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These notes address the set up of mathematical and numerical models for the
cardiovascular system and the numerical coupling of models having a different
level of detail (from 3D down to lumped paramaters models), in what has been
called the “geometrical multiscale approach”. We present at first the basic features
of reduced (1D and lumped parameter) models for the cardiovascular network.
Then we address both mathematical and numerical issues arising when coupling

models with a different level of detail. Finally, we present some numerical results.
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1. Introduction

Omne of the major difficulties encountered when modeling in an accurate
way the human cardiovascular system is that it is in fact formed by a closed
network with a high level of inter-dependency. The flow dynamics of the
blood in a specific vascular district (local haemodynamics) is strictly related
to the global, systemic dynamics. For instance, the distribution of blood flow
inside the various vascular districts. which is a systemic feature, influences
for the blood dynamics in each district (local feature). Besides, the study of
local flow feature is important since pathologies like the formation of local in-
timal thickening or plaques is strongly influenced by the local hemodynamics
(see e.g. [68]). On the other hand, local alteration in vascular lumen induces
a global redistribution of the blood flow, giving rise to compensatory mecha-
nisms that, at some extents, can ensure a sufficient blood flow in the districts

downstream the stenosis. Neglecting such effect provides only a partial infor-
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mation (see e.g. [3. 5]). This reciprocal influence between local and systemic
hemodynamics has led to the concept of geometrical “multiscale™ modelling
of the circulation Actually, the term “multiscale” is often used with different
meanings in different fields of mathematical and numerical modelling. (e.g.
wavelets, turbulence modelling ete.). Therefore, in order to avoid ambiguities,
we indicate by the term geometrical our present multiscale perspective. In
fact, this feature is common to all many problems involving modeling subre-
gions of a larger and complex system, such as hydraulic or electric networks.
Examples are the simulation of exhaust systems of Diesel engines (see [13]),
and the design of electric circuits (see [4]).

A multiscale perspective is relevant even when one is interested just on
the deseription of the local How. Indeed, the formulation of a mathemati-
cal well posed problem requires the specification of boundary data (see |61]).
The vascular walls are physical boundaries and the correct conditions are sug-
gested by physical assumptions such as the continuity of the velocity field.
However, artifictal boundaries have to be introduced to bound the vascular
district at hand. They are the interface between the district under consider-
ation and the remainder of the circulatory system. Boundary conditions on
such boundaries are, in fact, influenced by the “multiscale” nature of the cir-
culation. Whenever such data are not available from specific (and accurate!)
measurements, a proper boundary condition would require a mathematical
description of the action of the circulatory system on the vascular district
at hand. Clearly, since it is not affordable to describe the whole circulatory
system at the same level of detail. this mathematical description must rely
on simpler models.

While the local model will be typically based on the solution of the in-
compressible Navier-Stokes possibly coupled with the dynamics of the vessel
walls (see e.g. [1, 46]), the systemic model will be given by 1D models or
by lumped parameters models based on the solution of a system of ordinary
differential equation (in time) for the average mass flow and pressure in the
different compartments forming the cardiovascular system.

Besides their intrinsic relevance, these “simple-minded” models are of
great interest in our multiscale perspective. Indeed, they provide a systemic
description of the main phenomena related to the circulation (such as the
compensatory mechanisms mentioned above) at a low computational cost.
They may thus be coupled with an accurate (but local) description of a vas-
cular district of interest. The mathematical and numerical issues related to
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this coupling are nontrivial. The different level of detail of the different mo-
dels is reflected by different mathematical features. Navier-Stokes equations
are a system of non-linear partial differential equations which are essentially
parabolic for the velocity, while the 11D models are (mainly) based on hy-
perbolic partial differential equations, and the lumped parameter models do
not feature a spatial dependency and are described by means of ordinary dif-
ferential equations in the time variable (for this reason, they are also called
“0D models”). A particular care has therefore to be taken in managing the
interfaces between these models in order to have mathematically well posed
problems and to guarantee accurate numerical results.

In these notes, we will start with a short introduction of simple-minded
models for the circulation. We will consider 1D models at first (Section 2),
their derivation and their numerical treatment. We will also briefly address
some specific issue such as the 1D modeling of curved pipes. Then, we will
introduce lumped parameter models (Section 3), their basic features and
the set up of systemic models. The specific mathematical and numerical
problems arising in the coupling of these models are addressed in Sections
4 and 5. Numerical results are finally presented in Sec. 6, illustrating the
effectiveness of the multiscale approach not only for academic test cases but

also in simulations of real medical interest.

2. The Basic 1D Model

We introduce the simplest non-linear 1D model for blood flow in compli-
ant vessels. For more details, see [1] or [3].

The basic equations are derived for a tract of artery free of bifurcations,
which is idealised as a cylindrical compliant tube (see Fig. 1). We will denote
by I = (tg,t1) the time interval of interest and for the sake of convenience
we will take tg = 0. By €, we indicate the spatial domain which is supposed
to be a circular cylinder filled with blood, which is changing with time under
the action of the pulsatile fluid.

We will mainly use Cartesian coordinates, yet when dealing with cylin-
drical geometries it is handy to introduce a cylindrical coordinate system.
Therefore, in the following we indicate with e, egp and e. the radial, circum-
ferential and axial unit vectors, respectively, (7,6, z) being the corresponding
coordinates. We assume that the vessel extends from z = 0 to z = [ and the

vessel length [ is constant with time.
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Ficure 1. Simplified geometry. The vessel is assumed to by a straight cylinder
with circular cross section.

The basic model is deduced by making the following simplifving assump-

tion

Al

A3

A4

S.

Awrial symmetry. All quantities are independent from the angular co-
ordinate . As a consequence, every axial section : =const remains
circular during the wall motion. The tube radius £ is a function of z
and .

Radial displacements. The wall displaces along the radial direction
solely, thus at each point on the tube surface we may write n = ne,.
where 1 = R — Ry is the displacement with respect to the reference

radius Ry.

Frred rectilinear cylindrical vessels. This simply means that the vessel

will expand and contract around its axis. which is fixed in time.

Constant pressure on each arial section. We assume that the pressure

P is constant on each section, so that it depends only on z and f.
No body forces.

Dominance of arial velocity. The velocity components orthogonal to the
2 axis are negligible compared to the component along z. The latter is
indicated by wu. and its expression in cylindrical coordinates is supposed

to be of the form

u:(#.r.:):ﬁ(t.z),:(rh’"l(:)) (2.1)
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where @ is the mean velocity on each axial section and p : R — R is
a velocity profile. The fact that the velocity profile does not vary in time
and space is in contrast with experimental observations and numerical
results carried out with full scale models. However, it is a necessary as-
sumption for the derivation of the reduced model. One may then think

@ as being a profile representative of an average flow configuration.

A generic axial section will be indicated by § = S(t, z). Its measure A is
given by

At z) = / do = wR%(t,z) = w(Ry(z) + n(t, 2))2. (2.2)
S(t,z)

The mean velocity @ is then given by @ = A™' [u.do. and from (2.1) it
follows easily that ¢ must be such that

8

1
/ plylydy = 3
J0O

We will indicate with « the momentum-fluz correction coefficient, (some-
times also called Coriolis coefficient) defined as

2 - 59
L Jsutdo [ da
A A

(2.3)

where the dependence of the various quantities on the spatial and time co-
ordinates is understood. It is possible to verify that o > 1. In general this
cocflicient will vary in time and space. vet in our model it is taken constant
as a consequence of (2.1).

A possible choice for the profile law is the parabolic profile p(y) = 2(1 —
y?) that corresponds to the well known Poisenille solution characteristic of
steady flows in circular tubes. In this case we have a = 4/3. However, for
blood flow in arteries it has been found that the velocity profile is, on average,
rather flat. Indeed, a profile law often used for blood flow in arteries (see for
instance [56]) is a power law of the type p(y) = v (v + 2)(1 — y7) with
typically v = 9. Correspondingly, we have a = (v + 2)/(y + 1) = 1.1. The
choice o = 1. which indicates a completely flat velocity profile, simplifies the
analysis, so it is quite often adopted.

The mean flux Q. defined as ) = [b u.do = Au, is one of the main
variables of our problem, together with A and the pressure P.
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There are (at least) three ways of deriving a 1D model for an incompress-
ible fluid filling a compliant pipe. The first one moves from the incompressible
Navier-Stokes equations and performs an asymptotic analysis by assuming
that the ratio Ry/L is small, thus discarding the higher order terms with re-
spect to Ry/L, |7]. The second approach derives the model directly from the
basic conservation laws written in integral form. The third approach consists
of integrating the Navier-Stokes equations on a generic section S.

Following the last approach and exploting the assumptions stated above,
it is possible to obtain the following system of equations (see [1. 3|): for
ze(0,L)and t e [

9A  0Q

= T3, =0

90 0 [Q*\ AP Q (24)
W +(l'(,)—z (?) + [_)E + K, (Z) =0,

where the unknowns are A, Q and P and « is here taken constant, and K,
is a coeflicient proportional to the blood viscosity.

In order to close system (2.4), where three unknowns, P, A and @) are
related by two equations, we have to provide a relation for the pressure.
A complete mechanical model for the structure of the vessel wall would pro-
vide a differential equation which links the displacement and its spatial and
temporal derivatives to the force applied by the fluid. Here we will adopt
instead an hypothesis quite commonly used in practice, namely, that the in-
ertial terms are neglegible and that the elastic stresses in the circumferential
direction are dominant. Under these assumptions, the wall mechanics reduces
to an algebraic relation linking pressure to the wall deformation and conse-
quently to the vessel section A. Actually, we may assume that the pressure

satisfies a relation like
P(t,z) — Poxt = V(A 2); Ap(2), B(2)), (2.5)

where we have outlined that the pressure will in general depend also on
Ag = TTRS and on a set of coefficients 3 = (5. 71.--- , 3,), related to physical
and mechanical properties, that are, in general, given functions of z (see [1]).
Here P,,; indicates the external pressure exerted by the organs outside the
vessel (often taken equal to 0). For instance, by exploiting the well known

linear elastic law for a cylindrical vessel and using the fact that

n=(VA-A) /7T (2.6)
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we can obtain the following expression for ¢

VA- VA

V(A4; Ao, Bo) = bo———— A

(2.7)

We have identified B8 with the single parameter [y that from the modelling
assumptions is = (V7hoE)/(1 — €?) (see however the next remark for the
numerical estimate of 3y). The algebraic relation (2.5) assumes that the wall
is instantancously in equilibrium with the pressure forces acting on it (see
for instance [1] or [46]). More sophisticated models may be introduced by
employing a differential law for the vessel structure, including the inertia
and the viscoelasticity of the wall: the interested reader is referred to [1].
By exploiting relation (2.5) we may eliminate the pressure P from the
momentum equation. To that purpose we will indicate by ¢ = ¢1(A; Ay, B)
the following quantity
Aoy
pOA

cp = (28)
which has the dimension of a velocity and, as we will see later on, is related
to the speed of propagation of simple waves along the tube.

By simple manipulations (2.4) may be written in quasi-linear form as

follows . .
U
—U +H(U)— + B(U 0, 29
U+ H(U) 5= + B(U) =0, (29)
where,
A
U=
@
0 1 0 1
H(U)= | Aoy = 9% 2 2 I 10
(U) ;%_mlz o C.%ﬁa(%) 5.1 (2.10)
and

B(U) = KH(Q) A 9y (140+Aaf¢'dﬂ

A P04U dz ;%E

A conservation form for (2.9) may be found as well and reads

ou o |
W+—[F U)] + B(U) =0, (2.11)
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where

0
Q
2 , B(U)=B(U) - |dC, dA )C'y d
“(i_i_(y] , (U) (U) 10 ()+( 1 dp

Ay dz = 8B dz

F(U) =

and ('} is a primitive of ('? with respect to A, given by
A

C1(A; Ay, B) :/(‘f(T:AU,IB)dT.

Ao

System (2.11) allows to identify the vector U as the the conservation
variables of the problem.

In the case we use relation (2.7) we have

e 1 . b

Ai, ) = 2
2 [)A[) . 3 P An

3

fy = Az, (2.12)

It is possible to prove that if A > 0, the matrix H possesses two real
cigenvalues. Furthermore. if A > 0 the two eigenvalues are distinct, that
means that (2.9) is a strictly hyperbolie system of partial differential equations
(for the proof, see c.g. [1]).

Remark 1. An energy analysis of system (2.11) is carried out in [15].

Remark 2. The coeflicients of the 1D model obtained depend on physical
parameters related to the physical properties of the blood and the vascular

wall, namely o, 3y, K, and Ay. The accurate estimation of these parameters

is a non trivial task. In |33] a nonlinear least square approach is proposed for
the parameters estimate based on experimental data. In particular, in this
work the parameter [y is estimated starting from “synthetic” data given by
3D fluid-structure interaction simulations. Numerical results reported show
that the parameter estimation can be significantly different from the values
computed by analytical formulas such as 3y = (VThoE)/(1 — £?) based on
the simplifying assumptions. vielding however numerical results closer to the

3D data.

Characteristics analysis

The hyperbolic nature of the problem at hand allows its reformulation in
terms of ordinary differential equations. This reformulation is based on the
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so-called characteristic analysis and can be useful in the numerical solution of
the problem. We briefly address this topic here. For a more detailed analysis
see [1].

Let (1. 12) and (ry. r2) be two couples of left and right eigenvectors of
the matrix H in (2.10), respectively. The matrices L, R and A are defined as

T MO
L[], Rz[rl m}. A = diag(A1. Ag) = . (2.13)
i 0 Ao

Since right and left eigenvectors are mutually orthogonal. without loss of gen-
erality we choose them so that LR = I. Matrix H may then be decomposed
as
H = RAL. (2.14)
and system (2.9) written in the equivalent form
ou ou

L— +AL-
ot e 0z

+LB(U)=0, z2¢(0,L), tel. (2.15)

If there exist two quantities Wy and We which satisfy

oW, IWs ,
— =1, =l 216
ou oo (2.16)

we will call them characteristic variables of the hyperbolic system. We point
out that in the case where the coefficients Ay and 3 are not constant, W
and W5 are not autonomous functions of U.
By setting W = [W;, Wy]T system (2.15) may be elaborated into
W JOW

e Sk 3G =0, 217
& ez T 1
where

PO il O i il 2.18
G=Lb JdAy dz JB dz .

If we consider the characteristic line y;(t) which satisfies the differential equa-
tion

d .
F"(’) = At yi(t), i=1,2 (2.19)

then (2.17) may be rewritten as

%lt}(t.,,,»(f)) +Gi(W1, W) =0, i=1,2 (2.20)
(
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where we have made evident the dependence of G; on the characteristic
variables.

Equations (2.19) and (2.20) represent a possible reformulation of the prob-
lem at hand in terms of ordinary differential equations for the characteristic
variables W;. The role of these variables is relevant both at the mathemati-
cal and numerical level (see [32, 24]), in particular in the prescription of the

boundary conditions.

Boundary conditions

System (2.4) must be supplemented by proper boundary conditions. The
number of conditions to apply at each end equals the number of character-
istics entering the domain through that boundary. Since we are only con-
sidering sub-critical flows we have to impose exactly one boundary condition
at both = = 0 and z = L. An important class of boundary conditions are
the so-called non-reflecting or “absorbing’ ones. They allow the simple wave
associated to the outgoing characteristic variable to exit the computational
domain with no reflections. Following [60, 25| non-reflecting boundary con-
ditions for one dimensional systems of non-linear hyperbolic equations in

conservation form like (2.11) may be written as

1 - (),—U+B(U) =0atz=0, ly- Q—U-%B(U) =0atz=1,
ot ot

for all ¢ € I, which in fact, by defining R, = 1;B. may be written in the form

W IW-
O R(Wy, W) =0at z=0, o2y Ry(Wi,Wa)=0atz=1 (2.21)
ot ot

where we have put into evidence the possible dependence of ) and Ry on
W and Wy through the dependence of B on U. Boundary conditions of this
type are quite convenient at the outlet (distal) section, particularly whenever
we have no better data to impose on that location.

At the inlet (proximal) section instead one usually desires to impose va-
lues of pressure or mass flux derived from measurements or other means.
Let us suppose, without loss of generality, that z = 0 is an inlet section.
Whenever an explicit formulation of the characteristic variables is available,
the boundary condition may be expressed directly in terms of the entering

characteristic variable Wy, i.e., for all t € [

Wi(t) = gi(t) at z = 0, (2.22)
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g1 being a given function. However, seldom one has directly the boundary
datum in terms of the characteristic variable, since is normally given in terms
of physical variables. In these cases, some specific techniques can be devised
for recovering the characteristic variable form the physical data. For instance,

if A(t) is available at 2 = 0, one could formulate:
Wi(t) = Wi(A(t), Wa(t))

where W5 is the outgoing characteristic variable that can obtained by extra-
polation, moving backward in time along the characteristic line ys(t). More

details about this approach can be found e.g. in [1].

2.1. Numerical Approximation

We will here consider the equations in conservation form (2.11) and the
simple algebraic relationship (2.7).

There are many different schemes for the numerical simulation of this
kind of problem: the interested reader is referred e.g. to [14, 32, 48|. Here,
we adopt a second order Taylor-Galerkin scheme which might be seen as the
finite element counterpart of the well known Lax-Wendroff scheme. It has
been chosen for its excellent dispersion error characteristics and its simplicity
of implementation.

The basic idea of the scheme is to exploit the Taylor expansion of the solu-
tion in time up to the second time derivative and then to use the equations of
the problem (2.11) for replacing the time derivatives with space derivatives
and terms of order zero. This yields a semi-discrete problem (continuous
in space, discrete in time). The space discretization is then obtained with
a Galerkin Finite Element approach. A complete description of the method
applied to the problem at hand can be found in [1].

Using the abridged notations

and

Brw(U) =B(U) + ?BU(U)B(U%

the discretization of the problem reads: given Uﬂ obtained by interpolation
from the initial data, for n > 0, find U;:H € V;, which Vi, € V) satisfies
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the following equations for the interior nodes

. 1
(U py) = (U ) + At (Fm(UL’)~ )
Af?' s ()F( Atz dwh
S B ) e s 2

— At (Brw (Uy), ), (2.23)

together with the relation for boundary nodes obtained from the boundary
and compatibility conditions, as discussed in the sequel. Here (-, ) stands for
the usual L? scalar product. By taking 4, = [¢;,0]7 and 4, = [0, v%]7. for
=1, ., N we obtain N discrete equations for continuity and momentum,
respectively, for a total of 2(N+2) unknowns (A; and @, fori =0,... . N+1).

The second order Taylor-Galerkin scheme (2.23) entails a CFL stability

bound on the time step:

) h
min p ' — ; (2.24)
3 0<isN | maxpT (cok + [Tk])

%

where ¢, ; and @, here indicate the values of ¢, and @ at mesh node z;,

respectively.

2.1.1. Boundary and compatibility conditions. Formulation (2.23) pro-
vides the values only at internal nodes. since we have chosen the test functions
by, to be zero at the boundary. The values of the unknowns at the boundary
nodes must be provided by the application of the boundary and compatibility
conditions.

The boundary conditions previously discussed are not sufficient to close
the problem at numerical level since they provide just two conditions, vet we
need to find four additional relations. We want to stress that this problem
is linked to the numerical scheme, not to the differential equations, which
indeed only require one condition at each end (at least for the flow regime we
are considering here). Without loss of generality, let us consider the boundary

= 0 (analogous consideration may be made at z = L). As we have seen.

the boundary conditions will provide at each time step a relation of the type

oA, Qi) = aolt™),
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being ¢ the given boundary data. For instance, imposing the pressure would
mean choosing (A, Q) = P = ¢(A; Ay(0), 3(0)). while imposing the mass
flux would just mean o(A. Q) = Q. Finally, a non reflecting condition is ob-
tained by o(A, Q) = Wi (A, Q) and in this case gy is normally taken constant
and equal to the value of W) at a reference state (typically (A, Q) = (Ap,0)).
Thus, in general ¢ is a non linear function.

This relation should be supplemented by a compatibility condition. In
general, the compatibility conditions are obtained by projecting the equation
along the eigenvectors corresponding to the characteristics that are exiting
the domain. Therefore, we have to discretise the following set of equations
at the two vessel ends [48]:

lz~(_(—)U+HC,)U+B(U)) =0, z=0 tel, (2.25a)
ot 9z
1 - (%U-ﬁ- H%—Ej -+ B(U)) =0 w==£& (el (2.25b)

There are different techniques for considering these conditions in the nu-
merical scheme: the interested reader is referred to [1].

2.2. Network of 1D Models

The vascular system is in fact a network of vessels that branches repeat-
edly and a model of just an artery is of little use. A simple and effective idea
is to describe the network by "gluing’ together one dimensional models. Yet,
we need to find proper interface conditions (i.e. mathematically sound and
easy to treat numerically). The technique may be adopted also in the case of
abrupt changes of vessel characteristics (see [20]).

The flow in a bifurcation is intrinsically three dimensional: yvet it may still
be represented by means of a 1D model, following a domain decomposition
approach. if one is not interested in the flow details inside the branch (see e.g.
[42]). Figure 2 (left) shows a model for a bifurcation. We have simplified the
real geometric structure by imposing that the bifurcation is located exactly
on one point and neglecting the effect of the bifurcation angles. An alternative
technique is reported in [57], where a separate tract containing the branch is
introduced.

[n order to solve the three problems in €2; (main branch), s and Q3 we
need to find appropriate interface conditions. The hyperbolic nature of the

problem tells us that we need three conditions.
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Ficure 2. Left: One dimensional model of bifurcation by domain decomposition
technique. Right:A sketch of a branching.

We first state the conservation of mass across the bifurcation. i.c.
Q=Q+Q3, atz=I,tel. (2.26)

We note that the orientation of the axis in the three branches is such that
a positive value of (07 indicates that blood is flowing from the main branch
, into the other two. An energy analysis allows us to conclude that a proper
interface condition would entail the condition P, Q1 — PoQo — Pr3Q3 > 0,
where Py := P+1/2p|u|? is the total pressure. It is expected that the complex
flow in the bifurcation will cause an energy dissipation and consequently
a decrease in the total pressure in the direction of the flow field across the
bifurcation, and this loss should be related to the fluid velocity (or flow rate)
and to the bifurcation angles. A possibility to account for this is to impose,
at z =T, that

Py —sign(ay) fi(uy) = Pr o+ sign(ag) f2(t2, a2), (2.27)
Py — sign(uy) fi(uy) = P 3 + sign(us) f3(us, og),

where as and ay are the angles of the branches (25 and 3 with respect to
the main one (see Fig. 2 right): fi. fo and f3 are suitable positive functions
and equal to zero when the first argument is zero.

In the numerical scheme. (2.26) and (2.27) will be complemented by three
compatibility relations (see Sect. 2.1.1). We have thus a non linear system for
the six unknowns A;‘H. QI'“. i = 1,2.3. at the interface location I', which
can be solved by a Newton method.
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2.3. Modeling of Curved Pipes

One of the most relevant assumptions in devising the basic 1D model is
that the axis of the (cylindrical) vessel is rectilinear. Actually, if we remove
this hypothesis, it is still possible to define a main flow direction in the
domain, namely the curvilinear abscissa along the axis, and however the
blood dynamics in the other directions is no longer negligible (secondary
motion zones): for a detailed description of the fluid dynamics in this case,
see

43]. Nevertheless. there are some vessels which are clearly curved (aorta,
femoral arteries, etc.). For these vessels, the basic 1D model (2.4) can be
considered only as a rough description, possibly introducing a subdivision
into subsegments sufficienly short to be considered straight and connected
one to the other with a suitable angle # 0 (see Fig. 3 left). Alternatively, here
we would like to briefly address the definition of 1D models which are able to
acccunt for the effects of the transversal dynamics on the axial one, having
the computational cost of the “simple-minded” model (2.4). The task is not
easy, since we want to devise a sort of 1D models for the cheap description
of a genuinely 3D dynamics, so we call these models “psychologically 1D".
Simplified models for curved pipes can be obtained for small curvatures

of the vessels with a perturbation analysis of the rectilinear model (see [11]).

M

FiGure 3. Left: Representation of a curved pipe as a set of straight cylinders.
Right: Frame of reference for a planar curved pipe.
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Let us consider the nondimensional parameter:

IRy
D =2V2 7 Re (2.28)

where R, is the vessel radius, R, is the curvature radius of the vessel axis

(R. — ~ in the straight case) and Re is the Reynolds number of the recti-
linear case. D is called Dean number. Simplified models can be obtained for
small values of the Dean number, which are for instance able to correctly com-
pute the stagnation points of the secondary motion zones. For large values
of D these models need to be suitably corrected, and the analysis becomes
by far more difficult: a complete description of this approach can be found
in [43], Chap.4. A different approach that can be considered in the defini-
tion of psychologically 1D models for curved pipes relies on the theory of
Cosserat curves considered by Green and Naghdi in [21, 22] (see also [17]).
If we consider the reference frame (z,y,s) of Fig. 3 right, the basic idea of
the Green and Naghdi approach is to represent the velocity field u(ir, g, s,t)
with respect a set of shape functions depending only on the coordinates in

the normal section I, y:

N
u(i,g.s.t) = Y wnls, )e(d.3), (2.29)

n=>0

where w,, are the coeflicients of the velocity profile. This can be considered as
a generalization of the straight vessel case, where we set for the axial velocity,
w. (e y, 2, t) = (e, y)u(z,t) being u(z,t) the average velocity and p(z.,9)
a given velocity profile. In general, when a basis functions set is selected, the
unknowns are the coeflicients w,,. that can be computed by solving a suitable
set of equations derived by mass and momentum conservation principles.

In principle, the accuracy of these models can be tuned by choosing a suit-
ably large N. i.e. having a basis functions set rich enough. However, even for
small values of V, mathematical difficulties of the obtained model imply high

numerical costs (see [17]).

2.3.1. A curved pipe model. [f we integrate any function f(r, y. s.t) over
the volume of pipe V(). bounded by two normal sections at a distance £ one
to the other and let = — 0, we get (see |17]):

5+e/2

Iiml / / Vof(r.y. 5. t)drdyds = // Vof(z.y,s t)dedy
2 'S s

=0 ¢
—¢/

S

v
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where § = §(5,¢) is the section normal to the vessel axis and /g is the
metric tensor invariant, accounting for the integration over a curved axis. In
particular, for a rectlinear pipe g = 1, while for a curved vessel in the plane
(y,s) with a constant curvature radius Re, /g = (7 + Rc)/y. Associated to
this integral over the section &, we introduce the following operators:

/]f didi, Pa (- /f\/" Sddi, Pal )_/ /7 jididg.

(2.30)

Consider now the 3D Navier-Stokes equations written with respect to

the reference frame (Z, g, s) with the velocity field represented by (2.29). In
particular, we assume for the axial velocity

22 + g2 5 "
Uy = | 1 = ——=— ) (a(s,t) + b(s, t)2 + ¢(s, 1)) ,

which is a generalization of the classical parabolic profile (first term), while
for the transversal velocity components, we simply postulate a linear depen-
dence: uz = /R, uz = ny/R, where 7 is the wall velocity. The unknowns
of the problem are therefore the coefficients a(s,t),b(s,t) and ¢(s,t) and the
vessel radius £(s,t). A more convenient set of unknowns is:

_ . p2 _ T _ T vy T 4
= it — AR L H = iR b, i = —]? by
A=7R*, @ 5 a B G 3 ¢

For the determination of these unknowns we need four equations that can
be obtained by applying the average operator Py to the continuity equation
and the operators P, Pop and Py to the axial momentum equations. The
resulting psychologically 1D model reads:

A 8Q
S i — :{
ot T as 0
é)Q+ 1 a(;+ 4 9 Q2 L s H? N BvVAOA . Q N 271v G )
== e — — + 8mv — =
) ot Re o305 A T8 AZ " 2pA, Bs AT Re A
OH 0 HQ 1HOQ H
e S e, _— driy— =
B T8 A "o Ags T g =0
G 1 0QA _8GQ GO8Q B oA G .
= 2— e — 27— / =0
Bt " orke Bt s 2455 T A gy T 2T g HPQ =L

(2.31)
where 3 := 3/(87pAgRc). ¥ := 3v/Re.
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More complex model can be devised for instance by assuming a different
profile for the transversal velocity components (see [17]).

In Fig.4 we illustrate the solution of (2.31) at different time steps for
a curved planar pipe with B = 5em. G is non null because of the curvature
of the pipe (taken from [17]), while H is null since the pipe is planar.

In Fig.5 the solution for a pipe with B¢ = lem is shown in order to
outline the asymmetry on the axial velocity profile induced by the curvature

(taken from [17]).

s = 115
« 1 < 14 —
H L
fis 2 osp
I\ 1
[ 2 3 4 5 6 T 0 g 0 1 Fl ] ] 5 ® 7 8 g 0
o <40
! E
2 & 20
n X " T M SV ST —
['] 1 2 3 4 ] L 1 L] g 16 0 1 2 3 4 S & 7 2 2 10
2 —— 2
: :
T - — )
(] [ 3 3 4 5 0 7 # g 10 o 1 3 3 ] s 0] 7 2 a 10
2 = — r— ———— ——
i 3o \ = E——
8 o
) .

o
o
®
©
3
o
~
>
©
o
B8

(] 1 2 1 4 ] 7 8 [ 10 0 1 2 3 1 '] [ r [ 1w
e ——r , ' ' —

3 i

x * ‘I
e . . — =
(] 1 2 3 4 5 3 7 8 9 10 o 1 2 3 4 5 [ 7 8 [ 10
2 — 21 —— e — —

3 //—_\

g 0 - o — . — —

o ° \/
“o ' 2 3 4 5 [ 7 2 ] 1 o i 3 1 ] 7 8 ] 0

FiGure 4. Solution (A, Q, H. G respectively) at t = 0.0005s (top, left), t =
0.005s (top, right), £ = 0.010s (bottom, left), ¢ = 0.025s (bottom, right) for the
model (2.31), with Rc = 5Scm (the pipe length is Hem). A wave comes into the
pipe at the inlet. H is null due to the symmetry of the problem (curved pipe
in the (z.s) plane). G is # 0 for the presence of the curvature. Pictures taken
from [17].
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Ficure 5. Solution in a curved pipe with Re = Lem at & = 0.005s for different
values of the curvilinear abscissa s. Representation of the axial velocity profiles
along & (continuous line) and § (dotted line). The asymmetry of the profile in-
duced by the curvature is evident. Pictures taken from [17].

2.4. Simple-minded Models of Blood Solutes Dynamics

In haemodynamics simulations it is sometimes of interest not only the
blood dynamics, but also the dynamics of solutes (oxygen, lipids, etc.) which
are convected by the blood to the tissues and peripheral organs (see e.g.
[51. 52, 69]). In the perspective of setting up a multiscale model for the cir-
culation, we therefore need some simplified models also for the blood solutes.
Suppose that the solute concentration ~(x,t) fulfills a (linear) advection-
diffusion equation in the form

g—:—u&’y—l—u'v?:()
in the domain € (u is the blood velocity), together with a suitable initial
condition y(x.0) = 70(x). A Dirichlet condition v = 7ex can be given on

/
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the vascular wall [12] or more realistically a Robin condition uVy -n =
a (Yext — ) (n unit outward normal vector, |67]). By proceeding in a way
similar to the one adopted for the Navier-Stokes equations, it is possible to
deduce a “simple-minded” model for the blood solute dynamics (see [12, 67]).
More precisely, let I' = A~ be the linear concentration. It is possible to deduce

for I' in a cylindrical straight vessel with z € (0,/) the 1D equation:

ar @ ([ IQ T |
ot o2 \© F e = T (e 2.32
ot = os (” 1 ) Ko = f(ext) (2.32)

to be completed with suitable boundary condition. Here, K. is a coefficient
depending on the viscosity pand the concentration profile over the transver-
sal section and w depends on the axial blood velocity. Equation (2.32) can
be therefore coupled to (2.11) for a model of the blood and solutes dynam-
ics. For instance, in Fig.6 (taken from [67]) the concentration at a given
instant of the simulation is shown in a bifurcation in the neighborhood of

the bifurcation tip.

Figure 6. Concentration of a blood solute computed with the 1D model (2.32)
coupled with 1D blood flow model (2.11) (small picture on the left) in a bifurcation

geometry. Picture taken from |67]
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3. Lumped Parameters Models for the Circulation

Many biological systems feature complex mechanisms given by the in-
teraction of elementary components. A possible and effective description of
such systems is based on the identification of these elementary components,
often called compartments (see e.g. |9]) and their mutual interaction. In the
case of cardiovascular modeling, we could say that a compartment s a part
of the system which is reasonable to consider as a whole, according to the
needed accuracy in the description of circulation. The behavior of the blood
m a compartment is described in terms of quantities (typically the flow rate
and pressure) “averaged” (in space) over the whole compartment. The math-

ematical description of this system can be therefore provided by:

1. the description of each compartment;

2. the description of the interactions among the compartments.

The number of the compartments involved depends on the level of accuracy
requested to the model. For instance, if one wants to investigate heart failures
with the purpose of increasing the cardiac function without a significant (and
dangerous) increment of the systolic pressure, a two-compartments descrip-
tion of the cardiovascular system can be enough, featuring the left ventricle
and the systemic circulation respectively (see [38], Chap. 13). The Windkessel
and Westkessel models are instances of two-compartments model (the heart
and the vascular system), the latter featuring a more precise description of
the vascular compartment. More complex examples can be found in [27],
Chap. 5, and [29], Chap. 14, where an accurate sensitivity analysis of the pa-
rameters of a four-compartments description of the cardiovascular system is

carried out. Other references are

30| and [66]. A recent derivation of lumped
parameter models based on the Laplace transformation can be found in [41].

Lumped parameters models that we are going to introduce in view of mul-
tiscale modeling are, in fact, compartments models which can be described
by following the two steps mentioned above. In particular we will firstly in-
troduce lumped parameters models (Sec. 3.1 and 3.2) for a simple compliant
cylindrical vessel and for the heart. Then in Sect. 3.3, we will consider the

assembly of models for the whole circulation.
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3.1. Lumped Parameter Models for a Cylindrical Compliant Vessel

Let us consider again the simple cylindrical artery €2 illustrated in Fig. 1.
Starting from equations (2.11), we observe that

0A dn dJn
— = ~ 27
ar ~ ity R ARy

and we will assume ,
0A _ 3wRjOP
ot 2Eh ot

In the sequel, we will set

In i

2Eh

In order to provide a lumped description of the behavior of the blood

A‘] =

in the whole district © we need to perform a further averaging of (2.11)
over the axial coordinate. To this aim, it is useful to introduce the following

notation. We define as the (volumetric) mean flow rate over the whole district

O - }/,, do — / / gis et = /Qd~ (3.1)

0 A(z

the quantity

Similarly, we define the mean pressure over the whole compartment as

!

1
p= 7 /I’rl:. (3.2)

0
Integrating over the axial coordinate, and assuming that (see [3]):
1. the contribution of the convective terms may be neglected,
2. the variation of A with respect to z is small compared to that of P and
Q.
we obtain the equations:

Ip
ky 12 +Q2— Q1 =0 (3.3)

and

pl r]Q p[\ Rl
Ao d’f

Q =0 (3.4)
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where

Qi(t) =Q(t,0), PFi(t)=P(t0),
Q2(t) ;= Q (t,1),  Py(t):=P(t,1).

These equations represent a lumped parameters description of the blood

(3.5)

flow in the compliant cylindrical vessel €2, and involve the mean values of
the flow rate and the pressure over the domain, as well as the upstream
and downstream flow rate and pressure values. The coefficients in equations
(3.3), (3.4) have been obtained from the integration process. They are in fact
the lumped parameters which summarize the basic geometrical and physical
features of the dynamic system formed by the blood flow and the vessel wall.
Let us try to summarize their meaning.

R In (3.4) we set R := (pKgl)/(A2). If we assume a parabolic velocity we

have
_ 8mprl  8ul

R = ﬂz—li’(‘} = w—}%g
where R represents the resistance induced to the flow by the blood
viscosity. Different expressions for R can be obviously obtained for dif-
ferent velocity profiles or if a non Newtonian rheology is introduced
into the model (see e.g. |3, 53, 64]).

L In (3.4) weset L:= (pl)/(Ag) = (pl)/(wR3). L represents the inertial term
in the momentum conservation law and will be called the inductance
of the flow.

C In (3.3) we set C' := kil = (37R}l)/(2Eh). C represents the coefficient
of the mass storage term in the mass conservation law, due to the
compliance of the vessel.

With this notation, equations (3.3), (3.4) becomes

I |
L4 Q-1 =0
dt

1C A
L¥+RQ+PI2—P1 =1,
d

(3.6)

Now, assume that some upstream and downstream data are available. For
instance, suppose that Q) and P are given. Then, (3.6) represents a system
of two equations for four unknowns, Q p, P and Q2. In order to close
mathematically the problem we need some further assumptions. In particular,
the dynamics of the system is represented by p and Q. i.e. by the unknowns
that are under time derivative (the state variables), so it is reasonable to
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approximate the unknowns on the upstream and downstream sections with
the state variables. that is

p=P, Q=Q

With these additional assumptions, which are reasonable for a short cylin-
drical pipe. the lumped parameters model becomes:

1P,

C(Tfl + Q2 =G
dt (3.7)
dQ)»

-W'F RQQ— P =Ps,

where the upstream and downstream preseribed data have been plugged into
the right hand side. This system can be illustrated by the electric L-network
shown in Fig. 7 (left). The compliance has been gathered on section 1"y, where
the flow rate is prescribed, and the inertial effects have been allocated on I'a,

where the mean pressure is provided.

Q, Q,
Q a Q Q, Q
e S AN .
R 1 R L
P, | P, P, = P
¢ : oA

Ficure 7. Lumped L-network (left) and L-inverted network (right) equivalent
to a short pipe

In the electric network analogy, the blood flow rate is assimilated to the
current, while the blood pressure corresponds to the voltage (see Tab. 1).
In a similar way, if the pressure P and the flow rate (0o are prescribed, we

still approximate the unknown quantities on the upstream and downstream

TaBLE 1. Correspondence table of the analogy between electric and hydraulic

networks.

Hypravric } ELecTRIC
Pressure Voltage
Flow rate Current

Blood viscosity Resistance R

Blood inertia Inductance L

Wall compliance | Capacitance €'
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sections with the state variables, i.e. p~ Py, Q =~ Qy, yielding the system
whose electric analog, called L-inverted network, is given in Fig. 7, right.
The case when the mean pressures Py and P, are prescribed, can be mod-
elled by a cascade connection of £ and L-inverted lumped representations,
vielding a 7T-network (Fig. 8). Similarly, if both the flow rates @) and Qs are
prescribed, the the vessel € is described by the electric m-network, obtained
as a cascade connection of a L-network and a L-inverted network (Fig. 9).

Q- L/2 L/2 Q.
R/2 R/2

T T

Fircure 8. Cascade connection of a L-inverted and a L-network (left), lumped
T-network (right).

Figure 9. Cascade connection of a L-network and a L-inverted one (left), lumped
m-network (right).

Let us observe that the four different circuits arise from four different
possible assumptions about the kind of data prescribed on the upstream
and downstream sections. With a little abuse of notation we could call them
“boundary data™". The four different lumped models can be considered there-
fore as the lumped parameters simplification of four different “boundary™
values problems.

Finally observe that some of the simplifying assumptions introduced can
be removed (or reduced) by modifying the network: for more details, see [3].

Y Actually, in the simplification leading to lnmped parameters models the dependence
on the space variables has been lost in the averages, so there is no “boundary” of the
domain.
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3.2. Lumped Parameters Models for the Heart

The heart is a special “compartment™ of the vascular system that need
a specific representation in the lnmped parameters framework. The structure
of the heart and its relationship with its functionality are not completely
understood and recent investigations show that the ventricular myocardinm
can be unwrapped by blunt dissection into a single continuous muscle barnd
(see |59]). This could modify the accurate mathematical modeling as well
as medical investigations and surgical interventions on the heart. For the
purpose of these notes, however, we simply refer to a classical description
of the heart., which is subdivided into two parts, called to the right and the
left heart, respectively, separated by the septum. The right heart supplies the
pulmonary circulation, while the left pumps the blood into the systemic tree.
Fach side consists of two chambers, the atrium and the ventricle, seprated
by the atrioventricular valves (the tricuspid valve in the right side. the mitral
valve in the left one). Their role is to receive fluid at low pressure and transfer
it to a higher pressure region. In other words, each side acts as a pump (see
[27]). Each ventricle can be described as a vessel where the most significant
feature is the compliance and the compliance changes with time (see [10, 27,
29, 55]).

The starting point for a possible mathematical model is the relation that
links pressure and radius of an elastic spherical ball filled with fuid. Here
and in the following we take P = 0. We have

5 R
7TR;I’ — QTTE]in]i)'j—T—l)‘—'.

where Ry is the reference sphere radius, which is the one reached when P = 0,
hy a reference thickness of the ball surface and E the Young modulus. The
contraction of the cardiac muscle may be taken into account by an increase of
E (stiffening) and by a shortening of the muscle length (that is a reduction of

Ry). It is more convenient to express this relation as a function of the volume

V. instead of the radius. By recalling that V. = 47R*/3, a lincarisation
procedure leads to
E(t)hy .. .
P=———(V-=V().
27(1’?‘2(’) ( (l( ))

where we have indicated the coefficients that change in time because of the

action of the muscle. This simplified model does indeed describe the major
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characteristic of the ventricle. If we indicate

2Ry (¢)

):—

E(t)hy
we may re-write the relation in the more compact form
V(t) = C(t)P(t) + Vi(t).

By deriving with respect to time we obtain

v dc P o
—=Q=— P+ 0 4 Molt) (3.8)

where @ represents the (incoming) flow rate and Mg = dVp/dt is the action
exerted by the contraction of the cardiac muscle.

A lumped representation (electric analog) of each ventricle® is given in
Fig. 10, where R accounts for an additional viscous resistance inside the ven-
tricle, whose relevance has been recently pointed out by [58] and Mg is
represented by a generator of current.

Valve 1 9 R Valve 2
| -
\ | /
e} @ f 0
dt

Ficure 10. Network for the lumped parameters modeling of a ventricle.

In Fig. 10 the presence of heart valves has been taken into account by
diodes which allow the current flow in one direction only?®). Observe that the
presence of the valves introduces a nonlinear relation in the lumped param-

ceters model.

*JA mechanical representation of the heart working based on the classical Hill's model
for the muscle can be found in [30] and [66]. See also |2]
I The same representation can be nused also for the valves in the venous system. whenever

needed.
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3.3. Lumped Parameters Models for the Circulatory System

The compartments previously described are the elementary bricks for
building models for the whole system. As previously pointed out, the num-
ber of compartments depends on the accuracy requested to the model and,
definitely, on the number of vessels that it is worthwhile to represent sepa-
rately as single units.

The connection among the compartments is driven by fluz and momen-
tum conservation at the interfaces. As a direct consequence of the electric
analogy the quantities that are matched are ) and the pressure P. There
is a difference in this respect to the coupling of 11 models (see Sect.2.2),
where the total pressure is considered. This choice is indeed consistent with
the hypothesis of negligible convective terms.

In the electric analog, these relations correspond to the application of
the classical Kirchhoff laws for the nodes (conservation of current) and the
nets (conservation of the voltage). An sketch of the possible connection of

different compartments is given in Fig, 11.

‘Rn Liigy \8\2 Liz R, L,

VWYY t,,:u i i |7[ VWYY rj; T (@) .
o I T %7 e, L

Ficure 11. Lumped parameters model for a branched vessel as a cascade of T
and 7 networks.

A detailed electric analog for the circulation is provided in [64] and in
[40], where hundreds of elementary compartments are accounted for.

From the mathematical viewpoint, a general representation of lumped
parameters models is a Differential-Algebraic-Equations (DAE) system in
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the form

dy

— = B(y,z,t) t€ (0, T

Y~ B(y,z,t) te(0,T] s
Gly.z)=0

together with the initial condition vector y|i—, = yo. Here, y is the vector the
state variables (associated to capacitors and inductors), z are other variables
of the network and G the algebraic equations that derive from the Kirchhoff
laws. If we suppose that the Jacobian matrix J := G /0z is non singular?),
by the implicit function theorem we can express z as function of y and resort

to the reduced Cauchy problem

(:TB; = ®(y.t) = Ay, t)y +rx(t) te(0,7],

y =Yo. atl=tp.

(3.10)

The time dependence of matrix A is due to the heart action and is related to
the variable ventricles compliances, while the dependence of A on y is due
to the presence of diodes (non linear term). The forcing term r depends on
t through the function Mg(t).

From classical results of calculus, it is possible to prove that (a) if ®(y.t)
is continuosly differentiable there exists a time interval [0,7"] in which the
solution of the problem exists and is unique: (b) if, moreover, the derivatives
0®;/dy; are bounded in all the time interval [0, T, then the solution of the
Cauchy problem exists and is unique in [0, 77.

In the sequel, we will suppose that the previous hypotheses are verified.

From the numerical point of view, the nonlinear ordinary differential sys-
tem (3.10) can be solved by means of classical methods. For this reason we
do not dwell here with the numerical solving of lumped parameter models

and refer the interested reader to e.g. [47].

4. Basic Numerical Issues for Multiscale Modeling

Our goal is now to investigate specific problems arising from the math-
ematical and numerical coupling of different models for blood flow, ranging
from the Navier-Stokes equations down to lumped parameters models. In
particular, we will have to manage the interfaces between models featuring
a different level of detail. It is to be expected that the more accurate (point-

wise) model would need on the interfaces more data than the mean models

Y1n this case, the DAE system is said to be of index 1.
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could give, being by far less accurate. The data referred to the simple-minded
submodel are indeed a spatial average of the pointwise quantities which are,
on the other side. considered by the accurate local submodel and that would
be needed on the interfaces in order to make it well posed the Navier-Stokes
boundary problem. We have, therefore, the problem of giving a well posed for-
mulation of the local subproblem, filling up the defective data set provided by
the reduced submodels. The main concern of multiscale modeling is to carry
out this completion minimizing. as far as possible, the perturbations on the
numerical solution. For example, if the How rate (mean value) is known on
the upstream section of a vascular district, there are many velocity profiles
(pointwise values) on that section that can be associated to such mean data
and, therefore, can be prescribed to the Navier-Stokes problem. However. the
choice of a specific profile will strongly influence (or perturb) the numerical
solution in a non-controlled way. The present Section illustrates some tech-
niques for avoiding the prescription of a velocity profile and, in general, for
reducing perturbations on the numerical solution when solving 3D problems

with average (defective) boundary data.

4.1. Defective Boundary Data Problems

For the sake of clarity, let us provide a general statement of defective
boundary data problems. Let Q be a bounded domain of RY d = 2 or 3.
whose boundary 0€2 is decomposed into the union of Ty, and several disjoint
sections g, T Ty e 2 1 (see Fig. 12).

I

%

SR

5

FiGURE 12. The partition of the boundary of the domain 2.
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For the sake of simplicity, we suppose that the domain is rigid, so that
we are interested in solving the Navier-Stokes equations in 2

)
(%;u+1vVu+Vp—uAu = f, t>0
diviu) = 0, t>0 (4.1)
u = uy;, t=0,
u = 0 X € I‘wall-

Two different kinds of boundary conditions are of some interest in the mul-
tiscale coupling and will be considered on the sections I';, i =0... ., .
The first condition refers to the mean pressure problem, which requires

that
1

meas(l’;)

] pds =Py, i=0,..., n. (4.2)
I'y

The second condition we address is the flow rate problem

j u-nds = 0Q;(t), fori =0,...,n. (4.3)
I,
Observe that, due to the fluid incompressibility and the rigidity of the wall,
a compatibility relation must exist among the fluxes Q;, namely:

Qo+Q1+...+Qr=0. (4.4)

The initial-boundary value problem (4.1) with either (4.2) or (4.3) is
not well-posed from a mathematical point of view due to the average (non-
pointwise) nature of the boundary data on the artificial boundaries (see [61]).
A possible way for completing the lackness of data is the one proposed in
[26]. Following this approach, a particular weak or variational formulation
of the boundary problem is devised which allows to fulfill conditions (4.2)
(resp. (4.3)) at some extent, giving rise to a well-posed problem. In fact, this
formulation forces in an implicit way some natural (Neumanun-like) bound-
ary conditions which selects one particular solution among all the possible
ones of the original differential problem. The completition of the defective
boundary data set is essentially an implicit by-product of the choice of the
suitable variational formulation. which is based on a natural set of boundary
conditions, less perturbative than essential (Dirichlet) ones.

This approach is really effective for the numerical solution of the mean
pressure drop problem (see |61]). In solving the flow rate problem. it is not

http://rcin.org.pl



340 L. FORMAGGIA and A. VENEZIANI

straightforward for what concerns the selection of an appropriate finite di-
mensional space for the space discretization. Here, we will address therefore
a reformulation of the flow rate problem proposed in [16], more suitable for

the numerical purposes.

4.1.1. A Lagrange multiplier approach for flow rate boundary con-
ditions. Consider the initial-boundary values problem given by (4.1) and
the net flux conditions (4.3). We assume that the compatibility condition
(4.4) is fulfilled.

Rather than (defective) boundary conditions. (4.3) can be regarded as
a set of constraints for the solution of the problem at hand. Starting from
this viewpoint, a possible way for forcing such constraints resorts to the
Lagrange multiplier approach. According to this strategy. the equations to
be solved are penalized by the presence of the constraint, weighted by suitable
(unknown) coefficients, the Lagrange multipliers® . The original problem is
therefore reformulated in an augmented fashion, due to the presence of the
multipliers (see e.g. [23]).

In the present case, this approach leads to the following variational prob-
lem: look forue V. pe M and Ay, ..., A, € R such that, for all v € V and
q€ M,

(;)){u +u- Vu‘v) + v(Vu, Vv) + ;)\, ./v -n — (p,div(v)) = (f,v),

(g,div(u)) =0,

| (¢, u) = Qi =, ... n,

for all t > 0, with u = ug for t = 0.
The mathematical analysis of this probem (its equivalence to the mean
flux problem stated above and its well-posedness) can be found in [16] and [62].
In order to discretize equation (4.5), we introduce a Galerkin approxima-
tion based on the finite dimensional spaces Vi, € V and M, C M, which we
assume to satisfy the well-known LBB condition (see e.g [48], Chap. 9.):

V(],l, e M, v, €V, vy # 0 : ((1},.(1i\'(v)),) > ,.))),lqh

2Vl (4.6)

?"We remind that in the same perspective, the pressure of the incompressible Navier-
Stokes equations can be regarded as the Lagrange multiplier of the incompressibility

constraint —see e.g. [48].
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Let (up, pp, Ap, .- Ann) be the solution of the discrete problem. We denote
by (w;)i—1._an (resp. (pi)i=1._ar) the components of wy, (resp. py) with respect
to a basis {v;} of V}, (resp. {q;} of Mj). Finally, we introduce the vectors U =
(u1,....ugn) € RN, P = (py,...py) € RM and A = (A\jp, ..., Aun) € R™
Then the discrete counterpart of (4.5) gives rise to the following algebraic
system of equations

AU+ DTP+®TA = F,
DU = 0, (4.7)
U = Q,

where A € RINV*IN g the stiffness matrix, D € RM*9N is the matrix associ-
ated to the divergence operator and ® is the n x dN matrix whose lines are
given by the vectors ¢; = Ul, vy -nds, ..., jF, vgv -nds), i=1,...,n.

It is possible to prove that this system is non singular, [16]. However, this
system is not a classical Navier-Stokes problem, so its numerical solution
should require the set up of an “ad hoc” solver. On the other hand, there is
no numerical convenience in setting up a solver computing simultaneously U,
P and A, since the matrix associated to system (4.7) is supposed to be very
ill conditioned in real applications. Therefore, as for the standard Navier-
Stokes problem (see [48]), it is worthwhile to resort to splitting methods
which reduce the problem to a series of smaller and easier to solve steps.
This can be done in different ways (see [62]). Here we illustrate a strategy
that has the advantage of separating the fluid (velocity and pressure) from
the multipliers computation. In this way, if a Navier-Stokes solver is available
(for instance a commercial package), it can be actually adopted for solving
the augmented problem.

We rewrite (4.7) in the form

s of| |x| |G -

o 0| (Al |Q AR
where ® = [@,0] € R™*@N+M) X — (U, P|T, G = [F,0]". The matrix S
corresponds to the discretization of the Navier-Stokes problem with Neumann
conditions on the boundaries where the net fluxes are prescribed. If the two
discrete spaces V), and M), satisfy the LBB condition (4.6), S is non singular
(see, e.g. [8, 48]). We can then eliminate the unknown X from (4.8), obtaining
a system for the Lagrange multiplier:

PS5~ 10TA =dS71G - Q. (4.9)
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This system can be solved by an appropriate iterative method. For instance,
if we denote R := 5 107 and b := ¢S1G — (). we could resort to the
classical preconditioned GMRes scheme® (see e.g. [54]). In particular, this
requires to solve a Navier-Stokes problem at each iteration and this can be
carried out by means of a standard solver. This could seem quite expensive.
However, the matrix R is usually small, being its dimension equal to the
number of artificial boundaries. so the number of iterations required will be
accordingly small. Morcover, the computational efficiency can be improved by
finding good preconditioners of K. Other approaches rely on finding suitable

approximations for system (4.7) cheaper to solve (see e.g. |63]).

4.1.2. Numerical results. In order to assess the proposed methodologies,
we consider a case where the analytical solution of the Navier-Stokes equa-
tions is known. More precisely, we consider the Womersley solution, which
describes the transient flow in a cyvlindrical pipe associated to a time-periodic
pressure gradient (see e.g. [38]). As such. it is a transient counterpart of the
well known Poiseuille solution.

We have considered a straight cylinder, imposing homogeneous Neumann
boundary conditions at the inflow, while at the outHow we prescribe the
flow rate associated to the Womersley solution. The results are shown in
Fig. 13. Here, the computed velocity field at two different times is illustrated,
together with the corresponding exact axial velocity profile. The solution
obtained agrees very well with the analytical one. A single condition on the
flow rate at the outflow, imposed through a Lagrange multiplier, is sufficient
to recover the Womersley flow. It is worthwhile outlining that the Womersley
profile is an outcome of the computation. it has not been forced anyway. Other
analytical tests can be found in [62].

In Fig. 14 we report the solution of the net flux problem obtained by
solving a steady flow rate problem with the Lagrange multiplier approach in
a real geometry of the total cavopulmonary connection. The solution has been
obtained with a commercial solver (Fluent). Again, we point out that the
velocity profiles are not prescribed but they are an outcome of the numerical

simulation.

“1n the case of a Stokes problem, R is symmetric and positive definite, so the Conjugate

Gradient method can be adopted.
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Fiaure 13. 3D numerical solutions obtained at two different instants imposing

the analytical one.

a periodic flux. The continuous line is the numerical solution, the dotted line is

Ficure 14.
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Cavo-pulmonary connection: velocity field computed with the La-
grangian multiplier approach. Simulations carried ont with a commercial solver
(Fluent).
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5. Multiscale Models

Having developed techniques for managing local 3D problems with mean
boundary data in a numerically sound way, we are now in position of de-
scribing complete geometrical multiscale models, both from a mathematical
and numerical viewpoints. We will start considering a 3D and a 0D model,
discussing its well posedness and numerical methods for the coupling. Then,
we will address numerical methods for 3D-1D coupling (Sect. 5.2). We will
finally consider the coupling of 1D and 0D models.

Numerical results of medical interest are presented in Sect. 6.

5.1. Coupling 3D and 0D Models

We wish to represent the whole circulatory system by an electric circuit
except on a specific region €2, where blood flow is modelled by the Navier-
Stokes equations, as illustrated in in Fig. 15. Here. the compliance of the local
vascular district is neglected for the sake of simplicity, hence ) is constant
in time. Let us assume that the network faces the district Q by capacitors C;
E=1,..., 77) as shown in the picture. In particular, we put in evidence the
representation in terms of a network of the vascular regions in the immedi-
ate neighborhood of the 3D model. Tn [50] we have extensively investigated
this problem. In particular these parts of the lumped network have been
called the bridging regions. In this picture, we have three bridging regions
corresponding to the three inflow /outflow of 2. We are essentially coupling
a lumped representation of the circulation with the mean pressure problem
for the Navier-Stokes equations. The boundary mean pressures are not given,
but are state variables of the lnmped model to be computed. The heteroge-
neous multiscale problem is therefore given by coupling subproblems that
can be proved to be separately well posed. It is reasonable to expect that the
global multiscale model is well posed. This well posedness has been proved
in [50] starting from classical fixed point techniques.

The role of the interface conditions in the splitting procedure is naturally
driven by the specific topology of the network at the interfaces. In the case of
Fig. 15, the interface flow rates are not state variables of the lumped system,
and. therefore, they are well suited to play the role of a forcing term for
the ordinary differential system. However, depending on the choice of the
bridging regions. the matching between the network and the Navier Stokes
system could be pursued, for instance, by interchanging the role of flux and
pressure at the interfaces.
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3

A
= le
P, W
e

Figure 15, Scheme of coupling between the whole system and a local district.
The lumped representation of the three bridging regions at the interfaces with
the Navier-Stokes model is highlighted in the dashed circles.

In this case we should suppose that the flow rates are provided to the
Navier-Stokes system by the network, which in turn receives pressure data.
For instance, in the network configuration of Fig. 16, the interface pressure
is not a state variable of the lumped system, so it is a good candidate for
being a forcing term of the ordinary differential system, provided by the
Navier-Stokes solution. On the other hand. the interface flow rates, which
in the electric analogy correspond to the current at the interfaces and are
state variables for the system, become boundary data for the Navier-Stokes
problem. In this case, we formulate a net flux problem for the Navier-Stokes
model, to be faced according to the Lagrange multiplier approach.

For the numerical treatment of these coupled models, it is natural to resort
to an iterative approach based on the splitting of the whole problem into its
basic components, the ODE system from one hand and the Navier-Stokes
equations from the other one.

For the sake of clarity, suppose to deal with the coupled problem repre-
sented in Fig. 16. A compact representation of a possible numerical scheme
is given in Fig. 17 (left). In this scheme, an explicit time advancing method
is used for the lumped parameters model, computing the new state at ¢"*!
of the circulatory network starting from the previous one (at t") and the
pressure data given by the Navier-Stokes solver. In this way we compute the
flow rates at the current time step n + 1 that become boundary data for
solving a flow rate Navier-Stokes problem (with the Lagrangian multiplier
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FiGure 16. Scheme of coupling between the whole system and a local district
where the bridging regions are given hy inductors.
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Ficure 17. Possible numerical scheme for the coupling of a Lumped Parameter
Model (LPM) and the Navier-Stokes problem: on the left the case corresponding

to Fig. 16, on the right the one corresponding to Fig. 15.

approach). For solving the coupled problem of Fig. 15, the corresponding
numerical scheme is in Fig. 17 right.

Numerical results and discussion about these methods can be found in
[45]. [50] and in [37]. In the latter work, in particular, the 3D compliant
case is addressed, that requires specific interface conditions for the compli-
ant vascular wall. We mention also an example of multiscale 3D-0D models
proposed in [6], illustrating the relevance of the multiscale approach in the
numerical simulation of the blood flow in a carotid bifurcation. C'T' scans of
a stenosed carotid artery have been used for reconstructing a 3D geometry
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both of a occluded and of a healthy (by modification of the original images)
carotids. Numerical results have been obtained both for a stand-alone and
a multiscale model (see Fig. 18) in the two geometries. The results outline
the relevance of the description of the whole circulatory cerebral system in
prescribing correct boundary conditions and definitely obtaining significant
numerical results.

Ficure 18, Left: Lumped parameter model for the multiscale carotid simulation.

Right: Healthy and stenosed carotid model. Taken from [6].

Remark 3. In the last years, numerical methods for solving complex real
problems in scientific computing by means of domam decomposition methods
(DDM) have received great attention: as a recent reference, we quote |~lf)[.
The numerical approach to problems of increasing complexity quite natu-
rally compell the identification of simpler “subproblems”™ that can be solved
separately from the others, in order to setting up more effective numerical
algorithms. Among the others possible examples, we quote fluid-structure in-
teraction problems in hemodynamics, both at the mechanical and biochemi-
cal level (see [39, 51, 52, 69)]).

In our framework, it is reasonable to assimilate the flux data to (mean)
Dirichlet data, since they refer to the velocity field, while (mean) pressure
data can be assimilate to Newmann condition, since they refer to the pressure,
i.e. to the normal stress tensor which is a natural condition for the classical
variational formulation of the Navier-Stokes equations. In this respect, the
iterative algorithms presented above (and the ones that will be introduced

for the 3D-1D coupling) can be considered an extension of the Dirichlet-
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Neumann substructuring iterative method. widely adopted in the context of
DDM. This link can provide suggestions for setting up some improvements

in the algorithms. exploiting the theoretical framework of DDNM.

5.2. Coupling 1D and 3D Models

Let us consider now the coupling of 3D and 1D models. Since we are
still dealing with a reduced model, involving mean quantities and the point-
wise Navier-Stokes model, we will have to handle “defective”™ data problems,
according to the strategies illustrated in Sect. 4. In particular, as we have
pointed out in the previous section, if we consider a compliant 3D domain,
specific interface conditions will be needed by the differential problem associ-
ated to the vessel wall description in the 3D model. Moreover, the mathemat-
ical hyperbolic nature of 1D models will require a careful treatment of the
interface conditions, based on a characteristics analysis (see Sect. 2). Since
the 1D models are more accurate than the 0D ones, we have more possi-
bilities in devising interface conditions. A priori, it is reasonable to look for
the continuity of different quantities at the interface I',. namely the flux, the
mean pressure (or the total mean pressure), or the normal stresses or also
the characteristic variables incoming to the 1D domains and. in the case of
a compliant 3D domain, the interface arca. The continuity of some of these
quantities will be enough to force all the others: a complete discussion of the
different possible interface conditions set is carried out in [15] and [16]. To
these references the reader is referred (see also [1]) for some numerical results
and examples.

Here we limit ourselves to point out that at the numerical level, the
explicit coupling of 3D and 1D solver similar to the one illustrated for the
3D and 0D models can be affected by numerical instabilities, depending e.g.
on the physical properties of the vascular walls. In these cases. we need to
resort to an implicit coupling, achieved by iterating the computation of the
3D and the 1D problems at each time step. as it is illustrated in Fig. 19. In
this scheme, we are supposing that the 1D model computes the pressure at
the interface and the incoming characteristic variable Wy is imposed at its
inlet from the flow rate and the area computed by the 3D model. Relaxation
parameters £1 and 9 can be tuned for improving the convergence of the
scheme. A suitable stopping criterion will be adopted for ending the inner

loop at each time step.
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Frcure 19, Implicit coupling of 3D and 1D solvers.
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FiGure 20. Left: Area in the upstream 1D model in the physiological case (t =
0.016s): Right: Area in the upstream 1D model in the stented artery: observe the
overload induced by the reflections due to the presence of the stent. Taken from

[44].

In Fig. 20 (taken from [44]) we illustrate an example of the results ob-
tained with this scheme in the numerical solution of a coupled 1D-3D-1D
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model. The 3D model is supposed to be rigid. This can be regarded as the
model of an artery with a stent, which is really stiffer than the physiological
vascular tissue. In particular, it is possible to appreciate the overload in the
proximal (—upstream with respect to the stent) 1D domain in the pressure,
induced by the (physiological) reflections at the interface with the 3D stented

model.

5.3. Coupling 0D and 1D Models

We finally consider the coupling of 1D and 0D models. Since we are actu-
ally coupling reduced models. both dealing with average (in space) quantities,
we will not have defective boundary problems to solve. The crucial issues, in
this case. are the boundary treatment of the 1D models. and the branching
numerical treatment. addressed in Sect. 2.2.

The mathematical analysis of this class of heterogencous problems can
Tt tl tical lysis of this class of heterogeneous problems can

be carried out by means of fixed point techniques (see [18]) in a way similar
to the one followed for the coupling of 3D and 0D models. See also [34]. The
numerical solution can be in some cases obtained by coupling the discretized
equations (in space and time for the 1D model. in time for the 0D one)
in a monolithical solver. In general. it is however possible to resort to an
iterative approach similar to the ones presented in the previous sections, in
which a 1D and a 0D solvers are iteratively called in the multiscale numerical
device.

The practical interest for this kind of models relies in the set up of sys-
temic models for the description of the pressure wave propagation in the
arterial tree (1D model) induced by the heart action (0D model). see [58],
[19]. In particular, in [19] a 1D newtork including the largest 55 arteries
(see Fig. 21 left) is coupled with the heart lnmped parameter model given
in Seet. 3.2 and a three elements Windkessel model for the peripheral circu-
lation. The numerical coupling of the heart model and the 1D network has
been obtained by following the scheme illustrated in Fig. 22, As a matter of
fact. the two models are coupled only during the systolic phase, while in the
diastolic one a null flux condition is imposed at the entrance of the aorta. The
opening and closing of the aortic valve is driven by the comparison between
the ventricular and the aortic pressure.

In Fig. 23 the relevance of the multiscale approach is clearly put in evi-

dence: if the action of the heart is simply modelled by a prescribed boundary
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Fioure 21, Arterial tree composed of a set of 55 straight vessels, described by

1D models (see [65]). On the right a pathological case, in which some of the vessel
are supposed to be completely occluded.

< 0
<0
Closed Valve — ™| Open Valve

t >0 L >0

Fraure 22, Flow chart representation of the aortic valve modeling.

condition at the inlet of the aorta (as it is usally done left column). the
results can be significantly different, with an underestimation of the heart

overload due for instance to a pathological occlusion (dotted lines).
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Fioure 23. Comparison between the results obtained with standard proximal
conditions (left) and the multiscale coupling with the ventricular model (right).
Values of velocity and pressure in the mid-point of the aorta are presented in the
first two rows. The last two rows illustrate a comparison between the Riemann
invariants Wy and Ws, respectively. Adult circulation in a physiologic (solid) and
pathologic (dotted) test case are simulated.

6. Numerical Results in a Case of Clinical Interest

Numerical results obtained in more realistic contexts, still based on the
approach of the present work, can be found in [31, 35, 36]. In these refer-
ences the adoption of geometrical multiscale models has given good results for
analysing, by means of numerical simulations, the dyvnamics of How patterns
in morphologically complex vascular districts in the context of paediatric
surgery. The proposed methodology was in particular applied to a reconstruc-
tive procedure, used in cardiovascular paediatric surgery to treat a group of
complex congenital malformations. There are different solutions for carrving
out this kind of interventions (see [35, 36] and Fig. 24) and it is not easy, in
general, to state which should be considered the best for the patient at hand.
In the multiscale models adopted in this analysis, a 3D realistic morphology
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Fioure 24. Two possible realizatons of the Norwood operation: Modified Blalock-
Taussig shunt (left) and Central Shunt (right), from [35].
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Frcure 25, Multiscale model of the Modified Blalock Taussig Shunt (left) and of
the right ventricle—pulmonary artery shunt or Sano operation (right, from [36]).

including the innominate artery, the pulmonary, carotid and subclavian ar-
teries and the shunt are coupled to a lumped model composed by different
blocks describing the rest of the pulmonary circulation, the upper and lower
body, the aorta, the coronary system and the heart (see Fig. 25). Due to the
complexity of the vascular 3D, the adoption of stand-alone classical fluid dy-
namics model failed to give accurate description of the velocity and pressure
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fields (see [31]). With the adopted multiscale approach. i.e. using boundary
conditions that account for the circulatory system. this was avoided and the
inlet velocity profile reversal was correctly reproduced (In Fig. 25 and Fig. 26
we report some snapshots of the computed local solution). The prediction
of both the local and the global haemodynamics after a surgical correction,
leads to the quantification of pressure drops across the repaired region as well
as to that of flow distribution into the major cardiovascular districts, which is
an extremal important issue. Geometrical multiscale numerical modeling can

help therefore the surgeon in the optimal choice of shunt size and placement.
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Fioure 26. Velocity fields at different instants of the heart beat in the Sano

operation (from [36]).
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