturbances of transient nature,
the effect of pore water pressure should be considered by a proper regularization
of soil as a two-phase medium [4, 5] or a mixture of two different materials [23,
24, 43].

Both of the aforementioned approaches, i.e. the micro-mechanical and con-
tinuum approach, have received much attention during the past three decades.
Micro-mechanical approaches have been continuously used to study some of
the important features of granular soils, such as dilatancy, shear strength, and
anisotropy. However, their application to boundary value problems has been
started only recently by introduction of the distinct element method [10, 11, 12].
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The distinct element method considers an assembly of large number of particles
representing the soil mass and solves the dynamic equilibrium equations for each
particle, subject to body forces and boundary interaction forces. The method
can potentially handle nonlinearities which may arise from large displacements,
rotation, slip, separation and material behaviour, but its performance is highly de-
pendent upon the constitutive laws selected to represent the inter-particle forces.
In addition to application of the distinct element method to the dry soils [2, 11],
a few attempts have been reported [42] to utilize the method in a simulation of
soil liquefaction. However, these developments are in the initial stages and the
micro-mechanical approach is far from application to the real boundary value
problems.

In contrast to micro-mechanical approach, the continuum approach has been
successfully used in the analysis of geotechnical problems during the past few
decades. Following the introduction of a coupled stress-flow formulation for dy-
namics of porous media by Bior [4, 5], many investigators employed the new
formulation to solve some practically significant boundary value problems using
the finite element method [38, 48, 18, 19, 21, 40, 36, 37, 49, 50]. A historical
review of such applications for liquefaction analysis is given in [33]. Recently
ADVANI, et al. [1] have used a generalized form of the Biot’s formulation for
hygrothermo-mechanical evaluation of porous media under finite deformation
regime. CHOPRA and DARGUSH [9] have also utilized the Biot’s formulation for
large deformation analysis of time-dependent problems.

In this paper, a generalized form of Biot’s formulation for dynamics of porous
media [5, 50] is derived by taking into account the finite deformation effects. The
developed formulation serves as the basis for the numerical procedure proposed
in a companion paper on the analysis of soil liquefaction and deformations in a
finite deformation regime.

2. Statement of the problem

For a saturated earthen structure which occupies an initial volume of V
with the boundary surface S at time 0, we seek to establish the governing field
equations necessary to evaluate its equilibrium positions and entire time histories
of responses during a quasi-static or transient process of deformation.

It is assumed that specified displacements, surface traction, pore water press-
ure, or water flow boundary conditions are defined on different portions of the
boundary surface {*'S at a generic time ¢ + At. These portions of the bound-
ary surface are named {*4tS,, t*AtGy t+Atg and t+ALS. | respectively. It is
attempted to establish the governing equation without imposing any restriction
on the magnitude of strains and displacements which the soil body may experi-
ence in the course of deformation. In order to deal with nonlinearities involved
in the problem, an incremental analysis is adopted and the equilibrium position
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at time t + At is searched for, assuming that the solutions for all time steps from
time 0 to time ¢ are known.

We adopt a Lagrangian (material) formulation and follow the material points
in their motion. Therefore, in a generic time step from time / to time ¢ + A, it is
assumed that the initial configuration of the soil body (°) and the configuration
at time ¢ (‘B) are known and we are searching for the configuration of structure
at time ¢ + At (‘*28). In the following development, an updated Lagrangian
formulation is followed.

3. The principle of virtual work

Let us consider the motion of a generic point P of a saturated earth structure
(Fig. 1). In the process of deformation from the initial configuration at time 0 to
the configuration at time ¢, its coordinates with respect to a fixed Cartesian co-
ordinate system change from (%z;,%z,,%3) to (‘z;, 'z, 'x3), where the left-hand

0, t, tdt
X, X X,

FiG. 1. Three different configuration of the soil body during its motion.

superscripts refer to the configuration of body, and the subscripts refer to differ-
ent axes of the Cartesian coordinate system. In our analysis, we seek to find the
position of each material point in the next configuration, i.e. at time ¢t + At. Let
us suppose that the soil body, in the configuration at time 7 + At, is subjected to a
virtual displacement field éu which satisfies all the boundary conditions (Sec. 6).
The principle of virtual work requires that the virtual work performed, when the
soil body undergoes a virtual displacement éu, is equal to the external work done
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by the body forces and surface traction, i.e.

(3]) t+At"Vti}nt - / I+At0i_j6t+Atf'ijt+Atdv

t+ Aty

_t+ At w-ext - / t+Athﬁult+Ath+ / t+A{fS6-tL-Hm(lS'
= U = i 1 1 1 iy

t+ ALY t+At gy

where the ‘*4!o;; are Cartesian components of the Cauchy total stress tensor,
the t+4%, . are Cartesian components of infinitesimal strain tensor, *4¢ fF and
t+AtrS are the components of the applied body forces and surface traction, re-
spectively, and éu; represents the components of virtual displacement field in the
direction of axis ¢ of the Cartesian coordinate system. The ‘*2/S is a part of
soil body surface on which a specified traction **4! 5 is applied. The & 14 ac€,; is
the variation in the small strain tensor defined as follows:

1 Ou; du; 1 0(6u;) A(bu;)
(3.2) O+ n0€i; = 6 [5 ((’)H"—“arj + 0“‘3‘15)] e ((")HA‘IJ + gi+aig, |

where u, is the incremental displacement at time ¢ defined as

t+ At t
= U; — Uy

g
in which *2%y; and 'u; denote the displacements at time ¢+ Af and (, respectively.
Note that the first term on the right-hand side of Eq.(3.2) implies the partial
derivative of the variation u; with respect to "4z .

In a dynamic loading of saturated soil systems, there are three contributions
to the body forces *4¢ fB in Eq.(3.1):

1At pb;) body force due to gravity or centrifugal acceleration, where
t+at, is the mass density of the soil and ‘"4, is the i-th
component of body force per unit mass, both measured at
time ¢ + At,

t+44(pii;) body force due to acceleration of the soil skeleton *4¢ i;

negative sign is used because this force is in opposite direc-

tion to {F4aty;,

body force due to relative acceleration of the pore water with

respect to the soil skeleton.

t+Atf_Bw
i

The first two terms are common in any structural dynamics problem, but the
third term t*4¢ fB% is due to the presence of water and its relative motion with
respect to the soil skeleton. To account for '*2¢ f#* we note that in a differential
volume "t4dV of the soil with porosity n, only (n*2/dV') is occupied by the
pore water, therefore o (n‘"2'dV") is mass of the pore water available in the
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differential volume of the soil. Here p; is the mass density of pore water and the
following relation holds:

(3.3) o=mnos+ (1-n)o,,

where o, is the mass density of solid particles.

Now if we define a relative average or superficial displacement, w;, so that
w; is the relative superficial velocity (') of the pore water with respect to soil
skeleton (in the direction of axis ¢, ¢ = 1,2, 3), the actual displacement of water
in the pores is w; /n. The body force due to the relative acceleration of pore water
with respect to the soil skeleton is expressed by

-

- D,
+At fBw _ = ¢
G4 = Ay =

where D/ Dt is the symbol of total derivative with respect to time (*). Here we
must use a total time derivative, because 1w, is measured with respect to the
soil skeleton that itself is moving and makes a moving coordinate system for
measuring @ ;. The negative sign in Eq. (3.4) is used because the ‘*4! {5 applies
in the opposite direction of water flow. It must also be noted that the effect of
change of porosity has been ignored in the acceleration term in Eq.(3.4). This
effect will be very small during a usual time step.

Considering the above mentioned contributions to the body force
we can now write Eq. (3.1) as

t+atBu
1 3

(35) l+."_\l‘_Vlllnt — / t+..l£n_l_j_b t+._\t”ijt+—n([r
t+ Aty

— (+Atpprext _ t+At Sg St+Al o
= w>* = S du, dS

t+ AL,

, . ‘ o Dw; ]
+ [ |i£+dt91+mb" - t+At0t+At i _(+._\lgfi+.j{ ( D{t)} Su; Y,

t+ Aty

There are two major difficulties in application of Eq.(3.5) to a finite deforma-
tion problem involving saturated soils. First, the configuration at time ¢ + At is

(') This is the superficial velocity of water used in Darcy’s law for seepage of water through a porous
medium, ie. w, =1 = ki;(Oh/3x,), where ky, is the hydraulic conductivity of the soil in the direction ¢ due
to a unit flow in the direction ; and A is the hydraulic potential at the point of interest.

(?) The material time derivative or the rate of a quantity, A = A(x(¢), ) is defined as

DA .
= A =

a4 aA
i y: + —
Dt at dr,

- -

where A is a scalar quantity and it is a function of time and space.

http://rcin.org.pl
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unknown and the integration over the ‘*4'V and '*4'Sr cannot be performed
before calculating the equilibrium position at time ¢ + At. The second difficulty
is the presence of total stress tensor, "2, in Eq. (3.5) which does not have any
direct influence on the mechanical behaviour of the soil and cannot be used in
a realistic constitutive equation relating a proper measure of stress to a measure
of strain. To resolve the first difficulty, we can rewrite Eq.(3.5) by referring the
applied forces, stresses, and strains to a known equilibrium configuration, such
as the initial configuration at time 0 (Total Lagrangian Formulation) or the con-
figuration at time ¢ (Updated Lagrangian Formulation). The second problem can
be resolved by applying the principle of effective stress and introducing effective
stresses in Eq. (3.5). The aforementioned measures are adopted in the following
sections.

4. The principle of effective stress

Terzaghi’s principle of effective stress can be written in the following form:
(4.1) Oij = 0jj — ])50' s

where o;; and @;; are the total stress and effective stress tensors, respectively,
and p stands for the pore water pressure. The ¢;; is the Kronecker delta defined
as

o =1 for =7,
6i;, =0 for @ # j.

In direct notation, Eq. (4.1) can be written as
4.2) c=a—pl,

where 1 is the symbolic form of the Kronecker delta.

Here the conventional sign convention of solid mechanics is used which con-
siders tensile stresses as positive values and compressive stresses as negative val-
ues. The negative sign of p in Egs. (4.1) or (4.2) is associated with the fact that
pore pressure is considered as a compressive stress.

Since the effective stress principle is defined in terms of the Cauchy stress
tensor which is not an objective measure of stress, it is important to establish a
suitable rate form for Eq. (4.2). Taking the time derivative of Eq. (4.2), we find

(4.3) 2 (0)= @)~ ()

or

v . . N e - .
(4.4) o +rr,-J'(eL- ® e_,) i (T]'J(el ® e]) =0 +(Tl'j(eg @ ej-) + ni]-(ei & ej)

— i)l - p(ﬂj(é; ® ej-) - ])b}j‘(eg & éj),
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. . . . v
where e; and e; are the unit vectors in a Cartesian coordinate system. The o and
v
@ are corotational rates of the total stress and effective stress tensors, respectively.

Using Eq. (4.2), we can write the above equation as

-pl.

Qla

(4.5) o=

Equation (4.5) is of paramount importance in our subsequent developments. We
will use this equation in development of the incremental equations governing the
dynamics of saturated soils.

As previously mentioned, Eqs. (4.2) and (4.5) enable us to formulate the gov-
erning equations of motion (Eq.(3.5);) in terms of effective stresses. However,
substitution of Eq.(4.2) in Eq.(3.5) leads to the appearance of a pore pressure
related term which prevents a direct application of Eq. (3.5) as a sole field equa-
tion in the solution of boundary value problems in soil dynamics. The additional
unknown, p, requires an additional field equation which governs the flow of water
through the soil. Derivation of this equation is the subject of the next section.

5. Equations governing the flow of water through a saturated soil

In Sec.3, we derived an integral equation governing the motion of the soil
mass by making use of the principle of virtual work for the bulk mass of the
soil body. In this section, we consider the equations of motion and mass balance
for the pore fluid (water) alone in order to establish a complementary equation
to Eq.(3.5). To this end, let us consider a unit volume of the soil in the current
configuration at time ¢+ At as a control volume for the flow of the pore water. We
assume that the coordinate system is attached to the soil skeleton and is moving
with it. The flow of water in this control volume is affected by inertial forces and
by a viscous (velocity-dependent) drag force due to interaction of the pore water
and solid grains. In the following consideration, it is assumed that the viscous
drag force can be determined by application of Darcy’s law. In a quasi-static flow
of the pore water, Darcy’s equation is written as

. dp
(51) w; = _AUB_,‘-]‘:
in which
1
(5.2) kis = — kijs

-~

{w

where Zt;’j is a component of the permeability tensor. The w, in Eq.(5.1) is the
superficial velocity of water, i.e. the volume of water flowing per unit time and
per unit gross area through the face of the control volume perpendicular to the



ON FINITE DEFORMATION DYNAMIC ANALYSIS OF SATURATED SOILS 289

z,; axis. The negative sign in Eq.(5.1) emphasizes that the water flow occurs in
the direction of decreasing potential.

Now if we define the resistivity tensor r,; as the inverse of the specific permea-
bility tensor,

(5.3) rijkjk = bik
Eq.(5.1) can be written as:

dp .
(5.4) Pe. T W =3,

where R, is the viscous drag force in the direction of z; axis applied to the pore
water flowing through a unit control volume of the soil. Considering the effects
of the inertial and body forces (Fig. 2), Eq.(5.4) can be generalized,

dp . . Duw;
5.5 —— —rw; +of | bj— Uy ——— | =0,
) dz; 47T Y
where
. Dw; .
i + =g o
Dt
represents the total acceleration of pore water.
- R’-
-
? um: P b
[ Sat] (]
! plx) pix)+ ag):()
i X
. ! J
Cogletn Dw;
Note: G/ =i, + 753

F1G. 2. Free body diagram for the pore fluid in a control volume.

In order to reduce Eq.(5.5) to a form containing only the displacements of
soil skeleton (u) and pore water pressure (p), we first use the axiom of mass
balance to establish a relationship between the rate of change of pore pressure p
and the rates of volumetric strains for the pore water w,; and the soil skeleton
i, ;. Such a relationship can be used to remove the relative displacement of the
pore water w from Eq. (5.5).



290 M.T. MANZARI

Let us consider a unit volume of the soil in which the masses of the pore
water and solid grains are respectively np; and (1 — n)p,. The axiom of mass
balance requires that in the process of flow of the water through the soil, these
two masses must be conserved, i.e.

(5.6) %/(ngf)dv =0,
14

J(I —n)os (lel = 0.

Equations (5.6) and (5.7) lead to:

(5.7) %

(5.8) nos +no; + (noy) U,; =
(5.9) —nps +(1=n)p, +(1 —n)o.u;; =0,

where U; is the component of the absolute velocity of pore water in the direction
of z; axis, i.e.

(5.10) w; = n( [/,- — ;).

Dividing Egs. (5.8) and (5.9) by ¢, and o, respectively, and adding up these two
equations, we find:

(5.11) L ()22 [0 - )] + i = 0,
ef s

or by using Eq. (5.10), we have:

ni)j . . )
(5.12) —+ (1 -n)—=+ w;; + u;; = 0.
of 0s '

The first term in the above equation represents the compressibility of the pore
fluid (water) which is of cardinal importance in dynamic analysis of saturated
soils. In order to stress the importance of this term, it suffices to mention that
the compressibility of pore water (fluid) is highly dependent on the degree of
saturation of the soil, and a small fraction of percentage of air in the pore water
may significantly increase its compressibility [31]. The second term in Eq. (5.12)
accounts for the compressibility of solid grains and, in general, is much smaller
than the first term. In the following considerations, we seek to substitute the first
two terms in Eq.(5.12) by means of simple constitutive equations. To this end,
we note that a change of effective stress will result in a change of volume of solid
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particles, while a pore pressure change will induce a change of volume in both
the solid particles and the pore water. Thus

; Mo
(25) = E)pj)

. _ 8(95) . 0(95’) L
(e) = =5, P ¥ 5. 7"

P
(5.13)

In practice, the ¢ _ is very small and negligible as compared to the o ;. Thus it can
be ignored in the subsequent procedure. However, it is kept in the formulation
for the comparison purposes. It is noted that the constitutive law representing
the change of p is similar for the change of hydrostatic pressure or the change
of pore water pressure. Therefore, the terms on the right-hand side in Eq. (5.13),
can be described in terms of the change of hydrostatic total stress (o;;), i.e.

(5.13)3 (o) = 0.

It is also assumed that the following linear relationships exist between the
change of pore water pressure (or any hydrostatic pressure) and the changes of
volumes of the pore water and solid grains:

av.

s

dp _L
(5.14) Ve T ks
oV,
dp
1 . ATt
P12) Ve Ky

where Vs and V,, are the volumes of solid grains and the pore water in a unit
volume of the soil mixture, respectively, while i's and A’y indicate the compress-
ibility of the above constituents. In general, /i s is by several orders of magnitude
larger than Ky, Considering Vs = (1 — n)o. and V,, = npy, and ignoring the
change of soil porosity due to the change of p, we can rewrite Egs.(5.14) and
(5.15) as

do.

(5.16) Oy _ L
Os [\.‘i
dog
Op 1

517 = =,

(5.17) P K
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Substituting Eqgs. (5.16) and (5.17) in Eq.(5.12), we finally find the equation
of mass balance in a desired form:

n 1=n% 4 . .

5 —_— . + w,; + u;; = 0.
(5.18) (1\'1 s ) p+wii+ ;=0
Denoting:

1 n 1-n

ol —-—=—+

1) r Ky Ks

Eq. (5.18) is written as

(5.20) %;’; + w;; + u;; =0.

Equations (5.20) and (5.5) yield the following relations:

8 . &4, dp . D 1. .
(5.21) Wi = PP {/‘u [—('):1' + o5 ([;J— t —— )}} = —FP— Wi

or

1 .« ) ) 4
(5.22) T p+ oup;— ¢ (}"Ul) + _)(—(]-'i_]Q/l)_/)

dx; dx; dx;
J a D
—0-"1 I:I":_;Qf (”‘J * I)IJ)] = (.

This is the final equation governing the flow of the pore fluid (water) through
the soil and combines the axiom of mass conservation and equation of motion
for the pore fluid. Presence of the term D,/ Dt in the above equation is still an
undesirable feature which inhibits a direct coupling of Eq. (5.22) with Eq. (3.5)
in order to get a coupled systems of equations in terms of u and p. However,
it has been shown [49] that for the range of frequencies encountered in the
earthquake loading, the relative acceleration of the pore water with respect to
the soil skeleton is negligible. Therefore by ignoring D@ ;/Dt in Eq.(5.22), we
find:

] : 0 op 0 J =
(523) F]) + Wiy =5 (k ! ) “+ W(k“é)fbf) = ;)—-(L‘l‘_;,gf HJ’) = O

da; " E; z;
Equation (5.23) is written in terms of « and p and is suitable to be solved in

combination with Eq. (3.5), for which we also neglect the Dw;/Dt term for the
foregoing reasons.

http://rcin.org.pl
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6. Boundary conditions

As it was mentioned in Sec.2, we assume that four types of boundary con-
ditions are specified on different portions of the boundary surface ‘*4LS of the
soil body at a generic time ¢ + At. These boundary conditions are defined in the
following sub-sections.

6.1. Displacement boundary condition

It is assumed that on a portion of the boundary surface *4S of the soil body,
displacements of soil skeleton are specified as follows:

(61) t+Atui o t+Ali—Li on t+At5u,

where ‘*4!7; is the specified value of displacement on the boundary surface
t+4tg, at time ¢ + At.

6.2. Pore pressure boundary condition
The pore water pressure boundary condition is defined on ‘*4S, as follows:

t+At _ t+ AL t+Atg
(6.2) p= p on 3 »

where '*4!5 is the specified pressure on the surface 'T4S, at time ¢ + Al
6.3. Traction boundary condition

We assume that on a portion of the boundary surface, there is a specified
traction which must be in equilibrium with the internal total stresses, i.e.

(63) [+A!(Tij“_f = £+._’\ifl_.'ﬁ' on t+.'_\t5vT )

where the ‘*2f5 is the specified traction on the surface ‘*4%S7 with a unit normal
of n, and "%, is the total Cauchy stress tensor acting on the neighborhood of
the HA!f,S‘

i

6.4. Water flow boundary condition

It is assumed that on some portion of the boundary surface, the water flow
boundary conditions are specified. One of the typical examples of such boundary
conditions is the impervious boundary. The water flow boundary condition follows
from Eq. (5.8) and is expressed as a flux condition, i.e.

. dp .  Dw; o ,
(64) win; = —L‘,‘J% +k,'-,'gfl)j—!\';j£)f (llJ'+T[')):| n; = H-._\th on t+"“3,,.
=

where n; denotes the i-th component of the outward unit normal to the surface
t+4Lg and ' 3G, is the prescribed fluid flow on the 415,
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7. Constitutive equations for the soil skeleton

The governing field equations developed in Sec.3 (Eq.(3.5)) and in Sec.5
(Eq.(5.23)) along with the boundary conditions defined in Sec.6 are not suffi-
cient to solve a boundary value problem in soil dynamics. For ten unknowns (3
displacements of soil skeleton, pore pressure, and six components of stress tensor)
in a boundary value problem, we have established only four governing equations.
Thus six constitutive equations are necessary to make the problem well-posed.
Due to nonlinearity of soil behaviour, it is desirable to define the constitutive
equations in a rate form relating an appropriate measure of stress to the rate
of deformation. In a finite deformation analysis, an objective stress rate must be
used to ensure that the effects of rigid body rotation are correctly considered.
This criterion, however, does not determine completely which stress rate should
be used. There are different forms of stress rates which satisfy the objectivity
requirement. The most commonly used objective stress rate is the JAUMANN [27,

28] corotational rate of the Cauchy stress tensor, (V,Z_J,’ defined as follows:
(7.]) gii: ‘:’1_;' * U;ka_;‘ & (fijki 1

where &,; is a Cartesian component of the material (time) derivative of the
Cauchy stress tensor, and (2;; is a Cartesian component of the spin tensor, i.e.

1 fou;  Ouy
(7.2) 2 = > ( - ().r';) .

dr;

Numerous application of the Jaumann stress rate have been reported in the
finite deformation analysis of crystalline solids in the crystal plasticity context (e.g.
22, 35). In a crystal plasticity application, the material spin tensor €2 is replaced
by the rate of rotation or spin of the crystal lattice. However for non-crystalline
solids, a proper choice of the spin tensor is not clear. Previous study by NAGTEGAAL
and DE JonD [34] has shown that a direct application of Eq.(7.2) in the large
strain simple shear analysis of a material obeying a Mises-type kinematic harden-
ing plasticity results in an oscillatory response during monotonic shearing. Such
an unrealistic result has motivated several investigators (e.g. reference [13]) to
explore the possibility of removing the stress oscillation by using different spin
tensors. Later the original suggestion by MANDEL [32] and KRATOCHVIL [29] for a
decomposition of the spin tensor to an “elastic” or “rigid” part and a plastic part,
and Mandel’s concept of material underlying substructure, motivated DAFALIAS
[13, 14, 15] and LoreT [30] to propose some constitutive equations for the plastic
spin in the case of anisotropic materials. These studies suggested that the “elastic”
part of the spin tensor must be used in a Jaumann-type corotational rate.

The concept of plastic spin has received increasing attention in the recent
years and many investigators have studied the effect of plastic spin on the large
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deformation of solid materials (e.g. [44, 45]). One interesting point shown in
the closed form analytical solutions presented by DaraLias [13, 14, 15] is that
unless strong initial anisotropy preexists, the difference in the material response
between using the substructure and material spin for a material which is initially
isotropic becomes important only after very large strains (of the order of 100%)
are developed.

In the light of the above discussion and due to the lack of experimental data
necessary for calibration of the constitutive equations for the plastic spin, we
will use a corotational stress rate without restricting the formulation to particular
choices of the spin tensor.

Assuming an inelastic behaviour for the soil skeleton, we choose the following

v
incremental form to relate the corotational rate of the effective stress tensor 7;;
to the rate of deformation tensor dy; = 1/2(0 1 /dz; + O i1,/ Dxy),

=
(7.3) G;;= Dijndi,

where D is the tangential stiffness tensor which may be a function of the current
state of effective stresses, strains and some internal variables.

The specific form of the tangential stiffness tensor will depend upon the type
of mathematical framework (e.g., elasticity, plasticity, viscoplasticity, etc.) that we
choose to model the behaviour of the soil skeleton. Equation (7.3) is general
enough to enclose a wide variety of existing frameworks for the soil constitutive
modeling.

8. Expression of the virtual work equation in terms of the coordinates
of the configuration at time ¢

As mentioned in Sec. 3, all the integrals appeared in Eq. (3.5) must be written
in terms of a known configuration, such as the initial configuration of the soil
body (°B) or its converged equilibrium position at the end of the previous time
step (‘B). Here we choose the latter option and our aim in this section is to
rewrite Eq.(3.5) in terms of the coordinates of the configuration at time ¢.

Let us consider an infinitesimal cubic element of the soil body (Fig.3) whose
' 3
volume in the configuration at time ¢ can be expressed as ‘dV = [] dz;. During
i=1
the motion of soil from time ¢ to time ¢ + At, the material enclosed in the cubic
element ‘dV will occupy a new volume of 'tV and the initial shape of the
element will be distorted. Considering the axiom of mass balance, we can relate

t+31V to 'dV by the following equation:

(8.]) 000(”; - 10 Yy = l+.‘l££)l+_ll{“‘,r,
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where %p, %o, and !+ 4o are the mass densities per unit volume in the configurations
at time 0, ¢, t+ At, respectively. The 04V is the volume of the infinitesimal element
in the initial configuration at time 0 (°B).

Y

/

D/ 1, tedt

VTR P

F1G. 3. The soil body at two subsequent configurations.

In general, the external loading, such as surface traction, external water press-
ure, gravitational and centrifugal loading are deformation-dependent. However,
in most geotechnical structures, the aforementioned loading does not induce such
a large displacement, large strain, or large rotation which would require a finite
deformation analysis. Therefore, it is reasonable to assume that the magnitude
and direction of surface force and body forces are independent of the current
configuration of the soil body, i.e. [3]

t+.’_’ltb1_ - t+Atibiﬁ
(8'2) t+AtfiS t-hﬂidS — t+AttfiS tdsv .
where t*4f%; and *4{f5 are respectively the body force and surface traction in
the configuration at time ¢ + At (**4!@), and measured in the configuration at
time ¢ (B3). Combining Egs. (8.1) and (8.2);, we have:

(83) £+Atg Hnﬂ!bi !+:_\t(“/ — tQ t+Aitbi t(“/-

If we further assume that the effect of the pore water relative acceleration
Dw; /Dt with respect to the soil skeleton is negligible as compared to the in-
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ertial effect of the soil bulk mass, we can rewrite Eq.(3.5) by using Eqgs. (8.1),
(8.2) and (8.3):

(8.4) Halgres / to 1A fu; fdv—/% tAtE bu; OdV
ty (lv

¥ / Shated 8 dgg.
tST

The second integral on the r.h.s. in Eq. (8.4) is evaluated using the initial configur-
ation (°@) and hence its contribution can be calculated prior to the incremental
step-by-step analysis.

As to the internal virtual work (Eq. (3.5),), we first use the principle of effective
stress (Eq. (4.1)) to rewrite (3.5); in terms of effective stresses. Thus, substituting
Eq.(4.1) in Eq.(3.5); leads to

tAtyyint / o 8 rpare; TV

l+.’_\l\/

— t+At— t+ At e s . t+ At r
= / ( Gij— P bz‘j) 0 tvacei; T dV

t+ Aty

or

(8.5) thAtppint /' Al 8 A AV - / CHA, 8.8 1y aer; AV,

t+ Ay t+ Aty

We now need to refer the Cauchy effective stress tensor ‘*4!7;; and the infinitesi-
mal strain tensor ¢4 a€;; to the configuration at time ¢ (‘B). It is well known that
the second Piola—Kirchhoff stress tensor '**2!S;; and the Green-Lagrange strain
tensor 't ¢,; are a work-conjugate pair of stress and strain measures which relate
the *4!7,; and ;4 a¢e;; to the configuration at time ¢. The second Piola - Kirchhoff
stress tensor ‘*4/S;; is defined as [8]:

to otz;

-3
(8.6) rang ot d',

P 7 Tmn 7 .
i+.._\t0 01+J!l.m ()H"‘\t.l,'n

The Green - Lagrange strain tensor can be defined by considering the deformation
of a generic line segment of the soil body whose lengths are denoted by ‘ds and
4445 in the configurations at time ¢ and ¢ + At, respectively. Without giving the
details of this derivation, we find [8]:

. 1 [ du; du;  Qup duy
8.7 t+At i J k k
I R Qe “+ + .
.7) t4i = 3 (0%13 dtz;  O'z; (')‘:r.j)
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Taking a variation of the both sides of Eq. (8.7), we have

110(0u;)  0(0u;)  O(bug) dup  dup I(duy)

: 58 = Y+ 17+ .
B35 ‘ 2| o%z; de; iz, dzy; Otz Oz
where éu; is the variation (virtual displacement) in the displacement ‘*<%;,. We
also note that:

gitaly du

: T s
83 'z, 'z,
Combining Eq. (3.2) and the above equation, we can relate the variation 6 '*</¢,;
t0 & ¢+ At€mn in the following manner:

at+ At t+ At
(8.10) §itat. . = ub‘ e 9" "y
. tci) T t+AtEmn Jtr

1 J

Finally by using Eqs. (8.1), (8.6), and (8.10), we can write Eq. (8.5) as

(8.11) t+ At L,Vlijm . /H‘A:Hz‘j - t+d:£i_} tdv 7](”.;\;}”1_) $ Hdz!fij V.
v

ty
where
t Y ),
; 0 dta; A '
(8.12 A n = o = M) e
) En t+._\19 ()t+_\11,1'l J ().{+._MJ.”

Equation (8.11) together with Eq.(8.12) complete the virtual work expression
in terms of the coordinates of the configuration at time ¢ (‘@). However, in
order to use this equation in an incremental analysis, it is necessary to establish
its equivalent incremental form. Derivation of such incremental form will be
discussed in the next section.

9. Incremental form of the virtual work equation

An incremental form of the internal virtual work equation (8.11) can be es-
tablished by introducing truncated Taylor series expansions of the second Pi-
ola - Kirchhoff stress tensor and the h tensor, i.e.

l i
Haig: = 155 4 [;;_t(sl‘j)]t_\f + higher order terms,
(9.1)

1
talh. = thi + [:;F(hij)] At + higher order terms,
Y t
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where
9.2) 8 = Ty
(9.3) thi; = 'pé;;.

Ignoring the higher order terms in Eqgs. (9.1) and using Eqgs. (9.2) and (9.3), we
have

(9.4) e [ (%)] -

t+ At
thi'

i + [Fﬁ("”)],‘"'

In order to evaluate the second terms on the r.h.s in Egs. (9.4), we make use
of the following kinematic relationships [8]

([ tg B lg (‘)!+AIL’,'
(9.5) di t+at, - t+aty gt+aty

d( dtz; ) otrat, oty

dt (‘)[+._\l‘rj (.)t-’-;‘t'r_j 01+A£'Tk ’

(9.6)

where ‘*2f denotes the velocity of the soil mass in the direction of axis k.
Utilizing Egs. (9.5), (9.6) and (8.6), we find:

t 5t .
0 82y jpars s 0z

(9.7) lt( i) = t+41, G iy, Mgt+atg,

) i
in which t+4tF « 18 the Truesdell rate of the effective stress tensor 7;; and defined
as
t+At=7r _ t+At= t+ At t+ A= t+ At t+ A=
(98) (r{;'[ i o+ Vim,m Okl — VIm Tk

t+ At t+Al=
- Vkm Tml -

1
Since we seek to find [(([—t(SU-)] , Eq.(9.7) should be evaluated at time ¢, i.e.
t

d o T .
v —_ t= _ t= t t— t t— t t—
(99) [E(SU)J = 04, = 045 x Vmm Oij — Vim Oim — Vim Omj .
& t

The Truesdell stress rate appearing in Eq. (9.9) can be related to the Jaumann

stress rate by decomposing the velocity gradient »; ,, to the sum of the rate of
deformation tensor d;,, and the spin tensor §2,,,, i.e.

(910) Vim = dim *+ 825 .

http://rcin.org.pl
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Substituting (9.10) in Eq. (9.9), leads to
d .
(9.11) [d—i(.syj)]t =5 + W 'Tij = ('djm + Qjm) Tim
- (tdim + tQim) iErn_;' )
or by using Eq. (7.1), we find:

(9]2) [%(S,J)] = ¥ gi]‘ + tl/m,m tE,'j - l(]jm t(_}','m — !d,’m tﬁmj N
at t

v
where ' 7;; is the Jaumann rate of the effective stress tensor.

Considering the general form of the constitutive equation (7.3) applied to * g,ﬁ
and substituting (9.12) in Eq. (9.4), we have:

1+ At _ = , { t b {0 de= t; i=
(9]3) gSij = O’ij+.jf (tDejkl dk[ + Vinom Oi5 — d]m Oim — dmz J-mj)-

It must be noted that the ;D,;i; appearing from now on in the subsequent equa-
tions is the one which relates the rate of deformation tensor to the Jaumann
rate of effective stress. However, if the initial formulation of the constitutive law
calls for the use of a corotational rate with respect to a different spin than ‘12,
then one must perform a subsequent transformation to a Jaumann rate for the
effective stress with simultaneous change of the constitutive moduli which will be
again defined by , D, ;4 after the transformation.

Equation (9.13) can be written in a compact form by using the following
relations:

dtry dtay, My otz
0(Auy)

(‘)t, = t€mm
T

Sti, 04 D(Aug) (A
At'tdy %L\f (d 2 ) ut) - % {‘)(—\“A) + A = tCkI 5
(9.14)

t —
At Vm.Jn =

where Au,, is the m-th component of the incremental displacement at a generic
point of the soil body. Thus Eq. (9.13) can be written as:

(915) t+A;S,'J' = tﬁ,‘j + 1;‘11‘1'1;1,(';-[ 3
where
(9.16) tAijii = tDijrt + T — 'Tibrj — 6 'Tx; -

The (A;;x is the finite deformation tensor of tangent stiffness moduli and it
includes the regular tangent stiffness moduli tensor and the effect of stresses at
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the beginning of the step. It must be noted that if the components of the effective
stress tensor are of the same order of magnitude as the (D;x, contribution of
the initial stresses to the ;A;;; tensor can be significant.

Similarly to Eq.(9.9) for the rate of the second Piola - Kirchhof stress tensor,
one can write the following equation for the rate of the 7,,,,

d d
(917) [d_l(h'mn)] = ;l—l‘(pémn) * tl/k,k tpémn = t”n,m [P = tum,n t])
t
recalling that
1
(918) ldmn = 5 (th.n + l”n,m) 5
Eq.(9.17) can be written as
i e

(9.19) [é(hmn)] = Dmn + Wik POmn — 20 dinn -

¢
Using Eqgs. (9.20) and (9.14), we can now write (9.1); as
(920) H.Aethmn = [[) 67717{ + (t-—\l’ (Smu) + t€kk t]’ (Smn‘ - 2 ll)lemn )
where
(9.21) “(Ap) = 'p At

Regarding the variation in the Green - Lagrange strain tensor, ie. 6 t*4fc,
we note that:

(9.22) ?’HA[!E,'J = b5 + 0 4nij
where

1 [ Ou; | Ouj
(9.23) €ij = 35 (01% M df—l)
and

1 [ Our Ouy

24 i = sl a—

(9 ) t'hij 2 ((')l;lT;' (7';1‘))

in which u, is the incremental displacement.
Substituting Eqgs. (9.15), (9.20), and (9.22) in Eq.(8.13), we find

(925) t+At1"1"’jjm = / (tﬁzj + f.1ijkl 1Ck1) ((5 t€ij + 5,1}0‘) A%
ty

—'V/ (tpémn + l;\pﬁmn + ek tp‘smn = 2t])tp-mn) (5 {€mn T d t”mn) !(IV-
l‘/
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This is the final form of the internal virtual work expression in terms of the
coordinates of the configuration at time {. A more compact and computatonally
useful form of Eq.(9.25) can be obtained by utilizing Eq.(4.1) and combining
the effective stress-related terms implicit in the ;A;;z; tensor (Eq.(9.16)) wth the
pore pressure-related terms in Eq. (9.25). We finally find:

(9.26)  tHAtwint = / (tau + :Lijni tekl) (e + 8mij) ‘dV
ty

—/ (‘Ap) (8 ceic + 8.m:) av,
Ly

where
t tg 't
(9.27) tLijki = tDiji + '0ij 6 — ‘aq bkj — 60 oy,

or by using Egs. (3.5), we have:

(928) j tLijkl teL! o €45 v — / f."l])(ﬁ t€5; %
ty ty

+j tLijkIL('klét"]ij{f“”,+/ [(T,'J(Sl’){j v
t‘.'

ty

—/’(_3,))(5,_;,,,- Y = trafyest /‘n,__,a,,.-,-_, v,
tv !L.’

The last three terms on the left-hand side of Eq. (9.28) are due to finite deforma-
tion effects, and they may be omitted in a small deformation analysis. In the case
of infinitesimal strains and small rotations, the ,L;;z; tensor will also redice to
the ;D;;x, tensor of tangent stiffness moduli. It should be mentioned that in an
incremental numerical solution, Eq. (9.28) is normally linearized by ignoring the
third and fifth terms on the left-hand side in this equation. This lineariza:ion is
justified due to small effects of these higher order terms in a regular earthquake
engineering problem, where the time steps are generally small if a plasticity-based
constitutive model is to be used.

Here it must be noted that Eqs. (9.25) and (9.28) are incremental approxi-
mations of the internal virtual work at time ¢ + A/ These equations, alonz with
equations governing the motion of the pore water (Eq. (5.23)), are used to calcu-
late an incremental displacement and pore water pressure. The calculated incre-
mental values are then used to evaluate approximations to the displacements of
soil skeleton, strains, stresses, and pore water pressure at time ¢ + A¢. The calcu-
lated values of displacements can be employed to establish an approximation to
the configuration at time ¢ + At (‘*2!3, 31y 4346 Therefore it is possible



ON FINITE DEFORMATION DYNAMIC ANALYSIS OF SATURATED SOILS 303

to calculate the difference between the internal virtual work evaluated with the
calculated static and kinematic quantities at time ¢ + Af, and the external vir-
tual work. In general, linearization of Eq. (9.28) introduces some errors and the
aforementioned difference may not be negligible. Thus, in order to reduce the
difference between the estimated internal work and the external work, an itera-
tive solution strategy is necessary. Different schemes may be used for an iterative
analysis. A full Newton - Raphson iteration scheme leads to the following form:

(9.29) / eLijit ™A o™ 6 yei; ™ AV —-/ tAP(™ 6 e, v
v %
+ / tL,‘jkl(m) A,(,’H(m)ﬁ ﬂ},'_,(m) WV + / t(T,'j oA ,1]1'1'(7") A%
ty A
_ / t (Jp)(m) § ”h_!_(m) !dv = Hd’1'l’f“ _ / to,ij(m—l) P te.[](m—-l) th,
ty ty(m-1)
where m is the iteration number and the first iteration (m = 1) corresponds to

Eq.(9.28). The Aier(™ in Eq.(9.28) is a component of the incremental strain
tensor for iteration m, i.e.

1 [{0(Au ™) 9(Au,™)
()3 A ) (m) = + .
(' 0) t€kl 2 ( 011.[ at-Fk

Similarly, the 6.A ;0™ is defined as

1 O(Au,-(’”)) (')(._l'u.-(m))
9.31 A ™ = - S ok .
(%31) vk 2 ( otz dtz,

Iterations are repeated until the r.h.s. in Eq. (9.29) is negligible within a certain
convergence tolerance. After each iteration, the displacements and pore water
pressure are updated.

The full Newton scheme adopted in Eq.(9.29) is obviously expensive due to
the necessity of evaluation of the constitutive tensor ,L;;i; at each iteration. A
modified Newton scheme can be achieved by keeping the constitutive tensor (L ;;x
constant during each step of incremental solution, i.e.

(9.32) / Ll/ijkl A ,(3;;1(']]) ] ,(\"]’(m) t(“/ = / t'_‘\p(m) é m;;(m) l(”"'
f\/ l"
+ / ll,gj}\-l_\,ckl(m) by I'],‘j(m) WV + / {(T,‘j oA 11]1'J'(m) A%
l‘/ l‘/
o / t (d]))(T’l) 5 Ln“(m) f([“r - t+A!‘,,V:;'xt . ] taij(m—l) 8 f.eij(m—]) tdvr.

L2 ty(m-1)

http://rcin.org.pl
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Such a solution strategy has been successfully used in some of the applications
reported in [33].

As a final note in this section, it should be mentioned that the case of a
deformation-dependent external loading can be conveniently handled by applying
an iterative incremental procedure as described for Eq.(9.29). For example, in
the case of centrifugal loading, the body force applied to an infinitesimal volume
of the soil is a function of its current position, i.e.

(9.33) t+._\tb:_ = t+Atb1_( t+Atx)'

In such a case, the corresponding term in Eq.(2.5), is approximated as follows:

(934) /t+A!gt+th£ 51“ t+Aldv
t+Aty
- t+AlQ(m—1)t+Alb_ (H—Alx(m—l)) Su. tHAY
t+ Aty (m—1)
where
(")t-!-dil.,(m—l)
93 t+At (m—1) _ t det e
(B5) e e ¥z,

The approximation introduced in Eq. (9.35) is only accurate for a small load in-
crement. Evidently, a better approximation for the finite load increments can be
achieved by linearizing '*<%;, as it was done for the second Piola - Kirchhoff stress
tensor and the Green - Lagrange strain tensor. Such a linearization, however, in-
troduces a new contribution to the stiffness matrix and reduces the computational
efficiency of the formulation, as mentioned in [3].

10. Integral form of the equation governing the flow of the pore water

In Sec. 5 we have established a differential equation (Eq. (5.23)) governing the
flow of the pore water through the soil. For the purpose of numerical solutions,
however, it is appropriate to develop an integral form of this equation which
complements the virtual work equation developed in the previous section.

In order to establish an integral form of Eq. (5.23), we recall that this equation
is basically an expression of the axiom of mass balance implying that a tendency
of volumetric strain in the soil skeleton (first term in Eq. (5.23)) is counteracted
by a change in pore pressure (second term), and by the flow of the pore water
through the soil (the last three terms). Therefore, a weak form of Eq. (5.23) can be
generated by using the Galerkin weighted residual method and recognizing that
the pore water pressure is the appropriate weighting function on the volumetric
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strain rate, i.e.

Y G 7

9+ Aty U t+AL,
t+ Ay
4 L+ AL, t+AL t+AL
+at+Ale. ( kij of b;i)
d (Hm/»‘inAth t+Aty )}6t+At Ay = ),

o+t

where 6!*2% is a virtual pore water pressure analogous to the virtual displace-
ment du prev1ously used in the virtual work expression (Eq.(5.1)).
An expanded form of Eq. (10.1) can be written as

. 1 .
(102) /H-At 6t+._\£] L+_\t”/ /Ft+dip6t+dlpt+df{“/
t+ Aty t+ Aty
J t+ At Q13 t+Ay,  t+AL, t+AL
+ /L}H;\t;v‘.( l"l):+4z1 + I‘ o b;
t+ Aty

H—AI’L t+At ft+._\1 J)]bt+dt H—At(]l/ __O

Applying the Green’s theorem to the last integral, we have:

(10 3) /i+.ﬂ!’ 6i+Aﬂ L+A!1‘/ -/_1_f+:;\l]')5t+;\lpl+ﬂfd‘/.r
’ T
t+ ALy t+ Aty
+ At 9t t+At, (+At t+AL
¢ .
+ / k”at+._lt7 - ki 44 b
t+ ALy
—_— Jd y ;
4 1Ay t+digf H-Jt”j) (-)t+._uJ..(5 i+._\£p)l+..3t(“,,
‘1

gr+at ;
+ /( t+AzAl]()[+_\l 4 CRAy tRAt, Ay,

t+atg

t+4_\tk Hn_\l oy Hn.‘!taj) ; 6t+.3{pt+AtdS o 0’

where n; is the component of outward unit normal vector to the surface ‘+4S in
the direction of z; axis.
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Utilizing the water flow boundary condition (Eq. (6.4)), we can write Eq. (10.3)
in the form

5 ; . 1 :
(]0.4) /t+AtUi",'6t+dtpl+JldV+ ] F£+Jt"}6l+.ﬂt[)t+didl/

t+ Aty t+ Aty

(f)t+.jt
i t+aY, r tHAY.  tHAL) ALY
U gt+ai, 1 es J

J

(4-.,‘_\fv
t+Al, t+AL, 1+ Al d t+ AL+ ALy
+ (T o5 u_,) m(é ») dV
+ / L A}

t+1_‘.13q

Equation (10.4) is written in terms of the coordinates of the current configura-
tion 43, whose equilibrium position is to be calculated while proceeding from
time ¢ to £ + At in the incremental solution. By applying the chain rule and using
Eq. (8.1), we can write Eq. (10.2) in terms of the coordinates of the configuration
at time ¢, B, i.e.

lQ QA 1 ct+AL OtJ'J ey !0 l+‘-u].) L+ At t v,
(105) /t+._\tQ ( f)ll'J ) y4 m dV +/1+an T(S P dV

(" l+.'_\ll’

/ to D'z t+ay, Ot (6trADY| Btz Ly
. - dV
ity ek Yogte, dtry gitaly,

R |

ty (-)((5 r+_\t,))' ot
_/ £ |t+ay, t+ar, t+ay / 2ty
1+41, i es 1T 0t D 1+aly,
ty .
t s t+atN] gt
+/ 0 H"‘“k"““"@;”"”ii' a(8 p)| 9 t v
A 1 ‘ “ /
t+4t, J J dte gttat,
t+ Aty -

5 / t+.3£i7156t+.3tpid5- - O,

t 5‘q

where +4/G, was assumed to be a deformation-independent flow on ‘TS5, so
145 1
that

(106) H-Ata.ﬂ‘ H—Atr[S iy l+_'!tlﬁs t([S-

It is noted that due to the presence of ‘*2%, *3%, . and the inverse of the de-
formation gradient tensor, (0 ‘x;)/(0 "), in Eq.(10.5), most of the integrals in
this equation cannot be evaluated without further simplifying assumptions. Similar

http://rcin.org.pl
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to the procedure adopted in Sec. 8, one may utilize linearization technique to re-
duce Eq. (10.5) to a suitable form for incremental iterative analysis. Linearization
of Eq.(10.5), however, leads to a very complicated equation which significantly
reduces the computational efficiency of the formulation. Therefore, in order to
avoid such a difficulty, it is suggested to use some reasonable approximation for
the aforementioned redundant terms (‘*4%y, *4%,;, ...). For example, in the
first iteration, one may utilize the values obtained from the previous time step.
Corrections to the results of the first iteration can be achieved by establishing
approximate position of the configuration at time ¢ + Af. The new configuration
can be used in iterative solution of Eq. (10.4) written in the following form:

gr+an, 1 o :
(10.7) j — i 1)6 AL Ay / FHA:]-) §HHAL Ay
ot+ :It_ ==

t+ Aty (m—1) t+ Aty (m=1)
9 t+ At,
+ t+4y,. (m-1) d p__ t+4t, (m=1) t+4y (m—1)
* gt+al, (m=1) €f J
t+ Aty (m=1) '

A+ 2) t+atgy,

(-)t+_'\r;1.1,(’”—1)

+ / l+__!1q.‘{ 8 t+Jl])[+‘J'(IS = 01

l&_}t.qq(tnv—l)

t+AtL, (m=1) t+ At
+ 0y uj

where the right superscript (m — 1) refers to the iteration number (m — 1), and
the case . = 1 is defined as

(10.8) OO =1,

t+At, (m=1)
Oy

and is calculated by using the following equation:

d £+.‘_\tx(m—l)

J'x

B t+ Aty (m—1) ~ i - 7I)!+A10}m-1) + no,

(m=1) _ —
(05) d ‘ Lo (1 —=n)tos + no,

In Eq. (10.9), we assumed that the change of soil porosity during the time incre-
ment was negligible. This assumption is used to prevent the need for iteration
over porosity.

Equation (10.7) has a number of special characteristics which distinguish
it from the virtual work expression, i.e. Eq.(9.25). First, the dependence of
the acceleration term on ‘"<, and '*2'%;; requires that the corresponding
“mass” matrix in a discretized solution procedure should be calculated in every
iteration. Similar situation renders the body force contribution in Eq.(10.7) a
deformation-dependent loading. It is also noted that components of the effective
permeability tensor are variable quantities which may change due to the change
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of fabric in the soil skeleton. Unfortunately, experimental data in order to char-
acterize such a change in the soil fabric is very limited.

In so far as the permeability tensor is concerned, it is important to note that
in a finite deformation regime, a generic element of the soil system may undergo
large rotations. Therefore, special care is necessary to define the coefficients of the
permeability tensor in terms of the coordinates of the Cartesian reference system
used in the Lagrangian formulation. Assuming that the permeability coefficients
are intrinsic to the soil element, it can easily be shown [7] that the matrix of the
permeability coefficients obeys the following transformation:

(10.10) k = RTIgR,

where kg is the matrix of permeability coefficients in the initial position and R
is the matrix characterizing the rotation of the soil element with respect to the
reference Cartesian coordinates.

Acknowledgment

The author is grateful to Professor Yannis F. DAFaLiAs of the University of
California at Davis, for reviewing the manuscript and offering useful comments.
The author is also grateful to the University of California for granting him a
fellowship which made this study possible.

References

1. S.H. Apvani, T.S. Leg, J.K. Leg and C.S. Kim, Ilvgrothermo-mechanical evaluation of porous media under
finite deformation. Part 1. Model validation and field simudations, Intern, J. Numerical Methods in Engng.,
36, pp. 161-179, 1993.

2. R. BArBosa and J. GHABOUSSI, Discrete finite element method, First U.S. Conference on Discrete Element
Mecthods, CSM, Golden, Colorado, Oct. 17-19, 1989.

3. K.J. BATHE, Finite element procedures in engineering analysis, Prentice Hall, Englewood Cliffs, NJ, p. 735,
1982,

4. M.A. Biot, Mechanics of deformation and acoustic propagation in porous media, J. Applied Physics, 33, 4,
Pp. 1483-1498, 1961.

5. M.A. Biot, Generalized theory of acoustic propagation in porous dissipanive media, J. Acoustical Socicty of
Amcrica, 34, pp. 12541264, 1962.

6. M.A. Biot, Theory of finite deformation of porous solids, Indiana University Mathematics J., 1, 7, pp.
597-620, 1972.

7. J.P. CARTER, J.C. SMmaLL and J.R. BOOKER, A theory of finite elastic consolidation, Intern. J. Solids and
Structures, 13, pp. 467-478, 1977.

8. W.F. Cuen and E. Mizuno, Nonlinear analysis in soil mechanics, theory and implementation, Elscvier
Science Publishers, NY., p.661, 1990.

9. M.B. Cuorra and G.F. DARGUSH, Finite element analysis of time-dependent large deformation problems,
Intern. J. Numerical and Analytical Methods in Geomech,, 16, pp. 101-130, 1992.

10. P.A. CunpALL, A computer model for simulating progressive, large scale movements in block rock systems,
Symposium of International Society of Rock Mechanics, Nancy, France 1971,

11. P.A. CunpaLL and O.D.L. STRACK, A discrete numerical model for granular assemblies, Geotechnique, 29,
1, pp. 4765, 1979.



ON FINITE DEFORMATION DYNAMIC ANALYSIS OF SATURATED SOILS 309

12,

13.

14.

15.
16.

17.

18.

19.

20.

21

22.

23.

24.

25.

26.

2.
28.

29.

30.

31
32.

33.

34

36.
3%

38.

39.

P.A. CunpaLL and O.D.L. STRACK, The development of constitutive laws for soil using the distinet element
method, |in:] Numerical Methods in Geomechanics, W. WrrTke [Ed.], Aachen, pp. 289-298, 1979.

Y.F. Darauias, Corotational rates for kinematic hardening at large plastic deformation, J. Appl. Mech., 105,
Sept., pp. 561-565, 1983.

Y.F. DArALIAS, The plastic spin concept and a simple illustration of its role in finite plastic transformation,
Mech. of Materials, 2, pp. 223-233, 1984.

Y F. DAFALIAS, The plastic spin, ASME J. Applied Mech., 52, pp. 865-871, 1985.

S.U. DikMEN and J. Guasousst, Effective stress analysis of seismic response and liguefaction, J. Geotechnical
Engng. Division, ASCE, 110, 5, May, 1984.

M.S. Gapara, MA. DokanisH and G.A.E. OrAVAs, Formulation methods of geometric and material non-
linearity problems, Intern. J. Numerical Methods in Engng., 20, pp. 887-914, 1984,

J. Guasousst and E.L. Wuson, Variational formulation of dynamics of fluid-saturated porous elastic solids,
J. Engng. Mech. Division, ASCE, 98, No. EM4, Proc. paper 9152, August, pp. 947-963, 1972.

J. Guasoussi and E.L. WiLSON, Liguefaction analysis of saturated granular soils, Proc. Fifth World Con-
ference in Earthquake Engincering, Rome, Italy, 1973,

J. Guasousst and S.U. DIKMEN, Liguefaction analysis of horizontally layered sands, J. Geotechnical Engng.
Division, ASCE, 104, No. GT3, 1978.

J. Guasousst and S.U. DIKMEN, Liguefaction analysis for multi-directional shaking, J. Geotechnical Engng.
Division, ASCE, 107, No. GT5, 1981.

S. Gotou, A finite element formulation for large elastic-plastic deformation analysis of polycrystals and
some numerical considerations on polverystalline plasticity, Intern. J. Numerical Methods in Engng., 12,
pp. 101-114, 1978.

A.E. GreeN and P.M. NaGupi, A dynamical theory of interacting continua, Intern. J. Engng. Sciences, 3,
pp. 231-241, 1965.

A.E. GREEN and P.M. NaGHDI, A theory of mixture, Arch. Rational Mcch. and Analysis, 24, pp. 383-401,
1967.

A.E. GReeN and P.M. NaGuplt, On basic equations for mixtures, Quarterly J. Mech. and Applied Math.,,
22, Pt. 4, pp. 427-438, 1969.

A.E. GReeN and P.M. Nacupt, The flow of fluid through an elastic solid, Acta Mechanica, 9, 3-4, pp.
329-340, 1970.

G. JAUMANN, Grundlagen der Bewegungsiehre, Leipzig 1903.

G. JAUMANN, Geschlossenes System Phystkalischer und Chemischer Differenzialgesetze, Sitzgsber. Akad. Wiss,
Wien., (Ila), 120, pp. 385-530, 1911.

J. KratocuviL, Finite-strain theory of crystalline elastic-inelastic materials, J. Appl. Phys., 42, pp. 1104-1108,
1971.

B. LoreT, On the effects of plastic rotations in the finite deformation of anisotropic elastoplastic materials,
Mech. Materials, 2, pp. 287-304, 1983,

T.W. LaMBE and R.V. WHITMAN, Soil mechanics, John Wiley and Sons Inc., New York, p. 553, 1969.

J. MANDEL, Plasticité classique et viscoplasticité, Courses and Lectures, No. 97, International Center for
Mechanical Sciences, Udine, Springer, New York 1971.

M.T. MANzARI, Finite deformation dvnamic analysis and constitutive modeling of non-cohesive soils for
liguefaction problems, Ph. D. Dissertation, University of California, Davis 1994,

J.C. NAGTEGAAL and J.E. DE JONG, Some computational aspects of elastic-plastic large strain analysis, Intern,
J. Numerical Methods in Engng., 17, pp. 15-41, 1981.

. A. NEEDLEMAN, R.J. Asaro, J. LEMONDS and D. PEIRCE, Finite element analysis of crystalline solids, Com-

puter Mcthods in Applicd Mech. and Engng., 52, pp. 689-708, 1985.
J.H. Prevost, Mechanics of continuous porous media, Intern. J. Engng. Sciences, 18, pp. 787-800, 1980.

J.H. Prevost, Nonlinear transient phenomena in saturated porous media, Computer Methods in Applied
Mech. and Engng., 20, pp. 3-18. 1982.

R.S. Sanpnw and E.L. WiLSON, Fuuite element analysis of seepage in elastic media, J. Engng. Mech. Division,
ASCE, 95, pp. 641652, 1969.

R.L. SchirrmaN, A T.F. Cuen and J.C. JORDAN, An analysis of consolidation theories, J. Soil Mcch, and
Foundation Engng. Division, ASCE, 95, SM1, January 1969.

http://rcin.org.pl



310 M.T. MANZARI

40. .M. Smrth and R. Hosss, Biot’s analysis of consolidation beneath embankments, Geotechnique, 26, 1, pp.
149-171, 1976.

41. AJ.M. SPENCER, Continuum mechanics, Longman Press, London 1980.

42. PHALKUN TAN, Numerical simulation of two-dimensional saturated granular media, Ph. D. Thesis, California
Institute of Technology, 1990.

43. C. TruespiL and R.A. TouPN, The classical field theories, Handbuch der Physic, Bd I1I/1, S. FLOGGE [Ed],
Springer Verlag, 1960.

44. V. TverGAARD and E. VAN DER GIESSEN, Effect of plastic spin on localization predictions for a porous
ductile material, J. Mech. and Physics of Solids, 39, 6, pp. 763-781, 1991.

45. E. VAN DER GIESSEN, P.D. Wu and K.W. NEALE, On the effect of plastic spin on large strain elastic-plastic
torsion of solid bars, Delft University of Technology, Faculty of Mechanical Engineering and Marine Tech-
nology, Laboratory for Engineering Mechanics, Report No. 942, 1991.

46. H. VAN DER KOGEL, Wave propagation in saturated porous media, Ph.D. Thesis, California Institute of
Technology 1977.

47. S. Yacumal and E.P. Porov, Incremental analysis of large deflections of shells of revolutions, Intern. J. Solids
and Structures, 7, 10, pp. 1375-1393, 1971.

48. Y. Yokoo, K. YAMAGATA, H. NAGAOKA, Finite element method applied to Biot's consolidation theory, Soils
and Foundations, 11, 1, pp. 29-45, 1971.

49. O.C. Zienkiewicz, C.T. CHANG and P. BETTESS, Drained, undrained, consolidating and dynamic behaviour
assumptions in soils. Limits of validity, Geotechnique, 30, pp. 385-395, 1980.

50. O.C. Zienkiewicz and T. SHIOML, Dynamic behaviour of saturated porous media, the generalized Biot formu-
lation and its numerical solution, Intern. J. Numerical and Analytical Mcthods in Geomech., 8, pp. 71-96,
1984.

CMEE DEPARTMENT
THE GEORGE WASHINGTON UNIVERSITY, WASHINGTON DC, USA.

Received June 21, 1995.

http://rcin.org.pl



Arch. Mech., 48, 2, pp. 311-323, Warszawa 1996

Stokes flow past a composite porous spherical shell
with a solid core

B.S. PADMAVATHI and T. AMARANATH (HYDERABAD)

A GENERAL SOLUTION of the Brinkman equations in the form of an infinite series is presented. A
representation for the solution of Brinkman’s equations is also proposed and its equivalence to the
infinite series is established. The usefulness of the representation is demonstrated by applying it to
design a general method of solving an arbitrary Stokes flow past a composite porous spherical shell
with a rigid core. Some physical properties, such as the drag and torque exerted on the composite
sphere are calculated. Several illustrative examples are discussed.

1. Introduction

In THE sTUDY of flow and heat transfer problems in porous media, two models
which have been extensively used are those due to DArcYy [1] and BRINKMAN
[2]. However, the Brinkman model seems to be favoured in some problems in
porous media, owing to the limitations of Darcy’s law. The inadequacy of Darcy’s
law in the formulation of problems in bounded porous media is primarily due to
the order of Darcy’s equations being lower than the second order Navier - Stokes
equations. A variety of flow and heat transfer problems in porous media were
solved using the Brinkman’s equations. In this paper, we give a general solution
of the Brinkman equations in the form of an infinite series by using a procedure
followed by LamB [3] in the case of Stokes equations. We also propose a represen-
tation for the solution of Brinkman equations in terms of two scalar functions and
establish its equivalence to the series solution. We shall use this representation to
study the problem of an arbitrary Stokes flow of an incompressible, viscous fluid
past a composite porous sphere with a rigid core, using the Brinkman model in
the porous region. The results obtained by MAsLIYAH er al. [4] who considered a
uniform flow past a composite porous sphere with a rigid core can be recovered
as a special case. Some illustrative examples are discussed.

2. Structure of the general solution of Brinkman’s equations

We consider Brinkman’s equations

(2.1) —Vp+uVV = ‘A—fv.

and the equation of continuity

(2.2) V.V =0,



312 B.S. PApMAvAaTHI AND T. AMARANATH

where V is the velocity, p is the pressure, j is the coefficient of dynamic viscosity,
and k > 0 is the permeability coefficient of the porous medium. Equation (2.1)
can be rewritten as

(2.3) (V2 = N3V = Vp,

where A% = 1/k.
The general solution of the equation
(2.4) (V% =% =0,

is as follows:
(2.5) U= (XnFu(Ar) + Yo Hu(Ar)xn

where X,, Y, are arbitrary constants, y,, = 7"5,(#,¢) is a solid harmonic of
degree n, and

n

5.00,9) = Z P (O(Anm cosme + By, sin me), ¢ = cosé.
HL:O

The functions F,(z) and I, (z) (= = Ar) are defined as follows,

n m n n 2
2 (2) = ,/é:[’l+%(:). "M, (z) = ,/Z[\M_%(:).

where \/21‘717”%(:) and \/zlil"m%(:) are the modified spherical Bessel functions
which are finite at the origin and infinity, respectively. The functions F,(Ar) or
H, (A7) are retained in the solution depending on whether the motion is finite
at the origin or at infinity, respectively. Suppose we assume the condition of
finiteness of the motion at the origin » = 0, then the general solution of Eqs. (2.2)
and (2.3) is

00
P= Z P,
—00
%)

(26) V= Z([(n + 1)F_1(Ar) + 7;,1«‘,,+1(A7~)/\27-2] Vo

1
—TI(21I + ])I‘1n+](/\’l")/\2["€)” - Fn(’\r)v X (l'\”) o ,\Tvpn) .
/l
where y,, ¢, and p,, are solid harmonics of positive degree n. When the condition

of finiteness at the origin is not imposed, we have an additional system of solutions
in which the functions F,,(Ar) are replaced by 7, (Ar).
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3. A representation for the solution of Brinkman’s equations

We now propose a representation for the velocity and pressure in Brinkman’s
equations (2.2) and (2.3) in terms of two scalar functions A and B and establish
its equivalence to the series solution given in (2.6). We assume the following form
for the velocity V,

V = curl curl(rA4) + curl(rB),

grad div(rd) — V2(rA) + curl(rB).

(3.1)

Equation (2.2) is satisfied identically and substitution of (3.1); in Eq. (2.3) results
in

d
(3.2) grad (p ~Hye [T‘(Vz - /\2)_4])
J . d
= ol 2 ot _ \202 - B atp o Bas 3
= ( er(V = AVHA + egcscgad)(v A°)B eé(’)(‘)(\— A )B) 3

where €., €5 and €, are the unit vectors along the radial, transverse and azimuthal
directions, respectively. Equations (2.2) and (2.3) are satisfied if

p=po+ ;L%[!‘(Vz — /\2):1],
ar

(3.3) WEVE—AH4 =1,
(VE=AHB =0.

A general solution of (3.3), is given by A = A; + Ay, where A; and A; are,
respectively, the solutions of

54 V24, =0,
' (V2= 24, =
Equation (3.1); can also be written as
(3.5) V=~2grad A + 15()1— grad A — rV2 4 + curl (rB).
From the above equation, we recover the solution given in Egs. (2.6) by assuming
B = - Z Ipn(/\‘r).\'n ’
(3.6) Ay = — f: 1 P
' =t = Au(n+1)’
00
Ay =) @2n+ DF,(Ar)s,.
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It is observed that such B, A, and A, satisfy Eqs. (3.3)3 and (3.4), respectively. It
may be noted that when the condition of finiteness at the origin is not imposed,
the functions H,(Ar) also have to be considered along with the functions £, (Ar).
Thus (3.1); and (3.3),; give a general solution of the Brinkman’s equations. Similar
representations have been considered earlier in the literature and, more recently,
in connection with the solution of Stokes equations by PALANIAPPAN er al. [5].
However, the application of the representation proposed here to the Brinkman’s
equations is new and this representation lends itself to useful applications in
problems of flows through porous media; in particular, in problems involving
spherical boundaries, owing to the simplicity of its form. This fact is exemplified
in the next section in the discussion of a general, non-axisymmetric Stokes flow
past a composite porous spherical shell with a rigid core, using the Brinkman
model in the porous region.

4. Stokes flow over a composite sphere: Solid core with a porous shell

Consider a stationary, solid, impermeable sphere of radius b surrounded by
a porous shell of permeability & and thickness (a — b). We shall consider a
non-axisymmetric, Stokes flow of an incompressible, viscous fluid over the com-
posite sphere. The Stokes equations are
;1V2V = Vp,

V-V = 0.

We find it advantageous to use the representation, proposed by PALANIAPPAN

et al. [5] for the solution of the Stokes equations (4.1), given below in the form

(4.1)

V = curl curl(rA) + curl(rB),

(4.2) ,
p = py+ ,ui ['r'VZA]
ar ’
where
43) V44 =0,
' V2B = 0.

Suppose now that the basic, unperturbed velocity is given by
4.4 Vo = curl curl(rAg) + curl(rBy),
where

Ay = Z (nnr" + o, r”+2) 5.8, ),
(4.5) el

BO = Zérirntl.‘ri(ﬂvﬁé)e

n=1
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where

Sa(8,0) = > Pl (Anm cOSM + Bryy sinme), (= cosb,
(46) m=0

n

T.(8,8) = > PI(C(Crim cOs me + Dy, sin ma),

m=0

an, o Eny Apmy Bam, Com and D, are known constants and P (¢) is the Leg-
endre polynomial. For the flow quantities in the region a < r < oo we shall use
the superscript e. Therefore in the presence of the sphere, we shall assume the
modified flow in this region to be given by (V¢, p®) in terms of two scalar functions
A€ and B¢, where

viae =0,

4.
&) VB =

The equations which describe the flow field in the porous region b < r < «
are assumed to be the Brinkman equations (2.1) and (2.2). We make use of the
representation (3.1); and (3.3); proposed for the Brinkman’s equations, to find
the modified flow (V*,p') in this region in terms of two scalar functions A* and
B', where

VIV - 394 =10,

(“48) (V2= AD)B' = 0.

We assume the following forms for these scalar functions as

AC(?", Bq ¢) = Z (O'nrn =+ “;T‘TH‘Z + T.nil + rn—rfl ) 5"(0' QS),

n=1
00

BE(T',Ha(b) = Z (&nrn -+ 7‘::1> Tn(ﬂ.,qb).
(49) A 7t=.1 . .
Al(r,0,¢) = Aj(r,0,9) + A5(r, 0, ¢),

B(,0,6) = S (1nfu(M) + g2 (M) T(6. 6).
n=1

where
. 22 el .
Ai(r,0,0) = (gn,-n + ﬁ) 5,.(6, ¢),
(4.9") iy

As(r,8,0) = D~ (6afu(Ar) + 6,,90(A7)) S0(0, 6),

n=1
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where f,(z) = ,/—27—r—!n+%(:) and g,.(z) = ,/21 K, ,1(z). The boundary conditions
z 4 2
to be satisfied at r = ¢ and r = b are
1) continuity of velocity components on the surface r = a

4(a.0.9) = q;(a,0,0),
(4.10) 45(a,0,9) = 4j(a.0,9),
45(2,0,0) = qy(a,6.0);

2) continuity of stresses on the surface r = a

17 (a,0,6) = T}, (a,6,9),
(4.11) (a,0,¢) = Tiy(a,b, ),
Tty(a,0,8) = Tiy(a,0,0);

3) no-slip conditions on the surface r = b

(/f,(b, 0,¢) = 0,
(412) 4h(6.6,6) = 0,
q,(b.8,0) = 0,

where ¢., q; and ¢}, are the radial, transverse and azimuthal velocities, 77, is the
normal stress and 77, and Ir‘ﬁ are the tangential stresses in the region b < r < a.
The corresponding velocities and stresses in the region a < r < oo are defined
in a similar manner using the superscript ¢.

In terms of the scalar functions which appear in (4.8)-(4.9"), the boundary
conditions (4.10)-(4.12) can be restated as follows

A(a,8,0) = A'(a.6,0),

A¢(a,8,¢) = A'(a,0,d),

A (a8, ¢) = A (a.0.0).
a(AS,, (a,0,¢) — AL (a,0,0)) = —/\2;—)(12»‘1{)((1.0.(,’)),
ar
(4.13) B(a,0,0) = B'(a.8, ),
Bf(a,8,¢) = B'(a,0,0),

A'(b.8,¢) = 0,

AL(b,8,0) = 0,

Bi(b,8,9) = 0.

The functions A%, B¢, A" and B’ which correspond to the modified flow can be
determined by determining the nine unknown constants /3, 3/, 0,, .. €0, 6,4, 6!

n’
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Yn, and 4. from the nine equations (4.13) in terms of o, !, &, Ay Brums Cam
and D,,,. The nine unknown constants are determined to be as follows:

numb
P = deno ’
numb’
Al =
P deno ’
- nume
"7 deno’
. nume’
" deno ’
numd
4.14 b, = s
( ) deno
§ = numd’
K deno ’
sn(1+2
Oy = — |a+ c(Tnn) ’lznfn,
14 2n)a™ g, (b
o= Qb
14+ 2n)a™ ' f,(\b
LR IEROH,

where

deno = 2a™ " P INI[(1+ ) 20A2 + na?0? TN — n(1—4n2)a " b]a,
+(1 = 20)A[(1 + n)a**?"b + nab** 2",

+n(1 — 4n®)a"b** e, + n(1 — 402)a" 20",

—n(l + 2)1)/\(:21;”2"3,, —-n(l - 4112)(:.1)”2"!,1},

numb = > %" IN32n — 1){[®> 30221 + ) + 2a*" (1 + n)(1 + 2n)
+a2 0¥ 2\, + 2abA [T + ) + 0¥ b,

—2a"0"*3(1 + n)(1 + 2n)e, + 2220 n(1 + 2n)r,

—a®0"™ A (1 + 2n)s,, — 2ab (1 + 20)t, o,

+a" I + 2n){ab[a® AN + n)

+a3 b Y + 4022\ (20 + 5)

—4a*"(1 — 4n®)(2n + 3) + 422> 2n + 3)]a,

+abA[4a® X1 + n) + 40PN

—4a® N1 = 20)(2n + 3) + 4671 = 20)(2n + 3)]b,

+2a"0" (1 + 20)[2(1 = 20)(2n + 3) — 32%ac,

http://rcin.org.pl
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[cont.] — 2a™ 2" (1 + 2n)[3¢*A% - 2(1 — 2n)(2n + 3)]r,,
—a* ¥ I + 20)[a*APn + 4(2n + 3)]s,
—4ab®* (1 + 20)[a® X0 + (1 = 2n)(2n + 3)]t, }a',,

numb’ = —a®" %" *2(1 + 20)AH[a®" (1 + n) + b2 1] Nay,
—b*"n(1 + 2n)s, }an
@657+ (3 4 20) X3 {[a®F20A2(1 + n) + «%¥ 202
+2a2 (1 + 2)(1 + 2n)]an + 2A[¢*T2(1 + n) + ab® b,
+2a"0" (1 + 2n)e, — 2a"T20"(1 + n)(1 + 2n)r,
—a2b¥* An(1 + 2n)s, — 2ab*n(1 + 2n)t, }o,,

numd = 2a2" 35" 1A2(1 - 402){a" 10 (1 + 2n)g,(Aa)
AP0 4 (1 + 0)]ga_1(AB) — b2 (1 + 2n)g, (AD)} o,
+2a® O IN(1 + 20)(3 + 20){[¢*"T2bA(1 + n)
+22ab¥ 20— 2a70(1 — 4n?)]g,_1(Ab)
—a™ 2" A(n — 2)(1 + 2n)g, (Aa) + 2a" 1" (1 = 4n%)g,_1(\a)
+ab®> An(1 + 2n)g, (\b)} o,

numd’ = —2)\2(1 — 4112)r1.2"+51)"+1{u"“b”n(l + 2n) f,(\a)
FAP 20+ a2+ 1)) f_ 1 (AD)
—bz"Hn(l + 2n) fn(AD)}a,
+20(1 4 20)(3 + 2n)a® OGN + n) [, 1 (AD)
+a" 20" A - 2)(1 + 2n) [, (Aa)
+2a™"(1 = 4n®) f_1(Aa) + ab® A2 S, (Ab)
—ab® (1 + 20)A [, (Ab) — 2a20(1 — 4n?) f_ 1 (AD)}al,,

nume = —2/\3a2"+5b”+2n(1 - 4112)[u“+lan - 1)"+lc,l]ﬂn
+222a2 721 + 20)(3 + 2n){a"(n — 2)Aay,
—2a"(1 = 2n)b, — b"* 'nAe, Yo,

nume’ = 222> 02"+ 2(1 — 4n®){ A" na,, — b u(1 + 2n)s,
+Xa"b(1 + n)e, }ay,

+ AP O2 (T + 20)(3 + 20){-202a%0" T (n — 2)a,,

+4xab™ (1 = 20)b, + (4a"b(1 — 402) — 2X%a"20(1 + n))e,

+2Xa?b"(n = 2)(1 + 2n)s, + 4ab™(4n? — D, }o!

n?
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and

= ga(Aa) [r-1(A0) + [r(Aa)gn_1(AD),

b = gn-1(Aa) fim1(A0) = fr1(Aa)gn_1(AD),
¢n = gn(A0) fuo1(AD) + [r(Ab)gn—1(AD),

Tn = gn(Aa)fn_1(Aa) + fr(Aa)g,_1(Aa),

Sp = gn(/\“)f‘rl()‘b) - fn(’\a)gn(’\b)v

th = gn(Ab)fu-1(Aa) + fu(Ab)gn—1(Aa).

5. Drag and torque

The force exerted by the fluid on the composite sphere is given by
(5.1) D =X/Y,
where

(5.2) X = {lZTru)\(zz{(2a3 + b¥)Aay — 30%s1 }ay
+20m pa{(2a* A + ab®A? + 12d%)a; + 20 Q2a® + V)b
+6b%c; — 12a%r — 3ab*rs; — 6b211}a’1} (A3 + BuJ + Agok),

= 6rpra?{(2a® + b*)Aay — 36251} [Volo
+rpa{(2a* N2 + ab®A? + 12a%)a; + 202a® + bP)b
+6b%c; — 12a%ry — 3ab®As; — 6b%11}[VVp]o.

(see Appendix)

(53) Y = {(2a*\? + ab®)? + 3a¥)a; — A3 + )b,
—'3[)2C1 - 3(!27‘1 - 3(1[)2/\.91 & 3()21'.1},
and where Vj is the velocity corresponding to the basic flow, and [ ]y denotes

the evaluation at the origin r = 0.
Similarly, the torque T is given by

3als,
My

2 =
= drp {a3 + 3“—5]} [V x Volos
Y

(5.4) T = 8mp {(L3 o }£1>(C‘11?+ D]l,j + C’l()l:‘),

(see Appendix).
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It is found that when a = b, in the limit & — 0, i.e., A\ — oo, we recover the
well known Faxen’s laws [6] for drag and torque acting on a rigid sphere of radius

a, i.e.,
55) D = 6rpa[Volo + w;ur”[vzvo]o,
' T = 47ru(13[V x Volo-

Similarly, when b = 0, we recover the expressions for drag and torque obtained
by PADMAvVATHI and AMARANATH [7] for the Stokes flow past a porous sphere, i.e.,

12rpa® A2 fi(Aa)[Volo

B ((2a%)% + 3) fi(Aa) + 2a) fo(Aa))
(5.6) 2ru[(a’ A% + 6a%) f1(Ma) — 2a* ) fo(Aa)][VZVolo
) ((2a%2A2 + 3) f1(Aa) + 2a) fo(Aa)) '
a3 a) — 3a%fi(a

6. Effective viscosity

The effective viscosity ;* of a dilute suspension of composite porous spheres
with rigid cores, each of outer radius « is found (as in [7]) to be

SR
(6.1) pt=p {1 + EJJ} i
where
R = a)\[(3a® + 2b°)Aay — 10b%s,),
(6.2) S =2[(ar?Ba® + 2b°) + 30a*)a; — 3A(3a” + 20°)b,
—10ab(3b%ca + 3a’ry + Absy) + 300%5],
where & denotes the concentration by volume of the fluid containing the spheres.

When a = b, in the limit & — 0, we obtain the well known formula due to
EinsTEIN [8] for the effective viscosity of a dilute suspension of rigid spheres

(6.3) we=p {1 + %IP} ,

When b — 0, we recover the formula obtained by PADMAVATHI and AMARANATH
[7] for a dilute suspension of porous spheres of radius a

. 5(a®X3 fo(Aa) — 3a2A2f1 (M)
(&4) S {1 i 2[(a3X3 + 10a)) fo(Aa) — 30_/'1(/\(1)]45 '
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7. Examples
7.1. Stokeslet

Consider a Stokeslet of strength Fy /87 located at (0,0, ¢), ¢ > a, its axis ex-
tending along the positive direction of the z-axis. The corresponding expressions
for Ag and By due to the Stokeslet are [5]

Ag(r,0,9) = o (rcosb‘—c+ R)—— ers
8y rsinf’
o sin ¢
Bo(r.,8, ) = e (r cosf — ¢ + Ry)——— e
where
(h2) R% = r2 4 ¢* — 2er cosé.
For r < ¢,
o T.n+2
£ s 07 "
o(r, 8, ¢) = 87?/ g (n + 1)(2n + 3)cn+2
(TI . 2)’.11 o
(73) TI(Tl + 1)(2” — 1)(-n PH(Q)COS (ba
. = Fl - rh et 5 |
Bolrs.9) = 2o ; [n(n + ])r"“] Fi(Qsin¢.
The drag D and torque T are given by
(7.4) D = %111

where

M = (3ra*c*{(2a® + b*)Aa; — 3b%s))
+a>{(2a* A% + ab®X? + 12a%)a; + 2)0Q2a® + b*)b,
+6b%c; — 12a%r) — 3abPAs; — 66%11}) ,
(7.5) N =4{(2a*)* + ab®\? + 3a%)a; — A\2a* + b*)by

~3b%cy — 3a’ry — 3ab*As; + 3b2t1},
3&281 F] -~
T=(d+ 4.
((l /\il ) C2J

http://rcin.org.pl
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As before, the results for the rigid case [5] are recovered by putting £ — 0 i.e,
A — oo and a = b.

(7.6) X

Similarly when b — 0, we recover the results obtained for the case of a porous
sphere [7]

. (3a3¢2A? + a5A? + 6a3) fi(Aa) — 2a* ) fy(Ma) I

- 2063[(2a222 + 3) fi(Aa) + 2aX fo(Aa)] "
a3 fo(Aa) — a2 fi(Aa) -
e2) fo(Aa) '

(7.7)

T =
7.2. Uniform flow

The basic, undisturbed flow is given by

A o & 50
0= 57 cosd,
By =0,

6 pura?{(2a® + b*)Aay — 3b%sy }U =~

d D= k
(7.8) {Zay — M2a3 + b3)by — 3b%¢y — 3a%ry — 3ab?\sy + 3b%1) }
T=0,

where

7 = 2a*\? + ab®)\? + 34
This result agrees with that of MasLivaH er al. [4] who solved the uniform flow
past a composite porous sphere with a rigid core.

8. Conclusions

An infinite series solution and a representation for the solution of Brinkman’s
equations are presented. They are shown to be equivalent. It is found that this
representation is very useful for discussing an arbitrary Stokes flow past a com-
posite porous sphere with a rigid core, and a general method is suggested for
finding the solution. The formulae to calculate drag and torque are given. The
effective viscosity of a dilute suspension of composite porous spheres with rigid
cores is calculated. The previous results pertaining to Stokes flow past rigid and
porous spheres are recovered as special cases. It may be noted that the method
suggested in this paper can also be used effectively to discuss the problem of
Stokes flow past a porous spherical shell, where the rigid core in the present
problem is replaced by a region filled with a viscous fluid.
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Appendix
[Volo = [2grad Aglo = 20q[Ani + By1j + Aok],
[V*Volo = 20ai[Ani + Buj + Aiok],
[V x Volo = 26[Cnii + Dyij + Ciok].
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Two-dimensional Hooke’s tensors — isotropic decomposition,
effective symmetry criteria

A. BLINOWSKI, J. OSTROWSKA - MACIEJEWSKA
and J. RYCHLEWSKI (WARSZAWA)

ANY FOURTH RANK plane tensor H obeying the “Hooke’s” symmetries (H;,x; = H,00 = Hyyyy)
can be split into three parts, behaving differently under the two-dimensional space rotation and
belonging to the three different, mutually orthogonal, two-dimensional subspaces remaining stable
under the rotation. Such representation leads to a convenient set of functionally independent
invariants, vanishing of some of these invariants demarcating the transitions of the tensor to the
higher symmetry class. A non-trivial effective condition of orthotropy has been obtained. Some
problems concerning the necessary and complete set of measurements of the elastic propertics are
also encountered.

1. Introduction

LARGE VARIETY of engineering problems of structural mechanics concerning the
applications of natural or man-made anisotropic composite materials can be effec-
tively analyzed with the use of the plane stress and/or strain state concepts. Thus
the convenient description of the plane elasticity and limit criteria is not only of
theoretical, but also of practical interest. In some recent papers [8, 9], it was shown
that some problems, which, due to their discouraging complexity, look rather bor-
ing and demanding time-consuming analysis in general (three-dimensional) case
(cf. [5]), can be, with moderate efforts, effectively solved in the plane case.

In the present paper the authors will demonstrate an effective description of
the properties of Hooke’s tensor making easier both the better comprehension of
the matter and the practical applications of the results. Almost all the considera-
tions can be applied without change to elastic stiffness and/or compliance tensors
as well as to the quadratic limit condition tensor. The results, together with the
earlier obtained results presented in [8, 9] exhaust most of the practical aspects
of the description of anisotropy of the plane, linearly elastic and quadratic limit
properties (1).

2. Hooke’s tensors

Our subject are plane tensors of the fourth rank H @ 74, having the following
internal symmetries:
(2.1) Hiji = Hiig = Hijue = Hiij

(') Some interesting but purely theoretical problems, like the polynomial integrity basis, remain out of the
sphere of our interest in the present paper.
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The most important tensors of this kind are the stiffness tensors and the com-
pliance tensors of the theory of plane elasticity, thus in [3] it was proposed to call
them Hooke’s tensors. Among the applications of Hooke’s tensors one can men-
tion their role as linear operators o — H-a, bilinear forms (a,3) — a-H-B or
as quadratic functionals a — a-H-a, e.g. functionals of energy or the limit stress
intensity [1]. A Hooke’s tensor H can play a role of the stiffness or compliance
tensor only if a.-H-a > 0 for every ot.

In the present section we shall present the important decompositions of the
Hooke’s tensors, useful for the analysis of the symmetries and the invariance. It
would be convenient to begin with recalling the notions and the notation for the
second rank tensors.

2.1. Second rank plane tensors

All the isotropic orthogonal decompositions of the plane second rank tensors
are included in the following formula:

(2.2) Th=8S+A=P+D+A, 2*=3+1=1+2+1,

where S is the three-dimensional space of plane symmetric tensors a’ = a, A is
the one-dimensional space of skew-symmetric tensors a' = —a, P is one-dimen-
sional space of isotropic tensors ul and D is the plane of the two-dimensional
deviators: " = a, tra = 0. These decompositions are orthogonal, § | A, P L
D. To these decompositions correspond the following orthogonal decompositions
of unity T of E® E (see (A.S))

(2.3) I=Is+TIa=Ip+1Ip+1,,
where
1 i
Zs)ijr = > (Birdji + 6i1bjk)
1
Zp)ijr = 5%«”1\-1-

The unity Zs of the space S (see (A.5)) acting on the second rank tensors,
o — Is-a, performs an orthogonal projection of the space 7; onto the S space,
hence Zs-a = o iff a € §. The other unities Zp , Tp, Z4 act in a similar way.

In the forthcoming considerations the one-dimensional space A and its unity
7 4 will remain out of the scope of our interest.

Taking an arbitrary Cartesian basis w;, w7, w3 in & and an arbitrary Cartesian
basis T, T, in D, one can write

Is = W QW) + Wy W wy + w3 ®w;y,

(2.4) Ip =TT+ T2® T2,

1
Ip = 51@1.
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For every tensor w € S takes place the well-known spectral decomposition
(2.5) W = wiw; ® Wy + wrawy & Wy,

where wy, wy is the Cartesian basis in the physical plane ww; = wiw;, Wwp =
wowy. Thus every deviator has the following canonical form:

(2.6) T=dod-d* @dt =2d@d- |d]*1,
where d-d*+ = 0, |d| = |d*|. It can be also represented as T = m @ n + n® m,

n-m = 0. The interpretation of the deviators as stresses is shown in Fig. 1; thus
we shall further call them pure shears.

vl

Vo
/

FiG. 1.

The following expression, uniquely representing a tensor w € & as the orthog-
onal sum of the isotropic tensor and the pure shear:

(2.7) w=rl+T=7r1+dd-dtodt

we shall call the isotropic decomposition of a second rank tensor.
The rotations R (and the mirror reflection M) of the physical plane act in 7
according to the rule: o — R * o, where

(2.8) R*oa = RaR'.

One-dimensional subspaces P, A are the axes of every rotation R«. In the plane
of deviators D, a rotation R(p) of the physical plane by the angle ¢ acts as a
rotation R(y)* by the double angle 2¢ (Fig. 2). Indeed, since

(29)  R(p) = cosed +singdt,  R(p)dt = —singd + cos pd*
thus
(2.10) T-(R+T) = |T|>cos 2.

The action of the mirror reflections is similar.
If a Cartesian basis (n;,n3) in the physical plane is chosen, then the vec-
tors x are represented by the pairs of numbers (z;,z;) and the tensors by the
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P

&

] DR((D)*

*T

20

D R

Fi1G. 2.

number-valued matrices 2 x 2 (a;;). Then

cosp —sing
sing  Ccos

ayp ap cosp  sing
ay; ap||—sing cose |

10
1~[0 ]], R(p) ~

(2.11) _
cosp —singp

R*+o ~

singp  Ccose

2.2, Decompositions of Hooke’s tensors

During the last decade the spectral decomposition of the elasticity tensors
(which can be traced back to Lord Kelvin and has been recalled by J. RyCHLEWSKI
in early eighties [2]), is becoming almost canonical and even finds its way to
textbooks [10]. In the plane case, such a decomposition of the two-dimensional
Hooke’s tensor has the form

(2.12) H = xyjwi ® wi + xpwi @ wip + xmwm © wir,

where the tensors w,. (K = I, II, III), called the proper states — the eigenelements
of the symmetric linear operator o« — H-cx constitute an orthonormal basis

(2.13) Wy w, =6y,

X, being the corresponding eigenvalues (?).
It is not difficult to observe that, if one of the proper states is a pure shear,
then the other two should be mutually coaxial. Indeed, if, say, wyy; is a deviator,

(?) For the case of the elastic stiffness tensor S J. RYCHIEWSKI proposed [2] to call these eigenvalues denoted
by A the Kelvin moduli, their reciprocals 1/ . are the eigenvalues of the elastic compliance tensor C, which
has the same elastic proper states as S, while the independent parameters, defining the elastic proper states K
he proposed to call the stiffness distributors.
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then there exists such a basis in the two-dimensional space that

0 L
(214) Wiy ~ 1 \/i
— 0
V2

Thus, due to the orthogonality condition, the other two proper states should have
in the same basis the following diagonal representations:

cos a 0 — sin « 0
2.1 ~ ~
(2.15) " l 0 sin a] ’ Wi [ 0 cosa]

(we recall here that o has nothing in common with any rotation, it is merely a
convenient parameter).

Obviously, such a set of proper states describes the orthotropic material —
the reflections with respect to any of the two common proper axes of w and wy;
merely changes the sign of wyyy leaving C unchanged. Moreover - vanishing of the
trace of at least one proper state is the necessary condition of orthotropy. If the
pure shear T along the orthotropy axis were not a proper state, then it would give
rise to non-vanishing diagonal terms in H-7 tensor. The reflection would change
the sign of T while H-7T would change according to a different rule (diagonal
terms are insensitive to such a transformation) i.e., against the assumption, the
reflection would not preserve the shape of H.

According to (2.6), the rotation by 7 /2 interchanging the vectors d, d* (the
change of sign is insignificant) transforms arbitrary traceless tensor T into —T,
hence if in (2.15) a« = 7 /4, then we are dealing with the tetragonal symmetry
(the symmetry of the square). Observe that in such a case the hydrostatic state,
(proportional to the unit tensor) must be a proper elastic state.

At last, if the two Kelvin moduli, corresponding to the two pure shear proper
states, are equal — one obtains the case of isotropic material. We shall prove in
the forthcoming consideration, that no other symmetries of the plane Hooke’s
tensors are possible.

The spectral decomposition (2.12) is an exact counterpart of the spectral de-
composition (2.5). Let us find a counterpart of the isotropic decomposition (2.7).

The rotations of the physical plane R act on the fourth-order tensors according
to the rule A — R « A (see (A.2)). It is evident that every Hooke’s tensor H,
being rotated preserves its “Hookean nature”, any linear combination of Hooke’s
tensors produces again a Hooke’s tensor. Thus the set of all Hooke’s tensors is
the tensorial space (see (A.2)) H C 74. For further considerations only this space
will be of our interest; it is evident that dim H = 6. We have to find an isotropic
decomposition of the space H.

The earlier introduced unities Zs, Zp, Zp are Hooke’s tensors. Moreover, every
isotropic Hooke’s tensor is a linear combination of the two arbitrarily chosen
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tensors out of this threesome. In such a way we obtain the tensorial plane 7 C 'H
consisting of the isotropic Hooke’s tensors. The pair Zp, Ip is an orthonormal basis
in .7, thus every isotropic Hooke’s tensor has a unique orthogonal decomposition

(2.16) I = ApIp + ApIp, IpIp = 0.

The orthogonal complement of this plane 7+ is a four-dimensional tensorial
space. Its possible isotropic decomposition can be only of the following form:
J+ = A+ B,4 =2+ 2. Indeed, all one-dimensional tensorial subspaces in H
belong to 7. The conditions of orthogonality of the tensor H to .7, Ip-H = 0,
Ip-H = 0 are of the following form

(2.17) 1-H-1= H;;; =0, TrH = Hi;i; = 0.
These conditions meet e.g. all the tensors from the set .A of the following form:
(2.18) 1T+ T®1, T€D.

Since for every rotation R« the tensor R+(10T+7@1) = 1@ (R+T)+(R+T)2 1
remains in .4 and every linear combination of the tensors from A belongs to A,
thus A is one of the two tensorial planes in 7+, dimA = dimD = 2.

The last component of the isotropic decomposition of the space M is the
orthogonal complement B of the space A in 7*. Let us find the general form of
the tensors D € B. From the orthogonality condition D L A we have (1:D).T = 0
for every T € D. Combining this with the condition 1-D+1 = 0 one can see that
(1-D):a = 0 for every o € S, therefore 1:D = 0 € S. Making use of the spectral
decomposition

(2.19) D = \w ® wr + Apwir @ wip + A @ win
from the conditions 1-D = 0, TrD = 0, one obtains readily

Artrwp = Atrwyp = Atrwyp = 0,

(2.20)
A+ A+ A = 0.

The only solution, other than D = 0, is the following one

(2.21) Al = —Ap, A =0, trwp = trwy = 0.

Thus every tensor D € B can be uniquely expressed in the following form

(222) D=1@T-T'@7 ' =2r@1-|7}%1Ip,

where 7.7+ = 0, |7| = |[7]. Tt is not difficult to check that the tensor D is

totally symmetric and traceless, i.e.

(2.23) Do (iyo()otkyotty = Dijki s Diiw =0,
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where o is an arbitrary permutation. Thus the plane B consists of the plane fourth
rank deviators [3] (). Thus, concluding:

Isotropic complete decomposition of the space of plane Hooke’s tensors has the
following form
(2.24) H=J+ A+ B, 6=(1+1)+2+2,

where J is the plane of space of isotropic Hooke’s tensors, A is the plane of the
tensors: 10T + T® 1, T denoting pure shear, B is the plane of the fourth-rank plane
deviators. In other words: the isotropic decomposition of every plane Hooke’s tensor
has the following form:

(2.25) H=/\pI'p+/\DIp+(1®T+T®1)+D,

the four components defined above being mutually orthogonal; invariants Ap and
Ap and the deviators T, D are the linear isotropic functions of Hooke’s tensor.(*)

The rotation R(g)+ is a rotation of the six-dimensional space H around the
fixed plane 7. It is evident that the tensorial plane A rotates by the double angle
2. The deviatoric plane B rotates by the quadruple angle 4¢, because, according
to the formulae

R(p)* T
R(p) * T+ = —sin2¢ T + cos 20 T+,

cos2p T + sin2p T,

(2.26)

taking D= T® T — T+ ® T, one obtains

(2.27) D-[R(¢) + D] = |D|*cos4¢.

3. Hooke’s tensors as the second rank tensors

The intriguing similarity between the canonical forms of the pure shears T
(2.6) and the Hooke’s deviators D (2.22) can be noticed. The explanation of
this fact is simple and leading to the well known techniques of handling stiffness
tensors, commonly used in the engineering applications.

The space 74 can be considered, if it is convenient, as any tensorial product
7, ® T;, t + j = 4. The representation 74 = 7, ® 7, turns out to be especially
useful; it means that the tensors of the fourth rank are considered as the “second”
rank tensors from the sequence ®” 75, p = 1,2,... . This is particularly useful
in the case of the Hooke’s tensors.

() The last expression wil be called the canonical forn of the deviator D; (in |3] the canonical form of the
plane deviator of arbitrary rank has been shown).
*) 20p = L'Hel, 2p=TH-\p, 27=H1-)\pl,

1
D=H+A\pIp - A\pIp-— E[("'l) RI+1@ ("'l)l
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The space of the plane symmetric second-rank tensors is the symmetrised
tensorial square of the physical plane E,

(3.1) S =symE @ E, dimS = 3.

Quite similarly, it is convenient to consider the space of the Hooke’s tensors as
the symmetrised tensorial square of the S space,

3.2) H=symS @S, dimH = 6.

In other words: Hooke’s tensors can be considered as the symmetric “second
rank” tensors, generated by the tensors a € S, exactly in the same manner as the
tensors a € S are generated by the vectors x € E. Such a viewpoint is correct and
useful, under the following important condition, however: the orthogonal group
O(S) of the transformations of the Euclidean three-dimensional space S contains
such rotation and mirror reflections, which are not generated by the rotations and
the reflections of the physical plane E, for example, the rotation transforming the
isotropic tensor 1 € P into the pure shear T € D, |T| = |1| = v/3. Such rotations
and reflections remain out of the scope of our interests.

If {ux}, K = LI, 1T is a Cartesian basis in S, then {v, v} is a Cartesian
basis in S @ S, thus we can write

(3.3) H= Hpp(v, ®v,).

Symmetrising dyads v, @ v;, one obtains a basis in the space of the Hooke’s
tensors.

The usefulness of the description of the Hooke’s tensors as the “second rank”
tensors can be demonstrated using the three following examples:

1. Taking in the last relation the proper states w,. of the tensor H as the base
elements v,., one obtains the spectral decomposition of the tensor H (2.12).

2. According to the new view on H, we shall express the rotations &« — R+ a
and H — R + H in the following form

(3.4) R+ra=Ra, R+H=RoHoR',

where R S®S, RT o R = Is.
Since oo — R+ at is the rotation of the three-dimensional space S around the
unit base vector 1/v/2 by the double angle (Fig. 3), therefore (°)

(3.5) R =1Ip +cos2¢Ip +sin2¢Ep,

(®) This is a generalization of the rotation in the three-dimensional Euclidean vector space around the unit
vector n by the angle o, R=n®n + cos¢ (1 — n®@ n) +siny E, where E = np Anp = ny ¢ np — ny @ nyg and
{ny, my, n} is an orthonormal basis.
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12

Fia. 3.
where Ep is the tensor of orientation of the deviatoric plane D, i.e.
(3.6) Ep=apB-Pfoa,

where {o,[3} is an arbitrary basis in D left-oriented in the orientation of Ep.

3. Let us adopt in S an orthogonal basis, generated by the isotropic state
1 € P and the pure shears o, B € D, o = 0, || = |B| = V2. Symmetrised
and normalised tensor products of these tensors generate the following Cartesian
basis in H:

1
B, = Tp. B, = —1p,
e T2
1 i
37) Bi=—(@a+aal), Bi=—(10B+Bal),
()32\/5( ) 1) 42\/§(ﬁﬁ)

1 1
Bs = —(ax@aoa-p0®P), Bs=—=(@@P+P®a)
5 2\/5( ¢ P ©P). 6 2\/§( B+P o)

Clearly the pairs (By,B;), (B3, B4), (Bs,Bg) are the bases in the correspond-
ing tensorial spaces .7, A, B. Hence the matrix of rotation R+ has in the basis
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By,...,Bg the following form:

1
1
cos2p —sin2yp
sin2¢  cos2p
cosdyp —sin4yp
sindp cosdy |

(3.8)

The decomposition
(3.9) H=1B;+...+ H¢Bg

can be reduced by denoting

1
3.10 T=—= (o0 + H403), D = HsBs + H¢B
(3.10) 2\/5( 3 aB) sBs + 11sBs

to the isotropic decomposition (2.25).
The last example leads to some interesting relations, which will turn out to be
useful in the forthcoming considerations. Introducing the following notation:

Ry = \H}+ 1], Ry = \/HE+ HZ,

, Hs i Hy
53 = — sinfl = —

(3.11) cos / 7, sin i
cosy = & siny = &
T= T’ ™= 5"

one can write
(3.12) H = 1,B) + 2B,y + R(cos 3B3 + sin 5B4) + [a2(cosyBs + sin yBg).
The angles 3 and v are not merely the handy parameters, they change under the
rotation of the physical plane. Using the representation (3.8), one can write
(3.13) R+H = B + ;B + I [cos(F + 2¢)B; + sin(F + 2¢)By]
+ Ry [cos(y + 4¢)Bs + sin(y + 4¢)Bg].

This relation clearly discloses the geometric interpretation of the angles 3 and 4
(see e.g. Fig. 4).

Let us establish the way of choice of bases in § and in S® S. Let {n;,n,} be
a Cartesian basis in the physical plane E; we shall adopt the following Cartesian
basis in S (%)

1

(3.14) vi=nm ®ng, Vi =n; ®ny, Vi = ﬁ(nl ©ny + Ny 2 my).
Note thatv; +vy=1¢€ P,vy —v € D,y € D.

(%) The coefficient 1/+/2 in the expression for vy is essential. Taking instead the symmetric part (1/2)(n; @
nz + nz @ ny), we would not obtain the Cartesian basis, compare [12].

http://rcin.org.pl
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'y
B.4 &S
7, D

vo R AR

S

Fia. 4.

In § ® S we shall take the Cartesian basis vi @ vy, K, L = I, II, III. The
expressions for the tensors o € S and A € S® S,

(3.15) o = ajvp, A=A ® U_])

in the fived basis {n,n,} are determined by the mutually unique relations:

(43} a1
(3.16) o~ | = 22 5
3 \/i(lqz
Ann A Agp Anu Ann V2Aun
(3.17) A~ | Ay Ap An| =| Aupn Ay V24|
Az An As V2411 V2Ann 2450
(318) Q.p,. = “ijﬁij = (1°B.
(3.19) Aryg U]_} = Aijkl B,'J'H = A-B;
MOreover:
(320) E; = C[J(.lJ < & = C;jk[(r“ < [3 = C~(X,
(3.21) Apy = BikCky & Aijkt = BijpgCport & A= Bo C.

http://rcin.org.pl
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The representations of some important tensors have the following form:

1 00 1 1 1 0
I~1|0 1 0], Ip ~ 3 11 0],
0 0 1 0 0 0
(3.22)
’ 1 -1 0 1 0 0 -1
ID £~ 5 -1 1 O ) E”D s, —2 O O 1 N
0 0 2 1 -1 0
while, for the base tensors By, one obtains
1 110 ' 1 -1 0
Bi~5 (11 0], 32—2—110,
0 0 0 0O 0 2
y 1 0 0 1 [0 0 1
(323) B3~— |0 -1 0], By ~ 5 Q o 1,
% 0 0 0 (1 & 1
1 1 -1 0 1 (0 0 1
Bs~ — | -1 1 01, Bs~=-(0 0 -1
; 2
2v2 0 0 -2 1 -1 0

Under such a choice, the components //; of the Hooke’s tensor H in the base
By and the components of the “second rank” representation of the same tensor
H;; are related by the following equalities:

Hy+ Hop+2H 5 Hy+ Hyp—2H1y+2H5;3
[]1 = N ][2= )
2 2v2
Hy —Hyy
3.24 Hy= ———— Hy = (H 3+ H33),
(3.24) H; 7 a = (Ih3+ 1)
Hyy+ Hyp—2H1—-2133
s = " He = (Hi3— ).
5 Wil 6 = (Hi3— 1)

At last, the representation of the rotation tensor R given by (3.4), (3.5) has the
following form:

i 1+cos2¢ 1-cos2¢p —v2sin2yp
(3.25) RrrL ~ 2 1-cos2p 1+cos2¢ 2sin2p
V2sin2p —v/2sin2¢  2cos2p
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4. Invariants and symmetries — effective formulae
4.1. Symmeltries

The problems of the symmetries of plane Hooke’s tensor has already been
discussed in the previous section in terms of proper elastic states and Kelvin
moduli. In the case of the “second rank” representations, the matter is also not
difficult if only an axis of the presumed symmetry is known. In such a case,
taking one base vector, say n; along this axis, one can determine the convenient
“second rank” representation I, of the Hooke’s tensor (7). Inspecting the shape
of this representation and recalling some considerations from the Subsec.2.2,
particularly the expressions (2.15), (216) and the two subsequent paragraphs of
text, one can easily tell, what kind of symmetry we really observe, depending on
the shape of the representation of the Hooke’s tensor, namely:

full symmetry (isotropy),

a b 0
Hgp~ | b a 0 .
0 0 (a-0)
symmetry of the square, (tetragonal),
a b 0
Hip~ 10 a 0
0 0 ¢
symmetry of rectangle (orthotropy)
a b 0
Hgp~ b ¢ 0
0 0 d

The problem arises if we find //13 and/or /153 different from zero: it is difficult
to say, in this case, if there is no symmetry at all or, maybe, we have chosen a
wrong axis. We must check up in this case if there exists such a rotation by the
angle ¢ which annihilates the terms containing B4 and By in the expression (3.13).
To this end the following two relations must hold true:

sin( + 2¢) = sin 3 cos2p + cos Fsin2¢ = 0,

4.1

(1) sin(y + 4¢) = siny cos4p + cosy sindyp = 0,
or

(4.2) tan2¢ = —tanj3, tan4e = —tan~.

(") The corresponding measurement rules will be discussed in the last subsection of this section.
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These two equations can be fulfilled simultaneously if the following relation holds
true:

2tan g
(4.3) tany = wn

———— =tan2p.
1 - tan?p3 coo

Using (3.11) one can rewrite this condition in terms of the representation of
the Hooke’s tensor in the basis {By } obtaining the following effective symmetry
criterion for the Hooke’s tensor H:

Hooke's plane tensor H obeys at least orthotropic symmetry if and only if the
components of its representation in the basis {By } fulfil the following relation:

(4.4) Js = (H? - H)Hg — 2H3HyHs = 0.

We shall prove in the next subsection that Js is invariant under rotation (but not
under reflections). The condition (4.4) is trivially fulfilled, if 2, and/or R vanish.
Looking at the relation (3.13) one can readily observe that:

Ry = 0 yields symmetry of the square, while simultaneous vanishing of Ry and
Ry give rise to the isotropy of the Hooke’s tensor.

As it has already been shown, the presence of the plane of symmetry bears
orthotropy. We shall prove now that

The only possible non-trivial (i.e. different from the total isotropy) rotational sym-
metry of the plane Hooke's tensor is the invariance under the rotation by /2 — the
tetragonal one.

Indeed, in virtue of the uniqueness of the tensor decomposition in given or-
thonormal basis and the functional independence of sin(+) and cos(+), to preserve
the plane Hooke’s tensor under the two-dimensional rotation by the angle 27 /n
one has to fulfil the following two conditions:

4
(4.5) A+ TN =f+2rm  or R =0,
2
8
(4.6) v+ _n’i =y+2tk  or Rp=0,

where n, m and k are arbitrary integers. The only (non-trivial) solution of (4.5)
and (4.6) is: Ry = 0, n =4, k = 1, what proves our assertion (%).

(*) One may ask, why by cutting off a slice perpendicularly to the axis of the trigonal symmetry of the
three-dimensional body we are gaining additional rotational symmetry? A closer inspection of the case shows
that the trigonal symmetry of the threc-dimensional body is connected with shearing in the planes orthogonal
to the axis of the trigonal symmetry. This shearing stiffness is immaterial in the case of a planc state.
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4.2. Invariants

Looking at the relation (3.13) one can tell at once that the following four
quantities:

= Hy = 3(Hy Ha + 2 ),

Ja

1
Hy = —=(H 1 + Hyp — 2H 13 + 2H33),
@7 2V2

1
Ji=Ri=H}+H}= 5 = Hpn)? + (Hyz + Hx)?,

Ji = R=HZ+ HE

1
g(Hll + Hyy — 2Hyy — 2H13)? + (Hy3 — Hp)?

are invariants of the proper orthogonal group (the group of rotations). The plane
Hooke’s tensor, however, has in general six independent components, while the
proper plane orthogonal group is one-parametric, thus one can expect five func-
tionally independent invariants.

Let us denote:

(48) B=p+20, F=v+do
Certainly the quantity R
(4.9) p=7-28=y-28

is invariant with respect to the proper orthogonal group, and, moreover, it is
(modulo 27) uniquely determined by the components of Hooke’s tensor in an
arbitrary basis. On the other side, if the values of the previous four invariants
as well as ¢ are known, then the relation (3.13) determines the Hooke’s tensor
to within the accuracy of an arbitrary rotation. Thus these five invariants consti-
tute a complete functionally independent set of invariants with respect to the proper
orthogonal group (complete irreducible hemitropic function basis).

Tracing the derivation of the orthotropy condition (4.4) one can observe that its
left-hand term can be expressed by ¢ (°) and the condition (4.4) can be rewritten
as follows:

(4.10) Js = R3R,sin ¢y = 0.

Any reflection tensor in two-dimensional space can be represented as the

1
10
exchange merely changes the sign of the terms containing B3 and B4 changing /3
into 7 — /3 and v into —7, i.e. ¢ (taken modulo 27) changes its sign; thus only cos >
but not 4 itself or sin + is invariant with respect to the complete orthogonal group
(i.e. containing both the rotation and the mirror reflections), while the previous

" 5 0 ;
superposition of the axes exchange (reflection) [ ] and some rotation, the axes

(?) The square, or absolute value of this term can be considered as an invariant measure of deviation from
the orthotropy.
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four rotationally-invariant terms are the invariants of the complete orthogonal
group as well.
These considerations lead to the following important conclusion:

No rotation in the plane of the stress (strain) of the plane elastic state is able
to change the sign of 1, thus the class of the materials of the lowest symmetry can
be subdivided into two classes of “left” and “right” materials, depending on the sign

of .

The “left” materials can be changed into “right” ones by the off-plane turning
them upside-down. This means that the sheets of such a material have two distinct
sides, which should be specially marked in order to make the information on the
elastic properties meaningful.

For completeness we shall express the obtained invariants in terms of the
four-index representation of the Hooke’s tensors.

Using relation (3.17) to express the first two invariants (4.7) by the components
H ;i it is not difficult to observe that the following two identities hold true:

1 1
(4.11) Iy, = 5(”1111 + Hiyoo + Hpn + Hop) = i”““ = Ap,
1

(412) M=

(Hiy — Haze — Hopn + Hopp + 211212 + 2112121)

1
= 2\—5(2”% — Hiii) = V2Xp.

The expressions for the remaining invariants are not straightforward. Observe
that they depend only on the traceless part H” of the Hooke’s tensor H (3.12):

(413) H = Ry(cos Bs + sin 3B4) + R2(cos vBs + sin vBg),
or

1 ‘ ‘
Hlpy = Hijr — E[prrr(%uékt — 8ikbj1) + Hprpr(26:.850 — 6:5611)],
4.14
@14 (Ml =0, iy =0).

Substituting relations (3.7), (3.11) and (3.23) into (4.13) one obtains the fol-
lowing representation of the plane second rank tensor H'«1:

R 3 in 3
(4.15) [[[:jkk]= 1 [COS; sin / l

ﬁ sinf —cospj

Thus



TWwWO-DIMENSIONAL HOOKE’S TENSORS — ISOTROPIC DECOMPOSITION 341

Due to the orthonormality of the base tensors {By }, directly from (4.13) it follows
that

(417) H, H’ = 111_;!.,!1]1_,“ = I{% + ]{%’
hence:
(4.18) R; = Bia = Hiymllae:

The most time-consuming is the derivation of the last relation — the one de-
scribing the “shape of deviatoric part”, i.e. expressing the functions of 4 in terms
of polynomial invariants of the Hooke’s tensor. Omitting the tedious calcula-
tions (') we present the following result:

! i - 2 3
(4.19) ]IIJAfflklmnllmnl] - 2\/—R RZCOSU

It is not difficult (however it can be fairly boring) to show that our set of invariants:
Hy, Hy, R?, R% and Tr(H?) is equivalent to the set of invariants obtained by
ZHENG [9], who proved that they constitute the complete irreducibie isotropic
function basis.

One cannot expect to find an expression of such a kind for sin ). There is
a simple reason for this: all the polynomial scalar expressions obtained by the
contraction are invariant with respect to complete orthogonal group while sin ¢, as
we have already shown, is the hemitropic function of the plane Hooke'’s tensor.

The last question, concerning the invariants of the Hooke’s tensors, which has
to be discussed are the conditions of positive definiteness

(4.20) oa-Hea >0

for every oo € &, which are required for most applications of the Hooke’s tensors.
In the case of the spectral decomposition of the stiffness (compliance) tensor the
problem reduces to the trivial conditions of non-negativeness of the three Kelvin
moduli, which are equivalent to the conditions:

M+ A+ A3 >0,
(4.21) My Noda o daky = B
AA2A3 > 0.

Recalling that in the basis of proper states the representation of the Hooke’s

tensor is diagonal, and taking into account that all three expressions (4.21) are
invariant with respect to any orthogonal transformation in S © S (including those,

(*") The following interesting relations can make this boring procedure slightly simpler: Bg - }[Bl +V2(By +
Bs)), B = j[B + V2(B, — Bs)] B = By, B} = By, sym(B;B,) = 'fB(..sym(B_aBg = 5./3B sym(B;Bg) =
LBy, sym(ByBs) = - sL=By, sym(ByBq) = ;1= By, sym(BsBg) =
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which do not correspond to any rotation of the physical plane), after some rear-
rangements one can express these conditions by the polynomial invariants of H
as the fourth-rank tensor

TrH > 0,
(4.22) (TrH)? — TrH? > 0,
1 1 1
“TrH? — ZTTHTrH? + —(Tr H)® > 0.
3 2 6
The same relations can be expressed in the language of the invariants gener-
ated by the isotropic decomposition as follows:

Hy +V2H, > 0,
(4.23) H} +2V2H Hy — R? — R} > 0,
V2H (H} - R3) — R}(H, — Rycose) > 0.

It is not difficult to notice that no restriction on the sign of ¢» has been imposed
by the “thermodynamic” condition of the positive definiteness of the Hooke’s
tensor. Thus both “left” and “right” materials are thermodynamically admissible.

4.3. The rules of the measurements

The procedures of measurements of the elastic properties in the case of ma-
terials supplied in the form of sheets and foils very seldom include direct measure-
ments of the shear moduli ('!); not only the standard, but even more sophisticated
laboratory equipment is usually rather inappropriate for such measurements. Usu-
ally the Young moduli and Poisson ratio in the chosen directions are measured
and then, if needed, the other elastic constants are calculated.

Let us denote the direction of uniaxial tension by x; and let C denote the
elastic compliance tensor, then the stress o and strain € have the following rep-
resentations:

a (T(-'“
(4.24) o~ 0], e~ |0Cy
0 o C3

Consequently, by the definitions of the Young modulus £ and the Poisson ratio
v, One can write:

(4.25)

1 : v

—=Cy, —==-Cn.

E_ M E &

In general we have to determine six unknown elastic constants; to this end we
should take at least three specimens oriented at three different angles ¢; (i =

1,2,3) with respect to some fixed material basis. Performing measurements we

(**) We shall leave aside in this paper the acoustic measurement techniques.

http://rcin.org.pl
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would obtain then six quantities: ;, v; (i = 1,2,3). Making use of the Eq. (3.13),
and substituting expressions (3.23) for the base tensors By, one can write relations
(4.25) in the following form:

1 1 1

4.26 - ('+ ('+ R cos(d + 2¢;) + —=Rycos(y + 4¢;),
V; 1 1

4.27 - =0 - —C ——R + 4¢;).

4-27) A W AP, sk U

Using (3.11) one can rewrite Eq. (4.26) and (4.27) in the following form:

€os 2¢; sin 2¢;

1
4.28 -C1 + Cy + C3 — G
(28) O+ R0t =5 G- p G
cos4y; sin 4¢; 1
+ C Ce= —,
W3 ° W2 E;
1 cosde, sindyp; v;
4.29 =C — —C’ - Cs + Ceg=——.
2 =g e 22 w2 b E

Taking : = 1,2,3 we obtain the system of the three pairs of equations for six
unknown constants ('ic. The determinant A of this system can be expressed as
follows:

(4.30) A =2V2sin’(p1 - p2)sin’(p2 — ¢3)sin’(p3 — 1)
X cos(p1 — 2) cos(p2 — @3) cos(p3 — 1)
Hence the following rule of the measurements should be observed:

For the determination of the plane Hooke’s tensor for the material of no (or
unknown) symmetry, using the uniaxial tension tests one should take at least three
specimens whose axes are neither parallel nor orthogonal to each other.('?)

It is not difficult to show that if the axes of orthotropy are known, only two
specimens are necessary (the one along an orthotropy axis and the other under the
angle of 7 /4 being particularly convenient). In the case of the isotropy recognized
in advance, only one specimen is necessary.

Appendix
A.l. Plane tensors

Two-dimensional Euclidean plane E consisting of the elements x, y, ... with the
scalar product x-y we shall call the physical plane (it can be e.g. the plane tangent

(*?) This result is not quite unexpected: it is not difficult to obscrve (compare (4.27)) that for the orthogonal
directions v,/ E, = v,/ E,.

http://rcin.org.pl
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to the median surface of the shell at an arbitrary point). The plane E generates
the plane Euclidean tensors as the elements of the tensorial powers 7, = Q" E,
p = 1,2,.... Every tensor A € 7, is a finite linear combination of the simple
tensors x; @ ... ® Xp.

A.2. The rotations and mirror reflections of the tensors

Every rotation x — Rx of the physical plane, R € E @ E, rotates all the tensors,
A — R+ A. The operators R+ are linear and defined on the simple tensors as
follows: R#(x; @ ...® x,) = Rx; @ ... ® Rx,. Similarly act the mirror reflections
x— Mx, Me EQE.

A.J. Tensorial spaces

Every linear subspace & C 7, invariant under the rotations and the mirror
reflections of the physical plane, R+4 = U, M«d = U, we call the tensorial space.
The representation of the tensorial space U/ (as well as the whole space 7,) in
the form of direct sum of the tensorial spaces i/ = U) + ... + U, we call the
isotropic decomposition of this space. The linear operators mapping { onto itself,
particularly the rotations and the reflections, can be considered as the tensors
from U K U.

A.4. The tensors of the second and fourth rank

In the present paper we use the second rank tensors denoted (except for
1, R, M) as o, 3, ... and the fourth rank tensors denoted as A, B, ... . The
tensorial operations which we use can be expressed in the well-known language
of the Cartesian representations as follows:

Xy & Z;V; , QX < a;;T;,
(A 1) troe = «yy, o (‘;‘)[3 — (Y,'_,’,/jp,{ .
Aot — /1,'”,,4(1;,,,] y TrA = AP'}PQ .

A:B = qurs qurs 5 AoB — -"iqulgqul .
The following relations hold true
(x@y)z = (y2)x, (a®P)T =BT,
(A2) (ax@B)o(TOV)=P-T)x @V,
R+ (@a@P)=(R+a)® (R +P).
A.5. The tensorial unities

The tensorial unity of the plane E we shall denote by 1, while the unity of the
space EQ E—-by 7, thusIx = x, Zao = e forall x € E, o € (EQ E). In a similar
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way one can introduce the tensorial unity 7,y € U @ U into every tensorial space
U. In the language of Cartesian representations:

(A3) (1)i; = bi5, (D)ijer = 6irbj1.
A.6. Euclidean tensor spaces

In every tensor space 7, a scalar product A-B, defined for the simple ten-
sors: (X1 @ ... @ %) (Y1 @...®Yy) = (X1y1) ... (X¥,) can be introduced, yielding
2P-dimensional Euclidean space. Every orthonormal basis in 7, we shall call Carte-
sian. Only such rotations of the Euclidean spaces 7, remain in the scope of our
interest, which are generated by rotations of the physical space, as described
in A.2.
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Stress tensors associated with deformation tensors via duality

P. HAUPT (KASSEL) and CH. TSAKMAKIS (KARLSRUHE)

Tue CONCEPT of dual variables, initially introduced by HAUPT and TSAKMAKIS [3], enables us to
relate to each other strain and stress tensors, as well as associated rates, independently of particular
material properties. Generally, it is different than the method of conjugate variables, as defined e.g.
by MAC VEAN [2] or HiLL [4-6]. The duality concept postulated by HAaurt and TsakmAkis [3] deals
only with two classes of dual stress and strain tensors, The second Piola—Kirchhoff stress tensor
and the Green strain tensor, as well as the negative convected stress tensor and the Piola strain
tensor, are respectively the Lagrangean stress and strain tensors included in the two classes of
dual stress and strain tensors. However, there are further (infinitely many) Lagrangean stress and
strain tensors, which may be taken into consideration. The aim of the present paper is to develop
further the concept of dual variables to take into account the whole set of Lagrangean stress and
strain tensors. Doing this, we obtain a specific mathematical structure in the sets of all strain and
stress tensors, which makes it possible to relate strain and stress tensors, as well as associated rates,
independently of the particular material properties.

1. Introduction

IT1s WELL-KNOWN that in the theory of finite deformations, several stress and strain
tensors can be introduced in various ways. These stress and strain tensors are not
a prioni related to each other, raising the question of whether or not there exists
a method to associate with each stress tensor a strain tensor independently of
specific material properties. The stress power is usually the convenient framework
for answering this question.

According to ZIEGLER and MAcC VEAN [1, 2], a stress tensor is assigned to a
given strain tensor, if the stress power can be represented by this stress tensor
and an appropriate rate of the given strain tensor. We call stress and strain
tensors related in this way conjugate in the sense of Ziegler and MacVean. Note
in passing that this definition of conjugancy was also adopted by Haupt and
TsakMAKis [3]. However, in HAUPT and TSAKMAKIS [3], it was also shown that the
above definition brings out the difficulty that arises because the stress and strain
tensors associated in such a manner are not unique. For example, consider the
strain tensor K = % (1 — F‘lFT‘l). K is conjugate in the sense of Ziegler and
MacVean, on the one hand, to the stress tensor T = (det F)F' TF, with respect

to the material time derivative K, and on the other hand, to the stress tensor
— A D 0 D
S = (det F)RT TR, with respect to the rate K= K + (UU H)K + K(UU™!),

W=T.K=§.

a1
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In these relations ('), F denotes the deformation gradient tensor, with polar de-
composition F = RU, T is the Cauchy stress tensor, and W the stress power per
unit volume of the reference configuration.

Another concept used to relate stress and strain tensors within the framework
of the stress power is due to Hill (see e.g. HiLL [4-6] as well as HAVNER [7],
OGDEN [8, Sec.3.5.2] and WANG and TRUESDELL [9, Secs. 3.8 and 3.9]). According
to this concept, a stress tensor t is postulated to be conjugate (in the sequel called
conjugate in Hill’s sense) to a given strain tensor e if the inner product of t with
the material time derivative of e yields the stress power W, i.e., if

W=t-é.

Clearly, all pairs of stress and strain variables conjugate in Hill’s sense are also
conjugate in the sense of Ziegler and MacVean, but the converse is generally not
true.

Hill’s concept of conjugancy has the characteristic feature that there exist stress
tensors which do not necessarily have any conjugate strain tensor associated with
them having an integrable strain rate. Strain rate tensors are called integrable (%)
(not-integrable) if they are expressible (not-expressible) as material time deriva-
tives of some strain tensors, which are defined as functions of the deformation.
It is well-known that the strain rate D, representing the symmetrical part of the

velocity gradient tensor L = FF-1 isa non-integrable rate in general. Thus the
weighted Cauchy stress tensor S = (det F)T, having the property W = §-D, is
e.g. not conjugate in Hill’'s sense to a strain tensor which possesses an integrable
rate. The same is also true for the stress tensor S. On the other hand, if a strain
tensor is given, it must not necessarily have a conjugate stress tensor associated
with it. As an example of strain tensors to which no stress tensor conjugate in

. . . . . 1 T—1gm
Hill’s sense exists, we mention the Almansi strain tensor A = (1 — F/'F 1),

These issues have also been discussed e.g. by OGDEN [8, p. 159].

A further possibility for associating stress and strain tensors within the frame-
work of the stress power has been proposed by Havrr and Tsakmakis [3], and
referred to as the concept of dual variables (®). Several mathematical aspects
from a local differential geometric point of view were discussed by SVENDSEN and
TsakMakis [11]. The relation between stress and strain tensors within the dual-
ity concept of Haupt and Tsakmaxkis [3] is unique; in fact, this constitutes the

(') The nomenclature is introduced in the Secs. 2 and 3.

(?) The term integrable (not-integrable) strain rate is adopted from PALGEN and DRUCKER [10].

(*) We take this opportunity to correct some misleading and erroneous statements in HAurT and TSAKMAKIS
[3]. The notion of conjugancy used in this reference should be understood in the sense of Zicgler and MacVean,
even though in some places this notion was attributed to Hill. Further, on page 184 in HAurT and TSAKMAKIS | 3],
the interpretation of the term “direct flux” in Hill’s expression “R7 DR is not a direct flux”, as the specification
of a strain tensor with the associated rate R7 DR, is not correct. Indeed, the term “direct flux™ as used by Hill
must be interpreted to mean the material time derivative. Furthermore, the statement on p. 174 that ¥, which
is not necessarily assumed to be the gradient of a vector field, induces a system of spatial coordinates, is not
true in general.

http://rcin.org.pl
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differences to the conjugancy concept according to Ziegler and MacVean. In addi-
tion, concerning dual pairs of variables, use is made not only of the material time
derivative, but also e.g. of the so-called objective derivatives. This clarifies the dif-
ferences compared with the conjugancy concept due to Hill. In the present work,
the concept of duality will appropriately be generalized, to include the general-
ized Lagrangean strain tensors, which are introduced in Sec.5.1. To be definite,
the duality concept postulated in Haupt and TsAkmakis [3] deals only with two
classes of dual stress and strain tensors, called family 1 and 2. Representative

i , - _
(Lagrangean) strain tensors are the Green strain tensor E = E(FI F — 1) (family

1) and the Piola strain tensor € = %_(F“F'l“1 — 1) (family 2). The purpose of
the present paper is to complete the duality concept of HAuPT and TSAKMAKIS
[3] by introducing further classes of dual strain and stress tensors, which include
the whole set of generalized Lagrangean strain tensors.

After introducing the notation and some background relations in Secs.2 and
3 we show in Sec.4 how various so-called objective time derivatives can be as-
signed to the Cauchy stress tensor. To each of these objective time derivatives
of the Cauchy stress tensor corresponds a Lagrangean stress tensor. It turns out
that, among all these derivatives, only two possess the structure of generalized
Oldroyd time derivatives (the term “generalized” Oldroyd time derivative is spec-
ified in Chapter 3). In other words, among all Lagrangean stress tensors, only two
are associated to the Cauchy stress tensor with respect to the definition of the
generalized Oldroyd time derivatives. This result motivates in Sec.5 the intro-
duction of a set of generalized strain and stress tensors respectively. Considering
various scalar quantities, which are required to be form-invariant with respect
to the chosen configuration, the above sets can be partitioned into equivalence
classes of generalized strains and associated generalized dual stress tensors, re-
spectively. The concept of duality used here is a generalization of that in Haurr
and TsakMaKkis [3]. Furthermore, to each strain and stress tensor, a time deriva-
tive can be associated, having the form of “generalized” Oldroyd time derivative.
This way, we obtain a specific mathematical structure in the sets of all strain and
stress tensors, which enables us to relate strain and stress tensors, as well as the
associated rates, independently of particular material properties. Some examples
formulated using strain and associated dual stress tensors, are briefly discussed
in Sec. 6. Finally, in Sec. 7, the duality concept is appropriately extended to take
into account two-point tensor fields, as well.

2. Preliminaries

We denote by R and N the sets of real and natural numbers, respectively.
The absolute value of ¢ € R is |¢|. We use the letter  for the time variable. If ¢
is a function of t we write » or dy/dt for its material time derivative. For the

http://rcin.org.pl
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n-th material time derivative of ¢ we write also d"p/dt"™, where n € N, n > 0.
If 2 is a scalar variable other than ¢ and f(x) is a function of z, then we denote
the derivative of f(z) with respect to = by f'(x). In particular, we write f'(a),
a € R, instead of f'(z)|;=.. Commonly the same symbol is used to designate
a function and the value of that function at a point. However, if we deal with
different representations of the same function, then use will be made of different
symbols.

Given two sets A and B, the Cartesian product of A and B is denoted by
A x B. In particular, we write

A" = Ax Ax---x A,

n—times

n € N, n > 1. Let a and b be elements of a three-dimensional Euclidean vector
space V. By a® b, a x b and a-b we denote the tensor product, the vector
product and the inner product, respectively. The magnitude of a is denoted by
|la]| = /a-a. In this work, we identify the vector space V with its dual space V~,
the identification being specified with the help of the metric tensor induced by the
inner product in V. Thus, any n-order tensor T on V is regarded as an n-linear
function from V" to R, denoted by T € L(V",R). In the following, second-order
tensors (like vectors) are denoted by boldface letters, whereas for fourth-order
tensors we use script letters. For example, A, B, ... denote second-order tensors,
whereas A, B, ... denote fourth-order tensors, respectively.

Let A, B be second-order tensors. We write tr A, det A and AT for the trace,
the determinant and the transpose of A, respectively, while A -B = tr (AB”) is the
inner product between A and B. We write 1 = §,,¢; ) ¢; for the identity tensor
of second order, where 6;; is the Kronecker delta symbol and {e;}, 1 = 1,2.3,
is an orthonormal basis in V. Further, we use the notations AB = A;; B;.e; @ e
and AT-1 = (A~1)T, provided A~! exists. In these relations the convention of
summation over repeated indices is employed.

If A is a symmetric and positive definite second-order tensor having eigen-
values A; and corresponding eigenvectors a;, then the spectral decomposition
(see e.g. GURTIN [12, Ch.1.2])

3
A= Z Aa; © a;

i=1

applies. In this case, we denote by A™, m € R, the second-order tensor

3
AT =3 N oa

i=1

Let K, P be two fourth-order tensors, i.e., linear transformations from the space
of second-order tensors into itself. With respect to the orthonormal basis {e; }, the



STRESS TENSORS ASSOCIATED WITH DEFORMATION TENSORS VIA DUALITY 351

following rules apply: if A, P and A are represented by X' = K;jie; De; Qep Qe
P = Pjue ®e; e ®e,and A = A;;e; @ e;, respectively, the relations
KP = ]\.ijmnpmnklei ® €, Qe e,
KT = Kjue0e0e0e;,
A:[A] = 1\'ijmn Apne ® €;

hold. In addition, if B is a second-order tensor, we have A -X'[B] = B -K7[A]. We
write 7 for the fourth-order identity tensor,

1= 6ijbmnei @ en ® €, X e, .
The tensor Z can be decomposed in the form
I=¢+ ,_7 ’

where

tn
|

(6ijdmn + dindmjlei ®e, @e; ®e,

| =

and

1 } ]
J = 5 (bijbmu - hiubm_j)et ey ey ey .

N 1 T .
This implies £[A] = i(A + A", J[A) = %(A — AT), and Z[A] = A.

3. Background relations

Consider a material body B which occupies the region Ry in the three-dimen-
sional Euclidean point space E in some reference configuration. Choosing a fixed
point (origin) in E, we identify each particle of B by the position vector X to the
place X in Ry occupied by the considered particle. We write x for the position
vector to the place =z occupied by the same material particle in the (current)
configuration at time ¢. In this configuration, the body I3 occupies the region R,
in E.

A motion of I} in E, i.e., an one-parameter family of configurations parame-
terized by the time ¢, is a mapping

3.1) X:(X,0) —  x=xX1),

which has an inverse X = X(x,?) for fixed time {. In what follows, it is assumed
that all functions possess continuous derivatives up to any desired order with
respect to the space variables and the time ¢.
The deformation gradient tensor corresponding to (3.1) is denoted by
ox
b F = — = GRADX.
(3.2) X G X
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We distinguish between GRAD and grad, representing the gradient operator with
respect to X and x, respectively. Furthermore, detF > 0 is assumed.

The right Cauchy-Green tensor C and the left Cauchy-Green tensor B are
given by
(3.3) € =FF=1%
(3.4) B = FFT = V2,
in which U and V are the right and the left stretch tensor, respectively, appearing
in the polar decomposition of F:
(3.5) F=RU = VR.

Here, R represents a proper orthogonal second-order tensor. Since U and V are
symmetric and positive definite, they possess the spectral decompositions

3
(3.6) U= Y AM oM,
i=1
and
3
(3.7) V=3 Ap oW

o]
respectively, with
(38) K, = RM;.
Ai (2 = 1,2, 3) are positive eigenvalues and M;, as well as p; are the corresponding
unit eigenvectors. It is common (see e.g. OGDEN [8, Sec. 2.2.5]) to call M; and p,
the Lagrangean and Eulerian principal axes, respectively. Note that the spectral
decomposition (3.6) implies

(3.9) ul=3%" %M,' ® M; .

=1

Let X be the place of a material particle in Ry and denote by y the place of
the same material particle in an arbitrary configuration, in which B occupies the
region M. Further, we denote by 7,M the tangent space of M at y. Note that
M does not need to be an Euclidean manifold. This is for example the case for
the non-Euclidean intermediate configuration in plasticity. An n-order tensor A is
called a tensor at y € M if A € L((T,M)",R). If M = Ry, A is called a Lagrangean
tensor at y € Ry. In the case when M is different than R, the tensor A is called
a spatial tensor at y € M. In particular, if M = R, then A is called an Eulerian
tensor (*) at y € R,. In the following, we denote by

(3.10) ¥ = W(X,!) € Lin*

(*) The definition on spatial tensors given here is not standard. The definitions on Lagrangean and Eulerian
tensors are taken from OGDEN [8, Sec. 2.4.1].
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a space- and time-dependent linear transformation (second-order two-point ten-
sor field (°)) mapping vectors from 7'y Ry onto T,M (¥ € L(Tx Ry x T,M, R)) and
having a positive determinant.

Let X* (k = 1,2,3) be a system of material coordinates, and let

(3.11) X = X(X*)

be the position vector of a material particle in the reference configuration. The
coordinate system induces the local basis of tangent vectors {Gy },

X
(3.12) Gy = IXE
and the gradient vectors {G“'},
(3.13) G* = GRAD X*(X),

being the reciprocal basis of the tangent vectors {G,}, where
(3.14) X* = XkX)

are the relations inverse to (3.11). With respect to (3.10), (3.12) and (3.13), various
bases {g\”’} in T,M, with reciprocal basis {g(*)*}, can be defined by

(3.15) g = Gy,
(3.16) gk .= wT-1Gk,

Note that the special case ¥ = F defines the so-called convected coordinate
systems. From (3.15), (3.16),

« (V) -1 (¥
(3.17) g, = vV¥ lgi, ),
o (W)k -4 - Y i -
(3.18) g = —(WwHT gk
Next consider the spatial, time-dependent tensor field u, having the representation

(3.19) u= n}"ggp) = u, gk,

The relations

)
(3.20) Lh it g
T
&
(3.21) %u = i gk

(*) ¥ can be interpreted to be related with a local deformation process.
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define time derivatives which are called generalized Oldroyd time derivatives of
u. Clearly, from (3.17)-(3.21),

5¢)

(3.22) Sru= - wly
8 . ,
(3.23) b(t) =0+ (T¥ ) y.

Note that the time derivatives é.,u/ét and é(u/ét are related to the material
time derivative of the Lagrangean vectors u™), u(,,

(3.24) uD = wly,
(3.25) uyy = ¥,
through
(L) _ g1
(3.26) u o= w Tk
-
(327) iy = O,

respectively. These definitions of generalized Oldroyd time derivatives for vector
fields can easily be extended to introduce generalized Oldroyd time derivatives
for tensor fields. For example, for a spatial symmetric second-order tensor

(3.28) A= lkl (lll)‘ \g vy _ -'h\ g((l/)k g(ll’)[

the corresponding symmetric generalized Oldroyd rates are defined by

§C¢°) o ki

(3.29) TSTA = A g(kw) ® gf‘”,
b .
(330) —FA = Mg(w)k ® g(‘l’)! )
It follows that
8¢ ; . or
(3.31) A= A— WU A AT T Y
6. i . .
(3.32) A= A+ (P A+ATY,
and that
. P ..
(3.33) AL — p-! (%A> o7

" (=)
(3.34) Ay =97 (%A) v,
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where
(3.35) AL = PIApT T
(3.36) A = PAY!

Next we note that with respect to the basis {M,}, various strain tensors can be
defined. In order to obtain the Lagrangean strain tensors introduced by Hill (°),
we consider monotonic scalar functions ¢ : (0,00) — R, such that

(3.37) g)=0, ¢1)=1.

Then, the symmetric tensors Gy, defined by means of the isotropic tensor-valued
function g(-),

3
(3.38) g: U — Gy =gU):=) gl)MaM,,
=1

represent Lagrangean measures of strain, referred to as Hill’s Lagrangean strain
tensors. Examples of such functions are given by (m € R)

1

(N —1 TR 0.
(3.39) Iemy(Ni) 1= m( i ) if m#

In A; it m=0,

inducing the strain tensors (7)

3

1 :

> l(,\;.” ~1M; @ M; =—(U™-1) if me(R\0),
mn m

(340) G(m) = G(g(m)) = i?‘
Z(ln AM; ©@M; =1nU if m=10;
=1

In relating stress tensors to the given strain tensors, we will employ the stress
power per unit volume of the reference configuration W, which can also be
written in the form )

(3.41) W=Tp-F.

In this formula, Ty stands for the first Piola - Kirchhoff stress tensor, i.e.,
(3.42) Tir = (det F)TF -1 = SFT-1,

(°) The treatment of Hill’s Lagrangean strain tensors given here is taken from OGDEN [8, Sec.2.2.7] as well
as WANG and TRUESDELL [9, Sec. 3.8].
(") These Lagrangean strain tensors were introduced for the first time by DoyLe and Ericksen [13, Ch. 4].
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where T and S = (det F)T are the Cauchy and the weighted Cauchy (or KirchhofF)
stress tensor (%), respectively. Furthermore, we have

(3.43) W=8.D,

where D represents the symmetric part of the velocity gradient tensor L (the
antisymmetric part of L being W):

(3.44) L=gradx = FF'=D+W,
(3.45) D= %(L + L7,
(3.46) = %(L ~ &)

4. Objective rates for S

In this section, we shall consider the Lagrangean stress tensors conjugate
(in Hill’s sense) to the strain tensors (3.37)-(3.40). As a first step towards the
development of a general duality concept for associating strain and stress tensors,
we will derive the relations between these Lagrangean stress tensors and the
weighted Cauchy stress tensor S. These relations are expressed in terms of linear
transformations and using the same transformations, we shall establish various
so-called objective rates for S. It turns out that, among all the transformations
corresponding to arbitrary m, only those for m = +2 lead to objective rates for
S having the structure of a generalized Oldroyd time derivative.

In order to derive this result, we turn to the strain tensors G,y defined by
(3.38), where ¢(\;) may be specified by (3.29). First of all, the stress power ¥ is
rewritten as

(41) W= T(BS) ‘U,
where {
(4.2) Tiws) = 5 (TER + R"T)

is the symmetric part of the Biot stress tensor
(4.3) Ty := R'Tg

(see OGDEN [8, Sec.3.5.2]). The definition of the stress tensors T,, conjugate in
Hill’s sense to G,), should be based on the identity

(4.4) Tgs)+ U =T Gy

8) We are concerned here only with nonpolar materials, so that T, and thercefore S, is symmetric.
y P!
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In view of G(,) = g(U), by (3.38), we obtain

(4.5) G (5) = U U]
where P

g
(4.6) Uo = 30
and
(4.7) Uy = U,

i.e., U,y is symmetric. Furthermore, there exists a symmetric fourth-order tensor

T(,) satisfying the relation

(4.8) Uy T(e) = Ty = € -
Thus,
(4.9) Tws) - U = T UyplU] = Uy[T(] - U
and
(4.10) T(y) = Tio)[Tns))-
With respect to the basis {M;}, the following representations hold:

3
(@11) Uy =) dCIM oM, @ M; @ M,

i=1

+ Z lgyii M; OM; OM; @ M; + M, @ M; @ M; ® M,),
1#]

-
4. =Y — M, OM; o M; @ M;
(4.12) 7, ?;gm'"' OM; @ M; @ M

1
+Z 7 1 - M:oM;oM;@M; +M;M; ®M; @ M;),
iz (9
where — 3
5-‘7’( A')_i’\( Dt nEA, i
(4.13) ((y)t'j o= 1 J !
5_{;'(/\;) if A=A, i#]

(For a more detailed derivation of the relations (4.1)-(4.13) see OGDEN (8,

Sec. 3.5.2]).

In order to express the dependence on the weighted Cauchy stress tensor S,

we note that in view of (4.2) and (3.42),, (3.5), the equation

—

(4.14) T(ps) = (U‘lRTSR +R'SRU™') =: K[$]

)
e
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applies. Taking into account the relations (3.6)-(3.9), it is not difficult to derive
for K the representation

(415) K=

> '\AZ’\J (MieM;@p0m +MoM o R oW,
iAj

i=1j=1

Inserting (4.14), in (4.10) yields

(4.16) T(y) = T)K[S] = A(y[S]
with
(4.17) Ay 1= Tk -

From (4.12) and (4.15) we obtain

3
1
- —— % % . ) 3
(4.18) Ay, ;:1 /\ig,(/\i)Mt OM; ®p; O,

+Y o (MieM; 0 p 0+ Mo M, 0p; 91,
i#)

where (no summation over 7, j, 1 # j)

1 a o if A\ #E N, i#

= 11 i . 1 i/
(4_]9) Qe i 52 4 ’\j/\i(.(f()\i) = .‘/(’\_z)) 4

200" (\) L i = A TF

Introducing the fourth-order tensor P, by
(4.20) AP = PoAm = €,

where

3
(421) Py = Aig' () @ B @ M; @ M;
i=1

1

4 i#] Xg)ij

(hi@n; @M OM; +p, 0 p; M; © M),

in view of (4.18), we deduce from (4.16), that

(4.22) S = Py)[Tiy)-
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The tensors P(,) and A,y induce transformations relating the stress tensors T,
and S, respectively. This enables us to associate with each function ¢(+) an ob-
jective rate of S, defined by application of the same transformation P, to the
material time derivative of the Lagrangean stress tensor T,:

4.23 Pog .o p 1 Tor= A [P0
(4.23) D S = Pl T = @ = A :

From this, as well as from (4.16);, we obtain

(4.24) %”S =Pl [(A(g)lsl).] = Py [A)[S1+ A)8]] -

Inserting herein the relation

(4.25) Py Aw = —P@Aw>

which follows from (4.20), and taking into account (4.20), we see that

Pog o §_p oA rs
= @) A@)[S].

4.
(29 Dt

It is verified in Appendix A that the rate D(,)S/ Dt constitutes an objective Eu-
lerian tensor.

Next, we discuss the requirement that the objective stress rate D(,,S/ Dt should
fit into the structure of a generalized Oldroyd time derivative. We see, that this
requirement implies a special structure of the fourth-order tensor A(,), namely
the property ’

(“27) AlS] = ¥ ()S¥,

valid for all Eulerian second-order tensors S, where ‘I’(g) € Lin*. Indeed, if this
relation is true, (4.16); reads

(4.28) T(y) = A8l = ¥(S¥,),
and (4.23), implies
. Dy, Dy,
(4.29) T = Aw [ D S} ¥, (—D%S) ¥
with B :
g — ¢ e

Using the representation

(4.31) W) = Ygpijhi ©M;,
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we conclude from (4.28) that

1 i .
(432) 'A(g) = -Z—W(Q)qu(y)m” (Mq 69 M”- ® p'p ® p‘m * Ml] ® M"— @ p’m ® "l'p) ]

Comparing this with (4.18), (4.19) yields

3
(4.33) W= Z Y(gyii i @ M,

=1

and therefore

3
(438) A = P (U’ MiEMiop, O B,
i=1
1 . - .
+§ Z Y()ii¥9)ii (Mi OMj@op Ok +MiaM;0p; @ u’a) i

¥
Hence, through (4.34) and (4.18), (4.19), it follows (no summation over ¢, j)

1
’\x'y’(’\i) '
1 Al - A2
2 Xid;(9(X) — 9(A))

If : # j and A\; = Aj, only (4.35) applies, so that it suffices to concentrate on
Ai # Ay Since {(A7 = A1)/(g(Ai) — g(A)))} > 0, from (4.35), (4.36), we have

(4.35) (Ygyie) =

(436) Y%y = (i # X5, i #9)

A2 - 22
Aidi(g(A) = 9(\))

1
VARG (M)

We recall that );, being eigenvalues of the positive definite second-order tensor
U, are positive. Thus, if (4.29) holds, the function ¢(+) has to satisfy the relation
(4.37) for all positive A;, A;.

Now, suppose g(-) belonging to the one-parameter set of functions g,,,)(+),
defined by (3.39). It is readily seen that for mm = 0, equation (4.37) cannot be
satisfied. For m # 0, on use of (3.39),, we obtain from (4.37), after some algebraic
manipulations,

(4.37) = %

1/ 241,21 21 241
(4.38) g(m)(/\i)—g(m)(’\j)=§</\i2 Al =Ar A )

On taking the derivative with respect to A; and then to A;, (4.38) reduces to

m m m m_» m_g m
e (Zen) (o1 (BN <0
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This formula must be satisfied for all A;, A; > 0 with A; # A;, which is possible if
and only if
(4.40) m=2 or = =2,

For m = 2, on the basis of (3.40),, we have

o T s L Fiei

(4.41) Gg=E=3 (v - 1) ,

which is called the Green strain tensor, while for m = —2 we have
= g o L 2

(4.42) Gz = —€ = 5 (U2 -1).

€ is called the Piola strain tensor. The corresponding conjugate stress tensors in
the sense of Hill are given by

(4.43) Ty :=T = FISF'-!
and B
(4.44) Ty =T = F8F,

referred to as the second Piola - Kirchhoff stress tensor and the convected stress
tensor, respectively. Clearly, along with G(_3y and T(_,), the variables € and —T
form also a pair of conjugate (in Hill’s sense) strain and stress tensors.

This general result suggests the following restriction on the choice of La-
grangean strain tensors: If we define the associated Lagrangean stress tensors
which are conjugate in the sense of Hill, various objective time derivatives can be
assigned to S. If we require from these derivatives the structure of generalized
Oldroyd time derivatives, then only two strain_tensors are left, namely E and €.
We remark that the Lagrangean variables (E, T) and (€, T), where

(4.45) Fi=-T=F'gF
and
(4.46) G:= -8,

were chosen in HAupt and TsakMmAKis [3] as basic pairs for introducing, by means
of linear transformations, two different classes of pairs of spatial strain and stress
tensors, referred to as family 1 and family 2, respectively. Strain and stress meas-
ures forming a pair belonging to one of the two classes were called dual variables.
As it will be seen in what follows, the pairs of Lagrangean variables (G(,,), T(,y) if
m > 0, or (=G, =Ty if m < 0, are representatives of related classes, which
can be interpreted as classes of generalized dual variables. Moreover, similar to
the cases m = £2, each of the Lagrangean stress tensors introduces a specific
“generalized” Oldroyd time derivative for each of the stress tensors belonging
to the same class. In fact, such a concept is established in the next section and
essentially, it can be conceived as a generalization of the concept developed in
Haupt and Tsakmakis [3].
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S. The concept of generalized dual variables

5.1. Generalized Lagrangean strain tensors

We remark that the set of strain tensors defined by (3.40) includes for each
m # 0 the strain tensor G,y as well as its counterpart G(_,,y. However, if m = 0,
there is no such counterpart for InU. This motivates the definition of a set of
generalized Lagrangean strain tensors, slightly different from that introduced in
(3.40), as follows.

The two-parameter set of functions

, 1 i
(51) g(qm)(/\i) = -77—1 (A:} - 1) »
where
(5.2) ge {-1,1} and m € (0, ),
introduces the strain tensors

21
(5.3) €lmy = 3 — (" = M & M;.

=1

Note that the functions g,,,), in contrast to (3.37), are monotonic but not necess-
arily increasing with

(54) g(qm)(l) = 0, Ingﬂl)(l)[ =1
Since ¢ is equal either to +1 or to —1, we have

(55) €(qm)lq'-:—l = E'(—m) s
(56) G'(qvm)iq=1 = E'(m) .

Notice that, by taking the limit for m — 0, we arrive at the strain tensors

(5.7) lim €y = q1n U,

which is equivalent to
(58) . InU if ¢=1,
. im €.,,,) =
oy M L InU-! if qg=—1.

We call the set of all strain tensors defined by (5.2), (5.3), together with the strain
tensors In U and In U™, the set of generalized Lagrangean strain (deformation)
tensors and denote it by Dy:

(5.9) Dy := {e(qm)/qe 1,13, m>0}u{1nu, lnu-‘}.
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In order to give a geometrical interpretation to the Lagrangean strain tensors
included in Dy, it is convenient to introduce the generalized Green strain tensors
E(m), and the generalized Piola strain tensors €., defined by

1
€m) = —(U" -1) if m >0,
m

(5.]0) E(m) =
In U if m =0,
1. . . .
(511) E(m) - 6(_m) = E(U = l) if m e 03
InU-! if m=0.
Further, we denote the set of all E(,,y by Dy and the set of all €(,,) by Drp,
(5.12) DiG = {Emy/m >0},
(5.13) Dip = {€(uy/m > 0}.
Clearly,
(5.14) DL = Dy UDyrp
and
(5.15) DigNDp=90.

Next, we give geometric interpretations for the Green strain tensor E = E(y),
defined by (4.41), and the Piola strain tensor € = €y, defined by (4.42). As we
shall see below, the geometric interpretation of the generalized strains E(,,,, and
€ () Is similar to that for E and €, respectively.

Let dX be a material line element in the reference configuration, which is
transformed, under the deformation, into the material line element dx in the
current configuration, i.e.,

(5.16) dx = FdX.

Then we have the well-known formula
1
(5.17) A= 5 (dx +dx — dX «dX) = dX -EdX.

To obtain a geometric interpretation for the Piola strain tensor €, we consider
a material surface #(X) = (' = const in the reference configuration. In the
current configuration this surface has the time-dependent form ¢(x, t) = ', where
e(X(X,1),t) = ¢(X) holds for all X satisfying ¢(X) = C'. Tt follows that

(5.18) £E=F"1g,
where

(5.19) £ = grad o(x, 1),
(5.20) E = GRAD ¢(X)
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and 1
(5.21) 6:=5(Q.E—E.3)=

[n
(1

>

Thus, the Green strain tensor E is used to refer to the reference configuration
the difference A between material line elements in the current and the reference
configuration. Analogously, one can make use of the Piola strain tensor € in
order to refer to the reference configuration the difference 6 between normals to
material surfaces in the current and the reference configuration.

Now, consider linear transformations described by F,,), detF,,) > 0, m > 0,
where F,,) is constructed as follows. From the polar decomposition theorem we
have

(522) F(m) = R(m)lj(m) = v(m)l{(m) ]
2 - —

(5-23) U(m) - C(m) - l?(m)F(m)'
2 - - T

(5.24) v(m) - B(’”) - F(7n)F("1) ?

where R(,,) denotes a proper orthogonal tensor. If we define
3

(5.25) Uy := U™2 = S"0T°M; @ M,
i=1

(m > 0), then it follows that U,,, describes a class of right stretch tensors. Fur-
thermore, defining R,y = R, we have F(;) = F. Clearly F, and so U, must satisfy
the compatibility conditions (*) in order to form a deformation gradient tensor
derived from a deformation function. Although U and F satisfy the appropriate
compatibility conditions, U,y and F(,, in general do not.

Proceeding to complete the definition of F,,), we note that all Ug,,) possess
the same principal vectors M;. This motivates to define all the corresponding
left stretch tensors V(,,) to have the same principal vectors. Since the principal
vectors of V) = V are p, (see Egs.(3.7), (3.8)), we have

3
(5.26) Wiy 1 VR = N 00 0 i
i=1
and
(5.27) R, = R.

Notice that F(,,) can be interpreted as a two-point tensor field which maps tangent
spaces of material points in the reference configuration onto the corresponding
tangent spaces of the same material points in configurations at time . This fact

(*) A detailed discussion on the compatibility conditions concerning F, as well as U and R, is given by
NAGHDI and VONGSARNPIGOON [14].
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follows by virtue of U and V (and therefore Uy, and V,,) too) operating within
the tangent spaces of material points in the reference configuration and tangent
spaces of material points in configurations at time ¢, respectively, and R mapping
tangent spaces of material points in the reference configuration to the corre-
sponding tangent spaces of the same material points in configurations at time ¢
(see e.g. MARSDEN and HUGHES [15, pp. 51-52]).

Thus, analogous to F in (5.16), F(,,,) transforms line elements ¢X in the refer-
ence configuration to vectors dx(,,) in configurations at time (:

(528) U’X(m) = F(ru) dX.
If we define
(5.29) By 2= (r[x(m) dX(my — dX - dX) ,

then we have, in view of the transformatlon rule (5.28), as well as the relations
(5.22)4, (5.10); and (5.25),

] m
(5.30) Ay 1= —dX+ (U™ — 1) dX = dX )X,

with the property dx(2y = dx and Ay = A. On the other hand, F(,,, can be inter-
preted to transform normals & on material surfaces in the reference configuration
to vectors £,

(5.31) &) = Fiy B

in configurations at time {, which generalizes the transformation formula (5.18).
On defining

(532) 6(m) = (g(m) e(m) E‘ : E)

m

we obtain, by virtue of (5.22),, (5.11) and (5.25),

1 - —-m — L] Lo ]
(5.33) bmy 1= —E- (U™ ~1E = E- €&

Obviously, we have §,, = § and é(5) = 6. This completes the geometrical inter-
pretation of E(,,,) and €,,). For arbitrary mn > 0, these strain tensors represent
the differences A,y and é(,,) with respect to the reference configuration. We
may extend the result to the limit case m = 0, by defining

5.34 .J() = l|m ._\m =dX. EQX
0) - (m) (0)

”!ﬁ

and
(535) (5(0) = lim 5(7,1) = '6(0)2

m—0
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5.2. Generalized strain tensors and associated rates

Let dX and & be material line elements and normals on material surfaces in
the reference configuration, which are mapped by the linear transformation W,
to vector fields dx(¥) and 2, respectively (cf. (5.16) and (5.18) in Sec.5.1):

(5.36) dx¥) .= WX,
(5.37) £V = Tz,

Next, consider for arbitrary but fixed ¥ € Lin* and m > 0, the differences A(m)
and 4(,,). Requiring the derivatives d"A,,)/dt" and d"é(,,/dt" (n € N, n > 0)
to be form-invariant with respect to the chosen configuration, various symmetric

strain tensors I'IF:L)) and 1(}?), as well as the associated time derivatives (rates)

A
f)"l’[?ﬁ)/l)t" and D" wﬁﬁ)’/l)!“ can be defined (1°):

A
dm D"
— = A, 1 =11 (¥)
(538) din -—\(m) dx (I)f“ I—I(m)) dx y
[17!
L =¢W) W) ] @)
(539) din “’(m) s- (l)l" (m)) E
These definitions imply
D I
n ( m .
(540) —I)—{_" I':':(m) = '(1_[: (m)
A
I n l[?l
(5.41) I)I”e(m) = g
as well as
D I
n (w) _ ( n
(542) D (m) - ‘C(U) [d,n (’”)]
ay
1)71 (W) _ (1"
(543) l)!n‘“(m) - .;M(q/) [(“‘n E’(”L)] 2

where L) and My, are fourth-order tensors operating on the set of all La-
grangean symmetric second-order tensors S:

(5.44)
(5.45)

(*°) Here, and in what follows, symbol & denotes the associated time derivative for the strain tensor consid-
ered. In other words, £ defines different time derivatives depending on the kind of the strain tensor considered.

=gl-1gy-!
wsSw!

S — Lw[S]
S — M[S] =

l.:(w):
M(W) .
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In particular, for n = 0 we have

(5.46) H{'f,’l’) = L)[Em)] = YT EyT?,
"4
(547) “:m)) = ‘p)[e(m)] ‘I’E(m)‘p

It is readily seen that

A c.
Y se _ngf}) = II(m) + (eI + o) et
(5.48) aA IA)Z A * a A
W) .. = W) - (%) -1\ 17 W) =1
H(m) = D12H(m) (H(m)) + (¥ H(m) + H(m) vy
as well as
a
“wy _ D _w) _ N i =9 (¥ T
(5 49) ‘“(m) Dt 1‘(71&) ("l) \I’ n) (m)( v )
' aa Bz a * A
(%) . () _ ) U1 %) (W)
1'("1) . D[Z“(m) - (“(m)) - W “(m) (m)

Further relations are obtained if we represent the various strain tensors with

respect to the bases {g )} and {g(w)} From

(550) E(m) = I‘J(m)“Gk ® G §
W)y — @) W)k )l
(5.51) I = o) © g™,
as well as
(5.52) Em) = ff,’,L,Gk ® Gy,
) _ W) o (&)
(5'53) “(m) - (m) 8k ® g
we infer that ,
o = W
(5.54) Emyi = ”(m)kl
and
W)kl
(5.55) efly = w0,

http://rcin.org.pl
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respectively. In addition, it holds

A
D"y _ (4" @) W)k o (¥
(556) Wn(m) - (dln I[(m)k!) g ®g

and

a
D" wy _ (ﬁ (ww) ) ¢ o)

(5.57) Din “(nl) - dim 7T(m) = B

an
which indicates, that the operators D (- )/Di" induce generalized Oldroyd time
derivatives. We call the strain tensors H m) and ‘n generalized strain tensors.
The set of all generalized strain tensors is denoted by B,

(5.58) D:= {I{) =) / m >0, ¥elin*}.

Obviously, for arbitrary but fixed m > 0, the sets of all generalized strain tensors
related to the differences A,y and 6, constitute equivalence classes in D. We
denote these equivalence classes by ()L’Q and ()(m), respectively,

(I . _
(5.59) oin) := {TI{}) / W € Lin*},

() .— (¥)
(5.60) o) = {=l) / WeLin*}.

(m)

Then, for the system {2 of all equivalence classes in D,

(5.61) 2p = {000,600 / m >0},
the equality holds
(5.62) D= | ©.

Qe

5.3. Generalized stress tensors and associated rates

For defining the generalized strain tensors and their associated rates, use is
made of the scalar quantities d"A,,)/dt" and d"é(,,/dt". These scalars were
required to be form-invariant with respect to the chosen configuration. In the
following we consider the stress power as well as the material time derivatives
d"W/dt™ and require from these scalar quantities to be form-invariant with re-
spect to the chosen configuration. This leads to the introduction of generalized
stress tensors and the associated rates.

Proceeding to define generalized stress tensors, we draw attention to symmet-
ric stress tensors only and assign to the generalized Lagrangean strain tensors
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E(.) and €,,), the symmetric generalized Lagrangean stress tensors T, and
’?(m), respectively, so that

(563) W = T(m) . E(m) = ;i-(m) . é (m)>

for each m > 0. The set of all generalized Lagrangean stress tensors is denoted
by SL

(5.64) S = {T(m),:f(m) / ’i‘(m),;i'(m) 1 symmetric,
W = :i‘(m) 'E(m) = ;i-(m) 'E(m)a m 2 O}

The set Si. for the stress tensors is the counterpart of the set Dy for the strain
tensors, while the sets

(5.65) {Tey / m >0}
and
(5.66) {Fewy 1 m 20},

are the counterparts of the sets Dy g and Dpp, respectively. Moreover, to the

generalized strain tensors H?f;)) and w::’;)) the symmetric generalized stress tensors
(5.67) Do = M [Timy] = Ty ¥"
and
(5.68) o) = LTyl =¥ F (¥,
can be assigned, respectively, so that
FaN A
(5.69) W= Eﬁ?)' H%: "ff:.)) F Ty

for each m > 0 and ¥ € Lin*.

Notice that (E(,,), T(,n)), as well as (€., ’T‘(m)), are pairs of variables which
are conjugate in the sense of Hill. However, this is in general not true for the
pairs of variables

(5.70) (T05 B0

(m)’ (m)) and (“:w)) UEW))) :

For arbitrary m > 0 and ¥ € Lin™, the pairs of variables (5.70) are called pairs of
generalized dual variables, or simply dual variables. Equivalently, the generalized
stress tensors E?f;)) and crgl)) are said to be dual to the generalized strain tensors
H%)) and 'K:f;)), respectively, and vice versa ('!).

(*') This notation of generalized dual variables is just a generalization of the duality notation introduced in
Haurt and TSAKMAKIS [3].
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If we write S for the set of all stress tensors S?f:)) and O‘Etfl)),

(5.71) s:={n{ ol

(m)* = (m) / m 2 O, ‘I’ € Lin+}

then S can be partitioned into the equivalent classes

(5.72) 0L = {Z0) | welLin*}
and
(5.73) of) = {al¥) / Welin*},

which for m > 0 cover S. Note that the counterpart of the sets D, (—)fg)) and

Of;)) for the strain tensors are the sets S, 9:3 and (-)g;)) for the stress tensors,

respectively.
To determine the time derivatives which are associated with the generalized

stress tensors E:i)) and G:f;)), we next consider the quantity W, which like 1 is
required to be form-invariant with respect to the chosen configuration. On taking

the material time derivative of (5.63), we obtain

‘i" = 'i‘ m '[:: m +;i‘m ' ii;' m

= T(m) * €(m) + T(m) i €(m) .

Using the stress and strain tensors included in the equivalence classes ('—')g,f)), (4):1‘73

(™) (o)
and O(m)’ O(m)’ il N
(5.48) and (5.49), the terms T, « E(,,y and T,y * €, can be rewritten in the

form

respectively, as well as the associated strain rates defined by

an
~ .o _ (W) (([/)
(575) T(m) * E(m) - 2(m) : H(m) L
( A(L'}’)
= . v
(576) T(m) * e(m) = U(m)) i “(m) ;

Thus, the quantities T‘(m) . E(m) and ’”f‘(m) . é(m) represent, for arbitrary but fixed
m > 0, scalars which are form-invariant with respect to the chosen configuration.
Consequently, the terms

(5.77) = T (my B (my
and
(5.78) w?:; = T (m) * € (m)
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which are called the incremental stress powers W ‘"“ and w{’,‘g;, respectively, must
also be scalars which are form-invariant with respect to the chosen configuration.

Indeed, we have

siner _ (W) (‘l’)
(5.79) wie =x¢) .1l
and
v A
"2 4
(5.80) wit —agm’) -wgm’),

where use is made of the definitions (12)

(W) ) _ W)\ T-1 /i

(5.81) ()= z(m) v (g z(m)\p ) w
1(¥) ) gy - 1\T
-zm) Tuin?) - wW (bw T

v
w)._ D @ = g7 (gTe®y) ¢!
(582) o= 500 =¥ (WTo)w) ¥

_ -(Uf) TR A A 'Jf) (7) 1
=0 t(¥Y¥ )o +2(m)\II\II

This way, by considering form invarian[ scalar quantities, we can associate with
each stress tensor EE )) and c ) a time derivative of the form (5.81) and (5.82),
respectively. Similarly, by consldermg higher time denvauves d"W/dt", associ-

v
ated time derivatives of higher order D" E(W/Di“ and 1)” N’)/.’)I“ can be

T (m)
introduced in a natural way. In particular, we thB
D dn
5.83 ey e
(5.83) Drr (M = gt )
and
;7)11 (lﬂ,
(584) m‘r(m) — WT(m) :
as well as
D ! !
n (l,l'/) (Tl 1_1 ‘I'L . -1
(585 -0 = M, [ . (m)} W (ST ) ¥
and
‘i‘)ﬂ [71 dTL
) _ ar ~ _ 7
(5.86) o) = L) [W"'("L)J - ((un (,,,)) v

('*) Similar to the notation of the symbol © for the strain tensors (see footnote 11), symbol ¥ denotes the
associated time derivative for the stress tensor considered.
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5.4. Properties of dual variables

Using the bases {Gy}, {g\"’} and their reciprocal bases {G*}, {g®)*}, as well
as the representations

(5.87) Temy = T(4)Gk ® Gi,

(5.88) S = Zomy 8 08,

and

(5.89) Timy) = TonuG* @ G,

(5.90) al?) = o) gPF g,

we readily obtain

91 Tih = 5,

(592) Tmykt = ”((:I:))u

and
v

(5.93) [1)); E‘i’l)) ” ((;1[; :;1:3;-1) o) @ g
v

(5.94) 1?; o) = ((Z ”((f,))kf) o)k ) g0

The relations (5.93), (5.94) together with (5.85) and (5.86) indicate that, similarly
v

to the case of the generalized strain tensors, the operators D" (+)/Dt™ induce
generalized Oldroyd time derivatives.

We now compare the relations (5.56), (5.57), which concern the generalized
strain tensors, and the relations (5.93), (5.94), which concern the generalized
stress tensors. It turns out that l‘[g‘f;)) and EEW) or ‘Kﬁl;)) and c}:';)), as well as the

m
associated time derivatives, display their physi)cal and geometrical properties in
the context of a representation relative to a basis and the corresponding reciprocal
(dual) basis, respectively. Moreover, the duality concept can also be verified by
means of the following scalar products, which are form-invariant with respect to
the chosen configuration:

v Ay
DN DM
NM ._ (¥) ()
(595) ](m) - D{"V (m) & [),;’\[ (m)
v A
i ])N DM
NM L _ W) |, )
(5'96) I(m) S ])1[\'0(711) ])f” 'K(Hl) ?



STRESS TENSORS ASSOCIATED WITH DEFORMATION TENSORS VIA DUALITY 373

where m > 0, and N, M € N with N, M > 0. Some particular cases of (5.95) and
(5.96) are:

1
00 _ 7 _ v(¥) (¥)
(597) Itmy = Tiny * Egmy = B < TLY,
00 _ & _ (%) (¥)
(598) l(m) = T(m) U G(m) = U(m) . 'K(m) i

(Scalar product of dual stress and strain tensors).

2
a
0 —w="T K. .=%@.q"
(5_99) [(rn) =W = T("l) . E(m,) S E(Hl) . H(m) ’
Py
1) - — - — ) (¥)
(5.]00) l("l) = I/‘/ = T(”l) . e(ﬂl) — O‘(m) . 1‘.("&) 5

(Stress power per unit volume of the reference configuration).

3

. v
10 _ —_(¥) (¥)
(5101) [(m) o T(m) ¢ E(m) _E(m) * H(m) ’
v
10 _ x —a®) )
(5102) 1’(171) = K (m)* e(”") —U(lfl) ' 'K(’”) ’

(Complementary stress powers).

4
= v A
11 _ yyrincr _ 7 . _ (%) v
(5.103) 18, = WS = Ty Emy =350 I‘I:’)
. v A
Q1 i ~ . ' '3
(5']04) 1(1171) = ‘“‘;?P(I:; = T('”) .E("') =U:m)) E 1‘21!1)) N

(Incremental stress powers).

6. Some examples

In most applications, m is chosen equal to 2. In such a case, the equivalence
classes (-)fg) and (-)Ei’)) (@g)) and (-):‘2’)’) are denoted as family 1 of strain tensors
and family 1 of stress tensors (family 2 of strain tensors and family 2 of stress

tensors), respectively. Some examples for particular choices of ¥ are given (13)
in Tables 1 and 2 (the orthogonal second-order tensor P is given by P = WP),
Possible physical interpretations for the stress tensors Eg)) and ag)) are given in

Appendix B.

(**) For more details see HAUPT and TSAKMAKIS [3].

http://rcin.org.pl



374 P. HaupT AND CH. TSAKMAKIS

Table 1. Dual variables and associated derivatives: family 1.

¥ |0 =¥ e n};’— ¥ Ew! ) = wTw” z:;’,’ ¥y’

1|E= %(c- 1) E=E T=F'SF™'|T

PN ¥ a v . 5
FA=%(1——B") A=A+L"A+AL=D |S=(detF)T |S=8S —LS—SL’

=, & L. ~ . v " :
R K=%(B—l) K= K — RR"K + KRR" | § = RTR” S=S— RR"S — SRR”

1 a . R — 5 b

U K== K= K +(UUHY'K S=UTU S=§S-uu's
+KUU™! = R7SR -S(uuYyr

A = R i A4 .
P |IIw = PEPT M= Iw - Wy Bw =PrP’ |[Sp=Zw-WEw

+ITwW +X W

Table 2. Dual variables and associated derivatives: family 2.

(V) T (‘I’) ‘i (U) = T — (‘ll T-1 -
¥ Q) = Ye¥ LS Ye¥ %0 ¥y %0 v 'r‘I’
1le= %(c—' -1)|e=¢ T =FIcF =
ol ] Fas . T ~y e v b T
F =§(1—B) a=a —La—-aL’ = -D|g=—(detF)I ¢s=¢ +L¢+gL
& > . - W—- t o . - . s
R K=%(B"—l) k= k — RR"k+kRR" |g=R7R’ ¢=¢— RR”g+gRR!
1 o —1 = . z_ = T
Ulk=35(1-C) |k=k-UUk = U1¥0 g=3% + (VU3
-k(UU™! = R"¢R +3uu!
P|x, =PeP” W=y —Wx, +x, W = prp’ G= 0, —Wa,
+o,W

Next, we give the equivalent representations of hyperelastic constitutive equa-
tions using generalized dual variables. By definition, an elastic material is hyper-
elastic if and only if the work done by the the actual surface tractions in every
closed homogeneous deformation process is non-negative (see e.g. TRUESDELL
and NoLc [16, Sect. 82 & 83]). This is equivalent to the existence of scalar-valued

http://rcin.org.pl
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functions H,,, and h,,),

(61) If(m) = ﬁ(m)(E(‘m))a
(6.2) himy = him)(Eemy) s
satisfying the relations
and therefore - B

~ (911(,n) A~ dh(m)
(6.4) Tm) = -

P; ] Tm - b
OB () ™) = € (m)

respectively. Taking into account the relations (5.44)-(5.45), H(,,) and h(,,) can
also be written in the form

(65)  Him) = Himy(Emy) = Homy(TTIOW) =2 A,y (T, W),

(m) (m)’
e I — ¥ = n '4
(66) h‘(m) = h(m)(e'(m)) = h(m)(‘I’ ]‘K:m))‘I’T I) = h(m)(‘“gm))"l’)*

respectively. From these equations, the stress relations (6.4),, as well as the
transformation formulas (5.67) and (5.68), we conclude that

wy _ O,
(6.7) E(m) = S
(m)
W) _ Bh(m)
(6.8) 0'("1) - a“{w)) ’
m

which are the spatial counterparts of (6.4); and (6.4),, respectively. In view of
(5.50)—(5.57), also the representations

w _ O ) o o)
(6.9) Tl=——"g o,
(m) O E(m)
oh
v m 3
(6.10) aly) = _051(” ))g(m ® g,

apply, where the functions ﬁ(m) and f(m) are given by

(6'11) —ﬁ(m)(E(m)) = F(?n)(E(nl)lek ® G[) = ﬁ(m)(E(m)kl)»
(6.12) Bmy(€m)) = Ty (e(my G @ G1) =2 Ry (£ (),

respectively.
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For m = 2 we write Ey = Ex and (3, = e*. Then, for ¥ =F,

(6.13) HoyE) = Hay(A, F) = Hy(Ew),
(6.14) hy(€) = haye,F) = h(eM).

In this case, (6.7)-(6.10) reduce to

_ 0Hg _ 0Hg (F) g (P

(6.15) A Ok o T
dhay  dhay (5
1 = 20 _ O )k g o(FN
(6.16) S T Bea g ®g
. . 2 SO o e gF) (F)
respectively. Furthermore, setting Gy; = G;+Gj, vi; = g *g; ', as well as

G = G G,y = gF).g(F)i | we arrive at the identities

1
(6.17) Ey = E(m - G),
1 i
(6.18) en = 5(1* - G),
Hence,
My ) )
.19 =2— 2
(6.19) Doy B OB
and
07’(2) (FYk . (F)
(620) Q= 2()_)—“g Xe 5

where the functions 17(2)( +) and ﬂ(z,( +) are defined by

(6.21) H

= —— 1 ~
Ho(Ew) = He, (i(w - Gu)) =: Hy(vi),

T - P N
(622) hey = hy(e™) = hy (5(7” - ('“)) =:hy(1™)-

Il

Equation (6.19) corresponds to the well-known Doyle - Ericksen formula (see
DoyLe and ERICKSEN [13]).

Further examples for the application of dual variables and their associated
rates in Continuum Mechanics are provided in HAurT and TsAKMAKIs [3].
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7. Duality for two-point tensors

The concept of dual variables developed can be extended to two-point tensors
as well. For example, formula (3.41) shows that F is conjugate in Hill’s sense to

Tr. However, F does not indicate the same properties as F under an observer

A
transformation. Proceeding to define an associated rate F for F which behaves
like F under the observer transformations, we consider a skew-symmetric tensor
2, so that (3.41) is rewritten as

(7.1) W = Tg-(F — QF).

This is possible, since TRF' is symmetric. Note that by the polar decomposition
F is related to the Lagrangean tensor U by means of (3.5),. Therefore, it appears

A a .
natural to define F in such a way, that F is related to U in the same manner as
Fto U:

(7.2) L F=F=RU.

(7.3) Q = RRY,

and therefore

(7.4) F= F - RR'F.

It is not difficult now to show that F and ?‘ behave similarly if the observer
transformations are regarded.

Foliowing steps similar as in the case of symmetric tensors, we define higher
associated derivatives of F by

A = =
D D . | D' dn
7 F=|——F| - 1 s Rl
(72) Din | D1 RE D1 4 din
Next, we note that
(7.6) Tp-F =Ty, U,
where
_ j P .
(7.7) Ty = Tes) = 5 (ThR + R"Tr)
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was referred to in (4.2) as the symmetrized Biot stress tensor (1*). This motivates
us to define the associated time derivatives for Ty in the form

z s 1 . - 1

e Dr- « o D
Th= | ——TF5 | = BRF | ——=T

Din 1 Din—1" 1 D11t

B\ I
T R+ R? T
(I)zn R) (1)17& ”)

As a result, we have then (’}7‘3:=B Tr/Dt):

(1.8)

having the property

L

(7.9) %

an '

(7.10) (Tr -FY =Tg -F+ T F .

The results derived above, concerning the pair (F, Tr), can be extended, in exactly
the same way, to the pair (F'~!, T), where

(7.11) Tr = QF = —(detF)TF.
We recall, from the polar decomposition (3.5);, that
(7.12) Ff-1 = RU-.

This motivates us to define the associated time derivatives of F7~! as follows:

P P . -
L =% _ . s o DL d"
i —-Fr—l = —Fl_l - r{ = _pr-1| = ( _1) .
(7 13) D Dl RR Dl F R 7o U

Thus, the stress power W becomes

(7.14) W="Tp- (F'I'—l)' =Tpe (FT—I)A ’
where

ay
(7.15) (FT—I)A - %FT‘I _

(**) The analysis in the present paper is based on the relation between Tx and T yg). However, the results
remain valid, if the analysis is referred to the relation between Ty and the Biot stress tensor Ty = RTTg,
defined in (4.3).
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Furthermore, the identity

(7.16) T F ! =7q.U"!

holds, where

(7.17) oy = % (TER+RTTE).

The last relation motivates us to define the associated time derivatives of T by
- o N

(7.18) 5= | TR - RR” ST TR

satisfying the relation

i 1(( Dr ! D
: D=2 T
(7.15) din M7 3 (mn ”) alialles (I)I”T“)

Again, a relation of the form

(7.20) (Tr-FT1) =Tp FT 4 Ty (FT1)°
holds, where
-
v D
2 S e
(7.21) Tr: DiTH-

Traditionally, in formulating constitutive equations, we assume m = 2. However,
if we deal e.g. with problems concerning uniqueness or constitutive inequalities,
further pairs of dual variables may be convenient in formulating the theory. As
an example, discussing intrinsic stability of the material, Hill (see HiLL [4-6])
proposed a class of constitutive inequalities, which must be satisfied for some
domain of deformation spaces. In the nomenclature of the present work, Hill’s
inequalities correspond either to

v Fay
piner —s2(#) | )
(7.22) wie =50 .15 > 0,
or to R
v
(7.23) wlt =5 . al’) > 0.

As a consequence, for m = 1, Egs. (7.22) and (7.23) reduce to

. P . v sy
(7.24) Wi = Ty Eqy =Tg - F >0,

http://rcin.org.pl
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and . .

(7.25) wis = Ty €qy =Tr «(F 1)*>0,

respectively. These relations demonstrate that dual variables, in combination with
associated time derivatives, are appropriate terms for formulating objective con-
stitutive inequalities, even in the case of two-point stress and strain tensors (in
this context see also OGDEN [8, p.407]).

Appendix A

Let
(A1) x* = c(t) + Q()x, t"=t—a
describe an observer transformation in E, where ¢(¢) denotes some vector-valued
function of time and a € R. For our purposes, it suffices to assume Q(?) to be a
proper orthogonal second-order tensor.

Assuming the reference configuration to be independent of the observer, the
observer transformation (A.1) implies for the motion (3.1)

(A.2) X(X, 1) = e(t) + Q(OX(X, 1), t*=t-a.
Well-known results obtainable from (A.2) are the transformation rules
(A.3) F* = QF, R* = QR, U=U, VvV =QVvQ’.

An Eulerian second-order tensor A is said to be objective if it satisfies the trans-
formation rule .

(A.4) A" = QAQ’

under the observer transformation (A.1). Commonly, it is assumed that the stress
tensor S is objective, i.e.,

(A.5) s =Q8QT.

Now, let S be represented by

(A.6) S = Sup, QW ,

so that |

(A7) T = Z/\ ’(A)M o M; +2§(r(,,)l,‘>uM ® M;,

by (4.16),, (4.18). On using the relations (A.3), it is a straightforward matter to
derive the transformation rules (i, = 1,2,3)

B = Qu,, M = M;,
(A5) = gD =g gD =d00,
F(-y)t'j = Lg)ij » ﬂ(q)u Ag)ijs S5 =5y
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Hence,

(A.9) T(,) = Ty
from (A.7). Thus, we have

(A.10) (ng)) =T,

and therefore (i,7 = 1,2,3)
(A.11) M; - (T7,)) M; = M;-T ()M,

Next, we discuss how DS/ Dt is affected under the observer transformation
(A.1). To this end, using (4.21), we rewrite (4.23), in the form

D :
(A12) 28 =Py[T )

3
- 1 1 L -~
=3 ') (M T )Mo @ oy + 55 e (M T M) O ;-
1=1 1#] ufj
From this result, as well as from (A.8) and (A.11), we conclude that

D D .
(9) o= _ (9) 1
m*s 'Q( Dt b>Q '

which shows that 1)(,)S/ Dt represents an objective Eulerian second-order tensor.

Appendix B
In this Appendix we give possible physical interpretations for the stress tensors

Eg’)) and Ug)), which confessedly are somewhat artificial.

By Cauchy’s theorem, we have
(B.1) t="Tn=S§[(detF)'n| = [(detF)~'m|,

where t represents the stress vector acting on a surface element in the current
configuration
(B.2) da = nda,

oriented by a unit normal n, and
(B.3) m:= —n.
Let now da be represented by

(B.4) da = (['x“] X ([X[z[ 5
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where dx;}, ¢ = 1,2, are non-collinear line elements in the current configuration.
For the corresponding surface element

(B.5) dAg = NodAp

(No *No = 1) in the reference configuration, the well-known formula
(B.6) da = (det F)FT ~1dAg

holds, with

(B.7) dAg = dX1) x dX|2

and

(B.8) dXp;) = Fldxg,

by (5.16). Furthermore, assuming that the transformation rule (5.16) applies also
to the vector t da, we can introduce a transformed “force” :IQ in the reference
configuration by

(B.9) tda = FdQ.

Analogously, further transformed “forces” dQ(*) are given by

(B.10) dQ¥) := ¥ 4Q,
with dQU") = t da. In addition, we define the “stress vectors”
(V)
W) . dQ
(B.11) =

where dA") is given by the relation
(B.12) dAY) = N g AW) = (det W)¥ " 14A,

(NW).NM¥) = 1), which is analogous to (B.6). Finally, on the basis of (B.1)y, it is
not difficult to derive the relation

(B.13) 1) = 53 [(det ¥)~'N)]

with (t‘” E(F) N(F')) = (t,S.n). Thus, the stress tensor 2(2) acting on the
“weighted normal” (det ¥)~INW) g EIVCS the “stress vector” t(¥),

The physical interpretation ofcr 2) is similar. We start by considering again the

surface element da (see Egs. (B.2) and (B.4)). Besides (B.6), the surface element
da can be mapped on the reference configuration as follows. Let dY|;) be vectors
in the reference configuration, which are related to dxj;) by means of (5.18),

(B.14) (I'YM = FT r/x[;] .

http://rcin.org.pl
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We define the transformed “surface element” in the reference configuration dag
by
(B]S) ([ag = ng(l(t() = ([Y[ll X ([Y[z] 3

with ng -ng = 1. It is readily shown that da is related to dag through

(B.16) da = (detF)~'F day.

Next, assuming the transformation formula (5.18) (or (B.14)) to apply also to the
vector t da, we can introduce a transformed “force” in the reference configuration

43 by
(B.17) tda = FI'1dq.

Analogously, further transformed “forces” dq¥) are defined through
(B.18)  dqW) = w T gy
Finally, we introduce the “stress vectors”

1q¥)
@) . aq

where da¥) is given by the relation
(B.20) da") = n) da") = (det W)~'W day,

(n® .n™¥) = 1), which is analogous to (B.16). Then, on the basis of (B.1)3, it can
be seen that

(B.21) =0, [_—(det )2 m'“/ [
where
(B.22) m¥) .= _p®)

and (t(‘”'),cr%z‘v)),m“’)) = (t,s,m). That is, the stress tensor crg)) acting on the
“weighted normal” ((det\If)/(detF)z) m() gives the “stress vector” t(¥),
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On the existence of solutions for two-dimensional Stokes flows
past rigid obstacles

M. KOHR-ILE (CLUJ-NAPOCA)

In THIS PAPER We obtain some existence and uniqueness properties for the solution corresponding
to the problem of the plane unbounded Stokes flow past rigid obstacles. The stream function of
the flow is represented in the form of simple layer potentials.

1. Introduction

IN sOME PREVIOUSLY published papers [5, 6, 7], the authors treated the problem of
an unbounded two-dimensional viscous flow past an arbitrary obstacle, using the
method of matched inner and outer expansions of the corresponding solution.
These results were then generalized to the three-dimensional case.

The purpose of this paper is to present a method for studying the problem of
the Stokes flow past some rigid two-dimensional obstacles, using the properties
of simple layer potentials.

Let N > 2 be the number of obstacles denoted by £2;,i = 1, N, {2 denoting the
region exterior to these obstacles. The flow is described by the velocity u and the
pressure p. We suppose that u — Ui, p — p, as |z| — oo, where z = z1i + 27,
and U, p are prescribed constants. Using the dimensionless variables: =/ = z/I,
v =u/U, p =1(p— p)/ U and the Reynolds number Re = plU/u, where [ is
a characteristic length, p the dynamic viscosity, and ¢ the fluid density, then v’
and p’ are solutions of the Navier - Stokes problem (disregarding the primes over
u and p)

Au—Vp = Re(u-V)u in £,

Veu = 0,
(L.1) | | R
u=rf on =81, i=1N,
u — i, p—0, as |z| — oo.

Here A and V denote the two-dimensional Laplacean and the gradient operator,
respectively. We require the given velocities f*, 7 = 1, NV to satisfy the zero outflow
conditions:

(1.2) /f*'.n" ds = 0,
('l

where n' is the exterior vector normal to 2;, i = 1, N.



386 M. KoHR-ILE

We suppose that the Reynolds number defined above is sufficiently small.
The Navier - Stokes problem (1.1), for the case N = 1, is singular in the sense
that the linearized Stokes form:

Au—-Vp =0,

1.3
(13) Veu = 0,

together with the same conditions as in (1.1)3 4, has no solution in view of the
Stokes paradox. But, in this case, it is possible to obtain a solution, if the condition
at infinity is replaced by:

(1.4) u=Aln|z| + O(1), as |z| — oo,

for any given constant vector A [6, 7]. Also, in the case of N > 2, we prove that
there exists a constant vector A such that the problem (1.3) has a solution, if the
condition at infinity is replaced with (1.4).

2. Integral equation of the first kind

The equation of continuity V-u = 0 implies the existence of a stream function
1) such that

(2.1) u= (V)

where v+ denotes the vector obtained by rotating the vector v = vji+ vy j by 7/2
counterclockwise, so that v = —u;i + vj. Because the domain {2 is not simply
connected, the condition (1.4) is only local, i.e. ¥» might not be a single-valued
function. But the following arguments prove that 1> is necessarily a single-valued
function.

Let C be any closed curve bounding the domain 2° ¢ 2 and 2~ = (2\2%n
Br, where Bp is a large disk of radius R. Applying the Green’s formula, we
obtain:

(2.2) O—/divu(h —Z/ -ndq+fu nds— /u-n(ls.

1= IC' ’BR

From (1.1)3 and (1.2), it results that /u-n ds=0,i=1,N.

C'l
From Green’s formula in 2 = 2 N Bgr, we have:

2.3) O—/dlvudr—Z/u nds + /u-nds.

= l(, DBR
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Hence (2.3) implies that / u-nds = 0. The above arguments show that
i;’}'f;(

/u-nfl.s =10, SO ]uL-ds =i

c c

Then we express 1 in the form

T

2.4) (z) = _/ni-ds, z €N,

o

where z¢ is a fixed point in 2, = is an arbitrary point in {2, and the integral is
evaluated along an arbitrary polygonal line between zy and z. Also, it is easy to
establish the condition (2.1).

Using (1.3) and (2.1), we obtain the Stokes problem for stream function :

A2 =0 in £,

2.5 _ _ -
(3) Viy(a) = j— f‘J'(.z-), zeC', 1i=1,N.

We shall prove that there exists a real constant vector A such that
(2.6) Vi(z) = Aln|z| + O(1), as |z] — o0,

and that the problem (2.5)-(2.6) has a solution.
For these purposes, we represent the stream function @ in the form:

N _ _ N o
@) @)=Y [V s, ceny (U ()
=1

i=1 o

where s, denotes the arc length measured along C', i = 1,N and F is the

fundamental solution of biharmonic equation:

(2.8) Fz,y) = 81—”[.«1- — y[HIn |z — y| - 1].

It is easy to show that ¢» given by (2.7), satisfies the equation (2.5); and will
be a solution of the boundary conditions (2.5),, if the density function ¢, with
d(z) = &'(x), z € C*,i = 1, N, satisfies the following system of integral equations
of the first kind:

N
(2.9) > /VIVyF(;rk,y)(b'(y)ds; =g"@*), Fec*, k=T1,N,
1=1 ¢

http://rcin.org.pl
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where
(2.10) i E el

The integral operator V* defined by

Vig'(z) == va.va(z,y)q)i(y)dS;, 5 e
C

has a kernel with logarithmic singularity.
Differentiating (2.9) with respect to the arc length s*, k = 1, N, we obtain the
set of integral equations with a Cauchy singularity:

N ;
() . A i i d 2 3 _—
@1y 3 /Wvl.vyz-(x*,y)-q; (dsy = —g"@H), k=T
i=1 C T fosg
Because F'is a function of |z — y| only, it is seen that the adjoint homogeneous
system of (2.11) has the form:

N .
212) 3 f 0V, Py} S @)ds, =0, yFeC*,  k=TN.
T 055 ;
C':
. N
We remark that the functions 5*: U ¢ — R, given by

j=1

(2.13) g”(J) = (lj-.’l.‘ + bj, z e, j=1,N,

with aj, b} denoting constants, are the solutions of the system (2.12). These
functions determine a linear space with 3N dimensions, which implies that the
dimension of to solution space corresponding to the homogeneous system (2.11)
is at least 3NV. We use here the fact that the homogeneous system (2.11) and the
adjoint system (2.12) have the same number of linearly independent solutions
(see [10]).

THEOREM 1. There exist at most 3N linearly independent solutions of the homo-
geneous system (2.11).

P r o o f. The functions
0, reCl, jFa,

N
7o Cci — R?, Fi(x) = _ :
]!1 () { THa), x e,

i = 1, N, where T¢(z) denotes the unit tangent vector in the point z € C'%, are N
linearly independent solutions of the homogeneous system (2.11).



ON THE EXISTENCE OF SOLUTIONS FOR TWO-DIMENSIONAL STOKES FLOWS 389

@' |J €7 — R? be any 2N +1 solutions of the homogeneous system

(2.11), and ¥ = ¢($'), i = 1, 2N +1, denote the corresponding stream func-
tions, as in (2.7). Then functions ¢ satisfy the equations

A% =0  in £,
'ﬁ = j i=1 N
(2.14) W_]m cf, j=T,N,
Vii(z) = Alln|z| + O(1), as |z| — oo,

where C{ is a constant vector and
1N
m ) [eiwa.
=g,

We define the function &' as &*(z) = @' () forz € C7, j =1, N.
We can choose real constants ay,...,ay+1, not all equal to zero, and the
vector ¢(cy, ¢3), such that:

2N +1
el -

Il
[=
.

I

—_

-

t=

(2.15)

N s
Z (riA' =0
=1

because we have here 2NV +2 homogeneous equations with 2N + 3 unknowns.
Let the functions 1y and ¢y be defined by:

2N +1 N

(2.16) Yo= 3 avt, =) af

i=1 i=1
Then v satisfies the equation

Atpy=0 in £,
(2.17) Vio(z) =C, zeC?!, j=T1,N,
Vibp(z) = O(1), as |z| — oo.

The problem (2.17) has a solution of linear form ¢(x) = c-x. From the
uniqueness theorem of the solution corresponding to the exterior Stokes problem
(see Theorem 3), we deduce that ¢y is the unique solution of (2.17). The function
g given by (2.16) is also biharmonic in each domain 2; and is continuous together
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with its first derivatives on C”, i = 1, N. Using the uniqueness result of the inner
Stokes problem, we conclude that 5y has also a linear form in (2;, 1 = 1, N.

Using [5], it is easy to prove that on each contour C7, j = 1, N, the stream
function ¢ given by (2.7) has the properties:

(A0)" - (A9)™ = Mni-¢,
d Y N il
(T’M) *(a—mﬂ*”) =¥o5(ve),

where the symbols +, — denote the limits in {2 and {2;, respectively, and 9/dn’
is the normal derivative on €7, j = 1, N.

Since vy has a linear form in (2 and 2;, respectively, from (2.18) we obtain
that there exists a constant 37 such that:

(2.18)

(2.19) dj(z) = FT(), =zeC!, j=T1N,

where the function &}, is defined by ¢o(z) = dj(x), « € €7, j =1, N.
Hence we deduce that

N N
(2.20) po(x) = > BT (x)=0, =zelJC/
j=1 i=1
or
2N +1 _ N N
(2.21) > i)=Y F() =0, re |,

i=1 j=1 =1

with the functions 7/ defined above. It results that the functions &', 77, i =
1, 2N +1,5 = 1, N, are linearly dependent.

So, we have proved that the dimension of the solutions space of the homo-
geneous system (2.12) equals exactly 3V, and each solution 5 has the form:

(2.22) S;(l‘) =d'z +b', z € C, i=1.N,

where a', b' are constants.
Using the theory of singular integral equations (the Fredholm alternative,
[10]), the system (2.11) has solutions if and only if

N
d . .
(2.23) 3 / ()-8 () sk = 0,
l=l C' T

where S, with S(z) = S'(z), = € %, i = 1, N, is a solution of the adjoint
system (2.12).
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From (2.22), (2.10) and (1.2) the conditions (2.23) follow lmmedlately
Let ¢0 be a solution of the system (2.11), with cj)o‘ = j = 1,N. The

corresponding stream function ¢0 = ¢0(4°) satisfies:

A2 =0  in 0,
(2.24) vyl(z) = g@@)+ Kk, =zeC', i=1,N,
vylz) = AlIn|z| + O(1),  as |z] — oo,
where
L3 feeren
J 1 lol)

: p— e M
and ki, i = 1,N are constant vectors. Let k% (J C7 — R? be defined by
7=1

kO

(07 =kJ’ ] 1

Also let n,o', t = 1,2N and 7/, j = 1, N, be the 3N linearly independent
solutions of the homogeneous system (2.11). Then the stream functions ¢ =
P(@'), i = 1,2N satisfy the equations

A% =0 in 2,
(2.25) Vyi(z) = ki, =z€C’, j=1N,
Vi'(z) = A'ln|z| + O(1), as |z| — oo,

with

o =%, i=LN and k, j=1N,

Z [ei@ds,

J l()

~ N 2
are the constant vectors, i = 1,2N. Let k': | C7 — RZ, be given by &* "

= ki,
J=1,N,i=1,2N.
Let V be the set defined by:
~ N . ~ ¥ . . i
V=<k: U ¢! - R? | k(z) =K, z€C’, K aconstant vector, j =1, N y.
j=1
V is a linear space with dimV = 2N, and the functions k%, &%, i = T,2N belong

to V. Hence, there exist the real constants ay,...,a,, with the property:

2N N 2N
(2.26) Y ki) + k%) =0, 2e (],
i=1 j=1

http://rcin.org.pl
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if we suppose that the functions ¢, i = 1,2N, satisfy:

(2.27) A'=0, i=1,2N,

since k* are linearly independent functions.
Using (2.24), (2.25) and (2.26), we deduce that the function

— .0 -~ LR
’tl’-*if) +Zazd’

i=1
is a solution of the Stokes problem (2.5). At infinity + satisfies the condition:
(2.28) P(z) = AlIn|z| + O1),  as |z| — o,
where A is defined in (2.24).
So, we obtain the following result:

THEOREM 2. If the functions F: C' — R?, i = 1, N satisfy the conditions (1.2),
then in the hypothesis (2.27), there exists a constant vector A such that the problem
(2.5) with the condition (2.28) at infinity, has a solution .

In the proof of the Theorem 1, we used the uniqueness property of solution
for the exterior Stokes problem. This result is given by:

THEOREM 3. The Stokes problem (2.5) has at most one solution (up to an
additive constant), under the condition that

229 v@=0(l2I"),  D™p@E)=0(zI7?), m>1, as|a| - o,

and
(2.30) f X 2)dsi =0, i=T,N,
on
C|
where w = A1,

P r o o f. We suppose that there exist two solutions ¢! and % of the problem
(2.5). If we consider the difference ¢ = ¢! — %, then v satisfies the equation

Vi =0 in 12,

(2.31) o
ve|, =0, i=TN,

C

with the additional conditions (2.29) and (2.30).



ON THE EXISTENCE OF SOLUTIONS FOR TWO-DIMENSIONAL STOKES FLOWS 393

Let 2r = 2N Bp, where By is a large disk of radius R. From Green’s formula
we obtain:

(2.32) j [6(@)A% () - (Av())] de

i 279 2% ] ds
dsi + f [¢(1,) ~2(2) - w(@)5E @) dse

dBR

=§ /[w)-( )-w

where dBg denotes the boundary of the disk Bp.
From (2.32), it results that the integrals taken along 0 B are zero, for R — .
From the homogeneous conditions (3.31); we have

/w(r)%(r)ds; =0, i=TN

(o4

Also ¢(z) = ¢;, for z € C?, where ¢; is a real constant, i = 1, N.
Now, if we use the conditions (2.30), we deduce:

/¢7(1)—( Yds', = Zci (: )ds'. = 0.

!lc. = v

Hence the above identity (2.32) implies Ay = 0 in {2,
Applying again the Green’s formula, we obtain:

(2.33) 0= /1/7(.1:);\1[?(1:)(11:

Rr

= [ v SLadey g 3 IR oLy ds - [ (v do.

dBR =1g 25

Using the conditions (2.29), (2.30), (2.31), we obtain Vi = 0 in {2, hence
is a constant in 2 and ¢; = 1 (up to an additive constant).

REMARK. Since we determine the stream function > in the form (2.7), the
conditions (2.30) are easily obtained as a consequence of Green’s identity.

Using the stream function ¢ determined above, we obtain the velocity u =
(V)*, and the pressure p as the harmonic conjugate of w = A, but only locally,
because the domain 2 is not simply connected.
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The development of a nonstationary separation and coherent
structures in a two-dimensional viscous incompressible flow
around a body

M.N. ZAKHARENKOV (MOSCOW)

Dedicated to the memory of Viadimir M. Galkin
killed in an aircraft crash in September 1994

TWO-DIMENSIONAL VISCOUS incompressible flows around a circular cylinder and a 12% Zhukovsky
airfoil are considered. Numerous cxamples of complex separated flows around these bodies with co-
herent structures and detached separation generation, as well as examples of flow stabilization and
separation destruction are obtained. Numerical experiment technology based on parametrization
of the far-ficld boundary conditions and effect of sequential exclusion of the scheme parameters
and problem statement disadvantages is proposed.

1. Problem statement

THE STATEMENT of the problem and solution procedure are detailed in [I, 2].
Two-dimensional N — S equations are written in terms of the stream function
¥ and vorticity (2, which are defined by relations « = 0¥ /dy, v = —0¥/dx,
2 = 0du/dy — dv/0x:

(1.1) AV = H*Q,
(1.2) H2dN/dt = Re™' AR,

where 71?2 is the Jacobian of transformation of Cartesian coordinates z, y to curvi-
linear orthogonal coordinates &, 1. A grid of “0”-type obtained by a conformal
mapping of an airfoil onto a circle is used. Re = U..b/r is the Reynolds number,
where U, is a free stream velocity, b is a characteristic length, v is coefficient of
kinematic viscosity. Dimensionless time ¢ is defined by the relation tppy = 10/U,
where b is eiter the chord of airfoil or b = R is radius of the cylinder.

Boundary condition. On a solid body surface 5 the following no-slip conditions
are defined:

ve = —H~'0w/dn

c=e). vy = 10w = ().

The condition (‘)!P/OEL = II f(n) is transformed into a boundary condition for a
vorticity 25 [1, 3] by using a two-parameter approximating formula; this permits
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us to eliminate the approximation effect on the solution accuracy and to maximize
the iterative solution process rate by employing the procedure described in [1].

Over the far boundary 5., (being about 10 chords away from the body), the
following boundary conditions are specified:

(1.3) aN/o€ = 0,
(1.4) OV /0 = vy (3—; sina — 3—? cos u)
—;—2 [D,sin(n — a) + D, cos(n — )] — I'/2r,

where D, D, and [I" are parameters.
The flow starts from the state when the body and fluid are at rest.

2. Method of solution

A solution of decoupled equations of the system is used. Equation (1.1) is
solved directly by expansion into a Fourier series in terms of the cyclic coordi-
nate 7.

Equation (1.2) is solved by the ADI method. Central differences for second
derivatives and one-sided upwind differences for nonlinear terms in (1.2) are
used.

At each time step an iterative process is employed. A zonal approach used in
[4] is applied.

3. Flow past a circular cylinder

Two problems are considered.
3.1.

Uniform flow around a circular cylinder in a viscous incompressible fluid that
is preliminarily spun can serve as an interesting example. An initially steady flow
around a cylinder rotating at a constant angular velocity I in a uniform viscous
flow has been obtained by calculation for Re = U, R/ = 200 (R denotes the
radius of the cylinder) and Rossby number Ro = W /U, = 2. In this case the
boundary conditions on 5., include the circulation term, as in [5, 6, 7]. When the
flow becomes steady, the cylinder is suddenly stopped. If we apply in this case the
widely used argument that the velocity over 5., will change when cylinder-induced
vortical disturbances carried by the flow reach this boundary, we conclude that
after a long time (comparable with the distance between 5 and 5. ), the presence
of the vortex term in the asymptotic on S, will be retained.

The equi-vorticity lines are shown in Fig.1 for the solution to N — S equa-
tions when the problem statement includes (i) no-slip boundary condition over
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S for immovable cylinder, and (ii) uniform flow with circulation term over 5.
Reversed Kdrmdn street is observed: a vortex A, leaving the upper side of the
cylinder, gets down and is then found under the vortex B which has departed
from the lower side of the cylinder; and simultaneously, all vortex street is car-
ried downwards due to the flow spinning effect (or upwards, if the flow has been
spun in the opposite direction). The first vortices of Golubev street [8] are ob-
tained. It follows that a thrust is generated.

The computation domain size is limited to 20 radii of the cylinder. Therefore
the vortex street development is computed over a time interval At = 15. In this
case it is clear that changes over 5., will occur earlier than the wake will reach
it. It is obvious that, after the initial vortex street reversal, some time is necessary
for the Kdrman street to be restored.

To study this phenomenon, the computation domain size should be expanded
and the problem of proper boundary conditions for S., should be solved. In
view of technical problems, a more powerful computer than MICROVAX-2 is
desirable. '

3.2.

Detached separation in flow around a circular cylinder which performs angular
oscillations about its axis in a free stream has been studied previously in [4]. The
law of oscillations is as follows:

1
W= sdsin((t - o)), w=2rK. K= R/ULT.

Figure 2 a presents the equi-vorticity lines at Re = 35. The oscillation amplitude
A = 45° reduced frequency A' = R/U.,T = 3 (T is an oscillation period);
Fig.2b presents the streamlines. One can see a symmetrical separation region
that is separated from the cylinder by the circular layer in which the flow is
essentially unsteady.

At Reynolds numbers as high as 200, the flow topology presented in Fig.2
is conserved [4]. Effects of scheme parameters were studied by diminishing the
mesh steps in both space and time.

A further study of the problem is concerned with the opportunity of flow
stabilization of the previously developed separated flow. The unsteady flow with
a Kdrmdn street (Reynolds number Re = 200) past a circular cylinder was taken
as an initial state. Attempts to attain flow stabilization were made with the help
of angular oscillations of the cylinder about its axis with the reduced frequency
k=3 at A = 45°. Survey of the equi-vorticity lines in Fig.3 raises the question
about an intermediate separation, when detached separation with asymmetrical
flow pattern alternates with the attached (conventional) separation. The vortex
is detached from the cylinder surface by a liquid layer and the inflowing liquid
particles do not reach the cylinder [4]. To compare, one can refer to Fig. 1 drawn
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for a cylinder at the same Reynolds number, but without angular oscillations. No
differences in generation and motion of vortices are seen. Differences in geometry
of vortices and hence in their intensity are also not observed.

However, changing the scheme parameters results in an unexpected new type
of flow presented in Fig.4. In this case the calculations are stable and, with
parameters of the finite-difference scheme being fixed, the results converge pre-
cisely to the revealed solution. Different solutions at different parameters of a
finite-difference scheme means the lack of convergence in a strong mathematical
sense. So some new aspects of the computational fluid dynamics theory must be
developed.

Small vortices generation presented in Fig. 4 reduces the intensity of primarily
separated vortices, which move away from the cylinder, and even eliminates the
generation of large vortices that are known as a vortex street of the Karman street
type. A completely different topology is realized (Fig.4).

Note that the time interval from ¢ = 23.0 to ¢t = 30.225 when such changes
have taken place, is quite short and comparable with the specific period of vortex
generation in the Kdrman street.

At Re = 35 small vortices are not generated, with any finite-difference scheme
parameters. A considerable growth of errors in the region of the reversal wake
flow is observed at a time step greater than a certain value. In such a way, at this
Reynolds number the solution converges only to the unique flow pattern, which
is identified as the detached separation, see Fig. 2.

The examples presented have raised the problem of estimation of adequacy
of a numerical solution to physical reality.

4. Numerical experiment for a flow past an airfoil

Numerical experiment technique was designed for the problem of flow past
an airfoil. Primary effect of specifying the circulation term for a velocity over 5.,
on the solution was studied. Flow past the 12% Zhukovsky airfoil with a finite
trailing edge angle at Re = 10* and angle of attack a = 5° was estimated. For
the boundary condition (1.4) D, = D, = 0 was specified. There exists the range
of values I' = (0 : —0.21) where the condition of pressure uniqueness over the
trailing edge is satisfied [9, 10]. The pressure coefficient €, = (p — p.. )/ 30U2 is
presented in Fig. S, where a) [' = 0; b) I' = -0.21; ¢) I' = —0.40. The vortex
within the domain limited by 5., is placed rather arbitrarily. For example, when
the centre of the vortex with intensity ” = —0.21 lies on the positive 0.X' axis
downstream the airfoil at X, = 0.5 or X, = 2, we obtain the coefficient C,
presented in Fig.5d or Se, respectively. Pressure coefficient (', in both cases is
the same and close to that occurring in the case with X, = 0 (Fig.5b).

When an asymptote of far field flow with two vortices is specified over 5.,
we conclude the following: if the second vortex is outside the domain bounded

http://rcin.org.pl
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by 5., then it insignificantly affects the integral characteristics and ), (Fig.5f,
X, =12, I' = —0.21). In this case the first vortex can be located inside the
computational region (bounded by S. ) arbitrarily, retaining the integral char-
acteristics unchanged. Such a dependence of /" on 5., and ', emphasizes the
connection of this asymptotics with the lifting capability of the airfoil and makes
it very suitable for modelling these phenomena.

The dipole term effect was studied. For example, Fig. 6 presents the stream-
lines and the equi-vorticity lines (Fig.6¢) in the vicinity of the 1/4 chord of the
12% Zhukovsky airfoil; Reynolds number Re = 104, angle of attack o = 7.25°
Parameters in (1.4) are as follows: D, = D, = I' = 0 (Fig.6a-f) and D, = —4,
D, =4, 1" = —0.20 (Fig. 6 g-1). Development of coherent vortex structures in the
vicinity of the trailing edge was obtained. This study is discussed in detail in [2].

The next step of the investigation is to study the flow with an increasing
Reynolds number. Figure 7 presents the streamlines (7a-7f) and equi-vorticity
lines (7g-71) for the 12% Zhukovsky airfoil at « = 5°, D, = D, = 0 and
I' = —0.21, when the Reynolds numbers are the following: a), g) Re = 1.5 x 10%
b), h) Re = 2x 10% ¢) i) Re = 2.5x 10% d), j) Re = 3x10% e), k) Re = 3.5x 10%
f), 1) Re = 3.75 x 10%

Considerable development of separation over the leeward side of the airfoil is
observed. Reynolds number of 37500 is the highest value at which the computation
convergence in the framework of laminar flow is obtained (at o = 5°). In this
experiment the computations are performed with successively increasing Re and
the flow for previous Re is the initial condition for computations of flow at a next
Re. The fact that distributions (', over S (Fig.8a for Re = 15000), obtained by
integrating (along the different paths but with the same method of integration)

http://rcin.org.pl
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the equation of motion, do not coincide, indicates that the solution is not quite
correct [11]. The study in [12] for a circular cylinder rotating in viscous flow
shows that asymptotic condition for far field flow may be properly stated so as
to eliminate the pressure nonuniqueness. This is one of the goals of our study of
the viscous flow around a body with boundary conditions (1.3) and (1.4), where
the number of terms in the asymptotic expansion may be increased.

The effect of scheme factors and parameters of the mathematical model on
the problem solution is studied. It has been found that, within the investigated
angles-of-attack and Reynolds numbers ranges, the flow turbulization cannot yet

http://rcin.org.pl
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reduce the separation region, presented in Fig. 7. The Boldwin-Lomax model was
used.

The search of explanations of the causes of the presented topology of flow
around an airfoil results in construction of a flow model including a laminar
wake [13]. In this case the theory suggests the solution in which the flow in
the wake conserves (and convects) momentum losses of two types. The first one
defines the drag acting on an airfoil due to viscous friction. The second one
corresponds to lift variation. Those losses must occur within the near-wall layer
and then be convected by the wake. In the framework of this theory, construction
of distributed sources and sinks is necessary.

We will synthesize the above-mentioned theory [13] with the Lighthill con-
struction [14], where the near-wall layer momentum losses are simulated by dis-
tributed sources and sinks with their extension into the wake. The latter combines
the suggestion of [13] and the model of [14].
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However, practical application of the part of this theory which deals with
specification of distributed wake singularities is a difficult problem. It has been
found that application of this model doesn’t resolve yet all the difficulties which
we have in numerical solution for the flow presented in Fig. 7. Thus, generation of
a developed separated flow is connected with construction of a general asymptotic
behaviour of the solution for flow around an airfoil.

A detailed study by including additional sources, dipoles and vortex terms in
the asymptotic expansion for velocity over S, was conducted. It is obtained that
at least one of possible representations includes the additional asymptotics of two
vortices with opposite signs of circulation and their centres are located inside the
airfoil.

a)

ik
//%////

b)

FiG. 9.

Figure 9 a, b present the topology for Re = 1.5 x 10%, & = 5°, and Fig.8 b, the
pressure distribution when the mentioned singularities are added to the initial
state shown in Fig.7a,g. As we see, the flow obtained is similar to that studied
before at Re = 10* and @ = 5° and is in agreement with our knowledge of
the full-scale experiment. Note that the separation region disappears, what is
especially clear in comparison with flow in Fig.7. The agreement between (',
and 0 obtained by different ways of integration [11] indicates mathematical
accuracy of the solution obtained.
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After the same construction, the elimination of massive separation in the flow
at Re = 3.5 x 10* is obtained too. It should be noted that the flow topology
singularities that were presented in Fig.7, are still of interest to investigators
because similar vortex structures are realized obviously at high angles of attack.

At last, Fig. 10 shows a distribution of circulation v along a coordinate line
& = const as a function of the coordinate x at which this line intersects the positive
Oz axis; these data indicate that, in accordance with the model of [13], solutions
can be realized when value of v is bounded by I given at S, from below, see
Fig.10a (o« = 5°, Re = 1.5 x 104, I' = -0.21, D, = D, = 0) and flows where
lv| < I'| (at the same Re, D,, D,, but the above mentioned two vortices with
opposite signs of circulation are included in (1.4)). The latter means that in the
airfoil wall region there occur momentum losses resulting in a decrease of ', in
comparison with that ', defined by I in the framework of potential flow theory
for an ideal fluid.

F1G. 10.

It can be noted briefly that inclusion of additional vortices into the asymptotic
for S.. affects significantly the aerodynamic moment that is induced by the po-
tential part of the solution. This follows from the Chaplygin - Blasius theorem for
an ideal fluid. The results obtained for an ideal fluid are not related directly to
viscous flows, but mechanical meaning of inclusion of the mentioned singularities
— to change the aerodynamic moment — is certainly the same.

The examples presented have shown that the application of the technology
of the numerical experiment allows us not only to reveal disadvantages of the
problem statement but also to eliminate the difficulties. The results concerning
the flow past the circular cylinder present new problems that couldn’t be studied
earlier in the framework of numerical experiments.
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Wave propagation in anisotropic layered media

M. ROMEO (GENOVA)

THE PROPAGATION of time-harmonic waves in a continuously stratified anisotropic, viscoelastic layer
bounded by two homogenecous anisotropic solid half-spaces, is studied analytically. A plane wave
is assumed to impinge on the boundary of the layer, and the resulting field, inside and outside
of the layer, is described according to the causality principle and formal wave-splitting. Reflection
and transmission coeflicients are derived for arbitrary angle of incidence, together with a formal
expression of the wave field within the layer. A local reflectivity is defined as a function of the depth
and used to obtain up and down-going modes in the layer. Reduction of the model to particular
material symmetries allows for scalar fields whose properties generalize known results concerning
the isotropic media. Numerical results are given to illustrate the method in the scalar case.

1. Introduction

WAVE PROPAGATION in stratified layers has been extensively investigated in con-
nection with a wide range of constitutive and geometric models which are mainly
motivated by geophysical applications. Beside the frequent approaches based on
homogeneous waves in elastic isotropic materials (see for ex. [1, 2]), inhomo-
geneous waves have also been exploited in order to account for dissipative effects
[3, 4], and anisotropic materials have been considered in the multilayered case
[5, 6]. However, in these last works each layer is assumed to be homogeneous,
thus allowing for an effective use of the propagator matrix.

The aim of the present paper is to investigate wave propagation across a con-
tinuously stratified (and hence inhomogeneous) viscoelastic solid layer with ar-
bitrary material symmetry. A time-harmonic inhomogeneous plane wave, coming
from a homogeneous anisotropic half-space, is assumed to impinge on the outset
of the layer, giving rise to a reflected field. A transmitted wave field propagates
along the edge of the layer within a second homogeneous anisotropic half-space.
For arbitrary angle of incidence, three reflected modes and three transmitted
modes are, in general, possible within the homogeneous half-spaces. Although
forward and backward plane waves are allowed in the first solid half-space, the
causality reasons imply that only forward waves propagate in the second solid
half-space. Transmitted modes are then exploited to infer a formal wave-splitting
within the layer, where the wave field is described by three independent compo-
nents whose amplitudes and polarizations are functions of the depth. Continuity
requirements imposed on the displacement and on the traction are used to obtain
the reflection and the transmission matrices, and to get boundary conditions in
order to integrate the differential equation for the displacement. A wave-splitting
is then introduced for each wave component in the layer. To this end, a reflec-
tivity matrix is defined which satisfies suitable conditions at the boundaries. As a
result, the wave field within the layer is given as the superposition of three pairs
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of up and down-going modes. A notable simplification of the present model is
achieved by considering special material symmetries. In Sec.6 of this paper it
is shown that some crystal systems such as orthorhombic, tetragonal, cubic and
hexagonal systems allow for a decoupling of the governing differential equation,
which splits into a scalar equation for horizontally polarized waves and a vector
equation for vertically polarized waves. The first one is analyzed in detail to stress
the comparison with the known results on isotropic layers [7]. In particular, the
reflectivity is shown to satisfy a Riccati equation as occurs in scalar theories of
wave propagation in isotropic layered media [8, 9]. The scalar problem for hor-
izontally polarized waves is also solved numerically to explicitly obtain the split
wave-field. Two examples are considered of the dependence of the constitutive
properties on the depth.

2. Stratified anisotropic layers

We are here concerned with an inhomogeneous anisotropic solid layer £
bounded by two plane parallel surfaces §; and S;. A Cartesian coordinate system
is chosen in such a way that & and S; correspond to the planes z = 0 and z = d,
where d is the thickness of the layer. Inhomogeneity in £ is assumed to consist
of a continuously stratified structure along the z direction. Two homogeneous
anisotropic solid media By and B, occupy, respectively, the half-spaces z < 0
and z > d. All the media By, £, B, are supposed to behave as viscoelastic ma-
terials where the Cauchy stress T has a linear dependence on the strain history
and an arbitrary dependence on the space coordinates. More precisely, denoting
by € = Sym(Vu) the infinitesimal strain tensor, u being the displacement, we
assume (cf. [10])

(2.1) T(x, ) = G(z,0)e(x, 1) + ]éx(:, s) e(x. 1 — s)ds,
0

where G : R x R* — Lin(Sym) is the relaxation function and G, = 0G/ds. It
is convenient, in elastic theories of anisotropic solids, to adopt a double-indices
notation for the relaxation function (see [11]), introducing the indicial corre-
spondence (ij) — a (i,j = 1,2,3; a = 1,...,6) given by (11) — 1, (22) — 2,
(33) — 3, (23) — 4, (13) — 5, (12) — 6. The corresponding six-dimensional re-
laxation matrix /'(z, s) is assumed to be non-singular for any z € R and s € R*.
In the following we shall assume that the displacement u has a time-harmonic
dependence
u(x, t) = u(x)exp(—iwt),

with w € R™*. Hence, assuming e(x, —oc) = 0, integration by parts reduces
Eq.(2.1) to

(2.2) T(x,w) = G(z,w) €(x,w).
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where T = Texp(iwt) and G(z,w) = —iw I G(z, s) exp(iws) ds. Accounting for
the model we are dealing with, the constitutive parameters take the form

I‘(l)(w) for 2 <0,

afl

2.3) Fp =4 Tap(z,w)  for z €0, d],

I’g}(w) for z > d,

where I3 = —iw [;° I,pexp(iws)ds. We also assume that I,5 are continuous
throughout > and sufficiently smooth in [0, d]. Additional restrictions hold if par-
ticular material symmetries are allowed for the solid media. A classification of
such symmetries can be achieved by the determination of the planes of reflec-
tive symmetry (see [12]) and of the consequent non-vanishing elastic constants.
For the future purposes we observe that most of the crystal systems (such as
orthorhombic, tetragonal, cubic and hexagonal) can be characterized by the nine
non-vanishing parameters

Iy  with a,3=123,

(2.4) )
Y with v =4,5,6.

These, in turn, may reduce to a lower number of independent entries for particu-
lar crystal classes (see for ex. [13]).

3. The governing differential equation

Accounting for layer’s inhomogeneities along the z-axis, we assume that the
displacement u(x) has a plane-wave-like dependence on = and y, that is

(3.1) u(z,y, z) = w(z)expli(k.z + kyy)],

where &, and £, are complex-valued wave-numbers and where u € C3. Avoid-
ing inessential formal difficulties, we can choose the z-axis in such a way that
the real part of /&, vanishes. This can be accomplished by a suitable orthogonal
transformation applied to the constitutive tensor G (see e.g. [S]). We also neglect
the imaginary part of k.. This amounts to assume that the incident wave-number
bivector lies on the (y, z) plane. Hence, putting &, = &, Eq. (3.1) takes the form

(3.2) u(y, z) = u(z)exp(iky),

which, according to the Snell’s law, holds at any point in By, £, and B,. In view
of the time-harmonic dependence, the equation of motion for u reads

V.T+ptu=0,

http://rcin.org.pl



414 M. Romeo

where o is the mass density. By exploiting Eqs. (2.2) and (3.2) and accounting for
the description in terms of I', we arrive at

(3.3) [C + ow’T]u = 0,

where C is a linear symmetric differential operator whose entries are expressed
by

Cyy = 0.(I'ss0:) + ik(I'ss . + 2I's60:) — kT,

Cip = 0.(I'450.) + ik(Ips,. + 2l460.) — k¥ I,

Ci3 = 0.(I350.) + ik(Dys., + 20360.) — k*I'ss

Cyn = 0.(I'44d.) + ik(oa,, + 20240.) — K* I,

Cys = 0.(I'340.) + ik(T'yq» + 20539.) — k* 154,

Cyz = 0:(I'30:) + th(Ia,. + 20340:) — k14

(3.4)

Equation (3.3) is a second order homogeneous linear differential equation for u.
More explicitly, it can be written as

(3.5) Lu” + (L' + 2ikMu’ + (ikM) — k2Q + pw’Du = 0,
where prime denotes differentiation with respect to 2, and where
I'ss Ias I3s I'ss las I3

L= |TITs Iy I3], My=|Ts 124 Imx

I'ys I3q 133 Ie I3 I3

I'ss Ips Iias I'ee 12 1a6

Ma=|1Ios I2a lua|, Q= |1 In In

Iys Tag 134 I'se Toa Ty

Since I' is non-singular, the operator L(z) is invertible for any z € R, hence
Eq. (3.5) may be rewritten in the following form

(3.6) u’ + Au' + Bu =0,
where
(3.7) A =LY +2ikM,), B=L"(GkM) - k*Q + ou2I).

Before developing a procedure to obtain a representation of the displacement
within the layer £, we look for solutions of Eq. (3.6) in the homogeneous regions.
In B; and B; the tensor I" is taken to be independent of z, whence

A(I,Z) — ZIL(L(] ,2))— 1 Mgl ,2),

(3.8)
B(I,Z) - (L(l'z))_l[ngl - ]\,'ZQ“‘Z)],

http://rcin.org.pl
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with obvious meaning of the superscripts 1, 2. In view of a formal splitting of
the wave field into elementary modes, we first look for non-dissipative, normal
incident waves, such that £ = 0. Owing to (3.8) we have A2 = 0, and the
solutions of Eq. (3.6) take the form

3
(3.9) u =% [uns exp(is2) + up_ exp(—i(xz2)),

h=1
where (), (h = 1,2,3) are those solutions of the bi-cubic secular equation

(3.10) det [pw?L™! = ¢%1] = 0,

which have positive real parts. From Eq. (3.9) the displacement of normal incident
waves in homogeneous regions consists of three pairs of up and down-going
modes. For an arbitrary incidence and possible dissipation (k # 0), Egs. (3.9) and
(3.10) must be replaced by

6
(3.11) u= Z uy, exp(iCy2),

h=1

(3.12) det[ow?l — k*Q — 2k(M, — ¢2L] = 0.

The left-hand side of Eq.(3.12) is a sixth-degree polynomial with constant, com-
plex-valued coefficients, parametrized by k. Its zeroes (;, (h = 1,...,6) appear
in the representation (3.11). If the solutions ¢, (h = 1,2,3) of Eq.(3.10) are
distinct, there will be a neighbourhood C. of £ = 0 in the complex k-plane where
each solution of Eq. (3.12) has a one-to-one correspondence with each value +(,
and keeps its own sign. Then, assuming k£ € C, solutions of Eq.(3.12) may be
represented by the set

{C1+:~ Cl— ) C2+s (2—, C3+:' (:3—},
and Eq. (3.11) becomes

3

(3.13) u=> [ups exp(iCh+z) + ws_ exp(iCy—2)],
h=1

thus yelding three couples of “up” and “down-going” modes. In the following we
shall assume that the eigenvalue problem (3.12) and the corresponding eigenvec-
tor problem have been solved in By and in B, so that the constant amplitudes
u,+ are known. In view of further developments, we represent these vectors in
the form

1
(3.14) ws = af | pre
Gh+
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4, Formal wave-splitting and the field within the layer

A plane harmonic wave, coming from the homogeneous region By, is supposed
to impinge on the boundary §; of the inhomogeneous layer (» = 0). Owing to
the superposition principle, we can restrict our attention to one of the possible
up-going modes, labelled by I+, (I = 1,2,3) and study the reflected and trans-
mitted modes at the respective surfaces S; and S,. Each impinging mode allows
for a superposition of all the possible down-going reflected modes in B, and all
the possible up-going transmitted modes in B;, according to (3.13). The causal-
ity principle implies that no down-going modes arise in Bj, that is uﬁlz_) = 0 for
h = 1,2,3. Hence the wave fields in B, and B; can be expressed, respectively, as

1 1
3
(4.1) u = pﬂ) exp(zgfi’ Z Th ph_ exp(:(,h z) for 2<0,
o2 =
1
3
“2) u®@ =S wn| o2 |exp(ic?z)  for 2>,
h=1 2)
(lh+

for any impinging wave (! = 1,2, 3). Equations (4.1) and (4.2) can also be viewed
as a definition of the complex-valued reflection and transmission coefficients 1/,
and W;,. Compatibly with the causality principle, each component mode of the
transmitted field (4.2) may be thought of as being originated by a corresponding
field within the layer. Specifically, we decompose the field in £ as

(4.3) u=u +u+u;

and impose continuity requirements on Sp, pertinent to each component sepa-
rately. To this end we observe that, in view of (2.2), the traction t = Te; (e3 being
the unit vector along the =-direction) is given by

(4.4) t = ikPu + Lu/,

where
I'ss 125 Iias
P=| T4 124 Ia]|,
I3 I3 I34

and hence

(4.5) = L7I(t - ikPu).

=
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According to the regularity conditions on ' at the boundaries, the continuity of
the displacement and of the traction across S| and S, implies continuity of the
derivative of u at layer’s boundaries. As a consequence, from (4.2) and (4.3) we
have, at z = d,

1
, 2 . .
(4.6) ui(d) = Wi | 2§37 |exp(icdd) (G =1,2,3),
(2)
q;+
1
- 2 o [ .
(4.7) wi(d) = iQwy; | B [expi(Rd) (G =1.2,3),
@
15+

for any [ = 1,2,3. Now we introduce a triad of second-rank matrices NI G =
1,2, 3) such that

(4.8) o, = iNUly; (5 =1,2,3).

Substituting this into the governing differential equation (3.6) we obtain the fol-
lowing first-order Riccati-type differential equations for the matrices NI/l

(4.9) (NU1Y = iB — ANUI — iNVINIII,

Boundary conditions, in order to integrate (4.9), may be obtained from (4.6)—(4.8)
as

(4.10) NU@) =1t (5=1,2,3).
According to (3.14) we assume
1
(4.11) )=o) [ m) | G =1,23),
7;(2)

where o;(z) are scalar, complex-valued amplitudes and p;(z), ¢;(z) characterize
the polarization of the field. Substitution of (4.11) into (4.8) yields a first-order
differential equation for a two-dimensional polarization vector, and the expression
of the scalar amplitudes in terms of the entries of the matrices NI/, Explicitly

W\ (VY (-
(4.12) ] =sl ] O (] Al
% N1 N3 Ny — Ny J \ 4

A p; ; ; p;
(en ().
‘71 q]
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(4.13) a;(2) = a;(0)exp [ /(\“' + NUlp, + J\'{g’fh)dr}.

0
with j = 1,2, 3. Equation (4.12) has the form of a Riccati equation. Boundary
conditions are obtained from (4.6) and (4.11) as

2

p@\ _ (¥
(4.14) =1 &

([J'(d) ([J+
Consequently, integration of equations (4.9) and (4.12), together with Eq. (4.13)
allows us to obtain the field in the layer. In order to complete the picture, we
have to determine the constants of integration «;(0) in Eq.(4.13). This can be
performed by imposing the continuity of u and t at the surface §; (z = 0). As
a result, we also obtain the reflection and transmission matrices Vj, and W/,

(h,l = 1,2,3). Just like the previous conditions at S», we require the continuity
of u and v’ at S;. According to (4.11), we obtain, for any impinging mode /,

3 3
1+ Z Vi = Z(.l’j(()),
j=1 j=1

3 3
1 | =
(4.15) P+ 300 = 3 pi0)a(0),
j=1 _]:I
(1 .y :
G+ >4,V =Y q;(0)a;(0);
J=1 =1

3 o
G+ Zc‘”l =Y 27(0)a;(0),

3 .
(4.16) ¢Ppl) + Z ¢2p2v; = 3”240y, 0),

i=1

3
1) (1 1) (1)y, '
I(+) l(+) +* Z Q,(_) ﬁ_)‘ = Z ngi(o)“j(o)«

where Eq.(4.12) has been used in working out the last two of Egs. (4.16), and
where

@17 V) = NG + NG + MGG (k=1,2,3),
for any j = 1,2,3. From Eq. (4.15) we have, for any /,

3
(4.18) a;(0) = v (0) + Y Vi, (0) (G =1,2,3),
h=1
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with
1 1 a
m = [qy(ni(Pj+1 — pi+2) + G (a2 — POk) + Ga2(Phs — PJ'+1)]

(j,’]"l’t = 132ﬂ3)7

w2

=Y qi(pj+1 — pj+2),

and where a cyclic permutation of the indices j is understood. Substitution of
Eq. (4.18) into (4.16) yields, after some manipulations, the reflection matrix as

(4.19) = -H;'H_,

where H; and H_ are matrices whose entries are given by
(Hshn = (2 - jij vF,0)027(0),

3 ,
(4.20) () = 2042 - 503,025 (0),

i=1

3
(Hedn = (DY) meme

with A = 1,2, 3. The transmission coefficients may be obtained from the reflection
matrix V by simply observing that Eq. (4.13) can be also written as
d
a;(z) = Wi, exp [—i/ﬁm(r)(lr] exp(zg d)
Hence we obtain

(4.21) W=K.V+K_,

where

(K1)jn = v (0)exp

/[rz'ﬁ(r) . ]dr} G,k = 1,2,3).

http://rcin.org.pl



420 M. RoMEO

5. Local reflectivity and couples of opposite modes

The aim of the present section is to give a representation of the displacement
within the layer £, as a set of pairs of up-going and down-going modes. Accounting
for the formal splitting (4.3), we write

1 1 1
(5.1) u=a;|p; | = n;’ pr |+ aj | Py (G =1,2,3),
;i q q;

where the dependence on z of the amplitudes and polarizations is understood.
Let us introduce the local reflectivity matrix R(z) as

(5.2) (o ,05,03) = R(af,a;,a3).

From Eqgs.(5.1) and (5.2) we can express the amplitudes rrji in terms of the
amplitudes «;, which have been derived in the previous section. We get

(5.3) (af ;a7 ,a3) = (1 + R)" (g, az,a3),

(5.4) (a7 ,05,03) = R(I+ R) !(ay, a2, 3).

In order to match the wave-splitting given by (5.1) and (5.2) with the solutioas of

Eq. (3.6) in By and B3, according to the analysis of the previous section, we must
impose the following conditions at the boundaries

(5.5) (a7, 05,03):=0 = V(af ,a3,03)|:=0,
(5.6) (o] 05 ,03)|:=4 = 0.

In view of Egs.(5.2) and (5.4), this implies that the matrix function R(z) must
satisfy the conditions

(5.7) R(0) =V,

(5.8) R(d) = 0.

Let us consider the matrix function

(5.9) R(:) = —H;'(:)H_(:),

where Hy () are given by (4.20) being uﬁ and Q{:"] evaluated at the depth z in
the layer. It is a simple matter to show that (5.9) satisfies conditions (5.7) and
(5.8). In fact, Eq. (5.7) is the obvious consequence of (4.19) and (5.8) follows from

the fact that H_(d) = 0, in view of (4.20), (4.17) and (4.10). Hence Egs.5.3),
(5.4) and (5.9) yield the appropriate representation of the split field within the
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layer. However, this description is not the only one, since other representations
are possible for different matrix functions which satisfy Eqs. (5.7) and (5.8). As

to the polarizations p}t(:), q;t (z), we can apply the previous analysis in view of

the formulae
(a7 py 03y, 05p3) = R(ef'pi a3 py, a3 p3),
(79,0505 ,0503) = R(af ¢ a3 ¢ e3a3),
afpf + a;pj— = a;pj, a;'q;" + ozj_qj_ = a;q;,

with j = 1,2,3.

6. Horizontally polarized waves for particular symmetries

According to Eq. (2.6), orthorhombic, tetragonal, cubic and hexagonal systems
are characterizerd by the following restrictions
Na=hs=le=In=Is=I%=0,

(6.1)

I3g = Iys = 136 = I4s = Iy = I'ss = 0.
For waves incident on the plane (7, =), Eq.(3.5) splits into

6.2 Issuf + Iisu) — (k*les — ow*)uy =0,
1 T Lssu

1144 0 () B FZM 0 X 0 1‘23 uz J
, + + 2k
@ ( 0 1"33) (‘”3) [( 0 Iy "\ o0 u3
) 0 Iy Iy 0 1 0 Uy
k it 8 kz + 2 =
l (r;4 0) ( 0 1'44) “ o 1)) \us

Equation (6.2) is the governing equation for waves polarized along the z-direction,
i.e. horizontally polarized waves, and Eq. (6.3) accounts for waves whose ampli-
tude lies on the vertical propagation plane, i.e. vertically polarized waves. The
analysis of Sec.4 may be applied separately to Eq.(6.2) and Eq.(6.3). Here we
remark some peculiar features of horizontally polarized waves. Let us note that,
according to (6.1)

+

ty = Issuy,
hence continuity of ¢; at the boundaries of the layer is equivalent to continuity
of . The continuity requirements reduce to

u(0) = 14V,

ui(0) = i + ¢,
ur(d) = Wexp(ic'Pd),
ui(d) = iCPW exp(icPd).

(6.4)
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Introducing the complex-valued function o (=) such that
(6.5) uy = iouy,

Eq. (6.2) yields

. 1—1,
(6.6) o' = ri(ng - Klg) - 20 — i,
55 55

In addition, from (6.4) we get
6.7) a(d) = ¢

If Eq.(6.6) is solved together with the boundary condition (6.7), the horizontal
displacement uq(z) may be given in the form

W [
(6.8) u1(z) = m———exp i/n(r)(]r .
@ —o [
As to the reflection coefficient V, Egs. (6.4) yield
(1)
—a(0
69 Roux)
= =a(0)

The scattering problem has been reduced to the solution of the first-order Riccati
equation (6.6) for the function o(2).

Consider now the splitting of horizontally polarized waves and introduce the
up and down-going modes u (z), u; (=) and a local reflectivity /(=) such that
(6.10) up = uf +ug, up = Ruy .

(6.11) R(0) = V, R(d) = 0.

It is easy to show that the function

(6.12) R(z) = —%—%\
where the functions (4 (=) are defined according to
I55(2)
C+(2) + ((2) = i2
(6.13) I 55(1 )
CHE-) = s [ow? - K Ts6(2)]

http://rcin.org.pl
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satisfies restrictions (6.11). This fact is a direct consequence of Egs. (6.9) and (6.7).
We finally show that, in this case, the reflectivity £(z) satisfies a first-order Riccati
differential equation. To this end we observe that, owing to (6.13), Eq. (6.6) can
be rewritten as

(6.14) o' = —i(o — (4 )e - ().

Then, differentiating Eq. (6.12) and accounting for Eq. (6.14), we obtain
¢, L ¢+ ¢t 2

6.15 R = - — — |2 —(.)-——| R+ = — R”.

(835 Tl A v G =

Integration of Eq.(6.15) with the boundary condition (6.11); turns out to be
an alternative approach in deriving the reflection coefficient. The result (6.15)
is a generalization of recent results on isotropic layers [7]. More generally, a
Riccati-type equation for the reflectivity is a common feature of scalar theories
in layered media (see for ex. [9]).

7. Numerical examples

In order to varify the method previously outlined, we give a numerical solu-
tion for the wave-field inside a solid layer with known constitutive properties. We
restrict our computations to the scalar problem developed in Sec. 6; extension to
the more general case may be performed without qualitative changes. Two differ-
ent examples are considered for the dependence of the constitutive parameters
on the depth within the layer. In each instance, the quantities s, /66, 0 have the
same dependence on z and, according to the present model, are C'! throughout
z. The first example accounts for a monotone increasing dependence on z as

(7.1) (0, I'ss, Te6) = (00, TS5, Ige)[1 + Q(1 — cos(zZ))],  Z €[0,1],

where o9, I'%s, 'Y are constant quantities pertaining to B, 2@ is the ratio between
the maximum and the minimum value of the constitutive parameters and where
the dimensionless variable Z = z/d has been introduced. In the second example
a symmetric layer is considered, with

(7.2) (0, I'ss, Tes) = (00, IS5, TS)[1 + Q(1 — cos(2r 2))], Z €[0,1],

so that B; and B; are mechanically equivalent.
Effective wave propagation within the layer requires a non-zero real part of
(+. According to (6.13), this implies

(7.3) ow? — Tegh? > 33
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In view of (7.1) and (7.2), the inequality (7.3) amounts to the following restriction
on w and k,

0 T2
(74) sz = F&kl > CISOSWQ- s
with ¢ = 1/4 or ¢ = 1 depending on the alternative use of (7.1) or (7.2), respect-
ively.

arnsr

iy

an r

0051

0 02 04 06 08 k/k 10

F1G. 1. Reflection coefficient |V| = |R(0)| as a function of k/ky for a layer described by Eq.(7.1)
(curve a) or by Eq.(7.2) (curve b).

Equation (6.15) has been numerically integrated along with the boundary con-
dition R(Z = 1) = 0, adopting Eqgs. (7.1), (7.2) and accounting for (7.4). The
reflection coefficient [V| = |/2(0)| has been derived for all possible values of &
ow? FSOS r2Q? e .

5 — ¢ 7 15-| ) The values of V have been
r$ rgi1+2q

substituted into the boundary conditions (6.4), ; in order to integrate Eq. (6.2).
Then, both solutions for u; and R have been exploited to obtain the wave split-
ting within the layer, according to (6.10). The results are shown in Figs. 1-5 for

0 < k < ko, with ko =
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004}
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FiG. 2. Real and imaginary parts of the I'1G. 3. Real and imaginary parts of the
forward wave component within the backward wave component within the
“monotone” layer (see Eq.(7.1)). “monotone” layer (see Eq.(7.1)).

a layer of zinc (o9 = 7135kg/m?, I'% = 39.10° Pa, I'% = 63-10° Pa) with Q@ = 0.1
and w = 10*Hz. In particular, Fig.1 shows |V| versus k for the “monotone”
layer described by Eq.(7.1) (curve a), and for the symmetric layer described by
Eq. (7.2) (curve b). Figures 2 and 3 show the real and the imaginary parts u} and
u’, of the opposite modes in the split wave-field for normal incidence (k = 0) in
the “monotone” layer (see Eq.(7.1)). Analogous results are shown in Figs. 4, 5
for the symmetric layer (see Eq.(7.2)). From Figs.3 and 5 is evident the phase
shift between u® and u* which shows the mixing effect of the reflectivity R on
the real and imaginary parts of the field inside the layer. We also observe that the
reflection coefficient [V| for normal incidence in the symmetric layer is by one
order of magnitude greater than that of the “monotone” layer (Fig. 1). This fact,
which is also evident from the results of the reflected amplitudes u®? (Figs. 3, 5),
is due to the steeper profile of the constitutive properties in the symmetric layer.
We note, however, that this behaviour is reversed when incidences are considered
which are close to the limiting value k.
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The Wigner potential method in the investigation
of thermal properties of regular composites

S. MAY, S. TOKARZEWSKI and A. ZACHARA (WARSZAWA)

For pERIODIC, two-dimensional potentials satisfying the Laplace equation, a new functional ba-
sis, different from that used by RAvLEIGH [1], has been derived. This basis allowed us to con-
struct a simple recurrence formulae for evaluation of an effective transport coefficients for regular
two-dimensional composites. As an example, the power expansion of an overall conductivity for
square array of circular cylinders has been evaluated.

1. Governing equations

THE TEMPERATURE distribution and the effective conductivity of composites of
regular structure were first investigated by RavLEIGH [1]. He performed calcu-
lations for rectangular arrays of circular as well as spherical inclusions. The ap-
proach of Rayleigh was next developed by many other authors [2-4]. In this paper,
we present a method of solving the two-dimensional periodic problems by using
a new functional basis different from that used by Rayleigh. This basis appears
to be very convenient for seeking the solutions of Laplace equation and leads to
very effective algorithms.

Let us consider a material composed of circular cylinders of conductivity Ay,
embedded in a matrix of conductivity A.. The composite is subjected to an external
linear temperature field. The elementary cell is presented in Fig. 1. Let a be the
cylinder radius, [ — the distance between the cylinder axes, 7¢ and 7°¢ — the
temperature of inclusions and matrix, respectively. The temperature field in a
unit cell fulfills the conductivity equations

VT = () for r > a,

Vit = for r < a,

(1.1)

and the boundary conditions for » = a

(12) it
| NN
¢ Br d or ”

where r, 6 are polar coordinates with the origin located on the cylinder axis.
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2a

l

Fic. 1.

Rayleigh obtained the solution of Egs. (1.1) in the form:

[oe]

by
T(r,6) = Z (a;\.rk + T:') cos k.
k=1

(1.3) -
T”’(r, 0) = z cxr® cos kb .
k=1
The solution may be interpreted as generated by an infinite system of multi-

poles located at the cylinder axes. We have here three infinite sets of coefficients
ak, bg, cx, (k = 1,3,...) since, due to the symmetry conditions, only odd values of
k are allowed [1]. With the aid of the boundary conditions (1.2), the coefficients
a; and c; may be expressed as linear functions of b;. To determine by, Rayleigh
made an assumption that the part of the potential in the unit cell correspond-
ing to the term of Eq.(1.3); which is non-singular in the unit cell center » = 0
resulted from two sources. The first of them is the external gradient of temper-
ature. The second one is a joint influence of the multipoles from the other cells
corresponding to the terms of Eq. (1.3); which are singular in the centers of these
cells [1]. This assumption leads to the following infinite system of equations for
the coefficients by,

o '
i 3 M“—”’Skﬂbj, k=1,3,5...,

G-

(14) bpq + k!

e
where

(1.5) u=—-1,
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(16) Z (1" + ’Jn m :

Symbols 5,, denote the Rayleigh sums, (z,,y,) are Cartesian coordinates of
the centers of the cells, 7 is an imaginary unit and {n} denotes summation to
infinity in the directions of z and y over all cylinder centers lying outside the unit
cell. The sums S, depend on the geometrical properties of the array. Numerical
values of S, for square and hexagonal arrays are given in [2].

The approximate values of b; can be calculated from Eq.(1.4) subjected to
truncation. The effective conductivity of a composite depends on the coefficient
b, according to the formula derived by RAYLEIGH [1],

A

1.7) = /\—C= 1—2rmb,.

For a square array of cylinders, the temperature distribution 7%(r, #; ¢, u) and
the effective conductivity p(p, u) depend on two dimensionless quantities: the
cylinder volume fraction ¢ and physical properties of the components represented
by u (1.5). Coefficients ay, by and ¢, appearing in (1.3) are functions of ¢ and u.

It is well known that the Rayleigh method provides the non-unique solutions
for A¢, since the second Rayleigh’s sum 53 over the infinite array of cylinders
is only conditionally convergent, i.e., it depends on the shape of the exterior
boundary of the composite. This was the reason why, for a long time, many
authors were questioning the correctness of the Rayleigh approach [S]. In 1979
MCcPHEDRAN et al. [2] pointed out that an infinite, flat layer of a composite
subjected to the external temperature gradient is the only correct sample shape
for calcuiatior of A by the Rayleigh method.

An interesting approach has been proposed by Zuzovski, BRENNER [6] and
SANGANI, ACrRIVOS [7]. Their methods avoid all the difficulties of the Rayleigh
method mentioned above. They decomposed the temperature field into two com-
ponents. The first one is a macroscopic shape-dependent component 7™, and
the second one is periodic, depending on the geometry and physical properties
of the composite 777,

(18) ’1‘1- s '['i,vn + rlt,[‘p.

where ¢ = ¢,d. In view of the periodicity of the temperature field and the square
symmetry of the array, the normal derivative of the periodic component of tem-
perature is equal to 0 on the cell boundary,

(1.9) n-V7Ter =0,

where n is a unit vector normal to the boundary of the cell. Condition (1.9) may
be considered as equivalent to the equations of Rayleigh (1.4).

http://rcin.org.pl
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It was shown in [6, 7] that the periodic component may be expressed by an
infinite set of derivatives of a certain function Ty called the Wigner potential
[8]. By using these derivatives Zuzovski, BRENNER [6] and SANGANI, ACRIVOS
[7] investigated the effective conductivity of regular arrays of spheres. They no-
ticed that successive derivatives of 7y formed a functional basis convenient for
representation of solutions of three-dimensional Laplace equations.

The main aim of this paper is to construct a new functional basis for periodic,
two-dimensional potentials generated by the Laplace equation. As an example, we
will derive a simple recurrence formula for evaluation of the effective conductivity,
in the form of a power series in u, for a square array of circular cylinders.

2. The functional basis

The Rayleigh functional basis consists of multipoles located in the centers of
single cells. These basic functions do not fulfill the periodic boundary condition
on the boundary of the cell. Our aim is to find a basis, the elements of which
fulfill identically the periodicity conditions. Such a basis can be built up with the
aid of the Wigner potential. In this section we shall limit our investigation merely
to the periodic term 77 of the temperature field. For the sake of convenience,
the upper index p in T*” will be omitted, i.e. 7°" = T".

Let us consider an infinite system of point heat sources of intensity ¢, located
in the nodes of a square array of period [, accompanied by neutralizing fuzzy
sources of uniform density 7 = —¢/l of the opposite sign. In such a grid, the
global intensity of sources is equal to 0. The temperature field generated by such
a system of sources fulfills the Poisson equation (2.1)

2.1 V3 = —2rq- (6(r) - 112) .

and the boundary condition (1.9), where 6(r) is the Dirac function. The solution
of equations (2.1) and (1.9) was given by CicHockl and FELDERHOF [8] in the
form:

T 1 2 o m
2.2) Io(r) = ¢q - (— Inr + ST + Z A, ™ cos m.f)) :

m :4

Coefficients A,, were found in the process of summation over an infinite grid of
cells, with the exception of the cell located in the center of the coordinate system.
Coefficients A,, are related to the Rayleigh sums 5, (1.6) as follows,

‘q"l

f‘m -

m

The index m in (2.2) is a multiple of 4, because 7y(r) is independent of rotation
of the frame of reference by the angle 7/2. The first term in the parentheses
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of (2.2) represents the influence of a single source located in the center of the
cell, the second one is generated by the fuzzy sources, while the third term given
by the infinite sum is due to the sources located in the external cells. Function
(2.2), called the Wigner potential [8], can be used as a starting point for the
construction of the functional basis for periodic two-dimensional potentials.

A multipole of order k includes 2* point sources, and it is defined by the scalar
intensity ¢x and k unit vectors n,, s = 1,2,...,k, representing the directional
properties of the multipole (see for example [9]). The multipole potential is
proportional to the k-th directional derivative of the point source potential in
directions ny, ny, . .., ng, respectively.

k
(2.3) Ti(r) = qi [H(—l)""(ns-V)l To(r), k=1,2,....
s=1]

For a classical multipole, 7(r) is the potential of a point source in an infinite
region: in the 2-dimensional case

(2.4) To(r) = —Inr.

Instead of a single multipole, one may consider an infinite system of identical
multipoles of order & located in the nodes of a square array. To determine the
potential of such a grid, one should apply the operator of the right-hand side of
(2.3) to the function Ty(r) defined by (2.2). Positive and negative fuzzy sources
balance each other and they have no influence on the global potential.

In the operator n, -V of directional derivative, one may distinguish two com-
ponents of different types of symmetry,

(2.5) n,-V=o+03-V,
where
0 sinfl @
U= COSH(,)——- 7'(7)3,
. 0 cosf d
YV = sin 0)— Y

Action of the operator ¢/ on the symmetric or antisymmetric functions produces
the results of the same type of symmetry: symmetric or antisymmetric, respect-
ively. On the other hand, operator V changes the type of symmetry to the opposite
one. Let us introduce the notations:

cos kb

(2.6) TE* = (=15 (k= 1)) + 1(b157 oSO + b)

0 (m+ k)
+ Z %r"‘/lhm cos mé ,

m=1

rk
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mnAH

(27) ]ia—( 1) (lx—])' WﬁlkrSiI‘lf)

8
E (m k) ™ Ag4m SINMO .

m=1

The differential operators { and V acting on functions 7}°(r) and 7}%(r) have
the following properties:

Ur:” = T.x,, UTS" =T.0 s
(2.8) T -
VI = Tihy, VI," =T, 1
Applying the operator (n,:V), s = 1,...,k, to the function Ty(r) k-times, one
obtains a sum of the following terms:

WyiTyr), j=01,...,k;
hence
(2.9) Ti(r) = CLT(r) + DTS (r),

where (', and D, are certain known numerical coefficients.

The functions 7" and 7" defined by (2.6) and (2.7) constitute a basis for
the solution in the elementary cell outside the cylinder. According to (2.9), the
potential of the grid of £-th order multipoles is a linear combination of symmetric
and antisymmetric functions of k-th order.

The functions 7;"° and 7" have singularities on the axis of the cylinder, and
they can not be used for representing the solution inside the cylinder. In this
region, we assume the basis (2.10), (2.11) without singularity

(210) T2 = (-1)k(k - 1)v cosk9+7r(6“rcosﬂ+62k)

Z (m + k)! o

Ay cOsmé |
m!

m=1
k
(211) T =(- ])"(A—])' - sin k@ + 76,7 sin 8

+ - (m ' m ‘ 0
Z T k+m sinm

It is easily seen that for r = q, the corresponding functions in both the bases are
equal,

(2.12) TS (a,0) = T{ (0, 6),  T{"(a,0) = T)"(a. 6).

http://rcin.org.pl
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Representing the solution in the bases (2.6)-(2.7) and (2.10)-(2.11), we fulfill
identically the condition (1.9) of periodicity on the cell wall, and continuity of
temperature on the cylinder surface. The condition of equality of normal compo-
nents of a heat flux on the cylinder boundary determine uniquely the coeflicients
of expansion of A in our basis.

Let us introduce the symbols for the basic functions in both components of
the composite:

T:‘s ] 1;1 @ r < a,
(2.13) T: = i T = )
T / A r > a.

Derivatives of the functions 7} and 7} are discontinuous for » = «. Both functions
(2.13) fulfill the Poisson equations (2.14)—(2.15) given by

(2.14) V3T = —é(r — a)cos ko,
(2.15) V2T = —é(r — a)sin kf.

The relations (2.14)—(2.15) enable another interpretation of the basic functions,
as a potential generated by the sources located at the cylinder boundary. The
cosine and sine heat sources generate the symmetric functions (2.6) and (2.10),
and the antysymmetric functions (2.7) and (2.11), respectively. In this interpreta-
tion, the intrinsic ties between the singular functions for the region outside the
cylinders and non-singular functions inside the cylinders, are easily seen. For the
case of circular cylinders arranged in a square array, the solution of (1.1)-(1.3)
is a symmetric function. Hence we shall not consider in the sequel the basic
functions 7}.

3. Recurrence algorithm

Using the functional basis given by the symmetric functions (2.6) and (2.10),
we shall express the temperature field of the matrix (i = ¢) and inclusions (i = d),
determined by Egs. (1.1), (1.2) and (1.9), in the form of a power series expansion
in u,

(3.1) T'(r,0;0,u) = 7@ + Z rEm) (i, 0; p)u™.

m=1
Here, according to the previous definition (1.8), the function 7" in (3.1) is the
sum of both the macroscopic 7 and periodic (the sum for m > 1) parts of
the temperature field. In this respect, the notations of Egs.(3.1) and (1.8) are

different. Following BERGMAN [10], we rewrite Eqs. (1.1) in a form valid for both
the matrix and the inclusion in a unit cell,

(3.2) V(1 + ub)VT =0,

http://rcin.org.pl
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where 6, is the characteristic function of inclusions. By inserting the series (3.1)
into Eq. (3.2) and collecting terms with the same power of u, we obtain the general
recurence formula for the coefficients 7(™);

v ® = o,

33 . :
) virlim) = —Vo, Vrlm-1) m= 1,255 s

The composite is subjected to an external temperature gradient equal to unity.
Hence the solution of (3.3); is given by 7(?) = r cos#.

Now let us turn our attention to the periodic part of the solution determined
by Eq.(3.3);. Taking into account properties of the scalar product and of the
characteristic function #;, we rearrange its right-hand side and Eq.(3.3), takes
the form [11]

d,m—1)
(3.4) vEirtm) = §(r - a)a—,
T‘

where the functions 7(*"=1) (m = 1,2,...) are defined inside the cylinder, and
a denotes the radius of the cylinder. Note that the functions 7("™) determined
by (3.3), are periodic and can be represented by the series

o0
(3.5) rm) = Z cfj”’[‘;ﬁ., for m=12...,
k=1

where 7} are the basic functions given by (2.6) and (2.10), while ({,’") are real
coefficients.

Now let us present the basic functions in a renormalized form which will be
more convenient for further considerations. Superscript s will be here disregarded
since only symmetric basic functions are the subject of our interest,

(3.6) TS = “; ;l [(] — 1) C"”” + f: per* cosw] ,
: k=1

(3.7) T = “2];: [(J - 1)'—COS]H+ Zp]u cosk()]
' k=1

where

(3.8) Pik = U :'k)! (/1j+k + %wbﬁk‘z) .

Inserting (3.5) into (3.4) and making use of (2.14), we obtain the recursion for-
mula for the coefficients ¢\

= (m+1) = (m) 9 a
(3.9 z_: €, coskf = Z o =1
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Next, introducing T given by (3.7) into (3.9) and collecting the terms with cos k8,
we finally arrive at:

m - m 1 kak+j
(3.10) cg ”)=—ch )(i5kj+;vkj?)- k=1,2,...,
i=1 =
where the term pj is given by (3.8).
The input data for algorithm (3.7) are
(3.11) =6, k=12,

since the gradient of external temperature field is equal to unity. The recurrence
formula (3.10) allows us to compute the coefficients cim) (m =1,2,...)) in (3.5),
and hence to determine by means of (3.1) the temperature field 7 inside the
unit cell.

It is worth to note that the solution of Egs.(1.1) presented by (3.1) with
(3.5)—(3.8) and (3.10) satisfies the boundary conditions (1.2), in spite of the fact
that they were not introduced here explicitly. In fact, the boundary condition
(1.2), is fulfilled owing to the form of the basic functions assumed, what can be
seen from Eqs. (2.12). The condition (1.2); can be rewritten, with the aid of (1.5),
to the following form:

AT

r=a+0 dr

oT*
dr

(3.12)

r=a-0 r=a—()

Inserting (3.1), (3.5), (3.6) and (3.7) to (3.12) and collecting terms with equal
powers of u we get first cgl) =1 (see (3.11)), and then the recurrence expression

(m

(3.10) for the successive coefficients ¢, *D Thus we can see that the procedure
presented here satisfies both boundary conditions (1.2).

4. Calculation of effective conductivity

Now we shall use the recurrence algorithm to calculate the effective conduc-
tivity of the composite. To this end let us consider the temperature field in the
matrix which can be expressed by Eq.(3.1) with the aid of (3.5) and the basic
functions (3.6). This expression may be transformed to the Rayleigh form (1.3),
which allows us to calculate the coefficient b; of the term cosé/r of the power
series of u. Inserting b, into (1.7) we obtain the formula for effective conductivity
of the composite

(4.1) p(u) =1+ Z Cau®,

n=1
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where
(4.2) C, = %9('(1“) _

The coefficients c(ln) can be obtained from the recurrence formula (3.10) which

for k = 1 takes the following form
m m ] — m n
(43) e = —M3(1 = @) + 23 e indan (/)
n=1

while coefficients cg’:l , are calculated directly from (3.10).

We start our calculations with (3.11), and then from Eq. (4.3) we obtain the
successive coefficients. The first four of them are listed below:

(4.4) e =1,

2 1
“5) &)= -31-9),

1 &
(46 P = =P - @) +4 3 (- DALY/

n=1

(4
4.7) )

- rgs)%(] ~ ) +22 - ) 2(4" = D(nAa)(o/m)*"|.

n=1

The process could be continued, however the expressions for coefficients of
higher order are more complex and they will not be presented here. The co-
efficients of higher order were calculated numerically from the formula (4.3).
The first nonvanishing Wigner coefficients A,, which appear in Egs.(4.3) and
(4.6)-(4.7) are given below:

As = 0.7878030005, As = 0.5319716294,
A = 0.3282374177, Ay = 0.2509809396.

The values of coefficients C,,(,) were obtained from the formula (4.2). Several
low order coefficients (up to ('s) are gathered in Table 1.

Now we compare Eq.(4.1) with the Maxwell - Garnett formula (see [11, 12])
which is the first approximation of the effective conductivity coefficient. The
Maxwell - Garnett formula may be presented as a function of » and ¢ in the
following form:

pu
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Table 1. Coefficients of the power series expansion of effective conductivity p for a square

array of cylinders.

) Ci C, Cs Cy Cs Cs
0.10 0.10 —0.04500 0.020250 —0.009113 0.004101 —0.001846
0.20 0.20 —0.08000 0.032024 —0.012830 0.005148 —0.002068
0.30 0.30 —0.10500 0.036936 —0.013086 0.004682 —0.001698
0.40 0.40 —0.12000 0.036784 —0.011662 0.003884 —0.001381
0.50 0.50 —0.12500 0.033646 —0.010208 0.003615 —0.001488
0.60 0.60 —0.12000 0.029979 —0.010181 0.004465 —0.002255
0.70 0.70 —0.10500 0.028735 —0.012751 0.006975 —0.004169
0.75 0.75 —0.09375 0.030114 —0.015261 0.009200 | —0.006077

If we expand (3.20) into a power series of u, we obtain

(4.9) p=1+¢pu- %(] —p)u? + %(] P — é(l —o)Put+ .. |
Although this expression (4.9) is only a rough approximation of p, certain re-
semblance to the formula (4.1) and (4.2)-(4.7) can easily be seen. In fact, the
coefficients at the first and the second power of u which appear in (4.9), and
those calculated from (4.4) and (4.5), are identical. The other coefficients of (4.9)
are identical merely with the leading terms of the expressions (4.6) and (4.7).

5. Continued fraction expansion

The power series expression (4.1) is not an effective form for representing
because of the small convergence radius and very slow rate of convergence. It
is much better to express u(p,u) in the form of a continued fraction (see [11,
12]). Comparison of the two forms (4.8) and (4.9) illustrates how convenient and
effective may be the rational representation, as compared with infinite series.

If we substitute s = 1/u into Eq. (4.1), we can present the series in the form
of a J-fraction [13]

/m‘] A‘z .’\‘3 k4
h+s—bL+s—-lz+s—l4+s— """

(5.1) w(p,s) =1+
where coefficients %, (¢) and [,(y) can be determined using the coefficients C,
(Table 1), on the basis of another recurrence algorithm given in the Appendix.
The coeflicients of the first level of the J-fraction calculated in the Appendix
(A4) are
(5.2)

k1 = o, h=(01-¢)2.



440 S. MAY, S. TOKARZEWSKI AND A. ZACHARA

Inserting (5.2) into (5.1) and assuming the other coefficients to be equal to
zero, we get
@ Pu

(5-3) ”=1+(1_¢)/2+1/u=1+m'

We can see that Eq.(5.3) is identical with the Maxwell - Garnett formula (4.8),
the accuracy of which is limited to small values of u and ¢. However, it is an
advantageous feature of the continuous fraction expansion that successive ap-
proximants of the fraction rapidly increase its accuracy. The results presented in
[11] indicate that for u — oo and ¢ = 0.7, which is a rather high value, only
three or four levels of the fraction are sufficient to preserve a good accuracy.
Nevertheless in the asymptotic case, if ¢ — pmax = 7/4, the method presented
here fails and an analysis of a different kind is needed [14].

In the present paper the algorithm has been applied to a composite which
consists of a square array of cylinders embedded in a matrix. The algorithm was
also applied to the composites of hexagonal geometry [15].

6. Conclusion

A new functional basis derived in this paper allowed us to obtain a simple
recurrence algorithm for calculating the effective transport coefficient of regular
two-dimensional composites (3.10), (3.11). The algorithm is simply recursive and
does not involve the solution of a large number of coupled equations. The results
are used as input data to express the effective transport coefficient in the form
of a rapidly convergent continuous fraction expansion.

Appendix

The algorithm presented below enables a recurrence calculation of the J-frac-
tion coefficients k, and [, on the basis of the given coefficients (', of the power
series (4.1). The coefficients are calculated from the following formulae [13]:

Tn

(Al) kn+1 = ln+1 =Tn-1— Tn,

On—1
where
(Az) On = CZn+l + Zbrtj02n+1—1 )

j=1

1 n

(A°3) Th = ;__’ CZn+2 + anjC2n+2—j

=1
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We start with n = 0. The required initial values of parameters are
.1 = 1, Tol = 0.
Hence we have from (A.1)-(A.3)

Cy, 1
. % T— <,' — 5 l = e — = - — B
(A.4) ky=Ci=¢ 1 c, 5(1=9)

The successive values of k,, [,, are then calculated from (A.1). Several auxiliary
parameters b,; in (A.2) and (A.3) have the following values:

bn—l,—l = 0, bn,n+| == Os bn+l,0 . 1» b0,0 = 17
the other ones must be determined from the relation

(AS) bn,j = bu~1.j + [nbn—-l.j—l - L'nbn—Z.j—Z .
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