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Th<''-l' notes addrl'ss thl' sPt up of matiH'mat iral and numNical Jnml<-ls for l h<' 

cardio,·ascular s.ystcm and th<' nunJc•rical conpling of mod<'ls ha\'ing a diff<'l'('nl 

lt'v('] of dC'tail (from :~1) down to lulllJ H'd paramalt'rs modf'ls), in what has bc•Pn 

caliPd t h(' "gc•omdricalmultiscalc a pproach". \Nt' present at first lhP basic f<'at urt's 

of rt•duc('d (10 and lunqJt'd paranJ('lt'r) IIJOdt'ls for the cardiovascu lar nt>twork. 

Theu we· addn·ss both matht'matical and llllll ll'rical issues arising; wh<'n coupling 

mod('ls with a diff<'r<'nt lt'\'('l of cl<•tail. Finallv. WC' present som<' nnmcrical r<'sults. 

1-.:Py words: IJ/ood flou• pmblcms. hflr I'Ofii'III0/18 nwdcllllg. mnl/ismlr· ll'l'hiiHfiU'.'i 

1. Introduction 

Ott<' of the nwjor difficulties <'ncount cred when mode ling in an accurate 

way the lttllllall cardiovascular sysl<'III is that it is iu fact formed by a closed 

n<'l work with a high ll'wl of inlN-dependl'ncy. The fiO\\' dynamics of llw 

blood in a SJWcific \'Hi-icular dislrid (lomllwernodynamzc8) is strictly related 

to the global. s~·stemic dynamics. For i nst a nee. the dist ri but ion of blood flow 

i nsid<' the nuious Yasntlar dist rict s. \\' lt id 1 is a syst c111 ic fcatun'. i nfl uc!lces 

for t lt<· hloocl ci.Ynamics in each district (local featnr<'). Besides. the study of 

local fl<m· fl'at ure is important si11cc pal hologics like the formation of local in­

timal t ltickcning or plaques is st rougly infltt<'ll<'<'d by the local h(•modynamics 

(sec <'.g. IG J). On the o thN hand. loml alteration in nlscular lu111en induces 

a globol redistribution of the blood flow, gi,·ing rise to compensatory nwcha­

n isms that. at some extents. can <'llS\ll'(' a sufficient blood How in t ltl' districts 

downst rc<tt u the stenosis. 1\ cglcct ing such ef f<'C' l pro\·ides on ly a partial i nfor-
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mation (sec e.g. 13. 5]). This reciprocal infiuencc bctwccu local a nd syst<:' mic 

hemodyna mics has led to the <·oncC'pt o f geometriral "multisrale" modelling 

of the circulation Actually, the term "nwlt isca!C'" is often used with cl i fl'C'rcnl 

111eani ngs iu cl i ffercnt fields of mal hem at ical and uunw rical mode lling . (e.g. 

wav<'l<'ls. t mbulence modelling ctc .). Therefore . in order to avoid an1 bigu i lies . 

we indicate by the term qcomctrical our present multiscalc perspective . In 
fact. t l1is feature is common to all many problems involving m odeling subre­

gious of a larger and cou1plex systen1. such as hydra ulic or elect ric net works. 

Examples a r<' the simulation of exhaust systems of Diesel engines (sec I l 31), 

and the design of electric circuits (sec j..l i) . 
A 111u ltiscale perspcctin' is relevant even when one is interested just ou 

the description of the local fiow. J ndccd, the formulation of a Ill a t h<'ma t i­

cal well posed problem requires the s pecification of boundary data (sec 161]). 
The vascular walls a rc physical boundaries and the correct con cl it ions ar<' sug­

gested by physical assumptions such as the continuity of t he velocity field. 

f lowewr. m'tijici.al boundar-ies IJ<We to be int roduced to bound the vascular 

district at hand. They a re the interface lw t w<:'en the district unde r cons ider­

a t ion a nd the remainde r of the circulatory system. Bound ary concli t ions on 

such boundaries arc. in fact, influenced by the "mult iscalc" nat urc of t he c ir­

culation. \\' hcnever such cl at a are no t available from specific (and accurate!) 

mcasurem<'llls, a proper boundary condition wou ld requir<' a n1al hrmatical 

dC'scription of the action of the circulatory system ou the \'ascula r district 

at hand. Clear!~·. siuce it is not affordable to describe the whole circulatory 

system at the same lc\'C'l of drtail. this mathematical description must rely 

on si m pier mode ls. 

\\'hilc t he local model will be typically based on lhe soluliou of the in­

compressible Naxie r-Stokcs possibly coupled wi Lh the dynamics of t he vessel 

walls (sec e.g. IL 461). th<' systemic model will be givcu by JD models or 

by lumped pammctcrs models ha:-;ecl o n l he solul ion of a s.vst cm of ordi nary 

differentia l equat ion (i n time) for the average ma.•.;s Aow and pressure in the 

different compartments forllling the cardiova.'ictdar sy:-.tem. 

13Psicks their intrinsic r<'l<'\'ancc. these "simple-minded" models arc of 

great interest in our multiscale perspective. Tndcccl. they pro\·idc a syst<:'mic 

cl<'sCTiption of the main phenomena related to the circulation (such as the 

compensatory IIICchanisms mentioned above) at a low comput ationa l cost. 

They may thus be coupled with an accurate (but local) clescript ion of a vas­

cular district of interest . T he mat helllat ical a nd numerical issues rela t ed to 
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this coupling a rc nontriYial. T he d ifferent level of deta il o f the clifi"C'rC' nt mo­

dels is reHC'ct C'd by diffC'l'C'nt mat lw matical features. lavier-StokC's C'qua tions 

a r<' a syst C'm o f non-linear pa r t ia l d ifferent ial equations which a re essentia lly 

pa ra bolic for the velocity. while the' lD models arc (ma inly) based on hy­

J)('rbolic partia l differen t ia l equat ions, and the lumped parameter models do 

not fC'aturC' a spa tial cl C'p C'ndcncy and a rc described by means of ordinary di f­

ferential equat ions in thC' timC' variable' (for t his reason . they a re also called 

·'OD models"') . A par t icula r care has Ll1ercfore to b e t aken in managing t l1C' 

int er faces between these models in ord C'r to have ma thema tically well posed 

problC' ms a nd to gua ran tee accurat e numerical results . 

In t hese no tes, WC' will start wit h a short introduction o f simpk -minded 

111odcls for t he circul a tion. \\'e will consider lD models a t fi rs t (SC'ction 2), 

their derivation and t heir numerical treatment. v\'e will also briefly address 

some specific issue such as the lD modeling of curved pipes. Then, we will 

introdnce lumped pa rameter models (Section 3) , their bas ic fea t ures and 

t he set up of systemic models . The specific mathematica l and numerical 

p roblc m:s arising in the coupling of these models arc addressed in Section 

,I and 5. Numerical results arc fina lly pre:;ented in Sec. 6, illus tra ting t he 

e ffec t ivcn0:;s of lhe multiscale approach no t only for academic test cases but 

also in simula tion. of real medical interest. 

2. The Basic lD Model 

We introduce t he simplest non-lir1car lD model for blood flow in compli­

ant vessels. For more det ail:;, sec [1] or ]:3]. 
T lw bas ic equa tio ns a rc derived for a tract of artery free of bifurcations, 

which i:; idealised a.•::; a cylindrical compliant tube (see Fig . 1) . We will clc>notc 

by I = (to. t 1) the time int erval of inte rest and for t he sake of convenience 

we· will take to= 0. By D1 we indicat e the spa tia l doma in which is supposed 

to ])(' a c ircula r cylinder filled w it h blood . which is changing with t ime under 

t he ac tion of t he pul. at ile fl uid . 

\\'c will m a inly use Cartesia n coordina tes. yet when dealing with cylin­

drical geomctries it is handy to introduce a cylindrical coordina te system. 

T lw reforc . in the following we ind icate with er. eo and e z t he radial. c ircum­

ferential and axia l uni l vectors. rc:;pccti w•ly, ( r. B, Z) being the C'OlT('SpOnding 

coordina tes. vYe assume that the vc:;scl extends from z = 0 to z = l and the 

vessel length l is constant with time. 
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Fit:t IH. l. Si111plified geolnl'lr.\·. Th(' \'('ssel is ass111il('d to h.\· n st might cylin<lPr 

with circular cross s<·rtion. 

The basic model is declucccl h)' makiug the follo\\·iug si!llplifying assump­

lious . 

A.l. A.rial symmrtry. All quantities arc indepcnclcnt from the angular co­

ordinate 0. As a couscqucucc. c\·er\· axial sect ion :: =const remains 

circular dming the wall motion. The tube radius R is a function of:: 

and I . 

A.2. Ra.diol displnrements. T he wall displaces along the radial direction 

solely. thus at each point 011 tlie tiihe surface \\'t ' Ill<\\' \\'rite 1] - Tfe,.. 

\\'hNc 'I = R- !?0 is the displacement with respect to llic reference 

mdi us !?0 . 

:\.3. Pi.rcrl ,·r·cli/incor £'.1Jiindr/('(d N'.~.,ef.'>. Tl1is si111ph· means that the wsscl 

will expand and cont racl around its axis. \\'hich is fixed in time. 

A.l. Cons/an/ prrs81lH' on carh ct.rial s('c·tion. \Ye assume that the pn•sstm• 

Pis coitstant 011 each st•t·lion. so that it dt•pc•nds onl.\· on::. and t. 

A .5. No body forces. 

A.G. Domlllal/ce of £!J'iall'£'loC'II.IJ. The wloci(\' components orthogonal to the 

:: axis are negligible compared to the component along ::. The lat tc·r is 

indicated h.\' ll z and its expression in c·)·limlrical coordinates is supposed 

to he of the for111 

(2.1) 
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where Ti is the mean ucloczty on each axial section and ;; : IR -- IR is 

a !'( {o('l/y pmfilr. The fact that t lw wlucity profile does not vary in time 

and spacP is in contrast wit h experimental obscn·at ions and nu1ncrical 

rPsults carried out wi th full scale 111odels. However. it is a neccssary a~­

sulnptiou for the dcrivation of thr rcduccd model. One may then think 

<; as lH'i ng a profile representative of an average flow config m at ion. 

1\ genc•ric axial sect io n will lw indicated })~· S = S (t. z). Its measm e A 1s 

giY<'Il by 

A(l . .:: ) = j da = rrR2(t . .:: ) = rr( Ru(.::) + IJ(I . .::))2 (2.2) 

S (t. z) 

The nwau w•locit,· Ti is then given by Ti 

follows easil .\' that 9 must be :-;uch that 

/1 1 ./~ Uzda. a nd from (2. 1) it 

t I lo ;;(y)ydy = 2 

\\'e will indicate \Yith n the IIIOI/I e11lttm-fiu.r correction corj]icir11l. (sonlc'­

t inlc's <1 lso called Coriolis corjJicirnt) defined as 

J '2 J' 2 
5 11 : da . 5 ;; da 

n = ·) = 
Jlu- A 

(2.3) 

" ·lwrc the· de'JH'IHlc•ncc• of the various quanlilics on the spatinl and t in1c' co­

ordinat es is understood. It is possible· to \'Nify t hat n 2: l. In general this 

coefficic•nt will \'a ry in time and space. yet in om 1nodcl it is tHkc•n c·oust a11 t 

as a c·onsc•q m•ncc• of ( 2. I ) . 

. \ possible· choice for the• proflle law is the para boli c profile ;;(y) = 2( I -

y1 ) that C'OITesponds to the we• !I known Poiseuille solution characteristic of 

st cady flows in circular tubes. In this case we ha\'e n = 1/ 3. IIO\\'('\'N. for 

blood Ho\\' in arteries it ha~ been found that the ,·clocit)· profile is. on average. 

rat h<•r flat. fndeC'd. a profil<• law often lls<'d for blood flow in artC'ric•s (sc•e• for 

instanc·c• J.iGJ ) is a power law of th(• t.\'fH' ;;(y) = ,-1(1 + 2)(1 .t/') with 

t.\·pinllly ' - 0. Corrcspoudiug ly. \\'C' hm·e• n = (1 + 2) / (1 + I ) 1.1. The 

C'hoice n - I . ,,·hid1 ind icalC's a completely flat ,·c locity profile. simplifies t lw 

anal.\·sis. so it is quitc often adoplC'd. 

The IIH'<ll l flux Q. dc•fined as Q - .[5 u:da = Au. is on C' of the main 

,·aria h}('s of our problem. togC't her with A a nd the pressure P. 
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There arc (at least) three ways of deriv in~ a J D model for <lll illcomprc•ss­

ible fluid filling a compliant pipe. The first one moves from the incompressible 

Navier-Stokes equations and performs an <:u-;y mptotic analysis by assuming 

that the ratio Ro/ Lis small. thus discarding the higher order terms with re­

spect to Ro/ L. [7]. The second approach dcrin·s the model directly from t he 

basic conservation laws writ I en in integral form. The third a pproach consists 

of integra ting the avicr-Stokes equat ions on a generic scctiou S. 

Following the last approach and expiating the a~sum ptions stated above, 

it is possible to obtain the following system of equat ions (sec [1. 31): for 

z E (0 . L) and / E I 

1 
DA DQ 

:~ + fJ~ ~(~') 
-+n-- -
Dt u::. A 

ADP (Q) +- t F ,. A = 0. 
p [):; 

(2.4) 

where the unknowns a rc A, Q ami P a nd n is here taken constant. and 1\.,. 

is a coeffic ient proportioual to the blood viscosity. 

In ordN to close system (2.1). where three unknowns. P. A and Q arc• 

related by two equat ions, we have to provide a relation for the pressure. 

A comple te mechanical model for t he structure of the \'Cssel wall would pro­

vide a d ifferential equation which links the displacement and it s s pa tial a nd 

tempora l dc•rivatives to I he force applied by the fluid . Ilcre we will adopt 

instead an hypot hesis quite· conllllOnly used in practice, na.Jnely, that the iu­

er tial terms arc• neglcgible and that the e la:-;t ic strc•sscs in the circumfcrentinl 

direc tion arc dominant. Cnder these assumptions. the wall mechanics reduces 

to an a lgebraic relation link ing pressure to t h'' wall deformat ion a nd consc'­

qnently to the vessel section A. Actually, we may assume that the press m e 

sat isfies a rc lat ion like 

P(t. :; ) - Pr.rt = l,:(A(t. :;) ; 1lo( z ). /3( ::. )). (2.5) 

where we have outl ined t hat the pressure' \\' ill in general depend also ou 

Ao = ?TRfi <Hid on a set ofcoefficients/3 = (.10 . , ) 1. · · · ,dp)- related to physical 

and mecha nical properties, that a rc, in general. giv('n fu n et ions of :; (sec I J I). 
Here Pe rt indicates the c'xt C'm al pressure exerted by t 11<' organs outside the 

ves. e l (often taken equal to 0) . For instance. by exploiting the ,,·ell known 

linear clastic la\\' for a cyli ndrical , ·esse! and using t he fact that 

1/ = (v'A - ~)/Ji (2.6) 
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we can oblain the following expression for 1/J 

(2.7) 

\Ve have identified {3 wit h t he single parameter f3o that from t he modelling 

assumptions is = ( fthoE) /( 1 -e) (sec however t he next remark for the 

numerical est imate of f3o) . The algebraic relat ion (2.5) assumes that the wall 

is instantaneously in equilibrium with the pressure forces act ing on it (sec 

for instance [l J or [46J ). J\ Iorc sophisticated models may be introduced by 

employing a differentia l law for the vessel structure . including the inertia 

and the viscoelasticity of t he wall: t he interested reader is referred to Jlj. 

By exploit ing relation (2.5) we may eliminate the pressure P from t he 

momentum equation. To that purpose we will indicate by c1 = c1 (A Ao , [3) 
t he following quantity 

(2.8) 

which has the dimension of a velocity a nd, as we will sec later on, is related 

to the speed of propagation of simple waves along the tube. 

Dy simple manipulation · (2.4) may be written in quasi-linear fo rm as 

follows 
a .. au at U + H(U ) 8z + B(U ) = 0. (2.9) 

where. 

u = [~]· 

II (U ) = b~
0

-au' 2~u] = [cl-a
0

(~) ' 2:~] (2. 10) 

and 

B(U ) = [J( R (Q) + A a~ dAo + A a'ljJ d{3]. 
A p aAo dz p a{3 dz 

A conservation form for (2.9) may be found as well and reads 

DU o Dt + 
0
)F(U )] + B (U) = 0 . (2.11) 
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where 

B (U ) = D(U)- [ac, dAo: J C1 d/3] 
oAo dz fJ/3 dz 

and C 1 is a primitin· o f d w ith respect to A. given by 

Ao 

Syst em (2 .11 ) allows to iclc ntifv the vecto r U as the t he ('OWWI'U(I.tion 

uariablcs of the problem. 

I u the case WC' use rclat ion (2. 7) we h<tve 

~I 
c1 = v~.A i , (2 12) 

I t is p ossible to prove th at if A 2': 0. tllC' mat r ix li possesses t wo real 

cigcm ·alues. Fmthe rmore . if A > 0 the two eigenvalues arc distinct. t hat 

means t ha t (2.9) is a strictly hyperbolic system of part ia l cliffcrcnt inl eq u<l tions 

(for the proof. sec e.g. I J J). 

Remark 1. An energy a na lysis o f system (:2.1 1) is carried out in [15[. 

Remark 2. The coefficient s o f the lD model o btained depend on p hysical 

pa ralllc ters re la ted to t he phvsical propntics of the b lood a nd the ntsc·ula r 

\\'all . name!.'· et , J0 . /\' ,. awl A 0 . The accmate cst imat io n oft ]J('se panu ndcrs 

is a non t r iv ia l task . In [:33[ a no nl inear kast squar<' a pproach is proposed for 

t he parameters est imate based on experimental data. In particu lar. in t his 

work the panunekr ,)o is cst inm tcd s tart ing fro111 "synthetic" da t a giwn by 

J D fl uid-st ruct me int eract ion simula t ions. Numerical result s repor ted show 

t lw t t he parameter est itna tion can IH' significant!.'· different from t lw ,·ai m's 

computed by ana ly t ical formulas such as .)0 = ( JifhoE) / ( l (2) based o n 

the simplifyi ng assumptions. ~· ield ing hmn'H' r ll lll ll<'r ical resu lts ('loser to t lw 

3 D d a ta. 

Chamcfc'1'istics analysis 

T he hyperbol ic na tmc of t he prohlent a t hand a llows its rcf'on nulat io n in 

terms of ordium.\· di ffcn 'nt ia l equ ::1 tions . T h is reformu latio n is based on t he 
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so-called characteristic analysts and can he useful iu the uuulcrical solution of 

the prohlc111. \Ye bricfl~- address this topic here. For a more d<'lailt'd aual_vsis 

sec I J 1-

Lct (11. l2) and (r1 . r 2) be two c-ouples of left and right eip,cnwctors of 

tlH' lllHlrix 11 in (2.10) . rcspc•ct ively. The matrices L , R an d A arc deflnecl as 

(2 .1 3) 

Since right and left eige11vec-tors arc' mutually ort hogonal. without loss ofgcn­

eml it _\' we' c-hoose them so that LR = I. ~ Iatrix li may then be dc'composcd 

as 

H = RAL. 

<llld system (2.9) written in the equivalent form 

DU DU 
L Dt + AL Dz + LB(U) = 0, z E (0, L). t E /. 

If t hNc exis t two quantities l\ '1 and H'2 which satisfy 

() \ 1'2 = b . 
au -

(2 .11) 

(2.15) 

(2.16) 

we' will call them r·hamcluislic uanables of the hyperbolic s_n;tcnL \\'e poi11t 

ou t that in the case when' the cocffic ic11ts Ao and {3 arc not constant. W 1 

and W '2 arc not autonomous functions of U . 
l3y sc•t t ing W = [ll ·1· 11 '2(r systc'nl (2. 15) 111ay be elaborated into 

DW uW 
- .)-+ A -D + C = O. 

( I z 
(2. J 7) 

where 
G = LB _ u\1' dAo _ uH' d{3 . 

DAo dz (){3 dz 
(2.1 8) 

lfwe c-onsider the chamclcri8/i(' /nu y,(t ) whic-h satisfiC's the clifl'en•ntial equa-

t ion 

(2. 1 D) 

tlw11 (2. 17} 111ay be rewritten as 

(2.20) 
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where we have made evident t he dependence of cl 0 11 the characteris t ic 

variables. 

Equations (2. 19) and (2.20) represent a possible reformulat ion of the prob­

lem at hand in terms of ordinary differential equat ious for t he cha racteris t ic 

variables I Vi . T be role of t hese varia bles is relevant both at the ma t hemati­

cal and numerical level (sec 132, 241) . in particular in the prescription of the 

boundary cond it ions . 

Boundary conditions 

System (2.4) must ue supplemented by proper boundary condit ions The 

number of condit ions to apply at each end equals the number of character­

istics entering t he doma in through tha t boundary. Since we arc o nly con­

sidering sub-cr itical flows we have to impose exactly one bmt11dary condition 

at both z = 0 and z = L. An importa nt class of boundary conditions arc 

the so-called non-reflecting or ·absorbing' ones. They a llow t he simple wave 

associated to t he outgoing characterist ic Yariable to exit the computa tional 

domain with no reflect ions. Followi ng 160. 251 non-reflect ing boundary con­

ditions for one d imeusioual systems of non- linear hyperbolic equa tions in 

conservat ion form like (2.11) may be writ ten as 

l 1 · ( ~~ + B (U )) = 0 a t z = 0. (
dU ) l2 · at + B (U ) = 0 at z = l. 

for a ll I E I. which in fact. by defining R i = l1B . may be written iu t he form 

where we have put into evidence the possible dependence of R, aud R2 on 

T! "1 a nd 11'2 th rough t he ckpeudeuce of B on U . 130lmcla ry coudi t ions of' l it is 

type a re qui te convenient at the out let (d ista l) ·cct ion, part icula rly whenever 

we ha,·c no bet ter data to impose on t ha t location. 

At the inlet (proxima l) sect ion ins tead one usually desires to impose va­

lues of pressure or mass Attx deri ved from mca'im ements or o t her means. 

Let us suppose. without lo · · of genera li ty. that z = 0 is an iu let sec t ion. 

V/heneYcr an explicit fonnul a lion of t he charac tcrist ic varia bles is availa ble . 

the bOL111cla ry condit ion may be exp ressed directly in terms of t he entering 

characteristic va ri able 1!"1 . i. e .. for a ll t E I 

!V!( t ) = gl( t ) a t z = 0. (2. 22) 
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.91 being a given funct ion. However , seldom one has directly the boundary 

datu m in terms of t he characteristic variable, since is normally given in terms 

of physical var iable·. In these cases, some ·pecific techniques can be devised 

for recover ing the characteristic variab le form the physical data. For iustauce. 

if A(t ) is available at z = 0, one could formula te : 

where W2 is t he outgoing characteristic varia ble that can obtain d by extra­
polat ion, moving backward in time along the characteristic line y2(t) . I\ Iore 

details about this a pproach can be found e.g. in Jl ]. 

2.1. Numerical Approx imation 

We will here consider the equations in conservation form (2.11) and the 

simple algebraic relat ionship (2.7) . 

T here arc ma ny difFerent schemes for the numerical simula tion of th is 

kind of problem: t he interested reader is referred e.g. to Jl4, 32. 4 J. Here, 

we adopt a second order Taylor-Galerkin scheme which might be seen as the 

finite clement counterpar t of the well known Lax-Wendroff chemc. It ha 

been chosen for its excellent dispersion error characteristics and its simplicity 

of implementat ion. 

T he bas ic idea of the scheme i · to exploit Lhe Taylor expansion of the solu­

t ion in t ime up to the second t ime derivative a nd t hen to u e the equation of 

Lhc problem (2.11 ) for replacing t he Lime deri vat ives with space deriva t ives 

a nd terms of order zero. T his y ields a semi-discrete problem (continuous 

in space, discrete iu t ime) . T he space d iscretization is then obtained wi th 

a Galcrkin F inite Element approach. A compl te de ·cript ion of the method 

applied to Lhc problem a t ha nd can be found in llJ. 
Using the a bridged notat ions 

!::.t 
F Lw (U ) = F (U)- 2 H (U )B (U ) 

and 
!:::,. t 

B LII'(U ) = B (U) + 2 Bu (U )B (U ), 

the d iscretization of t he problem reads: given u~ obtained by interpolation 

from the initi al data. for n 2: 0. fi nd U~+l E V h which V'lj;h E V~ satisfies 
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the following cquat ions for the int Nior nodes 

(u;;+l. Wh) = (u;;. Wh) + 6./ (F w ·(U/; ). d'ljJII) 
d:: 

_ 6.t
2 

(B (U") UF (U /;) . ·'· ) _ 6.{
2 

( H (U") DF (U") _ d'I/J h) 
') u " , l- 'f/" ') " , l- " L-- V - - V - ( -

- 6.1 (B Ltt (U/;).'Ij;11 ). (2.23) 

together \\·i t h t he relation for hotiiHlary nodes obt aincd from the boundary 

and compatihilit~· conditions, as discussed in the sequel. llcrc (-. ·) stands fo r 

the us ua l L 2 scalar prod uC'l. 13.\· taking 'lj; 11 = [~·, . (ljf and 'lj; 11 = [O.vJ~'. for 

i = 1. .... N we obtain N discrete equations for continuit~· and momentum. 

rcspectiwiY. for a total of 2(N + 2) unknowns (11, and Q, fori = 0 ...... V+ 1) . 
T he srconcl order Tav lor-Calcrkin scheme (2.2:3) entails a CFL stabil ity 

bound on the time step: 

(:2.2 1) 

vdlCrc c0 . 1 and fi, here indicate the values of c0 and fi at mesh node Zi . 

res peel i w I v. 

2.1.1. B ounda r y a nd compatib ili ty condi t io n s. Fonnulat ion (2.2:3) pro­

vide's the n\lues only at internal node's. since we haw chosen the test functions 

'ljJ 11 to be zno at the bontHian·. The \'H i tiC's oft IH' nuknowns at the honndarv 

nodes must lw provided b.\' t lw applicat ion oft it(' boundw·.lJ and r·onipal ibilily 

cond it io ns. 

The boundar.v conditions previous!\· discussed an' not sufficient to close 

the problem at nzmlcncallcl'cl since theY prm·ide just two conclit ious. \·et we 

need to fi nd four add i tion <~ I rclHtions. \\'c want to st res:-. t hHl t !t is p roblen1 

is li nked to the nuuterical scheme'. not to the diffcrcutial cquatious. w hich 

inciec'd only rc'qllirc' otw C'ondit ion at c•ach e 11d (a t least fort he flow regintc' we' 

are c-onsidering here). \\' ithont loss ofgeneralit\·, let 11:-. C'on:-.idn the bollnclary 

;:; ~ 0 (analogous c-onsideration IIIH,\' IH' tnade at :: = L ) . . \ s we' have seen. 

the bonndat) ' conditions will pro,·ide at each t inw st c'p a rdat ion oft he tvpe 

(')( tn+I Q" -l I) = ( (tu+ I) . r~0 . 0 /o . 
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lwiug lfo th(• g;iv<'n boundary data. For instance. imposing the pressun• would 

nH'<lll choosing <t>(A . Q) = P = v(A: Ao(O). d(O)) . while intposing the mass 

flux wou ld just meau o(A. Q) = Q. Finally. a nou reflecting condition is ob­

taiucd by o( A. Q) = 11"1 (A. Q) and in this case qu is norma lly taken constant 

a nd equal to the ,·alue of H"1 at a reference state (ty pically (A . Q)- (Ao . 0)). 
Thus, iu genera l cp is a non linear function. 

This rdntion ::;hould be supplement ed by a compatibil-ity ccm!Li lirm. Ju 

gcucral. the compat ibil i ly conditious <H<' obtained by projecting t he equat ion 

along the c igenvecto rs corresponding to the cha ractcrist ics lhat arc exiting 

the d om ain. Therefore. we have to cliscrctisc t he following set o f cq 111-tt io ns 

at t IH· t \\"0 vcssd ends H j: 

( 
D au ) l ·) · - U + H - + B(U ) = 0. - ut uz z = 0. t E I. (2.25a) 

z = L. t E I. (2.25b) 

There arc diffe rC'nl t echniqucs fo r considcriug these conditions in the nu­

lll<'rical sdi<' tne: lhc interested reader i::; referred to [1]. 

2.2. Network of ID Mod e ls 

Thc nu;cular system is in fad a net work of vessels that branch<'s repeat­

eel ly and a model of just an artery is of li I lie nse. A s imple and e ff"cct i V<' idea 

is to d escribe lh<' network IJ.v 'g luing· tog<'l he r one dimens iona l nlOdcls. Yet. 

\\'(' need to find proper i nl Nface conditions (i.e. mathematicall~· sound and 

cas.\' tot rent JJII!llerically). T he technique may be ad opt ed a lso in the ca.-;c of 

abrupt dtaJJgl'S of vessel characteristics (sec ]20]). 
The flo\\' in a bifurcation is intrinsically three di m ens ional: yet it may st ill 

bt' n •pn's<'nt cd by m eans of a lD model. fo llowi ng a domain dccom posit ion 

a pproach. if on <' is not int C'r<'stC'd in thc flow ddails ins ide tiH' hrauch (sec e.g. 

[12]). Figun• 2 ( left) sho\\'s a model for a bifurcation. \\'e have simpli fied the 

n•al g<'<>lll<'l ric st ruct urc by imposing that the bi furcal ion is local eel exact !~· 

011 Ol H' point and neglecting the effect of the bifurcation angles. An al t c rnat i\'e 

t cell niq ue is reportC'd in j.) 7]. w hNe a scparat e tract cont a ining t h <· branch is 

in trod uccd. 

In order to soi\'C the three problems in nl (ma in branch). n 2 a ucl ~2:! \VC 

uccd to fi ncl appropriate interface condition::;. The hyperbolic nat ur<' of the 

problem tells us tha t wc !teed three conditions. 
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I \ ~ ' :::--> 

11 " 
J I n 

I "\ / 

I + I' (f 
n -~" (f\ 

I I 
I " • (l 

a , 

~ c l.. ye 0 

' 
FIC:l 'HE 2. LPft: One dimcnsionalmodPI of bifurcation by do111ain decomposition 

lPchnique. Rig ht:A :,ketch of a branching. 

\Vc first state the con~ervation of mass across the bifurcation. i .c. 

(2.26) 

\Ve no te that the orientation of the axis in the three branches is such t hat 

a positive va lu e of Q 1 indicates that blood i~ fl owing from the main branch 

nl iut o the ot her two. An energy anal~·s is allows liS to conclude that a proper 

interface condition would entai l the condition PuQr- P1.2Q2 - Pt.:lCh 2 0. 
where P1 := P + l / 2p\u \2 is the total press urr. It i~ expected that the w mplex 

flow in the bifurcation will cause an energy dissipation a nd consequent ly 

a dcc:rcas<' in the total pn•ssun' in the dir<'clion of t he flow field across the 

bifurcation. a nd this loss should be rela ted to the fluid velocity (or flow rate) 

and to the bifurcation angles. A possibility to account for this is to intposc, 

at z = r. tha t 

Pu - sign (ul)ft(ul) = Pu. + s ign (u2)h(fl2 . n.2) . 

Pu- s ign (ilt)fl(ul)- Pt.:l + sign (u:J)h(u:l.n:l), 

(2.27) 

where n-2 and n.:l arc the angles of the branclws n 2 a nd n 3 with rcspcct to 

the main one (~cc Fig. 2 right): ft· hand h a rc sui table positive functions 

and <'qual to zero when thc first a rgument is zero. 

In the nutucrical scheme. (2.26) a nd (2.27) \\·i ll be complemcnt cd by three 

compalibilit.v relation~ (sce Scct . 2.1.1). \.\'e have thus a. non linear system for 

I · k A 11+ 1 Q 11+ 1 · 1 2 3 t l · f I · I~ h' 1 t l(' s1x un nowns ; . ; . 1 = , . . a l 1e 1ntcr ace ocatton , w 1c 1 

can b(' solved by a Newton lllclhocl. 
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2.3 . Modeling of Curved Pipes 

One of the most rckvant assumptions in devising the basic l D model is 

that the axis of t he (cylindrical) vessel is rectilinear. Actually. if we remove 

this hypothesis, it is st ill possible to define a main flow direction in the 

domain. namely the curv il inear abscissa along the axis, and however the 

blo d dynamics in the other d irections is no longer negligible (secondary 

matron zones) : fo r a detailed description of the fluid dynamics in t his case, 

sec l-13]. cvertheless. there ftrc some vesseL which arc cl early curved (aorta. 

femora l ar teries, etc.) . For these vessels . the basic lD model (2.4) can be 

comiclered only as a rough description , possibly introducing a subdivision 

into subscgmcnts sufficienly short to be considered straight and connected 

one to the other wit h a suitable angle -=f. 0 (sec F ig. 3 left) . Alternatively, here 

we would like to briefly acldresii Lhe defini t ion of lD models which arc able to 

accc unt for t he effects of the t ransversal dynamics on t he axial one. having 

the r·ompu lat ional cost of l he ''simple-minded" model (2.4). T he task is not 

cas) . since we want to devise a sort of l D models for the cheap descript ion 

of a gelllrincly 3D dynamics. so we call these models ·'psychologically lD". 
Simplified models fo r curved pipes can be obtained for Slllall curvatures 

of the vessels with a pertur bation analysis of the rect ilinear model (sec [11 ]) . 

z 

, , ~", ,\ A " 
',~ 

I X 
I 

I 

:r 

FJCCHI-: ;t Left: RepresPntation of a curved pipe as a set of straight cylinders. 
Right: Frame of reference for a planar curved pipe. 
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Let us consider the noudimc·nsional parametn: 

(2 .28) 

where Ru, is the vessel radi tis. Re is the cmvatme radius of t he vessel a ... xis 

(Re____. oo in the s traigh t case) and He is the Hcynolds munber of the recti­

linear case. D is called Dean rwmbeT. Simplified mode!H eau be obtaiucd for 

sm a ll \·alucs of t he Dean nu tnber. which are for instance able to CO ITC'CLI~' com­

p ute the stagna tion points of the secondary motion zm1cs. For large values 

of D the ·c models need to be suita l>lv corrected. all(\ the anal.ysis becomes 

by far more difficult: a com plete desnipt ion of t his approach can be found 

iu [cl3J. Chap. 4.. A d ifferent approach that can be considered in the defiu i­

LiOIJ of psychologica lly lD models for cnrvcd pipes relics on the thcoTy of 

Cossrmt curves considered by Green and l aghdi in J21. 22J (sec abo Jl7J). 
If we consider t he refere nce fram e (.!·, .0 . s) of Fig. 3 right. the basic idea of 

the Green a ncl laghdi a pproach is lo represent the vclocitv field u (.l· . .0. s. t) 
with respect a set of shape functions depending onh- on the coordi nates in 

t he uonnal sect ion i' , .Q: 
N 

u (i .. Q. s . t ) = L W 11 (s ,l )<p(.r . .Q). (2.29) 
n-O 

where w 11 arc the coeffic ient s of th e vcloci l.\' profi le. This can ])(' considered as 

a gc11e ral izat ion oft he st raighl vessel case. whNe we sC't for the axial vdoc:ity. 

llz(.r. y. z . I ) = ;p(.r . y )Ti(z, l ) being Ti(z .t ) the average vclocitv and .pp-.. Q) 
a given velocit.v profile. In genera L when a basis functions set is selected. the 

unknowns a rc tlH' coefficients w 71 . that can he w mputed hv solving a suitable 

se t of ecpmt ions derived 1>.\· mass and moment 11111 consctTa t ion principles. 

ln principle. the accurac)' of these models can be t uned b.v dwosiug a s uit ­

a blv large N . i.e . having a basis functions set rich c JJo ugh. However. even fo r 

sm a ll values of N, mat hem atical difficulties of the obtained m odel in1ply high 

numerical costs (sec Jl 71). 

2.3 .1. A curve d pipe model. If we int egrate an~· function .f(.r. y. s. t ) over 

the volunH' of p ipe V(E) . bo11t1ded b.\' t wo normal sections at a d istance E one 

to t he other a ncllet E---'- 0. we get (sec Jl7 J): 

A+c/'2 

l~i) ~ J .If fijf(.r . y. s .t )d.rdyds ~ Jl fijf(.l'. y . fi.l)dnly 

s-E/ '2 S S 
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wlwrc S = S(s, t) is the section norma l to t he vessel ax is ancl .IJj is the 

llldric tensor invariant, accouut ing for the iutegration over a curved axis. In 

particular . for a rect linear pipe g = I. while for a curved vessel in the plane 

(y, s) with a constant curvature radius Re . .IJj = ([; + Rc) j y. A::;sociaLed to 

this integral over the f:iectiou S . we introduce t he following o perator .. : 

Pll (-) = jj fij · cl.i;c(y. P21 ( · ) = jj fij · .1-cL!-rly . P22(-) = jj fij · f.Jd.i-dy. 

s s s 
(2.30) 

Consider now the 3D Navier-Stokes equa tions writ ten wit h respect to 

the reference fran1e (i, y. s) wit h the velocity field represented by (2.29) . Iu 

particular. we assume for the axial velocity 

( 
.i;2 + {;2 ) A A 

u8 = 1 - R2 (a(s. t) + b(s, t)x + c(s. t )y). 

which is a generalizat io n of the classical parabolic profi le (firsL term ) . wh ile 

for the t ra nsversal ve locity components, we sim ply postulate a linear clepeu­

dcucc: u.r- = t}J) R, uy = t}f; / R , where 1] is the wall velocity. The unknowns 

of t he proble m arc therefore Lhe coeff-ic ients a(s, t ), b(s, t) a ud c(s. t) aud the 

vessel radius R (s. t ). A more convenient se t of unknowns is: 

n . 2 
Q :=-Ra. 

2 

For the determinat ion of t hese un knowns we need four equations thcll can 

be obt a i ncd by applying the average operator P11 to the cont iuui ty equa tion 

aud the operators Pu. P 21 a nd P22 to the axial nJomentum cq uat ious. T he 

resulting psychologically lD model reads: 

()A fJQ 
Ut + us = 0 

DQ 1 DC cl D Q2 os H 2 dJA fJA 
Dt + Re Ut+ 3 ds A+ GnU A2 + 2pAo Ds + 

Q 2 1nv G 
nv- + --- = 0 

A Rr A 

{) JJ + 2!!._ HQ+~ H DQ + 24nvH = 0 
ut fJs A 2 A os A 

DC 1 DQA d CQ C DQ /3 DA C , - + ---- + 2--- + -- + ---- + 2 lnv- + vQ = 0 ut Gn R e EJt os A 2A os A 1/ 2 os A 
(2.31) 

\Yl!erc J := !3/(8npAoRc ). f/ := 3v/ Rc . 
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l\ Iore complex model can be devised for inst ance hy assuming a different 

profile for t he tran ·ven;aJ velocity components (sec 1171). 
Iu Fig . .f we illustrate the solution of (2.31 ) at different time steps for 

a curved plana r pipe with Re = 5 cm . G is non null because of the curvature 

of the pipe (ta ken from 117]), while His null since the pipe is planar. 

Ill Fig. 5 t he sol ntion for a pi pc with Re = 1 cm is shown in order to 

out line the asymmetry ou the ax:ial velocity profile incluccd hy t he cm vatme 

(taken from 117]). 

'l . " • . "' 
'o 

"'t 2~~- 1 
"'[ J j I~ j I~ 

' -: •' 0 ' l . ' . " 0 ' " 

~:[ 
r 

~ 
~ T 

J o:r r 
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0 - _....._ _.._ -
00 ~ ' ' l . ' " 0 ' . . •O 

':~ 1 
>r 

1 j or 
,c~ 

0 ' ' . •o 0 ' ' ~ . .. . ' " 

!:~ 
r 

l 
,, 

~-1 • ~ • ; !:be 
0 I 1 l • ~ " :: t 0 ' ' . 
FICI'RE I. Solution (A. Q. 11 . C: r<'~JH'Ctively) at I = fl.0005~ (top. left ). I = 

0.005s (top. right ), I = O.O IO s (botto1n , left ) . I = 0.02:};, (bottom. right ) for thC' 

m octel (2.31). with Re= ;)cm (the pipe length is 5nn). A wan• comes into the 

pipC' at t hP inlet. H is null duP to the symnl('try of the probiPnl (cmved pipe 

in the (J·. 8) plane). C is =I= 0 for the p resence of the c urvatme. Pictures taken 

from ll 71. 

" 
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F ICL' RE 5. Solution in a cmved pipe wit h r?c = J n11 at l = 0.005 s for difl'ercnl 

values of the curv ilinear abscissa s . Representation of Lhc axial velocity profi le 

along .T (continuous line) and fi (dotted line). The asymmetry of the profi le in­
duced by the curvature is evident. Pictures taken from iJ7J. 

2.4. Simple-m inded Mode ls of B lood Solutes D ynam ics 

In hal' lllOdynamics simulat ions i L is sometimes of interest not only t he 

blood dynamics, but also the dynami cs of solutes (oxygen. lipirls. etc.) which 

arc couYectcd by the blood Lo t he tissues and peripheral organs (see e.g. 

151. 52 . G91). In the pnspective of set ting up a multiscale model for the cir­

culation . we therefore need some s implified models a lso for the blood solutes. 

Suppose that t he solute concentrat ion r (x. t) fulfills a (linear ) aclvect ion­

diffusion equat ion in the fo rm 

a, at - pt::., + u . v1 = o 

Ill the domain n l ( u is the blood vcloci ty) . together with a sui table ini tia l 

condition r(x.O) = ro(x ). A Dirichlet condition 1 = lext can be given on 
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the vascular wall 1121 or 111on' r<:'alistic-ally a Robin c-ondition ;t\11 · n = 

n hext -1) (n unit outwmd nortnal wct or. IG71 ) . B.v proc-r<:'ding in a way 

similar to the one adopted for t he :.JaYier-Stokes equat ions. it is possible to 

deduce a ··simpl<:'-mindcc l"" lllodcl for the blood solute d_,·naJnics (s<'<' I 1:2. 671). 
:\lore prrcisel~·- let r =A, be the lmear COW!'llfmtion. I t is possibll' to dedUC'(' 

for fin a c-ylindrical straig ht \'essel with ;; E (0./) the ID equat ion : 

(2 .:32) 

to lw colnplct cd with su itable boundary condition . Herr. {\.c is a cocfficieut 

depending on the ,·iscosity I' a nd the conccnt rat ion profile O\'er the transver­

sal ·cction and uJ dcpcucls ou the axial blood velocit.\'. Equal ion (2.:32 ) can 

be t lwrdorc coupled to (2.1 1) for a mod<:'l of the blood a nd solutes dynam­

ics. For instauce. in Fig. G (tah'n fro111 1671) the concc'nlratiou a t a gi ,·cn 

instant of the s imula tion is s hown in a bifurcation in the neighborhoocl o f 

the bifurcation tip. 

/ 
Time • 0 .600000 • 

11: 10 ' 

" ~ 
-5 

" 
·10· 

''l -10 

·25 . . . 
0 10 20 30 44) 30 

Fl<:tltl (i. CoJH'<•ntration of a blood solutt• t'OIIIplllt'd \\·ith tlw ID 111od<>l (:.2.:3:2) 
cmt plPd \\'i 1 h 11) blood How 111odt•l (:.2. 11 ) (s1nall pi <'I 1m• 011 t lw !Pft) in a bifurcation 

gcou1l'l r_\'. Pi et llr<' tak<'ll fro111 l!ill 
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3. Lumped Parameters Models for the Circulation 

r-- Iany biological sysl <' llls feat urc eo Ill plex mechanisms gi\'ell by the in­

teraction of elementary component s . A possible' and efl'ccli\'e description of 

s uch syst ems is based on the identification of these elementary compone nts, 

often called co111partmcnts (see e.g. [9]) and their mutual interact ion. In the 

case of cardiovascular modeling , we cou ld say that a compo 1'1 men/ is a pm·t 

of the system which is reasonable to consideT as a whole. acconling to th e 

needed (u·r·zu·acy in the deso·iption of circulation. The bchauzoT of the blood 

in a compartment is described m terms of quantities (lypimlly the flow mle 

and pTes:;aTe) ··averaged" (in space} over the whole r·omparlmenl. T he m at h­

('matic~-tl desniplion of this system can be therefore provided by: 

l. the description of each compartment: 

2. tile description of the interactions <UllO IIg t he compa rtments. 

T he number of the compartment s in \'olved dc pencls on tlw le\'('1 of accuracy 

requested to t he model. For instance. if oue wants to invest igate heart failurcs 

wit ll l hc purpose of increal')ing the cardiac funct io n without a significant (and 

d a ngerous) incre ment of the s,vstolic pressure, a two-compartments ckscrip­

t ion of the cardiovascula r sysl cm can lw cnoi i!!,h . feat uri np, the left ventricle 

a nd tiH' systemic circulation respectively (sec 13 '1. Chap. 1:3). The 'vi'mdke.~sel 

<U 1d Wr si kl'sscl Inodels arc ini')tanccs of l wo-com partnwnts nwdcl (t he heart 

and the wtsc·1 dar syste1n ), t hc la tter featuring a more pn•cisc dcsniption of 

t h(' n tscular compartment. !\ lore colllplcx examples can lw found in 1271. 
C hap. G. and 120]. Chap. 11. where an accurat c scnsit i,·i ty a nalysis of the pa­

rameters of a fom-compartnwnts clesnipt ion of the cardio\'ascular system is 

carricd out. Other references arc [30] and IGGj. A recent cl cri vat ion of lumped 

parameter mod els based o n l he La placc transform ation can be found in I.J J j. 
Lumped parameters mod els that we a rc• going to introducc in v iew of mul­

tiscalc mockling are. in fact. compartmen ts models which can be described 

b.v follo\\·i ng the two steps ment ioncd aboYe. In particular wc will firs t 1,\' in­

troducc lumped parameters models (Sec. :3. J and 3.2) for a s imple compliant 

cylindrical ' 'esse! and for t lw hntrt. Then iu 'cct. 3.3. we will consider thc 

assembly o f llloclcls for the whole ci rculatio n. 
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3 .1. Lumped Paramet er Models for a Cylindrical C omplia nt Vessel 

Let us consider again the simple cylindrical artery D il l1tstrated in Fig. J. 

Starting from equations (2. 11), we observe that 

and we will assume 

In the seque l, we wi 11 set 

DA = 21rRd11 ~ 21rR i.ht_ 
81 dt 0 Dt 

DA 31rR6 8P 
Dt 2Eh ut. 

31fR:3 
k, := __ 0 

2Eh 
In order to p rov ide <t lu mped descripti on of the behavior of t he blood 

Ill t he whole district Sl we need to pcrfor!ll a further <\\'C'raging of (2.11 ) 

over th<' axial coordinate. To this a im. it is useful to introduce t he fo llowi ng 

notation . \ \ 'e define as th e (volumetrir) mean flow mte oueT lit(> whole dtsfricl 

the quant ity 

I I 

Q =} / uzdt• = ~ / / Uzd(nl:.: =} / Qdz . (3. J) 

V 0 A (z) 0 

Simila rly, we define the mean pressnre 07/C T the whole compartment Hs 

I 

fj =} / Pdz . (3.2) 

() 

Integrat ing over the axia l coordinate, and assuming t lta t (s<'c 131): 

l. the contribution of the com·cctiw tcrllls may be neglec ted, 

2. the variation of A wit h respect to ;:; is small compared to that of P and 

Q. 

we obtain t he equations: 

(3.:3) 

and 

(3 . ..!) 
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Q, (L) := Q (t ,O), 

Q2(t) := Q (t, l )) 

Pt(L) :=P (t,O ) . 

P2(t) :=P (t.l ) . 
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(3.5) 

These equa tions represent a lumped parameters description of the blood 

flow in the compliant cylindrical vessel n. and involve the meau values of 

th e now rate and the pressure over the domain, as well as the upstream 

and downstream flow rate and pressure values. The coefficients in equations 

(3.3) , (JA) have been obtained from the integration procc. s. They arc in fact 

t he lumped parameters which summarize the basic geometrical and physical 

features of the dynamic system formed by t he blood flow and the vessel wall. 

Let us t ry to summari:w the ir meaning. 

R In (3.4) we set R := (pKRl )/(A6) - If we assume a parabolic velocity we 
have 

R _ 8npvl _ 8J-Ll 
- n 2 R4 - n R4 ' 

0 0 

where R represents the resistance induced to the flow by the blood 
viscosity. Different expressions for R can be obviously obtained for dif­

fe reut velocity profi les or if a non Ncwtonian rheology is int roduced 

into t he model (see e.g. [3. 53. 6'-l.]) . 

L Tn (3.4) we set L := (pl )/(Ao) = (pl)/(nR5)- L represents the inertial term 
in the momentum conservation law and will be called the inductance 

of the flow. 

C In (3 .3) we set C := k 1l = (3nRgl )/(2Eh ). C repm-;ents the coefficient 

of the mass storage term in the mass conservation law. due to the 

compliance of the vcss0l. 

\iVith this notation , equations (3.3), (3.4) becomes 

(3.6) 

No\\'. assume tha t some npstream ancl dow nstream data a re available. For 

inslaucc. suppose tha t Q 1 and P2 ar-e given. Then. (3 .6) represent , a ·ystcm 

of two cq ua tious for four unknowns, Q. p. P 1 and Q 2 . In order lo clo e 

mathematically the problem we n0cd some further assumptions. In particular , 

the dynamics of the system is rcprC'sentcd by p and Q, i.e. by t he unknowns 

tha t arc under time derivative (the state variables), o it is reasonable to 
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approxi mate the unknowns on the upstream and downstream secLions with 

the s tate variables . that is 

With these additional assUJ nptions . which a rc reasona ble for a short cylin­

drica l pipe. t he lumped parameters model becomes: 

(3.7) 

where the upstream and downstream prescribed data have been plugged into 

the right hand side. This system eau be illustrated by Lhe electric £-network 

sltown in Fig,. 7 (lcfl ) . The compliance has been gathered on section r, . where 

t he How rate is prescribed. and the inertia l effects have bceu allocated on r2. 
where t he mean pressure is provided . 

Q, Q, 

~cc~~r~(~F 
FlC:l ' RE 7. LttltlJWd £-network (kft) a nd L-invcrtrd nrtwork (rig ht ) rq uivaiC'nl 

Lo a short pipe 

In l he elect ric net work ana logy. the blood How rate is m;sim ilatcd to the 

current. while the blood pressure corresponds to t he voltage (sec Tab. I). 
Iu a similar Wi:l,\'. i r (he press m <' pj an cl the flow rate Q'2 arc prescribed. we 

st ill approximate the unknown quantities on the upstream and dowusl rcalll 

T\BLE l. CorrPspond<'llC'<' table of Lit{' analogy bPtwccn electric and lt.vdraulic 

nNworks. 

Il YDIL·\ l ' LIC ELECTWC 

Pressu re Voltage 

Flow rate Current 

l31ood v iscosity H.Psistance H 

Blood inNtia l nductancc L 

\\'all compliancE' Caprtc it ancp (' 
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sections with the s tate variables. i.e. fj ~ P2 . Q ~ Ql· yie lding the sys tem 

whose elec tric analog, called £ - invert ed ncLwork, is given in Fig . 7. r ight. 

The case when t he n1ean pressures P, a nd P2 are prescribed. can be mod­

l'llcd by a cascade connect ion o f £ and £ -inverted ltimJw cl representat ions, 

~· i elcling a T -net work (Fig . ) . Simila rly. if both the Row ra tes Q1 and Q2 a rc 

prescribed. the the vessel n is described by the electric 1r-network. obt a ined 

as a cascade connect io n of a £-network and a £ -inverted network (Fig . 9). 

F IC:I"RE . Cascade conn<'ction of a C-inverted a nd a £ -network (left) . lumped 

T-n<'twork (right ) . 

I·'Ict· ru-; D. Cascade conn<'c t ion o f a £-net work a nd a .C- invcr tccl one (lPfl) . ltunp(•d 
rr-nPtwork (right). 

Let us obsNve tha t the four different circnits a rise from four different 

possi blc assu tn pt ions a bout t he kind o f da ta prescribed on l he upstream 

a nd downstream sectio ns . \ \ ' ith a little a buse o f nota tion \\'('could call them 

'" bounda ry data·· 1). T he four cl i fferent lmn JWd 111odcls eau be considered there­

fore as l he ltllll peel pa ra met ('t"S si Ill p[i fie at ion of four d i ff"e rcnt ··bounda ry .. 

values prohi<'IllS. 

F ina lly observe Lha L son1c o f the simplify ing assumptions introduced can 

lw retno,·cd (or reduced) b,\' mod ify ing tlw net work: for more detail.. sec 131. 

11 Actuall.v, in the simplificat ion l<•ad ing to lumped parameters Jnod(•b t he dependence 

on t hP spac<' variables has bccn lost in t he average's, so there is no ··boundary" of t hc 

domai n. 
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3.2. Lumped Parameters Models fo r t h e Heart 

Tll<' heart is a special "coJnpartuJcllt .. o f the vasc ular syst cm tha t need 

a specific representation in t lw lum pcd panu net ers fnuuc,,·ork. The st ructure 

of the heart a nd its relationship \Yith its fu nctionali ty an' not completcl~· 

undNst ood and recent investigations show that the \'Cill ric1dar lllYocardinm 

eau lH' llll\\'rHpped b)· blunt d isscctiou int o o slllfJ[e rontmuous nwscl£' hand 

(s<'<' JS9J). This could lllOdify the accural<' mathcmatical lllodcl ing as well 

as m cclicnl in,·<·s t igations and s urg ical int <'rwnt ious o n the heart . For the 

purpose of t hesc notes. ho\\·t' \'('r. we s imply refer to a classical description 

of the lH·art . ,,·hich is s ubdiv ided into t\\'O parts. called to the right a nd the 

left heart. r<'sp<•din·ly. S('P<lra l<'d by the .'ii'J!IIIIII. The right heart supplies the 

pulmowuy c irculation. \\'bile the left JHllllps the blood into t lw systemic tree. 

Each side consis ts of t\\·o chanlbc'rs. the atrium and the H'lltride. S<'pratcd 

h~· the a t rim·<·nt ricular \'aln•s (the tricusptd \ 'a lw in t h<' right side. the 111ilml 

\·aln' in t l1c ld't onc). Their role is to ren·in' fh1id at low pressme a nd tnlllsfN 

it to a higher pn•ssun' region. In other \\'Ords. each side acts as a pump (sec 

J:21J ). Each \ '('Utricle eau be desni bed as o 1'1 ss1·/ li'herr the nwst siq111.fir·anl 

fmlurc i.'i thr r·o1nplianct and the r·mnplionn chong(s u•tlh l11nt (sec [10. 27. 
•)rl ,. -I ) ~:J .. ).) . 

The star!inp, point for a possible m at h <'nlat icalntod<'l is the relation that 

lin ks pr<'SSUH' a nd radius of il U c•Jast ic sp]wriud ball filled \\·it h fluid. f fer(' 

a nd in the fo llowing we take P,·xt - 0. \\'e hm·<' 

·> , R l?o 
11R- 1' - 2iiEhol?---

Ho 

\\'hen' 1?0 is the referc'llC'(' s pltcn' rad i1ts. which is the one rcached \\·he'll P 0. 

ho a refe lT IH '<' t hickncss of the hall smface ;uHl E the Young tnodnlns. The 

coni ract ion of tlw cardiac ntusdc' may b<' takeu iuto accoun t h.Y an iun<'<u.;e of 

E (stif l'Pililtp,) nnd h.' · a shorteninp, of th(' tnusclc' lenp,th (that is a reduction of 

1?0 ). It is lllOl'C' C'Oil\'C'Ili<•nt to <'XprC'ss this relation as a function of the , ·olunH' 

1·. instead of th<' radius. B~· recall ing that \ ' - -l ii /{1 j:~. a liuearisation 

proc<'d lll'<' leads to 

,,·hc' tT \\Than' indicated the coeffic ients tl111t cha nge in tilltt' lwcn nse of the 

act ion o f the tnusclc. This s i 111 pi ified mod <•] ci<H'S indeed clesni I H' t he tnajor 
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ch mac:tcristic: of the ventricle. If we indicate 

'l c ( t) = 2n R0 (t) . 
E(l)ho 

we may re-write the re lation iu the more compact form 

V(t) = C(t)P(t) + VC>(t). 

By deriving with respect to t im e we obtain 

d\1 = Q = dC p + CdP + 1\I . (t) 
dt dt dt Q 

(3.8) 

where Q repr<>scnts the ( incoming) flow rate ancl J'.IQ = dVo/dt is the action 

exerted by t he contraction of the card iac musc le. 

A lunqwcl represent at ion (electric analog) of each ventricle2) is given in 

Fig. 10. whe re R accounts for au additional viscous resistance inside the vcu­

lriclc. whose re levance has been recently pointed out by 1581 and iU Q is 

represented by a generator of cu rrent. 

F!C:I'HE 10. :\'('(work for the lumped param<'terii tuodelinp, of a n•ntrid<•. 

In Fig. 10 the prcsc'ncc' of heart Yakcs has hccu taken iuto account by 
diodr·s which allow the current flow itt one direction mlly:l) OIJsern• t hat the 

presence of the valves mlroducrs a no11li11ear nlation itt the lumped panlm­

ct <'rs tnodc l. 

2
) ;\ nH'rhaniral r<'pr<'S<'ntai ion of t lw lwari working baM•d on t hP el<l.~iiical 11 ill"s modf'l 

for i hP mu:-.rlf' can hf' fouud in 1:~01 and IGGI. St'<' abo 121 
:J)Tht• sa rm· n•ptT,.,l' lll al ion <'a ll llt' us<•d also for tht' ,·alves iu the vellous ii.\·slf'lll. \\'hl'lll'\'t' r 

IICt'decl. 
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3.3. Lumped Paramet ers Models for the C irculatory System 

T he compartments previously described arc the elementary brick~ for 

building models for the whole system. As previously pointed out, t he num­

ber of compartme11 ts depends on the accuracy requested to t l1E' model and. 

defi ni tely. on the number of vessels that it is worthwhile to represent sepa­

rately as single 11nits. 

T he connection among t he compartments is clriYen by jtu:c and momen­

tum conser"Vation at the interfaces. As a direct consequence of Lhc electric 

a nalogy t he quant it ies t hat arc mat ched arc Q and the pressure P . There 

is a difference in this respect to the coupling of l D models (see Sect 2.2) , 

where lhe total pressure is considered. This choice is indeed consistent with 

the hypot hesis of negligible convective term~ . 

I11 the elccLric: analog . Lhese relat ion:-> c:orre~poncl to t he appl icat ion of 

the classical Kir-chhoff laws for the nodes ( conscrvat iou of currcnL) and the 

uct~ (conservation of t he voltage). An sketch of the possible conncctiou of 

different compartments is given in F ig. 11. 

S1 S2 

R 11 L 11 R 12 L 12 R2 L2 
...Af"vl~li~(Y> 

c,T T c2, c2T 

F ict ·nE 11. L iilllfJPd parametcrs 1nodcl for a branched vessel as a cascade ofT 

and rr nct works. 

A detailed elect ric analog for the circulatio11 is proYiclcd in [G..tl a.nd in 

1-I.Oj. where hundreds of elementary compart ments arc accounted for. 

From the ma themat ica l viewpoint, a general representation of lumped 

parameters models is a Diffcrential-Aigebraic-Equatiom; (DAE) systetn in 
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{ 

dy = B (y.z.l ) t E (O, T ] 
dl 

G(y. z ) = 0 
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(3 .9) 

together wit h the initial condi tion uectm· Ylt=to = YO· Here, y i t he vector the 

sta te variables (as,·ociated to capacitors a nd ind ucton;). z a rc other varia bles 

of t he network and G the algebraic equations that derive from t he Kirchhoff 

laws. ][ \VC suppose t hat t he J acobian ma l rix J := ac I f)z is non ·iugula r4 l. 

by the implicit function theorem we can express z as funct ion of y and resor t 

to the reduced Cauchy problem 

dy - = <P (y , t ) = A (y.l )y + r (l ) I E (0 . T ]. 
dt 

y = YO· al I = t0 . 

(3 .10) 

T he time dependence of matrix A is due to the heart action and is rela ted to 

the variable ventricles complia nces, whi le the dependence of A on y is due 

to the presence of dio lcs (non linear term ). T he forcing tern1 r clep nds ou 

I l hrough the function J\IQ(t ). 
Prom classical results of calculus. it is possible to prove Lhat (a) if <P (y , t ) 

is continuosl.v d ifferentia ble t here exists a time interval [0. T *] in which t he 

solution of the problem exists a nd is unique: (b ) if. moreover. t he d eriva ti ves 

iJ<P,j uy1 a rc bounded in all the time inte rval [0, T ]. then t he ·olution of t he 

Cauchy problem exists and is unique in [0. T ]. 

In the sequel. we will suppos<' tha t t he previous hypotheses a rc verified. 

Prom the numerical point of ,·iew, the non! i near ordina ry cl ifl'en •nt ia l sys­

tem (:3.10) can be sol ved by means of cla.'isical methods . For tb iti reaHon we 

do uot d well here with the lllll1H'rical solving of lumped paramct0r lllodcls 

a ncl refN t he interested render to e.g. I,J71. 

4 . B as ic N u merical Issues for M ult iscale Modeling 

Our goal is now to investigate specific problems a rising from the ma t h­

cmat ical a nd numerical coupling of d ifferent model · fo r blood flow. ranging 

from t he Naxier-Stokcs equ al ions clown to lumped pa ra meters Inodcls. In 

part i('ul a r, \\'e will haw to ma nage the interfaces between models featuring 

a different kw! of detail. It is to b0 expected tha t the more acc urate (point­

wis<') model would need on the interfaces more data than t he m0an niodels 

I ) In t his ca.o.;e, l hc DAE s~·slt'111 is said lo ])(' of inrlc:r /. 
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could gin•. being by far less accurate. Tlw dnta rcfl'ITed to the simple-minded 

suhmodel are indrrd a spatial <Wrragr of the pointwise quantities which arc. 

0 11 the o t lwr side. C<lllsidered IJ,· t lw accurate local s1dnnodel awl that wou ld 

I)(' needed ou the interfac<'s in order to make it wC'll posed the :\faYirr-Stokrs 

bounclarv problem . \\'c h ave. t hcrcforc. the probklll of giving n m·ll posed for-

111UIC1tion oft hr local subproblC'm . fill ing up th0 dd0ctive data s0t provided by 

t lw twlucrd sulm1o<IC'ls. Th0 main concern of nmltiscale modding is to carrv 

o n t t h is eo m p lct ion m inim izing. as far as possi hie. the per t urbal ions on the 

nmnerical solution. For example. if the flow rate (mean ualue) is known Oil 

the upstream section of a ntscular district. there arc many Yelocit_v profiles 

(poinlll'ise 1•rducs) on t hat sC'clion that can bC' associated to such mean data 

and. therefore. call be prescribed tu the Na,·ier-Stokcs problem. l lmn•,·er. the 

choice of a speci fic profik wi 11 st rongl_,. infhwnce (or perturb) the uumcrical 

solution in a non-controlled \\'a\·. The present Sec-tion illustralt's some tech­

niques for avoiding t he prescription of a ,·clocity profile and . in general. for 

red ucing pcrturl>at ions on t hC' numerical sol ut ion when soh·ing ;3D problems 

wit h m•cmgc (dcfcctiw) boti iHinry dHL·l. 

4. 1. D efective B oundary Data Problems 

For the sakt• of clarit~·. let us pro,·idv a general slat emcnt of cldcct ivc 

hoti!Hlary data problems. Let 0 be a bonudcd domain of IR" , d = 2 or 3. 

w!Jose boundar~· Jn is dcCOlllpOsed into the Ill! iOn of fwa ll Hltd S('\'('ral disjoint 

sect ions l'0 . T' 1 ••.•• I' 11 • 11 2: l (sec Fig.l2). 

r, 

Ftc:nn-: 1:2. Th<' partition of th<' houudar.\' of thl' d01naiu 0. 
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For t he sa ke o f s implicit y. we suppose tha t thr d oma in is ri p,icl. so tha t 

W (' Hre iutNestcd in solving the Navicr-S tokcs equa tio ns in n: 
u 

f. ()t u + u · V'u + V'p - v -0. u - t > O 

div(u ) 0. 1 > 0 (-l .l ) 
u U () . t = 0. 

u 0 X E f wall· 

T \\'o difl'N('nt kinds of boundary conditio ns a rc of some intnest 111 t he mul­

t iscak coupli11g a ud will be considered o u till' sections C. i = 0 . .. .. n. 

The first conditiou refers to t hr mmn r>ressw ·e pmblc111. which requi res 

tha t 
l ; · 

(
,) prl.'i = PJ t ). 

mcas l , 
i = 0, . . . . /1 . (·1. 2) 

I ' 

T he second condit ion we address is the' f low m ic p1'0blcm 

j u · u ds = Q;(t ). fo r i -= 0 .. .... n . 

['' 

ObsN n' that. due to the fluid incom pressibility a nd t lw rig idity o f t he wa ll. 

a com patibili ty re la tion mus t ex is t a mong the fluxcs Q,. II HIIIelv: 

Qo + Q, + ... + Q,= O. 

The iuit ia l-ho undat)' va lue' proble m ( 1. 1) \\'ith eit her ( 1.2) or ( 1.:3) is 

not wdl-posed fro m a In a t hem at ical point of v ie\\· d ue to t he a\'C' rage ( 11011-

poi nt wise) 11at 1m' of t he boundary d a ta on the a rtificia l hou11da r ies (sec IGll ). 
,\possible \\'a.\· for complet ing the lacktwss o f d a t a is t he (Hie proposed in 

I2GI. Follo\\' ing t his a pproach. H par t icular uwak or uoriat ionol fonnula lwn 

of the boundary pmblcm is d c' \' iscd which a liO\\'!:i to ful fi ll cond itions (-!.2) 

( resp . ( 1. :~)) a t som e exte nt . 1-!,i Yill !!, r ise to a \\·ell-posccl prohl c'm . In fac t . this 

form ul a t ion forc('S in a u im p licit \\'a)· some natural (l\etllllHIII I-l ikc) bou nd­

nry conditions \\'hich select s on(' pa rticula r sol u t io n among a ll the possible' 

<H ies of t h<' o rig ina l diffncutial pro blem . Tlw complet it ion of t ile ddcct iYe 

bound ary d a ta sC't is essent ia ll.\' a n implicit b.v-product of t he cho icc o ft he 

sui table , ·nr iational formu la tion . \\' hich is based on a na tura l sC'I o f houndar.\' 

condit ions. less pert urba t i\'C' t ha n c'sS<'llt ia l (Di richlct) ones. 

TII is <1 ppro<H'h is re all~· effec t ivc for tlw numerical solution of the mean 

pn'ssnn' drop prohlc'nl (sec IGll) . In soh·ing the flo\\' ra tr proble m. it is not 
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straightfo rward for wha t concerns t he selection o f an a ppropriate fi nite d i­

tlt('lls io nal space fo r the s pace discrctization . Here . we will address t herefore 

a rC' formula tion of t he fiow rat e p robl<'nt pro posed in 1161. mo re su itable for 

t he numerical purposes . 

4.1.1. A Lagrange multiplie r a pproach for flow r a te bounda ry con­

ditions. Cons ider t he ini tial-boundary va lues problem given by ( 4.1 ) a nd 

the net flux condit ions ( 1.3). We assuutc tha t tbc compa t ib ilit .v condition 

(-1.<-1 ) is fulfilled. 

R.nt hcr tha n (dcfccliv<') bounda ry condi t ions . (-1.3) can be regarded aH 

a SC't o f ronstmints fo r t he solutio n o f the problem a t hand. Sta rting from 

this v iewpoiut. a possi bk w::~y for forcing such constrain ts resorts to t he 

Lap,ra ngc mult iplier approach. Accord iug to this strategy. the equa tio ns to 

be soh ·ed a rc penalized by the prcsenn' of the co nst ra in t. we ight C'd by sui table 

(unknown) coeffi c ients . t he Lagra tt!?,t' m ultiplie rs5) The or igina l problew is 

thcrC' fo r<' reformula t ed iu an auy111 C11ird fashion. d ue to t hC' prc•scncc of the 

multipliers (sec e .g . 1231). 
In the present casC' . t his Ftppronch kn.cls to t he following vari a t ion a! pro b­

lem : look for u E V . p E 11 / a nd )q ..... A11 E IR such t ha t. for a ll v E V and 

q E M. 

(
) ) 11 J ~I u + u · V'u . v + 1/ (V'u . V'v ) + L A1 v · n - (p. di v (v )) - (f . v ) . 

I= I 1' , 

(q.diY (u )) = 0. 

i = 0 . . . . '11. 

for nil I > 0. ,,·ith u = u o fort -= 0. 

T it(' tnal !tcttta lical a na lys is oft h i~ prol)('m (its equin 1lcuce to lite mea n 

flu x p roblem sta ted a bow' a nd it:-; \\'e ll-poscdncss) can be found in llGI a nd IG21 . 
In order to d iscrcti z<' C'qna t ion ( J. G). WC' int roduce a Galcrk in a pproxima­

tio n l>a~cd on the fin ite dimensiona l spaces 1/1 C F a nd .lh C Jl. \Yhich wc 

assutlt (' to ~at is f,,· t hc ,,·c ll-kno\\'n LBI3 conditio n (sec c.g l-1 1- C ha p . 9.): 

"-l \ \ 'p rPtni nd t ha t in t he s<une J)('r;,p(•('(ivl', t h e• p r essure of tlH' incoutp r<'ssib l<' :\lav ic r­

Stok<'S <·qua l ions can he regarc! C'd Rs l hf' Lagmngf' m ultiplier of t he incompressib ility 

c·o n;,lrain l s<' <' e.g. 1181. 
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Let (uh . Ph· AJh· .... Anh) be the solution of the d iscrete problem. We denote 

by (u;);= t.df\' (rcsp. (p;);=t.M) thc componcntsofu, (rcsp. Ph) with respect 

to a basis {vi} of Vh (resp. {q;} of llh )- F inally. we introduce the vectors U = 

(uJ, .... LLdN) E JRdN _ P = (PL·· ··PAt ) E lRJ\1 and A = (AJfl, . . . , Anh) E lRn . 

T hen the discrete counterpart of (4.5) gives rise to the following algebraic 

system of equations 

{ 

AU + DT p + <!>T A = F. 

DU = 0, 
q) u = Q. 

(4 .7) 

where A E JRdN x dN is the stiffness matrix. D E JRJ\I x dN is the matrix associ­

a ted to the clivergc'nce operator and <I? is the n x dN matrix whose lines arc 

given by the vectors cpi = Ur, v1 · n ds , ... , fri v d N · ncls), i = 1. .. .. n. 
It is possible to prove that this system is uon singular, 1161. However, this 

system is not a classical avier-Stokes problem. so its numerical e lution 

should require the set up of an ·'ad hoc'· solver. On the other hand , there i 

no llttrncrical convenience in sctLing up a solver computing simultaneously U, 

P and A. since the matrix associated to system ( 4. 7) is supposed to be very 

ill conditioned in real applications. Therefore, as for the standard avicr­

Stokcs problem (sec I.J81)- it is worthwhile to resort to spli tting methods 

which reduce the problem to a series of smaller and easier to solve steps. 

This can be done in difFerent ways (sec IG2j). Here we illustrate a stra,tegy 

that has t he advantage of sepa rating the fluid (velocity and pressure) from 

I he nntltiplicrs contputalio n. ln tllis way. if a av ier-Stokcs solver is available 

(ror instauce a commercial package), it can be actually adopted for solving 

llw augnJcnlccl problem. 

v\'e rcwrit·e (4.7) in the form 

(.f. ) 

where (j) = [<!? , 0] E JR1l X( dN+J\/ ) . X = [U, P]T. G = [F, o]T The ma trix s 
corresponds to the disc reli~ation of the Navicr-Stokes problem with Neumann 

conditions on the boundaries where the net ftuxcs arc prescribed. If the two 

discrete spaces \111 and .llh satis fy the LBB condit ion (4.6), S is non singular 

(sec. e.g. [8, cl 1). \\'e can then eliminate the unknO\m X from (4. ), obtaining 

a s~·stcm for the Lagrangc multiplier: 

(4.9) 
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This s., ·s tcm can be solved by an appropriate iteratiw met hod. For instance. 

if' we dcnotc R := <T>s- '<f>T and b := <T>s-'C- Q. we could resort to t he 

clas::;ical preconditioned Gl\!Res sche tnetil (sec e.g. j5.Jj ). In particular. this 

requires to solve a Navicr-Stokes proble m at each itcra tion and t his can be 

carried out b~· means of a standard soh·cr. This could scetn quite expensive. 

However. the llla.trix R is usua.llv sma ll. bei ng its dimension equa l to the 

tttunber of artific ia l boundaries. so the number of ite rations required will b e 

accordingly sm all . 1\ Ioreovcr , the computa.t ion al efficiency can he improved by 

fi11cling good prcconditioners of 1?. Othe r approaches rely on finding suitable 

a pproximations for system (-1.7) chea per to solve (sec e .g . j63j ). 

4. 1.2. Numerical results. In order to assess t he proposed met hodologies, 

we consider a case ,,·here the anah·tical solu t ion of the av ic r-Stokes equ a­

tion::; is kllO\\'ll. l\ Iorc prec isely. we consiclcr the Wom eTsley solution . which 

describes the transicnt flow in a cylindrical pipe associated to a time-periodic 

press m e gradie nt (sC'C e .g . j38i). As snch . it is a transient cott ntcrpart oft he 

\\'<'11 known Poiscuil!C' solntion. 

\Vc have col!s idcrccl a st raight cylinder. itnposi ttg homogeneo us Ncum a nn 

bouudcu\' condit io ns a t the in flow. whilc at thc outflow wc prescr ibe the 

flow rate associated to lite \Votllc rsky solution. Tit<' result s a rc shown in 

F'i?, 13. IIcrc. the comput ed vclocit:v field at tvvo different t imes is illustrated, 

together vvitb the corresponding exact axial velocity pro file . T lw soltttion 

obt a i ncd agr<'cs very well wit !1 t hc analyt ica I on c. A s ingle coud i t ion on Lhc 

flow rate at tltc outflow. iutposed throttp,lt a Lag ra np,c tnt dtip licr. is s ufficient 

to nTO\'t•r the \\'o mcrslcy flow. Jt is wort ltwltil<• o utl ining t!t a t the lVomrrsley 

pm.filc is on outcome of the C0111]Jll lation. it has no/ been fon·ed anyway. Otlter 

ana lytical tests can lw found in jG2j. 
In Fig. 11 we report the soluti on of the net flux problem obtai ned by 

solving a stead,\· flow rate problem wi th the Lap,rauge multiplie r approach i11 

a rcal gcomctry of the total cavopulmonar~· co11ncction . The solutio n has been 

obta ined ,,·ith a comHtcrcial soh·cr (Flueut) . Again . ,,.<' p oint ou t that t hc 

veloci t.'' profi lcs a rc not prcscrihcd but l hcy arc a n o ut comc of the numerical 

simulation . 

b)In th<' caSl' of a Stokes probl<'nl. R is synuuct ric and positi ve definite, so t he Conjugate 

Gradient tnethod can be adopted. 
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F tC:l ' HE 13. 31) numerical sol utions obtained at two difl'crcnt instants imposing 

a jll'riodic nux. The continuous line is th(• nttmcrical solu tion. tile dottPd lim• is 

thP analytical one. 

Ft(:t ltE 11. Cave-pulmonary contH'clion: wlocity field computed with thP La­

grangiHn multiplier approach. Sintulations carried out with a commercial solver 

(Fi u('llt). 
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5 . Multiscale Models 

Ilaviug dt'wlopcd t C'chn i(jues fo r m a uag ing local 3D prob le tns with mea n 

boundary data in a nume rically sound way. we a re now in posit ion of de­

scribing complete geom etrical tnultisca le m odrls. bot h from a mat hema t ical 

and numnical vie\\'po ints. \\'C' \\'ill s t a rt considering a 3D a nd a OD m od e l. 

d iscussing its \\'ell p osed n('ss a nd n unwrical llle t llods fo r the coupliug . The u , 

we >vill address numerica l m C't hods fo r 3D-ID coupling (Sect. G.2 ) . W(' w il l 

fina lly considN the coupling of lD a nd OD 1110d C'Is . 

Numerical results of m edical int e rC's t a rC' presented in Sect. G. 

5 .1. Coupling 3D and OD Models 

\\'e wish to rep rC'sC'nt t he whole circulatory sys tcn 1 by a n c kctric c ircu it 

excep t on a specific region n. where b lood flow is m odclkd by t he Navie r­

St okcs equa l ions . as illustra ted in in F ig. I 5. II C're. the con1plia ncc of th C' local 

va,.;ettla r dis trict is neglec ted fo r the sakt' of s itll p i ic i ty. he nce n is constant 

in t ime. Let us assume tha t the network fa ces t he dist rict n by capac itors C; 

(i = 1 . . . .. IT) as show n in the picture. In particula r. WC' put in evidence th e 

represent a t io n in te rm s or a net wo rk of the vascular regions in the immcdi­

a t C' neighborhood of t he 3D m odel. In jGOj we ban' ex! en si vC'Iy i nve tigatccl 

t his p robkn1. In pa rtic ula r t llC'sc pa r ts of the lumped ne t work have bC'en 

called the bridging region~. Ju t lt i!-i pict ure . we' have thrC'e bridg ing regio ns 

correspond ing to the thre<' in flow outflow of n. We a rc csse'ut ia lly cou pling 

a lumped represeut a tio n of I he c ircu la tion \\' it h t he mean prC'ssnrc p roblcn 1 

fo r the axic r- tokes equa tions. T he bo unda r.\· n le'<lll p ressures arc no t g i,·c n . 

but arc s tate variab les oft IH' lu111pcd mode l to be computed . Th C' hctcroge­

ueous m u lt iscalc probl C'm is thncfore g iven by coupl ing s u bproblem s t hat 

ca n be p rovC'd to be separa tely \\'e ll posed . l t is reasona ble' to exp ect t h at t lw 

g lo ba l tnul t iscalc mode l is \\'e ll p osC'd . This WC'Il p osed ttess has bC'cn proved 

in j50j s tarting from classical fixed po int techniq ues. 

T he ro le o f the int e rface cond it io ns in t he split t ing procc>durc is ua t m a lly 

dri vC'n b." t lw sp ecific topo log.' · of the ne twork a t t he int C'rfaccs. In the case or 

Fig . 15. the interfa ce fi ow ra tes arc n o t s tate \'aria blcs of the luntpC'cl syst C'm . 

a nd . the re fore. t hey a rc \H'II suit c•cl to play t h(' role o f a forc ing te rm fo r 

the o rdina r.' · diffC' rC'nt ia l syst C'm . liowewr. de pending o n the cho ice o f the 

br idg ing rc'gions. t hC' m a tching b etween t he' ne twor k a nd the' 0Javier Stokes 

system could lw p urs ued . fo r ins t a nce' . by int e rcha nging the role of flux a nd 

prC'ssurc a t t hC' in te rfaces. 



http://rcin.org.pl

1\ l ULTISCALE 1\ I ODELS FO R T il E C IH CU LATI ON 

p = p 
"JS.2 2 

FICl'HF: I G. Scheme of coupli ng between lhe whole :system and a loca l distric t . 
T he lumped representa tion of lhc t hree bridging regions at Uw intE'r faces with 
t he Navier-Stokes model is highlighted in the clashed circles. 
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f n th is case we should suppose that the flow ra tes arc provided to t he 

Navicr-S tokes system by the network, which in t urn receives pressure data . 

For ins tance. in t he network configurat ion of F ig. 16, t he interface pre sure 

is not a stat e var iable of t he lumped system, so it is a good candid ate fo r 

beiug a forcing term of the ordinary di fferent ial system. provided by the 

Navier-Stokes solut ion. On the other hand. t he interface Aow rates, which 

in the elect ric a na logy correspond to t he current a t t he interfaces and arc 

state variables for the system, become boundarv data for t he avicr-Stokes 

problem. l n th is case. we formula te a net Aux probl m for the Navier-Stokes 

model. to be faced ac or·ding to t he Lagrangc mul t iplier approach. 

For the numerica l treatment of these coupled uwdels. it is natural to resort 

to a u itera tive a pproach based on the splitting of t he whole problem into its 

basic compo nents. t he ODE svstem from oue baud and the Navier-Stokes 

equa tions fro ill the othc'r one. 

For the sake of clarity. suppose to deal wi t h t he coupled problem repre­

sented in Fig. 1 G. A compact representa tion of a possible numerical scheme 

is giYcn in Fig. 17 (left ). In t his scheme, an explicit time ad vancing method 

is used for the lumped paramders model. comput ing the new sla te a t t 11+ 1 

of t he circulato ry network starting from t he previous one (at t 11
) and the 

pressure data given by t he. avier- Lokes solver. Jn t his way we compu te the 

flow ra tes a t the current t ime step n + l t ha t become boundary da ta for 

solving a flow rate Navier-Stokcs problem (with the Lagrangian multi plier 
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FICl'Ht-: 16. Schenw of coupling bel\\'<'CII the ,,·hole ".n;t<'lll and a local district 

wh<'r<' tlw bridging n•gions Hr<' given lJ,· induC'lor". 

T ime Step 

Fl<:l 1\F 17. Possiblr numNical sclwnw forth<' coupli ng of a Lunqwd l'aralll<'l<'r 

:\ lod<'l ( Ll' ;\I) and t li<' :\ ;wi(•r-St ok<•s prohkrn: 011 t h<· }pft t h<• cast· corn•spond i ng 

to Fig. l(i. on thP right th<' o n<' corT<'SjJ()]rding to Fig. i!'J. 

approach). For solving the coupled probiC'm of Fig. l."i. the' corrC'sponcling 

llliillt'rical sche1ne is in Fig . 1 I right . 

.Numerical results and discussion abou t these n1cthods can he found in 

I.J5I. ISOI and in 1371. ln the lattN work. in particular. the' 3D compliant 

case is addrc•ssC'd. that requires spC'cific interface conditiom; for t he compli­

ant vascular wall. \ \ 'c mention also an example of nlldt iscak 30-0D models 

proposed in IGI. ill ustrating the relevance· of the 1nultiscalc approach in the 

numerical s imulation of the blood flow in a carol id bifmcation. CT scans of 

a stenosed carotid artery hm·c been 11sed for reconstructing a 3D geometry 
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both of a occluded and of a healthY (In· tnodificatiott of the original images) 

carol id:-.. Numerical result s haw been obtained both for a st aud-alonc· and 

a tttttlt iscalc model (sec Fig. 18) in the two ?,comct rics . The results out line 

t IH' n•lc•Yancc• of the descriptiou of tlw who!<' circulatory cerebral system in 

prescribing correct boundary couditious ancl definitely obtaining significattt 

nttnt<•rical results. 

LSC 

Ft<:t HI·. lH. Left: Lunqwd paratnPl<·r lllOdPI for the multiscaiP carotid simulation. 

n ip,ht: ll<'ail ~~~· and stPIIOSPci ea rot id mod PI. Taken from i<iJ. 

Remark 3. lu t lw last .\'C'ars. nuuwrical met hods for solving compkx real 

probkuts itt scientific computing b~· nwans of domain du·omJ!081{ton 711clhods 

(DD:\1 ) lta\'e received great attention: as a recent rcfcn•nce. we' quote liD!. 
The Jlltntc•rical approach to problems of inneasing cotuplcxit .\' qttitc• natu­

rally compel! the iclcnt i fie at ion of si m piN ··subproblcnu·;" that eau lH' soh·ed 

scparatcl.v frou1 the others. iu order to sct t ing ttp more c·fl'cct i\'C' ttttttwrical 

algorithm:-,. Among the others possible c•xatttpks, we quote fluicl-structmr in­

tnact iott problems in ltetuodyuamics. both at the mechanical and biochemi­

cal len·l (sec I3D. 51. 52. 691). 

Ju om framework. it is ren::-.onablc to a::-.sintilate tlic flux data to ( tnc•an ) 

Dmchlr I data . since tltc'.\' refer to t hc \'elocity field. while (mean) pressure 

data catt lH' a:-.similatc to Clll/1(11111 condition. since they rc.fn to the pressure. 

i.<'. to the normal stress tensor wltich is a natural condition for the classical 

varia t ionnl forlllulation of the <n-ier-St okes equal ions. In tlt is respect. the 

iterative algorithms prescJJIC'cl alHJ\'C' (and tlt<' o11es that will be introduced 

for t ltC' ;~D-1 D coupling) can h e considNcd a n CX(C'tJSion or (he D/1'/r·hlc t-
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Ncmnwm substrucluring ilf'ro/w(' mC'/hod. \\'idel.v adopted 111 the context of 

DD I. This link can provide s uggest ions for selli ng up some improvements 

it1 the algorithms. <'xploiting the theoretical framework of DDl\1. 

5 .2 . Coupling lD a nd 3D Models 

Let us consider now the coupling of 3D aud lD models. Si nce we arc 

s till d ea ling with a reduced model. involviug mean quant itics and the point­

wise avicr-Stokes model. we will have to ha nd le "defective' ' data problems, 

according to the strategies illustrated in SeC'l . .J. In particular. al-l we have 

pointed o ut in the previous section . if \\'e con:;ider a compliant 3D domain. 

specific interface conditions will be needed b\ the differential problem aHsoci­

atcd to the vessel wall description in the :3D model. l\ [orcovcr. the mathemat­

ical hy perbolic nature of lD tnodcls \\·ill require a careful trealni<'nl of the 

inte rface couditions. based on a cltara('(erisl ics analysis (see Sect. 2). Since 

the ID models arc more accm a tc than the OD ones, we haw' IIIOH' possi­

hi lit ics in devising interface conditious. A priori, it is reasona ble to look for 

t IH' ('()Ill iiliiit.v of dif{crent quant it ics Ht the interface r(l. namely the flux, Lhe 

mean pressure (or the tota l nH'aii pressme). or the normal st resses o r a lso 

the character istic variables incoming to t he lD domains and. in the case of 

a compliant :3D domain , the interface area. The coni inui ty of some of these 

quaitl it i<•s will be enough to fore<' all the ot hers: a complete discussion oft ht' 

different possible interface <"ond it ions s<' l is <"arriecl out in I I 5I <tnd 1161. To 

t lwse rdcrcnccs the reader is referred (s<•e also I I I) for sonw III IIII t'rical resu lt s 

and examples. 

He re we limit o urselves to point out that at the IIIIll!Ninli IC'v<'L the: 

C'xplic it coupling of 30 and ID soh '<'r sin1ilar to the one illustrated for the 

;3 1) and OD models can he affcctC'd h,v numerical instabilities. d epe nding e.g. 

on the physical properties of the vHs<· tiiar walls. In t hesc cases. we need to 

n 'sort to an 11nplzrit coupling. achiewd by iterating the COIIIJHI t ;1 t ion of l he 

:~D and the lD problems at each tillle step. as it is illustrated in Fig.l9. In 

this scht•nJ C'. \\'C arc supposing that the lD model computes the pressure at 

the interface and the incoming clmractNistic \'ariabk 11·, is impos<'d a t its 

inkt from the flo\\' rate and the area computed by the 3D niOclcl. R<'iaxation 

parameter:; 10 1 and 102 can be tuned for intpro\·ing the convC'rgC'ncc of the 

schcn1e. A s u itable s lopping nitcrion wi ll be adopted for endinp; the inner 

loop a t each time step. 
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Na' ICr-Stokes 
Solver 

Q~~~ : = c1 Q:w k -'- 1 + ( I - c 1 )Q~+ I 

. I ~~ : = c 2A:W,k+l + {1 - c2)AZ+' 

f 'l + I Pre-.\ure drop prohlem k = k + l ID Solver 

+Structure Soh er ~ L___--,-__.1 

t "-1 2 

F'IC:l ' BE 19. ln1plicit coupling of 3D a nd lD solvers. 

Fi C:l ' ItE 20. Left: Area in th<> upstream lD model in the physiologin tl c·asp (I = 

O.Oius): Right : Area in thc upstream I]) 1nodel in the stented artery: observc th<' 
owrload induced by t he reflections due to the presence of the stcnt. Ta ken from 

1-l·-IJ . 

349 

In F ig. 20 (taken from 1 · ~41) we illustrate an example of t he rcslll ts ob­

tained vvith this scheme in t he nllmcr ica l solution of a coupled 1D-3D-1D 
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111odel. Tl1 <' :3D model is su pposcd I o be rigid. This cau he regard<•d as t lw 

111odel of au art<·n· \Yit h a st <·nt. which is n•all.' · st ifl'<•r 1 Iran t lw physiological 

\'HS<'Jdar t issu<•. In particular. it is possible to appreciate l he m·nload in tire 

proximal ( upstream with respect tot he st<•nt) ] 0 domain in tIre pressu re. 

induced b~- the (phYsiological ) rdkct ions a t the interface \Yith the :3D stcut ed 

1110del. 

5.3. Coup ling OD and lD Models 

\\ 'c final!-'· consider the coupl ing of 1 D a nd OD mod0ls. Sine<' W<' are act u­

a lh· ('Oupling rcd uceclmockls. both dealing \\'ith awragc (iu space) quantities. 

\\'(' willuot Iran• dcfectin• boundary probl<•ms to soh·e. Tire nucial issues. in 

this ('ase. an• tlH• boundary treatment of the lD models . awl the branching 

munerind treatment. addressed in Sed. 2.:2. 

The mathematical a nalysis of this class of heterogeneous prohlcu1s can 

be ('Hrried out b,· means of fixed point techniques (sec I 181) in a WH,V similar 

to the OIH' followed for tiH• <'Oiipling of :l D HJHI OD models. See <ilso l:lll. T he 

nunH•rical sol ution can be in so1ne cases obtained hy coupling l h<· disn<'l ized 

equations (in spac<' all(! tinH' for the lD model. in lime for the OD one) 

in <1 nlonolith i('al soh·er. In general. it is howewr possible to n•sort to an 

itr•ratin• approaC' lr simi lar to the Oll<'s pn·s<•nted in the pr<'.'·ions s<•ctions. in 

which a lD and a OD solwrs nn· iterat i,·<·l-'· called in t IH' lllll lt iscale nunJ<Tical 

d<•Yi<'('. 

The practical interest for this kind of 111odels reli<•s in the set up of s~·s­

t l' lllic lnod<•ls for t it<• desni pt io11 of t lw presslll'<' \\'H\'(' propag<ll io11 in t 11(' 

ml<'rial lr<'l' ( ID model) induced h.\' tile heart actiou (OD lllod<•l). see IG81. 
IIDI. In pmticular. i11 IJDI a Jl) tW\\'Iork incli1ding th <' la rges t ;-J fi ar teries 

(sec Fig. :21 left ) is coupled \\'it it tlH• ll('art 111111ped pmanll'l<·r tJiodcl giVC'n 

in Sed. :~.2 and a t ln·e<' ekllH'IIls \\' indk<'sscl mod<'l for the periphend circu­

lation. The nun1crical coupling of the heart model and lit<' ID IH'(\\·ork has 

h<'<'ll obtained hy following the sdH'Ill<' illustrated in Fig. :22 .. \ sa matter of 

fact. tlw t \\'<J models are coupkd only ci11ring the s.\·stolic phase. \\'hi le in t lw 

diastolic Oil<' a null flux ('ond it ion is inlpos<•ci at the <' ntrmtC'<' of tire aorta. TIH' 

op<'ning a nd (' losing oft he aortic nllvc is drin•n ll\· the <·o t npari~on 1><'1\\'<'Cn 

the \'(•nt ricular and the aort ic pn•ss1m'. 

In Fig. :2:3 the rclcYancc of t it<' tnu ltis('ak approach is ('!earl.' · put in <'Yi­

d<'llce: if the action of t ire heart is si ntpl,\· lllod<•ll<-<1 b~· a prescribed boundar.' · 
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Flct·I!E :21. ,\rterial tn•e <'OillJlOsed of a set of ~>5 straight vessl'ls. dc•scribed by 

1 D mod <'is (s<'<' IG5I ). On t IH' rig ht a patholog ical case. in which sOilll' oft lw \'l'SsPI 

arc· SIIJlJH>sPd to be C'Ulllpldl'ly oecluckd. 

< () 
------------------

Open Valve 

'>() >IJ 

1.-IC:t ' HI·: '2'2. Fhm chart n•prC'seutation of lhl' aortic mh·(' IIHHh•liug. 

condition at thC' inkt of the aorta (as it is usally donC' left column). the 

n•stilts can IJc significantlY different. \\·it h an undcrc•sti lll atiot l of the heart 

owrlond dtH' for instance to a pathological occlusion (dot trd lines). 
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Arlery 1. charac1eushc vena~s 

[
- healthy J 
- • P"lholoQC 

~r 

.. 
tome Ill 

1050' 
01 02 03 04 05 06 07 

.::~--------;~---1 
3150 - - J 

-3200 __._ ...._ 
0 1 02 03 04 0 .5 06 07 

11tne Csl 

F'I C:l I{E 23. Comparison lwtwP<'II thP rC'sults obta in<'d with standard proximal 

conditions ( left) and the multiscalc coupling with the ventricu lar mod <> l ( righl ). 

\ 'alues of \'cloc ity a nd prcssun• in the 111id-point of Lh(• aorta arc presenlt•d in the 

first two rm\·s. The last iwo rows illnstral<' a comparison between the ltie m a nn 

invariants 11 '1 and ll '2, r<'S()('Ctiw•ly. Adult circulation in a ph.vsiologic (solid) and 

pathologir (dotted) test cm;p ar<• s imulat<•d. 

6 . Numerical Results in a Case of Clinical Interest 

N lllll l'r ical res ults obtained in morc realist ic contexts. still based on t hc 

approach of the prcscu t work. can lw found iu 131. 35. 36 1. In t hcsc refer­

ences l he adopt ion of gcomct rical mult iscalc models has given good n'std ls for 

analys ing. b~· mcans of numeri ·al simulations. the dynamics of flow patterus 

in Inorphologically eo m plcx vascu lar clisl ricls in the context of paediatric 

surgery. The proposccl 111cl hodology was i 11 particular applied to a rcconstruc­

ti ve pron'd urc. uscd in card io\'ascular paediatric surgery to t n'at a group of 

com plex congcnitalmalformations. There HH' difl'crent solut ions for carrying 

out this kind of interventions (see I3G. 3GI and Fig. 24) and it is not ea~y. in 

general. lo state which should be cons idcrccl the bcst for the pa ticnl at hand. 

In t he lliUltiscale models adop!cd in t·his analysis. a 3D realistic 1norpllology 
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FICliRE 24. ' f\vo possible real izatons of Lhe Norwood operation : l\ loclificcl Blalock­

Taussig shunt (lcfL) and Central Shunt (right), from [35J. 
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F1c:t HE 25. l\ lu ltiscale modE'I of the l\lodificd Blalock Taussig Shunt ( left) and of 

tlw right ventricle pulmonary <lr!Pry shunt or Sano opcmtion (right. from j36J). 

including the innominate artery. t he pulmonary. carotid a nd subclavian ar­

teries and the shunt a re coupled to a lumpC'cl model composed by different 

blocks describing the rest of the pulmonary circula tion. the upper and lower 

bod~·. the aorta. the corona ry system a nd the heart ( cc Fig. 25). Due lo lhe 

complexity of the vascula r 3D, Lhe aclopl ion of stand-alone classical fluid dy­

nawics model failed to give accurate description of t he velocity a nd pre sure 
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fie lds (sec j:lli). \\' ith tht• adopted nudt isc-al<' approach. J.<' . using boundary 

conditions that account for t lw circulatory s.\·stem. this was an>idcd and the 

inlet , ·elo<'it\· profile rcwrsal was cmTcctl.\· reproclucecl (In Fill,. '25 nnd Fig. 2G 

we report sonw snapshots of tlw computed local sol ut ion ). The prediction 

of both the local and the global haeniodyn<unics after a smgical corrcct iou. 

leads I o I he qmmtificat ion of pressur<' drops across the repaired n·gion as well 

as to that of flow clistributiou into the uwjor cardiO\·ascu lar districts. which is 

<lll extrenml important issu<'. Gcolllt't ricalmult iscalc numcricalmodcling can 

help thcrefon' the surgcou iu the oplilnal choice of shunt size a nd pi<H'<'IIH'lll . 
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OJWra t ion ( from I :Hi J) . 
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