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“The reasonings about the wonderful and intricate operations 
of Nature are so full of uncertainty, that, as the Wise-man truly 
observes, hardly do we guess aright at the things that are upon 
earth, and with labour do we find the things that are before us." 
Stephen Hales, 1 eyetable Staticks (1727), p. 318, 1738.

“Ever since I have been enquiring into the works of Nature 
I have always loved and admired the Simplicity of her Ways.” 
Dr George Martine (a pupil of Boerhaave’s), in Medical Essays and 
Obt ervations, Edinburgh, 1747.



PREFATORY NOTE

rpHLS book of mine has little need of preface, for indeed it is 
J- “all preface” from beginning to end. I have written it as 

an easy introduction to the study of organic Form, by methods 
which are the common-places of physical science, which are by 
no means novel in their application to natural history, but which 
nevertheless naturalists are little accustomed to employ.

It is not the biologist with an inkling of mathematics, but 
the skilled and learned mathematician who must ultimately deal 
with such problems as are sketched and adumbrated here. I pretend 
to no mathematical skill, but I have made what use I could of 
what tools I had; I have dealt with simple cases, and the mathe
matical methods which I have introduced are of the easiest and 
simplest kind. Elementary as they are, my book has not been 
written without the help—the indispensable help -of many friends. 
Like Mr Pope translating Homer, when I felt myself deficient I 
sought assistance ! And the experience which Johnson attributed 
to Pope has been mine also, that men of learning did not refuse 
to help me.

I wrote this book in wartime, and its revision has employed 
me during another war. It gave me solace and occupation, when 
service was debarred me by my years

Few are left of the friends who helped me write it, but I do not 
forget the debt I owe them all. Let me. add another to these 
kindly names, that of Dr G. T. Bennett, of Emmanuel College, 
Cambridge; he has never wearied of collaboration with me, and 
his criticisms have been an education to receive. •

1916-1941.
D. W. T.
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“The mathematicians are well acquainted with the difference 
between pure science, which has to do only with ideas, and the 
application of its laws to the use of life, in which they are con
strained to submit to the imperfections of matter and the influence 
of accident.” Dr Johnson, in the fourteenth Rambler, May 5, 1750.

“ Natural History... is either the beginning or the end of physical 
science.” Sir John Herschel, in The Study of Natural Philosophy, 
p. 221, 1831.

.“I believe the day must come when the biologist will—without 
being a mathematician—not hesitate to use mathematical analysis 
when he requires it.” Karl Pearson, in Nature, January 17, 1901.



CHAPTER 1

INTRODUCTORY

Of the chemistry of his day and generation, Kant declared that it 
was a science, but not Science—eine Wissenschaft, aber nicht Wissen
schaft—for that the criterion of true science lay in its relation to 
mathematics*. This was an old story: for Roger Bacon had called 
mathematics porta et clavis scientiarum, and Leonardo da Vinci had 
said much the samef. Once again, a hundred years after Kant, 
Du Bois Reymond, profound student of the many sciences on which 
physiology is based, recalled the old saying, and declared that 
chemistry would only reach the rank of science, in the high and 
strict sense, when it should be found possible to explain chemical 
reactions in the light of their causal relations to the velocities, 
tensions and conditions of equilibrium of the constituent molecules; 
that, in short, the chemistry of the future must deal with molecular 
mechanics by the methods and in the strict language of mathematics, 
as the astronomy of Newton and Laplace dealt with the stars in 
their courses. We know how great a step was made towards this 
distant goal as Kant defined it, when van’t Hoff laid the firm 
foundations of a mathematical chemistry, and earned his proud 
epitaph—Physicam chemiae adiunxit^.

We need not wait for the full realisation of Kant’s desire, to apply 
to the natural sciences the principle which he laid down. Though 
chemistry fall short of its ultimate goal in mathematical mechanics §, 
nevertheless physiology is vastly strengthened and enlarged by

* “Ich behaupte nur dass in jeder besonderen Naturlehre nur so viel eigentliche 
Wissenschaft angetroffen konne aladarin Mathematik anzutreffen ist”: Gesammelte 
Schriften, rv, p. 470.

f “Nessuna humana investigazione si pud dimandare vera scienzia s’essa non 
passa per le matematiche dimostrazione.”

t Cf. also Crum Brown, On an application of Mathematics to Chemistry, Trans. 
R.S.E. xxiv, pp. 691-700, 1867.

§ Ultimate, for, as Francis Bacon tells us: Mathesis philosophiam naturalem 
terminare debet, non generare aut procreare.

TGF I 



2 INTRODUCTORY [ch.

making use of the chemistry, and of the physics, of the ago. Little 
by little it draws nearer to our conception of a true science with 
each branch of physical science which it brings into relation with 
itself: with every physical law and mathematical theorem which it 
learns to take into its employ*.  Between the physiology of Haller, 
fine as it was, and that of Liebig, Helmholtz, Ludwig, Claude 
Bernard, there was all the difference in the worldf.

* “Sine profunda JI echanices Scientia nil veri vos intellecturos, nil boni pro
laturos aliis”: Boerhaave, De usu ratiocinii Mechanici in Medicina, 1713.

f It is well within my own memory how Thomson and Tait, and Klein and 
Sylvester had to lay stress on the mathematical aspect, and urge the mathematical 
study, of physical science itself!
-1 Dr Johnson says that “to count is a modern practice, the ancient method was 

to guess”; but Seneca was alive to the difference—“ magnum esse solem philosophus 
probabit, quantus sit mathematicus.”

§ Cf. Pensees, xxix, “ II faut dire, en gros, cela se fait par figure et mouvement, 
car cela est vrai. Mais de dire quels, et composer la machine, cela est ridicule, 
car cela est inutile, et incertain, et penible.”

As soon as we adventure on the paths of the physicist, we learn 
to weigh and to measure, to deal with time and space and mass and 
their related concepts, and to find more and more our knowledge 
expressed and our needs satisfied through the concept of number, 
as in the dreams and visions of Plato and Pythagoras; for modern 
chemistry would have gladdened the hearts of those great philo
sophic dreamers. Dreams apart, numerical precision is the very 
soul of science, and its attainment affords the best, perhaps the 
only criterion of the truth of theories and the correctness of experi
ments J. So said Sir John Herschel, a hundred years ago; and 
Kant had said that it was Nature herself, and not the mathematician, 
who brings mathematics into natural philosophy.

But the zoologist or morphologist has been slow, where the 
physiologist has long been eager, to invoke the aid of the physical 
or mathematical sciences; and the reasons for this difference lie 
deep, and are partly rooted in old tradition and partly in the 
diverse minds and temperaments of men. To treat the living body 
as a mechanism was repugnant, and seemed even ludicrous, to 
Pascal §; and Goethe, lover of nature as he was, ruled mathematics 
out of place in natural history. Even now the zoologist has scarce 
begun to dream of defining in mathematical language even the 
simplest organic forms. AV hen he meets with a simple geometrical 
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construction, for instance in the honeycomb, he would fain refer it 
to psychical instinct, or to skill and ingenuity, rather than to the 
operation of physical forces or mathematical laws; when he sees in 
snail, or nautilus, or tiny foraminiferal or radiolarian shell a close 
approach to sphere or spiral, he is prone of old habit to believe that 
after all it is something more than a spiral or a sphere, and that in 
this ‘‘something more’’ there lies what neither mathematics nor 
physics can explain. In short, he is deeply reluctant to compare 
the living with the dead, or to explain by geometry or by mechanics 
the things which have their part in the mystery of life. Moreover 
he is little inclined to feel the need of such explanations, or of such 
extension of his field of thought. He is not without some justifi
cation if he feels that in admiration of nature’s handiwork he has 
an horizon open before his eyes as wide as any man requires. He 
has the help of many fascinating theories within the bounds of his 
own science, which, though a little lacking in precision, serve the 
purpose of ordering his thoughts and of suggesting new objects of 
enquiry. His art of classification becomes an endless search after 
the blood-relationships of things living and the pedigrees of things 
dead and gone. The facts of embryology record for him (as Wolff, 
von Baer and Fritz Muller proclaimed) not only the life-history of 

■ the individual but the ancient annals of its race. The facts of 
geographical distribution or even of the migration of birds lead on 
and on to speculations regarding lost continents, sunken islands, or 
bridges across ancient seas. Every nesting bird, every ant-hill or 
spider’s web, displays its psychological problems of instinct or intel
ligence. Above all, in things both great and small, the naturalist 

i is rightfully impressed and finally engrossed by the peculiar beauty 
which is manifested in apparent fitness or “adaptation”—the flower 

jfor the bee, the berry for the bird.
Some lofty concepts, like space and number, involve truths remote 

.from the category of causation; and here we must be content, as 
Aristotle says, if the mere facts be known*.  But natural history 

(deals with ephemeral and accidental, not eternal nor universal 

* ovk dir acTrjT iov S oiW rijv airlav ouoiws, dXX’ iKavitv tv ruri rd Sti Sec)(0i)vai KaXuit 
J Eth. Nic. 1098a, 33. Teleologist as he was at heart, Aristotle ■ alised that mathematics 
a was on another plane to teleology: rds Si paGiy/jtaTiKas ovBiva troieiaOai \byov trepl 
cdyaOuv Kal KaKuv. Met. 996a, 35.

1-2



4 INTRODUCTORY [ch.

things; their causes and effects thrust themselves on our curiosity, and 
become the ultimate relations to which our contemplation extends*.

Time out of mind it has been by way of the “final cause,” by the 
teleological concept of end, of purpose or of “design,” in one of its 
many forms (for its moods are many), that men have been chiefly 
wont to explain the phenomena of the living world; and it will be 
so while men have eyes to see and ears to hear withal. With Galen, 
as with Aristotlef, it was the physician’s way; with John Ray J, as 
with Aristotle, it was the naturalist’s way; with Kant, as with 
Aristotle, it was the philosopher’s way. It was the old Hebrew 
way, and has its splendid setting in the story that God made “ every 
plant of the field before it was in the earth, and every herb of the 
field before it grew.” It is a common way, and a great way; for it 
brings with it a glimpse of a great vision, and it lies deep as the 
love of nature in the hearts of men.

The argument of the final cause is conspicuous in eighteenth
century physics, half overshadowing the “efficient” or physical 
cause in the hands of such men as Euler§, or Fermat or Maupertuis, 
to whom Leibniz || had passed it on. Half overshadowed by the 
mechanical concept, it runs through Claude Bernard’s Lemons sur les 
phenomenes de la Vie^, and abides in much of modern physiology**.

* “ All reasonings concerning matters of fact seem to be founded on the relation 
of Cause and Effect. By means of that relation alone we go beyond the evidence 
of our memory and senses”: David Hume, On the Operations of the Understanding.

f E.g. “In the works of Nature purpose, not accident, is the main thing”: ri yap 
pi) rv^bvrus, dXX’ ^veKa rivos, iv rdis rijs ipvaews Zpyois earl Kai pdXtara. PA, 645a, 24.

t E.g. “Quaeri fortasse a nonnullis potest, Quis Papilionum usus? Respondeo, 
ad ornatum Universi, et ut hominibus spectaculo sint.” Joh. Raii, Hist. Insectorum, 
p. 109. .

§ “Quum enim Mundi universi fabrica sit perfectissima, atque a Creatore 
sapientissimo absoluta, nihil omnino in Mundo contingit in quo non maximi 
minimive ratio quaepiam eluceat; quamobrem dubium prorsus est nullum quin 
omnes Mundi effectus ex causis finalibus, ope Methodi maximorum et minimorum, 
aeque feliciter determinari queant atque ex ipsis causis efficientibus.” Methodus 
inveniendi, etc., 1744, p. 245 (cit. Mach, Science of Mechanics, 1902, p. 455).

|| Cf. Opera (ed. Erdmann), p. 106, “Bien loin d’exclure les causes finales_ 
c’est de la qu’il faut tout deduire en Physique”: in sharp contrast to Descartes’s 
teaching, “Nullas unquam res naturales dfine, quem Deus aut Natura in iis faciendis 
sib iproposuit, desumemus, etc.” Princip. I, 28.

II Cf. p. 162. “La force vitale dirige des phenomenes qu’elle ne produit pas: 
les agents physiques produisent des phenomfenes qu’ils ne dirigent pas.”

** It is now and then conceded with reluctance. Thus Paolo Enriques, a learned 
and philosophic naturalist, writing “ dell’economia di sostanza nelle osse cave” 
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Inherited from Hegel, it dominated Oken’s Naiurphdosophie and 
lingered among his later disciples, who were wont to liken the course 
of organic evolution not to the straggling branches of a tree, but to 
the building of a temple, divinely planned, and the crowning of it 
with its polished minarets*.

It is retained, somewhat crudely, in modern embryology, by those 
who see in the early processes of growth a significance “rather 
prospective than retrospective,” such that the embryonic phenomena 
must “be referred directly to their usefulness in building up the 
body of the future animalf”:—which is no more, and no less, than 
to say, with Aristotle, that the organism is the tcXos, or final cause, 
of its own processes of generation and development. It is writ 
large in that EntelechyJ which Driesch rediscovered, and which he 
made known to many who had neither learned of it from Aristotle, 
nor studied it with Leibniz, nor laughed at it with Rabelais and 
Voltaire. And, though it is in a very curious way, we are told 
that teleology was “refounded, reformed and rehabilitated” by 
Darwin’s concept of the origin of species§; for, just as the older 
naturalists held (as Addison|| puts it) that “the make of every kind 
of animal is different from that of every other kind; and yet there 
is not the least turn in the muscles, or twist in the fibres of any one, 
which does not render them more proper for that particular animal’s 
way of life than any other cut or texture of them would have been ”: 
so, by the theory of natural selection, “every variety of form and 
colour was urgently and absolutely called upon to produce its title 
(Arch. f. Entw. Meeh, xx, 1906), says “una certa impronta di teleologismo qua 
e Ik £ riinasta, mio malgrado, in questo scritto.”

♦ Cf. John Cleland, On terminal forms of life, Journ. Anat, and Physiol. 
xvni, 1884. m

t Conklin, Embryology of Crepidula, Journ. of Morphol. xin, p. 203, 1897; 
cf. F. R. Lillie, Adaptation in cleavage. Wood's Hole Biol. Lectures, 1899, pp. 43-67.

J I am inclined to trace back Driesch’s teaching of Entelechy to no less a person 
than Melanchthon. When Bacon (de Augm. iv, 3) states with disapproval that 
the soul “has been regarded rather as a function than as a substance,” Leslie 
Ellis points out that he is referring to Melanchthon’s exposition of the Aristotelian 
doctrine. For Melanchthon, whose view of the peripatetic philosophy had great 
and lasting influence in the Protestant Universities, affirmed that, according to 
the true view of Aristotle’s opinion, the soul is not a substance but an ivreX^xeia, or 
function. He defined it as Swam? quaedam ciens actiones—a description all but 
identical with that of Claude Bernard’s “ force vitale.”

§ Ray Lankester, art. Zoology, Encycl. Brit. (9th edit.), 1888, p. 806.
|| Spectator, No. 120.
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to existence either as an active useful agent, or as a survival” of 
such active usefulness in the past. But in this last, and very 
important case, we have reached a teleology without a reXos, as 
men like Butler and Janet have been prompt to shew, an “adapta
tion” without “design,” a teleology in which the final cause becomes 
little more, if anything, than the mere expression or resultant of a 
sifting out of the good from the bad, or of the better from the worse, 
in short of a process of mechanism. The apparent manifestations 
of purpose or adaptation become part of a mechanical philosophy, 
“une forme methodologique de connaissance*,” according to which 
“la Nature agit toujours par les moyens les plus simplesf,” and 
“chaque chose finit toujours par s’accommoder a son milieu,” as in 
the Epicurean creed or aphorism that Nature finds a use for every
thing J. In short, by a road which resembles but is not the same as 
Maupertuis’s road, we find our way to the very world in which we 
are living, and find that, if it be not, it is ever tending to become, 
“the best of all possible worlds§.”

But the use of the teleological principle is but one way, not the 
whole or the only way, by which we may seek to learn how things 
came to be, and to take their places in the harmonious complexity 
of the world. To seek not for ends but for antecedents is the way 
of the physicist, who finds “causes” in what he has learned to 
recognise as fundamental properties, or inseparable concomitants, 
or unchanging laws, of matter and of energy. In Aristotle’s parable, 
the house is there that men may live in it; but it is also there because 
the builders have laid one stone upon another. It is as a mechanism, 
or a mechanical construction, that the physicist looks upon the 
world; and Democritus, first of physicists and one of the greatest 
of the Greeks, chose to refer all natural phenomena t<? mechanism 
and set the final cause aside.

* So Newton, in the Preface to the Principia-. “Natura enim simplex est, et 
rerum causis superfluis non luxuriat”; “Nature is pleased with simplicity, and 
affects not the pomp of superfluous causes.” Modern physics finds the perfection 
of mathematical beauty in what Newton called the perfection of simplicity.

f Janet. Les Causes Finales, 1876, p. 350.
J “Nil ideo quoniam natumst in corpore ut uti Possemus sed quod natumst id 

procreat usum.” Lucret, iv, 834.
§ The phrase is Leibniz’s, in his Theodicee-. and harks back to Aristotle—If one 

way be better than another, that you may be sure is Nature’s way; Nie. Eth. 
10996, 23 el al.



I] OF EFFICIENT AND FINAL CAUSES 7

Still, all the while, like warp and woof, mechanism and teleology 
are interwoven together, and we must not cleave to the one nor 
despise the other; for their union is rooted in the very nature of 
totality. We may grow shy or weary of looking to a final cause 
for an explanation of our phenomena; but after we have accounted 
for these on the plainest principles of mechanical causation it may 
be useful and appropriate to see how the final cause would tally 
with the other, and lead towards the same conclusion*. Maupertuis 
had little liking for the final cause, and shewed some sympathy with 
Descartes in his repugnance to its application to physical science. 
But he found at last, taking the final and the efficient causes one with 
another, that “1’harmonie de ces deux attributs est si parfaite que 
sans doute tous les effets de la Nature se pourroient deduire de 
chacun pris separement. Une Mecanique aveugle et necessaire suit 
les dessins de 1’Intelligence la plus eclairee et la plus libref.” Boyle 
also, the Father of Chemistry, wrote, in his latter years, a Disquisition 
about the Final Causes of Natural Things: Wherein it is Inquir'd 
Whether, And {if at all) With what Cautions, a Naturalist should admit 
Theml He found “that all consideration of final cause is not to be 
banished from Natural Philosophy...”; but on the other hand 
“that the naturalist who would deserve that name must not let 
the search and knowledge of final causes make him neglect the in
dustrious indagation of efficients J.” In our own day the philosopher 
neither minimises nor unduly magnifies the mechanical aspect of 
the Cosmos; nor need the naturalist either exaggerate or be
little the mechanical phenomena which are profoundly associated 
with Life, and inseparable from our understanding of Growth and 
Form.

* “ S’il est dangereux de se servir des causes finales a priori pour trouver les lois 
des phenomenes, il est peut-etre utile et il est au moins curieux de faire voir com
ment le principe des causes finales s’accorde avec les lois des phenomenes, pourvu 
qu’on commence par determiner ces lois d’aprds les principes de mecanique clairs 
et incontestables.” (D’Alembert, Art. Causes finales, Encyclopedic, 11, p. 789, 1751.)

t See his essay on the “Accord des differentes lois de la Nature."
t Cf. also Leibniz (Discours de la Metaphysique: Lettres inedites, ed. de Careil, 

1857, p. 354), “L'un et 1'autre est bon, 1'un et 1’autre peut etre utile...et les 
. auteurs qui suivent ces deux routes differentes ne devraient pas se maltraiter.” 
Or again in the Monadologie, “Les ames agissent selon les causes finales.... Les 

< corps agissent selon les lois des causes efficientes ou des mouvements. Et les 
< deux regnes, celui des causes efficientes et des causes finales sont harmonieux 
< entre eux.”
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Nevertheless, when philosophy bids us hearken and obey the 
lessons both of mechanical and of teleological interpretation, the 
precept is hard to follow: so that oftentimes it has come to pass, 
just as in Bacon’s day, that a leaning to the side of the final cause 
“hath intercepted the severe and diligent enquiry of all real and 
physical causes,” and has brought it about that “the search of the 
physical cause hath been neglected and passed in silence.” So long 
and so far as “fortuitous variation*” and the “survival of the 
fittest” remain engrained as fundamental and satisfactory hypo
theses in the philosophy of biology, so long will these “ satisfactory 
and specious causes” tend to stay “severe and diligent enquiry... 
to the great arrest and prejudice of future discovery.” Long 
before the great Lord Keeper wrote these words, Roger Bacon had 
shewn how easy it is, and how vain, to survey the operations of 
Nature and idly refer her wondrous works to chance or accident, 
or to the immediate interposition of Godf.

The difficulties which surround the concept of ultimate or “real” 
causation, in Bacon’s or Newton’s sense of the word, the in
superable difficulty of giving any just and tenable account of the 
relation of cause and effect from the empirical point of view, need 
scarcely hinder us in our physical enquiry. As students of mathe
matical and experimental physics we are content to deal with those 
antecedents, or concomitants, of our phenomena without which the 
phenomenon does not occur—with causes, in short, which, aliae ex 
aliis aptae et necessitate nexae, are no more, and no less, than con
ditions sine qua nun. Our purpose is still adequately fulfilled: 
inasmuch as we are still enabled to correlate, and to equate, our 
particular phenomena with more and more of the physical phenomena 
around, and so to weave a web of connection and interdependence 
which shall serve our turn, though the metaphysician withhold from 
that interdependence the title of causality J. We come in touch

♦ The reader will understand that I speak, not of the “severe and diligent 
enquiry ” of variation or of fortuity, but merely of the easy assumption that these 
phenomena are a sufficient basis on which to rest, with the all-powerful help of 
natural selection, a theory of definite and progressive evolution.

f Op. tert. (ed. Brewer, p. 99). “Ideo mirabiles actiones naturae, quae tota 
die fiunt in nobis et in rebus coram oculis nostris, non percipimus; sed aestimamus 
eas fieri vel per specialem operationem divinam.. .vel a casu et fortuna.”

J Cf. Fourier’s phrase, in his Theorie de la Chaleur, with which Thomson and 
Tait prefaced their Treatise on Natural Philosophy. “Les causes primordiales ne 
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with what the schoolmen called a ratio cognoscendi, though the true 
ratio efficiendi is still enwrapped in many mysteries. And so handled, 
the quest of physical causes merges with another great Aristotelian 
theme—the search for relations between things apparently dis
connected, and for “similitude in things to common view unlike*.” 
Newton did not shew the cause of the apple falling, but he shewed 

;a similitude (“the more to increase our wonder, with an apple”) 
1 between the apple and the starsf. By doing so he turned old facts 
into new knowledge; and was well content if he could bring diverse 

1 phenomena under “two or three Principles of Motion” even “though 
the Causes of these Principles were not yet discovered”.

Moreover, the naturalist and the physicist will continue to speak 
<of “causes”, just as of old, though it may be with some mental 
] reservations: for, as a French philosopher said in a kindred difficulty: 
‘ “ ce sont la des manieres de s’exprimer, et si elles sont interdites 
iil faut renoncer a parler de ces choses.”

The search for differences or fundamental contrasts between the 
] phenomena of organic and inorganic, of animate and inanimate, 
1 things, has occupied many men’s minds, while the search for com- 
imunity of principles or essential similitudes has been pursued by 
ifew; and the contrasts are apt to loom too large, great though they 
imay be. M. Dunan, discussing the Probleme de la Vie %, in an essay 
a which M. Bergson greatly commends, declares that “les lois physico- 
(chimiques sont aveugles et brutales; la oil elles regnent seules, au 
Hieu d’un ordre et d’un concert, il ne pent y avoir qu’incoherence et 
ichaos.” But the physicist proclaims aloud that the physical 
jphenomena which meet us by the way have their forms not less 
1 beautiful and scarce less varied than those which move us to admira- 
inous sont point connues; mais elles sont assujetties & des lois simples et constantes, 
(que 1’on peut decouvrir par 1’observation, et dont 1’etude est 1‘objet de la philosophic 
i naturelie.”

* “Plurimum amo analogias, fidelissimos meos magistros, omnium Naturae 
aarcanorum conscios,” said Kepler; and Perrin speaks with admiration, in Les 
A tomes, of men like Galileo and Carnot, who “possessed the power of perceiving 

aanalogies to an extraordinary degree.” Hume declared, and Mill said much the 
ssame thing, that all reasoning whatsoever depends on resemblance or analogy, 
aand the power to recognise it. Comparative anatomy (as Vicq d’Azyr first called 
iit), or comparative physics (to use a phrase of Mach’s), are particular instances of 
aa sustained search for analogy or similitude.

t As for Newton’s apple, see De Morgan, in Notes and Queries (2), vi, p. 169, 1858. 
t Revue Philosophique, xxnn, 1892.
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tion among living things. The waves uf the sea, the little ripples 
on the shore, the sweeping curve of the sandy bay between the 
headlands, the outline of the hills, the shape of the clouds, all these 
are so many riddles of form, so many problems of morphology, and 
all of them the physicist can more or less easily read and adequately 
solve: solving them by reference to their antecedent phenomena, 
in the material system of mechanical forces to which they belong, 
and to which we interpret them as being due. They have also, 
doubtless, their immanent teleological significance; but it is on 
another plane of thought from the physicist’s that we contemplate 
their intrinsic harmony*  and perfection, and “see that they are 
good.”

* What I understand by “holism” is what the Greeks called appovla. This is 
something exhibited not only by a lyre in tune, but by all the handiwork of 
craftsmen, and by all that is “put together” by art or nature. It is the “composite
ness of any composite whole ”; and, like the cognate terms Kpaais or auvOeais, implies 
a balance or attunement. Cf. John Tate, in Class. Review, Feb. 1939.

f This general principle was clearly grasped by Mr George Rainey many years 
ago, and expressed in such words as the following: “It is illogical to suppose that 
in the case of vital organisms a distinct force exists to produce results perfectly 
within the reach of physical agencies, especially as in many instances no end could 
be attained were that the case, but that of opposing one force by another capable 
of effecting exactly the same purpose.” (On artificial calculi, Q.J.M.S. (Trans. 
Microsc. Soc.), vi, p. 49, 1858.) Of. also Helmholtz, infra cit. p. 9. (Mr George 
Rainey, a man of learning and originality, was demonstrator of anatomy at 
St Thomas’s; he followed that modest calling to a great age, and is remembered 
by a few old pupils with peculiar affection.)

Nor is it otherwise with the material forms of living things. Cell 
and tissue, shell and bone, leaf and flower, are so many portions of 
matter, and it is in obedience to the laws of physics that their 
particles have been moved, moulded and conformedf. They are no 
exception to the rule that ©eo? det yeajp-erpei. Their problems of 
form are in the first instance mathematical problems, their problems 
of growth are essentially physical problems, and the morphologist is, 
ipso facto, a student of physical science. He may learn from that 
comprehensive science, as the physiologists have not failed to do, 
the point of view from which her problems are approached, the 
quantitative methods by which they are attacked, and the whole
some restraints under which all her work is done. He may come 
to realise that there is no branch of mathematics, however abstract, 
which may not some day be applied to phenomena of the real 
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\ world*. He may even find a certain analogy between the slow, 
r reluctant extension of physical laws to vital phenomena and the slow 
t triumphant demonstration by Tycho Brahe, Copernicus, Galileo and 
1 Newton (all in opposition to the Aristotelian cosmogony), that the 
1 heavens are formed of like substance with the earth, and that the 
i movements of both are subject to the selfsame laws.

Organic evolution has its physical analogue in the universal law 
t that the world tends, in all its parts and particles, to pass from 
c certain less probable to certain more probable configurations or 
s states. This is the second law of thermodynamics. It has been 
c called the laiv of evolution of the worldf; and we call it, after Clausius, 
t the Principle of Entropy, which is a literal translation of Evolution 
i into Greek.

The introduction of mathematical concepts into natural science 
1 has seemed to many men no mere stumbling-block, but a very 
j parting of the ways. Bichat was a man of genius, who did immense 
s service to philosophical anatomy, but, like Pascal, he utterly refused 
tto bring physics or mathematics into biology: “On calcule le retour 
td’un comete, les resistances d’un fluide parcourant un canal inerte, 
Ila vitesse d’un projectile, etc.; mais calculer avec Borelli la force 
c d’un muscle, avec Keil la vitesse du sang, avec Jurine, Lavoisier et 
dd’autres la quantite d’air entrant dans le pouinon, c’est batir sur un 
s sable mouvant un edifice solide par lui-meme, mais qui tombe bientot 
ffaute de base assureej.” Comte went further still, and said that 
e every attempt to introduce mathematics into chemistry must be 
Adeemed profoundly irrational, and contrary to the whole spirit of 
t the science§. But the great makers of modern science have all gone 
tthe other way. Von Baer, using a bold metaphor, thought that it 
mnight become possible “die bildenden Krafte des thierischen Kbrpers 
aauf die allgemeinen Krafte oder Lebenserscheinungen des Weltganzes 
zzuriickzufuhren||.” Thomas Young shewed, as Borelli had done, 
hhow physics may subserve anatomy; he learned from the heart and 
aarteries that “ the mechanical motions which take place in an animal’s 
bbody are regulated by the same general laws as the motions of

* So said Lubatchevsky.
f Cf. Chwolson, Lehrbuch, in, p. 499. 1905; J. Perrin, TraiU de chimie physique, 

I, , p. 142, 1903; and Lotka’s Elements of Physical Biology, 1925, p. 26.
t La Vie et la Mort, p. 81. § Philosophic Positive, Bk. iv.
]| Ueber Entwicklung der Thiere: Beobat htungen und Beflexionen, i, p. 22, 1828. 
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inanimate bodies*. ” And Theodore Schwann said plainly, a hun
dred years ago, “ Ich wiederhole iibrigens dass, wenn hier von einer 
physikalischen Erklarung der organischen Erscheinungen die Rede 
ist, darunter nicht nothwendig eine Erklarung durch die bekannten 
physikalischen Krafte.. .zu verstehen ist, sondern iiberhaupt eine 
Erklarung durch Krafte, die nach strengen Gesetzen der blinden 
Nothwendigkeit wie die physikalischen Krafte wirken, mbgen diese 
Krafte auch in der anorganischen Natur auftreten oder nichtf.”

* Croonian Lecture on the heart and arteries, Phil. Trans. 1809, p. 1; Collected 
Works, I, p. 511.

f Mikroskopische Untersuchungen, 1839, p. 226.
J The conservation of forces applied to organic nature, Proc. Royal Inst. 

April 12, 1861.
§ Whereby he incurred the reproach of Socrates, in the Phaedo. See Clerk 

Maxwell on Anaxagoras as a Physicist, in Phil. May. (4), xlvi, pp. 453-460, 1873.
|| Cf. Harvey’s preface to his Exercitationes de Generatione Animalium, 1651: 

“Quoniam igitur in Generatione animalium (ut etiam in caeteris rebus omnibus 
de quibus aliquid scire cupimus), inquisitio omnis d caussis petenda est, praesertim 
d materiali et efficiente: visum est mihi” etc.

Helmholtz, in a famous and influential lecture, and surely with 
these very words of Schwann’s in mind, laid it down as the funda
mental principle of physiology that “there may be other agents 
acting in the living body than those agents which act in the inorganic 
world; but these forces, so far as they cause chemical and mechanical 
influence in the body, must be quite of the same character as inorganic 
forces: in this, at least, that their effects must be ruled by necessity, 
and must always be the same when acting under the same conditions; 
and so there cannot exist any arbitrary choice in the direction of their 
actions.” It follows further that, like the other “physical” forces, 
they must be subject to mathematical analysis and deduction

So much for the physico-chemical problems of physiology. Apart 
from these, the road of physico-mathematical or dynamical investi
gation in morphology has found few to follow it; but the pathway 
is old. The way of the old Ionian physicians, of Anaxagoras §, of 
Empedocles and his disciples in the days before Aristotle, lay just 
by that highway side. It was Galileo’s and Borelli’s way; and 
Harvey’s way, when he discovered the circulation of the blood||, 
It was little trodden for long afterwards, but once in a while 
Swammerdam and Reaumur passed thereby. And of later years 
Moseley and Meyer, Berthold, Errera and Roux have been among 



II] OF NATURAL PHILOSOPHY 13

ithe little band of travellers. We need not wonder if the way be 
Ihard to follow, and if these wayfarers have yet gathered little. 
.A harvest has been reaped by others, and the gleaning of the grapes 
iis slow.

It behoves us always to remember that in physics it has taken 
{great men to discover simple things. They are very great names 
i indeed which we couple with the explanation of the path of a stone, 
ithe droop of a chain, the tints of a bubble, the shadows in a cup. 
It is but the slightest adumbration of a dynamical morphology that 

1 we can hope to have until the physicist and the mathematician shall 
Iha ve made these problems of ours their own, or till a new Boscovich shall 
Ihave written for the naturalist the new Theoria Philosophiae Naturalis.

How far even then mathematics will suffice to describe, and 
]physics to explain, the fabric of the body, no man can foresee. It 
unay be that all the laws of energy, and all the properties of matter, 
sand all the chemistry of all the colloids are as powerless to explain 
Ithe body as they are impotent to comprehend the soul. For my 
jpart, I think it is not so. Of how it is that the soul informs the 
Ibody, physical science teaches me nothing; and that living matter 
iinfluences and is influenced by mind is a mystery without a clue. 
(Consciousness is not explained to my comprehension by all the 
merve-paths and neurones of the physiologist; nor do I ask of physics 
Ihow goodness shines in one man’s face, and evil betrays itself in 
{another. But of the construction and growth and working of the 
Ibody, as of all else that is of the earth earthy, physical science is, 
iin my humble opinion, our only teacher and guide.

Often and often it happens that our physical knowledge is in- 
(adequate to explain the mechanical working of the organism; the 
phenomena are superlatively complex, the procedure is involved 
rand entangled, and the investigation has occupied but a few short 
Hives of men. When physical science falls short of explaining the 
(order which reigns throughout these manifold phenomena—an order 
imore characteristic in its totality than any of its phenomena in 
tthemselves—men hasten to invoke a guiding principle, an entelechy, 
cor call it what you will. But all the while no physical law, any 
imore than gravity itself, not even among the puzzles of stereo- 
cchemistry or of physiological surface-action and osmosis, is known 
tto be transgressed by the bodily mechanism.
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Some physicists declare, as Maxwell did, that atoms or molecules 
more complicated by far than the chemist’s hypotheses demand, are 
requisite to explain the phenomena of life. If what is implied be 
an explanation of psychical phenomena, let the point be granted at 
once; we may go yet further and decline, with Maxwell, to believe 
that anything of the nature of physical complexity, however exalted, 
could ever suffice. Other physicists, like Auerbach*,  or Larmorj", 
or Joly J, assure us that our laws of thermodynamics do not suffice, 
or are inappropriate, to explain the maintenance, or (in Joly’s phrase) 
the accelerative absorption, of the bodily energies, the retardation 
of entropy, and the long battle against the cold and darkness which 
is death. With these weighty problems I am not for the moment 
concerned. My sole purpose is to correlate with mathematical state
ment and physical law certain of the simpler outward phenomena 
of organic growth and structure or form, while all the while regarding 
the fabric of the organism, ex hypothesi, as a material and mechanical 
configuration. This is my purpose here. But I would not for the 
world be thought to believe that this is the only story which Life 
and her Children have to tell. One does not come by studying 
living things for a lifetime to suppose that physics and chemistry 
can account for them all §.

* Ektropismus, oder die physikalische Theorie des Lebens, Leipzig, 1810.
t Wilde Lecture, Nature, March 12, 1908; ibid. Sept. 6, 1900; Aether and Matter, 

p. 288. Cf. also Kelvin, Fortnightly Review, 1892, p. 313.
t The abundance of life. Proc. Roy. Dublin Hoc. vii, 1890; Scientific Essays, 

1915, p. 60 seq.
§ That mechanism has its share ip the scheme of nature no philosopher has 

denied. Aristotle (or whosoever wrote the De Mundo) goes so far as to assert that 
in the most mechanical operations of nature we behold some of the divinest 
attributes of God.

|| J. H. Fr. Papillon, Histoire de la philosophic moderne dans ses rapports avec le 
developpement des sciences de la nature, I, p. 300, 1876.

Physical science and philosophy stand side by side, and one 
upholds rhe other. Without something of the strength of physics 
philosophy would be weak; and without something of philosophy’s 
wealth physical science would be poor. “Rien ne retirera du tissu 
de la science les fils d’or que la main du philosophe y a introduits||.” 
But there are fields where each, for a while at least, must work alone; 
and where physical science reaches its limitations physical science 
itself must help us to discover. Meanwhile the appropriate and 
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Legitimate postulate of the physicist, in approaching the physical 
j problems of the living body, is that with these physical phenomena 
i no alien influence interferes. But the postulate, though it is certainly 
Legitimate, and though it is the proper and necessary prelude to 
sscientific enquiry, may some day be proven to be untrue; and its 
ddisproof will not be to the physicist’s confusion, but will come as 
Ihis reward. In dealing with forms which are so concomitant with 
Life that they are seemingly controlled by life, it is in no spirit of 
aarrogant assertiveness if the physicist begins his argument, after the 
ffashion of a most illustrious exemplar, with the old formula of 
sscholastic challenge: An Vita sit? Dico quod non.

The terms Growth and Form, which make up the title of this book, 
aare to be understood, as I need hardly say, in their relation to the 
sstudy of organisms. We want to see how, in some cases at least, 
tthe forms of living things, and of the parts of living things, can be 
eexplained by physical considerations, and to realise that in general 
nno organic forms exist save such as are in conformity with physical 
aand mathematical laws. And while growth is a somewhat vague 
vword for a very complex matter, which may depend on various 
tthings, from simple imbibition of water to the complicated results 
oof the chemistry of nutrition, it deserves to be studied in relation 
tto form: whether it proceed by simple increase of size without obvious 
ailteration of form, or whether it so proceed as to bring about a 
g/radual change of form and the slow development of a more or less 
ccomplicated structure.

In the Newtonian language* of elementary physics, force is 
rcecognised by its action in producing or in changing motion, or 
im preventing change of motion or in maintaining rest. When we 
dleal with matter in the concrete, force does not, strictly speaking, 
esnter into the question, for force, unlike matter, has no independent 
objective existence. It is energy in its various forms, known or 
uinknown, that acts upon matter. But when we abstract our 
t thoughts from the material to its form, or from the thing moved to 
itts motions, when we deal with the subjective conceptions of form,

* It is neither unnecessary nor superfluous to explain that physics is passing 
thhrough an empirical phase into a phase of pure mathematical reasoning. But 
wvhen we use physics to interpret and elucidate our biology, it is the old-fashioned 
ermpirical physics which we endeavour, and are alone able, to apply.
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or movement, or the movements that change of form implies, then 
Force is the appropriate term for our conception of the causes by 
which these forms and changes of form are brought about. When 
we use the term force, we use it, as the physicist always does, for 
the sake of brevity, using a symbol for the magnitude and direction 
of an action in reference to the symbol or diagram of a material 
thing. It is a term as subjective and symbolic as form itself, and 
so is used appropriately in connection therewith.

The form, then, of any portion of matter, whether it be living 
or dead, and the changes of form which are apparent in its movements 
and in its growth, may in all cases alike be described as due to 
the action of force. In short, the form of an object is a “diagram 
of forces,” in this sense, at least, that from it we can judge of or 
deduce the forces that are acting or have acted upon it: in this 
strict and particular sense, it is a diagram—in the case of a solid, 
of the forces which have been impressed upon it when its conformation 
was produced, together with those which enable it to retain its 
conformation; in the case of a Equid (or of a gas) of the forces which 
are for the moment acting on it to restrain or balance its own 
inherent mobility. In an organism, great or small, it is not merely 
the nature of the motions of the living substance which we must 
interpret in terms of force (according to kinetics), but also the 
conformation of the organism itself, whose permanence or equilibrium 
is explained by the interaction or balance of forces, as described in 
statics.

If we look at the living cell of an Amoeba or a Spirogyra, we 
see a something which exhibits certain active movements, and a 
certain fluctuating, or more or less lasting, form; and its form at 
a given moment, just like its motions, is to be investigated by the 
help of physical methods, and explained by the invocation of the 
mathematical conception of force.

Now the state, including the shape or form, of a portion of matter 
is the resultant of a number of forces, which represent or symbolise 
the manifestations of various kinds of energy; and it is obvious, 
accordingly, that a great part of physical science must be under
stood or taken for granted as the necessary preliminary to the 
discussion on which we are engaged. But we may at least try to 
indicate, very briefly, the nature of the principal forces and the



OF MATTER AND ENERGY 17i]l 
principal properties of matter with which our subject obliges us to 
dleal. Let us imagine, for instance, the case of a so-called “simple” 
organism, such as Amoeba; and if our short list of its physical 
properties and conditions be helpful to our further discussion, we 
meed not consider how far it be complete or adequate from the 
wvider physical point of view*.

This portion of matter, then, is kept together by the inter- 
nnolecular force of cohesion; in the movements of its particles 
relatively to one another, and in its own movements relative to 
aid jacent matter, it meets with the opposing force of friction— 
without the help of which its creeping movements could not be 
peerformed. It is acted on by gravity, and this force tends (though 
sllightly, owing to the Amoeba’s small mass, and to the small 
diifference between its density and that of the surrounding fluid) 
to) flatten it down upon the solid substance on which it may be 
crreeping. Our Amoeba tends, in the next place, to be deformed 
b}y any pressure from outside, even though slight, which may be 
applied to it, and this circumstance shews it to consist of matter 

' ini a fluid, or at least semi-fluid, state: which state is further 
imdicated when we observe streaming or current motions in its 
imterior. Like other fluid bodies, its surfacef, whatsoever other 
smbstance—gas, liquid or solid—it be in contact with, and in varying 
dcegree according to the nature of that adjacent substance, is the 
sesat of molecular force exhibiting itself as a surface-tension, from 
thie action of which many important consequences follow, greatly 
afifecting the form of the fluid surface.

While the protoplasm  J of the Amoeba reacts to the slightest 
prcessure, and tends to “flow,” and while we therefore speak of it

** With the special and important properties of colloidal matter we are, for 
thee time being, not concerned.

If Whether an animal cell has a membrane, or only a pellicle or zona limitans, 
wais once deemed of great importance, and played a big part in the early contro- 
verrsies between the cell-theory of Schwann and the protoplasma-theory of Max 
Sclhultze and others. Dujardin came near the truth when he said, somewhat 
naiively, “en niant la presence d’un tegument propre, je ne pretends pas du tout 
nieir 1’existence d’une surface.”

ft The word protoplasm is used here in its most general sense, as vaguely as when 
Huixley spoke of it as the “physical basis of life.” Its many changes and shades 

iX' of imeaning in early years are discussed by Van Bambeke in the Bull. Soc. Beige 
de .Microscopic, xxu, pp. 1-16, 1896.

tgf 2
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as a fluid*,  it is evidently far less mobile than such a fluid (for 
instance) as water, but is rather like treacle in its slow creeping 
movements as it changes its shape in response fo force. Such fluids 
are said to have a high viscosity, and this viscosity obviously acts 
in the way of resisting change of form, or in other words of 
retarding the effects of any disturbing action of force. When the 
viscous fluid is capable of being drawn out into fine threads, a 
property in which we know that some Amoebae differ greatly from 
others, we say that the fluid is also viscid, or exhibits viscidity. 
Again, not by virtue of our Amoeba being liquid, but at the same 
time in vastly greater measure than if it were a solid (though far less 
rapidly than if it were a gas), a process of molecular diffusion is 
constantly going on within its substance, by which its particles 
interchange their places within the mass, while surrounding fluids, 
gases and solids in solution diffuse into and out of it. In so far 
as the outer wall of the cell is different in character from the 
interior, whether it be a mere pellicle as in Amoeba or a firm 
cell-wall as in Protococcus, the diffusion which takes place through 
this wall is sometimes distinguished under the term osmosis.

* One of the first statements which Dujardin made about protoplasm (or, as 
he called it, sarcode) was that it was not a fluid; and he relied greatly on this fact 
to shew that it was a living, or an organised, structure.

Within the cell, chemical fort es are at work, and so also in all 
probability (to judge by analogy) are electrical forces; and the 
organism reacts also to forces from without, that have their origin 
in chemical, electrical and thermal influences. The processes of 
diffusion and of chemical activity within the cell result, by the 
drawing in of water, salts, and food-material with or without 
chemical transformation into protoplasm, in growth, and this com
plex phenomenon we shall usually, without discussing its nature 
and origin, describe and picture as a force. Indeed we shall 
manifestly be inclined to use the term growth in two senses, just 
indeed as we do in the case of attraction or gravitation, on the one 
hand as a process, and on the other as a force.

In the phenomena of cell-division, in the attractions or repulsions 
of the parts of the dividing nucleus, and in the “ caryokinetic ” 
figures which appear in connection with it, we seem to see in 
operation forces and the effects of forces which have, to say the
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leeast of it, a close analogy with kncwn physical phenomena: and 
tco this matter we shall presently return. But though they resemble 
krnown physical phenomena, their nature is still the subject of much 
di ubiety and discussion, and neither the forms produced nor the 
fcorces at work can yet be satisfactorily and simply explained. We 
rniay readily admit then, that, besides phenomena which are obviously 
Physical in their nature, there are actions visible as well as invisible 
tsaking place within living cells which our knowledge does not permit 
uis to ascribe with certainty to any known physical force; and it 
miay or may not be that these phenomena will yield in time to the 
miethods of physical investigation. Whether they do or no, it is 
pilain that we have no clear rule or guidance as to what is “vital” 
aind what is not; the whole assemblage of so-called vital phenomena, 
oir properties of the organism, cannot be clearly classified into those 
tlhat are physical in origin and those that are sui generis and peculiar 
tco living things. All we can do meanwhile is to analyse, bit by bit, 
tlhose parts of the whole to which the ordinary laws of the physical 
fcorces more or less obviously and clearly and indubitably apply.

But even the ordinary laws of the physical forces are by no means 
siimple and plain. In the winding up of a clock (so Kelvin once 
saiid), and in the properties of matter which it involves, there is 
einough and more than enough of mystery for our limited under- 
sttanding: “a watchspring is much farther beyond our understanding 
tlhan a gaseous nebula.” We learn and learn, but never know all, 
albout the smallest, humblest thing. So said St Bonaventure: “ Si per 
miultos annos viveres, adhuc naturam unius festucae seu muscae seu 
miinimae creaturae de mundo ad plenum cognoscere non valeres*.” 
T'here is a certain fascination in such ignorance; and we learn (like 
tlhe Abbe Galiani) without discouragement that Science is “plutot 
dcestine a etudier qu’a connaitre, a chercher qu’a trouver la verite.”

Morphology is not only a study of material things and of the forms 
off material things, but has its dynamical aspect, under which we 
dceal with the interpretation, in terms of force, of the operations of 
Einergyf. And here it is well worth while to remark that, in dealing

* Op. N, p. 541; cit. E. Gilson.
t This is a great theme. Boltzmann, writing in 1886 on the second law of 

thiermodynamics, declared that available energy was the main object at stake 
in the struggle for existence and the evolution of the world. Cf. Lotka, The 
emergetics of evolution, Proc. Nat. Acad. Sci. 1922, p. 147.

2 2
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with the facts of embryology or the phenomena of inheritance, the 
common language of the books seems to deal too much with the 
material elements concerned, as the causes of development, rf 
variation or of hereditary transmission. Matter as such produces 
nothing, changes nothing, does nothing; and however convenient 
it may afterwards be to abbreviate our nomenclature and our 
descriptions, we must most carefully realise in the outset that the 
spermatozoon, the nucleus, the chromosomes or the germ-plasma 
can never as matter alone, but only as seats of energy and as 
centres of force. And this is but an adaptation (in the light, cr 
rather in the conventional symbolism, of modern science) of the ol 1 
saying of the philosopher: dpyf] yap g </>vcrLs paXXov rfp vX-qs.

Since this book was written, some five and twenty years ago, 
certain great physico-mathematical concepts have greatly changed. 
Newtonian mechanics and Newtonian concepts of space and time 
are found unsuitable, even untenable or invalid, for the all but 
infinitely great and the all but infinitely small. The very idea of 
physical causation is said to be illusory, and the physics of the 
atom and the electron, and of the quantum theory, are to be 
elucidated by the laws of probability rather than by the concept 
of causation and its effects. But the orders of magnitude, whether 
of space or time, within which these new concepts become useful, 
or hold true, lie far away. We distinguish, and can never help 
distinguishing, between the things which are of our own scale and 
order, to which our minds are accustomed and our senses attuned, 
and those remote phenomena which ordinary standards fail to 
measure, in regions where (as Robert Louis Stevenson said) there 
is no habitable city for the mind of man.

It is no wonder if new methods, new laws, new words, new modes 
of thought are needed when we make bold to contemplate a Universe 
within which all Newton’s is but a speck. But the world of the 
living, wide as it may be, is bounded by a familiar horizon within 
which our thoughts and senses are at home, our scales of time and 
magnitude suffice, and the Natural Philosophy of Newton and 
Galileo rests secure.

We start, like Aristotle, with our own stock-in-trade of know
ledge: dpKTcov airb raw ppiv yvatpipatv. And only when we are 
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steeped to the marrow (as Henri Poincare once said) in the old laws, 
and in no danger of forgetting them, may we be allowed to learn 
how they have their remote but subtle limitations, and cease afar 
off to be more than approximately true*. Kant’s axiom of causality, 
that it is denknotwendig—indispensable for thought- remains true 
however physical science may change. His later aphorism, that all 
changes take place subject to- the law which links cause and effect 
together—“alle Veranderungen geschehen nach dem Gesetz der 
Verkniipfung von Ursache und Wirkung”— is still an axiom d priori, 
independent of experience: for experience itself depends upon its 
truth f.

* So Max Planck himself says somewhere: “In my opinion the teaching of 
mechanics will still have to begin with Newtonian force, just as optics begins in 
the sensation of colour and thermodynamics with the sensation of warmth, 
despite the fact that a more precise basis is substituted later on.”

t “Weil er [der Grundsatz dasKausalverhaltnisses] selbst der grund der Moglich- 
keit einer solchen Erfahrung ist”: Kritik d. reinen Vernunft, ed. Odicke, 1889, p. 221. 
Cf. also G. W. Kellner, Die Kausalitat in der Physik, Ztschr. f. Physik, lxiv, pp. 568- 
580, 1930.



CHAPTER II

ON MAGNITUDE

To terms of magnitude, and of direction, must we refer all our 
conceptions of Form. For the form of an object is defined when we 
know its magnitude, actual or relative, in various directions; and 
Growth involves the same concepts of magnitude and direction, 
related to the further concept, or “dimension,” of Time. Before 
we proceed to the consideration of specific form, it will be well to 
consider certain general phenomena of spatial magnitude, or of the 
extension of a body in the several dimensions of space. •

We are taught by elementary mathematics—and by Archimedes 
himself—that in similar figures the surface increases as the square, 
and the volume as the cube, of the linear dimensions. If we take 
the simple case of a sphere, with radius r, the area of its surface is 
equal to 4-7772, and its volume to ^r3; from which it follows that the 
ratio of its volume to surface, or V/S, is ^r. That is to say, V/S 
varies as r; or, in other words, the larger the sphere by so much the 
greater will be its volume (or its mass, if it be uniformly dense 
throughout) in comparison with its superficial area. And, taking 
L to represent any linear dimension, we may write the general 
equations in the form

S oc L2, V oc L3,
or S = kL3, and V = k'L3,
where k, k', are “factors of proportion,”

, v T V k T TZTand - cc U, or L = KL.O O K,
So, in Lilliput, “His Majesty’s Ministers, finding that Gulliver’s 

stature exceeded theirs in the proportion of twelve to one, concluded 
from the similarity of their bodies that his must contain at least 
1728 [or 123] of theirs, and must needs be rationed accordingly*.”

* Likewise Gulliver had a whole Lilliputian hogshead for his half-pint of wine: 
in the due proportion of 1728 half-pints, or 108 gallons, equal to one pipe or
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From these elementary principles a great many consequences 
ffollow, all more or less interesting, and some of them of great 
iimportance. In the first place, though growth in length (let us say) 
amd growth in volume (which is usually tantamount to mass or 
weight) are parts of one and the same process or phenomenon, the 
cone attracts our attention by its increase very much more than the 
cother. For instance a fish, in doubling its length, multiplies its 
weight no less than eight times; and it all but doubles its weight in 
growing from four inches long to five. ,

In the second place, we see that an understanding of the correla
teion between length and weight in any particular species of animal, 
im other words a determination of k in the formula W = k.L3, 
emables iis at any time to translate the one magnitude into the other, 
amd (so to speak) to weigh the animal with a measuring-rod; this, 
hiowever, being always subject to the condition that the animal shall 
im no way have altered its form, nor its specific gravity. That its 
sipecific gravity or density should materially or rapidly alter is not 
vrery likely; but as long as growth lasts changes of form, even 
tehough inappreciable to the eye, are apt and likely to occur. Now 
weighing is a far easier and far more accurate operation than 
nneasuring; and the measurements which would reveal slight and 
otherwise imperceptible changes in the form of a fish—slight relative 
dlifferences between length, breadth and depth, for instance—would 
meed to be very delicate indeed. But if we can make fairly accurate 
dieterminations of the length, which is much the easiest linear 
diimension to measure, and correlate it with the weight, then the 
value of k, whether it varies or remains constant, will tell us at once 
w/hether there has or has not been a tendency to alteration in the 
g(eneral form, or, in other words, a difference in the rates of growth 
im different directions. To this subject we shall return, when we 
croine to consider more particularly the phenomenon of rate of growth.

dojuble-hogshead. But Gilbert White of Selborne could not see what was plain 
to* the Lilliputians; for finding that a certain little long-legged bird, the stilt, 
wfeighed 4| oz. and had legs 8 in. long, he thought that a flamingo, weighing 4 lbs., 
shiould have legs 10 ft. long, to be in the same proportion as the stilt’s. But 
it is obvious to us that, as the weights of the two birds are as 1 : 15, so the legs 
(oir other linear dimensions) should be as the cube-roots of these numbers, or 
nearly as 1 : 2J. And on this scale the flamingo’s legs should be, as they actually 
arre, about 20 in. long.
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We are accustomed to think of magnitude as a purely relatve 
matter. We call a thing big or little with reference to what it is 
wont to be, as when we speak of a small elephant or a large rat; aid 
we are apt accordingly to suppose that size makes no other or mere 
essential difference, and that Lilliput and Brobdingnag*  are ill 
alike, according as we look at them through one end of the glss 
or the other. Gulliver himself declared, in Brobdingnag, tht 
“undoubtedly philosophers are in the right when they tell us tht 
nothing is great and little otherwise than by comparison”: aid 
Oliver Heaviside used to say, in like manner, that there is 10 
absolute scale of size in the Universe, for it is boundless towads 
the great and also boundless towards the small. It is of the very 
essence of the Newtonian philosophy that we should be able to 
extend our concepts and deductions from the one extreme of magii- 
tude to the other; and Sir John Herschel said that “the student 
must lay his account to finding the distinction of great and litle 
altogether annihilated in nature.”

* Swift paid close attention to the arithmetic of magnitude, but none tc its 
physical aspect. See De Morgan, on Lilliput, in N. and Q. (2), vi, pp. 123- 25, 
1858. On relative magnitude see also Berkeley, in his Essay towards a New Thory 
of Vision, 1709.

All this is true of number, and of relative magnitude. The Univese 
has its endless gamut of great and small, of near and far, of maiy 
and few. Nevertheless, in physical science the scale of absolite 
magnitude becomes a very real and important thing; and a ibw 
and deeper interest arises out of the changing ratio of dimensims 
when we come to consider the inevitable changes of physical rda- 
tions with which it is bound up. The effect of scale depends noton 
a thing in itself, but in relation to its whole environment or milim; 
it is in conformity with the thing’s “place in Nature,” its field of 
action and reaction in the Universe. Everywhere Nature woks 
true to scale, and everything has its proper size accordingly. Ken 
and trees, birds and fishes, stars and star-systems, have tleir 
appropriate dimensions, and their more or less narrow range of 
absolute magnitudes. The scale of human observation and 3X- 
perience lies within the narrow bounds of inches, feet or miles, all 
measured in terms drawn from our own selves or our own doiigs. 
Scales which include light-years, parsecs, Angstrom units, or atonic 
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and sub-atomic magnitudes, belong to other orders of things and 
other principles of cognition.

A common effect of scale is due to the fact that, of the physical 
forces, some act either directly at the surface of a body, or otherwise 
in proportion to its surface or area; while others, and above all 
gravity, act on all particles, internal and external alike, and exert 
a force which is proportional to the mass, and so usually to the 
volume of the bodv.I

A simple case is that of two similar weights hung by two similar 
wires. The forces exerted by the weights are proportional to their 
masses, \nd these to their volumes, and so to the cubes of the 
several linear dimensions, including the diameters of the wires. 
But the areas of cross-section of the wires are as the squares of the 
said linear dimensions; therefore the stresses in the wires -per unit 
area are not identical, but increase in the ratio of the linear dimen
sions, and the larger the structure the more severe the strain becomes:

Force P 1
Area'

and the less the wires are capable of supporting it.
In short, it often happens that of the forces in action in a system 

some vary as one power and some as another, of the masses, distances 
or other magnitudes involved; the “dimensions” remain the same 
in our equations of equilibrium, but the relative values alter with 
the scale. This is known as the “Principle of Similitude,” or of 
dynamical similarity, and it and its consequences are of great 
importance. In a handful of matter cohesion, capillarity, chemical 
affinity, electric charge are all potent; across the solar system 
gravitation * rules supreme; in the mysterious region of the nebulae, 
it may haply be that gravitation grows negligible again.

To come back to homelier things, the strength of an iron girder 
obviously varies with the cross-section of its members, and each 
cross-section varies as the square of a linear dimension; but the 
weight of the whole structure varies as the cube of its linear dimen-

* In the early days of the theory of gravitation, it was deemed especially 
remarkable that the action of gravity “is proportional to the quantity of solid 
matter in bodies, and not to their surfaces as is usual in mechanical causes; this 
power, therefore, seemx to surpass mere mechanism” (Colin Maclaurin, on Sir 
Isaac Newton's Philosophical Discoveries, iv, 9).
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sions. It follows at once that, if we build two bridges geometrically 
similar, the larger is the weaker of the two*, and is so in the ratio 
of their linear dimensions. It was elementary engineering experience 
such as this that led Herbert Spencer to apply the principle of 
similitude to biologyj\

But here, before we go further, let us take careful note that 
increased weakness is no necessary concomitant of increasing size. 
There are exceptions to the rule, in those exceptional cases where w^ 
have to deal ortly with forces which vary merely with the area on 
which they impinge. If in a big and a little ship two similar masts 
carry two similar sails, the two sails will be similarly strained, and 
equally stressed at homologous places, and alike suitable for resisting 
the force of the same wind. Two similar umbrellas, however 
differing in size, will serve alike in the same weather; and the 
expanse (though not the leverage) of a bird’s wing may be enlarged 
with little alteration.

The principle of similitude had been admirably applied in a few 
clear instances by Lesage J, a celebrated eighteenth-century physician, 
in an unfinished and unpublished work. Lesage argued, for example, 
that the larger ratio of surface to mass in a small animal would lead 
to excessive transpiration, were the skin as “porous” as our own; 
and that we may thus account for the hardened or thickened skins 
of insects and many other small terrestrial animals. Again, since 
the weight of a fruit increases as the cube of its linear dimensions, 
while the strength of the stalk increases as the square, it follows 
that the stalk must needs grow out of apparent due proportion to 
the fruit: or, alternatively, that tall trees should not bear large

* The subject is treated from the engineer’s point of view by Prof. James 
Thomson, Comparison of similar structures as to elasticity, strength and stability, 
Coll. Papers, 1912, pp. 361-372, and Trans. Inst. Engineers, Scotland, 1876; also 
by Prof. A. Barr, ibid. 1899. See also Rayleigh, Nature, April 22, 1915; Sir G. 
Greenhill, On mechanical similitude, Math. Gaz. March 1916, Coll. Works, vi, 
p. 300. For a mathematical account, see (e.g.) P. W. Bridgeman, Dimensional 
Analysis (2nd ed.), 1931, or F. W. Lanchester, The Theory of Dimensions, 1936.

t Herbert Spencer, The form of the earth, etc., Phil. Mag. xxx, pp. 194-6, 
1847; also Principles of Biology, pt. n, p. 123 seq., 1864. .

J See Pierre Prevost, Notices de la vie et des Merits de Lesage, 1805. George 
Louis Lesage, born at Geneva in 1724, devoted sixty-three years of a life of eighty 
to a mechanical theory of gravitation; see W. Thomson (Lord Kelvin), On the 
ultramundane corpuscles of Lesage, Proc. R.S.E. vn, pp. 577-589,1872; Phil. Mag. 
xlv, pp. 321-345, 1873; and Clerk Maxwell, art. “Atom,” Encycl. Brit. (9), p. 46. 
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fruit on slender branches, and that melons and pumpkins must lie 
upon the ground. And yet again, that in quadrupeds a large head 
must be supported on a neck which is either excessively thick and 
strong like a bull’s, or very short like an elephant’s*.

But it was Galileo who, wellnigh three hundred years ago, had 
first laid down this general principle of similitude; and he did so 
with the utmost possible clearness, and with a great wealth of illustra
tion drawn from structures living and deadf. He said that if we 
tried building ships, palaces or temples of enormous size, yards, 
beams and bolts would cease to hold together; nor can Nature 
grow a tree nor construct an animal beyond a certain size, while 
retaining the proportions and employing the materials which suffice 
in the case of a smaller structure J. The thing will fall to pieces of 
its own weight unless we either change its relative proportions, which 
will at length cause it to become clumsy, monstrous and inefficient, 
or else we must find new material, harder and stronger than was 
used before. Both processes are familiar to us in Nature and in 
art, and practical applications, undreamed of by Galileo, meet us at 
every turn in this modern age of cement and steel §.

Again, as Galileo was also careful to explain, besides the questions 
of pure stress and strain, of the strength of muscles to lift an 
increasing weight or of bones to resist its crushing stress, we have 
the important question of bending foments. This enters, more or 
less, into our whole range of problems; it affects the whole form of 
the skeleton, and sets a limit to the height of a tall tree||.

* Cf. W. Walton, On the debility of large animals and trees. Quart. Journ. 
of Math, ix, pp. 179-184, 1868; also L. J. Henderson, On volume in Biology, 
Proc. Amer. Acad. Sci. n, pp. 654-658, 1916; etc.

f Discorsi e Dimostrazioni matematicho, iniorno d due nuove scienze attenenti 
alia Mecanica ed ai Muovimenti Locale appresso gli Elzevirii, 1638; Opere, 
ed. Favaro, vin, p. 169 seq. Transl. by Henry Crew and A. de Salvio, 1914, p. 130.

t So Werner remarked that Michael Angelo and Bramanti could not have built 
of gypsum at Paris on the scale they built of travertin at Rome.

§ The Chrysler and Empire State Buildings, the latter 1048 ft. high to the foot 
of its 200 ft. “mooring mast,” are the last word, at present, in this brobdingnagian 
architecture.
■ || It was Euler and Lagrange who first shewed (about 1776-1778) that a column 
of a certain height would merely be compressed, but one of a greater height would 
be bent by its own weight. See Euler, De altitudine columnarum et c., Acta Acad. 
Sci. Imp. Petropol. YllS, pp. 163-193; G. Greenhill, Determination of the greatest 
height to which a tree of given proportions can grow, Cambr. Phil. Soc. Proc, rv, 
p. 65, 1881, and Chree, ibid, vn, 1892.



28 ON MAGNITUDE [ch.

We learn in elementary mechanics the simple case of (wo similar 
beams, supported at both ends and carrying no other weight than 
their own. Within the limits of their elasticity they tend to be 
deflected, or to sag downwards, in proportion to the squares of their 
linear dimensions; if a match-stick be two inches long and a similar 
beam six feet (or 36 times as long), the latter will sag under its own 
weight thirteen hundred times as much as the other. To counteract 
this tendency, as the size of an animal increases, the limbs tend to 
become thicker and shorter and the whole skeleton bulkier and 
heavier; bones make up some 8 per cent, of the body of mouse or wren, 
13 or 14 per cent, of goose or dog, and 17 or 18 per cent, of the body 
of a man. Elephant and hippopotamus have grown clumsy as well as 
big, and the elk is of necessity less graceful than the gazelle. It is of 
high interest, on the other hand, to observe how little the skeletal 
proportions differ in a little porpoise and a great whale, even in the 
limbs and limb-bones; for the whole influence of gravity has become 
negligible, or nearly so, in both of these.

In the problem of the tall tree we have to determine the point 
at which the tree will begin to bend under its own weight if it be 
ever so little displaced from the perpendicular*. In such an 
investigation we have to make certain assumptions -for instance 
that the trunk tapers uniformly, and that the sectional area of the 
branches varies according to some definite law, or (as Ruskin 
assumed) tends to be constant in any horizontal plane; and the 
mathematical treatment is apt to be somewhat difficult. But 
Greenhill shewed, on such assumptions as the above, that a certain 
British Columbian pine-tree, of which the Kew flag-staff, which is 
221 ft. high and 21 inches in diameter at the base, was made, could 
not possibly, by theory, have grown to more than about 300 ft. It 
is very curious that Galileo had suggested precisely the same height 
(ducento braccie alia) as the utmost limit of the altitude of a tree. 
In general, as Greenhill shewed, the diameter of a tall homogeneous 
body must increase as the power 3/2 of its height, which accounts 
for the slender proportions of young trees compared with the squat

* In like manner the wheat-straw bends over under the weight of the loaded 
ear, and the cat’s tail bends over when held erect—not because they “possess 
flexibility,” but because they outstrip the dimensions within which stable equi
librium is possible in a vertical position. The kitten’s tail, on the other hand, 
stands up spiky and straight.
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or stunted appearance of old and large ones*.  In short, as Goethe 
says in Dichtung und Wahrheit, “ Es ist dafiir gesorgt dass die Baume 
nicht in den Himmel wachsen.”

* The ste m of the giant bamboo may attain a height of 60 metres while not more 
than about 40 cm. in diameter near its base, which dimensions fall not far short 
of the theoretical limits; A. J. Ewart, Phil. Trans, cxcviu, p. 71, 1906.

f Cf. (int. al.) T. Petch, On buttress tree-roots, A nn. R. Bot. Garden, Peradenyia, 
xi, pp. 277-285, 1930. Also an interesting paper by James Macdonald, on The 
form of coniferous trees, Forestry, vi, 1 and 2, 1931,2.

t Trans. Zool. Soc. iv, p. 27, 1850.

But the tapering pine-tree is but a special case of a wider problem. 
The oak does not grow so tall as the pine-tree, but it carries a heavier 
load, and its boll, broad-based upon its spreading roots, shews a 
different contour. Smeaton took it for the pattern of his lighthouse, 
and Eiffel built his great tree of steel, a thousand feet high, to a 
similar but a stricter plan. Here the profile of tower or tree follows, 
or tends to follow, a logarithmic curve, giving equal strength 
throughout, according to a principle which we shall have occasion 
to discuss later on, when we come to treat of form and mechanical 
efficiency in the skeletons of animals. In the tree, moreover, 
anchoring roots form powerful wind-struts, and are most de
veloped opposite to the direction of the prevailing winds; for the 
lifetime of a tree is affected by the frequency of storms, and its 
strength is related to the wind-pressure which it must needs with- 
standf.

Among animals we see, without the help of mathematics or of 
physics, how small birds and beasts are quick and agile, how slower 
and sedater movements come with larger size, and how exaggerated 
bulk brings with it a certain clumsiness, a certain inefficiency, an 
element of risk and hazard, a preponderance of disadvantage. The 
case was well put by Owen, in a passage which has an interest of 
its own as a premonition, somewhat like De Candolle's, of the 
“struggle for existence.” Owen wrote as follows J: “ In proportion 
to the bulk of a species is the difficulty of the contest which, as a 
living organised whole, the individual of each species has to maintain 
against the surrounding agencies that are ever tending to dissolve 
the vital bond, and subjugate the living matter to the ordinary 
chemical and physical forces. Any changes, therefore, in such 
external conditions as a species may have been originally adapted 
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to exist in, will militate against that existence in a degree 
proportionate, perhaps in a geometrical ratio, to the bulk of the 
species. If a dry season be greatly prolonged, the large mammal 
will suffer from the drought sooner than the small one; if any 
alteration of climate affect the quantity of vegetable food, the 
bulky Herbivore will be the first to feel the effects of stinted 
nourishment.”

But the principle of Galileo carries us further and along more 
certain lines. The strength of a muscle, like that of a rope or 
girder, varies with its cross-section; and the resistance of a bone 
to a crushing stress varies, again like our girder, with its cross
section. But in a terrestrial animal the weight which tends to 
crush its limbs, or which its muscles have to move, varies as the 
cube of its linear dimensions; and so, to the possible magnitude 
of an animal, living under the direct action of gravity, there is a 
definite limit set. The elephant, in the dimensions of its limb-bones, 
is already shewing signs of a tendency to disproportionate thickness 
as compared witji the smaller mammals; its movements are in 
many ways hampered and its agility diminished: it is already 
tending towards the maximal limit of size which the physical forces 
permit*.  The spindleshanks of gnat or daddy long-legs have their 
own factor of safety, conditional on the creature’s exiguous bulk 
and weight; for after their own fashion even these small creatures 
tend towards an inevitable limitation of their natural size. But, as 
Galileo also saw, if the animal be wholly immersed in water like the 
whale, or if it be partly so, as was probably the case with the giant 
reptiles of the mesozoic age, then the xveight is counterpoised to 
the extent of an equivalent volume of water, and is completely 
counterpoised if the density of the animal’s body, with the included 
air, be identical (as a whale’s very nearly is) with that of the water 
aroundf. Under these circumstances there is no longer the same 
physical barrier to the indefinite growth of the animal. Indeed, in the 
case of the aquatic animal, there is, as Herbert Spencer pointed out, 

* Cf. A. Rauber, Galileo uber Knochenformen, Morphol. Jahrb. vn, p. 327, 1882.
t Cf. W. S. Wall, A New Sperm Whale etc., Sydney, 1851, p. 64: “As for 

the immense size of Cetacea, it evidently proceeds from their buoyancy in the 
medium in which they live, and their being enabled thus to counteract the force of 
gravity.”
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a distinct advantage, in that the larger it grows the greater is its 
speed. For its available energy depends on the mass of its muscles, 
while its motion through the water is opposed, not by gravity, but 
by “skin-friction,” which increases only as the square of the linear 
dimensions*: whence, other things being equal, the bigger the ship 
or the bigger the fish the faster it tends to go, but only in the ratio 
of the square root of the increasing length. For the velocity (F) 
which the fish attains depends on the work (IF) it can do and the 
resistance (R) it must overcome. Now we have seen that the 
dimensions of W are I3, and of R are Z2; and by elementary mechanics

W
W cc RV2, or F2oc^.

2b

I3
Therefore F2 oc 7 = I, and F oc Vl.Is

This is what is known as Fronde's Law, of the correspondence 
of speeds—a simple and most elegant instance of “dimensional 
theory f.”

But there is often another side to these questions, which makes 
them too complicated to answer in a word. For instance, the work 
(per stroke) of which two similar engines are capable should vary as 
the cubes of their linear dimensions, for it varies on the one hand 
with the area of the piston, and on the other with the length of the 
stroke; so is it likewise in the animal, where the corresponding 
ratio depends on the cross-section of the muscle, and on the distance 
through which it contracts. But in two similar engines, the available 
horse-power varies as the square of the linear dimensions, and not 
as the cube; and this for the reason that the actual energy developed 
depends on the heating-surface of the boiler£. So likewise must

* We are neglecting "drag*’ or “head-resistance,” which, increasing as the cube 
of the speed, is a formidable obstacle to an unstreamlined body. But the perfect 
streamlining of whale or fish or bird lets the surrounding air or water behave like 
a perfect fluid, gives rise to no “surface of discontinuity,” and the creature passes 
through it without recoil or turbulence. Froude reckoned skin-friction, or surface
resistance, as equal to that of a plane as long as the vessel’s water-line, and of area 
equal to that of the wetted surface of the vessel.

f Though, as Lanchester says, the great designer “was not hampered by a 
knowledge of the theory of dimensions.”

J The analogy is not a very strict or complete one. We are not taking account, 
for instance, of the thickness of the boiler-plates. 
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there be a similar tendency among animals for the rate of supply 
of kinetic energy to vary with the surface of the lung, that is to say 
(other things being equal) with the square, of the linear dimensions 
of the animal; which means that, caeleris pan bus, the small animal 
is stronger (having more power per unit weight) than a large one. 
We may of course (departing from the condition of similarity) increase 
the heating-surface of the boiler, by means of an internal system of 
tubes, without increasing its outward dimensions, and in this very 
way Nature increases the respiratory surface of a lung by a complex 
system of branching tubes and minute air-cells; but nevertheless in 
two similar and closely related animals, as also in two steam-engines 
of the same make, the law is bound to hold that the rate of working 
tends to vary with the square of the linear dimensions, according to 
Froude’s law of steamship comparison. In the case of a very large 
ship, built for speed, the difficulty is got over by increasing the size 
and number of the boilers, till the ratio between boiler-room and 
engine-room is far beyond what is required in an ordinary small 
vessel*; but though we find lung-space increased among animals 
where greater rate of working is required, as in general among birds, 
I do not know that it can be shewn to increase, as in the “over- 
boilered” ship, with the size of the animal, and in a ratio which 
outstrips that of the other bodily dimensions. If it be the case then, 
that the working mechanism of the muscles should be able to exert 
a force proportionate to the cube of the linear bodily dimensions,

♦ Let L be the length, S the (wetted) surface, T the tonnage, D the displacement 
(or volume) of a ship; and let it cross the Atlantic at a speed V. Then, in com
paring two ships, similarly constructed but of different magnitudes, we know that 
L—V2, S = L2—V*, D -T- L?- F8; also R (resistance) =S F2=F6; H (horse
power) = R.V -F7; and the coal (C) necessary for the voyage = H'V Va. That 
is to say, in ordinary engineering language, to increase the speed across the Atlantic 
by 1 per cent, the ship’s length must be increased 2 per cent., her tonnage or 
displacement 6 per cent., her coal-consumption also 6 per cent., her horse-power, 
and therefore her boiler-capacity, 7 per cent. Her bunkers, accordingly, keep 
pace with the enlargement of the ship, but her boilers tend to increase out of 
proportion to the space available. Suppose a steamer 400 ft. long, of 2000 tons, 
2000 H.P., and a speed of 14 knots. The corresponding vessel of 800 ft. long should 
develop a speed of 20 knots (1:2:: 142 : 202), her tonnage would be 16,000, her 
h.p. 25,000 or thereby. Such a vessel would probably be driven by four propellers 
instead of one, each carrying 8000 h.p. See (int. al.) W. J. Millar, On the most 
economical speed to drive a steamer, Proc. Edin. Math. Soc. vii, pp. 27-29. 1889; 
Sir James R. Napier, On the most profitable speed for a fully laden cargo steamer 
for a given voyage, Proc. Phil Soc., Glasgow, vi, pp. 33-38, 1865. 
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while the respiratory mechanism can only supply a store of energy 
at a rate proportional to the square of the said dimensions, the 
singular result ought to follow that, in swimming for instance, the 
larger fish ought to be able to put on a spurt of speed far in excess 
of the smaller one; but the distance travelled by the year’s end 
should be very much alike for both of them. And it should also 
follow that the curve of fatigue is a steeper one, and the staying 
power less, in the smaller than in the larger individual. This is the 
case in long-distance racing, where neither draws far ahead until 
the big winner puts on his big spurt at the end; on which is based 
an aphorism of the turf, that “a good big ’un is better than a good 
little ’un.” For an analogous reason wise men know that in the 
’Varsity boat-race it is prudent and judicious to bet on the heavier 
crew.

Consider again the dynamical problem of the movements of the 
body and the limbs. The work done (IF) in moving a limb, whose 
weight is p, over a distance s, is measured by ps\ p varies as the 
cube of the linear dimensions, and s, in ordinary locomotion, varies 
as the linear dimensions, that is to say as the length of limb:

IF oc ps oc I3 x I = I*.

* MM. Rameaux et Sarrus, Bull. Acad. R. de Medecine, in, pp. 1094-1100, 
1838-39.

TGF

But the work done is limited by the power available, and this 
varies as the mass of the muscles, .or as l3\ and under this limitation 
neither p nor s increase as they would otherwise tend to do. The 
limbs grow shorter, relatively, as the animal grows bigger; and 
spiders, daddy-long-legs and such-like long-limbed creatures attain 
no great size.

Let us consider more closely the actual energies of the body. 
A hundred years ago, in Strasburg, a physiologist and a mathema
tician were studying the temperature of warm-blooded animals*.  
The heat lost must, they said, be proportional to the surface of the 
animal: and the gain must be equal to the loss, since the temperature 
of the body keeps constant. It would seem, therefore, that the 
heat lost by radiation and that gained by oxidation vary both alike, 
as the surface-area, or the square of the linear dimensions, of the 
animal. But this result is paradoxical; for whereas the heat lost 

3
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may well vary as the surface-area, that produced by oxidation 
ought rather to vary as the bulk of the animal: one should vary 
as the square and the other as the cube of the linear dimensions. 
Therefore the ratio of loss to gain, like that of surface to volume, 
ought to increase as the size of the creature diminishes. Another 
physiologist, Carl Bergmann*, took the case a step further. It was he, 
by the way, who first said that the real distinction was not between 
warm-blooded and cold-blooded animals, but between those of 
constant and those of variable temperature: and who coined the 
terms homceothermic and poecilothermic which we use today. He 
was driven to the conclusion that the smaller animal does produce 
more heat (per unit of mass) than the large one, in order to keep 
pace with surface-loss; and that this extra heat-production means 
more energy spent, more food consumed, more work donef. Sim
plified as it thus was, the problem still perplexed the physiologists 
for years after. The tissues of one mammal are much like those of 
another. We can hardly imagine the muscles of a small mammal 
to produce more heat (caeleris paribus) than those of a large; and 
we begin to wonder whether it be not nervous excitation, rather than 
quality of muscular tissue, which determines the rate of oxidation 
and the output of heat. It is evident in certain cases, and may be 
a general rule, that the smaller animals have the bigger brains; 
“plus l’animal est petit,” says M. Charles Richet, “plus il a des 
echanges chimiques actifs, et plus son cerveau est volumineuxj;.” 
That the smaller animal needs more food is certain and obvious. 
The amount of food and oxygen consumed by a small flying insect 
is enormous; and bees and flies and hawkmoths and humming-

* Carl Bergmann, Verhaltnisse der Warmeokonomie der Tiere zu ihrer Grosse, 
Gbllinger Studien, i, pp. 594-708, 1847—a very original paper.

J The metabolic a< tivity of sundry mammals, per 24 hours, has been estimated 
as follows:

Weight (kilo.) Calories per kilo.
Guinea-pig 0-7 223
Rabbit 2 58
Man 70 33
Horse 600 22
Elephant 4<>00 13
Whale 150000 circa 1-7

J Ch. Richet, Recherches de calorimetrie, Arch. de Physiologic (3), vi, pp. 237-291, 
450-497, 1885. Cf. also an interesting historical account by M. Elie le Breton, 
Sur la notion de “masse protoplasmique active”: i. Problfemes poses par la 
signification de la loi des surfaces, ibid. 1906, p. 606.
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birds live on nectar, the richest and most concentrated of foods*.  
Man consumes a fiftieth part of his own weight of food daily, but 
a mouse will eat half its own weight in a day; its rate of living is 
faster, it breeds faster, and old age comes to it much sooner than 
to man. A warm-blooded animal much smaller than a mouse 
becomes an impossibility; it could neither obtain nor yet digest the 
food required to maintain its constant temperature, and hence no 
mammals and no birds are as small as the smallest frogs or fishes. 
The disadvantage of small size is all the greater when loss of heat 
is accelerated by conduction as in the Arctic, or by convection as 
in the sea. The far north is a home of large birds but not of small; 
bears but not mice live through an Arctic winter; the least of the 
dolphins live in warm waters, and there are no small mammals in 
the sea. This principle is sometimes spoken of as Bergmann’s Law.

* Cf. R. A. Davies and G. Fraenkel, The oxygen-consumption of flies during ’ 
flight, JI. Exp. Biol, xvii, pp. 402-407, 1940.

t W. Thomson, On the efficiency of clothing for maintaining temperature, 
Nature, xxix, p. 567, 1884. #

The whole subject of the conservation of heat and the maintenance 
of an all but constant temperature in warm-blooded animals interests 
the physicist and the physiologist alike. It drew Kelvin’s attention 
many years agof, and led him to shew, in a curious paper, how 
larger bodies are kept warm by clothing while smaller are only 
cooled the more. If a current be passed through a thin wire, of 
which part is covered and part is bare, the thin bare part may glow 
with heat, while convection-currents streaming round the covered 
part cool it off and leave it in darkness. The hairy coat of very 
small animals is apt to look thin and meagre, but it may serve them 
better than a shaggier covering.

Leaving aside the question of the supply of energy, and keeping 
to that of the mechanical efficiency of the machine, we may find 
endless biological illustrations of the principle of similitude. All 
through the physiology of locomotion we meet with it in various 
ways: as, for instance, when we see a cockchafer carry a plate many 
times its own weight upon its back, or a flea jump many inches high. 
“A dog,” says Galileo, “could probably carry two or three such 
dogs upon his back; but I believe that a horse could not carry 
even one of his own size.”

3-2
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Such problems were admirably treated by Galileo and Borelli, 
but many writers remained ignorant of their work. Linnaeus 
remarked that if an elephant were as strong in proportion as a 
stag-beetle, it would be. able to pull up rocks and level mountains; 
and Kirby and Spence have a well-known passage directed to shew 
that such powers as have been conferred upon the insect have been 
withheld from the higher animals, for the reason that had these 
latter been endued therewith they would have “caused the early 
desolation of the world*. ”

* Introduction to Entomology, n, p. 190, 1826. Kirby and Spence, like many less 
learned authors, are fond of popular illustrations of the “wonders of Nature,” 
to the neglect of dynamical principles. They suggest that if a white ant were as 
big as a man. its tunnels would be “magnificent cylinders of more than three 
hundred feet in diameter”; and that if a certain noisy Brazilian insect were as 
big as a man, its voice would be heard all the world over, “so that Stentor becomes 
a mute when compared with these insects!” It is an easy consequence of 
anthropomorphism, and hence a common characteristic of fairy-tales, to neglect 
the dynamical and dwell on the geometrical aspect of similarity.

j- The flea is a very clever jumper; he jumps backwards, is stream-lined ac
cordingly, and alights on his two long hind-legs. Cf. G. I. Watson, in Nature, 
21 May 1938.

J That is to say, the available energy of muscle, in ft.-lbs. per lb. of muscle, is 
the same for all animals: a postulate which requires considerable qualification 
when we come to compare very different kinds of muscle, such as the insect’s and 
the mammal's.

Such problems as that presented by the flea’s jumping powersj", 
though essentially physiological in their nature, have their interest 
for us here: because a steady, progressive diminution of activity 
with increasing size would tend to set limits to the possible growth 
in magnitude of an animal just as surely as those factors which 
tend to break and crush the living fabric under its own weight. In 
the case of a leap, we have to do rather with a sudden impulse than 
with a continued strain, and this impulse should be measured in 
terms of the velocity imparted. The velocity is proportional to 
the impulse (x), and inversely proportional to the mass (M) moved: 
V = x/M. But, according to what we still speak of as “Borelli’s 
law,” the impulse (i.e. the work of the impulse) is proportional to 
the volume of the muscle by which it is produced!, that is to say 
(in similarly constructed animals) to the mass of the whole body; 
for the impulse is proportional on the one hand to the cross-section 
of the muscle, and on the other to the distance through which it 
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contracts. It follows from this that the velocity is constant, what
ever be the size of the animal.

Putting it still more simply, the work done in leaping is propor
tional to the mass and to the height to which it is raised, W oc mH. 
But the muscular power available for this work is proportional to 
the mass of muscle, or (in similarly constructed animals) to the mass 
of the animal, W oc m. It follows that H is, or tends to be, a 
constant. In other words, all animals, provided always that they 
are similarly fashioned, with their various levers in like proportion, 
ought to jump not to the same relative but to the same actual 
height*. The grasshopper seems to be as well planned for jumping 
as the flea, and the actual heights to which they jump are much of 
a muchness; but the flea’s jump is about 200 times its own height, 
the grasshopper’s at most 20-30 times; and neither flea nor grass
hopper is a better but rather a worse jumper than a horse or a manf.

As a matter of fact, Borelli is careful to point out that in the act 
of leaping the impulse is not actually instantaneous, like the blow 
of a hammer, but takes some little time, during which the levers 
are being extended by which the animal is being propelled forwards; 
and this interval of time will be longer in the case of the longer 
levers of the larger animal. To some ex-tent, then, this principle 
acts as a corrective to the more general one, and tends to leave a 
certain balance of advantage in regard to leaping power on the side 
of the larger animal J. But on the other hand, the question of 
strength of materials comes in once more, and the factors of stress 
and strain and bending moment make it more and more difficult 
for nature to endow the larger animal with the length of lever with 
which she has provided the grasshopper or the flea. To Kirby and 
Spence it seemed that “This wonderful strength of insects is 
doubtless the result of something peculiar in the structure and 
arrangement of their muscles, and principally their extraordinary

* Borelli, Prop, clxxvii. Animalia minora et minus ponderosa majores saltus 
efficiunt respectu sui corporis, si caetera fuerint paria.

f The high jump is nowadays a highly skilled performance. For the jumper 
contrives that his centre of gravity goes under the bar, while his body, bit by bit, 
goes over it.

J See also (int. al.), John Bernoulli, De Motu Musculorum, Basil., 1694; 
Chabry, Mecanisme du saut, J. de l'Anat. et de la Physiol, xix, 1883; Sur la 
longueur des membres des animaux sauteurs, ibid, ^cl, p. 356, 1885; Le Hello, 
De I’action des organes locomoteurs, etc., ibid, xxix, pp. 65-93, 1893; etc. 
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power of contraction.” This hypothesis, Which is so easily seen on 
physical grounds to be unnecessary, has been amply disproved in 
a series of excellent papers by Felix Plateau*.

From the impulse of the preceding case we may pass to the momentum 
created (or destroyed) under similar circumstances by a given force acting 
for a given time: mv = Ft.

We know that m oc I3, and t=Uv,
so that Pv = Flfv, or v2 = Ffl2.

But whatsoever force be available, the animal may only exert so much of 
it as is in proportion to the strength of his own limbs, that is to say to the 
cross-section of bone, sinew and muscle; and all of these cross-sections are 
proportional to I2, the square of the linear dimensions. The maximal force, 
Fmax, which the animal dare exert is proportional, then, to Z2; therefore

F^dl2 = constant.
And the maximal speed which the animal can safely reach, namely 

Fmax = Fmiit/l. is also constant, or independent (ceteris paribus) of the dimensions 
of the animal.

A spurt or effort may be well within the capacity of the animal but far 
beyond the margin of safety, as trainer and athlete well know. This margin 
is a narrow one, whether for athlete or racehorse; both run a constant risk 
of overstrain, under which they may “pull” a muscle, lacerate a tendon, or 
even “break down” a bonef.

It is fortunate for their safety that animals do not jump to heights pro
portional to their own. For conceive an animal (of mass m) to jump to 
a certain altitude, such that it reaches the ground with a velocity v; then 
if c be the crushing strain at any point of the sectional area (A) of the limbs, 
the limiting condition is that mv _

If the animal vary in magnitude without change in the height to which 
it jumps (or in the velocity with which it descends), then

m I3 , c oc -7 oc , or I.A I2
The crushing strain varies directly with the linear dimensions of the animal; 
and this, a dynamical case, is identical with the usual statical limitation of 
magnitude.

* Recherches sur la force absolue des muscles des Invertebres, Bull. Acad. R. 
de Belgique (3), vi, vil, 1883-84: see also ibid. (2), xx, 1865; xxn, 1866; Ann. 
Mag. N.H. xvn, p. 139, 1866; xix, p. 95, 1867. Cf. M. Radau, Sur la force 
musculaire des insectes, Revue, des deux Mondes, lxiv, p. 770, 1866. The subject 
had been well treated by Straus-Durckheim, in his ( 'onsiat'rations generales sur 
Vanatomie comparce des animaux articules, 1828.

+ Cf. The dynamics of sprint-running, by A. V. Hill and others, Proc. R.S. (B), 
cn, pp. 29-42, 1927; or Muscular Movement in Man, by A. V. Hill, New York, 
1927, ch. vi, p. 41.
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But if the animal, with increasing size or stature, jump to a correspondingly 

increasing height, the case becomes much m ore serious. For the final velocity 
of descent varies as the square root of the altitude reached, and therefore as 
the square root of the linear dimensions of the animal. And since, as before,

/3 
c oc mv oc = V, 

I2
I2

ccc-.VL orcocZ*.
I2

If a creature’s jump were in proportion to its height, the crushing strains 
would so increase that its dimensions would be limited thereby in a much higher 
degree than was indicated by statical considerations. An animal may grow 
to a size where it is unstable dynamically, though still on the safe side 
statically—a size where it moves with difficulty though it rests secure. It is 
by reason of dynamical rather than of statical relations that an elephant 
is of graver deportment than a mouse.

An apparently simple problem, much less simple than it looks, lies 
in the act of walking, where there will evidently be great economy of 
work if the leg swing with the help of gravity, that is to say, at a 
pendulum-rate. The conical shape and jointing of the limb, the time 
spent with the foot upon the ground, these and other mechanical 
differences complicate the case, and make the rate hard to define or 
calculate. Nevertheless, we may convince ourselves by counting our 
steps, that the leg does actually tend to swing, as a pendulum does, 
at a certain definite rate*. So on the same principle, but to the 
slower beat of a longer pendulum, the scythe swings smoothly in 
the mower’s hands.

To walk quicker, we “step out”; we cause the leg-pendulum to 
describe a greater arc, but it does not swing or vibrate faster until 
we shorten the pendulum and begin ho run. Now let two similar 
individuals, A and B, walk in a similar fashion, that is to say with 
a similar angle of swing (Fig. 1). The arc through which the leg 
swings, or the amplitude of each step, will then vary as the length 
of leg (say as a '[b), and so as the height or other linear dimension (Z) 
of the manf. But the time of swing varies inversely as the square

* The assertion that the limb tends to swing in pendulum-time was first made 
by the brothers Weber (Mechanik der menschl. Gehwerkzeuge, Gottingen, 1836). 
Some later writers have criticised the statement (e.g. Fischer, Die Kinematik des 
Beinschwingens etc., Abh. math. phys. KI. k. Sachs. Ges. xxv-xxvm, 1899-1903), 
but for all that, with proper and laige qualifications, it remains substantially true.

j- So the stride of a Brobdingnagian was 10 yards long, or just twelve times the 
2 ft. 6 in., which make the average stride or half-pace of a man.
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root of the pendulum-length, or Va/Vb. Therefore the velocity, 
which is measured by amplitude/time, or ab x Vb/Va, will also vary 

as the square root of the linear dimen
sions; which is Froude’s law over again. 

The smaller man, or smaller animal, 
goes slower than the larger, but only in 
the ratio of the square roots of their 
linear dimensions; whereas, if the limbs 
moved alike, irrespective of the size of 
the animal—if the limbs of the mouse 
swung no faster than those of the horse 
—then the mouse would be as slow in 
its gait or slower than the tortoise. 
M. Delisle* saw a fly walk three inches 
in half-a-second; this was good steady 
walking. When we walk five miles an 
hour we go about 88 inches in a second, 

or 88/6 = 14-7 times the pace of M. Delisle’s fly. We should walk 
at just about the fly’s pace if our stature were l/(14-7)2, or 1/216 
of our present height—say 72/216 inches, or one-third of an inch 
high. Let us note in passing that. the number of legs does not 
matter, any more than the number of wheels to a coach; the 
centipede runs none the faster for all his hundred legs.

But the leg comprises a complicated system of levers, by whose 
various exercise we obtain very different results. For instance, by 
being careful to rise upon our instep we increase the length or 
amplitude of our stride, and improve our speed very materially; 
and it is curious to see how Nature lengthens this metatarsal joint, 
or instep-lever, in horse f and hare and greyhound, in ostrich and 
in kangaroo, and in every speedy animal. Furthermore, in running 
we bend and so shorten the leg, in order to accommodate it to a 
quicker rate of pendulum-swing J. In short the jointed structure

* Quoted in Mr John Bishop’s interesting article in Todd’s Cyclopaedia, ni, 
p. 443.

f The “cannon-bones” are not only relatively longer but may even be actually 
longer in a little racehorse than a great carthorse.

t There is probably another factor involved here: for in bending and thus 
shortening the leg, we bring its centre of gravity nearer to the pivot, that is to 
say to the joint, and so the muscle tends to move it the more quickly. After all, 
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of the leg permits us to use it as the shortest possible lever while 
it is swinging, and as the longest possible lever when it is exerting 
its propulsive force.

The bird’s case is of peculiar interest. In running, walking or 
swimming, we consider the speed which an animal can attain, and 
the increase of speed which increasing size permits of. But in flight 
there is a certain necessary speed —a speed (relative to the air) which 
the bird must attain in order to maintain itself aloft, and which must 
increase as its size increases. It is highly probable, as Lanchester 
remarks, that Lilienthal met his untimely death (in August 1896) 
not so much from any intrinsic fault in the design or construction 
of his machine, but simply because his engine fell somewhat 
short of the power required to give the speed necessary for its 
stability.

Twenty-five years ago, when this book was written, the bird, or 
the aeroplane, was thought of as a machine whose sloping wings, 
held at a given angle and driven horizontally forward, deflect the 
air downwards and derive support from the upward reaction. In 
other words, the bird was supposed to communicate to a mass of 
air a downward momentum equivalent (in unit time) to its own 
weight, and to do so by direct and continuous impact. The down
ward momentum is then proportional to the mass of air thrust 
downwards, and to the rate at which it is so thrust or driven: the 
mass being proportional to the wing-area and to the speed of the 
bird, and the rate being again proportional to the flying speed; so 
that the momentum varies as the square of the bird’s linear dimen
sions and also as the square of its speed. But in order to balance 
its weight, ’ this momentum must nho be proportional to the 
cube of the bird’s linear dimensions; therefore the bird’s necessary 
speed, such as enables it to maintain level flight, must be pro
portional to the square root of its linear dimensions, and the whole 
work done must be proportional to the power 3| of the said linear 
dimensions.

The case stands, so far, as follows: m, the mass of air deflected 
downwards; M, the momentum so communicated; W, the work 
done—all in unit time; w, the weight, and V, the velocity of the 
we know that the pendulum theory is not the whole story, but only an important 
first approximation to a complex phenomenon.
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bird; I, a linear dimension, the form of the bird being supposed
constant. M = w — I3, but M = mV, and m = lzV.

Therefore 
and therefore 
and

M = l2V2 = I3, 
v = Vi

W = MV = I3*.

The gist of the matter is, or seems to be, that the work which 
can be done varies with the available weight of muscle, that is to say, 
with the mass of the bird; but the work which has to be done varies 
with mass and distance; so the larger the bird grows, the greater 
the disadvantage under which all its work is done*. The dispropor
tion does not seem very great at first sight, but it is quite enough 
to tell. It is as much as to say that, every time we double the 
linear dimensions of the bird, the difficulty of flight, or the work 
which must needs be done in order to fly, is increased in the ratio 
of 23 to 23i, or 1 : V2, or say 1:1-4. If we take the ostrich to exceed 
the sparrow in linear dimensions as 25 : 1, which seems well within 
the mark, the ratio would be that between 253i and 253, or between 
5’ and 56; in other words, flight would be five times more difficult 
for the larger than for the smaller bird.

But this whole explanation is doubly inadequate. For one thing, 
it takes no account of gliding flight, in which energy is drawn from 
the wind, and neither muscular power nor engine power are em
ployed; and we see that the larger birds, vulture, albatross or 
solan-goose, depend on gliding more and more. Secondly, the old 
simple account of the impact of the wing upon the air, and the 
manner in which a downward momentum is communicated and 
support obtained, is now known to be both inadequate and 
erroneous. For the science of flight, or aerodynamics, has grown 
out of the older science of hydrodynamics; both deal with the 
special properties of a fluid, whether water or air; and in our case, 
to be content to think of the air as a body of mass m, to which a 
velocity v is imparted, is to neglect all its fluid properties. How the

* This is the result arrived at by Helmholtz, Ueber ein Theorem geometrisch- 
ahnliche Bewegungen flussiger Korper betreffend, nebst Anwendung auf das 
Problem Luftballons zu lenken, Monaisber. Akad. Berlin, 1873, pp. 501-514. It was 
criticised and challenged (somewhat rashly) by K. Miillenhof, Die Grosse der Flug- 
flachen etc., PflUger’a Archiv, xxxv, p. 407; xxxvi, p. 548, 1885. 
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fish or the dolphin swims, and how the bird flies, are up to a certain 
point analogous problems; and stream-lining plays an essential part 
in both. But the bird is much heavier than the air, and the fish 
has much the same density as the water, so that the problem of 
keeping afloat or aloft is negligible in the one, and all-important in 
the other. Furthermore, the one fluid is highly compressible, and 
the other (to all intents and purposes) incompressible; and it is this 
very difference which the bird, or the aeroplane, takes special 
advantage of, and which helps, or even enables, it to fly.

It remains as true as ever that a bird, in order to counteract 
gravity, must cause air to move downward and obtains an upward 
reaction thereby. But the air displaced downward beneath the 
wing accounts for a small and varying part, perhaps a third perhaps 
a good deal less, of the whole force derived; and the rest is generated 
above the wing, in a less simple way. For, as the air streams past 
the slightly sloping wing, as smoothly as the stream-lined form 
and polished surface permit, it swirls round the front or “leading” 
edge*, and then streams swiftly over the upper surface of the wing; 
while it passes comparatively slowly, checked by the opposing slope 
of the wing, across the lower side. And this is as much as to say 
that it tends to be compressed below and rarefied above; in other 
words, that a partial vacuum is formed above the wing and follows 
it wherever it goes, so long as the stream-lining of the wing and its 
angle of incidence are suitable, and so long as the bird travels fast 
enough through the air.

The bird’s weight is exerting a downward force upon the air, in 
one way just as in the other; and we can imagine a barometer 
delicate enough to shew and measure it as the bird flies overhead. 
But to calculate that force we should have to consider a multitude 
of component elements; we should have to deal with the stream
lined tubes of flow above and below, and the eddies round the fore- 
edge of the wing and elsewhere; and the calculation which was too 
simple before now becomes insuperably difficult. But the principle 
of necessary speed remains as true as ever. The bigger the bird

♦ The arched form, or “dipping front edge” of the wing, and its use in causing 
a vacuum above, were first recognised by Mr H. F. Phillips, who put the idea into 
a patent in 1884. The facts were discovered independently, and soon afterwards, 
both by Lilienthal and Lanchester.
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becomes, the more swiftly must the air stream over the wing 
to give rise to the rarefaction or negative pressure which is more 
and more required; and the harder must it be to fly, so long as 
work has to be done by the muscles of the bird. The general 
principle is the same as before, though the quantitative relation 
does not work out as easily as it did. As a matter of fact, there 
is probably little difference in the end; and in aeronautics, the 
“total resultant force” which the bird employs for its support is 
said, empirically, to vary as the square of the air-speed: which is 
then a result analogous to Froude’s law, and is just what we arrived 
at before in the simpler and less accurate setting of the case.

But a comparison between the larger and the smaller bird, like 
all other comparisons, applies only so long as the other factors in 
the case remain the same; and these vary so much in the complicated 
action of flight that it is hard indeed to compare one bird with 
another. For not only is the bird continually changing the incidence 
of its wing, but it alters the lie of every single important feather; 
and all the ways and means of flight vary so enormously, in big 
wings and small, and Nature exhibits so many refinements and 
“ improvements” in the mechanism required, that a comparison based 
on size alone becomes imaginary, and is little worth the making.

The above considerations are of great practical importance in 
aeronautics, for they shew how a provision of increasing speed must ac
company every enlargement of our aeroplanes. Speaking generally, 
the necessary or minimal speed of an aeroplane varies as the square 
root of its linear dimensions; if {ceteris paribus) we make it four 
times as long, it must, in order to remain aloft, fly twice as fast as 
before*. If a given machine weighing, say, 500 lb. be stable at 
40 miles an hour, then a geometrically similar one which weighs, 
say, a couple of tons has its speed determined as follows:

W:w.:L2:l3::8:1.
Therefore
But

Therefore

Z:Z::2:1.
V2:v2::L:l.

F:v:: V2:1 = 1-414:1.
* G. H. Bryan, Stability in Aviation, 1911; F. W. Lanchester, Aerodynamics, 

1909; cf. {int. al.) George Greenhill, The Dynamics of Mechanical Flight, 1912; 
F. W. Headley, The Flight of Birds, and recent works.
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That is to say, the larger machine must be capable of a speed of 
40 x 1-414, or about 56^, miles per hour.

An arrow is a somewhat rudimentary flying-machine; but it is 
capable, to a certain extent and at a high velocity, of acquiring 
“stability,” and hence of actual flight after the fashion of an aero
plane; the duration and consequent range of its trajectory are 
vastly superior to those of a bullet of the same initial velocity. 
Coming back to our birds, and again comparing the ostrich with 
the sparrow, we find we know little or nothing about the actual 
speed of the latter; but the minimal speed of the swift is estimated 
at 100 ft. per second, or even more —say 70 miles an hour. We 
shall be on the safe side, and perhaps not far wrong, to take 20 miles 
an hour as the sparrow’s minimal speed; and it would then follow 
that the ostrich, of 25 times the sparrow’s linear dimensions, would 
have to fly (if it flew at all) with a minimum velocity of 5 x 20, 
or 100 miles an hour*.

The same principle of necessary speed, or the inevitable relation 
between the dimensions of a flying object and the minimum velocity 
at which its flight is stable, accounts for a considerable number of

* Birds have an ordinary and a forced speed. Meinertzhagen puts the ordinary 
flight of the swift at 68 m.p.h., which tallies with the old estimate of Athanasius 
Kircher (Physiologia, ed 1680, p. 65) of 100 ft. per second for the swallow. Abel 
Chapman (Retrospec*, 1928, ch. xiv) puts the gliding or swooping flight of the swift 
at over 150 m.p.h., and that of the griffon vulture at 180 m.p.h.; but these skilled 
fliers doubtless far exceed the necessary minimal speeds which we are speaking of. 
An airman flying at 70 m.p.h. has seen a golden eagle fly past him easily; but 
even this speed is exceptional. Several observers agree in giving 50 m.p.h. for 
grouse and woodcock, and 30 m.p.h. for starling, chaffinch, quail and crow. A 
migrating flock of lapwing travelled at 41 m.p.h., ten or twelve miles more than 
the usual speed of the single bird. Lanchester, on theoretical considerations, 
estimates the speed of the herring gull at 26 m.p.h., and of the albatross at about 
34 miles. A tern, a very skilful flier, was seen to fly as slowly as 15 m.p.h. 
A hornet or a large dragonfly may reach 14 or 18 m.p.h.; but for most insects 
2^4 metres per sec., say 4-9 m.p.h., is a common speed (cf. A. Magnan, Vol. 
des Insectes, 1834. p. 72). The larger diptera are very swift, but their speed is much 
exaggerated. A deerfly (Cephenomyia) has been said to fly at 400 yards per second, 
or say 800 m.p.h., an impossible velocity (Irving Langmuir. Science, March 11, 1938). 
It would mean a pressure on the fly’s head of half an atmosphere, probably enough 
to crush the fly; to maintain it would take half a horsepower; and this would need 
a food-consumption of 1J times the fly’s weight per second I 25 m.p.h. is a more 
reasonable estimate. The naturalist should not forget, though it does not touch 
our present argument, that the aeroplane is built to the pattern of a beetle rather 
than of a bird; for the elytra are not wings but planes. Cf. int. al., P. Amans, 
Geometric.. .des ailes rigides, C.R. Assoc. Fran^. pour Vavancem. des Sc. 1901. 
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observed phenomena. It tells us why the larger birds have a 
marked difficulty in rising from the ground, that is to say, in 
acquiring to begin with the horizontal velocity necessary for their 
support; and why accordingly, as Mouillard* and others have 
observed, the heavier birds, \^ven those weighing no more than a 
pound or two, can be effectually caged in small enclosures open 
to the sky. It explains why, as Mr Abel Chapman says, “all 
ponderous birds, wild swans and geese, great bustard and caper
cailzie, even blackcock, fly faster than they appear to do,” while 
“light-built types with a big wing-areaf, such as herons and harriers, 
possess no turn of speed at all.” For the fact is that the heavy 
birds must fly quickly, or not at all. It tells us why very small 
birds, especially those as small as humming-birds, and d fortiori the 
still smaller insects, are capable of “stationary flight,” a very slight 
and scarcely perceptible velocity relatively to the air being sufficient 
for their support and stability. And again, since it is in all 
these cases velocity relatively to the air which we are speaking 
of, we comprehend the reason why one may always tell which 
way the wind blows by watching the direction in which a bird starts 
to fly.

The wing of a bird or insect, like the tail of a fish or the blade 
of an oar, gives rise at each impulsion to a swirl or vortex, Which 
tends (so to speak) to cling to it and travel along with it; and the 
resistance which wing or oar encounter comes much more from 
these vortices than from the viscosity of the fluid.f We learn as a 
corollary to this, that vortices form only at the edge of oar or wing— 
it is only the length and not the breadth of these which matters. 
A long narrow oar outpaces a broad one, and the efficiency of the 
long, narrow wing of albatross, swift or hawkmoth is so far accounted 
for. From the length of the wing we can calculate approximately 
its rate of swing, and more conjecturally the dimensions of each 
vortex, and finally the resistance or lifting power of the stroke; 
and the result shews once again the advantages of the small-scale

* Mouillard, L'empire de l'air; essai d'ornithologie appliquie d Variation, 1881; 
transl. in Annual Report of the Smithsonian Institution, 1892.

t On wing-area in relation to weight of bird see Lendenfeld in Naturw. Wochenschr. 
Nov. 1904, transl. in Smithsonian Inst. Rep. 1904; also E. H Hankin, Animal 
Flight, 1913; etc.

J Cf. V. Bjerknes, Hydrodynamique physique, n, p. 293, 1934. 
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mechanism, and the disadvantage under which the larger machine 
or larger creature Ues.

Weight 
gm.

Length 
of wing 

m.
Beats 

per sec.

Speed of 
wing-tip 

m./s.

Radius 
of 

vortex*

Force of 
wing-beat 

gm.

Specific 
force, 
F)W

(From V. Bjerknes)
Stork 3500 0-91 2 5-7 1-5 1480 2 : 5
Gull 1000 0-60 3 5-7 1-0 640 2 : 3
Pigeon 350 0-30 6 5-7 0-5 160 1 : 2
Sparrow 30 Oil 13 4-5 0-18 13 2:5
Bee 0-07 001 200 6-3 0-02 0-2 3J:1
Fly 0-01 0-007 190 4-2

* Conjectural.
0-01 0-04 4:1

A bird may exert a force at each stroke of its wing equal to 
one-half, let us say for safety one-quarter, of its own weight, more 
or less; but a bee or a fly does twice or thrice the equivalent of its 
own weight, at a low estimate. If stork, gull or pigeon can thus 
carry only one-fifth, one-third, one-quarter of their weight by the 
beating of their wings, it follows that all the rest must be borne by 
sailing-flight between the wing-beats. But an insect’s wings lift it 
easily and with something to spare; hence sailing-flight, and with 
it the whole principle of necessary speed, does not concern the lesser 
insects, nor the smallest birds, at all; for a humming-bird can 
“stand still” in the air, like a hover-fly, and dart backwards as 
well as forwards, if it please.

There is a little group of Fairy-flies (Mymaridae), far below the 
size of any small familiar insects; their eggs are laid and larvae 
reared within the tiny eggs of larger insects; their bodies may be no 
more than |mm. long, and their outspread wings 2 mm. from tip 
to tip (Fig. 2). It is a peculiarity of some of these that their little 
wings are made of a few hairs or bristles, instead of the continuous 
membrane of a wing. How these act on the minute quantity of air 
involved we can only conjecture. It would seem that that small 
quantity reacts as a viscous fluid to the beat of the wing; but there 
are doubtless other unobserved anomalies in the mechanism and 
the mode of flight of these pigmy creaturesf.

The ostrich has apparently reached a magnitude, and the moa 
certainly did so, at which flight by muscular action, according to

f It is obvious that in a still smaller order of magnitude the Brownian movement 
would suffice to make flight impossible.
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the normal anatomy of a bird, becomes physiologically impossible. 
The same reasoning applies to the case of man. It would be very 
difficult, and probably absolutely impossible, for a bird to flap its 
way through the air were it of the bigness of a man; but Borelli, 
in discussing the matter, laid even greater stress on the fact that 
a man’s pectoral muscles are so much less in proportion than those 
of a bird, that however we might fit ourselves out with wings, we 
could never expect to flap them by any power of our own weak 
muscles. Borelli had learned this lesson thoroughly, and in one of 
his chapters he deals with the proposition: Est impossibile ut horn ines 
propriis viribus artificiose volare possint*.  But gliding flight, where

* Giovanni Alfonso Borelli, De Motu Animalium, i, Prop, ccrv, p. 243, edit. 
1685. The part on The Flight of Birds is issued by the Royal Aeronautical Society 
as No. 6 of its Aeronautical Classics.

Fig. 2. Fairy-flies (Mymaridae): after F. Enock, x 20.

wind-force and gravitational energy take the place of muscular 
power, is another story, and its limitations are of another kind. 
Nature has many modes and mechanisms of flight, in birds of one 
kind and another, in bats and beetles, butterflies, dragonflies and 
what not; and gliding seems to be the common way of birds, and 
the flapping flight {remigio alarum) of sparrow and of crow to be 
the exception rather than the rule. But it were truer to say that 
gliding and soaring, by which energy is captured from the wind, are 
modes of flight little needed by the small birds, but more and more 
essential to the large. Borelli had proved so convincingly that 
we could never hope to fly propriis viribus, that all through the 
eighteenth century men tried no more to fly at all. It was in trying 
to glide that the pioneers of aviation, Cayley, Wenham and Mouillard, 
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Langley, Lilienthal and the Wrights- -all careful students of birds— 
renewed the attempt*; and only after the Wrights had learned to 
glide did they seek to add power to their glider. Flight, as the 
Wrights declared, is a matter of practice and of skill, and skill in 
gliding has now reached a point which more than justifies all 
Leonardo da Vinci’s attempts to fly. Birds shew infinite skill and 
instinctive knowledge in the use they make of the horizontal accelera
tion of the wind, and the advantage they take of ascending currents 
in the air. Over the hot sands of the Sahara, where every here 
and there hot air is going up and cooler coming down, birds keep 
as best they can to the one, or glide quickly through the other; 
so we may watch a big dragonfly planing slowly down a few feet 
above the heated soil, and only every five minutes or so regaining 
height with a vigorous stroke of his wings. The albatross uses the 
upward current on the lee-side of a great ocean-wave; so, on a leaser 
scale, does the flying-fish; and the seagull flies in curves, taking 
every advantage of the varying wind-velocities at different levels 
over the sea. An Indian vulture flaps his way up for a few laborious 
yards, then catching an upward current soars in easy spirals to 
2000 feet; here he may stay, effortless, all day long, and come down 
at sunset. Nor is the modern sail-plane much less efficient than a 
soaring bird; for a skilful pilot in the tropics should be able to roam 
all day long at willf.

A bird’s sensitiveness to air-pressure is indicated in other ways 
besides. Heavy birds, like duck and partridge, fly low and ap
parently take advantage of air-pressure reflected from the ground. 
Water-hen and dipper follow the windings of the stream as they fly 
up or down; a bee-line would give them a shorter course, but not 
so smooth a journey. Some small birds—wagtails, woodpeckers and 
a few others—fly, so to speak, by leaps and bounds; they fly briskly

* Sir George Cayley (1774-1857), father of British aeronautics, was the first to 
perceive the capabilities of rigid planes, and to experiment on gliding flight. He 
anticipated all the essential principles of the modern aeroplane, and his first paper 
“On Aerial Navigationappeared in Nicholson's Journal for November 1809. 
F. H. Wenham (1824-1908) studied the flight of birds and estimated the necessary 
proportion of surface to weight and speed; he held that “the whole secret of 
success in flight depends upon a proper concave form of the supporting surface.” 
See his paper “On Aerial Locomotion” in the Report of the Aeronautical Society 
1866.

f Sir Gilbert Walker, in Nature, Oct. 2, 1937.
TGF 4
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for a few moments, then close their wings and shoot along*. The 
flying-fishes do much the same, save that they keep their vinigs 
outspread. The best of them “taxi” along with only their tdls in 
the water, the tail vibrating with great rapidity, and the speed 
attained lasts the fish on its long glide through the airf.

Flying may have begun, as in Man’s case it did, with short spells 
of gliding flight, helped by gravity, and far short of sustained or 
continuous locomotion. The short wings and long tail of Archae
opteryx would be efficient as a slow-speed glider; and we maz still 
see a Touraco glide down from his perch looking not much inlike 
Archaeopteryx in the proportions of his wings and tail. The small 
bodies, scanty muscles and narrow but vastly elongated wirgs of 
a Pterodactyl go far beyond the limits of mechanical efficiency for 
ordinary flapping flight; but for gliding they approach perfection J. 
Sooner or later Nature does everything which is physically poisible; 
and to glide with skill and safety through the air is a possbility 
which she did not overlook.

Apart from all differences in the action of the limbs—apar> from 
differences in mechanical construction or in the manner in which 
the mechanism is used—we have now arrived at a curiously imple 
and uniform result. For in all the three forms of locomotion which 
we have attempted to study, alike in swimming and in walkiig. and 
even in the more complex problem of flight, the general result, 
obtained under very different conditions and arrived at by diderent 
modes of reasoning, shews in every case that speed tends to xary as 
the square root of the linear dimensions of the animal.

While the rate of progress tends to increase slowly with increasing 
size (according to Fronde s law), and the rhythm or penduluii-rate 
of the limbs to increase rapidly with decreasing size (acconing to 
Galileo’s law), some such increase of velocity with decreasing

* Why large birds cannot do the same is discussed by Lanchester, op. cit. 
Appendix iv.

f Cf. Carl L. Hubbs, On the flight of.. .the Cypselurinae, and remarki on the 
evolution of the flight of fishes, Papers of the Michigan Acad, of Sci. xvn, 3p. 575- 
611, 1933. See also E. H. Hankin, P.Z.S. 1920, pp. 467—474; and C. M. Breeder, 
On the structural specialisation of flying fishes from the standpoint of aero
dynamics, Copeia, 1930, pp. 114-121.

J The old conjecture that their flight was helped or rendered possible by a denser 
atmosphere than ours is thus no longer called for.
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magnitude is true of all the rhythmic actions of the body, though 
for reasons not always easy to explain. The elephant’s heart beats 
slower than ours*, the dog’s quicker; the rabbit’s goes pit-a-pat; 
the mouse’s and the sparrow’s are too quick to count. But the very 
“rate of living” (measured by the 0 consumed and CO2 produced) 
slows down as size increases; and a rat lives so much faster than 
a man that the years of its life are three, instead of threescore and 
ten.

From all the foregoing discussion we learn that, as Crookes once 
upon a time remarked f, the forms as well as the actions of our 
bodies are entirely conditioned (save for certain exceptions in the 
case of aquatic animals) by the strength of gravity upon this globe; 
or, as Sir Charles Bell had put it some sixty years before, the very 
animals which move upon the surface of the earth are proportioned 
to its magnitude. Were the force of gravity to be doubled our 
bipedal form would be a failure, and the majority of terrestrial 
animals would resemble short-legged saurians, or else serpents. 
Birds and insects would suffer likewise, though with some com
pensation in the increased density of the air. On the other hand, 
if gravity were halved, we should get a lighter, slenderer, more active 
type, needing less energy, less heat, less heart, less lungs, less blood. 
Gravity not only controls the actions but also influences the forms 
of all save the least of organisms. The tree under its burden of 
leaves or fruit has changed its every curve and outline since its 
boughs were bare, and a mantle of snow will alter its configuration 
again. Sagging wrinkles, hanging breasts and many another sign 
of age are part of gravitation’s slow relentless handiwork.

There are other physical factors besides gravity which help to 
limit .the size to which an animal may grow and to define the con
ditions under which it may five. The small insects skating on a 
pool have their movements controlled and their freedom limited by 
the surface-tension between water and air, and the measure of that 
tension determines the magnitude which they may attain. A man 
coming wet from his bath carries a few ounces of water, and is 
perhaps 1 per cent, heavier than before; but a wet fly weighs twice 
as much as a dry one, and becomes a helpless thing. A small

* Say 28 to 30 beats to the minute.
f Proc. Psychical Soc. xn, p. 338-355, 1897. 
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insect finds itself imprisoned in a drop of water, and a fly with 
two feet in one drop finds it hard to extricate them.

The mechanical construction of insect or crustacean is highly 
efficient up to a certain size, but even crab and lobster never exceed 
certain moderate dimensions, perfect within these narrow bounds as 
their construction seems to be. Their body lies within a hollow 
shell, the stresses within which increase much faster than the mere 
scale of size; every hollow structure, every dome or cylinder, grows 
weaker as it grows larger, and a tin canister is easy to make but a 
great boiler is a complicated affair. The boiler has to be strengthened 
by “stiffening rings” or ridges, and so has the lobster’s shell; but 
there is a limit even to this method of counteracting the weakening 
effect of size. An ordinary girder-bridge may be made efficient up 
to a span of 200 feet or so; but it is physically incapable of spanning 
the Firth of Forth. The great Japanese spider-crab, Macrocheira, 
has a span of some 12 feet across; but Nature meets the difficulty 
and solves the problem by keeping the body small, and building up 
the long and slender legs out of short lengths of narrow tubes. 
A hollow shell is admirable for small animals, but Nature does not 
and cannot make use of it for the large.

In the case of insects, other causes help to keep them of small 
dimensions. In their peculiar respiratory system blood does not 
carry oxygen to the tissues, but innumerable fine tubules or tracheae 
lead air into the interstices of the body. If we imagine them growing 
even to the size of crab or lobster, a vast complication of tracheal 
tubules would be necessary, within which friction would increase 
and diffusion be retarded, and which would soon be an inefficient 
and inappropriate mechanism.

The vibration of vocal chords and auditory drums has this in 
common with the pendulum-like motion of a limb that its rate 
also tends to vary inversely as the square root of the linear dimen
sions. We know by common experience of fiddle, drum or organ, 
that pitch rises, or the frequency of vibration increases, as the 
dimensions of pipe or membrane or string diminish; and in like 
manner we expect to hear a bass note from the great beasts and a 
piping treble from the small. The rate of vibration (N) of a stretched 
string depends on its tension and its density; these being equal, it 
varies inversely as its own length and as its diameter. For similar 
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strings, N oc 1/Z2, and for a circular membrane, of radius r and 
thickness e, N oc l/(r2 Ve).

But the delicate drums or tympana of various animals seem to 
vary much less in thickness than in diameter, and we may be content 
to write, once more, N oc 1/r2.

Suppose one animal to be fifty times less than another, vocal 
chords and all: the one’s voice will be pitched 2500 times as many 
beats, or some ten or eleven octaves, above the other’s; and the 
same comparison, or the same contrast, will apply to the tympanic 
membranes by which the vibrations are received. But our own 
perception of musical notes only reaches to 4000 vibrations per 
second, or thereby; a squeaking mouse or bat is heard by few, and 
to vibrations of 10,000 per second we are all of us stone-deaf. 
Structure apart, mere size is enough to give the lesser birds and 
beasts a music quite different to our own: the humming-bird, for 
aught we know, may be singing all day long. A minute insect may 
utter and receive vibrations of prodigious rapidity; even its little 
wings may beat hundreds of times a second*. Far more things 
happen to it in a second than to us; a thousandth part of a second 
is no longer negligible, and time itself seems to run a different course 
to ours.

The eye and its retinal elements have ranges of magnitude and 
limitations of magnitude of their own. A big dog’s eye is hardly 
bigger than a little dog’s; a squirrel’s is much larger, propor
tionately, than an elephant’s; and a robin’s is but little less than 
a pigeon’s or a crow’s. For the rods and cones do not vary with 
the size of the animal, but have their dimensions optically limited 
by the interference-patterns of the waves of light, which set bounds 
to the production of clear retinal images. True, the larger animal 
may want a larger field of view; but this makes little difference, for 
but a small area of the retina is ever needed or used. The eye, in 
short, can never be very small and need never be very big; it has 
its own conditions and limitations apart from the size of the animal. 
But the insect’s eye tells another story. If a fly had an eye like 
ours, the pupil would be so small that diffraction would render a 
clear image impossible. The only alternative is to unite a number

* The wing-beats are said to be as follows: dragonfly 28 per sec., bee 190, 
housefly 330; cf. Erhard, Verh. d. d. zool. Gesellsch. 1913, p. 206. 
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of small and optically isolated simple eyes into a compound eye, 
and in the insect Nature adopts this alternative possibility*.

Our range of vision is limited to a bare octave of “luminous 
waves, which is a considerable part of the whole range of light-heat 
rays emitted by the sun; the sun’s rays extend into the ultra-violet 
for another half-octave or more, but the rays to which our eyes are 
sensitive are just those which pass with the least absorption through 
a watery medium. Some ancient vertebrate may have learned to 
see in an ocean which let a certain part of the sun’s whole radiation 
through, which part is ow part still; or perhaps the watery media 
of the eye itself account sufficiently for the selective filtration. In 
either case, the dimensions of the retinal elements are so closely 
related to the wave-lengths of light (or to their interference patterns) 
that we have good reason to look upon the retina as perfect of its 
kind, within the limits which the properties of light itself impose; 
and this perfection is further illustrated by the fact that a few 
light-quanta, perhaps a single one, suffice to produce a sensation f. 
The hard eyes of insects are sensitive over a wider range. The bee 
has two visual optima, one coincident with our own, the other and 
principal one high up in the ultra-violet J. And with the latter the 
bee is able to see that ultra-violet which is so well reflected by many 
flowers that flower-photographs have been taken through a filter 
which passes these but transmits no other rays§.

When we talk of light, and of magnitudes whose order is that of 
a wave-length of light, the subtle phenomenon of colour is near at 
hand. The hues of living things are due to sundry causes; where 
they come from chemical pigmentation they are outside our theme, 
but oftentimes there is no pigment at all, save perhaps as a screen 
or background, and the tints are those proper to a scale of wave
lengths or range of magnitude. In birds these “optical colours” 
are of two chief kinds. One kind include certain vivid blues, the

* Cf. C. J. van der Horst, The optics of the insect eye, Acta Zoolog. 1933, 
p. 108.

+ Cf. Niels Bohr, in Nature, April 1, 1933, p. 457. Also J. Joly, Proc. U.S. (B), 
xcn, p. 222, 1921.

J L. M. Bertholf, Reactions of the honey-bee to light, Journ. of Agric. Res. 
XLm, p. 379; xliv, p. 763, 1931.

§ A. Kuhn, Ueber den Farbensinn der Bienen, Ztschr. d. vergl. Physiol, v, 
pp. 762-800, 1927; cf. F. K. Richtmeyer, Reflection of ultra-violet by flowers, 
Journ. Optical Soc. Amer, vn, pp. 151-168, 1923; etc. 
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blue of a blue jay, an Indian roller or a macaw; to the other belong 
the iridescent hues of mother-of-pearl, of the humming-bird, the 
peacock and the dove: for the dove’s grey breast shews many 
colours yet contains but one— colores inesse plures nec esse plus uno, 
as Cicero said. The jay’s blue feather shews a layer of enamel-like 
cells beneath a thin horny cuticle, and the cell-walls are spongy 
with innumerable tiny air-filled pores. These are about 0-3 p in 
diameter, in some birds even a little less, and so are not far from 
the limits of microscopic vision. A deeper layer carries dark-brown 
pigment, but there is no blue pigment at all; if the feather be dipped 
in a fluid of refractive index equal to its own, the blue utterly 
disappears, to reappear when the feather dries. This blue is like 
the colour of the sky; it is “Tyndall’s blue,” such as is displayed 
by turbid media, cloudy with dust-motes or tiny bubbles of a size 
comparable to the wave-lengths of the blue end of the spectrum. 
The longer waves of red or yellow pass through, the shorter violet 
rays are reflected or scattered; the intensity of the blue depends 
on the size and concentration of the particles, while the dark pigment
screen enhances the effect.

Rainbow hues are more subtle and more complicated; but in the 
peacock and the humming-bird we know for certain*  that the 
colours are those of Newton’s rings, and are produced by thin plates 
or films covering the barbules of the feather. The colours are such 
as are shewn by films about | p thick, more or less; they change 
towards the blue end of the spectrum as the fight falls more and 
more obliquely; or towards the red end if you soak the feather 
and cause the thin plates to swell. The barbules of the peacock’s 
feather are broad and flat, smooth and shiny, and their cuticular 
layer splits into three very thin transparent films, hardly more than 
1 p thick, all three together. The gorgeous tints of the humming
birds have had their places in Newton’s scale defined, and the 
changes which they exhibit at varying incidence have been predicted 

* Rayleigh, Phil. Mag. (6), xxxvii, p. 98, 1919. For a review of the whole 
subject, and a discussion of its many difficulties, see H. Onslow, On a periodic 
structure in many insect scales, etc., Phil. Trans. (B), ccxi, pp. 1-74, 1921; 
also C. W. Mason, Journ. Physic. Chemistry, xxvn, xxx, xxxi, 1923-25-27; 
F. Suffert, Zeitschr. f. Morph, u. Oekol. d. Tiere, i, pp. 171-306, 1924 (scales of 
butterflies); also B. Reusch and Th. Elsasser in Journ. f. Ornithologie, lxxjii, 
1925; etc.
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and explained. The thickness of each film lies on the very limit of 
microscopic vision, and the least change or irregularity in this 
minute dimension would throw the whole display of colour out of 
gear. No phenomenon of organic magnitude is more striking than 
this constancy of size; none more remarkable than that these fine 
lamellae should have their tenuity so sharply defined, so uniform 
in feather after feather, so identical in all the individuals of a species, 
so constant from one generation to another.

A simpler phenomenon, and one which is visible throughout the 
whole field of morphology, is the tendency (referable doubtless in 
each case to some definite physical cause) for mere bodily surface 
to keep pace with volume, through some alteration of its form. The 
development of villi on the lining of the intestine (which increase 
its surface much as we enlarge the effective surface of a bath-towel), 
the various valvular folds of the intestinal lining, including the 
remarkable “spiral valve” of the shark’s gut, the lobulation of the 
kidney in large animals*, the vast increase of respiratory surface in 
the air-sacs and alveoli of the lung, the development of gills in the 
larger Crustacea and worms though the general surface of the body 
suffices for respiration in the smaller species —all these and many 
more are cases in which a more or less constant ratio tends to be 
maintained between mass and surface, which ratio would have been 
more and more departed from with increasing size, had it not been 
for such alteration of surface-form f. A leafy wood, a grassy sward, 
a piece of sponge, a reef of coral, are all instances of a like pheno
menon. In fact, a deal of evolution is involved in keeping due 
balance between surface and mass as growth goes on.

In the case of very small animals, and of individual cells, the 
principle becomes especially important, in consequence of the 
molecular forces whose resultant action is limited to the superficial 
layer. In the cases just mentioned, action is facilitated by increase 
of surface: diffusion, for instance, of nutrient liquids or respiratory 
gases is rendered more rapid by the greater area of surface; but

♦ Cf. R. Anthony, C.R. clxix, p. 1174, 1919, etc. Cf. also A. Putter, Studien 
fiber physiologische Ahnlichkeit, Pfluger's Archiv, clxviii, pp. 209-246, 1917.

f For various calculations of the increase of surface due to histological and 
anatomical subdivision, see E. Babak, Ueber die Oberflachenentwickelung bei 
Organismen, Biol. Centrdlbl. xxx, pp. 225-239, 257-267, 1910. 
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there are other cases in which the ratio of surface to mass may 
change the whole condition of the system. Iron rusts when exposed 
to moist air, but it rusts ever so much faster, and is soon eaten away, 
if the iron be first reduced to a heap of small filings; this is a mere 
difference of degree. But the spherical surface of the rain-drop 
and the spherical surface of the ocean (though both happen to be 
alike in mathematical form) are two totally different phenomena, 
the one due to surface-energy, and the other to that form of mass
energy which we ascribe to gravity. The contrast is still more 
clearly seen in the case of waves: for the little ripple, whose form 
and manner of propagation are governed by surface-tension, is 
found to travel with a velocity which is inversely as the square 
root of its length; while the ordinary big waves, controlled by 
gravitation, have a velocity directly proportional to the square root 
of their wave-length. In like manner we shall find that the form 
of all very small organisms is independent of gravity, and largely 
if not mainly due to the force of surface-tension: either as the 
direct result of the continued action of surface-tension on the 
semi-fluid body, or else as the result of its action at a prior stage 
of development, in bringing about a form which subsequent chemical 
changes have rendered rigid and lasting. In either case, we shall 
find a“ great tendency in small organisms to assume either the 
spherical form or other simple forms related to ordinary inanimate 
surface-tension phenomena, which forms do not recur in the 
external morphology of large animals.

Now this is a very important matter, and is a notable illustration 
of that principle of similitude which we have already discussed in 
regard to several of its manifestations. We are coming to a con
clusion which will affect the whole course of our argument throughout 
this book, namely that there is an essential difference in kind 
between the phenomena of form in the larger and the smaller 
organisms. I have called this book a study of Growth and Form, 
because in the most familiar illustrations of organic form, as in our 
own bodies for example, these two factors are inseparably asso
ciated, and because we are here justified in thinking of form as the 
direct resultant and consequence of growth: of growth, whose 
varying rate in one direction or another has produced, by its gradual 
and unequal increments, the successive stages of development and 
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the final configuration of the whole material structure. But it is 
by no means true that form and growth are in this direct and s mple 
fashion correlative or complementary in the case of minute portions 
of living matter. For in the smaller organisms, and in the indi
vidual cells of the larger, we have reached an order of magnitude 
in which the intermolecular forces strive under favourable conditions 
with, and at length altogether outweigh, the force of gravity, and 
also those other forces leading to movements of convection which 
are the prevailing factors in the larger material aggregate.

However, we shall require to deal more fully with this matter in 
our discussion of the rate of growth, and we may leave it mean
while, in order to deal with other matters more or less directly 
concerned with the magnitude of the cell.

The living cell is a very complex field of energy, and of energy 
of many kinds, of which surface-energy is not the least. Now the 
whole surface-energy of the cell is by no means restricted to its 
outer surface; for the cell is a very heterogeneous structure, and all 
its protoplasmic alveoli and other visible (as well as invisible) hetero
geneities make up a great system of internal surfaces, at every part 
of which one “phase” conges in contact with another “phase,” and 
surface-energy is manifested accordingly. But still, the external 
surface is a definite portion of the system, with a definite “phase” 
of its own, and however little we may know of the distribution of 
the total energy of the system, it is at least plain that the conditions 
which favour equilibrium will be greatly altered by the changed 
ratio of external surface to mass which a mere change of magnitude 
produces in the cell. In short, the phenomenon of division of the 
growing cell, however it be brought about, will be precisely what 
is wanted to keep fairly constant the ratio between surface and 
mass, and to retain or restore the balance between surface-energy 
and the other forces of the system*. But when a germ-cell divides 
or “segments” into two, it does not increase in mass; at least if 
there be some slight alleged tendency for the egg to increase in

* Certain cells of the cucumber were found to divide when they had grown to 
a volume half as large again as that of the “resting cells.’* Thus the volumes 
of resting, dividing and daughter cells were as 1:1-5: 0-75; and their surfaces, 
being as the power 2/3 of these figures, were, roughly, as 1:1-3: 0-8. The ratio 
of S/V was then as 1 : 0-9 : 1-1, or much nearer equality. Cf. F. T. Lewis, Anat. 
Record, xlvii, pp. 59-99, 1930.
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mass or volume during segmentation it is very slight indeed, 
generally imperceptible, and wholly denied by some*.  The growth 
or development of the egg from a one-celled stage to stages of two 
or many cells is thus a somewhat peculiar kind of growth; it is 
growth limited to change of form and increase of surface, unaccom
panied by growth in volume or in mass. In the case of a soap-bubble, 
by the way, if it divide into two bubbles the volume is actually 
diminished, while the surface-area is greatly increased]"; the diminution 
being due to a cause which we shall have to study later, namely to 
the increased pressure due to the greater curvature of the smaller 
bubbles.

* Though the entire egg is not increasing in mass, that is not to say that its living 
protoplasm is not increasing all the while at the expense of the reserve material.

f Cf. P. G. Tait, Proc. R.S.E. v, 1866 and vi, 1868.

An immediate and remarkable result of the principles just 
described is a tendency on the part of all cells, according to their 
kind, to vary but little about a certain mean size, and to have in 
fact certain absolute limitations of magnitude. The diameter of a 
large parenchymatous cell is perhaps tenfold that of a little one; 
but the tallest phanerogams are ten thousand times the height of 
the least. In short, Nature has her materials of predeterminate 
dimensions, and keeps to the same bricks whether she build a great 
house or a small. Even ordinary drops tend towards a certain 
fixed size, which size is a function of the surface-tension, and may 
be used (as Quincke used it) as a measure thereof. In a shower of 
rain the principle is curiously illustrated, as Wilding Koller and 
V. Bjerknes tell us. The drops are of graded sizes, each twice as big 
as another, beginning with the minute and uniform droplets of an 
impalpable mist. They rotate as they fall, and if two rotate in 
contrary directions they draw together and presently coalesce; but 
this only happens when two drops are falling side by side, and since 
the rate of fall depends on the size it always is a pair of coequal 
drops which so meet, approach and join together. A supreme 
instance of constancy or quasi-constancy of size, remote from but 
yet analogous to the size-limitation of a rain-drop or a cell, is the 
fact that the stars of heaven (however else one differeth from 
another), and even the nebulae themselves, are all wellnigh co-equal 
in mass. Gravity draws matter together, condensing it into a world 
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or into a star; but ethereal pressure is an opponent force leading 
to disruption, negligible on the small scale but potent on the large. 
High up in the scale of magnitude, from about 1033 to 1035 grams 
of matter, these two great cosmic forces balance one another; and 
all the magnitudes of all the stars lie within or hard by these narrow 
Emits.

In the living cell, Sachs pointed out (in 1895) that there is a 
tendency for each nucleus to gather around itself a certain definite 
amount of protoplasm*. Drieschf, a little later, found it possible, 
by artificial subdivision of the egg, to rear dwarf sea-urchin larvae, 
one-half, one-quarter or even one-eighth of their usual size; which 
dwarf larvae were composed of only a half, a quarter or an eighth 
of the normal number of cells. These observations have been often 
repeated and amply confirmed: and Loeb found the sea-urchin eggs 
capable of reduction to a certain size, but no further.

In the development of Crepidula (an American “slipper-limpet,” 
now much at home on our oyster-beds), Conklin J has succeeded in 
rearing dwarf and giant individuals, of which the latter may be 
five-and-twenty times as big as the former. But the individual 
cells, of skin, gut, liver, muscle and other tissues, are just the same 
size in one as in the other, in dwarf and in giant §. In like manner

* Physiologische Notizen (9), p. 425, 1895. Cf. Amelung, Flora, 1893; Stras- 
biirger, Ueber die Wirkungssphare der Kerne und die Zellgrbsse, Histol. Beitr. (5), 
pp. 95-129, 1893; R. Hertwig, Ueber Korrelation von Zell- und Kerngrbsse 
(Kernplasmarelation), Biol. Centralbl. xvm, pp. 49-62, 108-119, 1903; G. Levi 
and T. Terni, Le variazioni dell’ indice plasmatico-nucleare durante 1’ intercinesi, 
Arch. Itai, di Anat, x, p. 545, 1911; also E. le Breton and G. Schaeffer, Variations 
biochimiqu.es du rapport nucldo-plasmatique, Strasburg, 1923.

t Arch. f. Entw. Meeh, iv, 1898, pp. 75, 247.
J E. G. Conklin, Cell-size and nuclear size, Journ. Exp. Zool. xn, pp. 1-98, 

1912; Body-size and cell-size, Jmirn. of Morphol. xxm, pp. 159-188, 1912. Cf. 
M. Popoff, Ueber die Zellgrosse, Arch. f. Zellforschung, ni, 1909.

§ Thus the fibres of the crystalline lens are of the same size in large and small 
dogs, Rabi, Z.f. w. Z. lxvii, 1899. Cf. (int. al.) Pearson, On the size of the blood
corpuscles in Rana, Biometrika, vi, p. 403, 1909. Dr Thomas Young caught sight 
of the phenomenon early in last century: “The solid particles of the blood do not 
by any means vary in magnitude in the same ratio with the bulk of the animal,” 
Natural Philosophy, ed. 1845, p. 466; and Leeuwenhoek and Stephen Hales 
were aware of it nearly two hundred years before. Leeuwenhoek indeed had 
a very good idea of the size of a human blood-corpuscle, and was in the habit of 
using its diameter—about 1/3000 of an inch—as a standard of comparison. But 
though the blood-corpuscles shew no relation of magnitude to the size of the 
animal, they are related without doubt to its activity; for the corpuscles in the

biochimiqu.es
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the leaf-cells are found to be of the same size in an ordinary water
lily, in the great Victoria regia, and in the still huger leaf, nearly 
3 metres long, of Euryale ferox in Japan*. Driesch has laid par
ticular stress upon this principle of a “fixed cell-size,” which has, 
however, its own limitations and exceptions. Among these excep
tions, or apparent exceptions, are the giant frond-like cell of a 
Caulerpa or the great undivided plasmodium of a Myxomycete. 
The flattening of the one and the branching of the other serve (or 
help) to increase the ratio of surface to content, the nuclei tend to 
multiply, and streaming currents keep the interior and exterior of 
the mass in touch with one another.

Fig. 3. Motor ganglion-cells, from the cervical spinal cord. 
From Minot, after Irving Hardesty.

We get a good and even a familiar illustration of the principle 
of size-lirnitatioh in comparing the brain-cells or ganglion-cells, 
whether of the lower or of the higher animal* f. In Fig. 3 we shew 
certain identical nerve-cells from various mammals, from mouse to 
elephant, all drawn to the same scale of magnification; and we see 
that they are all of much the same ardor of magnitude. The nerve
cell of the elephant is about twice that of the mouse in linear 
sluggish Amphibia are much the largest known to us, while the smallest are found 
among the deer and other agile and speedy animals (cf. Gulliver, P.Z.S. 1875, 
p. 474, etc.). This correlation is explained by the surface condensation or 
adsorption of oxygen in the blood-corpuscles, a process greatly facilitated and 
intensified by the increase of surface due to their minuteness.

* Okada and Yromosuke, in Sei. Rep. Tohoku Univ, m, pp. 271-278, 1928.
t Cf. P. Enriques, La forma come funzione della grandezza: Ricerche sui gangli 

nervosi degli invertebrati, Arch.f. Entw. Meeh, xxv, p. 655, 1907-8. 
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dimensions, and therefore about eight times greater in volume or 
in mass. But making due allowance for difference of shape, the 
linear dimensions of the elephant are to those of the mouse as not 
less than one to fifty; and the bulk of the larger animal is something 
like 125,000 times that of the less. It follows, if the size of the 
nerve-cells are as eight to one, that, in corresponding parts of the 
nervous system, there are more than 15,000 times as many individual 
cells in one animal as in the other. In short we may (with Enriques) 
lay it down as a general law that among animals, large or small, the 
ganglion-cells vary in size within narrow limits; and that, amidst 
all the great variety of structure observed in the nervous system 
of different classes of animals, it is always found that the smaller 
species have simpler ganglia than the larger, that is to say ganglia 
containing a smaller number of cellular elements*.  The bearing of 
such facts as this upon the cell-theory in general is not to be dis
regarded; and the warning is especially clear against exaggerated 
attempts to correlate physiological processes with the visible 
mechanism of associated cells, rather than with the system of 
energies, or the field of force, which is associated with them. For 
the life of the body is more than the sum, of the properties of the 
cells of which it is composed: as Goethe said, “Das Lebendige ist 
zwar in Elemente zerlegt, aber man kann es aus diesen nicht wieder 
zusammenstellen und beleben.”

* While the difference in cell-volume is* vastly less than that between the 
volumes, and very much less also than that between the surfaces, of the respective 
animals, yet there is a certain difference; and this it has been attempted to correlate 
with the need for each cell in the many-celled ganglion of the larger animal to 
possess a more complex “exchange system” of branches, for intercommunication 
with its more numerous neighbours. Another explanation is based on the fact 
that, while such cells as continue to divide throughout life tend to uniformity of 
size in all mammals, those which do not do so, and in particular the ganglion cells, 
continue to grow, and their size becomes, therefore, a function of the duration of 
life. Cf. G. Levi, Studii sulla grandezza delle cellule. Arch. Itai, di Anat, e di 
Embr iolog. vj p. 291, 1906; cf. also A. Berezowski, Studien fiber die Zellgrosse, 
Arch. f. ZeRforsch. v, pp. 375-384, 1910.

Among certain microscopic organisms such as the Rotifera (which 
have the least average size and the narrowest range of size of all 
the Metazoa), we are still more palpably struck by the small number 
of cells which go to constitute a usually complex organ, such as 
kidney, stomach or ovary; we can sometimes number them in a few 
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units, in place of the many thousands which make up such an organ 
in larger, if not always higher, animals. We have already spoken 
of the Fairy-flies, a few score of which would hardly weigh down 
one of the larger rotifers, and a hundred thousand would weigh less 
than one honey-bee. Their form is complex and their little bodies 
exquisitely beautiful; but I feel sure that their cells are few. and 
their organs of great histological simplicity. These considerations 
help, I think, to shew that, however important and advantageous 
the subdivision of the tissues into cells may be from the construc
tional, or from the dynamic, point of view, the phenomenon has 
less fundamental importance than was once, and is often still, 
assigned to it.

Just as Sachs shewed there was a limit to the amount of cytoplasm 
which could gather round a nucleus, so Boveri has demonstrated 
that the nucleus itself has its own limitations of size, and that, in 
cell-division after fertilisation, each new nucleus has the same size 
as its parent nucleus*; we may nowadays transfer the statement 
to the chromosomes. It may be that a bacterium lacks a nucleus 
for the simple reason that it is too small to hold one, and that the 
same is true of such small plants as the Cyanophyceae, or blue-green 
algae. Even a chromatophore with its “pyrenoids” seems to be 
impossible below a certain sizef.

Always then, there are reasons, partly physiological but in large 
part purely physical, which define or regulate the magnitude of the 
organism or the cell. And as wTe have already found definite 
limitations to the increase in magnitude of an organism, let us now 
enquire whether there be not also a lower limit below which the 
very existence of an organism becomes impossible.

* Boveri, Zellenstudien, V: Ueber die Abhangigkeit der Kerngrosse und 
Zelienzahl von der Chromoso menzahl der Ausgangszellen. Jena, 1905. Cf. also 
(int. al.) H. Voss, Kerngrossenverhaltnisse in der Leber etc., Ztschr.f. Zellforschung, 
vn, pp. 187-200, 1928.

f The size of the nucleus may be affected, even determined, by the number of 
chromosomes it contains. There are giant races of Oenothera, Primula and Solanum 
whose cell-nuclei contain twice the normal number of chromosomes, and a dwarf 
race of a little freshwater crustacean, Cyclops, has half the usual number. The 
cytoplasm in turn varies with the amount of nuclear matter, the whole cell is 
unusually large or unusually small; and in these exceptional cases we see a direct 
relation between the size of the organism and the size of the cell. Cf. (int. al.) 
R. P. Gregory, Proc. Camb. Phil. Soc. xv, pp. 239-246, 1909; F. Keeble, Journ. 
of Genetics, n, pp. 163-188, 1912.
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A bacillus of ordinary size is, say, Ip in length. The length (or 
height) of a man is about a million and three-quarter times as great, 
i.e. 1-75 metres, or 1-75 x 106/z; and the mass of the man is in the 
neighbourhood of 5 x 1018 (five million, million, million) times 
greater than that of the bacillus. If we ask whether there may not 
exist organisms as much less than the bacillus as the bacillus is less 
than the man, it is easy to reply that this is quite impossible, for we 
are rapidly approaching a point where the question of molecular 
dimensions, and of the ultimate divisibility of matter, obtrudes 
itself as a crucial factor in the case. Clerk Maxwell dealt with this 
matter seventy years ago, in his celebrated article Atom*. Kolli 
(or Colley), a Russian chemist, declared in 1893 that the head of a 
spermatozoon could hold no more than a few protein molecules; and 
Errera, ten years later, discussed the same topic with great ingenuity f. 
But it needs no elaborate calculation to convince us that the smaller 
bacteria or micrococci nearly approach the smallest magnitudes 
which we can conceive to have an organised structure. A few small 
bacteria are the smallest of visible organisms, and a minute species 
associated with influenza, B. pneumosinter, is said to be the least 
of them all. Its size is of the order of 0-1 p, or rather less; and 
here we are in close touch with the utmost limits of microscopic 
vision, for the wave-lengths of visible light run only from about 
400 to 700mp. The largest of the bacteria, B. megatherium, larger 
than the well-known B. anthracis of splenic fever, has much the 
same proportion to the least as an elephant to a guinea-pig J.

Size of body is no mere accident. Man, respiring as he does, 
cannot be as small as an insect, nor vice versa; only now and then, 
as in the Goliath beetle, do the sizes of mouse and beetle meet and 
overlap. The descending scale of mammals stops short at a weight 
of about 5 grams, that of beetles at a length of about half a milli
metre, and every group of animals has its upper and its lower 
limitations of size. So, not far from the lower limit of our vision, 
does the long series of bacteria come to an end. There remain still 
smaller particles which the ultra-microscope in part reveals; and

* Encyclopaedia Britannica, 9th edition, 1875.
f Leo Errera, Sur la limite de la petitesse des organismes, Bull. Soc. Roy. des 

Sc. med,, et nat. de Bruxelles, 1903; Recueil d'oeuvres (Physiologic gSn&ale). p. 325.
J Cf. A. E. Boycott, The transition from live to dead, Proc. R. Soc. of Medicine, 

xxii (Pathology), pp. 55-69, 1928.
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here or hereabouts are said to come the so-called viruses or “filter
passers,” brought within our ken by the maladies, such as hydro
phobia, or foot-and-mouth disease, or the mosaic diseases of tobacco 
and potato, to which they give rise. These minute particles, of the 
order of one-tenth the diameter of our smallest bacteria, have no 
diffusible contents, no included water —whereby they differ from 
every living thing. They appear to be inert colloidal (or even 
crystalloid) aggregates, of a nucleo-protein, of perhaps ten times the 
diameter of an ordinary protein-molecule, and not much larger than 
the giant molecules of haemoglobin or haemocyanin*.

* Cf. Svedberg, Journ. Am. Chern. Soc. xlviii, p. 30, 1926. According to the 
Foot-and-Mouth Disease Research Committee (5th Report, 1937), the foot-and- 
mouth virus has a diameter, determined by graded filters, of 8-12mp; while 
Kenneth Smith and W. D. MacClement (Proc. R.S. (B), cxxv, p. 296, 1938) calculate 
for certain others a diameter of no more than 4mp, or less than a molecule of 
haemocyanin.

+ H. H. Dixon, Croonian lecture on the transport of substances in plants. 
Proc. R.S. (B), vol. cxxv, pp. 22, 23, 1938.

Bejerinck called such a virus a contagium vivum; “infective 
nucleo-protein” is a newer name. We have stepped down, by a 
single step, from living to non-living things, from bacterial dimen
sions to the molecular magnitudes of protein chemistry. And we 
begin to suspect that the virus-diseases are not due to an “organism, 
capable of physiological reproduction and multiplication, but to a 
mere specific chemical substance, capable of catalysing pre-existing 
materials and thereby producing more and more molecules like 
itself. The spread of the virus in a plant would then be a mere 
autocatalysis, not involving the transport of matter, but only a 
progressive change of state in substances already there f.”

But, after all, a simple tabulation is all we need to shew how 
nearly the least of organisms approach to molecular magnitudes. 
The same table will suffice to shew how each main group of animals 
has its mean and characteristic size, and a range on either side, 
sometimes greater and sometimes less.

Our table of magnitudes is no mere catalogue of isolated facts, 
but goes deep into the relation between the creature and its world. 
A certain range, and a narrow one, contains mouse and elephant, 
and all whose business it is to walk and run; this is our own world, 
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with whose dimensions our lives, our limbs, our senses are in tune. 
The great whales grow out of this range by throwing the burden 
of their bulk upon the waters; the dinosaurs wallowed in the swamp, 
and the hippopotamus, the sea-elephant and Steller’s great sea-cow 
pass or passed their lives in the rivers or the sea. The things which

Linear dimensions of organisms, and other objects

WV •
(10,000 km.) 107 A quadrant of the earth’s circumference

(1000 km.) 108 Orkney to Land’s End

10®

104
Mount Everest

(km.) 103

10* Giant trees: Sequoia 
Large whale

10^ Basking shark
Elephant; ostrich; man

(metre) 10°
Dog; rat; eagle

10-1
Small birds and mammals; large insects

(cm.) 10-2
Small insects; minute fish

(mm.) 10“3
Minute insects

10-4
Protozoa; pollen-grains - Cells

10“®
Large bacteria; human blood-corpuscles

(micron, p) 10-®
Minute bacteria

10-7
Limit of microscopic vision

10-8
Viruses, or filter-passers 1 „ , ...Giant albuminoids, casein, etc] Colloid P^1®1®8
Starch-molecule

W 10~8
Water-molecule

(Angstrom unit) 10-10

fly are smaller than the things which walk and run; the flying birds 
are never as large as the larger mammals, the lesser birds and 
mammals are much of a muchness, but insects come down a step 
in the scale and more. The lessening influence of gravity facilitates 
flight, but makes it less easy to walk and run; first claws, then 
hooks and suckers and glandular hairs help to secure a foothold,
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until to creep upon wall or ceiling becomes as easy as to walk upon 
the ground. Fishes, by evading gravity, increase -their range of 
magnitude both above and below that of terrestrial animals. Smaller 
than all these, passing out of our range of vision and going down to 

’ the least dimensions of living things, are protozoa, rotifers, spores, 
pollen-grains*  and bacteria. All save the largest of these float 
rather than swim; they are buoyed up by air or water, and fall 
(as Stokes’s law explains) with exceeding slowness.

* Pollen-grains, like protozoa, have a considerable range of magnitude. The 
largest, such as those of the pumpkin, are about 200p in diameter; these have to 
be carried by insects, for they are above the level of Stokes’s law, and no longer 
float upon the air. The smallest pollen-grains, such as those of the forget-me-not, 
are about 4| p in diameter (Wodehouse).

f Corresponding, that is to say, to the four axes which, meeting in a point, make 
co-equal angles (the so-called tetrahedral angles) one with another, as do the basal 
angles of the honeycomb. (See below, chap, vii.)

There is a certain narrow range of magnitudes where (as we have 
partly said) gravity and surface tension become comparable forces, 
nicely balanced with one another. Here a population of small 
plants and animals not only dwell in the surface waters but are 
bound to the surface film itself—the whirligig beetles and pond
skaters, the larvae of gnat and mosquito, the duckweeds {Lemna), 
the tiny Wolffia, and Azolla', even in mid-ocean, one small insect 
(Halobates) retains this singular habitat. It would be a long story 
to tell the various ways in which surface-tension is thus taken full 
advantage of. Gravitation not only limits the magnitude but 
controls the form of things. With the help of gravity the quadruped 
has its back and its belly, and its limbs upon the ground; its freedom 
of motion in a plane perpendicular to gravitational force; its sense 
of fore-and-aft, its head and tail, its bilateral symmetry. Gravitation 
influences both our bodies and our minds. We owe to it our sense 
of the vertical, our knowledge of up-and-down; our conception of 
the horizontal plane on which we stand, and our discovery of two 
axes therein, related to the vertical as to one another; it was gravity 
which taught us to think of three-dimensional space. Our archi
tecture is controlled by gravity, but gravity has less influence over 
the architecture of the bee; a bee might be excused, might even be 
commended, if it referred space to four dimensions instead of three! f 
The plant has its root and its stem; but about this verLcal or 

5-2
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gravitational axis its radiate symmetry remains, undisturbed by 
directional polarity, save for the pun. Among animals, radiate 
symmetry is confined to creatures of no great size; and some form 
or degree of spherical symmetry becomes the rule in the small world 
of the protozoon—unless gravity resume its sway through the added 
burden of a shell. The creatures which swim, walk or run, fly, 
creep or float are, so to speak, inhabitants and natural proprietors 
of as many distinct and all but separate worlds. Humming-bird 
and hawkmoth may, once in a way, be co-tenants of the same 
world; but for the most part the mammal, the bird, the fish, the 
insect and the small life of the sea, not only have their zoological 
distinctions, but each has a physical universe of its own. The 
world of bacteria is yet another world again, and so is the world of 
colloids; but through these small Lilliputs we pass outside the range 
of living things.

What we call mechanical principles apply to the magnitudes 
among which we are at home; but lesser worlds are governed by 
other and appropriate physical laws, of capillarity, adsorption and 
electric charge. There are other worlds at the far other end of the 
scale, in the uttermost depths of space, whose vast magnitudes lie 
within a narrow range. When the globular star-clusters are plotted 
on a curve, apparent diameter against estimated distance, the 
curve is a fair approximation to a rectangular hyperbola; which 
means that, to the same rough approximation, the actual diameter 
is identical in them all*.

It is a remarkable thing, worth pausing to reflect on, that we can 
pass so easily and in a dozen lines from molecular magnitudes f to 
the dimensions of a Sequoia or a whale. Addition and subtraction, 
the old arithmetic of the Egyptians, are not powerful enough for 
such an operation; but the story of the grains of wheat upon the 
chessboard shewed the way, and Archimedes and Napier elaborated

* See Harlow Shapley and A. B. Sayer, The angular diameters of globular 
clusters. Proc. Nat. Acad, of Sci. xxi, pp. 593-597, 1935. The same is approxi
mately true of the spiral nebulae also.

f We may call (after Siedentopf and Zsigmondi) the smallest visible particles 
microns, such for instance as small bacteria, or the fine particles of gum-mastich 
in suspension, measuring 0-5 to 1'Op; sub-microns are those revealed by the ultra
microscope, such as particles of colloid gold (2-15mp), or starch-molecules (5mp); 
amicrons, under Imp, are not perceptible by either method. A water-molecule 
measures, probably, about 0-lmp.
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the arithmetic of multiplication. So passing up and down by easy 
steps, as Archimedes did when he numbered the sands of the sea, 
we compare the magnitudes of the great beasts and the small, of 
the atoms of which they are made, and of the world in which they 
dwell*.

* Observe that, following a common custom, we have only used a logarithmic 
scale for the round numbers representing powers of ten, leaving the interspaces 
between these to be filled up, if at all, by ordinary numbers. There is nothing 
to prevent us from using fractional indices, if we please, throughout, and calling 
a blood corpuscle, for instance, IO-3’2 cm. in diameter, a man IO2 26 cm. high, or 
Sibbald’s Rorqual IO148 metres long. This method, implicit in that of Napier of 
Merchiston, was first set forth by Wallis, in his Arithmetica infinitorum.

While considerations based on the chemical composition of the 
organism have taught us that there must be a definite lower limit 
to its magnitude, other considerations of a purely physical kind lead 
us to the same conclusion. For our discussion of the principle of 
similitude has already taught us that long before we reach these 
all but infinitesimal magnitudes the dwindling organism will have 
experienced great changes in all its physical relations, and must at 
length arrive at conditions surely incompatible with life, or what we 
understand as life, in its ordinary development and manifestation.

\V e are told, for instance, that the powerful force of surface-tension, 
or capillarity, begins to act within a range of about 1/500,000 of an 
inch; or say 0-05 p. A soap film, or a film of oil on water, may be 
attenuated to far less magnitudes than this; -the black spots on a 
soap bubble are known, by various concordant methods of measure
ment, to be only about 6 < 10-7 cm., or about 6mp thick, and Lord 
Rayleigh and M. Devaux have obtained films of oil of 2 mp, or even 
1 mp in thickness. But while it is possible for a fluid film to exist 
of these molecular dimensions, it is certain that long before we 
reach these magnitudes there arise conditions of which we have 
little knowledge, and which it is not easy to imagine. A bacillus 
lives in a world, or on the borders of a world, far other than our 
own, and preconceptions drawn from our experience are not valid 
there. Even among inorganic, non-living bodies, there comes a 
certain grade of minuteness at which the ordinary properties become 
modified. For instance, while under ordinary circumstances crystal
lisation starts in a solution about a minute solid fragment or crystal 
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of the salt, Ostwald has shewn that we may have particles so minute 
that they fail to serve as a nucleus for crystallisation—which is as 
much as to say that they are too small to have the form and pro
perties of a “crystal.” And again, in his thin oil-films, Lord 
Rayleigh noted the striking change of physical properties which 
ensues when the film becomes attenuated to one, or something less 
than one, close-packed layer of molecules, and when, in short, it no 
longer has the properties of matter in mass. '

These attenuated films are now known to be “monomolecular,” the 
long-chain molecules of the fatty acids standing close-packed, like the cells 
of a honeycomb, and the film being just as thick as the molecules are long. 
A recent determination makes the several molecules of oleic, palmitic and 
stearic acids measure 10-4, 14-1 and 15-1 cm. in length, and in breadth 7-4, 
6-0 and 5-5 cm., all by 10-8: in good agreement with Lord Rayleigh and 
Devaux’s lowest estimates (F. J. Hill, Phil. Mag. 1929, pp. 940-946). But 
it has since been shewn that in aliphatic substances the long-chain molecules 
are not erect, but inclined to the plane of the film; that the zig-zag constitution 
of the molecules permits them to interlock, so giving the film increased 
stability; and that the interlock may be by means of a first or second zig-zag, 
the measured area of the film corresponding precisely to these two dimorphic 
arrangements. (Cf. C. G. Lyons and E. K. Rideal, Proc. R.S. (Af, cxxvm, 
pp. 468-473, 1930.) The film may be lifted on to a polished surface of metal, 
or even on a sheet of paper, and one monomolecular layer so added to another; 
even the complex protein molecule can be unfolded to form a film one amino
acid molecule thick. The whole subject of monomolecular layers, the nature 
of the film, whether condensed, expanded or gaseous, its astonishing sensitive
ness to the least impurities, and the manner of spreading of the one liquid 
over the other, has become of great interest and importance through the work 
of Irving Langmuir, Devaux, N. K. Adam and others, and throws new light 
on the whole subject of molecular magnitudes*.

The suiface-tension of a drop (as Laplace conceived it) is the 
cumulative effect, the statistical average, of countless molecular 
attractions, but we are now entering on dimensions where the 
molecules are fewf. The free surface-energy of a body begins to 
vary with the radius, when that radius is of an order comparable 
to inter-molecular distances; and the whole expression for such 
energy tends to vanish away when the radius of the drop or particle 
is less than 0-01 p, or 10 mp. The qualities and properties of our

♦ Cf. (ini. al.) Adam, Physics and Chemistry of Surfaces, 1930; Irving Langmuir, 
Proc. R.S. (A), clxx, 1939.

f See a very interesting paper by Fred Vies, Introduction & la physique bac- 
terienne. Revue Scient. 11 juin 1921. Cf. also N. Rashevsky, Zur Theorie d. 
spontanen Teilung von mikroskopischen Tropfen, Ztschr.f. Physik, xlvi, p. 578,1928. 
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particle suffer an abrupt change here; what then can we attribute, 
in the way of properties, to a corpuscle or organism as small or 
smaller than, say, 0-05 or 0-03pl It must, in all probability, be a 
homogeneous structureless body, composed of a very small number 
of albumenoid or other molecules. Its vital properties and functions 
must be extremely limited; its specific outward characters, even if 
we could see it, must be nil; its osmotic pressure and exchanges 
must be anomalous, and under molecular bombardment they may 
be rudely disturbed; its properties can be little more than those of 
an ion-laden corpuscle, enabling it to perform this or that specific 
chemical reaction, to effect this or that disturbing influence, or 
produce this or that pathogenic effect. Had it sensation, its ex
periences would be strange indeed; for if it could feel, it would regard 
a fall in temperature as a movement of the molecules around, and 
if it could see it would be surrounded with light of many shifting 
colours, like a room filled with rainbows.

The dimensions of a cilium are of such an order that its substance 
is mostly, if not all, under the peculiar conditions of a surface-layer, 
and surface-energy is bound to play a leading part in ciliary action. 
A cilium or flagellum is (as it seems to me) a portion of matter in 
a state sui generis, with properties of its own, just as the film and the 
jet have theirs. And just as Savart and Plateau have told us about 
jets and films, so w’ill the physicist some day explain the properties 
of the cilium and flagellum. It is certain that we shall never 
understand these remarkable structures so long as we magnify 
them to another scale, and forget that new and peculiar physical 
properties are associated with the scale to which they belong*.

As Clerk Maxwell put it, “molecular science sets us face to face 
with physiological theories. It forbids the physiologist to imagine 
that structural details of infinitely small dimensions (such as Leibniz 
assumed, one within another, ad infinitum) can furnish an explana
tion of the infinite variety which exists in the properties and functions 
of the most minute organisms.” And for this reason Maxwell 
reprobates, with not undue severity, those advocates of pangenesis

♦ The cilia on the gills of bivalve molluscs are of exceptional size, measuring 
from say 20 to 120p long. They are thin triangular plates, rather than filaments; 
they are from 4 to 10p broad at the base, but less than Ip thick. Cf. D. Atkins, 
Q.J.M.S., 1938, and other papers.
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and similar theories of heredity, who “ would place a whole world 
of wonders within a body so small and so devoid of visible structure 
as a germ.” But indeed it scarcely needed Maxwell’s criticism to 
shew forth the immense physical difficulties of Darwin’s theory of 
pangenesis: which, after all, is as old as Democritus, and is no other 
than that Promethean particula Undique desecta of which we have 
read, and at which we have smiled, in our Horace.

There are many other ways in which, when we make a long 
excursion into space, we find our ordinary rules of physical behaviour 
upset. A very familiar case, analysed by Stokes, is that the 
viscosity of the surrounding medium has a relatively powerful effect 
upon bodies below a certain size. A droplet of water, a thousandth 
of an inch (25 p) in diameter, cannot fall in still air quicker than 
about an inch and a half per second; as its size decreases, its 
resistance varies as the radius, not .(as with larger bodies) as the 
surface; and its “critical” or terminal velocity varies as the 
square of the radius, or as the surface of the drop. A minute 
drop in a misty cloud may be one-tenth that size, and will fall a 
hundred times slower, say an inch a miilute; and one again a tenth 
of this diameter (say 0-25 p, or about twice as big as a small micro
coccus) will scarcely fall an inch in two hours*. Not only do 
dust-particles, spores f and bacteria fall, by reason of this principle, 
very slowly through the air, but all minute bodies meet with great 
proportionate resistance to their movements through a fluid. In 
salt water they have the added influence of a larger coefficient of 
friction than in fresh J; and even such comparatively large organisms 
as the diatoms and the foraminifera, laden though they are with a 
heavy shell of flint or lime, seem to be poised in the waters of the 
ocean, and fall with exceeding slowness.

♦ The resistance depends on the radius of the particle, the viscosity, and the 
rate of fall (F); the effective weight by which this resistance is to be overcome 
depends on gravity, on the density of the particle compared with that of the 
medium, and on the mass, which varies as r3. Resistance = krV, and effective 
weight = k'r3; when these two equal one another we have the critical or terminal 
velocity, and V oc r2.

f A. H. R. Buller found the spores of a fungus (Collybia',, measuring 5x3/i, 
to fall at the rate of half a millimetre per second, or rather more than an inch 
a minute; Studies on Fungi, 1909.

J Cf. W. Krause, Biol. Centralbl. i, p. 578, 1881; Fliigel, Meteorol. Ztschr. 1881, 
p. 321.
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When we talk of one thing touching another, there may yet be 
a distance between, not only measurable but even large compared 
with .the 'magnitudes we have been considering. Two polished 
plates of glass or steel resting on one another are still about 4p 
apart—the average size of the smallest dust; and when all dust
particles are sedulously excluded, the one plate sinks slowly down 
to within 0-3 p of the other, an apparent separation to be accounted 
for by minute irregularities of the polished surfaces*.

* Cf. Hardy and Nottage, Proc. R.S. (A), cxxviii, p. 209, 1928; Baston and 
Bowden, ibid, cxxxiv, p. 404, 1931.

f A Brief Description of Microscopical Observations.. .on the Particles'contained 
in the Pollen of Plants; and on the General Existence of Active Molecules in Organic 
and Inorganic Bodies, London, 1828. See also Edinb. New Philosoph. Journ. v, 
p. 358. 1828; Edinb. Journ. of Science, I, p. 314, 1829; Ann. Sc. Nat. xiv, pp. 341- 
362, 1828; etc. The Brownian movement was hailed by some as supporting 
Leibniz’s theory of Monads, a theory once so deeply rooted and so widely believed 
that even under Schwann's cell-theory Johannes Muller and Henle spoke of 
the cells as “organische Monaden”; cf. Emil du Bois Reymond, Leibnizische 
Gedanken in der neueren Naturwissenschaft, Monatsber. d. k. Ahad. Wise., Berlin, 
1870,

I The “nucleus” was first seen in the epidermis of Orchids; but “this areola, 
or nucleus of the cell as perhaps it might be termed, is not confined to the 
epidermis,” etc. See his paper on Fecundation in Orchideae and Asclepiadae, 
Trans. Linn. Soc. xvi, 1829-33, also Proc. Linn. Soci March 30, 1832.

§ Carpenter, The Microscope, edit. 1862, p. 185

The Brownian movement has also to be reckoned with—that 
remarkable phenomenon studied more than a century ago by Robert 
Brown f, Humboldt’s facile princeps botanicorum, and discoverer of 
the nucleus of the cell J. It is the chief of those fundamental 
phenomena which the biologists have contributed, or helped to 
contribute, to the science of physics.

The quivering motion, accompanied by rotation and even by 
translation, manifested by the fine granular particle issuing from a 
crushed pollen-grain, and which Brown proved to have no vital 
significance but to be manifested by all minute particles whatsoever, 
was for many years unexplained. Thirty years and more after Brown 
wrote, it was said to be “due, either directly to some calorical 
changes continually taking place in the fluid, or to some obscure 
chemical action between the solid particles and the fluid which is 
indirectly promoted by heat§ Soon after these words were 

I
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written it was ascribed by Christian Wiener * to molecular move
ments within the fluid, and was hailed as visible proof of the 
atomistic (or molecular) constitution of the same. We now know 
that it is indeed due to the impact or bombardment of molecules 
upon a body so small that these impacts do not average out, for 
the moment, to approximate equality on all sides f. The movement 
becomes manifest with particles of somewhere about 20 p. and is 
better displayed by those of about 10p, and especially well by 
certain colloid suspensions or emulsions whose particles are just 
below 1 p in diameter J. The bombardment causes our particles to 
behave just like molecules of unusual size, and this behaviour is 
manifested in several ways§. Firstly, we have the quivering 
movement of the particles; secondly, their movement backwards 
and forwards, in short, straight disjointed paths; thirdly, the 
particles rotate, and do so the more rapidly the smaller they are: 
and by theory, confirmed by observation, it is found that particles 
of Ip in diameter rotate on an average through 100° a second, 
while particles of 13 p turn through only 14° a minute. Lastly, the 
very curious result appears, that in a layer of fluid the particles are 
not evenly distributed, nor do they ever fall under the influence of 
gravity to the bottom. For here gravity and the Brownian move
ment are rival powers, striving for equilibrium; just as gravity is 
opposed in the atmosphere by the proper motion of the gaseous 
molecules. And just as equilibrium is attained in the atmosphere 
when the molecules are so distributed that the density (and therefore 
the number of molecules per unit volume) falls off in geometrical

* In Poggendorff's Annalen, cxvin, pp. 79-94, 1863. For an account of thia 
remarkable man, see Naturwissenschaften, xv, 1927; cf. also Sigmund Exner, 
Ueber Brown’s Molecularbewegung, Sitzungsber. kk. Akad. Wien, lvi, p. 116. 1867.

f Perrin, Les preuves de la realite inoleculaire, Ann. de Physique, xvu, p. 549, 
1905; xix, p. 571, 1906. The actual molecular collisions are unimaginably 
frequent; we see only the residual fluctuations.

J Wiener was struck by the fact that the phenomenon becomes conspicuous 
just when the size of the particles becomes comparable to that of a wave-length 
of light.

§ For a full, but still elementary, account, see J. Perrin, Les A tomes; cf. also 
Th. Svedberg, Die Existenz der Molekule, 1912; R. A. Millikan, The Electron, 
1917, etc. The modern literature of the Brownian movement (by Einstein» Perrin, 
de Broglie, Smoluchowski and Millikan) is very large, chiefly owing to the value 
which the phenomenon is shewn to have in determining the size of the atom or 
the charge on an electron, and of giving, as Ostwald said, experimental proof of 
the atomic theory.
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progression as we ascend to higher and higher layers, so is it with 
our particles within the narrow limits of the little portion of fluid 
under our microscope.

It is only in regard to particles of the simplest form that these 
phenomena have been theoretically investigated*,  and we may take 
it as certain that more complex particles, such as the twisted body 
of a Spirillum, would shew other and still more complicated mani
festations. It is at least clear that, just as the early microscopists 
in the days before Robert Brown never doubted but that these 
phenomena were purely vital, so we also may still be apt to confuse, 
in certain cases, the one phenomenon with the other. We cannot, 
indeed, without the most careful scrutiny, decide whether the 
movements of our minutest organisms are intrinsically “vital” (in 
the sense of being beyond a physical mechanism, or working model) 
or not. For example, Schaudinn has suggested that the undulating 
movements of Spirochaete pallida must be due to the presence of a 
minute, unseen, “undulating membrane”; and Doflein says of the 
same species that “sie verharrt oft mit eigenthiimlich zitternden 
Bewegungen zu einem Orte.” Both movements, the trembling or 
quivering movement described by Doflein, and the undulating or 
rotating movement described by Schaudinn, are just such as may 
be easily and naturally interpreted as part and parcel of the Brownian 
phenomenon.

* Cf. R. Gans, Wie fallen Stabe und Scheiben in einer reibenden Fliissigkeit? 
Munchener Bericht, 1911, p. 191; K. Przibram, Ueber die Brown’sche Bewegung 
nicht kugelformiger Teilchen, Wiener Beru ht, 1912, p. 2339; 1913, pp 1895-1912.

f As Clerk Maxwell put it to the British Association at Bradford in 1873, “We 
cannot do better than observe a swarm of bees, where every individual bee i# 
flying furiously, first in one direction and then in another, while the swarm as 
a whole is either at rest or sails slowly through the air.”

While the Brownian movement may thus simulate in a deceptive 
way the active movements of an organism, the reverse statement 
also to a certain extent holds good. One sometimes lies awake of 
a summer’s morning watching the flies as they dance under the 
ceiling. It is a very remarkable dance. The dancers do not whirl or 
gyrate, either in company or alone; but they advance and retire; 
they seem to jostle and rebound; between the rebounds they dart 
hither or thither in short straight snatches of hurried flight, and 
turn again sharply in a new rebound at the end of each little rush f.



76 ON MAGNITUDE [ch.

Their motions are erratic, independent of one another, and 
■devoid of common purpose*.  This is nothing else than a 
vastly magnified picture, or simulacrum, of the Brownian move
ment; the parallel between the two cases lies in their complete 
irregularity, but this in itself implies a close resemblance. One 
might see the same thing in a crowded market-place, always provided 
that the bustling crowd had no business whatsoever. In like 
manner Lucretius, and Epicurus before him, watched the dust-motes 
quivering in the beam, and saw in them a mimic representation, 
rei simulacrum et imago, of the eternal motions of the atoms. Again 
the same phenomenon may be witnessed under the microscope, in 
a drop of water swarming with Paramoecia or such-like Infusoria; 
and here the analogy has been put to a numerical test. Following 
with a pencil the track of each little swimmer, and dotting its place 
every few seconds (to the beat of a metronome), Karl Przibram 
found that the mean successive distances from a common base-line 
obeyed with great exactitude the “Einstein formula,” that is to 
say the particular form of the “law of chance” which is applicable 
to the case of the Brownian movementf. The phenomenon is (of 
course) merely analogous, and by no means identical with the 
Brownian movement; for the range of motion of the little active 
organisms, whether they be gnats or infusoria, is vastly greater than 
that of the minute particles w»hich are passive under bombardment; 
nevertheless Przibram is inclined to think that even his compara' 
tively large infusoria are small enough for the molecular bombard
ment to be a stimulus, even though not the actual cause, of their 
irregular and interrupted movements J.

* Nevertheless there may be a certain amount of bias or direction in these 
seemingly random divagations: cf. J. Brownlee, Proc. R.S.E. xxxi, p. 262, 
1910-11; F. H. Edgeworth, Metron, i, p. 75, 1920; Lotka, Elem.:of Physical 
Biology, 1925, p. 344.

f That is to say, the mean square of the displacements of a particle, in any 
direction, is proportional to the interval of time. Cf. K. Przibram, Ueber die 
ungeordnete Bewegung niederer Tiere, Pfluger's Archiv, clhi, pp. 401—105, 1913; 
Arch. f. Entw. Meeh, xliii, pp. 20-27, 1917.

J All that is actually proven is that “pure chance” has governed the movements 
of the little organism. Przibram has made the analogous' observation that 
infusoria, when not too crowded together, spread or diffuse through an aperture 
from one vessel to another at a rate very closely comparable to the ordinary laws 
of molecular diffusion.
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George Johnstone Stoney, the remarkable man to whom we owe 
the name and concept of the electron, went further than this; for 
he supposed that molecular bombardment might be the source of 
the life-energy of the bacteria. .He conceived the swifter moving 
molecules to dive deep into the minute bod^ of the organism, and 
this in turn to be able to make use of these importations of energy*.
•

We draw near the end of this discussion. W e found, to begin 
with, that “scale’.’ hrfd a marked effect on physical phenomena, and 
that increase or diminution of magnitude might mean a complete 
change of statical, or dynamical equilibrium. In the end we begin 
to see that there are discontinuities in the scale, defining phases in 
which different forces predominate and different conditions prevail. 
Life has a range of magnitude narrow indeed compared to that with 
which physical science deals; but it is wide enough to include three 
such discrepant conditions as those in which a man, an insect and 
a bacillus have their being and play their several roles. Man is 
ruled by gravitation, and rests on mother earth. A water-beetle 
finds the surface of a pool a matter of life and death, a perilous 
entanglement or an indispensable support. In a third world, 
where the bacillus lives, gravitation is forgotten, and the viscosity 
of the liquid, the resistance defined by Stokes’s law, the molecular 
shocks of the Brownian movement, doubtless also the electric 
charges of the ionised medium, make up the physical environment 
and have their potent and immediate influence on the organism. 
The predominant factors are no longer those of our scale; we hgfvp 
come to the edge of a world of which we have no experience, and 
where all our preconceptions must be recast.

* Phil. Mag. April 1890.



CHAPTER III

THE RATE OF GROWTH

When we study magnitude by itself, apart from the gradual 
changes to which it may be subject, we are dealing with a something 
which may be adequately represented by a number, or by means 
of a line of definite length; it is what mathematicians call a scalar 
phenomenon. When we introduce the conception of change of 
magnitude, of magnitude which varies as we pass from one point 
to another in space, or' from one instant to another in time, our 
phenomenon becomes capable of representation by means of a line 
of which we define both the length and the direction; it is (in this 
particular aspect) what is called a vector phenomenon.

When we deal with magnitude in relation to the dimensions of space, 
our diagram plots magnitude in one direction against magnitude in 
another—length against height, for instance, or against breadth; and 
the result is what we call a picture or outline, or (more correctly) 
a “plane projection” of the object. In other words, what we call 
Form is a ratio of magnitudes* referred to direction in space.

When, in dealing with magnitude, we refer its variations to 
successive intervals of time (or when, as it is said, we equate it with 
time), we are then dealing with the phenomenon of growth; and 
it is evident that this term growth has wide meanings. For growth 
may be positive or negative, a thing may grow larger or smaller, 
greater or less; and by extension of the concrete signification of 
the word we easily and legiti mately apply it to non-material things, 
such as temperature, and say, for instance, that a body “grows” 
hot or cold. When in a two-dimensional diagram we represent a 
magnitude (for instance length) in relation to time (or “plot” length 
against time, as the phrase is), we get that kind of vector diagram 
which is known as a “curve of growth.” We see that the pheno
menon which we are studying is a velocity (whose “dimensions” are 
space/time, or HT), and this phenomenon we shall speak of, simply, 
as a rate of growth.

In various conventional ways we convert a two-dimensional into
* In Aristotelian logic. Form is a quality. None the less, it is related to quantity, 

and we find the Schoolmen speaking of it as qualitas circa quantitatem. 
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a three-dimensional diagram. We do so, for example, when, by 
means of the geometrical method of “perspective,” we represent 
upon a sheet of paper the length, breadth and depth of an object 
in three-dimensional space, but we do it better by means of contour
lines or “isopleths.” By contour-lines superposed upon a map of 
a country, we shew its hills and valleys; and by contour-lines we 
may shew temperature, rainfall, population, language, or any other 
“third dimension” related to the two dimensions of the map. Time 
is always implicit, in so far as each map refers to its own date or 
epoch; but Time as a dimension can only be substituted for one of 
the three dimensions already there. Thus we may superpose upon 
our map the successive outlines of the coast from remote antiquity, 
or of any single isotherm or isobar from day to day. And if in like 
manner we superpose on one another, or even set side by side, the 
outlines of a growing organism—for instance of a young leaf and 
an old, we have a three-dimensional diagram which is a partial 
representation (limited to two dimensions of space) of the organism’s 
gradual change of form, or course of development; in such a case 
our contours may, for the purposes of the embryologist, be separated 
by time-intervals of a few hours or days, or, for the palaeontologist, 
by interspaces of unnumbered and innumerable years*.

* Sometimes we find one and the same diagram suffice, whether the time-intervals 
be great or small; and we then invoke “Wolff’s law” (or Kielmeyer’s), and assert 
that the life-history of the individual repeats, or recapitulates, the history of the 
race. This “recapitulation theory” was all-important in nineteenth-century 
embryology, but was criticised by Adam Sedgwick (Q.J.'M.S. xxxvi, p. 38, 1894) 
and many later authors; cf. J. Needham, Chemical Embryology, 1931, pp. 1629-1647.

t Our subject is one of Bacon’s “Instances of the Course” or studies wherein 
we “measure Nature by periods of Time.” In Bacon’s Catalogue of Particular 
Histories, one of the odd hundred histories or investigations which he foreshadows 
is precisely that which we are engaged on, viz. a “History of the Growth and 
Increase of the Body, in the whole and in its parts.”

Such a diagram represents in two of its three dimensions form, 
and in two (or three) of its dimensions growth, and we see how 
intimately the two concepts are correlated or interrelated to one 
another. In short it is obvious that the form of an organism is 
determined by its rate of growth in various directions; hence rate 
of growth deserves to be studied as a necessary preliminary to the 
theoretical study of form, and organic form itself is found, 
mathematically speaking, to be a function of time f.
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At the same time, we need only consider this large part of our 
subject somewhat briefly. Though it has an essential bearing on 
the problems of morphology, it is in greater degree involved with 
physiological problems; also, the statistical or numerical aspect of 
the question is peculiarly adapted to the mathematical study of 
variation and correlation. These important subjects we must not 
neglect; but our main purpose will be served if we consider the 
characteristics of a rate of growth in a few illustrative cases, and 
recognise’ that this rate of growth is a very important specific 
property, with its own characteristic value in this organism or that, 
in this or that part of each organism, and in this or that phase of 
its existence.

The statement which we have just made that “the form of an 
organism is determined by its rate of growth in various directions,” 
is one which calls for further explanation and for some measure of 
qualification.

Among organic forms we shall have many an occasion to see that 
form may be due in simple cases to the direct action of certain 
molecular forces, among which surface-tension plays a leading part. 
Now when surface-tension causes (for instance) a minute semifluid 
organism to assume a spherical form, or gives to a film of protoplasm 
the form of a catenary or of an elastic curve, or when it acts in 
various other ways productive of definite contours- -just as it does 
in the making of a drop, a splash or a jet this is a process of con
formation very different from that by which an ordinary plant or 
animal grows into its specific form. In both cases change of form 
is brought about by the movement of portions of matter, and in 
both cases it is ultimately due to the action of molecular forces; 

'but in the one case the movements of the particles of matter lie for 
the most part within molecular range, while in the other we have 
to deal with the transference of portions of matter into the system 
from without, and from one widely distant part of the organism to 
another. It is to this latter class of phenomena that we usually 
restrict the term growth;' it is in regard to them that we are in a 
position to study the rate of action in different directions and at 
different times, and to realise that it is on such differences of rate 
that form and its modifications essentially and ultimately depend.

/
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The difference between the two classes of phenomena is akin to 
the difference between the forces which determine the form of a 
raindrop and those which, by the flowing of the waters and the 
sculpturing of the solid earth, have brought about the configuration 
of a river or a hill; molecular forces are paramount in the one, and 
molar forces are dominant in the other.

At the same time, it is true that all changes of form, inasmuch 
as they necessarily involve changes of actual and relative magnitude, 
may in a sense be looked upon as phenomena of growth; and it is 
also true, since the movement of matter must always involve an 
element of time*,  that in all cases the rate of growth is a phenomenon 
to be considered. Even though the molecular forces which play 
their part in modifying the form of an organism exert an action 
which is, theoretically, all but instantaneous, that action is apt to 
be dragged out to an appreciable interval of time by reason of 
viscosity or some other form of resistance in the material. From 
the physical or physiological point of view the rate of action may be 
well worth studying even in such ca^es as these; for example, a 
study of the rate of cell-division in a segmenting egg may teach us 
something about the work done, and the various energies concerned. 
But in such cases the action is, as a rule, so homogeneous, and the 
form finally attained is so definite and so little dependent on the 
time taken to effect it, that the specific rate of change, or rate of 
growth, does not enter into the morphological problem.

* Cf. Aristotle, Phys, vi, 5, 235a, 11, eirel yap airaaa kIvijois if xpbvQt ktX.; he had 
already told us that natural science deals with magnitude, with motion and with 
time: fariv n irepl tpuaews iirtaTriun irepl niyeOos Kal Klvqaw Kai xpovov. Hence 
omnis velocitas tempore durat became a scholastic aphorism. Bacon emphasised, in 
like manner, the fact that “all motion or natural action is performed in time: 
some more quickly, some more slowly, but all in periods determined and fixed in 
the nature of things. Even those actions which seem to be performed suddenly, 
and (as we say) in the twinkling of an eye, are found to admit of degree in 
respect of duration” (Nov. Organon, xlvi). That infinitely small motions take 
place in infinitely small intervals of time is the concept which lies at the root of the 
calculus. But there is another side to the story.

f Cf. N. K. Koltzoif, Physikalisch-chemische Grundlage der Morphologie, 
Biol. Centralbl. 1928, pp. 345-369.

tg f 6 •

We are dealing with Form in a very concrete way. To Aristotle 
it was a metaphysical concept; to us it is a quasi-merhanical effect 
on Matter of the operation of chemico-physical forces f. To 
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Aristotle its Form was the essence, the archetype, the very “nature” 
of a thing, and Matter and Form were an inseparable duality. 
Even now, when we divide our science into Physiology and Mor
phology, we are harking back to the old Aristotelian antithesis.

To sum up, we may lay down the following general statements. 
The form of organisms is a phenomenon to be referred in part to 
the direct action of molecular forces, in larger part to a more complex 
and slower process, indirectly resulting frum chemical, osmotic and 
other forces, by which material is introduced into the organism 
and transferred from one part of it to another. It is this latter 
complex phenomenon which we usually speak of as “growth.”

Every growing organism, and every part of such a growing 
organism, has its own specific rate of growth, referred to this or 
that particular direction; and it is by the ratio between these rates 
in different directions that we must account for the external forms 
of all save certain very minute organisms. This ratio may sometimes 
be of a simple kind, as when it results in the mathematically 
definable outline of a shell, or the smooth curve of the margin of a 
leaf. It may sometimes be a very constant ratio, in which case the 
organism while growing in bulk suffers little or no perceptible change 
in form; but such constancy seldom endures beyond a season, and 
when the ratios tend to alter, then we have the phenomenon of 
morphological “development,” or steady and persistent alteration of 
form.

This elementary concept of Form, as determined by varying rates 
of Growth, was clearly apprehended by the mathematical mind of 
Haller— who had learned his mathematics of the great John 
Bernoulli, as the latter in turn had learned his physiology from the 
writings of Borelli*.  It was this very point, the apparently un
limited extent to which, in the development of the chick, inequalities 
of growth could and did produce changes of form and changes of 
anatomical structure, that led Haller to surmise that the process 
was actually without limits, and that all development was but an 
unfolding or “evolutio,” in which no part came into being which

* “Qua in re Incomparabilis Viri Joh. Alph. Borelli vestigiis insistemus.” 
Joh. Bernoulli, De motu musculorum, 1694.
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had not essentially existed before*. In short the celebrated doctrine 
of “preformation” implied on the one hand a clear recognition of 
what growth can do throughout the several stages of development, 
by hastening the increase in size of one part, hindering that of 
another, changing their relative magnitudes and positions, and so 
altering their forms; while on the other hand it betrayed a failure 
(inevitable in those days) to recognise the essential difference 
between these movements of masses and the molecular processes 
which precede and accompany them, and which are characteristic 
of another order of magnitude.

The general connection between growth and form has been 
recognised by other writers besides Haller. Such a connection is 
implicit in the “proportional diagrams” by which Diirer and his 
brother-artists illustrated the changes in form, or of relative 
dimensions, which mark the child’s growth to boyhood and to 
manhood. The same connection was recognised by the early 
embryologists, and appears, as a survival of the doctrine of pre
formation, in Pander’s f study of the development of the chick. 
And long afterwards, the embryological aspect of the case was 
emphasised by HisJ/ who pointed out that the foldings of the 
blastoderm, by which the neural and amniotic folds are brought 
into being, were the resultant of unequal rates of growth in what 
to begin with was a uniform layer of embryonic tissue. If a sheet 
of paper be made to expand here and contract there, as by moisture 
or evaporation, the plane surface becomes dimpled, or folded, or 
buckled, by the said expansions and contractions; and the dis
tortions to which the surface of the “germinal disc” is subject are, 
as His shewed once and for all, precisely analogous. There are

* Cf. (e.g.) Elem. Physiologiae, ed. 1766, vm, p. 114, “Ducimur autem ad 
evolutionem potissimum, quando a perfecto animale retrorsum progredimur, et 
incrementorum atque mutationum seriem relegimus. Ita inveniemus perfectum 
illud animal fuisse imperfectius, alterius figurae et fabricae, et denique rude et 
informe: et tamen idem semper animal sub iis diversis phasibus fuisse, quae absque 
ullo saltu perpetuos parvosque per gradus cohaereant.”

t Beitrage zur E ntwickelunqsgcschichte des Huhnchens im Ei, 1817, p. 40. Roux 
ascribes the same views also to Von Baer and to R. H. Lotze (Allgem. Physiologic, 
1851, p. 353).

J W. His, Unsere Korperform, und das physiologische Problem ihrer Enistehung, 
1874. See also Archiv f. Anatomie, 1894; and cf. C. B. Davenport, Processes con
cerned in Ontogeny, Bull. Mus. Comp. Anat, xxvn, 1895; also G. Dehnel and 
Jan Tur, De Embryonum evolutionis progressu inequali: Kosmos (Lwow), liii, 1928. 

6-2
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certain Nostoc-algae in which unequal growth, ceasing towards the 
periphery of a disc and increasing here and there within, gives rise 
to folds and bucklings curiously like those of our own ears: which 
indeed owe their shape and characteristic folding to an identical or 
analogous cause. *

An experimental demonstration comparable to the actual case is 
obtained by making an “artificial blastoderm” of little pills or 
pellets of dough, which are caused to grow at varying rates by the 
addition of varying quantities of yeast. Here, as Roux is careful 
to point out,* it is not only the growth of the individual cells, but 
the traction exercised on one another through their mutual inter
connections, which brings about foldings, wrinklings and other 
distortions of the structure. But this again, or such as this, had been 
in Haller’s mind, and formed an essential part of his embryological 
doctrine. For he has no sooner treated of incrementum, or celeritas 
incrementi, than he proceeds to deal with the contributory and 
complementary phenomena of expansion, traction (adtractio)] and 
pressure, and the more subtle influences which he denominates vis 
derivationis et revulsionis^- these latter being the secondary and 
correlated effects on growth in one part, brought about by such 
changes as are produced, for instance in the circulation, by the 
growth of another.

We have to do with growth, with exquisitely graded or balanced 
growth, and with forces subtly exerted by one growing part upon 
another, in so wonderful a piece of work as the development of the 
eye: as its primary vesicle expands and then dimples in, as the lens 
appears and fits into place, as the secondary vesicle closes over to 
form iris and pupil, and in all the rest of the story.

Let us admit that, on the physiological side, Haller’s or His’s 
methods of explanation carry us but a little way; yet even this 
little way is something gained. Nevertheless, I can well remember

* Roux, Die Entwi^kdungsmechanik, 1905, p. 99.
f Op. cit. p. 302, “ Magnum hoc naturae instrumentum, etiam in corpore animato 

evolvendo potenter operatur, etc.” The recurrent laryngeal nerve, drawn down 
as its arch of the aorta descends, is a simple instance of anatomical traction. The 
vitelline and omphalomesenteric arteries lead, by more complicated constraints 
and tractions, to the characteristic loops of the intestinal blood-vessels, and of the 
intestine itself. Cf. G. Enbom, Lunds Univ. Arsskrift, 1939.

J Ibid. p. 306, “Subtiliora ista, et aliquantum hypothesi mista, tamen magnam 
mihi videntur speciem veri habere.” 
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the harsh criticism and even contempt which His’s doctrine met 
with, not merely on the ground that it was inadequate, but because 
such an explanation was deemed wholly inappropriate, and was 
utterly disavowed*. Oscar Hertwig, for instance, asserted that, in 
embryology, when we find one embryonic stage preceding another, 
the existence of the former is, for the embryologist, an all-sufficient 
“causal explanation” of the latter. “We consider (he says) that 
we are studying and explaining a causal relation when we have 
demonstrated that the gastrula arises by invagination of a blasto- 
sphere, or the neural canal by the infolding of a cell-plate so as to 
constitute a tubef.” For Hertwig, then, as Roux remarks, the task 
of investigating a physical mechanism in embryology—“der Ziel das 
Wirken zu erforschen”- has no existence at all. For Balfour also, 
as for Hertwig, the mechanical or physical aspect of organic develop
ment had little or no attraction. In one notable instance, Balfour 
himself adduced a physical, or quasi-physical, explanation of an 
organic process, when he referred the various modes of segmentation 
of an ovum, complete or partial, equal or unequal and so forth, to 
the varying amount or varying distribution of food-yolk associated 
with the germinal protoplasm of the egg. But in the main, like all 
the other embryologists of his day, Balfour was engrossed in the

* Cf. His, On the Principles of Animal Morphology, Proc. R.S.E. xv, 
p. 294, 1888: “My own attempts to introduce some elementary mechanical or 
physiological conceptions into embryology have not generally been agreed to by 
morphologists. To one it seemed ridiculous to speak of the elasticity of the germinal 
layers; another thought that, by such considerations, we ‘put the cart before 
the horse’; and one more recent author states, that we have better things to do 
in embryology than to discuss tensions of germinal layers and similar questions, 
since all explanations must of necessity be of a phylogenetic nature. This opposition 
to the application of the fundamental principles of science to embryological questions 
would scarcely be intelligible had it not a dogmatic background. No other explana
tion of living forms is allowed than heredity, and any which is founded on another 
basis must be rejected.__To think that heredity will build organic beings without 
mechanical means is a piece of unscientific mysticism.” Even the school of 
Enlwickelungsmechanik showed a certain reluctance, or extreme caution, in speaking 
of the physical forces in relation to embryology or physiology. This reluctant 
caution is well exemplified by Martin Heidenhain, writing on “ Formen und Krafte 
in der lebendigen Natur” in Roux’s Vortrage, xxxn, 1923. Speaking of “die 
Krafte welche die Entwickelung und den fertigen Zustand der Formen bedingen ”, 
he says: “letztere kann man aber nicht auf dem Felde der Physik suchen, sondern 
nur im Umkreis der Lebendigen, obwohl anzunehmen ist, dass diese Krafte spater 
einmal ‘ analogienhaft ’ nach dem Vorbilde der Physik beschreibbar sein werden”

t O. Hertwig, Zeit- und Streitfragen der Biologic, n, 1897. 
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problems of phylogeny, and he expressly defined the aims of com
parative embryology (as exemplified in his own textbook) as being 
“twofold: (1) to form a basis for Phylogeny, and (2) to form a basis 
for Organogeny, or the origin and evolution of organs*.”

It has been the great servi A? of Roux and his fellow-workers of 
the school of “Entwickelungsmechanik,” and of many other students 
to whose work we shall refer, to try, as His tried, to import into 
embryology, wherever possible, the simpler concepts of physics, to 
introduce along with them the method of experiment, and to refuse 
to be bound by the narrow limitations which such teaching as that 
of Hertwig would of necessity impose on the work and the thought 
and the whole philosophy of the biologist.

Before we pass from this general discussion to study some of the 
particular phenomena of growth, let me give an illustration, from 
Darwin, of a point of view which is in marked contrast to Haller’s 
simple but essentially mathematical conception of Form.

There is a curious passage in the Origin of Species where Darwin 
is discussing the leading facts of embryology, and in particular 
Von Baer’s “law of embryonic resemblance.” Here Darwin says: 
“We are so much accustomed to see a difference in structure between 
the embryo pnd the adult that we are tempted to look at this 
difference as in some necessary manner contingent on growth. But 
there is no reason why, for instance, the wing of a bat, or the fin 
of a porpoise, should not have been sketched out with all their parts 
in proper proportion, as soon as any part became visible.” After 
pointing out various exceptions, with his habitual care, Darwin 
proceeds to lay down two general principles, viz. “that slight 
variations generally appear at a not very early period of life,” and 
secondly, .that “at whatever age a variation first appears in the 
parent, it tends to reappear at a corresponding age in the offspring.” 
He then argues that it is with nature as with the fancier, who does 
not care what his pigeons look like in the embryo so long as the 
full-grown bird possesses the desired qualities: and that the process 
of selection takes place when the birds or other animals are nearly

* Treatise on Comparative Embryology, i, p. 4, 1881.
+ 1st ed. p. 444; 6th ed. p. 390. The student should not fail to consult the 

passage in question; for there is always a risk of misunderstanding or misinterpreta
tion when one attempts to epitomise Darwin’s carefully condensed arguments. 
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grown up—at least on the part of the breeder, and presumably in 
nature as a general rule. The illustration of these principles is set 
forth as follows: “Let us take a group of birds, descended from 
some ancient form and modified through natural selection for 
different habits. Then, from the mafty successive variations having 
supervened in the several species at a not .very early age, and having 
been inherited at a corresponding age, the young will still resemble 
each other much more closely than do the adults—just as we have 
seen with the breeds of the pigeon.... Whatever influence long- 
continued use or disuse may have had in modifying the limbs or 
other parts of any species, this will chiefly or solely have affected 
it when nearly mature, when it was compelled to use its full powers 
to gain its own living; and the effects thus produced will have been 
transmitted to the offspring at a corresponding nearly mature age. 
Thus the young will not be modified, or will be modified only in a 
slight degree, through the effects of the increased use or disuse of 
parts.” This whole argument is remarkable, in more ways than 
we need try to deal with here; but it is especially remarkable that 
Darwin should begin by casting doubt upon the broad fact that a 
“difference in structure between “the embryo and the adult” is 
“in some necessary matter contingent on growth”; and that he 
should see no reason why complicated structures of the adult 
“should not have been sketched out with all their parts in proper 
proportion, as soon as any part became visible.” It would seem to 
me that even the most elementary attention to form in its relation 
to growth would have removed most of Darwin’s difficulties in regard 
to the particular phenomena which he is considering here. For 
these phenomena are phenomena of form, and therefore of relative 
magnitude; and the magnitudes in question are attained by growth, 
proceeding with certain specific velocities, and lasting for certain 
long periods of time. And it seems obvious accordingly that in any 
two related individuals (whether specifically identical or not) the 
differences between them must manifest themselves gradually, and 
be but little apparent in the young. It is for the same simple 
reason that animals which are of very different sizes when adult 
differ less and less in size (as well as form) as we trace them back
wards to their early stages.

Though we study the visible effects of varying rates of growth 
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throughout wellnigh all the problems of morphology, it is not very 
often that we can directly measure the velocities concerned. But 
owing to the obvious importance of the phenomenon to the morpho
logist we must make shift to study it where we can, even though 
our illustrative cases may seem sometimes to have little bearing 
on the morphological problem*.

In a simple spherical organism, such as the single spherical cell of 
Protococcus or of Orbulina, growth is reduced to its simplest terms, 
and indeed becomes so simple in its outward manifestations that it 
loses interest to the morphologist. The rate of growth is measured 
by the rate of change in length of a radius, i.e. V = (R' — R)/T, and 
from this we may calculate, as already indicated, the rate in terms 
of surface and of volume. The growing body remains of constant 
form, by the symmetry of the system; because, that is to say, on 
the one hand the pressure exerted by the growing protoplasm is 
exerted equally in all directions, after the manner of a hydrostatic 
pressure, which indeed it actually is; while on the other hand the 
“ skin ” or surface layer of the cell is sufficiently homogeneous to exert 
an approximately uniform resistance. Under these simple conditions, 
then, the rate of growth is uniform in all directions, and does not 
affect the form of the organism.

But in a larger or a more complex organism the study of growth, 
and of the rate of growth, presents us with a variety of problems, 
and the whole phenomenon (apart from its physiological interest) 
becomes a factor of great morphological importance. We no longer 
find that growth tends to be uniform in all directions, nor have we 
any reason to expect it should. The resistances which it meets with 
are no longer uniform. In one direction but not in others it will 
be opposed by the important resistance of gravity; within the 
growing system itself all manner of structural differences come into 
play, and set up unequal resistances to growth in one direction or 
another. At the same time the actual sources of growth, the 
chemical and osmotic forces which lead to the intussusception of 
new matter, are not uniformly distributed; one tissue or one organ 
may well increase while another does not; a set of bones, their 
intervening cartilages and their surrounding muscles, may all be

* “In omni rerum naturalium historia utile est menfuras definiri et numeros,” 
Haller, Elem. Physiol, n, p. 258, 1760. Cf. Hales, Vegetable Staticks, Introduction.



in] ADOLPHE QUETELET 89

capable of very different rates of increment. The changes of form 
which result from these differences in rate are especially manifested 
during that phase of life when growth itself is rapid: when the 
organism, as we say, is undergoing its development.

When growth in general has slowed down, the differences in rate 
between different parts of the organism may still exist, and may be 
made manifest by careful observation and measurement, but the 
resultant change of form is less apt to strike the eye. Great as are 
the differences between the rates of growth in different parts of a 
complex organism, the marvel is that the ratios between them are 
so nicely balanced as they are, and so capable of keeping the form 
of the growing organism all but unchanged for long periods of time, 
or of slowly changing it in its own harmonious way. There is the 
nicest possible balance of forces and resistances in every part of 
the complex body; and when this normal equilibrium is disturbed, 
then we get abnormal growth, in the shape of tumours and exostoses, 
and other malformations and deformities of every kind.

The rate of growth in man
Man will serve us as well as another organism for our first illus

trations of rate of growth, nor can we easily find another which we 
can better study from birth to the utmost limits of old age. Nor 
can we do better than go for our first data concerning him to 
Quetelet’s Essai de Physique Sociale, an epoch-making book for the 
biologist. For it is packed with information, some of it unsurpassed, 
in regard to human growth and form; and it stands out as the 
first great essay in which social statistics and organic variation are 
dealt with from the point of view of the mathematical theory of 
probabilities. How on the one hand Quetelet followed Da Vinci, 
Luca Pacioli and Diirer in studying the growth and proportions of 
man: and how on the other he simplified and extended the ideas of 
James Bernoulli, of d’Alembert, Laplace, Poisson and the rest, is 
another and a vastly interesting story*.

* Quetelet, Sur I'Homme, ..., ou Essai de Physique Sociale, Bruxelles, 1835: 
trans. Edinburgh, 1842; also Instructionspopulairessur le calcul des probabilites, 1828; 
Lettres.. .sur la theorie des probabilitas appliquie aux sciences morales el politiques, 
1846; and Anthropomitrie, 1871. For an account of his life and writings, see Lottin’s 
Quetelet, statisticien et sociolugue, Louvain, 1912; also J. M. Keynes. Treatise on 
Probability, 1921.
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The meaning of the word “statistics” is curiously changed. For 
Shakespeare or for Milton a statist meant (so Dr Johnson says) 
“a politician, a statesman; one skilled in government.” The 
eighteenth-century Statistical Account of Scotland was a description 
of the State and of its people, its wealth, its agriculture and its trade.

Stature and weight* of man (from, Quetelet’s Belgian data, 
Essai, H, pp. 23-43; Anthr pometrie, p 346) f
Stature in metres Weight in kgm. WIL3 x 100

Age Male Female % F/M Male . Female- % f/m Male Female
0 0-50 0-48 960 3-20 2-91 90-9 I 2-56 2-64
1 0-70 0-69 98-6 10-00 9-30 93-0 2-92 2-83
2 0-80 0-78 97-5 1200 11-40 95-0 2-35 2-40
3 0-86 0-85 98-8 13-21 12-45 94-2 2-09 2-03
4 0-93 0-91 97-6 15-07 14-18 94-1 1-84 1-88
5 0-99 0-97 98-4 16-70 15-50 92-8 ■ 1-89 1-69
6 105 103 98-6 18-04 16-74 92-8 [ 1-56 1-53
7 1-11 110 98-6 20-16 18-45 91-5 1-48 1-39
8 1-17 114 97-3 22:26 19-82 89-0 1-39 1-34
9 1-23 1-20 97-8 24-09 22-14 93-2 1-29 1-30

10 1-28 1-25 97-3 26-12 24-24 92-8 l 1 25 1-24
11 1-33 1-28 96-1 27-85 26-25 94-3 1-18 1-25
12 1-36 1-33 97-6 31-00 30-54 98-5 1-23 1-38
13 1-40 1-39 98-8 35-32 34-65 98-1 1-29 1-29
14 1-49 1-45 97-3 40-50 38-10 94-1 1-21 1-25
15 1 56 1-47 94-6 46-41 41-30 89-0 1-22 .1-30
16 1-61 1-52 93-2 53-39 44-44 83-2 1-20 1-32
17 1-67 1-54 92-5 I 57-40 49-08 895 1-23 1-34
18 1-70 1-56 91-9 61-26 53-10 86-7 1-24 1-40
19 1-71 — 63-32 — 1-20 —
20 1-71 1-57 91-8 65-00 54-46 83-8 1-30 1-41
25 1-72 1-58 91-6 68-29 55-08 80-7 1-39 1-39
30 1-72 1-58 91-7 68-90 55-14 80-0 1-35 1-39
40 1-71 1-56 90-8 68-81 56-65 82-3 1-38 1-49
50 1-67 1-54 91-8 67-45 58-45 86-7 1-45 1-59
60 1-64 1-52 92-5 65-50 56-73 86-6 1-48 1-61
70 1-62 1-51 93-3 63-03 53-72 85-2 1-48 1-58
80 1-61 1-51 93-4 61-22 51-52 84-1 , 1-46 1-50

This is what Sir William Petty had meant in the seventeenth century 
by his Polit cal Arithmetic, and what Quetelet meant in the nineteenth 
by his Physique Sociale. But “statistics” nowadays are counts and 
measures of all sorts of things; and statistical science arranges,

* The figures for height and weight given in my first edition were Quetelet’s 
smoothed or adjusted values. I have gone back to his original data.

t This Almost steady growth,” from about seven years old to eleven, means 
that the curve of growth is a nearly straight line during this period: a result 
already found by Elderton for Glasgow children (Biometrika, x, p. 293, 1914-15), 
by Fessard and Laufer in Paris (Nouvelles Tables de Croissance, 1935, p. 13), etc. 
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explains, and draws deductions from, the resulting series and arrays 
of numbers. It deals with simple and measurable effects, due to 
complex and often unknown causes; and when experiment is not at 
hand to disentangle these causes, statistical methods may still do 
something to elucidate them.

Now as to the growth of man, if the child be some 20 inches, or 
say 50 cm., tall at birth, and the man some six feet, or 180 cm., 
high at twenty, we may say that his average rate of growth had

Fig. 4. Curve of growth in man. From Quetelet’s Belgian data. 
The curve H3 is proportional to the height cubed.

been (180 — 50)/20 cm., or 6-5 cm. per annum. But we well know 
that this is but a . rough preliminary statement, and that growth 
was surely quick during some and slow during other of those twenty 
years; we must learn not only the result of growth but the course 
of growth; we must study it in its continuity. This we do, in the 
first instance, by the method of coordinates, plotting magnitude 
against time. We measure time along a certain axis (x), and the 
magnitude in "'question along a coordinate axis (y); a succession of 
points defines the magnitudes reached at corresponding epochs, and 
these points constitute a “curve of growth” when we join them 
together.
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Our curve of growth, whether for weight or stature, has a definite 
Drm or characteristic curvature: this being a sign that the rate of 

growth is not always the same but changes as time goes on. Such 
as it is, the curvature alters in an orderly way; so that, apart from 
minor and “fortuitous” irregularities, our curves of growth tend to 
be smooth curves. And the fact that they are so is an instance of 
that “principle of continuity” which is the foundation of all physical 
and natural science.

The curve of growth (Fig. 4) for length or stature in man indicates 
a rapid increase at the outset, during the quick growth of babyhood; 
a long period of slower but almost steady growth in boyhood; as 
a rule a marked quickening in his early teens, when the boy comes 
to the “growing age”; and a gradual arrest of growth as he “comes 
to his full height” and reaches manhood. If we carried the curve 
farther, we should see a very curious thing. We should see that a 
man’s full stature endures but for a spell; long before fifty* it has 
begun to abate, by sixty it is notably lessened, in extreme old age 
the old man’s frame is shrunken and it is but a memory that “he 
once was tall”; the decline sets in sooner ir> women than in men, 
and “a little old woman” is a household word. We have seen, 
and we see again, that growth may have a negative value, pointing 
towards an inevitable end. The phenomenon of negative growth 
extends to weight also; it is largely chemical in origin; the meta
bolism of the body is impaired, and the tissues keep pace no longer 
with senile wastage and decay.

We must be very careful, however, how we interpret such a Table 
as this; for it records the character of a, population, and we are apt 
to read in it the life-history of the individual. The two things are 
not necessarily the same. That a man grows less as he grows older 
all old men know; but it may also be the case, and our Table may 
indicate it, that .the short men live longer than the tall.

Our curve of growth is, by implication, a “ time-energy ” diagram f 
or diagram of activity. As man grows he is absorbing energy 
beyond his daily needs, and accumulating it at a rate depicted in

k

* Dr Johnson was not far wrong in saying that “life declines from thirty-five”; 
though the Autocrat of the Breakfast-table declares, like Cicero, that “the furnace 
is in full blast for ten years longer ”.

f J. Joly, The Abundance of Life, 1915 (1890), p. 86. 
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our curve; till the time comes when he accumulates no longer, and 
is constrained to draw upon his dwindling store. But in part, the 
slow decline in stature is a sign of the unequal contest between our 
bodily powers and the unchanging force of gravity, which draws us 
down when we would fain rise up*; we strive against it all our 
days, in every movement of our limbs, in every beat of our hearts. 
Gravity makes a difference to a man’s height, and no slight one, 
between the morning and the evening; it leaves its mark in sagging 
wrinkles, drooping mouth and hanging breasts; it is the indomitable 
force which defeats us in the end, which lays us on our death-bed 
and lowers us to the grave f. But the grip in which it holds us is 
the title by which we Eve; were it not for gravity one man might 
hurl another by a puff of his breath into the depths of space, beyond 
recall for all eternity J.

Side by side with the curve which represents growth in length, 
or height or stature, our diagram shews the corresponding curve of 
weight. That this curve is of a different shape from the former one 
is accounted for in the main (though not wholly) by the fact— 
which we have already dealt with—that in similar bodies volume, 
and therefore weight, varies as the cubes of the linear dimensions; 
and drawing a third curve to represent the cubes of the corresponding 
heights, it now resembles the curve of weight pretty closely, but 
still they are not quite the same. There is a change of direction, 
or “point of inflection,” in the curve of weight at one or two years 
old, and there are certain other features in our curves which the 
scale of the diagram does not make clear; and all these differences 
are due to the fact that the child is changing shape as he grows, 
that other linear dimensions grow somewhat differently from

* “Lou pes, m^stre de tout (Le poids, maitre de tout),^m^stre s^nso vergougno, 
Que te tirasso en bas de sa brutalo pougno.” J. H. Fabre, Oubreto prouven^alo, 
p. 61.

f The continuity of the phenomenon of growth, and the natural passage from 
the phase of increase to that of decrease or decay, are admirably discussed by 
Enriques, in La Morte, Rivista di Scienza, 1907, and in Wachstum und seine 
analytische Darstellung, Biol. Centralbl. June, 1909. Haller (Elementa, vii, 
p. 68) recognised decrementum as a phase of growth, not less important (theoretically) 
than incrementum; “ tristis, sed copiosa, haec est materies."

t Boscovich, Theoria, para. 552, “Homo hominem arreptum a Tellure, et 
utcumque exigua impulsum vi vel uno etiam oris flatu impetitum, ab hominum 
omnium commercio in infinitum expelleret, nunquam per totam aeternitatem 
rediturum.”
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length or stature, and in short that infant, boy and man are not 
similar figures* . The change of form seems slight and gradual, but 
behind it lie other and more complex things. The changing ratio 
between height and weight implies changes in the child’s metabolism, 
in the income and expenditure of the body. The infant stores up 
fat, and the active child “runs it off” again; at four years old or 
five, bodily metabolism and increase of weight are at a minimum; 
but a fresh start is made, a new “nutritional period” sets in, and the 
small schoolboy grows stout and strongf.

* According to Quetelet’s data, man’s stature is multiplied by 3-4 and his weight 
by 20-3, between birth and the age of twenty-one. But the cube of 3-4 is nearly 
40; so the weight at birth should be multiplied forty times by the age of 
twenty-one, if infant, boy and man were similar figures.

t Cf. T. W. Adams and E. P. Poulton, Heat production in man, Guy's Hospital 
Reports (4), xvn, 1937, and works quoted therein.

J That is, by its trigonometrical tangent, referred to the base-line.

Our curve of growth shews at successive epochs of time the height 
or weight which has been reached by then; it plots changing 
magnitude (y) against advancing time (x). It is essentially a 
cumulative or summation curve; it sums up or “integrates” all the 
successive magnitudes which have been added in all the foregoing 
intervals of time. Where the curve is steep it means that growth 
was rapid, and when growth ceases the curve becomes a horizontal 
line. It follows that, by measuring the slope or steepness of our 
curve of growth at successive epochs, we shall obtain a picture of 
the successive velocities or growth-rates.

The steepness of a curve is measured by its “gradient]:,” or we 
may roughly estimate it by taking for equal intervals of time 
(strictly speaking, for each infinitesimal interval of time) the incre
ment added during that interval; and this amounts in practice to 
taking the differences between the values given for the successive 
epochs, or ages, which we have begun by studying. Plotting these 
successive differences against time, we obtain a curve each point on 
which represents a certain rate at a certain time; and while the 
former curve shewed a continuous succession of varying magnitudes, 
this shews a succession of varying velocities. The mathematician 
calls it a curve of first differences', we may call it a curve of annual 
(or other) increments; but we shall not go wrong if we call it a curve 
of the rate (or rates) of growth, or still more simply, a velocity-curve.
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We have now obtained two different but closely related curves, 
based on the selfsame facts or observations, and illustrating them 
in different ways. One is the inverse of the other; one is the integral 
and one the differential of the other; and each makes clear to the 
eye phenomena which are implicit, but are less conspicuous, in the 
other. We are using mathematical terms to describe or designate 
them; but these “curves of growth” are more complicated than 
the curves with which mathematicians are wont to deal. In our 
study of growth we may well hope to find curves simpler than these;

Age in years
Fig. 5. Annual increments of growth in man. From Quetelet’s Belgian data.

but in the successive annual increments of a boy’s growth (as Fig. 5 
exhibits them) we are dealing with no one continuous operation 
(such as a mathematical formula might define), but with a succession 
of events, changing as times and circumstances change.

Our curve of increments, or of first differences, for man’s stature 
(Fig. 5) is based, perforce, on annual measurements, and growth 
alters quickly enough at certain ages to make annual intervals unduly 
long; nevertheless our curve shews several important things. It 
suffices to shew, for length or stature, that the growth-rate in early 
infancy is such as is never afterwards re-attained. From this high 
early velocity the rate on the whole falls away, until growth itself 
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comes to an end *; but it does so subject to certain important changes 
and interruptions, which are much the same whether we draw them 
from Quetelet’s Belgian data, or from the British, American and 
other statistics of later writers. The curve falls fast and steadily 
during the first couple of years of the child’s life (a). It runs nearly 
level during early boyhood, from four or five years old to nine or 
ten (b). Then, after a brief but unmistakable period of depression! 
during which growth slows down still more (c), the boy enters on

Annual increments of stature and of weight in man 
(After Quetelet; see Table, p. 90)

Stature (cm.) Weight (kgm.)

his teens and begins to “ grow out of his clothes ”; it is his “ growing 
age ”, and comes to its height when he is about thirteen or fourteen 
years old (d). The lad goes on growing in stature for some years more, 
but the rate begins to fall off (e), and soon does so with great rapidity.

The corresponding curve of increments in weight is not very 
different from that for stature, but such differences as there are

* As Haller observed it to do in the chick: “Hoc iterum incrementum miro 
ordine distribuitur, ut in principio incubationis maximum est; inde perpetuo 
minuatur” (Elementa Physiologiae, vm, p. 294). Or as Bichat says, “11 y a 
surabondance de vie dans 1’enfant” (Sur la Vie et la Mort, p. 1).

t This depression, or slowing down before puberty, seems to be a universal 
phenomenon, common to all races of men. It is a curious thing that Quetelet’s 
“adjusted figures” (which I used in my first edition) all but smooth out of 
recognition this characteristic feature of his own observations.

Age Male Female Male Female
0- 1 20 21 6-8 6-4
1- 2 10 9 2-0 1-9
2- 3 6 7 1-2 11
3- 4 7 6 1-9 1-7
4- 5 6 6 1-6 1-3
5- 6 6 6 1-3 1-2
6- 7 6 7 21 1-7
7- 8 6 4 21 1-4
8- 9 6 6 1-8 2-6
9-10 5 5 2-0 1-8

10-11 , 5 3 1-7 2-0
11-12 3 5 3-2 4-3
12-13 4 6 4-3 ” 4-1
13-14 9 6 5-2 3-5
14-15 7 2 5-9 3-2
15-16 5 3 7-0 21
16-17 6 4 40 4-6
17-18 3 2 3-9 4-0
18-19 1 1 ' 21 1-4
19-20 0 0 1-7 —

TG F 7
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between them are significant enough. There is some tendency for 
growth in weight to fall off or fluctuate at four or five years old, 
before the small boy goes to school; but there is, or should be, little 
retardation of weight when growth in height slows down before 
he enters on his teens*. The healthy lad puts on weight again 
more and more rapidly, for some little while after growth in stature 
has slowed down; and normal increase of weight goes on, more 
slowly, while the man is “filling out,” long after growth in stature 
has come to an end. But somewhere about thirty he begins losing 
weight a little; and such subsequent slow changes as men commonly 
undergo we need not stop to deal with.

The differences in stature and build between one race and another 
are in like manner a question of growth-rate in the main. Let us 
take a single instance, and compare the annual increments of 
growth in Chinese and English boys. The curves are much the 
same in form, but differ in amplitude and phase. The English boy 
is growing faster all the while; but the minimal rate and the 
maximal rate come later by a year or more than in the Chinese 
curvef (Fig. 6).

Quetelet was not the first to study man’s growth and stature, 
nor was he the first student of social statistics and “demography.” 
The foundations of modern vital statistics had been laid by Graunt 
and Petty in the seventeenth century J; the economists developed 
the subject during the eighteenth§, and parts of it were studied

* That the annual increments of weight in boys are nearly constant, and the 
curve of growth nearly a straight line at this age, especially from about 8 to 11, 
has been repeatedly noticed. Cf. Elderton, Glasgow School-children, Biometrika, 
x, p. 283, 1914^15; Fessard and others, Croissance des Ecoliers Parisians, 1934, 
p. 13. But careful measurements of American children, by Katherine Simmons 
and T. Wingate Todd, shew stvadily increasing increments from four years old 
till puberty {Growth, n, pp. 93-133, 1938).

f For copious bibliography, see J. Needham, op. cit., also Gaston Backman, Das 
Wachstum der Kbrperlange des Menschen, K. Sv. Vetensk. Akad. Hdlgr. (3), xiv, 1934.

J Cf. John Graunt’s Natural and Political Observations.. .upon the Bills of 
Mortality, London, 1662; The Economic Writings of Sir William Petty, ed. by 
C. H. Hull, 2 vols., Cambridge, Mass., 1927. Concerning Graunt and Petty—two 
of the original Fellows of the Royal Society- see {int. al.) H. Westergaard, History 
of Statistics, 1932, and L. Hogben (and others). Political Arithmetic, 1938.

§ Besides the many works of the economists, cf. J. G. Roederer, Sermo de 
pondere et longitudine recens-natorum, Comment. Soc. Reg. Sci. Gottingae, in, 
1753; J. F. G. Dietz, De temporum in'graviditate et partu aestimatione, Diss., 
Gottingen, 1757.
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Fig. 6. Annual increments of stature. From Roberts’ (English) 
and Appleton’s (Chinese) data.
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Age in years
Fig. 7. Curve of growth of a French boy of the eighteenth century. 

From Scammon, after Buffon.
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eagerly in the early nineteenth, when the exhaustion of the armies 
of France and the evils of factory labour in England drew attention 
to the stature and physique of man and to the difference between 
the healthy and the stunted child*.

A friend of Buffon’s, the Count Philibert Gueneau de Montbeillard, 
kept careful measurements of his own son; and Buffon published 
these in 1777, in a supplementary volume of the Histoire Naturelle^. 
The child was born in April 1759; it was measured every six months

Fig. 8. Annual increments of stature of the said French boy.

for seventeen years, and the record gives a curve of great interest 
and beauty (Fig. 7). There are two ways of studying such a 
phenomenon—the statistical method based on large numbers, and 
the careful study of the individual case; the curve of growth of this 
one French child is to all intents and purposes identical, save that 
the boy was throughout a trifle taller, with the mean curve yielded 
by a recent study of forty-four thousand little Parisians J.

In young Montbeillard’s case the “curve of first differences,” or 
of the successive annual increments of stature (Fig. 8), is clear and 
beautiful. It shews (a) the rapid, but rapidly diminishing, rate of

* Cf. M. Hargenvilliers, Re<herches.. .sur.. .le recrutement de l'armte en France, 
1817; J. W. Cowell, Measurements of children in Manchester and Stockport, 
Factory Reports, i; and works referred to by Quetelet.

t See Richard E. Scammon, The first seriatim study of human growth,'Amer. 
Journ. of Physical Anthropology, x, pp. 329-336, 1927.

J MM. Variot et Chaumet, Tables de croissance, dressees... d’apr&s les, mensura
tions de 44,000 enfants parisiens. Bull, et Mim. Soo. d’Anthropologic, in, p. 55, 
1906.
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growth in infancy; (b) the steady growth in early boyhood; (c) the 
period of retardation which precedes, and (d) the rapid growth which 
accompanies, puberty.

Buffon, with his usual wisdom, adds some remarks of his own, 
which include two notable discoveries. He had observed that a 
man’s stature is measurably diminished by fatigue, and the loss soon 
made up for in repose; long afterwards Quetelet said, to the same 
effect, “le lit est favorable a la croissance, et le matin un homme est 
un peu plus grand que le soir-.” Buffon asked whether growth 
varied with the seasons, and Montbeillard’s data gave him his reply. 
Growth was quicker from April to October than during the rest of 
the year: shewing that “la chaleur, qui agit generalement sur le 
developpeinent de tous les etres organisees, influe considerablement 
sur l’accroissement du corps humain.” Between five years old and 
ten, the child grew seven inches during the five summers, but during 
the five winters only four: there was a like difference again, though 
not so great, while the boy was growing quickly in his teens; but 
there were no seasonal differences at all from birth to five years old, 
when the child was doubtless sheltered from both heat and cold*.

I

On rate of gro wth in man and woman

That growth follows a different course in boyhood and in girlhood 
is a matter of common knowledge; but differences in the curves of 
growth are not very apparent on the scale of our diagrams. They 
are better seen in the annual increments, or first differences; and 
we may further simplify the comparison by representing the girl’s 
weight or stature as a percentage of the boy’s.

Taking weight to begin with (Fig. 9), the girl’s growth-rate is 
steady in childhood, from two or three to six or seven years old,

* Growth-rates based on the continuous study of a single individual are rare; 
we depend mostly on average measurements of many individuals grouped according 
to their average age. That this is a sound method we take for granted, but we may 
lose by it as well as gain. (See above, p. 92.) The chief epochs of growth, the chief 
singularities of the curve, will come out much the same in the individual and in the 
average curve. But if the individual curves be skew, averaging them will tend to 
smooth the skewness away; and, more curiously, if they be all more or less diverse, 
though all symmetrical, a certain skewness will tend to develop in the composite or 
average curve. Cf. Margaret Merrill, The relationship of individual to average 
growth. Human Biology, in. pp. 37-70, 1931.
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Fig. 9. Annual increase in weight of Belgian boys and girls. 
From Quetelet’s data. (Smoothed curves.)

Fig. 10. Percentage ratio of female weight and stature to male. 
From Quetelet’s Belgian data.
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just as is the boy’s; but her curve stands on a lower level, for the 
little maid is putting on less weight than the boy (b). Later on, 
her rate accelerates (c) sooner than does his, but it never rises quite 
so high (d). After a first maximum at eleven or twelve her rate of 
growth slows down a little, then rises to a second maximum when

Fig. 11. Relative weight of American boys and girls. 
From Simmons and Todd’s data.

she is sixteen or seventeen, after the boy’s phase of quickest growth 
is over and done. This second spurt of growth, this increase of 
vigour and of weight in the girl of seventeen or eighteen, Quetelet’s 
figures indicate and common observation confirms. Last of all, 
while men stop adding to their weight about the age of thirty or 
before, this does not happen to women. They increase in weight, 
though slowly, till much later on: until there comes a final phase, 
in both sexes alike, when weight and height and strength decline 
together.
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Stature and weight of American children {Ohio) 
{From Katherine Simmons and T. Wingate Todd’s data)

Stature (cm.) Weight (lbs.)

Age Boys Girls % ratio Boys Girls % ratio
3 months 61-3 59-3 96-7 14-4 13-1 91-1
1 year 76-1 74-2 97-5 23-9 21-9 91-8
2 „ 87-4 86-2 98-6 29-1 27-5 94-7
3 „ 96-2 95-5 99-3 33-5 32-5 96-9
4 „ 103-9 103-2 99-3 38-4 37-1 96-7
5 „ 110-9 110-3 99-4 43-2 42-3 98-1
6 „ 117-2 117-4 100-1 48-5 48-6 100-0
7 „ 123-9 123-2 99-4 54-7 54-0 98-8
8 „ 130-1 129-3 99-4 62-2 61-5 98-7
9 „ 136-0 135-7 99-7 69-5 70-9 102-0

10 „ 141-4 140-8 99-6 78-5 77-6 98-8
U 146-5 147-8 100-7 86-5 87-0 100-6
12 „ 151-1 155-3 102-8 92-7 102-7 110-7
13 „ 156-7 159-9 102-0 102-8 114-6 111-4

Mean of observed increments of stature and weight of 
American children

Increment of stature (mm.) Increment of weight (lbs.)

Age Boys Girls
O/ /O 

ratio Boys Girls
<>//O 

ratio
3 m. - 1 yr. 150-4 150-1 99-8 9-32 8-07 93-8
1 yr- - 2 „ 123-9 132-0 106-5 4-97 5-56 112-0
2 „ - 3 „ 88-1 90-0 102-2 4-01 4-18 104-3
3 „ - 4 „ 73-9 79-1 106-9 4-13 4-46 108-0
4 „ - 5 „ 69-4 72-2 104-0 4-60 4-55 99-8
5 „ - 6 „ 67-0 68-0 101-5 4-51 5-08 112-8
6 „ - 7 „ 64-1 62-6 97-6 5 57 5-40 96-9
7 „ - 8 „ 61-2 57-8 94-4 6-70 6-65 99-4
8 „ —9 „ 55-7 60-1 108-0 6-64 7-38 111-1
9 „ -10 „ 54-9 57-7 105-1 7-92 8-12 104-8

10 „ -11 „ 51-9 61-3 118-2 8-81 9-58 108-7
11 „ -12 „ 53-2 66-9 125-6 9-54 11-98 133-1
12 „ -13 „ 61-0 55-1 89-0 10-90 10-29 94-7

These differences between the two sexes, which are essentially 
phase-differences, cause the ratio between their weights to fluctuate 
±n a somewhat complicated way (Figs. 10, 11). At birth the baby 
girl’s weight is about nine-tenths of the boy’s. She gains on him for 
a year or two, then falls behind again; from seven or eight onwards 
she gains rapidly, and the girl of twelve or thirteen is very little 
lighter than the boy; indeed in certain American statistics she is 
by a good deal the heavier of the two. In their teens the boy gains 
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steadily, and the lad of sixteen is some 15 per cent, heavier than 
the lass. The disparity tends to diminish for a while, when the 
maid of seventeen has her second spurt of growth; but it increases 
again, though slowly, until at five-and-twenty the young woman is 
no more than four-fifths the weight of the man. During middle life 
she gains on him, and at sixty the difference stands at some 12

Fig. 12. Annual increments of stature, in boys and girls. 
From Quetelet’s data. (Smoothed curves.)

per cent., not far from the mean for all ages; but the old woman 
shrinks and dwindles, and the difference tends to increase again.

The rate of increase of stature, like stature itself, differs notably 
in the two sexes, and the differences, as in the case of weight, are 
mostly a question of phase (Fig. 12). The little girl is adding rather 
more to her stature than the boy at four years old*, but she grows

* This early spurt of growth in the girl is shewn in English, French and American 
observations, but not in Quetelet’s.
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slower than he does for a few years thereafter (6). At ten years old 
the girl’s growth-rate begins to rise (c), a full year before the boy’s; 
at twelve or thirteen the rate is much alike for both, but it has 
reached its maximum for the girl. The boys’ rate goes on rising, 
and at fourteen or fifteen they are growing twice as fast as the girls. 
So much for the annual increments, as a rough measure of the rates 
of growth. In actual stature the baby girl is some 2 or 3 per cent, 
below the boy at birth; she makes up the difference, and there is

Fig. 13. Ratio of female stature to male. --------- From R. M. Fleming’s data.
--------- From Simmons and Todd’s data.

good evidence to shew that she is by a very little the taller for a 
while, at about five years old or six. At twelve or thirteen she is 
very generally the taller of the two, and we call it her “gawky 
age” (Fig. 13).

Man and woman differ in length of life, just as they do in weight 
and stature. More baby boys are born than girls by nearly 5 per 
cent. The numbers draw towards equality in their teens; after 
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twenty the women begin to outnumber the men, and at eighty-five 
therq are twice as many women as men left in the world*.

* Cf. F. E. A. Crew’s Presidential Address to Section D of the British Association, 
1937.

+ Cf. Gaston Backman, Die organische Zeit, Lunds Universitets Arsskrift, xxxv, 
Nr. 7, 1939.

t Quoted in Vierordt’s A natomische... Daten und Tabellen, 1906, p. 13. See 
also, among many others, Camerer’s data, in Pfaundler and Schlossman’s Hdb. d. 
Kinderheilkunde, I, pp. 49, 424, 1908; Variot, op. cit.; for pre-natal growth, R. E. 
Scammon and L. A. Calkins, Growth in the Foetal Period, Minneapolis, 1929. Also, 
on this and many other matters, E. Faure-Fremiet, La cindtique du ddveloppement, 
Paris, 1925; and, not least, J. Needham, Chemical Embryology, 1931.

Men have pondered over the likeness and the unlikeness between 
the short lifetimes and the long; and some take it to be fallacious 
to measure all alike by the common timepiece of the sun. Life, 
they say, has a varying time-scale of its own; and by this modulus 
the sparrow lives as long as the eagle and the day-fly as the manf. 
The time-scale of the living has in each case so strange a property 
of logarithmic decrement that our days and years are long in 
childhood, but an old man’s minutes hasten to their end.

On pre-natal and post-natal growth

The rates of growth which we have so far studied are based on 
annual increments, or “first differences” between yearly determina
tions of magnitude. The first increment indicates the mean rate of 
growth during the first year of the infant’s life, or (on a further 
assumption) the mean rate at the mean epoch of six months old; 
there is a gap between that epoch and the epoch of birth, of which 
we have learned nothing; we do not yet know whether the very 
high rate shewn within the first year goes on rising, or tends to fall, 
as the date of birth is approached. We are accustomed to inter
polate freely, and on the whole safely, between known points on 
a curve: “si timide que 1’on soit, il faut bien que 1’on interpole,” 
says Henri Poincare; but it is much less safe and seldom justifiable 
(at least until we understand the physical principle involved and 
its mathematical expression) to “extrapolate” beyond the limits of 
our observations.

We must look for more detailed observations, and we may learn 
much to begin with from certain old tables of Russow’sJ, who gives
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the stature of the infant, month by month, during the first year of 
its life, as follows:

Mean growth of an infant, in its first twelve-month 
(After Russow)

Age (months) 012345678 9 10 11 12
Length (cm.) 50 54 58 60 62 64 65 66 67-5 68 69 70-5 72
Monthly incre- — 442221 1 1-5 0-5 1 1-5 1-5

ment (cm i

From these data of Russow’s for German children, rough as 
indeed they are, from Variot’s for little Parisians (Fig. 14), and from 

Fig. 14. Growth of Parisian children (boys) from birth to twelve months old. 
From G. Variot’s data; Russow’s German data are also shewn, by x x x .

many more, we see that the rate of growth rises steadily and even 
rapidly as we pass backwards towards the date of birth. It is never 
anything like so great again. It is an impressive demonstration 
of the dynamic potentiality, of the store of energy, in the newborn 
child.

But birth itself is but an incident, an inconstant epoch, in the 
life and growth of a viviparous animal. The foal and the lamb 
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are born later than a man-child; the puppy and the kitten are born 
earlier, and in more helpless case than ours; the mouse comes into 
the world still earlier and more inchoate, so much so that even the 
little marsupial is scarcely more embryonic and unformed*.  We 
must take account, so far as each case permits, of pre-natal or intra
uterine growth, if we are to study the curve of growth in its entirety.

* It is part of the story, though by no means all, that (as Minot says) the larger 
the litter the sooner does birth take place. That the day-old foal or fawn can keep 
pace with their galloping dams is very remarkable; it is usually explained 
teleologically, as a provision of Nature, on which their safety and their survival 
depend. But the fact that they come one at a birth has at least something to do 
with their comparative maturity.

f Unsere Korperform und das physiologische Problem ihrer Entstehung, Leipzig, 1874. 
On growth in weight of the human embryo, see C. M. Jackson, Amer. Journ. Anat. 
xvii, p. 118, 1909; also J. Needham, op. cit. pp. 379-383.

According to Hist, the following are the mean lengths from month 
to month of the unborn child:

Months 0 1 2 3

Length (mm.) 0 7-5 40 84

Increment per — 7-5 32-5 44
month (mm.)

4 o 6 7 8 9 10 
(Birth)

162 275 352 402 443 472 490)
500)

78 113 77 50 41 29 18)
28)

These data link on very well to those of Russow, which we have 
just considered; and (though His’s measurements for the pre
natal months are more detailed than are those of Russow for the 
first year of post-natal life) we may draw a continuous curve of 
growth (Fig. 15) and of increments of growth (Fig. 16) for the 
combined periods. It will be seen at once that there is a “point 
of inflection” somewhere about the fifth month of intra-uterine life; 
up to that date growth proceeds with a continually increasing 
velocity. After that date, though growth is still rapid, its velocity 
tends to fall away; the curve, while still ascending, is becoming 
an S-shaped curve (Fig. 15). There is a slight break between our 
two sets of statistics at the date of birth, an epoch regarding which 
we should like to have precise and continuous information. But 
we can see that there is undoubtedly a certain slight arrest of growth, 
or diminution of the rate of growth, about this epoch; the sudden 
change of nurture has its inevitable effect, but this slight tem-
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Fig. 15. Curve of growth (in length or stature) of child, before and after birth. 
From His and Russow’s data.

Fig. 16. Mean monthly increments of length or stature of child, in cm.
From His and Russow’s data.
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porary set-back is immediately followed by a secondary, and equally 
transitory, accejpration*.

Mean weight in grams of American infants during ten days 
after birth. (From Meredith and Brown)

Age 
(days)

\V eight Daily increment

Male Female Male Female
At birth 3491 3408 — __

1 3376 3283 -115 -125
2 3294 3207 - 82 - 76
3 3274 3195 - 20 - 12
4 3293 3213 19 17
5 3326 3246 33 34
6 3366 3281 40 35
7 3396 3315 30 34
8 3421 3341 25 26
9 3440 3362 19 21

10 3466 3387 26 25

The set-back after birth of which we have just spoken is better 
shewn by the child’s weight than by any linear measurement. During 
its first three days the infant loses weight visibly, and it is more than 
ten days old before it has made up the weight it lost in those first 
three (Fig. 17).

It is worth our while to illustrate on a larger scale His’s careful 
data for the ten months of pre-natal life (Fig. 18). They give an 
S-shaped curve, beautifully regular, and nearly symmetrical on 
either side of its point of inflection; and its differential, or curve 
of monthly increments, is a bell-shaped curve which indicates with 
the utmost simplicity a rise from a minimal to a maximal rate, and 
a fall to a minimum again. It has a close family likeness to the 
well-known “curve of probability,” of which we shall presently 
have much more to say; it is a curve for which we might well 
hope to find a simple mathematical expression f.

These two curves, then, look more “mathematical,” and less 
merely descriptive, than any others we have yet drawn, and much

* See especially, H. V. Meredith and A. W. Brown, Growth in body-weight 
during first ten days of postnatal life. Human Biology, xi, pp. 24-77, 1939. Also 
(ini. al.) T. Brailsford Robertson, Pre- and post-natal growth, etc., Amer. Journ. 
Physiol, xxxvn, pp. 1—12, 74-85, 1915.

f The same is not less true of Friedenthal’s more elaborate measurements, in his 
Physiologic des Menschenwachstums, 1914; cf. Needham, op. cit. p. 1677.

TG F 8



Fig. 18. Curve of a child’s pre-natal growth, in length or stature; and corre 
spending curve of mean monthly increments (mm.). (Smoothed curves.)
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the same curves meet us again and again in the growth of other 
organisms. The pre-natal growth of the guinea-pig is just the 
same*.  We have the same essential features, the same S-shaped 
curve, in the growth by weight of an ear of maize (Fig. 19), or the 
growth in length of the root of a bean (Fig. 20); in both we see 
the same slow beginning, the rate rapidly increasing to a maximum, 
and the subsequent slowing down or “negative accelerationf.” 
One phase passes into another; so far as these curves go, they 
exhibit growth as a continuous process, with its beginning, its 
middle and its end—a continuity which Sachs recognised some 
seventy years ago, and spoke of as the “grand period of growth J.”

* See R. L. Draper, Anat. Record, xvin, p. 369, 1920; cf. Needham, op. cit., 
p. 1672.

t Cf. R. Chodat et A. Monnier; Sur la courbe de croissance chez les vegetaux, 
Bull. Herbier Boissier (2), v, p. 615, 1905.

t Arbeiten a. d. bot. Instil. Wurzburg, i, p. 569, 1872.
§ A. Bennett, Trans. Linn. Soc. (2), i (Bot.), p. 133, 1880.
|| Sachs, l.c.
5| Stefanowska, op. cit.; G. Backman, Ergebn. d. Physiologic, xxm, p. 925, 1931

But these simple curves relate to simple instances, to the infant 
sheltered in the womb, or to plant-growth in the sunny season of 
the year. They mark a favourable episode, rather than relate the 
course of a lifetime. A curve of growth to run all life long is only 
simple in the simplest of organisms, and is usually a very complex 
affair.

Growth iri length of Vallisneria§, and root of bean ft 
and weight of maize*̂

Vallisneria Vicia Zea

Hours
“A

Inches Days Mm.
< 1
Days Gm’

6 0-3 0 10 6 1
16 1-7 1 2-8 18 4
42 12-6 6-5 30 9
54 15-4 3 240 39 17
65 16-1 4 10 5 , 46 26
77 16-7 5 57-5 53 42
88 171 6 72-0 60 62

7 790 74 71
8 79-0 93 74

It would seem to be a natural rule, that those offspring which 
are most highly organised at birth are those which are born largest

8-2
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Fig. 19. Growth in weight of maize. From Gustav Backman, after Stefanowska.

Fig. 20. Growth in height of a beanstalk. From Sachs’s data.
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relatively to their parents’ size. But another rule comes in, which 
is perhaps less to be expected, that the offspring are born smaller 
the larger the species to which they belong. Here we shew, roughly, 
the relative weights of the new-born animal and its mother*:

* Data from Variot, after Anthony.

Bear 1 : 600 Sheep 1 : 14
Lion 160 Ox 13
Hippopotamus 45 Horse 12
Dog 45-50 Rabbit 40
Cat 25 Mouse 10-25
Man 22 Guinea-pig 7

These differences at birth are for the most part made up quickly; 
in other words, there are great differences in the rate of growth 
during early post-natal life. Two lion-cubs, studied by M. Anthony, 
grew as follows:

Male Female
Feb. 23 (born) — —

28 2-0 kilos 1-7 kilos
Mar. 8 3-0 2-6

15 3-8 3-3
22 4-6 4-0
30 5-3 4-6

Apr. 5 6-1 5-2
12 7-0 6-0
19 8-0 7-0

Thus the lion-cub doubles its weight in the first month, and 
wellnigh doubles it again in the second; but the newborn child 
takes fully five months to double its weight, and nearly two years 
to do so again.

The size finally attained is a resultant of the rate and of the 
duration of growth; and one or other of these may be the more 
important, in this case or in that. It is on the whole true, as Minot 
said, that the rabbit is bigger than the guinea-pig because he grows 
faster, but man is bigger than the rabbit because he goes on growing 
for a longer time.

A bantam and a barn-door fowl differ in their rate of growth, 
which in either case is definite and specific. Bantams have been 
bred to match almost every variety of fowl; and large size or small, 
quick growth or slow, is inherited or transmitted as a Mendelian 
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character in every cross between a bantam and a larger breed. 
The bantam is not produced by selecting smaller and smaller 
specimens of a larger breed, as an older school might have supposed; 
but always by first crossing with bantam blood, so introducing the 
“character” of smallness or retarded growth, and then segregating 
the desired types among the dwarfish offspring. In fact, Darwinian 
selection plays a small and unimportant part in the process*.

* Cf. Raymond Pearl, The selection problem, Amer. Naturalist, 1917, p. 82; 
R. C. Punnett and P. G. Bailey, Journ. of Genetics, iv, pp. 23-39. 1914.

t Cf. E. Devaux, L’allure du developpement dans les deux sexes, Revue ginir. 
des Sei. 1926, p. 598.

J S. D. Poisson, following James Bernoulli’s Ars Conjectandi (op. posth. 1713), 
was the discoverer, or inventor, of the law of large numbers. “Les choses 
de toute nature sont soumises & une loi universelie qu’on peut appeler la loi des 
grands nombres” (Recherches. 1837, pp. 7-12).

§ See p. 137, footnote.

From the whole of the foregoing discussion we see that rate of 
growth is a specific phenomenon, deep-seated in the nature of the 
organism; wolf and dog, horse and ass, nay man and woman, grow 
at different rates under the same circumstances, and pass at different 
epochs through like phases of development. Much the same might 
be said of mental or intellectual growth; the girl’s mind is more 
precocious than the boy’s, and its development is sooner arrested 
than the man’s f.

On variability, and on the curve offiequencJ or of error

The magnitudes which we are dealing with in this chapter— 
heights and weights and rates of change- are (with few exceptions) 
mean values derived from a large number of individual cases. We 
deal with what (to borrow a word from atomic physics) we may 
call an ensemble', we employ the equalising power of averages, 
invoke the “law of large numbers!,” and claim to obtain results 
thereby which are more trustworthy than observation itself §. But 
in ascertaining a mean value we must also take account of the 
amount of variability, or departure from the mean, among the cases 
from which the mean value is derived. This leads on far beyond 
our scope, but we must spare it a passing word; it was this identical 
phenomenon, in the case of Man, which suggested to Quetelet the 
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statistical study of Variation, led Francis Galton to enquire into 
the laws of Natural Inheritance, and served Karl Pearson as the 
foundation of his science of Biometr:cs.

When Quetelet tells us that the mean stature of a ten-year-old 
boy is 1-275 metres, this is found to imply, not only that the 
measurements of all his ten-year-old boys group themselves about 
this mean value of 1-275 metres, but that they do so in an orderly 
way, many departing little from that mean value, and fewer and 
fewer departing more and more. In fact, when all the measure
ments are grouped and plotted, so as to shew the number of 
instances (y) at each gradation of size (x), we obtain a characteristic

Fig. 21. The normal curve of frequency, or of error. 
o, — o, the “standard deviation”.

configuration, mathematically definable, called the curve of frequency. 
or of error (Fig. 21). This is a very remarkable fact. That a “curve 
of stature” should agree closely with the “normal curve of error” 
amazed Galton, and (as he said) formed the mainstay of his long 
and fruitful enquiry into natural inheritance*.  The curve is a 
thing apart, sui generis. It depicts no course of events, it is no 
time or vector diagram. It merely deals with the variability, and 
variation, of magnitudes; and by magnitudes we\ mean anything 
which can be counted or measured, a regiment of men, a basket of 

* Stature itself, in a homogeneous population, is a good instance of a normal 
frequency distribution, save only that the spread or range of variation is unusually 
low; for one-half of the population of England differs by no more than an inch 
and a half from the average of them all. Variation is said to be greater among the 
negroid than among the white races, and it is certainly very great from one race 
to another: e.g. from the Dinkas of the White Nile with a mean height of 1-8 m. 
to the Congo pygmies averaging 1-35, or say 5 ft. 11 in. and 4 ft. 6 in. respectively.
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nuts, the florets of a daisy, the stripes of a zebra, the nearness of 
shots to the bull’s eye*. It thereby illustrates one of the most 
far-reaching, some say one of the most fundamental, of nature’s 
laws.

We find the curve of error manifesting itself in the departures 
from a mean value, which seems itself to be merely accidental— 
as, for instance, the mean height or weight of ten-year-old English 
boys; but we find it no less well displayed when a certain definite 
or normal number is indicated by the nature of the case. For 
instance the Medusae, or jelly-fishes, have a “radiate symmetry” 
of eight nodes and internodes. But even so, the number eight is 
subject to variation, and the instances of more or less group them
selves in a Gaussian curve.

Number of “ tentaculocysts” in Medusae (Ephyra and Aurelia) 
(Data from E. T. Browne, Q.J.M.S. xxxvii, p. 245, 1895)

5 6 7 8 9 10 11 12 13 14 15
Ephyra (1893) — 4 8 278 22 18 12 14 3 — —

„ (1894) 1 6 34 883 75 61 35 17 3 1 —
Aurelia (1894) —

Percentage numbers:

2 18 296 33 16 18 7 — — 1

Ephyra — 11 2-2 77-4 61 50 3-3 3-9 0-8 — —
— 0-5 3Q 79-0 6-7 5-4 31 1-4 0-2 — —

Aurelia — 0-5 4-7 77-2 8-6 41 2-6 1-8 — — —
Mean — 0-7 3-3 77-9 71 4-8 30 2-4 0-3 — —

The curve of error is a “bell-shaped curve,” & courbe en cloche. It 
rises to a maximum, falls away on either side, has neither beginning 
nor end. It is (normally) symmetrical, for lack of cause to make it 
otherwise; it falls off faster and then slower the farther it departs 
from the mean or middle line; it has a “point of inflexion,” of 
necessity on either side, where it changes its curvature and from 
being concave to the middle line spreads out to become convex

♦ “I know of scarcely anything (says Galton) so apt to impress the imagination 
as the wonderful form of cosmic order expressed by the Law of Frequency of 
Error.... It reigns with serenity and in complete self-effacement amidst the 
wildest confusion” (Natural Inheritance, p. 62). Observe that Galton calls it the 
“ law of frequency of error,” which is indeed its older and proper name. Cf. (ini. al.) 
P. G. Tait, Trans R.S.E. xxiv, pp. 139-145, 1867.
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thereto. If we pour a bushel of corn out of a sack, the outline or 
profile of the heap resembles such a curve; and wellnigh every hill 
and mountain in the world is analogous (even though remotely) to 
that heap of corn *. Causes beyond our ken have cooperated to place 
and allocate each grain or pebble; and we call the result a “random 
distribution,” and attribute it to fortuity, or chance. Galton 
devised a very beautiful experiment, in which a sloping tray is 
beset with pins, and sand or millet-seed poured in at the top. 
Every falling grain has its course deflected again and again; the 
final distribution is emphatically a random one, and the curve of 
error builds itself up before our eyes.

The curve as defined by Gauss, princeps mathematicorum—who 
in turn was building on Laplace f—is at once empirical and 
theoretical J; and Lippmann is said to have remarked to Poincare: 
“Les experimentateurs s’imaginent que c’est un theoreme de 
mathematique, et les mathematiciens d’etre un fait experimental! ” 
It is theoretical in so far as its equation is based on certain hypo
thetical considerations: viz. (1) that the arithmetic mean of a number 
of variants is their best or likeliest average, an axiom which is 
obviously true in simple cases- but not necessar ly in all; (2) that 
“fortuity” implies the absence of any predominant, decisive or 
overwhelming cause, and connotes rather the coexistence and joint 
effect of small, undefined but independent causes, many or few:

* If we pour the corn out carefully through a small hole above, the heap becomes 
a cone, with sides sloping at an "angle of repose”; and the cone of Fujiyama is an 
exquisite illustration of the same thing. But in these two instances one predominant 
cause outweighs all the rest, and the distribution is no longer a random one.

f The Gaussian curve of error is really the “second curve of error” of Laplace. 
Laplace’s first curve of error (which has uses of its own) consists of two exponential 
curves, joining in a sharp peak at the median value. Cf. W. J. Luyten, Proc. 
Nat. Acad. Sci. xvm, pp. 360-365, 1932.

f The Gaussian equation to the normal frequency distribution or “curve of 
error” need not concern us further, but let us state it once for all:

1 (Xg-X)'
y— , & 2 ’

V277

where xa is the abscissa which gives the maximum ordinate, and where the maximum 
ordinate, y0 — \ly/(2-n). Thus the log of the ordinate is a quadratic function of the 
abscissa; and a simple property, fundamental to the curve, is that for equally spaced 
ordinates (starting anywhere) the square of any ordinate divided by the product of 
its neighbours gives a scalar quantity which is constant all along (G.T.B.). 
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producing their several variations, deviations or errors; and potent 
in their combinations, permutations and interferences*.

We begin to see why bodily dimensions lend, or submit, them
selves to this masterful law. Stature is no single, simple thing; 
it is compounded of bones, cartilages and other elements, variable 
each in its own way, some lengthening as others shorten, each 
playing its little part, like a single pin in Galton’s toy, towards a 
“fortuitous” resultant. “The beautiful regularity in the statures 
of a population (says Galton) whenever they are statistically 
marshalled in the order of their heights, is due to the number of 
variable and quasi-independent elements of which stature is the 
sum.” In a bagful of pennies fresh from the Mint each coin is 
made by the single stroke of an identical die, and no ordinary 
weights and measures suffice to differentiate them; but in a bagful 
of old-fashioned hand-made nails a slow succession of repeated 
operations has drawn the rod and cut the lengths and hammered 
out head, shaft and point of every single nail—and a curve of 
error depicts the differences between them.

The law of error was formulated by Gauss for the sake of the 
astronomers, who aimed at the highest possible accuracy, and 
strove so to interpret their observations as to eliminate or minimise 
their inevitable personal and instrumental errors. It had its 
roots also in the luck of the gaming-table, and in the discovery 
by eighteenth-century mathematicians that “chance might be 
defined in terms of mathematical precision, or mathematical ‘law’.” 
It was Quetelet who, beginning as astronomer and meteorologist, 
applied the “law of frequency of error” for the first time to 
biological statistics, with which in name and origin it had nothing 
whatsoever to do.

The intrinsic significance of the theory of probabilities and the 
law of error is hard to understand. It is sometimes said that to 
forecast the future is the main purpose of statistical study, and 
expectation, or expectancy, is a common theme. But all the theory

* “The curve of error would seem to carry the great lesson that the ultimate 
differences between individuals are simple and few; that they depend on collisions 
and arrangements, on permutations and combinations, on groupings and inter
ferences, of elementary qualities which are limited in variety and finite in extent” 
(J. M. Keynes). A connection between this law and Mendelian inheritance is 
discussed by John Brownlee, P.R.S.E. xxxi, p. 251, 1910. 
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in the world enables us to foretell no single unknown thing, not even 
the turn of a card or the fall of a die. The theory of probabilities 
is a development of the theory of combinations, and only deals with 
what occurs, or has occurred, in the long run, among large numbers 
and many permutations thereof. Large numbers simplify many 
things; a million men are easier to understand than one man out 
of a million. As David Hume*  said: “What depends on a few 
persons is in a great measure to be ascribed to chance, or to secret 
and unknown causes; what arises from a great many may often 
be accounted for by determinate and known causes.” Physics is, 
or has become, a comparatively simple science, just because its laws 
are based on the statistical averages of innumerable molecular or 
primordial elements. In that invisible world we are sometimes told 
that “chance” reigns, and “uncertainty” is the rule; but such 
phrases as mere chance, or at random, have no meaning at all except 
with reference to the knowledge of the observer, and a thing is a 
“ pure matter of chance ” when it depends on laws which we do not 
know, or are not considering f. Ever since its inception the merits 
and significance of the theory of probabilities have been variously 
estimated. Some say it touches the very foundations of know
ledge]: ; and others remind us that “avec les chiffres on peut tout 
demontrer.” It is beyond doubt, it is a matter of common ex
perience, that probability plays its part as a guide to reasoning. 
It extends, so to speak, the theory of the syllogism, and has been 
called the “logic of uncertain inference”§.

* Essay xrv.
t So Leslie Ellis and G. B. Airy, in correspondence with Sir J. D. Forbes; see 

his Life, p. 480.
t Cf. Hans Reichenbach, Les fonderq^nts logiques du calcul des probabilites, 

Annales de Vinst. Poincare, vn, pp. 267, 1937.
§ Cf. J. M. Keynes, A Treatise on Probability, 1921; and A. C. Aitken’s Statistical 

Mathematics, 1939.

In measuring a group of natural objects, our measurements are 
uncertain on the one hand and the objects variable on the other; 
and our first care is to measure in such a way, and to such a scale, 
that our own errors are small compared with the natural variations. 
Then, having made our careful measurements of a group, we want 
to know more of the distribution of the several magnitudes, and 
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especially to know two important things. We want a mean value, 
as a substitute for the true value*  if there be such a thing; let us 
use the arithmetic mean to begin with. About this mean the ob
served values are grouped like a target hit by skilful or unskilful 
shots; we want some measure of their inaccuracy, some measure of 
their spread, or scatter, or dispersion, and there are more ways than 
one of measuring and of representing this. We do it visibly and 
graphically every time we draw the curve (or polygon) of frequency; 
but we want a means of description or tabulation, in words or in 
numbers. We find it, according to statistical mathematics, in the 
so-called index of variability, or standard deviation (a), which merely 
means the average deviation from the meanf. But we must take 
some, precautions in determining this average; for in the nature of 
things these deviations err both by excess and defect, they are 
partly positive and partly negative, and their mean value is the mean 
of the variants themselves. Their squares, however, are all positive, 
and the mean of these takes account of the magnitude of each 
deviation with no risk of cancelling out the positive and negative 
terms: but the “dimension” of this average of the squares is wrong. 
The square root of this average of squares restores the correct 
dimension, and the result is the useful index of variability, or of 
deviation, which is called oj.

* It is not always obvious what the “errors” are, nor what it is that they depart 
or deviate from. We are apt to think of the arithmetic mean, and to leave it 
at that. But were we to try to ascertain the ratio of circumference to diameter 
by measuring pennies or cartwheels, our “errors” would be found grouped round 
a mean value which no simple arithmetic could define.

f a, the standard deviation, was chosen for its convenience in mathematical 
calculation and formulation. It has no special biological significance; and a 
simpler index, the “inter-quartile distance,” has its advantages for the non
mathematician, as we shall see presently.

J That is to say: Square the deviatio^-from-the-mean of each class or ordinate 
(£); multiply each by the number of instances (or “variates”) in that class (/);

E (Pf) divide by the total number (N); and take the square-root of the whole: a2 = .

This standard deviation divides the area under the normal curve 
nearly into equal halves, and nearly coincides with the point of 
inflexion on either side; it is the simplest algebraic measure of 
dispersion, as the mean is the simplest arithmetical measure of 
position. When we divide this value by the mean, we get a figure 
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which is independent of any particular units, and which is called 
the coefficient of variability*.

Karl Pearson, measuring the amount of variability in the weight 
and height of man, found this coefficient to run as follows: In male 
new-born infants, for weight 15-6, and for stature 6-5; in male 
adults, for weight 10-8, and for stature 3-6. Here the amount of 
variability is thrice as great for weight as for stature among grown 
men, and about 2| times as great in infancy f. The same curious 
fact is well brought out in some careful measurements of shell-fish, 
as follows:

Vacabdity of young Clams (Mactra sp.) J

Average size
Coefficient of 

variability

Age (years) 1 2 1 2
Number in sample 41 20 41 20
Length (cm.) 3-2 6-3 15-3 6-3
Height 2-3 4-7 140 6-7
Thickness 1-3 2-8 9-6 8-3
Weight (gm.) 6-4 59-8 35-4 18-5

The phenomenon is purely mathematical. Weight varies as the product of 
length, height and depth, or (as we have so often seen) as the cube of any one 
of these dimensions in the case of similar figures. It is then a mathematical, 
rather than a biological fact that, for small deviations, the variability of the 
whole tends to be equal to the sum of that of the three constituent dimensions. 
For if weight, w, varies as height x, breadth y, and depth z, we may write

w — c.xyz.

„„ .... dw dx dy dzWhence, differentiating, — =----1- — H—.
w x y z

We see that among the shell-fish there is much more variability 
in the younger than in the older brood. This may be due to

♦ It is usually multiplied by 100, to make it of a handier amount; and we may 
then define this coefficient, C, &s = a]M x 100.

f Cf. Fr. Boas, Growth of Toronto children, Rep. of U.S. Comm, of Education, 
1896-7, 1898, pp. 1541-1599; Boas and Clark Wissler, Statistics of growth, 
Education Rep. 1901, 1906, pp. 25-132; H. P. Bowditch, Rep. Mass. State Board 
of Health, 1877; K. Pearson, On the magnitude of certain coefficients of correlation 
in man. Proc. R.S. lxvi, 1900; S. Nagai, Korperkonstitution der Japaner, from 
Brugsch-Levy, Bidogie d. Person, n, p. 445, 1928; R. M. Fleming, A study of 
growth and development, Medical Research Council, Special Report, No. 190, 1933.

J From F. W. Weymouth, California Fish Bulletin, No. 7, 1923. 
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inequality of age; for in a population only a few weeks old, a few 
days sooner or later in the date of birth would make more difference 
than later on. But a more important matter, to be seen in man
kind (Fig. 22), is that variability of stature runs pari passu, or 
nearly so, with the rate of growth, or curve of annual increments 
(cf. Fig. 12). The curve of variability descends when the growth- 
rate slackens, and rises high when in late boyhood growth is speeded 
up. In short, the amount of variability in stature or in weight is 
correlated with, or is a function of, the rate of growth in these 
magnitudes.

Judging from the evidence at hand, we may say that variability 
reaches its height in man about the age of thirteen or fourteen, 
rather earlier in the girls than in the boys, and rather earlier in the 
case of stature than of weight. The difference in this respect between 
the boys and the girls is now on one side, now on the other. In 
infancy variability is greater in the girls; the boys shew it the 
more at five or six years old; about ten years old the girls have 
it again. From twelve to sixteen the boys are much the more 
variable, but by seventeen the balance has swung the other way 
(Fig. 23).

Coefficient of variability x 100) in man, at various ages

Age ... 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Stature
British (Fleming):

Boys 51 5-4 50 5-3 5-4 5-6 5-7 5-6 5-8 5-8 5-8 50 4-3 3-C
Girls 5-2 5-2 5-0 5-5 5-4 5-6 5-8 5-7 5-6 4-7 4-2 3-9 37 3-8

American 4-8 4-6 4-4 4-5 4-4 4-6 4-7 4-9 5-5 5-8 5-6 5-5 4-6 3-7
(Bowditch)

Japanese (Nagai):
Boys 
Girls —

40 • — 4-3 — 41
4-3 — 4-1 — 4-5

4-0
4-5

50
4-6

50
3-6

4-2
31

3-2
30

— —

Mean — 4.7 _ 4.7 _ 4.9 _ 50 5-3 50 4-6 41 — —

American 11-6
Weight 

10-3 11 1 9-9 11-0 1-6 1-8 13-7 3-6 6-8 15-3 13-3 130 10-4
Japanese: 

Boys 
Girls

— 10-3 — 121 — 0-8
10-2 — 11-2 — 21

7-0
150

51
5-6

7-0
3-4

13-8
11-4

10-9
11-5

—
__

Mean — 103 — 111 — 11-5 — 11-9 14-8 15-7 13-5 11-9 — —
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Age
Fig. 22. Variability in stature (boys). After Fleming, Bowditch and Nagai.

Fig. 23. Coefficient of variability in stature: excess or defect of this coefficient 
in the boy over the girl. Data from R. M. Fleming, and from Nagai.
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The amount of variability is bound to differ from one race or 
nationality to another, and we find big differences between the 
Americans and the Japanese, both in magnitude and phase (Fig. 22).

If we take not merely the variability of stature or weight at a 
given age, but the variability of the yearly increments, we find 
that this latter variability tends to increase steadily, and more and 
more rapidly, within the ages for which we have information; and 
this phenomenon is, in the main, easy of explanation. For a great 
part of the difference between one individual and another in regard 
to rate of growth is a mere difference of phase—a difference in the 
epochs of acceleration and retardation, and finally a difference as to 
the epoch when growth comes to an end; it follows that variability 
will be more and more marked as we approach and reach the period 
when some individuals still continue, and others have already ceased, 
to grow. In the following epitomised table, I have taken Boas’s 
determinations * of the standard deviation (a), converted them into 
the corresponding coefficients of variability (u!M x 100), and then 
smoothed the resulting numbers:

Coefficients of variability in annual increments of stature
Age ... 7 8 9 10 11 12 13 14 15
Boys 17-3 15-8 18-6 191 21-0 24-7 290 36-2 46-1
Girls 171 17-8 19-2 22-7 25-9 29-3 37-0 44-8 —

The greater variability in the girls is very marked f, and is 
explained (in part at least) by the more rapid rate at which the girls 
run through the several phases of their growth (Fig. 24). To say that 
children of a given age vary in the rate at which they are growing 
would seem to be a more fundamental statement than that they 
vary in the size to which they have grown.

Just as there is a marked difference in phase between the growth
curves of the two sexes, that is to say a difference in the epochs 
when growth is rapid or the reverse, so also, within each sex, will 
there be room for similar, but individual, phase-differences. Thus 
we may have children of accelerated development, who at a given

•* Op. cit. p. 1548.
f That women are on the whole more variable than men was argued by Karl 

Pearson in one of his earlier essays: The Chances of Death and other Studies, 1897.
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epoch after birth are growing rapidly and are already “big for their 
age”; and others, of retarded development, who are comparatively 
small and have not reached the period of acceleration which, in 
greater or less degree, will come to them in turn. In other words, 
there must under such circumstances be a strong positive “ coefficient 
of correlation” between stature and rate of growth, and also between

Fig. 24. Coefficients of variability, in annual increments of stature.
After Boa*.

the rate of growth in one year and the next. But it does not by 
any means follow that a child who is precociously big will continue 
to grow rapidly, and become a man or woman of exceptional 
stature *.  On the contrary, when in the case of the precocious or 
“accelerated” children growth has begun to slow down, the back

* Some first attempts at analysis seem to shew that the size of the embryo at 
birth, or of the seed at germination, has more influence than we were wont to 
suppose on the ultimate size of plant or animal. See (e.g.) Eric Ashby, Heterosis 
and the inheritance of acquired characters. Proc. R.S. (B), No. 833, pp. 431-441, 
1937; and papers quoted therein.

T G F 9
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ward ones may still be growing rapidly, and so making up (more 
or less completely) on the others. In other words, the period of 
high positive correlation between stature and increment will tend' 
to be followed by one of negative correlation. This interesting and 
important point, due to Boas and Wissler*,  is confirmed by the 
following table:

* l.c. p. 42, and other papers there quoted. Cf. also T. B. Robertson, Criteria 
of Normality in the Growth of Children, Sydney, 1922

Correlation of stature and increment in boys and girls 
(From Boas and Wissler)

Age ............... 6 7 8 9 10 11 12 13 14 15
Stature (B) 112-7 115-5 123-2 127-4 133-2 136-8 142-7 147-3 155-9 162-!

(G) 111-4 ' 117-7 121-4 127-9 131-8 136-7 144-6 149-7 153-8 157-1
Increment (B) 5-7 5-3 4-9 5-1 5-0 4-7 5-9 7-5 6-2 5-!

(G) 5-9 5-5 5-5 5-9 6-2 7-2 6-5 5-4 3-3 1-'
Correlation (B) 0-25 0-11 0-08 0-25 0-18 0-18 0-48 0-29 -0-42 -0-

(G) 0-44 0-14 0-24 0-47 0-18 -0-18 -0-42 -0-39 -0-63 0-

A minor but very curious point brought out by the same 
investigators is that, if instead of stature we deal with height in 
the sitting posture (or, practically speaking, with length of trunk 
or back), then the correlations between this height and its annual 
increment are throughout negative. In other words, there would 
seem to be a general tendency for the long trunks to grow slowly 
throughout the whole period under investigation. It is a well- 
known anatomical fact that tallness is in the main due not to length 
of body but to length of limb.

Since growth in height and growth in weight have each their own 
velocities, and these fluctuate, and even the amount of their 
variability alters with age, it follows that the correlation between 
height and weight must not only also vary but must tend to 
fluctuate in a somewhat complicated way. The fact is, this corre
lation passes through alternate maxima and minima, chief among 
which are a maximum at about fourteen years of age and a minimum 
about twenty-one. Other intercorrelations, such as those between 
height or weight and chest-measurement, shew their periodic 
variations in like manner; and it is about the time of puberty
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that correlation tends to be closest, or a norm to be most nearly 
approached *.

The whole subject of variability, both of magnitude and rate of 
increment, is highly suggestive and instructive: inasmuch as it 
helps further to impress upon us that growth and specific rate of 
growth are the main physiological factors, of which specific mag
nitude, dimensions and form are the concrete and visible resultant. 
Nor may we forget for a moment that growth-rate, and growth 
itself, are both of them very complex things. The increase of the 
active tissues, the building of the skeleton and the laying up 
of fat and other stores, all these and more enter into the complex 
phenomenon of growth. In the first instance we may treat these 
many factors as though they were all one. But the breeder and 
the geneticist will soon want to deal with them apart; and the 
mathematician will scarce look for a simple expression where 
so many factors are involved. But the problems of variability, 
though they are intimately related to the general problem of 
growth, carry us very soon beyond our limitations.

The curve of error

To return to the curve of error.
The normal curve is a symmetrical one. Its middle point, or 

median ordinate, marks the arithmetic mean of all the measurements; 
it is also the mode, or class to which the largest number of individual 
instances belong. Mean, median and mode are three different sorts 
of average; but they are one and the same in the normal curve.

It is easy to produce a related curve which is not symmetrical, 
and in which mean, median and mode are no longer the same. 
The heap of corn will be lop-sided or “skew” if the wind be blowing 
while the grain is falling: in other words, if some prevailing cause 
disturb the quasi-equilibrium of fortuity; and there are other ways, 
some simple, some more subtle, by which asymmetry may be 
impressed upon our curve.

The Gaussian curve is only one of many similar bell-shaped curves; 
and the binomial coefficients, the numerical coefficients of (a + b)n, 
yield a curve so like it that we may treat them as the same. The

* Cf. Joseph Bergson, Growth-changes in physical correlation. Human Biology, 
I, p. 4, 1930.

9-2
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Gaussian curve extends, in theory, to infinity at either end; and 
this infinite extension, or asymptotism, has its biological significance. 
We know that this or that athletic record is lowered, slowly but 
continually, as the years go by. This is due in part, doubtless, to 
increasing skill and improved technique; but quite apart from these 
the record would slowly fall as more and more races are run, owing 
to the indefinite extension of the Gaussian curve*.

* This is true up to a certain extent, but would become a mathematical fiction 
later on. There will be physical limitations (as there are in quantum mechanics) 
both to record-breaking, and to the measurement of minute extensions of the 
record.

f We may indeed treat old Parr’s case on the ordinary lines of actuarial 
probability, but it is “without much actuarial importance.” The chance of his 
record being broken by a modern centenarian is reckoned at (|)B0, by Major 
Greenwood and J. C. Irwin, writing on Senility, in Human Biology, xi, pp. 1-23, 
1939.

On the other hand, while the Gaussian curve extends in theory 
to infinity, the fact that variation is always limited and that extreme 
variations are infinitely rare is one of the chief lessons of the law 
of frequency. If, in a population of 100,000 men, 170 cm. be the 
mean height and 6 cm. the standard deviation, only 11 per cent., 
or say 130 men, will exceed 188 cm., only 10 men will be over 
191 cm., and only one over 193 cm., or 13| per cent, above the 
average. ' The chance is negligible of a single one being found over 
210 cm., or 7 ft. high, or 24 per cent, above the average.

Yet, widely as the law holds good, it is hardly safe to count it 
as a universal law. Old Parr at 150 years old, or the giant Chang 
at more than eight feet high, are not so much extreme instances of 
a law of probability, as exceptional cases due to some peculiar cause 
or influence coming inf. In a somewhat analogous way, one or two 
species in a group grow far beyond the average size; the Atlas moth, 
the Goliath beetle, the ostrich and the elephant, are far-off outliers 
from the groups to which they belong. A reason is not easy to find. 
It looks as though variations came at last to be in proportion to the 
size attained, and so to go on by compound interest or geometrical 
progression. There may be nothing surprising in this; nevertheless, 
it is in contradistinction to that summation of small fortuitous 
differences which lies at the root of the law of error. If size vary in 
proportion to the magnitude of the variant individuals, not only 
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will the frequency curve be obviously skew, but the geometric mean, 
not the arithmetic, becomes the most probable value*.  Now the 
logarithm of the geometric mean of a series of numbers is the 
arithmetic mean of their logarithms; and it follows that in such 
cases the logarithms of the variants, and not the variants them
selves, will tend to obey the Gaussian law and follow the normal 
curve of frequencyf. »

* See especially J. C. Kapteyn, Skew frequency curves in biology and statistics, 
Rec. des Trav. Botan. Neerland., Groningen, xin, pp. 105-158, 1916. Also Axel 
M. Hemmingsen, Statistical analysis of the differences in body-size of related species, 
Danske Vidensk. Selsk. Medd. xcvni, pp. 125-160, 1934.

f This often holds good. Wealth breeds wealth, hence the distribution of 
wealth follows a skew curve; but logarithmically this curve becomes a normal 
one. Weber’s law, in physiology, is a well-known instance; on the thresholds 
of sensations, effects are produced proportional to the magnitudes of those 
thresholds, and the logs of the thresholds, and not the thresholds themselves, 
are normally distributed.

The Gaussian curve, and the standard deviation associated with 
it, were (as we have seen) invented by a mathematician for the use

Fig. 25 A. Curve of frequency of a population of minnows.

of an astronomer, and their use in biology has its difficulties and 
disadvantages. We may do much in a simpler way. Choosing a 
random example, I take a catch of minnows, measured in 3 mm. 
groups, as follows (Fig. 25A):

Size (mm.) 13-15 16-18 19-21*  22-24 25-27 28-30 31-33 34-36 37-39
Number 1 22 52 67 1J4 257 177 41 2
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Let us sum the same figures up, so as to show the whole number 
above or below the respective sizes.

Size (mm.) 15
Number below 1
Percentage —

18 21 24 27 30 33 36 39
23 75 142 256 513 690 731 733
3 1 10-2 19-4 34-9 700 94 1 99-6 100

Our first set of figures, the actual measurements, would give us 
the “ courbe en cloche,” in the form of an unsymmetrical (or “ skew ”) 
Gaussian curve: one, that is to say, with a long sloping talus on

Length in mm.
Fig. 25 B. “Curve of distribution” of a population of minnows.

one side of the hill. The other gives us an “S-shaped curve” ap
parently limited, but really asymptotic at both ends (Fig. 25 B); and 
this S-shaped curve is so easy to work with that we may at once divide 
it into two halves (so finding the ‘'median” value), or into quarters 
and tenths (giving the “quartiles” and “deciles”), or as we please. 
In short, after drawing the curve to a larger scale, we shall find that 
we can safely read it to thirds of a millimetre, and so draw from it 
the following somewhat rough but very useful tabular epitome of 
our population of minnows, from which the curve can be recon
structed at any time:

mm.
Extreme 13
First decile 21-0
Lower quartile 25-3
Median 28-6
Upper quartile 30-6
Last decile . 32-3
Extreme 39
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This S-shaped “ summation-curve ” is what Francis Galton called a 
curve of distribution, and he “Eked it the better the more he used it.” 
The spread or “scatter” is conveniently and immediately estimated 
by the distance between the two quartiles; and it happens that this 
very nearly coincides with the standard deviation of the normal curve.

Fig. 26. A plankton-sample-of fish-eggs: North of Scotland, February 1905. 
(Only eggs without oil-globule are counted here.)

A. Dab and Flounder. B, Gadus Esmarckii and G. luscus.
C, Cod and Haddock. D, Plaice.

There are biological questions for which we want all the accuracy 
which biometric science can give; but there are many others on 
which such refinements are thrown away.

Mathematically speaking, we cannot integrate the Gaussian curve, 
save by using an infinite series; but*to all intents and purposes we 
are doing so, graphically and very easily, in the illustration we have 
just shewn. In any case, whatever may be the precise character of 
each, we begin to see how our two simplest curves of growth, the 
bell-shaped and the S-shaped curve, form a reciprocal pair, the 
integral and the differential of one another* —like the distance travelled

* It is of considerable historical interest to know that this practical method of 
summation was first used by Edward Wright, in a Table of Latitudes published in 
his Certain Errors in Navigation corrected, 1599, as a means of virtually integrating 
sec x. (On this, and on Wright’s claim to be the inventor of logarithms, see Florian 
Cajori, in Napier Memorial Volume, 1915, pp. 94-99.) 
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and the velocity of a moving body. If y = be the ordinate of 
the one, z = $e~x*dx is that of the other.

There is one more kind of frequency-curve which we must take 
passing note of. We begin by thinking of our curve, whether 
symmetrical or skew, as the outcome of a single homogeneous 
group. But if we happen to have two distinct but intermingled 
groups to deal with, differing by ever so little in kind, age, place or 
circumstance—leaves of both oak and beech, heights of both men 
and women--this heterogeneity will tend to manifest itself in two 
separate cusps or modes, on the common curve: which is then 
indeed two curves rolled into one, each keeping something of its 
own individuality. For example, t]>e floating eggs of the food-fishes 
are much alike, but differ appreciably in size. A random gathering, 
netted at the surface of the sea, will yield on measurement a multi
modal curve, each cusp of which is recognisable, more or less 
certainly, as belonging to a particular kind of fish (Fig. 26).

A further note upon curves

A statistical “curve”, such as Quetelet seems to have been the 
first to use*, is a device whose peculiar and varied beauty we are 
apt, through familiarity, to disregard. The curve of frequency which 
we have been studying depicts (as a rule) the distribution of mag
nitudes in a material system (a population, for instance) at a 
certain epoch of time: it represents a given state, and we may call 
it a diagram of configuration^. But we oftener use our curves 
to compare successive states, or changes of magnitude, as one 
configuration gives place to another; and such a curve may be 
called a diagram of displacement. An imaginary point moves in 
imaginary space, the dimensions of which represent those of the 
phenomenon in question, dimensions which we may further define 
and measure by a system of “coordinates”; the movements of our 
point through its figurative space are thus analogous to, and illus
trative of, the events which constitute the phenomenon. Time is 
often represented, and measured, on one of the coordinate axes, and 
our diagram of “displacement” then becomes a diagram of velocity.

* In his Theorie des probabilitas, 1846.
t See Clerk Maxwell’s article “Diagrams,” in the Encyclopaedia Britannica, 

9th edition.
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This simple method (said Kelvin) of shewing to the eye the law of 
variation, however complicated, of an independent variable, is one 
of the most beautiful results of mathematics*.

* Kelvin, Nature, xxix, p. 440, 1884.
t Mem. Astron. Soc. v, p. 171, 1830; Nautical Almanack, 1835, p. 495; etc.
J Here a certain distinction may be observed. We take the average height of a 

regiment, because the men actually vary about a mean. But in estimating the place 
of a star, or the height of Mont Blanc, we average results which only differ by 
personal or instrumental error. It is this latter process of averaging which leads, 
in Herschel’s phrase, to results more trustworthy than observation itself. Laplace ~ 
had made a similar remark long before (Oeuvres, vn, Theorie des probability): that 
we may ascertain the very small effect of a constant cause, by means of a long series 
of observations the errors of which exceed the effect itself. He instances the small 
deviation to the eastward which the rotation of the earth imposes on a falling body. 
In like manner the mean level of the sea may be determined to the second decimal 
of an inch by observations of high and low water taken roughly to the nearest inch, 
provided these are faithfully carried out at every tide, for say a hundred years. 
Cf. my paper on Mean Sea Level, in Scottish Fishery Board's Sci. Report for 1915.

§ Novum Organum Renovatum (3rd ed.), 1858, p. 20.

We make and use our curves in various ways. We set down on 
the coordinate network of our chart the points given by a series of 
observations, and connect them up into a continuous series as we 
chart the voyage of a ship from her positions day by day; we may 
“smooth” the line, if we so desire. Sometimes we find our points 
so crowded, or otherwise so dispersed and distributed, that a line 
can be drawn not from one to another but among them all—a method 
first used by Sir John Herschel f, when he studied rhe orbits of the 
double stars. His delicate observations were affected by errors, at 
first sight without rhyme or reason, but a curve drawn where the 
points lay thickest embodied the common lesson of them all; any 
one pair of observations would have sufficed, whether better or 
worse, for the calculation of an orbit, but Herschel’s dot-diagram 
obtained “from the whole assemblage of observations taken together, 
and regarded as a single set of data, a single result in whose favour 
they all conspire.” It put us in possession, said Herschel, of 
something truer than the observations themselves f; and Whewell 
remarked that it enabled us to obtain laws of Nature not only from 
good but from very imperfect observations §. These are some 
advantages of the use of “curves,” which have made them essential 
to research and discovery.

It is often helpful and sometimes necessary to smooth our curves, 
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whether at free hand or by help of mathematical rules; it is one 
way of getting rid of non-essentials—and to do so has been called 
the very key-note of mathematics*. A simple rule, first used by 
Gauss, is to replace each point by a mean between it and its two 
or more neighbours, and so to take a ‘ floating’’ or “running 
average.” In so doing we trade once more on the “principle of 
continuity”; and recognise that in a series of observations each 
one is related to another, and is part of the contributory evidence 
on which our knowledge of all the rest depends. But all the while 
we feel that Gaussian smoothing gives us a practical or descriptive 
result, rather than a mathematical one.

Some curves are more elegant than others. We may have to rest 
content with points in which no order is apparent, as when we plot 
the daily rainfall for a month or two; for this phenomenon is one 
whose regularity only becomes apparent over long periods, when 
average values lead at last to “statistical uniformity.” But the 
most irregular of curves may be instructive if it coincide with another 
not less irregular: as when the curve of a nation’s birth-rate, in its 
ups and downs, follows or seems to follow the price of wheat or the 
spots upon the sun.

It seldom happens, outside of the exact sciences, that we com
prehend the mathematical aspect of a phenomenon enough to define 
(by formulae and constants) the curve which illustrates it. But, 
failing such thorough comprehension, we can at least speak of the 
trend of our curves and put into words the character and the course 
of the phenomena they indicate. VVe see how this curve or that 
indicates a uniform velocity, a tendency towards acceleration or 
retardation, a periodic or non-periodic fluctuation, a start from or an 
approach to a limit. When the curve becomes, oi approximates to, 
a mathematical one, the types are few to which it is likely to 
belongf. A straight line, a parabola, or hyperbola, an exponential 
or a logarithmic curve (like x = ayh), a sine-curve or sinusoid, damped 
or no, suffice for a wide range of phenomena; we merely modify our 
scale, and change the names of our coordinates.

* Cf. W. H. Young, The mathematic method and its limitations, Atti del Congresso 
dei Matemat ici, Bologna, 1928, I, p. 203.

f Hence the engineer usually begins, for his first tentative construction, by 
drawing one of the familiar curves, catenary, parabola, arc of a circle, or curve of 
sines.
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The curves we mostly use, other than the Gaussian curve, are 
time-diagrams. Each has a beginning and an end; and one and 
the same curve may illustrate the life of a man, the economic history 
of a kingdom, the schedule of a train between one station and 
another. What it then shews is a velocity, an acceleration, and 
a subsequent negative acceleration or retardation. It depicts a 
“mechanism” at work, and helps us to see analogous mechanisms 
in different fields; for Nature rings her many changes on a few 
simple themes. The same expressions serve for different orders of 
phenomena. The swing of a pendulum, the flow of a current, the 
attraction of a magnet, the shock of a blow, have their analogues in 
a fluctuation of trade, a wave of prosperity, a blow to credit, a tide 
in the affairs of men.

The same exponential curve may illustrate a rate of cooling, a loss 
of electric charge, the chemical action of a ferment or a catalyst. 
The S-shaped population-curve or “ logistic curve ” of Verhulst (to 
which we are soon coming) is the hysteresis-curve by which Ewing 
represented self-induction in a magnetic field; it is akin to the path 
of a falling body under the influence of friction; and Lotka has 
drawn a curve of the growing mileage of American railways, and 
found it to be a typical logistic curve. A few bars of music plotted 
in wave-lengths of the notes might be mistaken for a tidal record. 
The periodicity of a wave, the acceleration of gravity, retardation 
by friction, the role of inertia, the explosive action of a spark or 
an electric contact—these are some of the modes of action or “ forms 
of mechanism” which recur in limited number, but in endless shapes 
and circumstances*.  The way in which one curve fits many 
phenomena is characteristic of mathematics itself, which does not deal 
with the specific or individual case, but generalises all the while, and 
is fond (as Henri Poincare said) of giving the same name to different 
things.

* See an admirable little book by Michael Petrovich, Les mecanismes communs 
aux phdnomines disparates, Paris, 1921.

Our curves, as we have said, are mostly time-diagrams, and 
represent a change in time from one magnitude to another; they are 
diagrams of displacement, in Maxwell’s phrase. We may consider 
four different cases, not equally simple mathematically, but all 



140 THE RATE OF GROWTH [ch.

capable of explanation, up to a certain point, without mathe
matics.

(1) If in our coordinate diagram we have merely to pass from 
one isolated point to another, a straight line joining the two points 
is the shortest—and the likeliest way.

(2) To rise and fall alternately, going to and fro from maximum 
to minimum, a zig-zag rectilinear path would still be, geometrically, 
the shortest way; but it would be sharply discontinuous at every 
turn, it would run counter to the “principle of continuity,” it is not 
likely to be nature’s way. A wavy course, with no more change of 
curvature than is absolutely necessary, is the path which nature 
follows. We call it a simple harmonic motion, and the simplest of

The bell-shaped curve

Fig. 27. Simple curves, reyesenting a change from one magnitude to another, 

all such wavy curves we call a sine-curve. If there be but one 
maximum and one minimum, which our variant alternates between, 
the vector pathway may be translated into polar coordinates', the 
vector does what the hands of the clock do, and a circle takes the 
place of the sine-curve.

(3) To pass from a zero-line to a maximum once for all is a very 
different thing; for now minimum and maximum are both of them 
continuous states, and the principle of continuity will cause our 
vector-variant to leave the one gradually, and arrive gradually at 
the other. The problem is how to go uphill from one level road to 
another, with the least possible interruption or discontinuity. The 
path follows an S-shaped course; it has an inflection midway; and 
the first phase and the last are represented by horizontal asymptotes. 
This is an important curve, and a common one. It so far resembles
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an “elastic curve” (though it is not mathematically identical with it) 
that it may be roughly simulated by a watchspring, lying between 
two parallel straight lines and touching both of them. It has its 
kinetic analogue in the motion of a pendulum, which starts from 
rest and comes to rest again, after passing midway through its 
maximal velocity. It indicates a balance between production and 
waste, between growth and decay: an approach on either side to 
a state of rest and equilibrium. It shows the speed of a train 
between two stations; it illustrates the growth of a simple organism, 
or even of a population of men. A certain simple and symmetrical 
case is called the Verhulst-Pearl curve, or the logistic curve.

(4) Lastly, in order to leave a certain minimum, oi zero-line, and * 
return to it again, the simplest way will be by a curve asymptotic 
to the base-line at both ends -or rather in both directions; it will 
be a bell-shaped curve, having a maximum midway, and of necessity 
a point of inflection on either side; it is akin to, and under certain 
precise conditions it becomes, the curve of error or Gaussian curve.

Besides the ordinary curve of growth, which is a summation
curve, and the curve of growth-rates, which is its derivative, there 
are yet others which we may employ. One of these was introduced 
by Minot*, from a feeling that the rate of growth, or the amount 
of increment, ought in some way to be equated with the growing 
structure. Minot’s method is to deal, not with the actual increments 
added in successive periods, but with these successive increments 
represented as percentages of the amount already reached. For 
instance, taking Quete^t’s values for the height (in centimetres) of 
a male infant, we have as follows:

Yeard 0 12 3 4
cm. 500 69-8 79-1 86-4 92-7

But Minot would state the percentage-growth in each of these 
foqr annual periods at 39-6, 13-3, 9-2 and 7-3 per cent, respectively:

Years 0 1 2 3 4
Height (cm.) 50-0 69-8 79-1 86-4 92-7
Increments (cm.) — 19-8 9-3 7-3 6-3

„ (per cent.) — 39-6 13-3 9-2 7-3

* C. S. Minot, On certain phenomena of growing old, Proc. Amer. Assoc, xxxix, 
1890, 21 pp.; Senescence and rejuvenation, Journ. Physiol, xn, pp. 97-153, 
1891; etc. Criticised by S. Brody and J. Needham, op. cit. pp. 401 seq.
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Now, in our first curve of growth we plotted length against time, 
a very simple thing to do. When we differentiate L with respect to T, 
we have dLjdT. which is rate or velocity, again a very simple thing; 
and from this, by a second differentiation, we obtain, if necessary, 
d^LJdT2, that is to say, the acceleration.

But when you take percentages of y, you are determining dyiy, 
and when you plot this against dx, you have

dy/y
dx or dy 

y.dx' or 1 dy 
y' dx'

That is to say, you are multiplying the th ng whose variations 
you are studying by another quantity which is itself continually 
varying; and are dealing with something more complex than the 
original factors*. Minot’s method deals with a perfectly legitimate 
function of x and y, and is tantamount to plotting log y against x, 
that is to say, the logarithm of the increment against the time. 
This would be all to the good if it led to some simple result, a straight 
line for instance; but it is seldom if ever, as it seems to me, that it 
does anything of the kind. It has also been pointed out as a grave 
fault in his method that, whereas growth is a continuous process, 
Minot chooses an arbitrary time-interval as his basis of comparison, 
and uses the same interval in all stages of development. There is 
little use in comparing the percentage increase per week of a week- 
old chick, with that of the same bird at six months old or at six 
years.

The growth of a population

After dealing with Man’s growth and stature, Quetelet turned to 
the analogous problem of the growth of a population—all the more 
analogous in our eyes since we know man himself to be a “statistical 
unit,” an assemblage of organs, a population of cells. He had read

* Schmalhausen, among others, uses the same measure of rate of growth, in the 
form

„ _ log V - log V dv 1 
®— k (t-t) di v

Arch. f. Entw. Meeh, cxiii, pp. 462-519, 1928, 
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Malthus’s Essay on Population* in a French translation, and was 
impressed like all the world by the importance of the theme. He 
saw that poverty and misery ensue when a population outgrows its 
means of support, and believed that multiplication is checked both 
by lack of food and fear of poverty. He knew that there were, 
and must be, obstacles of one kind or another to the unrestricted 
increase of a population; and he knew the more subtle fact that 
a population, after growing to a certain height, oscillates about an 
unstable level of equilibriumf.

Malthus had said that a population grows by geometrical pro
gression (as 1, 2, 4, 8) while its means of subsistence tend rather to 
grow by arithmetical (as 1, 2, 3, 4)--that one adds up while the 
other multiplies]:. A geometrical progression is a natural and a

* T. R. Malthus, An Essay on the Principle of Population, as it affects the Future 
Improvement of Society, etc., 1798 (6th ed. 1826; transl. by P. and G. Prevost, 
Geneva, 1830, 1845). Among the books to which Malthus was most indebted was 
A Dissertation on the Numbers of Mankind in ancient and modern Times, published 
anonymously in Edinburgh in 1753, but known to be by Robert Wallace and read 
by him some years before to the Philosophical Society at Edinburgh. In this 
remarkable work the writer says (after the manner of Malthus) that mankind 
naturally increase by successive doubling, and tend to do so thrice in a hundred 
years. He explains, on the other hand, that “ mankind do not actually propagate 
according to the rule in our tables, or any other constant rule; yet tables of this 
nature are not entirely useless, but may serve to shew, how much the increase of 
mankind is prevented by the various causes which confine their number Tvithin 
such narrow limits.” Malthus was also indebted to David Hume’s Political 
Discourse, Of the Populousness of ancient Nations, 1752. a work criticised by Wallace. 
See also McCulloch’s notes to Adam Smith’s Wealth of Nations, 1828.

f That the nearest approach to equilibrium in a population is long-continued 
ebb and flow, a mean level and a tide, was known to Herbert Spencer, and was 
stated mathematically long afterwards by Vito Volterra. See also Spencer’s First 
Principles, ch. 22, sect. 173: “Every species of plant or animal is perpetually 
undergoing a rhythmical variation in number—now from abundance of food and 
absence of enemies rising above its average, and then by a consequent scarcity 
of food and abundam® of enemies being depressed below its average... .Amid 
these oscillations produced by their conflict, lies that average number of the species 

. at which its expansive tendency is in equilibrium with surrounding repressive 
tendencies.” Cf. A. J. Lotka, Analytical note on certain rhythmic relations in 
organic systems, Proc. Nat. Acad. Sci. vi, pp. 410—415, 1920; but cf. also his Elements 
of Physical Biology, 1915, p. 90. An analogy, and perhaps a close one, may be found 
on the Bourse or money market.

+ That a population will soon outrun its means of subsistence was a natural 
assumption in Malthus’s day, and in his own thickly populated land. The danger 
may be postponed and the assumption apparently falsified, as by "an Argentine 
cattle-ranch or prairie wheat-farm—but only so long as we enjoy world-wide 
freedom of import and exchange.
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common thing, and, apart from the free growth of a population or 
an organism, we find it in many biological phenomena. An epidemic 
declines, or tends to decline, at a rate corresponding to a geometrical 
progression; the mortality from zymotic diseases declines in geo
metrical progression among children from one to ten years old; 
and the chances of death increase in geometrical progression after 
a certain time of life for us all*.

But in the ascending scale, the story of the horseshoe nails tells 
us how formidable a thing successive multiplication becomes f. 
English law forbids the protracted accumulation of compound 
interest; and likewise Nature deals after her own fashion with the case, 
and provides her automatic remedies. A fungus is growing on an 
oaktree—it sheds more spores in a night than the tree drops acorns 
in a hundred years. A certain bacillus grows up and multiplies by 
two in two hours’ time; its descendants, did they all survive, would 
number four thousand in a day, as a man’s might in three hundred 

'years. A codfish lays a million eggs and more—all in order that 
one pair may survive to take their parents’ places in the world. 
On the other hand, the humming-birds lay only two eggs, the auks 
and guillemots only one; yet the former are multitudinous in their 
haunts, and some say that the Arctic auks and auklets outnumber 
all other birds in the world. Linnaeus J shewed that an annual 
plant would have a million offspring in twenty years, if only two 
seeds grew up to maturity in a year.

But multiply as they will, these vast populations have their 
limits. They reach the end of their tether, the pace slows down, and 
at last they increase no more. Their world is fully peopled, whether 
it be an island with its swarms of humming-birds, a test-tube with 
its myriads of yeast-cells, or a continent with its millions of mankind. 
Growth, whether of a population or an individual, draws to its 
natural end; and Quetelet compares it, by a bold metaphor, to the 
motion of a body in a resistant medium. A typical population 
grows slowly from an asymptotic minimum; it multiplies quickly ;

♦ According to the Law of Gompertz; cf. John Brownlee, in Proc. R.S.E. xxxi, 
pp. 627-634, 1911.

t Herbert Spencer. A theory of population deduced from the general law of 
animal fertility, Westminster Review, April 1852.

f In his essay De Tellure, 1740.
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it draws slowly to an ill-defined and asymptotic maximum. The 
two ends of the population-curve define, in a general way, the 
whole curve between; for so beginning and so ending the curve 
must pass through a point of inflection, it must be an S-shaped 
curve. It is just such a curve as we have seen under simple 
conditions of growth in an individual organism.

This general and all but obvious trend of a population-curve has 
been recognised, with more or less precision, by many writers. It 
is implicit in Quetelet’s own words, as follows: “Quand une 
population peut se developper librement et sans obstacles, elle croit 
selon une progression geometrique; si le developpement a lieu au 
milieu d’obstacles de toute espece qui tendent a l’arreter, et qui 
agissent d’une maniere uniforme, c’est a dire si 1’etat sociale ne 
change point, la population n’augmente pas d’une maniere indefinie, 
mais elle tend de plus en plus a devenir stationnaire*.” P. F. Verhulst, 
a mathematical colleague of Quetelet’s, was interested in the same 
things, and tried to give a mathematical shape to the same general 
conclusions; that is to say, he looked for a “fraction retardatrice” 
which should turn the Malthusian curve of geometrical progression 
into the S-shaped, or as he called it, the logistic curve, which should 
thus constitute the true “law of population,” and thereby indicate 
(among other things) the limit above which ths population was not 
likely to growf.

Verhulst soon saw that he could only solve his problem in a 
preliminary and tentative way; ‘'la loi de la population nous est 
inconnue, parcequ’on ignore la nature de la fonction qui sert de 
mesure aux obstacles qui s’opposent a la multiplication indefini de 
1’espece humaine. The materials at hand were almost unbelievably 
scanty and poor. Tne French statistics were taken from documents 
“qui ont ete reconnus entierement fictifs”; in England the growth

* Physique Sociale, i, p. 27, 1835. But Quetelet’s brief account is somewhat 
ambiguous, and he had in mind a body falling through a resistant medium—which 
suggests a limiting velocity, or limiting annual increment, rather than a terminal 
value. See Sir G. Udny Yule, The growth of population, Journ. R. Statist. Soc. 
Lxxxvni, p. 42, 1925.

f P. F. Verhulst, Notice sur la loi que la population suit dans son accroissement, 
Correspondence math. etc. publie par M. A. Quetelet, x, pp. 113-121, 1838; Rech, 
math, sur la loi etc., Nouv. Mem. de l'Acad. R. de Bruxelles, xvni, 38 pp., 1845; 
deuxi^me Mem., ibid, xx, 32 pp., 1847. The term logistic curve had already been 
used by Edward Wright; see antea, p. 135, footnote.

TGF io
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of the population was estimated by the number of births, and the 
births by the baptisms in the Church of England, “de maniere que 
les enfants des dissidents ne sont point portes sur les registres 
pfficiels.” A law of population, or “ loi d'affaiblissement” became 
a mere matter of conjecture, and the simplest hypothesis seemed to 
Verhulst to be, to regard “cet affaiblissement comme proportionnel 
a l’accroissement de la population, depuis le moment ou la difficulte 
de trouver de bonnes terres a commence a se faire sentir*. ”

* Op. cit. p. 8.
t Besides many well-known papers by Volterra, see V. A. Kostitzin, Biologic 

mathdniatique, Paris, 1937. Cf. also, for the so-called “Malaria equations,” Ronald 
Ross, Prevention of Malaria, 2nd ed. 1911, p 679; Martini, Zur Epidemiologic d. 
Malaria, Hamburg, 1921; W. R. Thompson, C.R. clxxiv, p. 1443, 1922; C. N. 
Watson, Nature, cxi, p. 88, 1923.

J Verhulst goes on to say that “ une longue serie d’observations, non interrompues 
par de grandes catastrophes sociales ou des revolutions du globe, fera probablement 
decouvrir la fonction retardatrice dont il vient d’etre fait mention.” Verhulst 
simplified his problem to the utmost, but it is more complicated today than ever; 
he thought it impossible that a country should draw its bread and meat from 
overseas: “lore meme qu’une partie considerable de la population pourrait etre

Verhulst was making two assumptions. The first, which is beyond 
question, is that the rate of increase cannot be, and indeed is not, 
a constant; and the second is that the rate must somehow depend 
on (or be some function of) the population for the time being. 
A third assumption, again beyond question, is that the simplest 
possible function is a linear function. He suggested as the simplest 
possible case that, once the rate begins to fall (or once the struggle 
for existence sets in), it will fall the more as the population continues 
to grow; we shall have a growth-factor and a retardation-factor in 
proportion to one another. He was making early use of a simple 
differential equation such as Vito Volterra and others now employ 
freely in the general study of natural selection!.

The point where a struggle for existence first sets in, and where 
ipso facto the rate of increase begins to diminish, is called by Verhulst 
the normal level of the population; he chooses it for the origin of his 
curve, which is so defined as to be symmetrical on either side of 
this origin. Thus Verhulst’s law, and his logistic curve, owe their 
form and their precision and all their power to forecast the future 
to certain hypothetical assumptions; and the tentative solution 
arrived at is one “sous le point de vue mathematiquej.”
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The mathematics of the Verhulst-Pearl curve need hardly concern 

us; they are fully dealt with in Raymond Pearl’s, Lotka’s and other 
books. Verhulst starts, as Malthus does, with a population growing 
in geometrical progression, and so giving a logarithmic curve:

dp 
n=

He then assumes, as his “loi d’affaiblissement,” a coefficient of 
retardation (n) which increases as the population increases:

dp 2~ = mp — np^.

T mlIntegrating, p=- .

If the point of inflection be taken as the origin, k = 0; and again 

for t — co, p — — — L. We may write accordingly:

1 -fl
' 1 + «-”'■

Malthus had reckoned on a population doubling itself, if unchecked 
by want or “accident,” every twenty-five years*; but fifty years 
after, Verhulst shewed that this “grande vitesse d’accroissement” 
was no longer to be found in France or Belgium or other of the 
older countries f, but was still being realised in the United States 
(Fig. 28). All over Europe, “le rapport de 1’exces annuel des nais- 
sances sur les deces, a la population qui l’a fourni, va sans cesse en 
s’affaiblissant; de maniere que l’accroissement annuel, dont la valeur 
absolue augmente continuellement lorsqu’il y a progression geo- 
metrique, parait suivre une progression tout au plus arithmetique.” 
nourrie de bles etrangers, jamais un gouvernement sage ne 'consentira & faire 
dependre 1’existence de milliers de citoyens du bon vouloir des souverains etrangers.” 
On this and other problems in the gr< iwth of a human population, see L. Hogben’s 
Genetic Problems, etc., 1937, chap. vn. See also {int. al.) Warren S. Thompson and 
P. K. Whelpton, Population Trends in the United States, 1933; F. Lorimer and 
F. Osborn, Dynamics of Population, 1934, etc.

* An estimate based, like the rest of Malthus’s arithmetic, on very slender 
evidence. «

f In Quetelet’s time the European countries, far from doubling in twenty-five 
years, were estimated to do so in from sixty years (Norway) to four hundred years 
(France); see M. Haushofer, Lehrbuch der Statistik, 1882.

io-s
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The “ celebrated aphorism ” of Malthus was thus, and to this extent, 
confirmed*. In the United States, the Malthusian estimate of 
unrestricted increase continued to be realised for a hundred years 
after Malthus wrote; for the 3-93 millions of the U.S. census of 
1790 were doubled three times over in the census of 1860, and four 
times over in that of 1890. A capital which doubles in twenty-five 
years has grown at 2-85 per cent, per annum, compound interest; 
the U.S. population did rather more, for it grew at fully 3 per cent, 
for fifty of those hundred years f.

Fig. 28. Population of the United States, 1790-1930.

The population of the whole world and of every continent has 
increased during modern times, and the increase is large though 
the rate is low. The rate of increase has been put at about half-a- 
per-cent per annum for the last three hundred years—a shade more 
in Europe and a shade less in the rest of the world J:

* Op. cit. 1845, p. 7.
f Verhulst foretold forty millions as the “extreme limit” of the population 

of France, and 6| millions as that of Belgium. The latter estimate he increased 
to 8 millions later on. The actual populations of France and Belgium at the 
present time are a little more than the ultimate limit which Verhulst foretold.

J From A. M. Carr-Saunders’ World Population, 1936, p. 30.
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An estimate of the population of the world 
(After W. F. Willcox)

1650 1750 1800 1850 1900
Mean rate of 

increase
Europe 100 140 187 266 401 0-52 % per annum
World total 545 728 906 1171 1608 0-49% „ „

Verhulst was before his time, and his work was neglected and 
presently forgotten. Only some twenty years ago, Raymond Pearl 
and L. J. Reed of Baltimore, studying the U.S. population as 
Verhulst had done, approached the subject in the same way, and 
came to an identical result; then, soon afterwards (about 1924), 
Raymond Pearl came across Verhulst’s papers, and drew attention 
to what we now speak of as the Verhulst-Pearl law. Pearl and 
Reed saw, as Verhulst had done, that a “law of population” which 
should cover all the ups and downs of human affairs was not to be 
found; and yet the general form which such a law must take was 
plain to see. There must be a limit to the population of a region, 
great or small; and the curve of growth must sooner or later “turn 
over,” approach the limit, and resolve itself into an S-shaped curve. 
The rate of growth (or annual increment) will depend (1) on the 
population at the time, and (2) on “the still unutilised reserves of 
population-support existing” in the available land. Here we have, 
to all intents and purposes, the growth-factor and retardation-factor 
of Verhulst, and they lead to the same formula, or the same 
differential equation, as his*.

* Raymond Pearl and L. J. Reed, on the Rate of growth of the population of 
the U.S. since 1790, and its mathematical representation. Proc. Nat. Acad. Sci. 
vi, pp. 275-288, 1920; ibid, vm, pp. 365-368. 1922; Metron, m, 1923. In the 
first edition of Pearl’s Medical Biometry and Statistics, 1923 (2nd ed. 1930), Verhulst 
is not mentioned. See also his Studies in Human Biology, Baltimore, 1924, Natural 
History of Population, 1939, and other works.

A hundred years have passed since Verhulst dealt with the first 
U.S. census returns, and found them verifying the Malthusian 
expectation of a doubling every twenty-five years. That “grande 
vitesse d’accroissement” continued through five decennia; but it 
ceased some seventy years ago, and a retarding influence has been 
manifest through all these seventy years (Fig. 29). It is more 
recently, only after the census of 1910, that the curve seemed to be



Fig. 29. Decennial increments of the population of the United States. 
* The Civil War. * * The “slump”.
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Fig. 30. Conjectural population of the United States, 
according to the Verhulst-Pearl Law.
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finding its turning-point, or point of inflection; and only now, since 
1940, can we say with full confidence that it has done so.

A hundred years ago the conditions were still relatively simple, 
but they are far from simple now. Immigration was only beginning 
to be an important factor; but immigrants made a quarter of the 
whole increase of the population of the United States during eighty 
of these hundred years*. AV ars and financial crises have made their 
mark upon the curve; manners and customs, means and standards 
of living, have changed prodigiously. But the S-shaped curve 
makes its appearance through all of these, and the Verhulst-Pearl 
formula meets the case with surprising accuracy.

Population of the United States
In ten years

Increase
Calculated No. of Total by multi-
by logistic immigrants increase of plication

Population curve landed population Percentage in 25
Year x 1000 (Udny Yule) x 1000 x 1000 increase years
1790 3,929 3,929 — — —. —
1800 5,308 5,336 — 1.379 35-1 —
1810 7,240 7,223 — 1.932 36-4 —
1820 9,638 9,757 250 2,398 33-1 2-08
1830 12,866 13,109 228 3,228 33-5 2-05
1840 17.069 17,506 538 4.203 32-7 2-02
1850 23,192 23,192 1.427 6,123 359 2-06
I860 31,443 30,418 2.748 8.251 35-6 210
1870 38,558 39,372 2,123 7,115 326 1-91
1880 50,156 50,177 2,741 11,598 30-1 1-83
1890 62.948 62,769 5,249 12,792 25-5 1-80
1900 75,995 76,870 3,694 13,047 20-7 1-71
1910 91,972 91,972 8.201 15,977 21-0 1-63
1920 105,711 — 6.347 13.739 14-9 1-52
1930 122,975 — — 17,264 161 1-46
1940 131,669 — — 8,694 7-1 133

A colony of yeast or of bacteria is a population in its simplest 
terms, and Verhulst’s law was rediscovered in the growth of a 
bacterial colony some years before Raymond Pearl found it in a 
populat ion of men, by Colonel M’Kendrick and Dr Kesava Pai, who put 
their case very simply indeed f. The bacillus grows by geometrical

* Without counting the children born to those immigrants after landing, and 
before the next census return.

f A. G. M'Kendrick and M. K. Pai, The rate of multiplication of micro-organisms: 
a mathematical study, Proc. R.S.E. xxxi, pp. 649-655, 1911. (The period of 
generation in B. coli, answerine to Malthus’s twenty-five years for men, was found 
to be 22| minutes.) Cf. also Myer Coplans, Journ. of Pathol, and Bacterial, xiv, 
p. 1, 1910 and H. G. Thornton, Ann. of Applied Biology, 1922, p. 265. 
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progression so long as nutriment is enough and to spare; that is to 
say, the rate of growth is proportional to the number present:

dy i
-i = by. dt *

* The bigmoid curve illustrates a theorem which, obvious as it may seem, is of no 
small philosophical importance, to wit, that a body starting from rest must, in order 
to attain a certain velocity, pass through all intermediate velocities on its way. 
Galileo discusses this theorem, and attributes it to Plato: “Platone avendo per 
a wen tura avuto concetto non potere alcun mobil passare dalla quiete ad alcun 
determinato grado di velocita.... se non col passare per tutti gli altri gradi di 
velocita minori, etc,”; Discorsi e dimostrazioni, ed. 1638, p. 254.

But in a test-tube colony the supply of nourishment is limited, 
and the rate of multiplication is bound to fall off. If a be the 
original concentration of food-stuff, it will have dwindled by time t 
to (a — y). The rate of growth will now be

which means that the rate of increase is proportional to the number 
of organisms present, and to the concentration of the food-supply. 
It is Verhulst’s case in a nutshell; the differential equation so 
indicated leads to an S-shaped curve which further experiment 
confirms; and Sach’s “grand period of growth” is seen to accom
plish itself*.

The growth of yeast is studied in the everyday routine of a 
brewery. But the brewer is concerned only with the phase of 
unrestricted growth, and the rules of compound interest are all he 
needs, to find its rate or test its constancy. A population of 1360 
yeast-cells grew to 3,550,000 in 35 hours: it had multiplied 2610 
times. Accordingly,

log 2610 = 3-417 _0.w = logl.254.

That is to say, the population had increased at the rate of 25-4 per 
cent, per hour, during the 35 hours.

The time (Z2) required to double the population is easily found: 

log 2 0-301 o ,
Z2 = _— ^7^7 = - - - 3-07 hours.2 log 1-254 0-098
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The duplication-period thus determined is known to brewers as 
the generation-time.

Much care is taken to ensure the maximal growth. If the yeast 
sink to the bottom of the vat only its upper layers enjoy unstinted 
nutriment; a potent retardation-factor sets in, and the exponential 
phase of the growth-curve degenerates into a premature horizontal 
asymptote. Moreover, both the yeast and the bacteria differ in 
this respect from the typical (or perhaps only simplified) case of 
man, that they not only begin to suffer want as soon as there comes 
to be a deficiency of any one essential constituent of their food*, but 
they also produce things which are injurious to their own growth 
and in time fatal to their existence. Growth stops long before the 
food-supply is exhausted; for it does so as soon as a certain balance 
is reached, depending on the kind or quality of the yeast, between 
the alcohol and the sugar in the cellf.

If we use the compound-interest law at all, we had better think 
of Nature’s interest as being paid, not once a year nor once an hour 
as our elementary treatment of the yeast-population assumed, but 
continuously; and then we learn (in elementary algebra) that in 
time t, at rate r. a sum P increases to Pert, or Pt = Poert.

Applying this to the growth of our sample of 1360 yeast cells, 
we have

loge (Pt/P0) = nr.

Pt/P0 =» 2610. log 2610 = 3-417, which, multiplied by the modulus 
2-303 = 7-868. Dividing by n = 35, the number of hours,

7-868/35 - 0-225 = r.

The rate, that is to say, is 22-5 per cent, per hour, continuous 
compound interest. It becomes a well-defined physiological constant, 
and w’e may call it, with V. H. Blackman, an index of efficiency.

Our former result, for interest at hourly intervals, was 25-4 per

* According to Liebig’s “law of the minimum.”
t T. Carlson, Geschwindigkeit und Grosse der Hefevermehrung, Biochem. Ztschr. 

Lvn, pp. 313-334. 1913; A. Slator. Journ. Chern. Soc. cxix, pp. 128-142, 1906; 
Biochem. Journ. vn. p. 198,1913; O. W. Richards, Ann. of Botany, xlii, pp. 271-283, 
1928; Alf Klem, Hvalradets Skrifter, nr. 7, pp. 55-91, Oslo, 1933; Per Ottestad, 
ibid. pp. 30-54. For optimum conditions of temperature, nutriment, pH, etc. see 
Oscar W. Richards, Analysis of growth as illustrated by yeast, Cold Spring Harbour 
Symposia, n, pp. 157-166, 1934.



154 THE RATE OF GROWTH [ch.

cent.; there is no great difference between such short intervals and 
actual continuity, but there is a deal of difference between continuous 
payment and payment (say) once a year*. Certain sunflowers 
(Helianthus) were found to grow as follows, in thirty-seven days:

Giant sunflower
Dwarf sunflower

Weight (gm.)

Seedling Plant
0 033 17-33
0-035 1481

Compound interest rate (%)

Continuous Discontinuous

Per day Per wk. Per day Per wk. 
17-0 119 18-5 228 %

16-4 114 17-7 214%

When the yeast population is allowed to run its course, it yields 
a simple S-shaped curve; and the curve of first differences derived

Fig. 31. The growth of a yeast-population. After Per Ottestad.

from this is, necessarily, a bell-shaped curve, so closely resembling 
the Gaussian curve that any difference between them becomes a 
delicate matter. Taking the numbers of the population at equal 
intervals of time from asymptotic start to asymptotic finish, we 
may treat this series of numbers like any other frequency distribu
tion. Finding in the usual way the mode and standard deviation,

* Cf. V. H. Blackman, The compound interest law and plant growth, Ann. of 
Botany, xxxm, pp. 353-360, 1919. The first papers on growth by compound 
interest in plants were by pupils of Noll in Bonn: e.g. von Kreusler, Wachstum der 
Maispflanze, Landw. JB. 1877-79; P. Greasier, Substanz-quotienten von Helianthus, 
Diss. Bonn, 1907 etc.



Ill] A POPULATION OF FLIES 155

we draw the corresponding Gaussian curve; and the close “fit” 
between the observed population-curve and the calculated Gaussian 
curve is sufficiently shewn by Mr Per Ottestad’s figure (Fig. 31). 
This is a very remarkable thing. We began to think of the curve 
of error as a function with which time had nothing to do, but here 
we have the same curve (or to all intents and purposes the same) 
with time for one of its coordinates. We might (I think) add one 
more to the names of the curve of error, and call it the curve 
of optimum; it represents on either hand the natural passage from 
best to worst, from likeliest to least likely.

A few flies (Drosophila) in a bottle illustrate the rise and fall of 
a population more complex than yeast, as Raymond Pearl has 
shewn*.  The colony dwindles to extinction if food be withheld; 
if it be sufficient, the numbers rise in a smooth S-shaped curve; 
if it be plentiful and of the best, they end by fluctuating about an 
unstable maximum. “The population waves up and down about 
an average size,” as Raymond Pearl says, as Herbert Spencer had 
foreseen f, and as Vito Volterra’s differential equations explain. 
The growth-rate slackens long before the hunger line is reached; 
crowding affects the birth-rate as well as the death-rate, and a 
bottleful of flies produces fewer and fewer offspring per pair the 
more flies we put into the bottle J. It is true also of mankind, as 
Dr William Farr was the first to shew, that overcrowding diminishes 
the birth-rate and shortens the “expectation of life§.” It happened 
so in the United States, pari passu with the growth of immigration, 
incipient congestion acting (or so it seemed) as an obstacle, or a 
deterrent, to the large families of former days. Nevertheless, children 
still pullulate in the slums. The struggle for existence is no simple 
affair, and things happen which no mathematics can foretell.

* Raymond Pearl and S. L. Parker, in Proc. Nat. Acad. Sci. vin, pp. 212-219, 
1922; Pearl, Journ. Exper. Zool. LXin, pp. 57-84, 1932.

f “Wherever antagonistic forces are in action, there tends to be alternate 
predominance.”

t Jn certain insects an optimum density has been observed; a certain amount 
of crowding accelerates, and a greater amount retards, the rate of reproduction. 
Cf. D. Stewart Maclagan, Effect of population-density on rate of reproduction, 
Proc. R. S. (B), cxi, p. 437, 1932; W. Goetsch, Ueber wachstumhemmende Factoren, 
Zool. Jahrb. (Allg. Zool.), xlv, pp. 799-840, 1928.

§ Dr W. Farr, Fifth Report of the Registrar-General, 1843, p. 406 (2nd ed.).
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An analogous S-shaped curve, given by the formula Lx = kg^, 
was introduced by Benjamin Gompertz in 1825*; it is well known to 
actuaries, and has been used as a curve of growth by several writers 
in preference to the logistic curve. It was devised, and well devised, 
to express a “law of human mortality”, and to signify the number 
surviving at any given age (x), “if the average exhaustions of a 
man’s power to avoid death were such that at the end of infinitely 
small intervals of time he lost equal portions (i.e. equal proportions) 
of his remaining power to oppose destruction.” The principle 
involved is very important. Death comes by two roads. One is 
by chance or accident, the other by a steady deterioration, or 
exhaustion, or growing inability to withstand destruction; and 
exhaustion comes (roughly speaking) as by the repeated strokes of 
an air-pump, for the life-tables shew mortality increasing in geo
metrical progression, at least to a first approximation and over 
considerable periods of years. Gompertz relied wholly on the 
experience of “life-contingencies,” but the same deterioration of 
bodily energies is plainly visible as growth itself slows down; for 
we have seen how growth-rate in infancy is such as is never after
wards attained, and we may speak of growth-energy and its gradual 
loss or decrement, by an easy but significant alteration of phrase. 
To deal with the declining growth-rate, as Gompertz did with the 
falling expectation of life, and so to measure the remaining energy 
available from time to time, would be a greater thing than to record 
mere weights and sizes; it raises the problem from mere change of 
physical magnitudes to an estimation of the falling or fluctuating 
physiological energies of the bodyf. We have seen how in only

* Benjamin Gompertz, On the nature of the function expressive of the law of 
human mortality, Phil. Trans, xxxvi, pp. 513-585, 1825. First suggested for use 
in growth-problems by Sewall Wright, Journ. Amer. Statist. Soc. xxi, p. 493, 
1926. See also C. P. Winsor, The Gompertz curve as a growth curve, Proc. Nat. 
Acad. Sci. xvm, pp. 1-8, 1932; cf. (int. al.) G. R. Davies, The growth curve, 
Journ. Amer. Statist. Soc. xxn, pp. 370-374, 1927; F. W. Weymouth and S. H. 
Thompson, Age and growth of the Pacific cockle, Bull. Bureau Fisheries, xlvi, 
pp. 633-641, 1930-31; also Weymouth, McMillen and Rich, in Journ. Exp. Biol. 
Vin, p. 228, 1931.

f A bold attempt to treat the question from the physiological side, and on 
Gompertz’s lines, was made only the other day by P. B. Medawar, The growth, 
growth-eneigy and ageing of the chicken’s heart, Proc. R.S. (B), cxxix, pp. 332- 
355, 1940. Cf. James Gray, The kinetics of growth, Journ. Exp. Bid: vi, pp. 248- 
274, 1929.
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few and simple cases can a simple curve or single formula be found 
to represent the growth-rate of an organism.; and how our curves 
mostly suggest cycles of growth, each spurt or cycle enduring for 
a time, and one following another. Nothing can be more natural 
from the physiological point of view than that energy should be 
now added and now withheld, whether with the return of the 
seasons or at other stages on the eventful journey from childhood 
to manhood and old age.

The symmetry, or lack of skewness, in the Verhulst-Pearl logistic 
curve is a weak point rather than a strong; the Gompertz curve 
is a skew curve, with its point of inflexion not half-way, but about 
one-third of the way between the asymptotes. But whether in 
this or in the logistic or any other equation of growth, the precise 
point of inflexion has no biological significance whatsoever. What 
we want, in the first instance, is an S-shaped curve with a variable, 
or modifiable, degree of skewness. After all, the same difficulty 
arises in all the use we make of the Gaussian curve: which has to 
be eked out by a whole family of skew curves, more or less easily 
derived from it. We are far from being confined to the Gaussian 
curve {sensu stricto) in our studies of biological probability, or to the 
logistic curve in the study of population.

Yet another equation has been proposed to the S-shaped curve 
of growth, by Gaston Backman, a very diligent student of the 
whole subject. The rate of growth is made up, he says, of three 
components: a constant velocity, an acceleration varying with the 
time, and a retardation which we may suppose to vary with the 
square of the time. Acceleration would then tend to prevail in the 
earlier part of the curve, and retardation in the latter, as in fact 
they do; and the equation to the curve might be written:

log H = kQ$ kx log T - k2 log2 T.

The forihula is an elastic one, and can be made to fit many an 
S-shaped curv«; but again it is empirical.

The logistic curve, as defined by Verhulst and by Pearl, has 
doubtless an interest of its own for the mathematician, the statistician 
and the actuary. But putting aside all its mathematical details and 
all arbitrary assumptions, the generalised S-shaped curve is a very 
symbol of. childhood, maturity and age, of activity which rises to 
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fall again, of growth which has its sequel-in decay. The growth 
of a child or of a nation; the history of a railway*, or the speed 
between stations of a train; the spread of an epidemic f, or the 
evolutionary survival of a favoured type J—all these things run 
their course, in its beginning, its middle and its end, after the fashion 
of the S-shaped curve. That curve represents a certain common 
pattern among Nature’s “mechanisms,” and is (as we have said 
before), a “mecanisme commun aux phenomenes disparates§.”

At the same time- -and this is a very interesting part of the story 
—the S-shaped curve is no other than what Galton called a curve of 
distribution, that is to say a curve of integration or summation
curve, whose differential is closely akin to the Gaussian curve of 
error.

Such, to a first approximation, is our S-shaped population-curve, 
and such are the many phenomena which, to a first approximation, 
it helps us to compare. But it is only to a first approximation that 
we compare the growth of a population with that of an organism, 
or for that matter of one organism or one population with another. 
There are immense differences between a simple and a complex 
organism, between a primitive and a civilised population. The 
yeast-plant gives a growth-curve which we can analyse; but we 
must fain be content with a qualitative description of the growth 
of a complex organism in its complex world ||. ‘

There is a simplicity in a colony of protozoa and a complexity in 
a warm-blooded animal, a uniformity in a primitive tribe and a 
heterogeneity in a modern state or town, which affect all their 
economies and interchanges, all the relations between milieu interne 
and externe, and all the coefficients in any but the simplest equations of 
growth which we can ever attempt to frame. Every growth-problem 
becomes at last a specific one, running its own course for its own 
reasons. Our curves of growth are all alike but no two are ever

s

* Raymond Pearl, Amer. Nat. lxi, pp. 289-318. 1927.
t Ronald Rose, Prevention of Malaria (2nd ed.), 1911, p. 679.
J J. B. S. Haldane, Trans. Camb. Phil. Soc. xxni, pp. 19-41, 1924.
§ Cf. (int. al.) J. R. Miner’s Note on birth-rate and density in a logistic population, 

Human Biology, iv, p. 119, 1932; and cf. Lotka, ibid, ni, p. 458, 1931.
|| Cf. (int. al.) C. E. Briggs, Attempts to analyse growth-curves, Proc. R.S. (B), 

cn, pp. 280-285, 1928.
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the same. Growth keeps calling our attention to its own com
plexity. We see it in the rates of growth which change with age 
or season, which vary from one limb to another; in the influence 
of peace and plenty, of war and famine; not least in those composite 
populations whose own parts aid or hamper one another, in any 
form or aspect of the struggle for existence. So we come to the 
differential equations, easy to frame, more difficult to solve, easy in 
their first steps, hard and very powerful later on, by which Lotka 
and Volterra have shewn how to apply mathematics to evolutionary 
biology, but which lie just outside the scope of this book*.

* See (int. al.) A. J. Lotka, Elements of Physical Biology, Baltimore, 1925; 
Theorie analytique des associations biologiques, Paris, 1934; Vito Volterra, Lemons 
sur la theorie mathematique de la latte pour la vie, 1931; Volterra et U. d’Ancona, 
Les associations biologiques au point de vue mathematique, 1935; V. A. Kostitzin, 
op. cit.; etc.

An important element in a population, and one seldom easy to 
define, is its age-composition. It may vary one way or the other; 
for the diminution of a population may be due to a decrease in the 
birth-rate, or to an increasing mortality among the old. A remark
able instance is that of the food-fishes of the North Sea. Their 
birth-rate is so high that the very young fishes remain, to all 
appearance, as numerous as ever; those somewhat older are fewer 
than before, and the old dwindle to a fraction of what they were 
wont to be.

The rate of growth in other organisms

The rise and fall of growth-rate, the acceleration followed by 
retardation which finds expression in the S-shaped curve, are seen 
alike in the growth of a population and of an individual, and in 
most things which have a beginning and an end. But the law of 
large numbers smooths the population-curve; the individual life 
draws attention to its own ups and downs; and the characteristic 
sigmoid curve is only seen in the simpler organisms, or in parts or 
“phases” of the more complex lives. We see it at its simplest in 
the simple growth-cycle, or single season, of an annual plant, which 
cycle draws to its end at flowering; and here not only is the curve 
simple, but its amplitude may sometimes be very large. The giant 
Heracleum and certain tall varieties of Indian corn grow to twelve feet 
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high in a summer; the kudzu vine (Pucraria) may grow twelve inches 
in twenty-four hours, and some bamboos are said to have grown 
twenty feet in three days (Figs. 32, 33).

Fig. 32. Growth of Lupine. After Pfeffer.

Growth of Lupinus albus. (From G. Backman, after Pfefft r)

Day
Length 
(mm.) Difference Day

Length 
(mm.) Difference

4 10-5 — 14 132-3 12-2
5 16-3 5-8 15 140-6 8-3
6 23-3 7-0 16 149-7 9-1
7 32-5 9-2 17 155-6 5-9
8 42-2 9-7 18 158-1 2-5
9 58-7 14-5 19 160-6 2-5

10 77-9 19-2 20 161-4 0-8
11 93-7 15-8 21 161-6 0-2
12 107-4 13-7
13 120-1 12-7

In the pre-natal growth of an infant the S-shaped curve is clearly 
seen (Fig. 18); but immediately after birth another phase begins, 
and a third is implicit in the spurt of growth which precedes puberty. 
In short, it is a common thing for one wave of growTth (or cycle, as 
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some call it) to succeed another, whether at special epochs in a 
lifetime, or as often as winter gives place to spring*.

Fig. 33. Growth of Lupine: daily increments.

Fig. 34. G rowth in weight of a mouse. After W. Ostwald.

In the accompanying curve of weight of the mouse (Fig. 34) we 
see a slackening of the rate of growth when the mouse is about a 
fortnight old, at which epoch it opens its eyes, and is weaned soon

* W. Pfeffer, Pflanzenphysiologie, 1881. Bd. n, p. 78; A. Bennett, On the rate 
of growth of the flower-stalk of Vallisneria spiralis and of Hyacinthus, Trans. Linn. 
Soc. (2), I, Botany, pp. 133, 139, 1880; cited by G. Backman, Das.Wachstums-

T G F ii 
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after. At six weeks old there is another well-marked retardation; 
it follows on a rapid spurt, and coincides with the epoch of puberty*.

In arthropod animals growth is apt to be especially discontinuous, 
for their bodies are more or less closely confined until released by 
the casting of the skin. The blow fly .has its striking metamorphoses, 
yet its growth is wellnigh continuous; for its larval skin is too thin 
and delicate to impede growth in the usual arthropod way. But 
in a thick-skinned grasshopper or hard-shelled crab growth goes by 
fits and starts, by steps and stairs, as Reaumur was the first to shew; 
for, speaking of insectsf, he says: “Peut-etre est-il vrai generale- 
ment que leur accroissement, ou au moins leur plus considerable 
accroissement, ne se fait que dans le temps qu'ils muent, ou pendant 
un temps assez court apres la mue. Ils ne sent obliges de quitter 
leur enveloppe que parce qu’elle ne prend pas un accroissement 
proportionne a celui que prennent les parties qu’elle couvre.” 
All the visible growth of the lobster takes place once a year at 
moulting-time, but he is growing in weight, more or less, all along. 
He stores up material for months together; then comes a sudden 
rush of water to the tissues, the carapace splits asunder, the lobster 
issues forth, devours his own exuviae, and lies low for a month while 
his new shell hardens.

The silkworm moults four times, about once a week, beginning 
on the sixth or seventh day after hatching. There is an arrest or 
retardation of growth before each moult, but our diagram (Fig. 35) 
is too small to shew the slight ones which precede the first and 
problem, in Ergebnisse d. Physiologic, xxxni, pp. 883-973, 1931. These two cases 
of Lupinus and Vallisneria, are among the many which lend themselves easily to 
Backman’s growth-formula, viz. Lupinus, log p — - 2-40 +1-48 log T — 6-61 log2 T and 
Vallisneria, log p = 4 1-28+4-51 log T - 2-62 log2 T. See for an admirable resume 
of facts, Wolfgang Ostwald, Ueber die zeitliche Eigenschaften der Entwicklungsvorgange 
(71 pp.), 1908 (in Roux’s Vortrage, Heft v); and many later works.

* Cf. R. Robertson, Analysis of the growth of the white mouse into its con
stituent processes, Journ. Gen. Physiology, vin, p. 463, 1926. Also Gustav 
Backman, Wachstum d. w. Maus, Lunds Univ. Arsskrift, xxxv. Nr. 12, 1939, 
with copious bibliography. Backman analyses the complicated growth-curve of 
the mouse into one main and three subordinate cycles, two of which are embryonic. 
Cf. St Loup. Vitesse de croissance chez les souris, Bull. Soc. Zool. Fr. xvnr, 
p. 242, 1893; E. Le Breton and G Schafer, Trav. Inst. Physiol. Strasburg, 1923; 
E. C. MacDowell, Growth-curve of the suckling mouse, Science, lxviii, p. 650, 
1928; cf. Journ. Gen. Physiol, xi, p. 57, 1927; Ph. 1’Heritier, Croissance.. .dans les 
souris, Ann. Physiol, et Phys. Chemie, v, p. i, 1929.
| M emoires, iv, p. 191.
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second. Before entering on the pupal or chrysalis stage, when the 
worm is about seven weeks old, a remarkable process of purgation

Fig. 35. Growth in weight of silkworm. From Ostwald, after Luciani 
and Lc Monaco.

takes place, with a sudden loss of water, and of weight, which 
becomes the most marked feature of the curve*. That the meta-

* Luciani e Lo Monaco, Arch. Hal. de B'ologie, xxvn, p. 340, 1897; see also 
Z. Kuwana, Statistics of the body-weight of the silkworm, Japan. Journ. Zool. 
vn, pp. 311-346, 1937. Westwood, in 1838, quoted similar data from Count 
Dandolo: according to whom 100 silkworms weigh on hatching 1 grain; after 
the first four moults, 15, 94, 270 and 1085 grains; and 9500 grains when full-grown. 

11-2
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morphoses of an insect are but phases in a process of growth was 
clearly recognised by Swammerdam, in the Biblia Naturae*.

A stick-insect (Dexippus) moults six or seven times in as many 
months; it lengthens at every moult, and keeps of the same length 
until the next. Weight is gained more evenly; but before each 
moult the creature stops feeding for a day or two, and a little weight 
is lost in the casting of the skin. After its last moult the stick
insect puts on more weight for a while; but growth soon draws to 
an end, and the bodily energies turn towards reproduction.

We have careful measurements of the locust from moult to moult, 
and know from these the relative growth-rates of its parts, though 
we cannot plot these dimensions against time. Unlike the meta
morphosis of the silkworm, the locust passes through five larval 
stages (or “instars”) all much alike, until in a final moult the 
“hoppers” become winged. Here are three sets of measurements, 
of limbs and head, from stage to stage f.

Growth of locust, from one moult to another
Length (mm.) Percentage-growth Ratios

t Y f Y Y

Anterior Median Anterior Median Anterior Median
Stage femur femur Head femur femur Head femur femur Head

I 1-44 3-98 1-44 — — — 1 2-76 1-00
IL 2-06 5-69 1-94 1-44 1-43 1-35 1 2-76 0-94

III 3-08 8-22 2-70 1-40 1-44 1-39 1 2-67 0-88
IV 4-53 11-94 3-71 1-47 1-45 1-37 1 2-76 0-82

V 6-40 17-22 4-89 1-41 1-44 1-32 1 2-69 0-76
Adult 8-03 22-85 5-59 1-25 1-33 1-14 1 2-84 0-70

As a matter of fact the several parts tend to grow, for a time, at 
a steady rate of compound interest, which rate is not identical for 
head and limbs, and tends in each case to fall off in the final moult, 
when material has to be found for the wings. Some fifty years ago,

. K. Brooks found the larva of a certain crab (Squilla) increasing 
at each moult by a quarter of its own length; and soon after 
H. G Dyar declared that caterpillars grow likewise, from moult to 
moult, by geometrical progression J. This tendency to a compound-

* 1737, pp. 6, 579, etc.
f A. J. Duarte, Growth of the migratory locust, Bull. Ent. Res. xxix, pp. 425-456, 

1938.
J W. K. Brooks, Challenger Report on the Stomatopoda, 1886; H. G. Dyar, 

Number of moults in lepidopterous larvae, Psyche, v, p. 424, 1896. 
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interest rate in the growth and metamorphosis of insects is known 
as Dyar’s, sometimes as Brooks’s, law. According to Przibram, an 
insect moidts as soon (roughly speaking) as cell-division has doubled 
the number of cells throughout the larval body. That being so, each 
stage or instar should weigh twice as much as the one before, and 
each linear dimension should increase by \/2, or 1-26 times—a 
measure identical, to all intents and purposes, with Brooks’s first 
estimate. As-a first rough approximation the rule has a certain value. 
According to Duarte’s measurements the locust’s total weight in
creases from moult to moult by 2-31, 2-16, 2-42, 2-35, 2-21, or a 
mean increase of 2-29, the cube-root of which is 1-32. Each phase 
is doubled and more than doubled, in passing to the next*,  but 
Przibram’s estimate is not far departed from.

* Cf. H. Przibram and F. Megusar, Waehstuminessungen an Sphodromantis, 
Arch. f. Erdw. Meeh, xxxiv, pp. 680-741, 1912; etc. How the discrepancy is 
accounted for. by Bodenheiiner and others, need not concern us here. But cf. 
P. P. Calvert, On rates of growth among... the Odonata, Proc. Amer. Phil. Soc. 
i.xvin, pp. 227 -274, 1929, who finds growth faster in nine cases out of ten than 
Przibram’s rule lays down.

Millet asserts, in support of Przibram’s law, that in spiders mitotic cell-division 
is confined to the epoch of the moult, and is then manifested throughout most of 
the tissues (Hull, de Bidogie (Suppl.), vm, p. 1, 1926). On the other hand, the 
rule is rejected by R. Gurney, Rate of growth in Copepoda, Int. Rev. Hydrobiol. 
xxi, pp. 189-27, 1929; Nobumasa Kagi, Growth-curves of insect-larvae, Mem. 
Coll. Agric. Kyoto, No. 1, 1926; and others.

f Cf. W. Rammer, L'eber die Giiltigkeit des Brookssehen Wachstumsgesetzes 
bei den Cladoceren, Arch. f. Entw. Meeh, cxxi, pp. 111-127, 1930.

J Cf. J. H. Orton, Rhythmic periods...in Ostrea, Journ. Mar. Bid. Assoc. 
xv, pp. 365-427, 1928; Nature, March 2, 1935, p. 340.

Whatever truth Przibram’s law may have in insects, or (as Fowler 
asserted) in the Ostracods, it would seem to have none in the 
Cladocera: and this for the sufficient reason that the shell (on which 
the form of the creature depends) goes on growing all through post- 
embryonic life without further division or multiplication of its cells, 
but only by their individual, and therefore collective, enlargement f.

Shells are easily weighed and measured and their various dimen
sions have been often studied; only in oysters, pearl-oysters and 
the like, have they been so kept under observation that their actual 
age is known. The oyster-shell grows for a few weeks in spring just 
before spawning time, and again in autumn when spawning is over; 
its growth is imperceptible at other times
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The window-pane oyster in Ceylon (Placuna placenta) has been 
kept under observation for eight years, during which it grows from 
two inches long to six (Fig. 36). The young grow quickly, and slow 
down asymptotically towards the end; an S-shaped beginning to the 
growth-curve has not been seen, but would probably be found in 
the growth of the first year. Changes of shape as growth goes on 
are hard to see in this and other shells; rather is it characteristic of

Age in years
Fig. 36. Growth of the window-pane oyster; short diameter of the shell. 

From Pearson’s data.

them to keep their shape from first to last unchanged. Nevertheless, 
slight changes are there; in the window-pane oyster the shell grows 
somewhat rounder; in seven or eight years the one diameter multi- • 
plies (roughly speaking) by eleven, and the other by ten*.

Window-pane oysters (Placuna)
Short Long

diameter diameter
(mm.) (mm.) Ratio

150 176 1-17
65-0 70-5 1-09

102-5 109-7 107
132-5 139-9 1-06
167-5 175-2 1-05

The American slipper-limpet has lately and quickly become a pest 
on English oyster-beds. Its mode of growth is interesting, though

* Joseph Pearson, The growth-rate...of Placuna placenta, Ceylon Bulletin, 1928. 
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the actual rate remains unknown. It grows a little longer and 
narrower with age. Its weight-length coefficient (of which we shall 
have more to say presently) increases as time goes on, and appears 
to follow a wavy course which might be accounted for if the 
shell grew thinner and then thicker again, as if ever so little more 
lime were secreted at one season than another. The growth of a 
shell, or the deposition of its calcium carbonate, is much influenced 
by temperature; clam» and oysters enlarge their shells only so long 
as the temperature stands above a certain specific minimum, and 
the mean size of the same limpet is very different in Essex and in 
the United States*. Curious peculiarities of growth have been 
discovered in slipper-limpets. Young limpets clustered round an 
old female grow slower than others which five solitary and apart. 
The solitary forms become in turn male, hermaphrodite and at last 
female, but the gregarious or clustered forms develop into males, 
and so remain; development of male characters and duration of 
the male phase depend on the presence or absence of a female in 
the near neighbourhood.

* Cf. J. H. Fraser, On the size of Vrosalpinx etc.. Proc.-Malacol. Soc. xix, 
pp. 243-254, 1931. Much else is known about the growth of various limpets, 
their seasonal periodicities, the change of shape in certain species, and other 
matters; cf. E. S. Russell, Growth of Patella, P.Z.S. cxcix, pp. 235-253; J. H. 
Orton, Journ. Mar. Biol. Assoc, xv, pp. 277-288, 1929; Noboru Abe, Sci. Rep. 
Tohoku Imp. Univ. Biol, vi, pp. 347—363, 1932, and Okuso Hamai, ibid, xn, 
pp. 71-95, 1937.

Measurements of slipper-limpets
{From J. H. Fraser’s data, epitomised)

No. Mean length Breadth Ratio Weight
measured (mm.) (mm.) LB (gm.) W/L3

3 15-3 8-8 1-74 0-33 92
8 17-6 9-8 1-80 0-46 84
9 19-4 10-5 1-85 0-63 88

16 21-5 11-5 1-87 0 77 77
18 23-5 12-5 1-88 1-04 80
41 25-5 13-7 1-86 1-37 85
91 27-4 14-5 1-89 1-81 88

125 39-4 15-4 1-91 2-33 92
98 31-4 16-5 1-90 3-22 104
70 33-6 17-8 1-89 3-61 95
38 35-5 18-6 1-90 4-28 t 95
10 37-3 19-5 1-91 4-95 95

1 32-1 19-4 2-01 5-35 90
Mean 1-87 89-3
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The growth of the tadpole*  is likewise marked by epochs of 
retardation, and finally by a sudden and drastic change (Fig. 37). 
There is a slight diminution in weight immediately after the little 
larva frees itself from what remains of the egg; there is a retardation

* Cf. (int. al.) Barfurth, Versiiche uber die Verwandlung der Frost hlarven 
Arch. f. mikrosk. Anat, xxix, 1887.

Fig. 37. Growth in weight of tadpole. From Ostwald, after Schaper.

of growth about ten days later, when the external gills disappear; and 
finally the complete metamorphosis, with the loss of the tail, the growth 
of the legs and the end of branchial respiration, brings about a loss 
of weight amounting to wellnigh half the weight of the full-grown
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Fig. 38. Development of eel: from Leptocephalus larvae to young elver. 
After Johannes Schmidt.
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larva. At the root of the matter lies the simple fact that meta
morphosis involves wastage of tissue, increase of oxidation, expendi
ture of energy and the doing of work. While as a general rule the 
better the animals be fed the quicker they grow and the sooner they 
metamorphose, Barfurth has pointed out the curious fact that a 
short spell of starvation, just before metamorphosis is due, appears 
to hasten the change.

The negative growth, or actual loss of bulk and weight which 
often, and perhaps always, accompanies metamorphosis, is well 
shewn in the case of the eel *.  The contrast of size is great between 
the flattened, lancet-shaped Leptocephalus larva and the little black, 
cylindrical, almost thread-like elver, whose magnitude is less than 
that of the Leptocephalus in every dimension, even at first in length 
(Fig. 38), as Grassi was the first to shew.

* Johannes Schmidt, Contributions to the life-history of the eel. Rapports 
du Conseil Intern, pour V exploration de la mer, v, pp. 137-274, Copenhagtn, 1906; 
and other papers.

f Cf. (int. al.) A. Meek, The lampreys of the Tyne, Rep. Dove Marine Laboratory 
(N.S.), vi, p. 49, 1917; cf. L. Hubbs, in Papers of the Michigan Academy, iv,‘ 
p. 587, 1924.

J Die Lehre der Pfianzenzelle, 1867. Cf. W. J Koningsberger, Tropism us und 
Wachstum (Thesis), Utrecht, 1922.

The lamprey's case is hardly less remarkable. The larval or 
Ammocoete stage lasts for three years or more, and metamorphosis, 
though preceded by a spurt of growth, is followed by an actual 
decrease in size. The little brook lamprey neither feeds nor grows 
after metamorphosis, but spawns a few months later and then dies; 
but the big sea-lampreys become semi-parasitic on other fishes, and 
live and grow to an unknown agef.

Such fluctuations as these are part and parcel of the general flux 
of physiological activity, and suggest-a finite stock of energy to be 
spent, now more now less, on growth and other modes of expenditure. 
The larger fluctuations are special interruptions in a process which 
is never continuous, but is perpetually varied by rhythms of various 
kinds and orders. Hofmeister shewed long ago, for instance, that 
Spirogyra grows by fits and starts, in periods of activity and rest 
alternating with one another at intervals of so many minutes J 
(Fig. 39). And Bose tells us that plant-growth proceeds by tiny and 
perfectly rhythmical pulsations, at intervals of a few seconds of time.
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A crocus grows, he says, by little jerks, each with an amplitude of 
about 0-002 mm., every twenty seconds or so, each increment being 
followed by a partial recoil* (Fig. 40). If this be so we have come

Fig. 39. Growth in length (mm.) of Spirogyra. From Ostwald, after Hofmeister.

Fig. 40. Pulsations of growth in Crocus, in micro-millimeters.
After Bose.

down, so to speak, from a principle of continuity to a principle of dis
continuity, and are face to face with what we might call, by rough 
analogy, “quanta of growth.” We seem to be in touch with things 
of another order than the subject of this bookf.

* J. C. Bose, Plant Response, 1906, p. 417; Growth and Tropic Movements of 
Plants, 1929.

t There is an apparent and perhaps a real analogy between these periodic 
phenomena of growth and the well-known phenomenon of periodic, or oscillatory, 
chemical change, as described by W. Ostwald and others; cf. (e.g.) Zeitschr. f. 
phys. Chern, xxxv, pp. 33, 204, 1900.
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We may want now and then to make use of scanty data, and find 
a rough estimate better than none. The giant tortoises of the 
Galapagos and the Seychelles grow to a great age, and some have 
weighed 5001b. and more; but the scanty records of captive 
tortoises shew much variation, depending on food and climate as 
well as age. Ninety young tortoises brought from the Galapagos 
in 1928 to the southern United States weighed on the average 
18| lb., and grew to 44-3 lb. in two years. Six taken to Honolulu 
weighed 26| lb. each *in 1929, and 63 lb. each the following year. 
Another, kept in California, weighed 29 lb. and 360 lb. seven years 
later, but only gained 65 lb. more in the next seven years. Growth,

Fig. 41. Approximate growth in weight of Galapagos tortoise.

as usual, is quick to begin with, slower later on, and in the old giants 
must be slow indeed. If we plot (Fig. 41) the three successive weights 
of the Californian specimen, at first they help us little; but we can 
fit an S-shaped curve to the three points as a first approximation, 
and it suggests, with some plausibility, that, at 29 lb. weight the 
tortoise was from two to three years old. A loggerhead turtle, 
which reaches a great size, was found to grow from a few grammes 
to 42 lb. in three years, and to double that weight in another year 
and a half; these scanty data are in fair accord, so far as they go, 
with those for the giant tortoises*.

* For these and other data, see C. H. Townsend, Growth and age in the giant 
tortoises of the Galapagos, Zoologica, ix, pp. 459—466, 1931; G. H. Parker, Growth 
of the loggerhead turtle, Amer. Naturalist, lxvii, pp. 367-373, 1929; Stanley F. 
Flower, Duration of Life in Animals, in, Reptiles, P.Z.S. (A), 1937, pp. 1-39.
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The horny plates of the tortoise grow, to begin with, a trifle faster 
than the bony carapace below, and are consequently wrinkled into 
folds. There is some evidence, at least in the young tortoises, that 
these folds come once a year, which is as much as to say that there 
is one season of the year when the growth-rates of bony and horny 
carapace are especially discrepant. This would give an easy estimate 
of age; but it is plainer in some species than in others, and it never 
lasts for long.

Age in years
Fig. 42. Growth-rate (approximate) of blue and finner whales.

The blue whale, or Sibbald’s rorqual, largest of all animals, 
grows to 100 ft. long or thereby, the females being a little bigger 
than the males. The mother goes with young eleven months. The 
calf measures 22 to 25 ft. at birth, and weighs between three and 
four tons; it is born big, were it smaller it might lose heat too 
quickly. It is weaned about nine months later, and is said to be 
some 16 metres, or say 53 ft., long by then. It is believed to be 
mature at two years old, by which time it is variously stated to be 
60 or even 75 ft. long; the modal size of pregnant females is about 
80 ft. or rather more. How long the whale takes to grow the 
further 15 or 20 feet which bring it to its full size is not known; 
but, even so far. the rapid growth and early maturity seem very 
remarkable (Fig. 12). The Norwegian whalers give us statistics, 
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month by month during the Antarctic season, of the sizes of pregnant 
females and the foetuses they contain; and from these I draw the 
following averages:

Antarctic blue whales; length of mother and of foetus 
(Season 1938-39)

Number 
measured Mother Foetus

Nov. 1, 1938 59 84-0 ft. 4-2 ft.
16 86 83-0 4-6

Dec. 1 359 84-0 61
16 522 83-6 7-0

Jan. 1, 1939 403 83-7 8-4
16 317 84-8 9-3

Feb. 1 184 83-9 11-2
16 125 83-9 12-3

Mar. 1 71 83-6 14-5
2126 83-8

Fig. 43. Pre-natal growth of blue whale. Average monthly sizes, 
from data in International Whaling Statistics, xiv, 1940.

The observations are rough but numerous. At the lower end of 
the scale measurements are few, and the value indicated is probably 
too high; but on the whole the curve of growth tallies with other 
estimates, and points to birth about June or July, and to conception 
about the same time last year (Fig. 43). The mean size of the 
mother-whales does not alter during the five months in question; 
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they do not seem to be increasing, though at 84 ft. they still have 
another 10 feet or more to grow. They may grow slower, and live 
longer, than is often supposed*.

On the other hand, if we draw from the same official statistics 
the mean size of mother-whale and foetus at some given epoch of 
the year (e.g. March 1934), there appears to be a marked correlation 
between them, such as would indicate very considerable growth 
of the mother during the months of pregnancy. The matter deserves 
further study, and the data need confirmation.

Blue whales; length of mother and foetus (March 1934)

341

Number 
observed

Size (ft.)
Size of 

foetus (ft.) 
smoothed 
in threesMother Foetus

1 74 10 —
1 75 7-0 4-4
o 76 ’ 5-2 6-4
7 77 7-3 6-4
9 78 6-7 6-9

10 79 6-7 6-8
21 80 71 7-2
27 81 7-7 7-5
28 82 7-6 7-9
33 83 8-4 8-3
38 84 8-9 8-6
46 85 8-5 8-6
37 86 8-5 8-8
19 87 9-5 9-3
18 88 9-9 10-3
12 89 11-4 10-9
18 90 11-5 111
9 91 10-4 111
2 92 11-5 —

On the grouth of fishes, and the determination of their age

We may keep a child under observation, and weigh and measure 
him every day; but more roundabout ways are needed to determine 
the age and growth of the fish in the sea. A few fish may be caught 
and marked, on the chance of their being caught again; or a few

* The growth of the (inner whale, or common rorqual, is estimated as follows 
(Hamburg Museum): at birth, 6 m.; at 6 months, 12 m.; at one and tv o years old, 
15 and 19 m.; when full-grown, at 6-8 (1) years old, 21 m. For data, see Hvalradets 
Skrifter and International Whaling Statistics, passim; also N. Mackintosh and others 
in Discovery Reports-, also Sigmund Rusting, Statistics of whales and whale
foetuses, Rapports du Conseil Int. 1928; etc.
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more may be kept in a tank or pond and watched as they grow. 
Both ways are slow and difficult. The advantage of large numbers 
is not obtained; and it is needed all the more because the rate of 
growth turns out to be very variable in fishes, as it doubtless is 
in all cold-blooded or “ poecilothermic ” animals: changing and 
fluctuating not only with age and season, but with food-supply, 
temperature and other known and unknown conditions. Trout in 
a chalk-stream so differ from those in the peaty water of a highland 
bum that the former may grow to three pounds weight while the 
latter only reach four ounces, at three years old or four*.

* Cf. C. A. Wingfield, Effect of environmental factors ori the growth cf brown 
trout, Journ. Exp. Biol, xvir, pp. 435-448. 1939.

f Aristotle, Hist. Anim. vi, 571 a.

It is found (and easily verified) that shells on the seashore, kind 
for kind, do not follow normal curves of frequency in respect of 
magnitude, but fall into size-groups with intervals between, so 
constituting a multi modal curve. The reason is that they are not 
born all the year round, as we are, but each at a certain annual 
breeding-season; so that the whole population consists of so many 
“groups,” each one year older, and bigger in proportion, than 
another. In short we find size-groups, and recognise them as age- 
groups. Each group has its own spread or scatter, which increases 
with size and age; even from the first one group tends to overlap 
another, but the older groups do so more and more, for they have 
had more time and chance to vary. Hence this way of determining 
age gets harder and less certain as the years go by; but it is a safe 
and useful method for short-lived animals, or in the early lifetime 
of the rest. Aristotle’s fishermen used it when they recognised 
three sorts or sizes of tunnies, the auxids, pelamyds and full-grown 
fish; and when they found a scarcity of pelamyds in one year to 
be followed by a failure of the tunny-fishery in the nextf.

Shells lend themselves to this method, as Louis Agassiz found when 
he gathered periwinkles on the New England shore. Winckworth 
found the Paphiae in Madras harbour “of two sizes, one group just 
under 15 mm. in length, the other nearly all over 30 mm. A small 
sample, dredged five months earlier from the same ground, was inter
mediate between the other two.” When the mean sizes of the two 
groups were plotted against time, the lesser group being shifted 
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back a year, a growth-curve extending over two seasons was obtained; 
when extrapolated, it seemed to start from zero about May or June, 
and this date, at the beginning of the hot season, was in all proba
bility the actual Spawning time. Growth stopped in winter, a 
common thing in our northern climate but surprising at Madras, 
where the sea-temperature seldom falls below 24° C. Shells over 
40 mm. long were rare, and over 50 mm. hardly to be found—an 
indication that Paphia seldom lives over a third season. Here then, 
though the numbers studied were all too few, the method tells us 
with little doubt or ambiguity the age of a sample and the growth
rate of the species to which it belongs*.

* R. Winckworth, Growth of Paphia undulata, Proc. Malacolog. Soc. xix, 
pp. 171-174, 1931. Cf. (int. al.) Weymouth, on Mactra stultorum, Bull. Calif. 
Fish Comm, vn, 1923; Orton, on Cardium, Journ. Mar. Biol. Assoc, xiv, 1927, 
on Ostrea, and on Patella, ibid, xv, 1928; Ikuso Hamai, on Limpets, Sci. Rep. 
Tohoku Imp. Univ. (4), xn, 1937.

TGF

Dr 0. J. G. Petersen of Copenhagen brought this method into use 
for the study of fishes, and up to a certain point it is safe and 
trustworthy though seldom easy. For one thing, it is hard to get 
a “random sample’’ of fish, for one net catches the big and another 
the small. The trawl-net takes all the big, but lets more and more 
of the small ones through. The drift-net catches herring by their 
heads; if too big, the head fails to catch and the fish goes free, if 
too small the fish slips through; so the net selects a certain modal 
size according to its mesh, and with no great spread or scatter. 
When we use Petersen’s method and plot the sizes of our catch of 
fish, the younger age-groups are easily recognised, even though they 
tend to overlap; but the older fish are few, each size-group has a 
wider spread, and soon the groups merge together and the modal 
cusps cease to be recognisable. There is no way, save a rough 
conjectural one, of analysing the composite curve into the several 
groups of which it is composed; in short, this method works well 
for the younger, but fails for the older fish.

Fig. 44 is drawn from a catch of some 500 small cod, or codling, 
caught one November in the Firth of Forth, in a small-meshed 
experimental trawl-net. They are too few for the law of large 
numbers to take full effect; but after smoothing the curve, three 
peaks are clearly seen, with some sign of a fourth, indicating about 

12
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11cm., 26, 44 and 60 cm., as the mean or modal sizes of four 
successive broods. The dwindling heights of the successive cusps 
are a first approximation to a “curve of mortality,” shewing how 
the young are many and the old are few. Again,“plotting the several 
sizes against time, we should get our curve of growth for four years, 
or a first rough approximation to it. Thus we learn from a random 
sample, caught in a single haul, the mean (or modal) sizes of a fish 
at several epochs of its life, say at two, three or even more successive 
intervals of a year; and we learn (to a first approximation) its rate 
of growth and its actual age, for the slope of the growth-curve, 
drawing to the base-line, points to the time when growth began.

Length, in centimetres
Fig. 44. A catch of cod, shewing a multimodal curve of frequency.

Another haul, soon after, will add new points to the curve, and 
confirm our first rough approximation.

An experiment in the Moray Firth, a month or two later, shewed 
the first three annual groups in much the same way; but it also 
shewed another group, pf about 90 cm. long, and others larger still. 
At first sight these did not seem to fit on to our four successive 
year-groups, of 11, 26, 44 and 60 cm.; but they did so after all, 
only with a gap between. They were older fish, six and seven years 
old, which had come back to the Moray Firth to breed after spending 
a couple of years elsewhere.

It was thought at first that every such experiment should tally 
with another, and bring us to a more and more accurate knowledge 
of the growth-rate of this fish or that; but there were continual 
discrepancies, and it was soon found that the rate varied from place
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to place, from month to month, and from one year to another. 
The growth-rate of a fish varies far more than does that of a warm
blooded animal. The general character of the curve remains*, 
save that the fish continues to grow even in extreme old age, but 
it draws towards its upper asymptote with exceeding slowness.

Fig. 45. Growth of cod (after Michael Graham); and of 
mullet (after C. D. Serbetis).

The following estimate of the mean growth of North Sea cod is 
based, by Michael Graham, on a great mass of various evidence; 
and beside it, for comparison, is an estimate for the grey mullet, 
by C. D. Serbetis. The shape of the curve (Fig. 45) is enough to 
indicate that at six years old the cod is still growing vigorously!, 
while the grey mullet has all but ceased to grow. As a matter of

* It is essentially an S-shaped curve, as usual; but the conditions of larval life 
obscure the first beginnings of the S.

f Norwegian results, based largely on otoliths, are different. Gunner Rollefsen 
holds that the spawning cod, or skrei, do not reach maturity, for the most part, 
till 10 or 11 years old, and grow by no more than 1 to 3 cms. a year (Fiskeriskrifter, 
Bergen, 1933).

12-2
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fact, 90 cm. is, or was till lately, the median size of cod * in our 
Scottish trawl-fishery; one-tenth are over a metre long and the 
largest are in the neighbourhood of 120 cm., with an occasional 
giant of 150 cm. or even more. But it has come to pass that fish 
of outstanding size are seen no more save on the virgin fishing 
grounds; a Greenland halibut, brought home to Hull in 1938, 
weighed four hundredweight, was nearly two feet thick, and must 
have been of prodigious age.

Age (years) ... ... 1
Length of cod (cm.) 18
Length of grey mullet 21

2 3 4 5 6
36 55 68 79 89
36 46 51 53 55

There are other ways of determining, or estimating, a fish’s age. 
The Greek fishermen shewed Aristotle f how to tell the age of the 
purple Murex, up to six years old, by counting the whorls and 
sculptured ridges of the shell, and also how to estimate the age of 
a scaly fish by the size and hardness of its scales; and Leeuwenhoek 
saw that a carp’s scales J bear concentric rings, which increase in 
number as the fish grows old. In these and other cases, as in the 
woody rings of a tree, some part of plant or animal carries a record 
of its own age; and this record may be plain and certain, or may 
too often be dubious and equivocal.

The scales of most fishes shew concentric rings, sometimes (as in 
the herring) of a simple kind, sometimes (as in the cod) in a more 
complex pattern; and the ear-bones, or otoliths, shew opaque 
concentric zones in their translucent structure. The scales are 
“ read ” with apparent ease in herring, haddock, salmon, the otoliths 
in plaice and hake; but the whole matter is beset with difficulties, 
and every result deserves to be checked and scrutinised §.

* As distinguished from “codling.”
f Hiat. Animalium, 5476, 10; 6076, 30.
$ The carp-breeder is especially interested in the age of his fish; fot, like the 

brewer with his yeast, his profit depends on the rate at which they grow. 
Leeuwenhoek’s and other early observations were brought to light by C. Hoffbauer, 
Die Alterbestimmung der Karpfen an seiner Schuppen, Jahresber. d. schlea. 
Fiacherei-Vereina, Breslau, 1899.

§ Thus, for instance, Mr A. Dannevig says (On the age and growth of the cod, 
Fiakeridirektoreta Skrifter, 1933, p. 82): “as to the problem of the determination 
of the age of the cod by means of scales and otoliths, all workers agree that the 
method is useful. But on a number of fundamental points there are just as many 
divergences of opinion as there are investigators.”
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In the following table, we see (a) the sizes, and (b) the number 
of scale-rings, in a sample of some 550 herring from the autumn 
fishery off the east of Scotland.

size

Rings 3 4 5 6 7 8 9 10 11 12 Total Mean
cm. rings
31 — — — 1 1 — 1 — — 1 4 8-5
30 — — — 7 5 6 4 — — — 22 7-3
29 — — 5 18 13 6 6 1 1 1 51 7-0
28 — 3 29 38 11 3 3 1 — — 88 5-9
27 2 13 41 34 5 5 2 — — — 102 51
26 7 43 64 29 — — 1 — — — 144 50
25 4 36 41 11 — — — — — — 92 4-6
24 2 17 15 4 — — — __ — 38 4-8
23 — 5 — 5 4-0

Total 15 117 195 142 35 20 17 2 1 2
Mean 25-6 25-4 26-5 27 4 28-6 28-7 28-8 28-5 — —

In this sample, the sizes of the 550 fish are grouped in a somewhat 
skew curve, about a mode at 26 cm.; and the numbers of scale-rings 
group themselves in like manner, but with rather more skewness, 
about a modal number of five rings. Either way we look at it, 
there is only one “group” of fish; and it is highly characteristic 
of the herring that a single sample, taken from a single shoal, 
exhibits a unimodal curve. Accepting in principle the view that 
scale-rihgs tend to synchronise with age in years, we may draw this 
first deduction that our sample consists in part (if not in whole) 
of five-year old fish, whose average length is about 26 cm.; and 
this length, of 26 cm. for 5-ringed, or 5-year-old herring, agrees well 
with many other determinations from the same region. We shall 
be on the safe side if we deal, after this fashion, with the one 
predominant group, or mode, in each sample of fish; and Fig. 46 
shews an approximate curve, of growth for our East Coast herring 
drawn in this way.

But the further assumption is commonly and all but universally 
made that each individual herring carries the record of its age on its 
scale-rings. If this be so, then our sample of 550 fish is a com
posite population of some ten separate broods or successive ages, 
all mixed up in a shoal. And again, if so, the 5-year-olds in the 
said population average 26-5 cm. in length, the 3-year-olds 25-6 cm., 
the 10-year-olds 28-5 cm.; but these values do not fit into a normal 
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curve of growth by any means. Still more obvious is it that the 
several year-classes (if such they be) do not tally with the age
composition of any ordinary population, nor agree with any ordinary 
curve of mortality. But even if we had ten separate year-groups 
represented here, which I most gravely doubt, all that we know of 
the selective action of the drift-net forbids us to assume that we 
are dealing with a fair random sample of the herring population; 
so that, even though the number of rings did enable us to distinguish 
the successive broods, we should still have no right to assume that

Fig. 46. Mean curve of growth of Scottish (East Coast) herring.

these annual broods actually combine in the proportions shewn, 
to form the composite population.

It is held by many (in the first instance by Einar Lea) that we 
may deduce the dimensions of a herring at each stage of its past 
life from the corresponding dimensions of the rings upon its scales. 
Some such relation must obviously exist, but it is an approximation 
of the roughest kind. For it involves the assumption not only chat 
the scales add ring to ring regularly year to year, and that fish 
and scale grow all the while at corresponding rates or in direct 
proportion to one another, but also that the scale grows by mere
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accretion, each annual increment persisting without further change 
after it is once laid down. This is what happens in a molluscan 
shell, which is secreted or deposited as mere dead substance or 
“formed material”; but it is by no means the case in bone, and 
we have little reason to expect it of the bony mesoblastic tissue of 
a fish’s scale. It is much more likely (though we do not know for 
sure) that “osteoblasts” and “osteoclasts” continue (as in bone) to 
play their part in the scale’s growth and maintenance, and that 
some sort of give and take goes on. In any case, it is a matter of

Mean apparent length of one-year-old herring, as deduced by 
scale-reading from herring of various ages or “year-classes*”

Year-class (or number 23456789 
of rings)

Estimated length at 14-5 13-2 12-7 12-5 121 11-8 11-9 11-8
1 year old

fact and observation that the rings alter in breadth as the fish goes 
on growing f; that the oldest or innermost rings grow steadily 
narrower, while the outermost hardly change or even widen a little; 
that the relative breadths of successive rings alter accordingly; 
and it follows that when we try to trace the growth of a herring 
through its lifetime from its scales when it is old, the result is more 
or less misleading, and the values for the earlier years are apt to 
be much too small. The whole subject is very difficult, as we might 
well expect it to be; and I am only concerned to shew some 
small part of its difficulty]:.

While careful observations on the rate of growth of the higher 
animals are scanty, they shew so far as they go that the general 
features of the phenomenon are much the same. Whether the 
animal be long-lived, as man or elephant, or short-lived like horse §

* From T Emrys Watkin, The Drift Herring of the S.E. of Ireland, Rapports du 
Conseil pour VExploration de la Mer, lxxxiv, p. 85. 1933.

f Cf. (int. al.) Rosa M. Lee, Methods of age and growth determination in fishes 
by means of scales, Fishery Investigations, Dept, of Agr. and Fisheries, 1920.

J The copious literature of the subject is epitomised, so far, by Michael Graham, 
in Fishery Investigations (2). xi, No. 3, 1928.

§ There is a famous passage in Lucretius (v, 883) where he compares the course 
of life, or rate of growth, in the horse and his boyish master: Principio circum 
tribus actis impiger annis Floret equus, puer hautquaquam, etc.
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or dog, it passes through the same phases of growth, and, to quote 
Dr Johnson again, “whatsoever is formed for long duration arrives 
slowly to its maturity*.” In all cases growth begins slowly; it 
attains a maximum velocity somewhat early in its course, and 
afterwards slows down (subject to temporary accelerations) towards 
a point where growth ceases altogether. But in cold-blooded 
animals, as fish or tortoises, the slowing down is greatly protracted, 
and the size of the creature would seem never to reach, but only 
to approach asymptotically, to a maximal limit. This, after all, 
is an important difference. Among certain still lower animals 
growth ceases early but fife goes on, and draws (apparently) to no 
predetermined end. So sea-anemones have been kept in captivity 
for sixty or even eighty years, have fed, flourished and borne 
offspring all the while, but have shewn no growth at all.

The rate of growth of various parts or organs^

That the several parts and organs of the body, within and 
without, have their own rates of growth can be amply demonstrated 
in the case of man, and illustrated also, but chiefly in regard to 
external form, in other animals. There lies herein an endless 
field for the study of correlation and of variability J.

In the accompanying table I show, from some of Vierordt’s data, 
the relative weights at various ages, compared with the weight at 
birth, of the entire body, and of brain, heart and liver; also the 
changing relation which each of these organs consequently bears, 
as time goes on. to the weight of the whole body (Fig. 47) §.

* All of which is tantamount to a mere change of scale of the time-curve.
f This phenomenon, of incrementum inequale, as opposed to incrementum in 

universum, was most carefully studied by Haller: “Incrementum inequale multis 
modis fit, ut aliae partes corporis aliis celerius increscant. Diximus hepar minus 
fieri, majorem pulmonem, minimum thymum, etc.” (Elem. vm (2). p. 34.)

$ See (int. al.) A. Fischel, Variabilitat und Wachsthum des embryonalen 
Korpers, Morphol. Jahrb. xxiv, pp. 369—404, 1896; Oppel, Vergleichung des 
Entwickelungsgrades der Organe zu verschiedenen Entwickelungszeiten bei Wirbel- 
thieren, Jena, 1891; C. M. Jackson. Pre-natal growth of the human body and the 
relative growth of the various organs and parts, Amer. Journ. of Anat, ix, 1909; 
and of the albino rat, ibid, xv, 1913; L. A. Calkins, Growth of the human body in 
the foetal period, Rep. Amer. Assoc. Anat. 1921. For still more detailed measure
ments, see A. Arnold, Korperuntersuchungen an 1656 Leipziger Studenten, Ztschr. 
f. Konstitutionslehre, xv, pp. 43-113, 1929.

§ From Vierordt’s Anatomische TabeUtn. pp. 38, 39, much abbreviated.
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Weight of various organs, compared with the total weight of the human 
body (male). (From VierordCs Anatomische Tabellen)

Age
Wt. 

(kgm.)

Percentage increase Percentage of body-wt.

Body Brain Heart Liver Brain Heart Liver
0 3-1 1-0 1-0 1-0 1-0 12-3 0-76 4-6
1 90 2-9 2-5 1-8 2-4 10-5 0-46 3-7
2 110 3-6 2-7 2-2 3-0 9-3 0-47 3-9
3 12-5 4-0 2-9 2-8 3-4 8-9 0-52 3-9
4 14-0 4-5 3-5 3-1 4-2 9-5 0-53 4-2
5 15-9 5-1 3-3 3-9 3-8 7-9 0-51 3-4
6 17-8 5-7 3-6 3-6 4-3 7-6 0-48 3-5
7 19-7 6-4 3-5 3-9 4-9 6-8 0-47 3-5
8 21-6 7-0 3-6 4-0 4-6 6-4 0-44 3-0
9 23-5 7-6 3-7 4-6 5-0 6-1 0-46 3-0

10 25-2 8-1 3-7 5-4 5-9 5-6 0-51 3-3
11 27-0 8-7 3-6 6-0 6-1 5-0 0-52 3-2
12 29-0 9-4 3-8 (44) 6-2 4-9 (0-34) 3-0
13 33-1 10-7 3-9 7-0 7-3 4-5 0-50 3-1
14 37-1 12-0 3-4 9-2 8-4 3-5 0-58 3-2
15 41-2 13-3 3-9 8-5 9-2 3-6 0-48 32
16 45-9 14-8 3-8 9-8 9-5 3-2 0-51 3-0
17 49-7 16-0 3-7 10-6 10-5 2-8 0-51 3-0
18 53-9 17-4 3-7 10-3 10-7 2-6 0-46 2-8
19 57-6 18-6 3-7 11-4 11-6 2-4 0-51 2-9
20 59-5 19-2 3-8 12-9 11-0 2-4 0-51 2-6
21 61-2 19-7 3-7 12-5 11-5 2-3 0-49 2-7
22 62-9 20-3 3-5 13-2 11-8 2-2 0-50 2-7
23 64-5 20-8 3-6 12-4 10-8 2-2 0-46 2-4
24 — — 3-7 13-1 13-0 — — —
25 66-2 21-4 3-8 12-7 12-8 2-2 0-46 2-8

Age in years
Fig. 47. Relative growth in weight of brain, heart and body of man. 

From Quetelet’s data (smoothed curves).
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We see that neither brain, heart nor liver keeps pace by any 
means with the growing weight of the whole; there must then 
be other parts of the fabric, probably the muscles and the bones, 
which increase more rapidly than the general average. Heart and 
liver grow nearly at the same rate, the liver keeping a little ahead 
to begin with, and the heart making up on it in the end; by the 
age of twenty-five both have multiplied their original weight at 
birth about thirteen times, but the body as a whole has multiplied 
by twenty-one. In contrast to these the brain has only multiplied 
its weight about three and three-quarter times, and shews but little 
increase since the child was four or five, and hardly any since it 
was eight years old. Man and the gorilla are born with brains much 

\ of a size; but the gorilla’s brain stops growing very soon indeed, 
while the child’s has four years of steady increase. The child’s 
brain grows quicker than the gorilla’s, but the great ape’s body 
grows much quicker than the child’s; at four years old the young 
gorilla has reached about 80 per cent, of his bodily stature, and the - 
child’s brain has reached about 80 per cent, of its full size.

Even during foetal life, as well as afterwards, the relative weight of the 
brain keeps on declining. It is about 18 per cent, of the body-weight in the 
third month, 16 per cent, in the fourth, 14 per cent, in the fifth; and the 
ratio falls slowly till it comes to about 12 per cent, at birth, say 10 per cent, 
a year afterwards, and little more than 2 per cent, at twenty*.  Many statistics 
indicate a further decrease of brain-weight, actual as well as relative. The 
fact has been doubted and denied; but Raymond Pearl has shewn evidence 
of a slow decline continuing throughout adult life f.

* Cf. J. Ariens Kappers, Proc. K. Akad. Wetensch., Amsterdam. xxxix, No. 7. 1936. 
f R. Pearl, Variation and correlation in brain-weight, Biometrika, iv, pp. 13-104, 

1905.

The latter part of the table shews the decreasing weights of the 
organs compared with the body as a whole: brain, which was 
12 per cent, of the body-weight at birth, falling to 2 per cent, at 
five-and-twenty; heart from 0-76 to 0-46 per cent.; liver from 
4-6 to 2-78 per cent. The thyroid gland (as we know it in the rat) 
grows for a few weeks, and then diminishes during all the rest of 
the creature’s lifetime; even during the brief period of its own 
growth it is growing slower than the body as a whole.

It is plain, then, that there is no simple and direct relation, holding 
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good throughout life, between the size of the body and its organs; 
and the ratio of magnitude tends to change not only as the individual 
grows, but also with change of bodily size from one individual, one 
race, one species to another. In giant and pigmy breeds of rabbits, 
the organs have by no means the same ratio to the body-weight; but 
if we choose individuals of the same weight, then the ratios tend to 
be identical; irrespective of breed*.  The larger breeds of dogs are 
for the most part lighter and slenderer than the small, and the organs 
change their proportions with their size. The spleen keeps pace 
with the weight of the body; but the liver, like the brain, becomes 
relatively less. It falls from about 6 per cent, of the body-weight 
in little dogs to rather over 2 per cent, in a great hound f.

* R. C. Robb, Hereditary size-limitation in the rabbit, Journ. Exp. Biol, vi, 
1929.

•f Cf. H. Vorsteher, Einfluss d. Gesamtgrbsse auf die Zusammensetzung des 
Korpers; Diss., Leipzig, 1923.

J Oliver Goldsmith argues in his Animated Nature as follows, regarding the un
likelihood of dwarfs or giants: “Had man been bom a dwarf, he could not have 
been a reasonable creature; for to that end, he must have a jolt head, and then he 
would not have body and blood enough to supply his brain with spirits; or if he 
had a small head, proportionable to his body, there would not be brain enough for 
conducting life. But it is still worse with giants, etc.”

§ Die Saugethiere, p. 117.
|| Amer. Journ. of Anatomy, vm, pp. 319-353, 1908.

The changing ratio with increasing magnitude is especially 
marked in the case of the brain, which constitutes (as we have just 
seen) an eighth of the body-weight at birth, and but one-fiftieth at 
twenty-five This falling ratio finds its parallel in comparative 
anatomy, in the general law that the larger the animal the smaller 
(relatively) is the brain]:. A falling ratio of brain-weight during life 
is seen in other animals. Max Weber § tells us that in the lion, at 
five weeks, four months, eleven months and lastly when full-grown, 
the brain represents the following fractions of the weight of the body: 
viz. 1/18, 1/80, 1/184 and 1 /546. And Kellicott has shewn that in the 
dogfish, while certain organs, e.g. pancreas and rectal gland, grow 
pari passu with the body, the brain grows in a diminishing ratio, 
to be represented (roughly) by a logarithmic curve ||.

In the grown man, Raymond Pearl has shewn brain-weight to 
increase with the stature of the individual and to decrease with 
his age, both in a straight-line ratio, or linear regression, as the 
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statisticians call it. Thus the following wholly empirical equations 
give the required ratios in the case of Swedish males:

Brain-weight (gms.) — 1487-8 — 1-94 x age, or 

= 915-06 + 2-86 x stature.

In the two sexes, and in different races, these empirical constants 
will be greatly changed*; and Donaldson has further shewn that 
correlation between brain-weight and body-weight is much closer 
in the rat than in manf.

Weight of 
entire 
animal 
(gm.) 

W

Weight of 
brain 
(gm.) 

w

Ratios
In 

u'n = Ww : W :
Marmoset 335 12-5 1: 26 1: 2-0 n = 2-30
Spider monkey 1,845 126 15 1-1 1-56
Felis minuta 1,234 23-6 52 1-2 2-25
F. domestica 3,300 31 107 2-4 2-36
Leopard 27,700 164 168 1-2 2-00
Lion 119,500 219 546 1-3 2-17
Dik-dik 4,575 37 124 2-7 2-30
Stein bok 8,600 49-5 173 2-9 2-32
Impala 37,900 148-5 255 2-75 2-11
Wildebeest 212,200 443 479 2-8 2-01
Zebra 255,000 541 472 2-7 1-98

297,000 555 536 2-8 200
Rhinoceros 765,000 655 1170 3-6 2-09
Elephant 3,048,000 5,430 560 2-0 1-74
Whale (Globiocephalus) 1,000,000 2,511 400 2-0 1-77

Mean 2-23 2-06

Brandt, a very philosophical anatomist, argued some seventy 
years ago that the brain, being essentially a hollow structure, a 
surface rather than a mass, ought to be equated with the surface 
rather than the mass of the animal. This we may do by taking 
the square-root of the brain-weight and the cube-root of the body
weight; and while the ratios so obtained do not point to equality, 
they do tend to constancy, especially if we limit our comparison to 
similar or related animals. Or we may vary the method, and ask 
(as Dubois has done) to what power the brain-weight must be raised

i
* Biometrika, iv, pp. 13-105, 1904.
f H. H. Donaldson, A comparison of the white rat with man, etc.. Boas Memorial 

Volume, New York, 1906, pp. 5-26.
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to equal the body-weight; and here again we find the same tendency 
towards uniformity*.

* Cf. A. Brandt, Sur le rapport du poids du cerveau A. celui du corps chez 
differenta animaux, Bull, de la Soc. Imp. des naturalistes de Moscou, xl, p. 525, 
1867; J. Baillanger, De 1’etendu de la surface du cerveau, Ann. Med. Psychol. 
xvii, p. 1, 1853; Th. van Bischoff, Das Hirngewicht des Menschen, Bonn, 1880 
(170 pp.), cf. Biol. Centralbl. I, pp. 531-541, 1881; E. Dubois, On the relation 
between the quantity of brain and the size of the body, Proc. K. Akad. Wetensch., 
Amsterdam, xvi, 1913. Also, Th. Ziehen, Maszverhaltnisse des Gehirns, in 
Bardeleben’s Handb. d. Anatomie des Menschen; P. Warneke, Gehirn u. Korper- 
gewichtsbestimmungen bei Saugern, Journ. f. Psychol, u. Neurol, xm, pp. 355-403, 
1909; B. Klatt, Studien zum Domestikationsproblem, Bibliotheca genetica, n, 
1921; etc. The case of the heart is somewhat analogous; see Parrot, Zool. Jahrb. 
(System.), vn, 1894; Platt, in Biol. Centralbl. xxxix, p. 406, 1919.

f C. 'Chossat, Recherches sur 1’inanition, Mem. Acad, des Sci., Paris, 1843, 
p. 438.

The converse to the unequal growth of organs is found in their 
unequal loss of weight under starvation. Chossat found, in a 
well-known experiment, that a starved pigeon had lost 93 per cent, 
of its fat, about 70 per cent, of fiver and spleen, 40 per cent, of its 
muscles, and only 2 per cent, of brain and nervous tissues f. The 
salmon spends many weeks in the river before spawning, without 
taking food. The muscles waste enormously, but the reproductive 
bodies continue to grow.

As the internal organs of the body grow at different rates, so that 
their ratios one to another alter as time goes on, so is it with those 
linear dimensions whose inconstant ratios constitute the changing 
form and proportions of the body. In one of Quetelet’s tables 
he shews the span of the outstretched arms from year to year, com
pared with the vertical stature. It happens that height and span 
are so nearly co-equal in man that direct comparison means little; 
but the ratio of span to height (Fig. 48) undergoes a significant and 
remarkable change. The man grows faster in sketch of arms than 
he does in height, and span which was less at birth than stature by 
about 1 per cent, exceeds it by about 4 per cent, at the age of 
twenty. Quetelet’s data are few for later years, but it is clear 
enough that span goes on increasing in proportion to stature. How 
far this is due to actual growth of the arms and how far to increasing 
breadth of the chest is another story, and is not yet ascertained.
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The growth-rates of head and body differ still more: for the 
height of the head is no more than doubled, but stature is trebled,

Height of the head in man at various ages * 
(After Quetelet, p. 207, abbreviated)

* A smooth curve, very similar to this, is given by Karl Pearson for the growth 
in “auricular height” of the girl’s head, in Biometrika, in, p. 141, 1904.

Men Women

Stature Head Stature Head
Age m. m. Ratio m. m. Ratio

Birth 0-50 on 4-5 0-49 on 4.4
1 year 0-70 015 4-5 069 015 45
2 years 0-79 017 46 0-78 017 4-5
3 „ 0-86 0-18 4-7 0-85 0-18 4-7-
5 ,, 099 019 51 0-97 0-19 51

10 „ 1-27 0-21 6-2 1-25 0-20 62
20 „ 1-51 0-22 7-0 1-49 0-21 7-0
25 ,. 1-67 0-23 7-3 1-57 0-22 71
30 „ 1-69 0-23 7-4 1-58 0-22 71
40 „ 1-69 0-23 7-4 1-58 0-22 71

between infancy and manhood. Diirer studied and illustrated this 
remarkable phenomenon, and the difference which accompanies and 
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results from it in the bodily form of the child and the man is easy 
to see.

The following table shews the relative sizes of certain parts and 
organs of a young trout during its most rapid development; and 
so illustrates in a simple way the varying growth-rates in different 
parts of the body*. It would not be difficult, from a picture of the 
little trout at any one of these stages, to draw its approximate 
form at any other by the help of the numerical data here set 
forth. In like manner a herring’s head and tail grow longer, 
the parts between grow relatively less, and the fins change their 
places a little; the same changes take place with their specific 
differences in related fishes, and herring, sprat and pilchard 
owe their specific characters to their rates of growth or modes of 
increment]". \

Trout (Salmo fario)." proportionate growth of various organs 
(From Jenkinson’s data)

Days 
old

Total 
length Eye Head

1st 
dorsal

Ventral 
fin

2nd 
dorsal

Tail 
fin

Breadth 
of tail

40 100 100 100 100 100 100 100 100
63 130 129 148 149 149 108 174 156
77 155 147 189 (204) (194) 139 258 220
92 173 179 220 (193) (182) 155 308 272

106 195 193 243 173 165 173 337 288

Sachs studied the same phenomenon in plants, after a method 
in use by Stephen Hales a hundred and fifty years before. On the 
growing root of a bean ten narrow zones were marked off, starting 
from the apex, each zone a millimetre long. After twenty-four 
hours’ growth (at a given temperature) the whole ten zones had 
grown from 10 to 33 mm., but the several zones had grown very 
unequally, as shewn in the annexed table J (p. 192):

♦ Cf. J. W. Jenkinson, Growth, variability and correlation in young trout, Bio- 
metrika, vni, pp. 444-466, 1912.

f Cf. E. Ford, On the transition from larval to adolescent herring, Journ. Mar. 
Biol. Assoc, xvi, p. 723; xvm, p. 977, 1930-31. So also in larval eels, tail and 
body grow at different rates, which rates differ in different species; cf. Johannes 
Schmidt, Meddel. Kommiss. Havsundersok. 1916; L. Bertin, Bull. Zool. France, 
1926, p. 327.

J From Sachs’s Textbook of Botany, 1882, p. 820.
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Graded growth of bean-root

Zone
Increment 

mm. Zone
Increment 

mm.
Apex 1-5 6th 1-3
2nd 5-8 7th 0-5
3rd 8-2 8th 0-3
4th 3-5 9th 0-2
5th 1-6 10th 01

“... I marked in the same manner as the Vine, young Honeysuckle shoots, 
etc....; and I found in them all a gradual scale of unequal extensions, those parts 
extending most which were tenderest,” Vegetable Staticks, Exp. cxxiii.

The lengths attained by the successive zones lie very nearly 
on a smooth curve or gradient; for a certain law, or principle 
of continuity, connects and governs the growth-rates along the 
growing axis. This curve has its family likeness to those differential

Fig. 49. Rate of growth of bean-root, in successive zones 
of 1 mm. each, beginning at the tip.

curves which we have already studied, in which rate of growth was 
plotted against time, as here it is plotted against successive spatial 
intervals of a growing structure; and its general features are those 
of a curve, a skew curve, of error. Had the several growth-rates 
been transverse to the axis, instead of being longitudinal and 
parallel to it, they would have given us a leaf-shaped structure, 
of which our curve would represent the outline on either side; or 
again, if growth had been symmetrical about the axis, it might have 
given us a turnip-shaped solid of revolution. There is always an 
easy passage from growth to form.
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A like problem occurs when we deal with rates of growth in 
successive natural internodes; and we may then pass from the 
actual growth of the internodes to the varying number of leaves 
which they successively produce. Where we have whorls of leaves 
at each node, as in Equisetum or in many water-weeds, then the 
problem is simplified; and one such case has been studied by 
Raymond Pearl*. In Ceratophyllum the mean number of leaves 
increases with each successive whorl, but the rate of increase 
diminishes from whorl to whorl as we ascend. On the main stem 
the rate of change is very slow; but in the small twigs, or tertiary 
branches, it becomes rapid, as we see from the following abbreviated 
table:

Number of leaves per whorl on the tertiary branches of
Ceratophyllum

Order of whorl 1 2 3 4 5 6
Mean no. of leaves 6-55 8-07 9-00 9-20 9-75 10-00
Smoothed no. 6-5 8-0 9-0 9-5 9-8 10-0

Raymond Pearl gives a logarithmic formula to fit the case; but 
the main point is that the numbers form a graded series, and can 
be plotted as a simple curve.

In short, a large part of the morphology of the organism depends 
on the fact that there is not only an average, or aggregate, rate of 
growth common to the whole, but also a gradation of rate from one 
part to another, tending towards a specific rate characteristic of each 
part or organ. The least change in the ratio, one to another, of 
these partial or localised rates of growth will soon be manifested 
in more and more striking differences of form; and this is as much 
as to say that the time-element, which is implicit in the idea of growth, 
can never (or very seldom) be wholly neglected in our consideration 
of formf.

A flowering spray of Montbretia or lily-of-the-valley exemplifies 
a growth-gradient, after a simple fashion of its own. Along the

* Oil variation and differentiation in Ceratophyllum, Carnegie Inst. Publications, 
No. 58, 1907, see p. 87.

t Herein lies the easy answer to a contention raised by Bergson, and to which 
he ascribes much importance, that “a mere variation of size is one thing, and 
a change of form is another.” Thus he considers “a change in the form of leaves” 
to constitute ‘‘a profound morphological difference” (Creative Evolution, p. 71). 

TGF 13
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stalk the growth-rate falls away; the florets are of descending age, 
from flower to bud: their graded differences of age lead to an 
exquisite gradation of size and form; the time-interval between 
one and another, or the “space-time relation” between them all, 
gives a peculiar quality—we may call it phase-beauty—to the 
whole. A clump of reeds or rushes shews this same phase-beauty, 
and so do the waves on a cornfield or on the sea. A jet of water 
is not much, but a fountain becomes a beautiful thing, and the 
play of many fountains is an enchantment at Versailles.

On the weight-length coefficient, or pondered index

So much for the visible changes of form which accompany 
advancing age, and are brought about by a diversity of rates of 
growth at successive points or in different directions. But it often 
happens that an animal’s change of form may be so gradual as to 
pass unnoticed, and even careful measurement of such small changes 
becomes difficult and uncertain. Sometimes one dimension is easily 
determined, but others are hard to measure with the same accuracy. 
The length of a fish is easily measured; but the breadth and depth 
of plaice or haddock are vaguer and more uncertain. We may then 
make use of that ratio of weight to length which we spoke of in the 
last chapter: viz. that W oc L3, or W = kL3, or W/L3 — k, where 
k, the “ponderal index,” is a constant to be determined for each 
particular case*.

We speak of this k as a “constant,” with a mean value specific 
to each species of animal and dependent on the bodily proportions 
or form of that animal; yet inasmuch as the animal is continually 
apt to change its bodily proportions during life, k also is continually 
subject to change, and is indeed a very delicate index of such

* This relation, and how important it is, were clearly recognised by Herbert 
Spencer in his Recent Discussions in Science, etc., 1871. The formula has been

Vw often, and often independently, employed: first perhaps in the form —7— x 100, Le
by R. Livi, L’indice ponderale, o rapporto tra la statura e il peso, Atti Soc. Romana 
Antropologica, v, 1897. Values of k for man and many animals are given by 
H. Przibram, in Form und Formel, 1922. On its use as an index to the condition 
or habit of body of an individual, see von Rhode, in Abde rhalden’s Arbeitsmethoden, 
ix, 4. The constant k might be called, more strictly, kt, leaving kb and kd for 
the similar constants to be derived from the breadth and depth of the fish. 



Ill] THE PONDERAL INDEX 195

progressive changes: delicate—because our measurements of length 
are very accurate on the whole, and weighing is a still more delicate 
method of comparison.

Thus, in the case of plaice, when we deal with mean values for 
large numbers and with samples so far “homogeneous” that they 
are taken at one place and time, we find that k is by no means 
constant, but varies, and varies in an orderly way, with increasing 
size of the fish. The phenomenon is unexpectedly complex, much 
more so than I was aware of when I first wrote this book. Fig. 50

Fig. 50. Changes in the weight-length coefficient of plaice with 
increasing size; from March and December samples.

shews the weight-length coefficient, or ponderal index, in two 
large samples, one taken in the month of March, the other in 
December. In the latter sample k increases steadily as the plaice 
grow from about 25 to 40 cm. long; weight, that is to say, increases 
more rapidly than the cube of the length, and it follows that length 
itself is increasing less rapidly than some other linear dimension. 
In other words, the plaice grow thicker, or bulkier, with length and 
age. The other sample, taken in the month of March, is curiously 
different; for now k rises to a maximum when the fish are some
where about 30 cm. long, and then declines slowly with further 
increase in size of the fish; and k itself is less in March than in 
December, the discrepancy being slight in the small fish and great 
in the large. The “point of inflection” at 30 cm. or thereby marks 

13-2
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an epoch in the fish’s life; it is about the size when sexual maturity 
begins, or at least near enough to suggest a connection between the 
two phenomena*.

A step towards further investigation would be to determine k for the two 
sexes separately, and to see whether or no the point of inflection occurs, as 
maturity is known to be reached, at a smaller size in the male. This d’Ancona 
has done, not for the plaice but for the shad (Alosa finta). He finds that the 
males are the first to reach maturity, first to shew a retardation of the rate 
of growth, first to reach a maximal value of the ponderal index, and in all 
probability the first to dief.

Again we may enquire whether, or how, k varies with the time 
of year; and this correlation leads to a striking result J. For the 
ponderal index fluctuates periodically with the seasons, falling 
steeply to a minimum in March or April, and rising slowly to an 
annual maximum in December (Fig. 51)§. The main and obvious 
explanation lies in the process of spawning, the rapid loss of weight 
thereby, and the slow subsequent rebuilding of the reproductive 
tissues; whence it follows that, without ever seeing the fish spawn, 
and without ever dissecting one to see the state of its reproductive 
system, we may by this statistical method ascertain its spawning 
season, and determine the beginning and end thereof with con
siderable accuracy. But all the while a similar fluctuation, of 
much less amplitude, is to be found in young plaice before the 
spawning age; whence we learn that the fluctuation is not only 
due to shedding and replacement of spawn, but in part also to 
seasonal changes in appetite and general condition.

Returning to our former instance, we now see that the March 
and December samples of plaice, which shewed such discrepant 
variations of the ponderal index with increasing size, happen to

* The carp shews still more striking changes*than does the plaice in the weight
length coefficient: in other words, still greater changes in bodily shape with 
advancing age and increasing size; cf. P. H. Struthers, The Champlain Watershed, 
Albany, New York, 1930.

f 1T. d1 Ancona, Il problema dell’ accrescimento dei pesci, etc., Mem. R. Acad, 
dei Lincei (6), n, pp. 497-540, 1928.

J Cf. Lammel, Ueber periodische Variationen in Organismen, Biol. Centralbl. 
xxn, pp. 368-376, 1903.

§ When we restrict ourselves, for simplicity’s sake, to fish of one particular 
size, we need not determine the values of k, for changes in weight are obvious 
enough; but when we have small numbers and various sizes to deal with, the 
determination of k helps very much.
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coincide with the beginning and end of the spawning season; the 
fish were full of spawn in December, but spent and lean in March. 
The weight-length ratio was, of necessity, higher at the former 
season; and the falling-off in condition, and in bulk, which the 
March sample indicates, is more and more pronounced in the larger 
and therefore more heavily spawn-laden fish.

Periodic relation of weight to length in plaice of 55 cm. long
Average weight 

decigrams
WjL3 W/L3 (smoothed)

Jan. 204 1-23 1-16
Feb. 174 104 1-08
March 162 0-97 0-99
April 159 0-95 0-97
May 162 0-98 0-98
June 171 103 1-01
July 169 101 1-04
August 178 107 1-04
Sept. 173 1-04 1-11
Oct. 203 1-22 1-16
Nov. 203 1-22 1-21
Dec. 200 1-20 * 1-22

Mean 180 1-08

I
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Plaice caught in a certain area, March 1907 and December 1905. 
Variation of k, the weight-length coefficient, with size

• March sample December sample

cm. gm. W/L3
Do.' 

smoothed gm. W/L3
Do.' 

smoothed
23 113 0-93 — — — —■
24 128 0-93 0-94 — — —
25 152 0-97 0-96 — — —
26 178 0-96 0-98 177 1-01 —
27 193 0-98 0-99 209 1-06 1-06
28 221 101 1-00 241 110 1-08
29 250 102 1-01 264 1-08 1-09
30 271 100 1-01 294 1-09 1-09
31 300 101 1-00 325 1-09 1-10
32 328 1-00 1-00 366 1-12 1-12
33 354 0-99 0-99 410 1-14 1-13
34 384 0-98 0-98 449 1-14 1-15
35 419 0-98 0-98 501 1-17 1-17
36 454 0-97 0-97 556 1-19 1-17
37 492 0-95 0-96 589 1-16 1-18
38 529 0-96 0-96 652 1-19 1-19
39 564 0-95 0-95 719 1-21 1-22

( 40 614 0-96 0-95 809 1-26 —
41 647 0-94 0-94 — — —
42 679 0-92 0-93 — — —
43 732 0-92 0-93 — — —
44 800 0-94 0-94 — — —
45 875 0-96 — — — —

These weights and measurements of plaice are taken from the Department of 
Agriculture and Fisheries’ Plaice-Report, I, pp. 65, 107, 1908; II, p. 92, 1909.

Japanese goldfish* are exposed to a much wider range of tem
perature than our plaice are called on to endure; they hibernate in 
winter and feed greedily in the heat of summer. Their weight is 
low in winter but rises in early spring, it falls as low as ever at the 
height of the spawning season in the month of May; so for one 
weight-length fluctuation which the plaice has, the goldfish has a 
twofold cycle in the year. The index reaches its second and higher 
maximum in August, and falls thereafter till the end of the year. 
That it should begin to fall so soon, and fall so quickly, merely means 
that late autumn is a time of growth; the fish are not losing weight, 
but growing longer f.

♦ Cf. Kichiro Sasaki, Tohoku Sci. Reports (4), I, pp. 239-2(50, 1926.
f Much has been written on the weight-length index in fishes. See (int. al.) 

A. Meek. The grbwth of flatfish, Northumberland Sea Fisheries Ctee, 1905, p. 58; 
VV. J. Crozier, Correlations of weight, length, etc., in the weakfish, Cynoscion
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It is the rule in fishes and other cold-blooded vertebrates that 
growth is asymptotic and size indeterminate, while in the warm
blooded growth comes, sooner or later, to an end. But the 
characteristic form is established earlier in the former case, and 
changes less, save for the minor fluctuations we have spoken of. 
In the higher animals, such as ourselves, the whole course of life 
is attended by constant alteration and modification of form; and

Fig. 52. The ponderal index, or weight-length coefficient, in 
man. From Quetelet’s data.

we may use our weight-length formula, or ponderal index, to illus
trate (for instance) the changing relation between height and weight 
in boyhood, of which we spoke before (Fig. 52).

•

regalis, Bull. U.S. Bureau of Fisheries, xxxm, pp. 141-147, 1913; Selig Hecht, 
Form and growth in fishes, Journ. of Morphology, xxvn, pp. 379-400, 1916; 
J. Johnstone (Plaice), Trans. Liverpool Biolog. Soc. xxv, pp. 186-224, 1911; 
J. J. Tesch (Eel), Journ. du Conseil, in, 1927; Frances N. Clark (Sardine), Calif. 
Fish. Bulletin, No. 19, 1928 (with full bibliography). For a discussion on statistical 
lines, apart from any assumptions such as the “law of the cubes,” see G Duncker, 
Korrelation zwischen Lange u. Gewicht, etc., Wissensch. Meeresuntersuch. Helgoland, 
xv, pp. 1-26, 1923.
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The weight-length coefficient, or ponderal index, k, in young Belgians 
{From Quetelet’s figures)

Age (years) W/L3 Age (years) W/L3
0 2-55 10 1-25
1 2-92 11 118
2 2-34 12 1-23
3 2-08 13 1-29
4 1-87 x 14 1-23
5 1-72 15 1-23
6 1-56 16 1-28
7 1-48 20 1-30
8 1-39 25 • 1-36
9 1-29

The infant is plump and chubby, and the ponderal index is at 
its highest at a year old. As the boy grows, it is in stature that he 
does so most of all; his ponderal index falls continually, till the 
growing years are over, and the lad “fills out” and grows stouter 
again. During prenatal, fife the index varied little, and less than 
we might suppose:

Relation between length and weight of the human foetus 
{From Scammon’s data)

Length 
cm.
7-7 

12-3 
17-3 
22-3 
27-2 
32-3 
37-2 
42-2 
46-9 
51-7

Weight 
gm.

13 
41

239
405
750

1163
1758
2389
3205

WfL3 
2-9 
2-2 
2-2 
2-2 
2-0 
2-2 
2-3 
2-3 
2-3 
2-3

As- a further illustration of the rate of growth, and of unequal
growth in various directions, we have figures for the ox, extending 
over the first three years of the animal’s life, and giving (1) the 
weight of the animal, month by month, (2) the length of the back, 
from occiput to tail, and (3) the height to the withers. To these 
I have added (4) the ratio of length to height, (5) the weight-length 
coefficient, k, and (6) a similar coefficient, or index-number, k', for 
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the height of the animal. All these ratios change as time goes on. 
The ratio of length to height increases, at first considerably, for the 
legs seem disproportionately long at birth in the ox, as in other

Relations between the weight and certain linear dimensions of the ox 
(Data from Cornevin*,  abbreviated)

* Ch. Cornevin, Etudes sur la croissance, Arch. de Physiol, norm, et pathol. (5), rv, 
p. 477, 1892. Cf. also R. Gartner, Ueber das Wachstum d. Tiere, Landwirtsch. 
Jahresher. lvii, p. 707, 1922.

Age 
months

Length
Weight 
kgm.

of back 
m.

Height 
m. L/H k = WjL9 k' = W[H'-

0 37 0-78 0-70 1 11 ' 0-78 1-08
1 55 0-94 0-77 1-22 0-66 . 1-21
2 86 109 0-85 1-28 0-67 1-41
3 121 1-21 0-94 128 0-69 1-46
4 150 1-31 0-95 1-38 0-66 1-75
5 179 1-40 1 04 1-35 0-65 1-60
6 210 1-48 1-09 1-36 0-64 1-64
7 247 1-52 1-12 1-36 0-70 1-75
8 267 1-58 1-15 1-38 0-68 1-79
9 283 1-62 116 1-39 0-66 1-80

10 304 1-65 1-19 1-39 068 1-79
11 328 1-69 1-22 1-39 * 0-67 1-79
12 351 1-74 1-24 1-40 0-67 1-85
13 375 1-77 1-25 1-41 0-68 1-90
14 391 1-79 1-26 1-41 0-69 1-94
15 406 1-80 1-27 1-42 0-69 1-98
16 418 1-81 1-28 1-42 ’ 0-70 2-09
17 424 1-83 129 1-42 0-69 1-97
18 424 1-86 1-30 1-43 0-66 1-94
19 428 1-88 131 1-44 0-65 1-92
20 438 1-88 1-31 1-44 0-66 1-94
21 448 1-89 1-32 1-43 0-66 1-94
22 464 1-90 1-33 1-43 0-68 1-96
23 481 1-91 1-35 1-42 0-69 1-98
24 501 1-91 135 142 0-71 - 2-03
25 521 1 92 1-36 1-41 0-74 2-08
26 534 1-92 1-36 1-41 0-75 2-12
27 547 1-93 1-36 1-41 0-76 2-16
28 555 1-93 1-36 1-41 0-77 2-19
29 562 1-93 1-36 1-41 0-78 222 .
30 586 1-95 1-38 1-41 0-79 2-22
31 611 1-97 1-40 1-40 0-80 2-21
32 626 198 1-42 1-40 0-80 2-19
33 641 2-00 144 1-39 0-81 2-16
34 ’ 656 2-01 1-45 138 081 2-13

ungulate animals; but this ratio reaches its maximum and falls off 
a little during the third year: so indicating that the beast is growing 
more in height than length, at a time when growth in both 
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dimensions is nearly over*.  The ratio W/H3 increases steadily, 
and at three years old is double what it was at birth. It is the 
most variable of the three ratios; and it so illustrates the some
what obvious but not unimportant fact that k varies most for the 
dimension which varies least, or grows most uniformly; in other 
words, that the values of k, as determined at successive epochs for 
any one dimension, are a measure of the variability of the other two.

* As a matter of fact, the data shew that the animal grows under 7 per cent, 
in length, but over 11 per cent, in height, between the twentieth and the thirtieth 
month of its age.

f Had the weights varied as the cube of the height, the tallest men should 
have weighed close on 200 lb., instead of 160 lb.

The same ponderal index serves as an index of “build,” or 
bodily proportion; (ind its mean values have been determined for 
various ages and for many races of mankind. Within one and the 

Fig. 53. Ratio of height to weight in man. From Goringe's data.

same race it varies with stature; for tall men, and boys too, are apt 
to be slender and lean, and short ones to be thickset and strong. 
And so much does the weight-length ratio change with build or 
stature that, in the following table of mean heights and weights of 
men between five and six feet high, it will be seen that weight, 
instead of varying as the cube of the height, is (within the limits 
shewn) in nearly simple linear relation to it (Fig. 53) f.
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Ratio of height to weight in man *
No. of Height Weight

instances in. lb. W/H W/H3
59 60-5 125 2-07 5-62

118 61-5 129 1 2-13 5-55
220 62-5 133 213 5-45
285 63-5 136 2-14 5-30
327 64-5 139 2-15 5-19
386 65-5 143 2-18 5-09
346 66-5 146 2-20 4-97
289 67-5 153 2-27 4-96
220 68-5 151 2-20 4-71
116 69-5 156 2-24 4-64
58 70-5 160 2-27 4-57

The same index may be u<ed as a measure of the condition, even 
of the quality, of an animal; three Burmese elephants had the 
following heights, weights, aryl reputations f:

Height Weight W/H3
A 7 ft. 10| in. 7,511 lb. 1-54 A famous elephant
B 8 1 7,216 1-36 A good elephant
C 7 5 4,756 1-15 A weak, poor elephant

But a great African«elephant, 10 ft. 10 in. high, weighed 14,640 lb. J: 
whence the weight-height coefficient was no more than 1-15. That is 
to say, the African elephant is considerably taller than the Indian, 
and the weight-height ratio is correspondingly less.

Lastly, by means of the same index we may judge, to a first rough 
approximation, the weight of a large animal such as a whale, where 
weighing is out of the question. Sigurd Rusting has given us 
many measurements, and many foetal weights, from the Antarctic 
whale-fishery: among which, choosing at random, we find that a 
certain foetus of the blue whale, or SibbaW’s rorqual, measured 
4 ft. 6 in. long, and weighed 23 kilos, or say 46 lb. A whale of the 
same kind, 45 ft. long, should then weigh 46 x 103 lb., or about 
23 tons; and one of 90 ft., 23 x 23 tons, or over 180 tons. Again 
in seven young unborn whales, measuring from 39 to 54 inches and 
weighing from 10 to 23 kilos, the mean value of the index was found

* Data from Sir C. Goringe, The English Convict, H.M. Stationery Office, 1913. 
See also J. A. Harris and others, -The Measurement of Man, Minnesota, 1930, p. 41.

f Data from A. J. Milroy, On the management of elephants, Shillong, 1921.
t D. P. Quireng, in Growth, in, p. 9, 1939.
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to be 15-2, in gramme-inches. From this we calculate the weight 
of the great rorqual, as follows:

15.9 x 3003
At 25 ft., or 300 inches, W =----- -------- = 4,100,000 g.

= 4,100 kg.
= 4 tons, nearly.

At 50 ft., W = 4 x 23 tons = 32 tons.
100 ft. = 32 x 23 tons = 256 tons.
106 tons (the largest known) W = 305 tons, nearly.

The two independent estimates are in close agreement.

Of surface and volume

While the weight-length relation is of especial importance, and 
is wellnigh fundamental to the understanding of growth and form 
and magnitude, the corresponding relation of surface-area to weight 
or volume has in certain cases an interest of its own. At the surface 
of an animal heat is lost, evaporation takes place, and oxygen may 
be taken in, all in due proportion as near as may be to the bulk 
of the animal; and again the bird’s wing is a surface, the area of 
which must be in due proportion to the size of the bird. In hollow 
organs, such as heart or stomach, area is the important thing rather 
than weight or mass; and we have seen «how the brain, an organ 
not obviously but essentially and developmentally hollow, tends to 
shew its due proportions when reckoned as a surface in comparison 
with the creature’s mass.

Surface cannot keep pace with increasing volume in bodies of 
similar form; wing-area does not and cannot long keep pace with 
the bird’s increasing bulk and weight, and this is enough of itself 
to set limits to the size of the flying bird. It is the ratio between 
square-root-of-surface and cube-root-of-volume which should, in 
theory, remain constant; but as a matter of fact this ratio varies 
(up to a certain extent) with the circumstances, and in the case of 
the bird’s wing with varying modes and capabilities of flight. The 
owl, with his silent, effortless flight, capable of short swift spurts 
of attack, has the largest spread of wings of all; the kite outstrips 
the other hawks in spread of wing, in soaring, and perhaps in speed.
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Stork and seagull have a great expanse of wing; but other skilled 
and speedy fliers have long narrow wings rather than large ones. 
The peregrine has less wing-area than the goshawk or the kestrel; 
the swift and the swallow have less than the lark.

Mean ratio, X^S/^W, between wing-area and weight of birds 
(From Mouillard’s data)

Ratio
Owls 1 species 2-2
Hawks 7 „ 1-7
Gulls 1 „ 1-7
Waders 3 „ 1-7
Petrels 2 1-4
Plovers 3 ”, 1-4
Passeres 4 „ 1-3
Ducks 2 „ 1-2

To measure the length of an animal is easy, to weigh it is easier still, but 
to estimate its surface-area is another thing. Hence we know but little of 
the surface-weight rat ios of animals, and what we know is apt to be uncertain 
and discrepant. Nevertheless, such data as we possess average down to mean 
values which are more uniform than we might expect*.

* From Fr. G. Benedict, Oberflachenbestimmung verschiedener Tieigattungen, 
Ergebnisse d. Physiologic, xxxvi, pp. 300-346, 1934 (with copious bibliography).

Mean ratio, X^S/^W, in various animals (cm. gm. units)

Ape 11-8
Man II
Dog 10-11
Cat, horse 10
Rabbit 9-75
Cow, pig, rat 9

Sheep (shorn) 
Snake

8 
12-5

Frog 10-6
Birds 10
Tortoise 10

A further note on unequal growth, or heterogony

An organism is so complex a thing, and growth so complex a 
phenomenon, that for growth to be so uniform and constant in all 
the parts as to keep the whole shape unchanged would indeed 
be an unlikely and an unusual circumstance. Rates vary, propor
tions change, and the whole configuration alters accordingly. In so 
humble a creature as a medusoid, manubrium and disc grow at 
different rates, and certain sectors of the disc faster than others, 
as when the little EphyraAaxva “develops” into the great Aurelia- 
jellyfish. Many fishes grow from youth to age with no visible,
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hardly a measurable, change of form*;  but the shapes and looks 
of man and woman go on changing long after the growing age is 
over, even all their lives long. A centipede has its many pairs of 
legs alike, to all intents and purposes; they begin alike and grow 
uniformly. But a lobster has his great claws and his small, his 
lesser legs, his swimmerets and the broad flaps of his tail; all these 
begin alike, and diverse rates of growth make up the difference 
between them. Moreover, we may sometimes watch a single limb 
growing to an unusual size, perhaps in one sex and not in the other, 
perhaps on one side and not on the other side of the body: such 
are the “horns,” or mandibles, of the stag-beetle, only conspicuous 
in the male, and the great unsymmetrical claws of the lobster, or 
of that extreme case the little fiddler-crab (Uca pugnax). For such 
well-marked cases of differential growth-ratio between one part and 
another, Julian Huxley has introduced the term heterogony^.

* Cf. 8. Hecht, Form and growth in fishes, Journ. Morphology, xxvn, pp. 379- 
400, 1916; F. S. and D. W. Hammett, Proportional length-growth of garfish 
(Lepidosteus), Growth, m, pp. 197—209, 1939. x

f See Problems of Relative Growth, 1932, and many papers quoted therein. 
The term, as Huxley tells us, had been used by Pezard; but it had been used, in 
another sense, by Rolleston long before to mean an alternation of generations, 
or production of offspring dissimilar to the parent.

Of the fiddler-rrabs some four hundred males were weighed, in 
twenty-five graded samples all nearly of a size, and the weights 
of the great claw and of the rest of the body recorded separately. 
To begin with the great claw was about 8 per cent., and at the end 
about 38 per cent., of the total weight of the unmutilated body. 
In the female the claw weighs about 8 per cent, of the whole from 
beginning to end; and this contrast marks the disproportionate, 
or heterogonic, rate of growth in the male. We know nothing 
about the actual rate of growth of either body or claw, we cannot 
plot either against time; but we know the relative proportions, or 
relative rates of growth of the two parts of the animal and this is 
all that matters meanwhile. In Fig. 54, we have set off the successive 
weights of the body as abscissae, up to 700 mgm., or about one-third 
of its weight in the adult animal; and the ordinates represent the 
corresponding weights of the claw. We see that the ratio between 
the two magnitudes follows a curve, apparently an exponential 
curve; it does in fact (as Huxley has shewn) follow a compound
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interest law, which (calling y and x the weights of the claw and of 
the - rest of the body) may be expressed by the usual formula for 
compound interest,

y = bxk, or log y = log b + k log x\

and the coefficients (6 and k) work out in the case of the fiddler-crab, 
to begin with, at

f ig. 54. Relative weights of body and claw in the fiddler- 
crab (Uca pugnax).

But after a certain age, or certain size, these coefficients no longer 
hold, and new coefficients have to be found. Whether or no, the 
formula is mathematical rather than biological; there is a lack of 
either biological or physical significance in a growth-rate which 
happens to stand, during part of an animal’s life, at 62 per cent, 
compound interest.

Julian Huxley holds, and many hold with him, that the exponential 
or logarithmic formula, or the compound-interest law, is of general 
application to cases of differential growth-rates. I do not find it to 
be so: any more than we have found organ, organism or population 
to increase by compound interest or geometrical progression, save 
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under exceptional circumstances and in transient phase. Undoubtedly 
many of Huxley’s instances shew increase by compound interest, 
during a phase of rapid and unstinted growth; but I find many 
others following a simple-interest rather than a compound-interest 
law.

Relative weights of claw and body in fiddler-crabs (Uca pugnax). 
(Data abbreviated from Huxley, Problems of Relative Growth, 
P- 12)

Wt. of body
less claw WE of Ratio Wt. of Wt. of Ratio
(mgm.) claw O/ /O body claw O/ /O

58 5 8-6 618 243 39-3
80 9 11-2 743 319 42-9

109 14 12-8 872 418 47-9
156 25 160 983 461 469
200 38 190 1080 537 49-7
238 53 22-3 1166 594 509
270 59 21-9 1212 617 50-9
300 78 26-0 1299 670 51-6
355 105 297 1363 699 51-3
420 135 32-1 1449 773 53-7
470 165 35-1 1808 1009 55-8
536 196 36-6 2233 1380 61-7

In the common stag-beetle (Lucanus cervus) we have the following 
measurements of mandible and elytron or wing-case: which two 
organs make up the bulk of, and may for our purpose be held 
as constituting, the “total length” of the beetle. Here a simple 
equation meets the case; in other words, the length of elytron or 
of mandible plotted against total length gives what is to all intents 
and purposes a straight line, indicating a simple-interest rather 
than a compound-interest rate of increase.

Measurements of 48 stag-beetles (Lucanus cervus)* (mm.)
Number of specimens 1 4 5 10 5 7 11 5
Length, total (x) 310 38-7 40-5 42-6 45-0 46-9 49-2 53-6
Length of elytron (y) 250 30-9 31-5 326 33-8 35-1 36-4 39-2

( ,, calculated) (y') 26-9 30-8 31-7 32-8 34-0 35-0 36-2 38-5
Length of mandible (z) 6-0 7-8 90 10-0 11-2 11-9 12-8 14-4

( „ calculated.) (z') 5-9 7-7 9-3 10-1 11-0 11-7 12-6 14-2

* Data, from Julian Huxley, after W. Bateson and H. H. Brindley, in P.Z.S. 
1892, pp. 585-594.
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From the observed data we may solve, by the method of least 
squares, the simple equations

y = a + bx, c + dx,

or in other words, find the equations of the straight lines in closest 
agreement with the observed data. The solutions are as follows*:

y = 11-02 -I* 0-512z, and z = - 5-64 + 0-368z,

the two coefficients 0-368 and 0-512 signifying the difference between 
the rates of increase of the two organs. The number of samples is 
not very large, and some deviation is to be expected; nevertheless, 
the calculated straight lines come close to the observed values.

Fig. 55. Relative growth of body and mandible in reindeer-beetle 
(Cyclommatus tarandus).

The reindeer-beetle (Cyclommatus tarandus), belonging to the 
same family, shews much the same thing. The mandible grows in 
approximately linear ratio to the body, save that it tends to be at 
first a little above, and later on a little below, this linear ratio 
(Fig- 55).

Measurements of Cyclommatus tarandusf (mm.)

* As determined for me by Dr A. C. Aitken, F.R.S.
t Data, much abbreviated, from Huxley, after E. Dudich, Archiv f. Naturgesch. (A), 

1923.

Length of mandible (y) 3-9 10-7 141 19-9 240 30-7 34-5
Total length (x) 20-4 331 38-4 47-3 54-2 66-1 74-0
Total length calculated: 
x = l-7y + 13-7

20-3 31-9 37-7 47-5 54-5 65-9 72-4

T C F 14
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The facial and cranial parts of a dog’s skull tend to grow at 
different rates (Fig. 56); and changes in the ratio between the two 
go a long way to explain the differences in shape between one dog’s 
skull and another’s, between the greyhound’s and the pug’s. But 
using Huxley’s own data (after Becher) for the sheepdog, I find the 
ratio between the facial and cranial portions of the skull to be, once 
again, a simple linear one.

Measurements of skull of sheep-dog (30 specimens) * (mm.)
Mean length of facial region (y) 22-0
Mean length of cranial region (x) 42-0
Calculated values for cranial 42-1 

region: x = 22-7 + 0-88y

483 58 0 73-5 89 1 102 0 1120
65-3 74-5 85-5 99-3 112-6 120-0
65-2 73-7 87-4 97-1 112-5 121-2

And now, returning to the fiddler-crab, we find that after the 
crab has reached a certain size and the first phase of rapid growth 
is over, claw and body grow in simple linear relation to one another, 
and the heterogonic or compound-interest formula is no longer 
required:

Fiddler-crab (Uca pugnax): ratio of growth-rates, in later stages, 
of daw and body (mgm.)

Weight of body less 
claw (x)

872 983 1080 1165 1212 1291 1363 1449

Weight of large 
claw (y)

418 461 537 594 617 670 699 778

Do., calculated: 
y=0-6x- 110

413 480 538 590 617 665 708 759

* Data from A. Becher, in Archiv f. Naturgeach. (A), 1923; see Huxley, Problems 
of Relative Growth, p. 18, and Biol. Centralbl. loc. cit. Here, and in the previous 
case of Cydommatus, the equation has been arrived at in a very simple way. Take 
any two values, x1, xa, and the corresponding values, ya. Then let

e.g.

or

x-Xj y-yY 
~ xi y»~ Hi 

x-65-3 y-48-3
112-6 - 65-3 “ 102-0 - 48-3 ’

x-65-3 y-48-3 
47-3

from which x = 22-7 + 0-88y.
We may with advantage repeat this process with other values of x and y; and 

take the mean of the results so obtained.
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Once again we find close agreement between the observed and 
calculated values, although the observations are somewhat few and 
the equation is arrived at in a simple way. We may take it as 
proven that the relation between the two growth-rates is essentially 
linear.

A compound-interest law of growth occurs, as Malthus knew, 
in cases, and at times, of rapid and unrestricted growth. But 
unrestricted growth occurs under special conditions and for brief

Fig. 56. Relative growth of the cranial and facial portions of the 
skull in the sheepdog. Cf. Huxley, p. 18, after Becher.

periods; it is the exception rather than the rule, whether in a 
population or in the single organism. In cases of differential 
growth the compound-interest law manifests itself, for the same 
reason, when one of the two growth-rates is rapid and “unre
stricted,” and when the discrepancy between the two growth-rates is 
consequently large, for instance in the fiddler-crabs. The compound
interest law is a very natural mofle of growth, but its range is 

14-2
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limited. A linear relation, or simple-interest law, seems less likely 
to occur; but the fact is, it does occur, and occurs commonly.

On so-called dimorphism
In a well-known paper, Bateson and Brindley shewed that among 

a large number of earwigs collected in a particular locality, the 
males fell into two groups, characterised by large or by small

Fig. 57. Tail-forceps of earwig. From Martin Burr, after Willi Kuhl.

Fig. 58. Variability of length of tail-forceps in a sample of earwigs. 
After Bateson and Brindley, P.Z.S 1892, p. 588.

tail-forceps (Fig. 57), with few instances of intermediate magnitude*. 
This distribution into two groups, according to magnitude, is 
illustrated in the accompanying diagram (Fig. 58); and the

* W. Bateson and H. H. Brindley, On some cases of variation in secondary 
sexual characters [Forficula, Xylotrupa], statistically examined, P.Z.S. 1892, 
pp. 585-594. Cf. D. M. Diakonow, On dimorphic variability of Forficuli. Journ. 
Genet. xv, pp. 201-232, 1925; and Julian Huxley, The bimodal cephalic horn of 
Xylotrupa, ibid, xvm, pp. 45-53, 1927.
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phenomenon was described, and has been often quoted, as one 
of dimorphism or discontinuous variation. In this diagram the 
time-element does not appear; but it looks as though it lay close 
behind. For the two size-groups into which the tails of the earwigs 
fall look curiously like two age-groups such as we have already 
studied in a fish, where the ages and therefore also the magnitudes of a 
random sample form a discontinuous series (Fig. 59). And if, instead 
of measuring the whole length of our fish, we had confined ourselves 
to particular parts, such as head, or tail or fin, we should have 
obtained discontinuous curves of distribution for the magnitudes

Fig. 59. Length of body in a random sample of plaice.

of these organs, just as for the whole body of the fish, and just as 
for the tails of Bateson’s earwigs. The differences, in short, with 
which Bateson was dealing were a question of magnitude, and it 
was only natural to refer these diverse magnitudes to diversities of 
growth; that is to say, it seemed natural to suppose that in this 
case of “dimorphism,” the tails of the one group of earwigs (which 
Bateson called the “high males”) had either grown faster, or had 
been growing for a longer period of time, than those of the “low 
males.” If the whole random sample of earwigs were of one and 
the same age, the dimorphism would appear to be due to two 
alternative values for the mean growth-rate, individual earwigs 
varying around one mean or the other. If, on the other hand, the 
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two groups of earwigs were of different ages, or had passed through 
one moult more or less, the phenomenon would be simple indeed, 
and there would be no more to be said about it*. Diakonow made 
the not unimportant observation that in earwigs living in un
favourable conditions only the short-tailed type tended to appear.

In apparent close analogy with the case of the earwigs, and in 
apparent corroboration of their dimorphism being due to age, 
Fritz Werner measured large numbers of water-fleas, all apparently 
adult, found his measurements falling into groups and so giving 
multimodal curves. The several cusps, or modes, he interpreted 
without difficulty as indicating differences of age, or the number 
of moults which the creatures had passed through f (Fig. 60).

Fig. 60. Measurements of the dorsal edge in a population of 
Chydorus sphaericus, a water-flea. From Fritz Werner.

An apparently analogous but more difficult case is that of a 
certain little beetle, Onlhophagus taurus, which bears two “horns” 
on its head, of variable size or prominence. Linnaeus saw in it 
a single species, Fabricius saw two; and the question long remained 
an open one among the entomologists. We now know that there 
are two “modes,” two predominant sizes in a continuous range of

* The number of moults is known to be variable in many species of Orthoptera, 
and even occasionally in higher insects; and how the number of moults may be 
influenced by hunger, damp or cold is discussed by P. P. Calvert, Proc. Amer. 
Philos. Soc. Lxvni, p. 246, 1929. On the number of moults in earwigs, see E. B. 
Worthington, Entomologist, 1926, and W. K. Weyrauch, Biol. Centralbl. 1929, 
pp. 543-558.

j- Fritz Werner, Variationsanalytische Untersuchungen an Chydoren, Ztschr. f. 
Morphologic u. Oekologie d. Tiere, n, pp. 58-188, 1924. 
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variation*. In the “complete metamorphosis” of a beetle there 
is no room for a moult more or less, and the reason for the two 
modal sizes remains hidden (Fig. 61).

But new light has been thrown on the case of the earwigs, which 
may help to explain other obscure diversities of shape and size 
within the class of insects. At metamorphosis, and even in a simple 
moult, the external organs of an insect may often be seen to unfold, 
as do, for instance, the wings of a butterfly; they then quickly 
harden, in a form and of a size with which ordinary gradual growth

Fig. 61. Two forms of the male, in the beetle Onthophagus taurus.

has had nothing directly to do. This is a very peculiar phenomenon, 
and marks a singular departure from the usual interdependence of 
growth and form. When the nymph, or larval earwig, is about to 
shed its skin for the last time, the tail-forceps, still soft and tender, 
are folded together and wrapped in a sheath; they need to be 
distended, or inflated, by a combined pressure of the body-fluid 
(or haemolymph) and an intake of respiratory air. If all goes well,

* Rene Paulian, Bull. Soc. Zool. Fr. 1933; also Le polymorphisms des mdles de 
Cddopteres, Paris, 1935, p. 8.
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the forceps expand to their full size; if the creature be weak or 
underfed, inflation is incomplete and the tail-forceps remain small. 
In either case it is an affair of a few critical moments during the 
final ecdysis; in ten minutes or less, the chitin has hardened, and 
shape and size change no more. Willi Kuhl, who has given us this 
interesting explanation, suggests that the dimorphism observed by 
Bateson and by Diakonow is not an essential part of the pheno
menon ; he has found it in one instance, but in other and much larger 
samples he has found all gradations, but only a single, well-marked 
unimodal peak*.

The effect of temperature^

The rates of growth which we have hitherto dealt with are mostly 
based on special investigations, conducted under particular local 
conditions; for instance, Quetelet’s data, so far as we have used 
them to illustrate the rate of growth in man, are drawn from his 
study of the Belgian people. But apart from that “fortuitous” 
individual variation which we have already considered, it is obvious 
that the normal rate of growth will be found to vary, in man and 
in other animals, just as the average stature varies, in different 
localities and in different “races.” This phenomenon is a very 
complex one, and is doubtless a resultant of many undefined con
tributory causes; but we at least gain something in regard to it 
when we discover that rate of growth is directly affected by 
temperature, and doubtless by other physical conditions. Reaumur 
was the first to shew, and the observation was repeated by Bonnet J, 
that the rate of growth or development of the chick was dependent 
on temperature, being retarded at temperatures below and somewhat

* XV 'lli Kuhl, Die Variabilitat der abdominalen Korperanhange bei Forficula, 
Ztsch. Morph, u. Oek. d. Tiere, xu, p. 299, 1924. Cf. Malcolm Burr, Discovery, 
1939, pp. 340-345.

t The temperature limitations of life, and to some extent of growth, are sum
marised for a large number of species by Davenport, Exper. Morphology, cc. viii, 
xviii, and by Hans Przibram, Exp. Zoologie, iv, c. v.

t Reaumur, Kart de faire eclorre et elever en toute saison des oiseaux domestiques, 
soit par le moyen de la chaleur du fumee, soit par le moyen de celle du feu ordinaire, 
Paris, 1749. He had also studied, a few years before, the effects of heat and cold 
on growth-rate and duration of life in caterpillars and chrysalids: Memoires, n, 
p. 1, de la duree de la vie des crisalides (1736). See also his Observations du 
Thermometre, etc., Mem. Acad., Paris, 1735, pp. 345-376. 
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accelerated at temperatures above the normal temperature of 
incubation, that is to say the temperature of the sitting hen. In 
the case of plants the fact that growth is greatly affected by tem
perature is a matter of familiar knowledge; the subject was first 
carefully studied by Alphonse De Candolle, and his results and those 
of his followers are discussed in the textbooks of botany*.

* Cf. (inf. al.} H. de Wies, Materiaux pour la connaissance de 1’influence de la 
temperature sur les plantes, Arch. Neerlandaises, v, pp. 385—401, 1870; C. Linsser, 
Periodische Erscheinungen des PHanzenlebens, Mem. Acad, des Sc., St Petersbourg 
(7), xi, xii, 1867-69; Koppen, VVarme und Pflanzenwach«tum, Bull. Soc. Imp. 
Nat., Moscou, xun, pp. 41-110, 1871; H. Hoffmann, Thermische Vegetations- 
constanten, Ztschr. Oesterr. Ges. f. Meteorologic., xvn, pp. 121-131, 1881; Pheno- 
logische Studien, Meteorolog. Ztschr. m, pp. 113-120, 1886.

f See (int. al.) R. H. Hooker, Journ. Boy. Statist. Soc. 1907, p. 70; Journ. Roy. 
Meteor. Soc. 1922, p. 46.

J F. F. Blackman, Ann. Bot. xix, p. 281, 1905.
§ Szava-Kovatz, in Petermann's Mitteilungen, 1927, p. 7.
|| Cf. E. J. Salisbury, On the oecological aspects of Meteorology, Q.J.R. Meteorol. 

Soc. July 1939.
•; R. G. Tomkins, Proc. R.S. (B), cv, pp. 375-401, 1929.

That temperature is only one of the climatic factors determining growth and 
yield is well known to agriculturists; and a method of “multiple correlation” 
has been used to analyse the several influences of temperature and of rainfall 
at different seasons on the future yield of our own crops f. The same joint 
influence can be recognised in the bamboo; for it is said (by Lock) that the 
growth-rate of the bamboo in Ceylon is proportional to the humidity of the 
atmosphere, and again (by Shibata) that it is proportional to the temperature 
in Japan. But Blackman^ suggests that in Ceylon temperature conditions 
are all that can be desired, but moisture is apt to be deficient, while in Japan 
there is rain in abundance but the average temperature is somewhat low: 
so that in the one country it is the one factor, and in the other country the 
other, whose variation is both conspicuous and significant. After all, it is 
probably rate of evaporation, the joint result of temperature and humidity, 
which is the crux of the matter§. “Climate” is a subtle thing, and includes 
a sort of micro-meteorology. A sheltered corner has a climate of its own; one 
side of the garden-wall has a different climate to the other; and deep in the 
undergrowth of a wood celandine and anemone enjoy a climate many degrees 
warmer than what is registered on the screen r.

Among the mould-fungi each several species has its own optimum tempera
ture for germination and growth. At this optimum temperature growth is 
further accelerated by increase of humidity; and the further we depart from 
the optimum temperature, the narrower becomes the range of humidity within 
which growth can proceed^. Entomologists know, in like manner, how over
abundance of an insect-pest comes, or is apt to come, with a double optimum 
of temperature and humidity.
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The annexed diagram (Fig. 62), showing growth in length of the 
roots of some common plants at various temperatures, is a sufficient 
illustration of the phenomenon. We see that there is always a 
certain temperature at which the rate is a maximum; while on either 
side of the optimum the rate falls off, after the fashion of the normal 
curve of error. We see further, from the data given by Sachs and 
others, that the optimum is very much the same for all the common 
plants of our own climate. For these it is somewhere about 26° 0.

plants. From Sachs’s data.

(say 77° F.), or about the temperature of a warm summer’s day; 
while it is considerably higher, naturally, in such plants as the melon 
or the maize, which are at home in wanner countries than our own. 
The bacteria have, in like manner, their various optima, and some
times a high one. The tuberculosis-bacillus, as Koch shewed, only 
begins to grow at about 28° 0., and multiplies most rapidly at 
37-38°, the body-temperature of its host.

The setting and ripening of fruit is a phase of growth still more 
dependent on temperature; hence it is a “delicate te^t of climate,” 
and a proof of its constancy, that the date-palm grows but hears 
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no fruit in Judaea, and the vine bears freely at Eshcol, but not in 
the hotter country to the south*.  Shellfish have their own appro
priate spawning-temperatures; it needs a warm summer for the 
oyster to shed her spat, and Hippopus and Tridacna, the great clams 
of the coral-reefs, only do- so when the water has reached the high 
temperature of 30° C. For brown trout, 6° C. is found to be a 
critical temperature, a minimum short of which they do not grow 
at all; it follows that in a Highland burn their growth is at a 
standstill for fully half the yearf.

* Cf. J. W. Gregory, in Geogr. Journ. 1914, and Journ. R. Geogr. Soc. Oct. 1930.
f Cf. C. A. Wingfield, op. cit. supra, p. 176.
j B. P. Uvarow, Trans. Ent. Soc. Lond. lxxix, p. 38, 1931.
§ W. H. Golightly and Ll Lloyd, in Nature, July 22, 1939.
|| Cf. B. G. Bogorow and others, in the Journ. M.B.A. xix, 1933-34.

That a rise of temperature accelerates growth is but part of the 
story, and is not always true. Several insects, experimentally 
reared, have been found to diminish in size as the temperature 
increased]:; and certain flies have been found to be larger in their 
winter than their summer broods. The common copepod, Calanus 
finmarchicus, has spring, summer and autumn broods, which (at 
Plymouth§) are large, middle-sized and small; but the large spring 
brood are hatched and reared in the cold “winter” water, and the 
small autumn-winter brood in the warmest water of the year. In 
the cold waters of Barents Sea Calanus grows larger still; of an 
allied genus, a large species lives in the Antarctic, a small one in 
the tropics, a middle-sized is common in the temperate oceans. 
The large size of many Arctic animals, coelenterates and crustaceans, 
is well known; and so is that of many tropical forms, like Fungia 
among the corals, or the great Tritons and Tridacnas among 
molluscs. Another common phenomenon is the increasing number 
of males in late summer and autumn, as in the Rotifers and in the 
above-mentioned Calani. All these things seem somehow related 
to temperature; but other physical conditions enter into the case, 
for instance the amount of dissolved oxygen in the cold waters, and 
the physical chemistry of carbonate of lime in the warm||.

The vast profusion of life, both great and small, in Arctic seas, the multitude 
of individuals and the unusual size to which many species grow, has been 
often ascribed to a superabundance of dissolved oxygen, but oxygen alone 
^vould not go far. The nutrient salts, nitrates and phosphates, are the 



220 THE RATE OF GROWTH [ch.
limiting factor in the growth of that micro-vegetation with which the whole 
cycle of life begins. The tropical oceans are often very bare of these salts; 
in our own latitudes there is none too much, and the spring-growth tends to 
use up the supply. But we have learned from the Discovery Expedition 
that these salts are so abundant in the Antarctic that plant-growth is never 
checked for stint of them. Along the Chilean coast and in S.W. Africa, 
cold Antarctic water wells up from below the warm equatorial current. It 
is ill-suited for the growth of corals, which build their reefs in the warmer 
waters of the eastern side; but it teems with nourishment, breeds a plankton
fauna of the richest kind, which feeds fishes preyed on by innumerable birds, 
the guano of which is sent all over the world. Now and then persistent winds 
thrust the cold current aside; a new warm current, el Nm of the Chileans, 
upsets the old equilibrium; the fishes die, the water stinks, the birds starve. 
The same thing happens also at Walfisch Bay, where on such rare occasions 
dead fish lie piled up high along the shore.

It is curiously characteristic of certain physiological reactions, 
growth among them, to be affected not merely by the temperature 
of the moment, but also by that to which the organism has been 
previously and temporarily exposed. In other words, acclimatisation 
to a certain temperature may continue for some time afterwards to 
affect all the temperature relations of the body*.  That temporary 
cold may, under certain circumstances, cause a subsequent accelera
tion of growth is made use of in the remarkable process known as 
vernalisation. An ingenious man, observing that a winter wheat failed 
to flower when sown in spring, argued that exposure to the cold of 
winter was necessary for its subsequent rapid growth; and this he 
verified by “chilling” his seedlings for a month to near freezing-point, 
after which they grew quickly, and flowered at the same time as the 
spring wheat. The economic advantages are great of so shortening 
the growing period of a crop as to protect it from autumn frosts in a 
cold climate or summer drought in a hot one; much has been done, 
especially by Lysenko in Russia, with this end in viewf.

* Cf. Kenneth Mellaqby, On temperature coefficients and acclimatisation, 
Nature, 3 August 1940.

f Cf. (int. al.) V. H. Blackman, in Nature, June 13, 1936.

The most diverse physiological processes may be affected by 
temperature. A great astronomer at Mount \V dson, in California, 
used some idle hours to watch the “trail-running” ants, which run 
all night and all day. Their speed increases so regularly with the 
temperature that the time taken to run 30 cm. suffices to tell the
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temperature to 1° C.! Of two allied species, one ran nearly half as 
fast again as the other, at the same temperature*.

While at low temperatures growth is arrested and at temperatures 
unduly high life itself becomes impossible, we have now seen that 
within the range of more or less congenial temperatures growth 
proceeds the faster the higher the temperature. The same is true 
of the ordinary reactions of chemistry, and here Van’t Hoff and 
Arrhenius f have shewn that a definite increase in the velocity of 
the reaction follows a definite increase of temperature, according to 
an exponential law: such that, for an interval of n degrees the 
velocity varies as xn, x being called the “temperature coefficient” 
for the reaction in question]:. The law holds good throughout a 
considerable range, but is departed from when we pass beyond 
certain normal limits; moreover, the value of the coefficient is found 
to keep to a certain order of magnitude- -somewhere about .2 for 
a temperature-interval of 10° C.—which means to say that the 
velocity of the reaction is just about doubled, more or less, for a 
rise of 10° C.

This law, which has become a fundamental principle of chemical 
mechanics, is applicable (with certain qualifications) to the pheno
mena of vital chemistry, as Van’t Hoff himself was the first to declare; 
and it follows that, on much the same lines, one may speak of a 
“temperature coefficient” of growth. At the same time we must 
remember that there is a very important difference (though we need 
not call it a fundamental one) between the purely physical and the

♦ Harlow Shapley, On the thermokinetics of Dolichoderine ants, Proc. Nat. 
Acad. Sci. x, pp. 436—439, 1924.

f Van’t Hoff and Cohen, Studien zur chemischen Dynamik, 1896; Sv. Arrhenius, 
Ztschr. f. phys. Chemie, iv, p. 226.

J For various instances of a temperature coefficient in physiological processes, 
see (e.g.) Cohen, Physical Chemistry for... Biologists (English edition), 1903; 
Kanitz and Herzog in Zeitschr. f. Elektrochemie, xr, 1905; F. F. Blackman, Ann. 
Bot. xix, p. 281, 1905; K. Peter, Arch.f. Entw. Meeh, xx, p. 130, 1905; Arrhenius, 
Ergebn. d. Physiol, vil, p. 480, 1908, and Quantitative Laws in Biological Chemistry, 
1915; Krogh in Zeitschr. f. allgem. Physiologic, xvi, pp. 163, 178,1914; James Gray, 
Proc. R.S. (B), xcv, pp. 6-15, 1923; W. J. Crozier, many papers in Journ. Gen. 
Physiol. 1924; J. Belehradek, in Biol. Reviews, v, pp. 1-29, 1930. On the general 
subject, see E. Janisch, Temperaturabhangigkeit biologischer Vorgange und ihrer 
kurvenmassige Analyse. Pfliiger's Archiv, ccix, p. 414, 1925; G. and P. Hertwig» 
Regulation von VVachstum... dutch Umweltsfaktoren, in Hdb. d. normal, u. pathol. 
Physiologic, xvi, 1930.



222 THE RATE OF GROWTH [ch.

physiological phenomenon, in that in the former we study (or seek 
and profess to study) one thing at a time, while in the living body 
we have constantly to do with factors which interact and interfere; 
increase in the one case (or change of any kind) tends to be con
tinuous, in the other case it tends to be brought, or to bring 
itself, to arrest. This is the simple meaning of that Law of 
Optimum, laid down by Errera and by Sachs as a general principle 
of physiology; namely that every physiological process which varies 
(like growth itself) with the amount or intensity of some external 
influence, does so under such conditions that progressive increase is 
followed by progressive decrease; in other words, the function has 
its optimum condition, and its curve shews a definite maximum. 
In the case of temperature, as Jost puts it, it has on the one hand 
its accelerating effect, which tends to follow Van’t Hoff’s law. But 
it ha§ also another and a cumulative effect upon the organism: 
“Sie schadigt oder sie ermiidet ihn, und je hbher sie steigt desto 
rascher macht sie die Schadigung geltend und desto schneller schreitet 
sie voran*.” It is this double effect of temperature on the organism 
which gives, or helps to give us our “optimum” curves, which (like 
all other curves of frequency or error) are the expression, not of a 
single solitary phenomenon, but of a more or less complex resultant. 
Moreover, as Blackman and others have pointed out, our “optimum” 
temperature is ill-defined until we take account also of the duration 
of our experiment; for a high temperature may lead to a short but 
exhausting spell of rapid growth, while the slower rate manifested 
at a lower temperature may be the best in the end. The mile and 
the hundred yards are won by different runners; and maximum 
rate of working, and maximum amount of work done, are two very 
different things f.

In the case of maize, a certain series of experiments shewed that 
the growth in length of the roots varied with the temperature as 
follows J:

♦ On such limiting factors, or counter-reactions, see Putter, Ztschr. f. allgem. 
Physiologic, xvi, pp. 574-627, 1914.

f Cf. L. Errera. L'Optimum, 1896 (Recueil d'oeuvres, Physiologic g&drale, pp. 338- 
368,1910); Sachs, Physiologic d. Pflanzen, 1882, p. 233; Pfeffer, Pflanzenphysidogie, 
n, p. 78, 194; and cf. Jost, Ueber die Reactionsgeschwindigkeit im Organismus, 
Bid. Centralbl. xxvi, pp. 225-244, 1906.

J After Koppen, Bull. Soc. Nat. Moscou, XLm, pp. 41-101, 1871.
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Temperature 
°C.
18-0
23-5
26-6
28-5
30-2
33-5
36-5

Growth in 48 hours 
mm.

1-1
10-8
29-6 
26-5 
64-6 
69-5 
20-7

Let us write our formula in the form

v, ~x’ or log - log V, = n. log x.

Then choosing two values out of the above experimental series 
(say the second and the second-last), we have t = 23-5, n = 10, 
and V, V' = 10-8 and 69-5 respectively.

Accordingly, log 69-5 — log 10-8 
“10 = log x,

or 0-8414-^4 = 0<m

and therefore the temperature-coefficient
= antilog 0-0808 = 1-204 (for an interval of 1° C.).

This first approximation might be much improved by taking account 
of all the experimental values, two only of which we have yet made 
use of; but even as it is, we see by Fig. 63 that it is in very fair 
accordance with the actual results of observation, within those 
particular limits of temperature to which the experiment is confined.

For an experiment on Lupinus albus, quoted by Asa Gray* 
I have worked out the corresponding coefficient, but a little more 
carefully. Its value I find to be 1-16, or very nearly identical with 
that we have just found for the maize; and the correspondence 
between the calculated curve and the actual observations is now 
a close one.

Miss I. Leitch has made careful observations of the rate of growth of rootlets 
of the Pea; and I have attempted a further analysis of her principal resultsf.

* Asa Gray, Botany, p. 387.
f I. Leitch, Some experiments on the influence of temperature on the rate 

of growth in Pisum sativum, Ann. Bot. xxx, pp. 25-46, 1916. especially Table III, 
p. 45. Cf. Priestley and Pearsall, Growth studies, Ann. Bot. xxxvi, pp. 224-249, 
1922.
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In Fig. 64 are shewn the mean rates of growth (based on about a hundred 
experiments) at some thirty-four different temperatures between (J-8G and 
29-3°, each experiment lasting rather less than twenty-four hours. Working 
out the mean temperature coefficient for a great many combinations of these 
values, I obtain a value of 1-092 per C.°, or 2-41 for an interval of 10°, and 
a mean value for the whole series shewing a rate of growth of just about 
1 mm. per hour at a temperature of 20°. My curve in Fig. 64 is drawn from 
these determinations; and it will be seen that, while it is by no means exact 
at the lower temperatures, and will fail us altogether at very high tem
peratures, yet it serves as a satisfactory guide to the relations between rate 
and temperature within the ordinary limits of healthy growth. Miss Leitch

Fig. 63. Relation of rate of growth to temperature in maize. Observed 
values (after Koppen), and calculated curve.

holds that the curve is not a Van’t Hoff curve; and this, in strict accuracy, 
we need not dispute. But the phenomenon seems to me to be one into which 
the Van’t Hoff ratio enters largely, though doubtless combined with other 
factors which we cannot determine or eliminate.

While the above results conform fairly well to the law of the 
temperature-coefficient, it is evident that the imbibition of water 
plays so large a part in the process of elongation of the root or 
stem that the phenomenon is as much or more a physical than a 
chemical one: and on this account, as Blackman has remarked, the 
data commonly given for the rate of growth in plants are apt to 
be irregular, and sometimes misleading*. We have abundant

* F. F. Blackman, Presidential Address in Botany, Brit. Assoc. Dublin. 1908.
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illustrations, however, among animals, in which we may study the 
temperature-coefficient under circumstances where, though the 
phenomenon is always complicated, true metabolic growth or 
chemical combination plays a larger role. Thus Mlle. Maltaux and 
Professor Massart* have studied the rate of division in a certain 
flagellate, Chilomonas paramoecium, and found the process to take

Fig. 64. Relation of rate of growth to temperature in rootlets of 
pea. From Miss I. Leitch’s data.

29 minutes at 15° C., 12 at 25°, and only 5 minutes at 35° C. These 
velocities are in the ratio of 1 : 2-4 : 5-76, which ratio corresponds 
precisely to a temperature-coefficient of 2-4 for each rise of 10°, or 
about 1-092 for each degree centigrade, precisely the same as we 
have found for the growth of the pea.

By means of this principle we may sometimes throw light on 
apparently complicated experiments. For instance, Fig. 65 is an

* Rec. de I'Inst. Bot. de Bruxelles, vi, 1906.
TG F 15



Fig. 65. Diagram shewing time taken (in days), at various temperatures (° C.), 
to reach certain stages of development in the frog: viz. I, gastrula; II, 
medullary plate; III, closure of medullary folds; IV, tail-bud; V, tail and 
gills; VI, tail-fin; VII, operculum beginning; VIIJ, do. closing; IX, first 
appearance of hind-legs. From Jenkinson, after O. Hertwig, 1898.

* O. Hertwig, Einfluss der Temperatur auf die Entwicklung von Rana fusca 
und R. esculenta, Arch. f. mikrosk. Anat. Li, p. 319, 1898. Cf. also K. Bialaszewicz, 
Beitrage z. Kenntniss d. Wachsthumsvorgange bei Amphibienembryonen, Bull. 
Acad. Sci. de Cracovie, p. 783, 1908; Abstr. in Arch. f. Entwicklungsmech. xxvin, 
p. 160, 1909: from which Ernst Cohen determined the value of (Vortrage iib. 
physikal. Chemie f. Arzte, 1901; English edit. 1903).



in] OF TEMPERATURE COEFFICIENTS 227

From inspection of this diagram, we see that the time taken to 
attain certain stages of development (denoted by the numbers 
III-VII) was as follows, at 20° and at 10° C., respectively.

Fig. 66. Calculated values, corresponding to preceding figure.

That is to say, the time taken to produce a given result at 10° 
was (on the average) somewhere about 55-6/16-7, or 3-33, times as 
long as was required at 20° C.

We may then put our equation in the simple form,
z10 = 3-33.

Or,

Therefore
and

10 log x = log 3-33 = 0-52244. 

log x = 0-05224,

x = 1-128.
15-2
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That is to say, between the intervals of 10° and 20° C., if it take 

m days, at a certain given temperature, for a certain stage of 
development to be attained, it will take m < 1-128" days, when the 
temperature is n degrees less, for the same stage to be arrived at.

Fig. 66 is calculated throughout from this value; and it will be 
found extremely concordant with the original diagram, as regards 
all the stages of development and the whole range of temperatures 
shewn; in spite of the fact that the coefficient on which it is based 
was derived by an easy method from a very few points on the 
original curves. In like manner, the following table shews the 
“incubation period” for trout-eggs, or interval between fertilisation 
and hatching, at different temperatures*:

Incubation-period of trout-eggs
Temperature 

°C.
Days’ interval 

before hatching
2-8 ' 165
3-6 135
3-9 121
4-5 109
5-0 103
5-7 96
6-3 89
6-6 81
7-3 73
8-0 65
90 56

10-0 47
11 1 38
12-2 32

Choosing at random a pair of observations, viz. at 3-6° and 10°, 
and proceeding as before, we have

* Data from James Gray, The growth of fish, Journ. Exper. Biology, vi, p. 126, 
1928

10° - 3-6° = 6-4°.

Then

or 6-4 x log x = log 135 — log 47
- 2-1303 - 1-6721 = 0-4582

and log x = 0-4582 -? 6-4 = 0-0716,

x= 1-179.
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Using three other pairs of observations, we have the following 
concordant results:

At 12-2° and 2-8°, x - 1-191
10-0° 3-6° 1-179
9-0° 5-7° 1-178
8-0° 5-0° 1-165

Mean 1-18
A very curious point is that (as Gray tells us) the young fish which 
have hatched slowly at a low temperature are bigger than those 
whose growth has been hastened by warmth.

Again, plaice-eggs were found to hatch and grow to a certain 
length (4-6 mm.), as follows*:

Temperature ( C.) Days
41 230
61 181
8-0 13-3

101 10-3
120 8-3

From these we obtain, as before, the following constants:

At 12° and 8°, x = 1-13
12° 4-1° 1-14
10-1° 6-1° 1-15
8-0° 4-1° 1-15

Mean 1-14

The value of x is much the same for the one fish as for the other.
Karl Peter f, experimenting on echinoderm eggs, and making use 

also of Richard Hertwig’s experiments on young tadpoles, gives the 
temperature-coefficients for intervals of 10° C. (commonly written 
Q10) as follows, to which I have added the corresponding values 
for &:

Sphaerechtnus Q10 = 2-15 Qr = 1-08
Echinus 2-13 1-08
Rana 2-86 1-11

* Data from A. C. Johansen and A. Krogh, Influence of temperature, etc., 
Publ. de Circonstance, No. 68, 1914. The function is here said to be a linear one— 
which would have been an anomalous and unlikely thing.

f Der Grad der Beschleunigung tierischer Entwicklung dutch erhohte Tem
peratur, Arch. f. Entw.'Mech. xx, p. 130, 1905. More recently Bialaszewicz has 
determined the coefficient for the rate of segmentation in Rana as being 2-4 per 10' C.
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These values are not only concordant, but are of the same order 
of magnitude as the temperature-coefficient in ordinary chemical 
reactions. Peter has also discovered the interesting fact that the 
temperature-coefficient alters with age, usually but not always 
decreasing as time goes on*:

* The differences are, after all, of small order of magnitude, as is all the better 
seen when we reduce the ten-degree to one-degree coefficients.

f J. Loeb and Northrop, On the influence of food and temperature upon the 
duration of life, Journ. Biol. Chemistry, xxxii, pp. 103-121, 1917.

Sphaerechinus Segmentation 
Later stages

Qio=2-29
2-03

Qr = 1-09
1-07

Echinus Segmentation 2-30 1-09
Later stages 2-08 1-08

Rana Segmentation 2-23 1-08
Later stages 3-34 113

Furthermore, the temperature-coefficient varies with the tem
perature itself, falling as the temperature rises—a rule which Van’t 
Hoff shewed to hold in ordinary chemical operations. Thus in Rara 
the temperature-coefficient (Q10) at low temperatures may be as 
high as 5-6; which is just another way of saying that at low 
temperatures development is exceptionally retarded.

As the several stages of development are accelerated by warmth, 
so is the duration of each and all, and of life itself, proportionately 
curtailed. The span of life itself may have its temperature
coefficient—in so far as Life is a chemical process, and Death a 
chemical result. In hot climates puberty comes early, and old age 
(at least in women) follows soon; fishes grow faster and spawn 
earlier in the Mediterranean than in the North Sea. Jacques Loeb f 
found (in complete agreement with the general case) that the larval 
stages of a fly are abbreviated by rise of temperature; that the 
mean duration of life at various temperatures can be expressed by 
a temperature-coefficient of the usual order of magnitude; that this 
coefficient tends, as usual, to fall as the temperature rises; and 
lastly—what is not a little curious—that the coefficient is very much 
the same, in fact all but identical, for the larva, pupa and imago of 
the fly.
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Temperature-coefiicients (Qw) of Drosophila
Larva

15-20 C. 115
20-25c C. 106

Pupa Imago
117 118
108 107

And Japanese students, studying a little fresh-water crustacean, have 
carried the experiment much beyond the range of Van’t Hoff’s law, 
and have found length of life to rise rapidly to a maximum at about 
13-14° C., and to fall slowly, in a skew curve, thereafter*  (Fig. 67).

* A. Terao and T. Tabaka, Duration of life in a water-flea. Moina sp.; Journ. 
Imp. Fisheries Inst., Tokyo, xxv, No. 3, March 1930.

Fig. 67. Length of life, at various temperatures, in a water-flea.

If we now summarise the various temperature-coefficients (QJ 
which we have happened to consider, we are struck by their 
remarkably close agreement:

Yeast Qi = 113
Lupin 1 16
Maize 1-20
Pea 1-09
Echinoids 1-08
Drosophila (mean) 112
Frog, segmentation 1-08

„ tadpole 1-13
Mean 1-12
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The constancy of these results might tempt us to look on the 
phenomenon as a simple one, though we well know it to be highly 
complex. But we had better rest content to see, as Arrhenius saw 
in the beginning, a general resemblance rather than an identity 
between the temperature-coefficients in physico-chemical and 
biological processes*.

It was seen from the first that to extend Van’t Hoff’s law from physical 
chemistry to physiology was a bold assumption, to all appearance largely 
justified, but always subject to severe and cautious limitations. If it seemed 
to simplify certain organic phenomena, further study soon shewed how far 
from simple these phenomena were. Living matter is always heterogeneous, 
and from qne phase to another its reactions change; the temperature- 
coefficient vanes likewise, and indicates at the best a summation, or integration, 
of phenomena. Nevertheless, attempts have been made to go a little further 
towards a physical explanation of the physiological coefficient. Van’t Hoff 
suggested a viscosity-correction for the temperature-coefficient even of an 
ordinary chemical reaction; the viscosity of protoplasm varies in a marked 
degree, inversely with the temperature, and the viscosity-factor goes, perhaps, 
a long way to account for the aberrations of the temperature-coefficient. It 
has even been suggested (by Belehradekf) that the temperature-coefficients 
of the biologist are merely those of protoplasmic viscosity. For instance, the 
temperature-coefficients of mitotic cell-division have been shewn to alter 
from one phase to another of the mitotic process, being much greater at the 
start than at the end J; and so, precisely, has it been shewn that protoplasmic 
viscosity is high at the beginning and low at the end of the mitotic process §.

On seasonal growth

There is abundant evidence in certain fishes, such as plaice and 
haddock, that the ascending curve of growth is subject to seasonal 
fluctuations or interruptions, the rate during the winter months 
being always slower than in the months of summer. Thus the 
Newfoundland cod have their maximum growth-rate in June, and 
in January-February they cease to grow; it is as though we super
imposed a periodic annual sine-curve upon the continuous curve of 
growth. Furthermore, as growth itself grows less and less from 
year to year, so will the difference between the summer and the

* Cf. L. V Heilbronn, Science, lxii, p. 268, 1925.
f J. Belehradek, in Biol. Reviews, v, pp. 30-58, 1930.
J Cf. E. Faure-Fremiet, La cin^tique du ddveloppement, 1925; also B. Ephrussi, 

C.R. clxxxii, p. 810, 1926.
§ See (int. al.) L. V. Heilbronn, The Colloid Chemistry of Protoplasm, 1928. 
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winter rates grow less and less. The fluctuation in rate represents 
a vibration which is gradually dying out; the amplitude of the 
sine-curve diminishes till it disappears; in short our phenomenon 
is simply expressed by what is known as a “damped sine-curve*. ”

* The scales, on the other hand, make most of their growth during the inter
mediate seasons: and with this peculiarity, that a few broad zones are added to 
the scale in spring, and a larger number of narrow circuli in autumn: see Contrib. 
to Canadian Biology, iv, pp. 289-305, 1929; Ben Dawes, Growth...in plaice, 
Journ. M.B.A. xvn, pp. 103-174, 1930.

f From Daffner, Das Wachstum des Menschen, p. 329, 1902.

Growth in height of German military cadets, in half-yearly periods
Increment (cm.)

Number 
observed Age

Height (cm.)
Winter 
i-year

Summer 
j-year YearOctober April October

12 11-12 139-4 141-0 143-3 1-6 2-3 3-9
80 12-13 143-0 144-5 147-4 1-5 2-9 4-4

146 13-14 147-5 149-5 152-5 2-0 3-0 5-0
162 14-15 152-2 155-0 158-5 2-8 3-5 6-3
162 15-16 158-5 160-8 163-8 2-3 3-0 5-3
150 16-17 163-5 165-4 167-7 1-9 2-3 4-2
82 17-18 167-7 168-9 170-4 1-2 1-5 2-7
22 18-19 169-8 170-6 171-5 0-8 0-9 1-7

6 19-20 170-7 171-1 171-5 0-4 0-4 0-8
Mean 1-6 2-2

Fig. 68. Half-yearly increments of growth, in cadets of various ages. 
From Daffner’s data.

The same thing occurs in man, though neither in his case nor in 
that of the fish have we sufficient data for its complete illustration. 
We can demonstrate the fact, however, by help of certain measure
ments of the height of German cadets, measured at half-yearly 
intervalsf. In the accompanying diagram (Fig. 68) the half-yearly 
increments are set forth from the above table, and it will be seen 
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that they form two even and entirely separate series. Danish school
boys show just the same periodicity of growth in stature.

The seasonal effect on visible growth-rate is much alike in fishes 
and in man, in spite of the fact that the bodily temperature of the one 
varies with the milieu externe and that of the other keeps constant 
to within a fraction of a degree.

While temperature is the dominant cause, it is not the only cause 
of seasonal fluctuations of growth; for alternate scarcity and 
abundance of food is often, as in herbivorous animals, the ostensible

Fig. 69. Seasonal growth of S. African cattle: Sussex half-breeds. 
After Schutte.

reason. Before turnips came into cultivation m the eighteenth 
century our own cattle starved for half the year and grew fat the 
other, and in many countries the same thing happens still. In 
South Africa the rainy season lasts from November to February; 
by January the grass is plentiful, by June or July the veldt is 
parched until rain comes again. Cattle fatten from January to 
March or April; from July to October they put on little weight, 
or lose weight rather than put it on*.

* Gf. D. J. Schutte, in Onderstepoort Journal, Oct. 1935.
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The growth of trees

Some sixty years ago Sir Robert Christison, a learned and versatile 
Edinburgh professor, was the first to study the “exact measurement” 
of the girth of trees*;  and his way of putting a girdle round the 
tree, and fitting a recording device to the girdle, is copied in the 
“dendrographs”f used in forestry today. The Edinburgh beeches 
begin to enlarge their trunks in late May or June, when in full leaf, 
and cease growing some three months later; the buds sprout and 
the leaves begin their work before the cambium wakens to activity. 
The beech-trees in Maryland do likewise, save that the dates are 
a little earlier in the year; and walnut-trees on high ground in 
Arizona shew a like short season of growth, differing somewhat in 
date or “phase,” just as it did in Edinburgh, from one year to 
another.

* Sir R. Christison, On the exact measurement of trees, Trans. Edinb. Rotan. Soc. 
xiv, pp. 164-172, 1882. Cf. also Duhamel du Monceau, Des semis, et plantation 
des arbres, Paris, 1750. On the general subject see (int. al.) Pfeffer’s Physiology 
of Plants, ii, Oxford, 1906; A. Mallock, Growth of trees, Proc. R.S. (B), xc, 
pp. 186-191, 1919. Mallock used an exceedingly delicate optical method, in 
which inter!erence-bands, produced by two contiguous glass plates, shew a visible 
displacement on the slightest angular movement of the plates, even of the order 
of a millionth of an inch.

f W. S. Glock, A. E. Douglass and G. A. Pearson, Principles.. .of tree-ring 
analysis, Carnegie Inst. Washington, No. 486, 1937; D. T. MacDougal, Tree Growth, 
Leiden, 1938, 240 pp.

J Trans. Edinb. Botan. Soc. xvm, p. 456, 1891.

Deciduous trees stop growing after the fall of the leaf, but ever
greens grow all the year round, more or less. This broad fact is 
illustrated in the following table, which happens to relate to the

Mean monthly increase in girth of trees at San Jorge, Uruguay: from 
C. E. Hall's data. Values given in percentages of total annual 
increment J

Jan. Feb. Mar. Apr. May June July Aug. Sept. Oct. Nov. Dec.
Evergreens 91 8-8 $6 8-9 7-7 5-4 4-3 6-0 9-1 11-1 10-8 10-2
Deciduous trees 20-3 14-6 9-0 2-3 0-8 0-3 0-7 1-3 3-5 9-9 16-7 21-0

southern hemisphere, and to the climate of Uruguay. The measure
ments taken were those of the girth of the tree, in mm., at three 
feet from the ground. The evergreens included Pinus, Eucalyptus 
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and Acacia; the deciduous trees included Quercus, Populus, Robinia 
and Melia. The result (Fig. 70) is much as we might expect. 
The deciduous trees cease to grow in winter-time, and during 
all the months when the trees are bare; during the warm season 
the monthly values are regularly graded, approximately in a sine
curve, with a clear maximum (in the southern hemisphere) about 
the month of December. In the evergreens the amplitude of the

Fig. 70. Periodic annual fluctuation in rate of growth of trees in 
the southern hemisphere. From C. E. Hall’s data.

annual wave is much less; there is a notable amount of growth all 
the year round, and while there is a marked diminution in rate 
during the coldest months, there is a tendency towards equality 
over a considerable part of the warmer season. In short, the 
evergreens, at least in this case, do not grow the faster as the 
temperature continues to rise; and it seems probable that some of 
them, especially the pines, are definitely retarded in their growth, 
either by a temperature above their optimum or by a deficiency of 
moisture, during the hottest season of the year.

Fig. 71 shews how a cypress never ceased to grow, but had alternate 
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spells of quicker and slower growth, according to conditions of 
which we are not informed. Another figure (Fig. 72) illustrates the 
growth in three successive seasons of the Californian redwood, a near 
ally of the most gigantic of trees. Evergreen though the redwood 
is, its growth has periods of abeyance; there is a second minimum 
about midsummer, and the chief maximum of the year may be that 
before or after this.

Fig. 71. Growth of cypress (C. macrocarpa), shewing seasonal periodicity. 
From MacDougal’s data: smoothed curve.

mm.

Fig. 72. Fortnightly increase of girth in Californian redwood (Sequm ’ 
semper virens), shewing seasonal periodicity. After MacDougal.

In warm countries tree-growth is apt to shew a double maximum, 
for the cold of winter and the drought of summer are equally 
antagonistic to it. Trees grow slower—and grow fewer—the farther 
north we go, till only a few birches and willows remain, stunted and 
old; it is nearly a hundred years ago since Auguste Bravais* 
shewed a steadily decreasing growth-rate in the forests between 
50° and 70° N.

* Recherches sur la croissance du pin silvestre dans le nord de 1’Europe, Mint, 
couronnies de I'Aiad R. de Belgique, xv, 64 pp., 1840-41.
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The delicate measuring apparatus now used shews sundry minor 
but beautiful phenomena. A daily periodicity of growth is a 
common thing*  (Fig. 73). In the tree-cactuses the trunk expands 
by day and shrinks again after nightfall; for the stomata close in sun
light, and transpiration is checked until the sun goes down. But 
it is more usual for the trunk to shrink from sunrise until evening 
and to swell from sunset until dawn; for by daylight the leaves lose

* The diurnal periodicity is beautifully shewn in the case of the hop by Johannes 
Schmidt, C.R. du Laboratoire Carlsberg, x, pp. 235-248, Copenhagen, 1913.

f This rapid movement is accounted for by Dixon and Joly’s “cohesion-theory” 
of the ascent of sap. The leaves shew innumerable minute menisci, or cup-shaped 
water-surfaces, in their intercellular air-spaces. As water evaporates from these 
the little cups deepen, capillarity increases its pull, and suffices to put in motion 
the strands or columns of water which run continuously through the vessels of 
wood, and withstand rupture even under a pull of 100-200 atmospheres. See 
(int. al.) H. H. Dixon and J. Joly, On the ascent of sap, Phil. Trans. (B), clxxxvi, 
p. 563, 1895; also Dixon’s Transpiration and the Ascent of Sap, 8vo, London, 1914.

Fig. 73. Growth of black poplar, shewing daily periodicity. 
After A. Mallock.

water faster, and in the dark they lose it slower, than the roots 
replace it. The rapid midday loss of water even at the top of a 
tall Sequoia is quickly followed by a measurable constriction of the 
trunk fifty or even a hundred yards below f.
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In the case of trees, the seasonal periodicity of growth and the 
direct influence of weather are both so well marked that we are 
entitled to make use of the phenomenon in a converse way, and to 
draw deductions (as Leonardo da Vinci did*)  as to climate during 
past years from the varying rates of growth which the tree has 
recorded for us by the thickness of its annual rings. Mr A. E. 
Douglass, of the University of California, has made a careful study 
of this question, and I received from him (through Professor H. H. 
Turner) some measurements of the average width of the annual 
rings in Californian redwood, five hundred years old, in which trees 
the rings are very clearly shewn. For the first hundred years the 
mean of two trees was used, for the next four hundred years the 
mean of five; and the means of these (and sometimes of larger 
numbers) were found to be very concordant. A correction was 
applied by drawing a nearly straight line through the curve for the 
whole period, which line was assumed to represent the slowly 
diminishing mean width of annual ring accompanying the increasing 
size, or age, of the tree; and the actual growth as measured was 
equated with this diminishing mean. The figures used give, then, 
the ratio of the actual growth in each year to the mean growth 
of the tree at that epoch.

* Cf. J. Playfair McMurrich, Leonardo da Vinci, 1930, p. 247.
f When this was first written I had not seen Mr Douglass’s paper On a method 

of estimating rainfall by the growth of trees, Bull. Amer. Geograph. Soc. xlvi.

It was at once manifest that the growth-rate so determined 
shewed a tendency to fluctuate in a long period of between 100 and 
200 years. I then smoothed the yearly values in groups of 100 
(by Gauss’s method of “moving averages”), so that each number 
thus found represented the mean annual increase during a century: 
that is to say, the value ascribed to the year 1500 represented the 
average annual growth during the whole period between 1450 and 
1550, and so on. These values, so simply obtained, give us a curve 
of beautiful and surprising smoothness, from which we draw the 
direct conclusion that the climate of Arizona, during the last five 
hundred years, has fluctuated with a regular periodicity of almost 
precisely 150 years. I have drawn, more recently, and also from 
Mr Douglass’s data, a similar curve for a group of pine trees in 
Calaveras County f. These trees are about 300 years old, and the 
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data are reduced, as before», to moving averages of 100 years, but 
without further correction. The agreement between the growth- 
rate of these pines and that of the great Sequoias during the same 
period is very remarkable (Fig. 74).

We should be left in doubt, so far as these observations go, 
whether the essential factor be a fluctuation of temperature or an 
alternation of drought and humidity; but the character of the 
Arizona climate, and the known facts of recent years, encourage 
the belief that the latter is the more direct and more important 
factor. In a New England forest many trees of many kinds were 
studied after a hurricane; they shewed on the whole no correlation

Fig. 74. Long-period fluctuation in growth of Arizona redwood (Sequoia), from 
a.d. 1390 to 1910; and of yellow pine from Calaveras County, from a.d. 1620 
to 1920. (Smoothed in 100-year periods.)

between growth-rate and temperature, with the remarkable exception 
(in the conifers) of a clear correlation with the temperature of 
March and April, a month or two before the season’s growth began. 
In a cold spring the melting snows and early rains ran off into the 
rivers, in a warm and early one they sank into the soil*; in other 
words, humidity was still the controlling factor. An ancient oak 
tree in Tunis is said to have recorded fifty years of abundant rain,

pp. 321-335, 1914; nor. of course, his great work on Climatic cycles and tree
growth, Carnegie Inst. Publications, 1919, 1928, 1936. Mr Douglass does not 
fail to notice the long period here described, but he is more interested in the 
sunspot-cycle and other shorter cycles known to meteorologists. See also (int. al.) 
E. Huntingdon, The fluctuating climate of North America, Geograph. Journ. 
Oct. 1912; and Otto Pettersson, Climatic variation in historic and prehistoric 
time, Svenska Hydrografisk-Biolog. Skrifter, v, 1914.

* C. J. Lyon, Arner. Assoc. Rep. 1939; Nature, Apr. 13, 1940, p. 595. 
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with short intervals of drought, during the eighteenth century; then, 
after 1790, longer droughts and shorter spells of rainy seasons*.

It has been often remarked that our common European trees, 
such as the elm or the cherry, have larger leaves the farther noxth 
we go; but the phenomenon is due to the longer hours of daylight 
throughout the summer, rather than to intensity of illumination or 
difference of temperature. On .the other hand, long daylight, by 
prolonging vegetative growth, retards flowering and fruiting; and 
late varieties of soya bean may be forced into early ripeness by 
artificially shortening their day fight at midsummer f.

The effect of ultra-violet light, or any other portion of the 
spectrum, is part, and perhaps the chief part, of the same problem. 
That ultra-violet light accelerates growth has been shewn both in 
plants and animals{. In tomatoes, growth is favoured by just such 
ultra-violet light as comes very near the end of the solar spectrum §, 
and as happens, also, to be especially absorbed by ordinary green
house glass||. At the other end of the spectrum, in red or orange 
light, the leaves become smaller, their petioles longer, the nodes 
more numerous, the very cells longer and more attenuated. It is 
a physiological problem, and as such it shews how plant-life is 
adapted, on the whole, to just such rays as the sun sends; but it 
also shews the morphologist how the secondary effects of climate 
may so influence growth as to modify both size and form^. An 
analogous case is the influence of light, rather than temperature, 
in modifying the coloration of organisms, such as certain butterflies.

* Le chene Zeem d’Ain Draham, Bull, du Directe ur General, Tunisie, 1927.
f That the plant grows by turns in darkness and in light, and has its characteristic 

growth-phases in each, longer or shorter according to species and variety and 
normal habitat, is a subject now studied under the name of “photoperiodism,” 
and become of great practical importance for the northerly extension of cereal 
crops in Canada and Russia. Cf. R. G. Whyte and M. A. Oljhovikov, Nature, 
Feb. 18, 1939.

J Cf. Kuro Suzuki and T. Hatano, in Proc. Imp. Acad, of Japan, iu, pp. 94-96,1927. 
§ Withrow and Benedict, in Bull, of Basic Scient. Research, m, pp. 161-174, 1931. 
|| Cf. E. C. Teodoresco, Croissance des plantes aux lumieres de diverses longueurs 

d’onde, Ann. Sc. Nat., Bot. (8), pp. 141-336, 1929; N. Pfeiffer, Botan. Gaz. lxxxv, 
p. 127, 1929; etc.

See D. T. MacDougal, Influence of light and darkness, etc., Mem. N. Y. Botan. 
Garden, 1903, 392 pp.; Growth in trees, Carnegie Inst. 1921, 1924, etc.; J. Wiesner, 
Lichtgenuss der Pflanzen, vn, 322 pp., 1907; Earl S. Johnston, Smithson. Mise. 
Contrib. 18 pp., 1938; etc. On the curious effect of short spells of light and dark
ness, see H. Dickson, Proc. R.S. (B), cxv, pp. 115-123, 1938.

16TGF
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Now if temperature or light affect the rate of growth in strict 
uniformity, alike in all parts and in all directions, it will only lead 
to local races or varieties differing in size, as the Siberian goldfinch 
or bullfinch differs from our own. But if there be ever so little of a 
discriminating tendency such as to enhance the growth of one tissue 
or one organ more than another*, then it must soon lead to racial, 
or even “specific,” difference of foiyn.

It is hardly to be doubted that climate has some such dis
criminating influence. The large leaves of our northern trees are 
an instance of it; and we have a better instance of it still in Alpine 
plants, whose general habit is dwarfed though their floral organs 
suffer little or no reduction f. Sunlight of itself would seem to be 
a hindrance rather than a stimulant to growth; and the familiar 
fact of a plant turning towards the sun means increased growth on 
the shady side, or partial inhibition on the other.

More curious and still more obscure is the moon’s influence on 
growth, as on the growth and ripening of the eggs of oysters, sea- 
urchins and crabs. Belief in such lunar influence is as old as Egypt; 
it is confirmed and justified, in certain cases, nowadays, but the 
way in which the influence is exerted is quite unknown]:.

Osmotic factors in growth

The curves of growth which we have been studying have a 
twofold interest, morphological and physiological. To the morpho
logist, who has learned to recognise form as a “function of growth,” 
the most important facts are these: (1) that rate of growth is an 
orderly phenomenon, with general features common to various 
organisms, each having its own characteristic rates, or specific 
constants; (2) that rate of growth varies with temperature, and so 
with season and with climate, and also with various other physical 
factors, external and internal to the organism; (3) that it varies in 
different parts of the body, and along various diiections or axes:

* Or as we might say nowadays, have a different “threshold value” in one 
organ to another.

f Cf. for instance, Nageli’s classical account of the effect of change of habitat 
on alpine and other plants, Sitzungsber. Baier. Akad. JFiss. 1865, pp. 228-284.

J Cf. Munro Fox, Lunar periodicity in reproduction, Proc. R.S. (B), xcv, 
pp. 523-550, 1935; also Silvio Ranzi, Pubblic. Staz. Zoot. Napoli, xi, 1931. 
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such variations being harmoniously “graded,” or related to one 
another- by a “principle of continuity,” so giving rise to the 
characteristic form and dimensions of the organism and to the 
changes of form which it exhibits in the course of its development. 
To the physiologist the phenomenon of growth suggests many other 
considerations, and especially the relation of growth itself to chemical 
and physical forces and energies.

To be content to shew that a certain rate of growth occurs in 
a certain organism under certain conditions, or to speak of the 
phenomenon as a ‘‘reaction” of the living organism to its environ
ment or to certain stimuli, would be but an example of that “lack 
of particularity” with which we are apt to be all too easily satisfied. 
But in the case of growth we pass some little way beyond these 
limitations: to this extent, that an affinity with certain types of 
chemical and physical reaction has been recognised by a great number 
of physiologists*.

* Cf. F. F. Blackman, Presidential Address in Botany, Brit. Assoc., Dublin, 
1908. The idea was first enunciated by Baudrimont and St Ange, Recherches sur 
le developpement du foetus, Mem. Acad. Sci. xi, p. 469, 1851.

f Cf. J. Loeb, Untersuchungen zur physiologischen Morphologic der Tiere, 1892; 
also Experiments on cleavage, Journ. Morphology, vii, p. 253, 1892; Ueber die 
Dynamik des tierischen Wachstums, Arch. f. Entw. Meeh, xv, p. 669, 1902-3; 
Davenport, On the role of water in growth, Boston Soc. N.H. 1897; Ida H. Hyde 
in Amer. Journ. Physiology, xn, p. 241. 1905; Bottazzi, Osmotischer Druck und 
elektrische Leitungsfahigkeit der Fliissigkeiten der Organismen, in Asher-Spiro’s 
Ergebnisse der Physiologic, vn, pp. 160-402, 1908; H. A. Murray in Journ. Gener. 
Physiology, ix, p. 1, 1925; J. Gray, The role of water in the evolution of the 
terrestrial vertebrates, Journ. Exper. Biology, vi, pp. 26-31,1928; and A. N. J. Heyn, 
Physiology of cell-elongation, Bolan. Review, vi, pp. 515-574, 1940.

J Cf. C. A. Berger, Carnegie Inst, of Washington, Contributions to Embryology, 
xxvii, 1938.

16-2

A large part of the phenomenon of growth, in animals and still 
more conspicuously in plants, is associated with “turgor,” that is 
to say, is dependent on osmotic conditions. In other words, the 
rate of growth depends (as we have already seen) as much or more 
on the amount of water taken up into the living cells f, as on the 
actual amount of chemical metabolism performed by them; and 
sometimes, as in certain insect-larvae, we can even distinguish 
between tissues which grow by increase of cell-size, the result of 
imbibition, and others which grow by multiplication of their 
constituent cells J. Of the chemical phenomena which result in the 
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actual increase of protoplasm we shall speak presently, but the role 
of water in growth deserves a passing word, even in our morpho
logical enquiry.

The lower plants only Eve and grow in abundant moisture; few 
fungi continue growing when the humidity falls below 85 per cent, 
of saturation, and the mould-fungi, such as PeniciUium, need more 
moisture still (Fig. 75). Their limit is reached a little below 90%.

Fig. 75. Growth of Penicitlium in relation to humidity.

Growth of Penicillium (at 25° 0.)*
Humidity 

(% of saturation) 
1000
970 
94-2 
92-6 
90-8

Growth per hour 
(mm.)

. 7-7
50
10
0-5
0-3

Among the coelenterate animals growth and ultimate size depend 
on little more than absorption of water and consequent turgescence, 
the process shewing itself in simple ways. A sea-anemone may hve 
to an immense agef, but its age and size have Ettle to do with one 

ft
* From R. G. Tomkins, Studies of the growth of moulds, Proc. R.S. (B), cv, 

pp. 375-101, 1929.
t Like Sir John Graham Dalyell’s famous “Granny,” and Miss Nelson’s family 

of Cereus (not Sagartia) of which one still lives at over 80 years old. Cf. J. H. 
Ashworth and Nelson Annandale, in Trans. R. Physical Soc. Edin, xxv, pp. 1-14 
1904.
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another. It has an upper limit of size vaguely characteristic of the 
species, and if fed well and often it may reach it in a year; on stinted 
diet it grows slowly or may dwindle down; it may be kept at 
wellnigh what size one pleases. Certain full-grown anemones were 
left untended in war-time, unfed and in water which evaporated 
down to half its bulk; they shrank down to little beads, and grew 
up again when fed and cared for.

Loeb shewed, in certain zoophytes, that not only must the cells 
be turgescent in order to grow, but that this turgescence is possible 
only so long as the salt-water in which the cells lie does not overstep 
a certain limit of concentration: a limit reached, in the case of 
Tubularia, when the salinity amounts to about 3-4 per cent. Sea
water contains some 3-0 to 3-5 per cent, of salts in the open sea, 
but the salinity falls much below tlrs normal, to about 2-2 per cent., 
before Tubularia exhibits its full turgescence and maximal growth; 
a further dilution is deleterious to the animal. It is likely enough 
that osmotic conditions control, after this fashion, the distribution 
and local abundance of many zoophytes. Loeb has also shewn*  
that in certain fish-eggs (e.g. of Fundulus) an increasing concentration, 
leading to a lessening water-content of the egg, retards the rate of 
segmentation and at last arrests it, though nuclear division goes on 
for some time longer.

* Pflilger's Archiv, lv, 1893.
f Cf. V. B. Wigglesworth, Insect Physiology, 1939. p. 2.
j Beitrage zur Kenntniss d. Wachstumsvorgange bei Amphibienembryonen, Bull. 

Acad. Sci. de Cracovie, 1908, p. 783; also A. Drzwina and C. Bohn, De Paction.. .des 
solutions salines sur les larves des batraciens, ibid. 1906.

The eggs of many insects absorb water in large quantities, even 
doubling their weight thereby, and fail to develop if drought prevents 
their doing so; and sometimes the egg has a thin-walled stalk, or else 
a “hydropyle,” or other structure by which the water is taken inf.

In the frog, according to Bialaszewicz J, the growth of the embryo 
while within the vitelline membrane depends wholly on absorption 
of water. The rate varies with the temperature, but the amount 
of water absorbed is constant, whether growth be fast or slow. 
Moreover, the successive changes of form correspond to definite 
quantities of water absorbed, much of which water is intracellular. 
The solid residue, as Davenport has also shewn, may even diminish 
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notably, while all the while the embryo continues to grow in bulk 
and weight. But later on, and especially in the higher animals, the 
water content diminishes as growth proceeds and age advances; 
and loss of water is followed, or accompanied, by retardation and 
cessation of growth. A crab loses water as each phase of growth 
draws to an end and the corresponding moult approaches; but it 
absorbs water in large quantities as soon as the new period of 
growth begins*.  Moreover, that water is lost as growth goes on has 
been shewn by Davenport for the frog, by Potts for the chick, and 
particularly by Fehling in the case of man. Fehling’s results may 
be condensed as follows:

* Cf. A. Krogh, Osmotic regulation in aquatic animals, Cambridge, 1939.
f Henry and Morrison, 1917; quoted by Otto Glaser, on Growth, time and form, 

Bidlog. Reviews, xin, pp. 2-58, 1938.
J Cf. James Gray, in Journ. Exper. Biology, iv, pp. 214-225, 1926.

Age in weeks (man) 6 17 22 24 26 30 35 39
Percentage of water 97-5 91-8 92-0 89-9 86-4 83-7 82-9 74-2

The following illustrate Davenport’s results for the frog:

Age in weeks (frog) 1 2 5 7 9 14 41 84
Percentage of water 56-3 58-5 76-7 89-3 93-1 95-0 90-2 87-5

The following table epitomises the drying-off of ripening maize f; 
it shews how ripening and withering are closely akin, and are but 
two phases of senescence (Fig. 76):

Days (from August 6) 0 22 35 49 56 63
Percentage of water 87 81 77 68 65 58

The bird’s egg provides all the food and all the water which the 
growing embryo needs, and to carry a provision of water is the 
special purpose of the white of the egg; the water contained in the 
albumen at the beginning of incubation is just about what the 
chick contains at the end. The yolk is not surrounded by water, 
which would diffuse too quickly into it, nor by a crystalloid solution, 
whose osmotic value would soon increase; but by a watery albu
minous colloid, whose osmotic pressure changes slowly as its charge 
of water is gradually withdrawn]:.
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Gm. of water contained in

Distribution of water in a hen's egg

Day of
Albumen

A ------- s Loss by Gain by
incubation Embryo Yolk evaporation combustion

0 29-9 00 8-5 00 0-0
6 27-2 0-4 8-45 2-4 0-01

12 20-4 4-6 7-8 5-6 0-27
18 9-2 181 2-3 8-8 1-20
20 2-2 27-4 10 9-8 200

The actual amount of water, compared with the dry solids in the 
egg, has been determined as follows:

Day of incubation (chick) 5 8 11 14 17 19
Percentage of water 94-7 93-8 92-3 87-7 82-8 82-3

Daye

Fig. 76. Percentage of water in ripening maize From Otto Glaser.

We know very little of the part which all this water plays: how 
much is mere “reaction-medium,” how much is fixed in hydrated 
colloids, how much, in short, is bound or unbound. But we see that 
somehow or other water is lost, and lost in considerable amount, 
as the embryo draws towards completion and ceases for the time 
being to grow.

All vertebrate animals contain much the same amount of water 
in their living bodies, say 85 per cent, or thereby, however unequally 
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distributed in the tissues that water may be*.  Land animals have 
evolved from water animals with little change in this respect, 
though the constant proportion of water is variously achieved. 
A newt loses moisture by evaporation with the utmost freedom, and 
regains it by no less rapid absorption through the skin; while a 
lizard in his scaly coat is less liable to the one and less capable of 
the other, and must drink to replace what water it may lose.

* The vitreous humour is nearly all water, the enamel has next to none, the 
grey matter has some 86 pdr f-ent., the bones, say 22 per cent.; lung and kidney 
take up more than they can hold, and so become excretory or regulatory organs. 
Eggs, whether of dogfish, salmon, frogs, snakes or birds, are composed, roughly 
speaking, of half water and half solid matter.

f Cf. (int. al.) G. Teissier, Sur la teneur en eau.. .de Chrysaora, Bull. Soc. Biol, 
de France, 1926, p. 266. And especially A. V. Hill, R. A. Gortner and others, On 
the state of water in colloidal and living systems, Trans. Faraday Soc. xxvi, 
pp. 678-704, 1930. For recent literature see (e.g.) Homer Smith, in Q. Bev. Biol. 
vn, p. 1, 1932; E. K. Marshall, Physiol. Bev. xiv, p. 133, 1934; Lovatt Evans, 
Becent Advances in Physiology, 4th ed., 1930; M. Duval, Recherches.. .sur le milieu 
interieur des animaux aquatiques, Th^e, Paris, 1925; Paul Portier, Physiologic des 
animaux marins, Chap, in, Paris, 1938; G. P. Wells and I. C. Ledingham, Effects 
of a hypotonic environment, Journ. Exp. Biol, xvn, pp. 337-352, 1940.

We are on the verge of a difficult subject when we speak of the 
role of water in the living tissues, in the growth of the organism, 
and in the manifold activities of the cell; and we soon learn, among 
other more or less unexpected things, that osmotic equilibrium is 
neither universal nor yet common in the living organism. The yolk 
maintains a higher osmotic pressure than the white of the egg—so 
long as the egg is living; and the watery body of a jellyfish, though 
not far off osmotic equilibrium, has a somewhat less salinity than 
the sea-water. In other words, its surface acts to some extent as 
a semipermeable membrane, and the fluid which causes turgescence 
of the tissues is less dense than the sea-water outside f.

In most marine invertebrates, however, the body-fluids con
stituting the milieu interne are isotonic with the milieu externe, and 
vary in these animals pari passu v ith the large variations to which 
sea-water itself is subject. On the other hand, the dwellers in 
fresh-water, whether invertebrates or fishes, have, naturally, a more 
concentrated medium within than without. As to fishes, different 
kinds shew remarkable differences. Sharks and dogfish have an 
osmotic pressure in their blood and their body fluids little different 
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from that of the sea-water outside: but with certain chemical 
differences, for instance that the chlorides within are much 
diminished, and the molecular concentration is eked out by large 
accumulations of urea in the blood. The marine teleosts, on the 
other hand, have a much lower osmotic pressure within than that 
of the sea-water outside, and only a little higher than that of their 
fresh-water allies. Some, hke the conger-eel, maintain an all but 
constant internal concentration, very different from that outside; 
and this fish, hke others, is constantly absorbing water from the sea; 
it must be exuding or excreting salt continually*.  Other teleosts 
differ greatly in their powers of regulation and of tolerance, the 
common stickleback (which we may come across in a pool or in the 
middle of the North Sea) being exceptionally tolerant or “eury
haline!.” Physiology becomes “comparative” when it deals with 
differences such as these, and Claude Bernard foresaw the existence 
of just such differences: “Chez tous les etres vivants le milieu 
interieur, qui est un produit de 1’organisme, conserve les rapports 
necessaires d’echange avec le milieu exterieur; mais a mesure que 
1’organisme devient plus parfait le milieu organique se specific, et 
s’isole en quelque sorte de plus en plus au milieu ambiant J.” Claude 
Bernard was building, if I mistake not, on Bichat’s earlier concept, 
famous in its day, of life as “ une alternation habituelle d’action de 
la part des corps exterieurs, et de reaction de la part du corps 
vivant”: out of which grew his still more famous aphorism, “La 
vie est 1’ensemble des fonctions qui resistent a la mort§.”

* Probably by help of Henle’s tubules in the kidney, which structures the di igfish 
does not possess. But the gills have their part to play as water-regulators, as 
also, for instance, in the crab.

J The grey mullets go down to the sea to spawn, but may live and grow in 
brackish or nearly fresh-water. The several species differ much in their adaptability, 
and Brunelli sets forth, as follows, the range of salinity which each can tolerate:

24-35 per mille
16-40
10-40
5-40
4-40

| Introduction d Vdtude de la mddecine expdr imentale, 1855, p. 110. For a dis
cussion of this famous concept see J. Barcroft, “La fixite du milieu interieur est 
la condition de la vie libre,” Biol. Reviews, vm, pp. 24—87, 1932.

§ Sur la vie et la mort, p. 1.

One crab, like one fish, differs widely from another in its power 

M auratus 
saliens 
chelo 
capito 
cfohrdus
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of self-regulation; and these physiological differences help to explain, 
in both cases, the limitation of this species or that to more or less 
brackish, or more or less saline, waters. In deep-sea crabs (Hyas, 
for instance) the osmotic pressure of the blood keeps nearly to that 
of the milieu externe, and falls quickly and dangerously with any 
dilution of the latter; but the little shore-crab (Carcinus moenas) 
can five for many days in sea-water diluted down to one-quarter of 
its usual salinity. Meanwhile its own fluids dilute slowly, but not 
near so far; in other words, this crab combines great powers of 
osmotic regulation with a large capacity for tolerating osmotic 
gradients which are beyond its power to regulate. How the unequal 
balance is maintained is yet but little understood. But we do know 
that certain organs or tissues, especially the gills and the antennary 
gland, absorb, retain or eliminate certain elements, or certain ions, 
faster than others, and faster than mere diffusion accounts for; in 
other words, “ionic” regulation goes hand in hand with “osmotic” 
regulation, as a distinct and even more fundamental phenomenon*. 
This at least seems generally true—and only natural—that quickened 
respiration and increased oxygen-consumption accompany all such 
one-sided conditions: in other words, the “steady state” is only 
maintained by the doing of work and the expenditure of energyf.

To the dependence of growth on the uptake of water, and to the 
phenomena of osmotic balance and its regulation, HoberJ and also 
Loeb were inclined to refer the modifications of form which certain 
phyllopod Crustacea undergo when the highly saline waters which 
they inhabit are further concentrated, or are abnormally diluted. 
Their growth is retarded by increased concentration, so that 
individuals from the more saline waters appear stunted and dwarfish; 
and they become altered or transformed in other ways, suggestive 
of “degeneration,” or a failure to attain full and perfect develop-

* See especially D. A. Webb, Ionic regulation in Carcinus moenas, Proc. R.S. (B), 
cxxix, pp. 107-136, 1940.

f In general the fresh-water Crustacea have a larger oxygen-consumption than 
the marine. Stenohaline and euryhaline are terms applied nowadays to species 
which are confined to a narrow range of salinity, or are tolerant of a wide one. 
An extreme case of toleration, or adaptability, is that of the Chinese woolly-handed 
crab, Eriocheir, which has not only acclimatised itself in the North Sea but has 
ascended the Elbe as far as Dresden.

J R. Hober. Bedeutung der Theorie der Losungen fiir Physiologic und Medizin, 
Biol. Centralbl. xix, p. 272, 1899.
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ment*.  Important physiological changes ensue. The consumption 
of oxygen increases greatly in the stronger brines, as more and more 
active “ osmo-regulation ” is required. The rate of multiplication is 
increased, and parthenogenetic reproduction is encouraged. In the 
less saline waters male individuals, usually rare, become plentiful, 
and here the females bring forth their young alive; males disappear 
altogether in the more concentrated brines, and then the females 
lay eggs, which, however, only begin to develop when the salinity 
is somewhat reduced.

* Schmankewitsch, Zeitschr. f. wiss. Zool. xxix, p. 429, 1877. Schmankewitsch 
has made equally interesting observations on change of size and form in other 
organisms, after some generations in a milieu of altered density; e.g. in the flagellate 
infusorian Ascinonema acinus Butschli.

f These “Fezzan-worms,” when first described, were supposed to be “insects’ 
eggs”; cf. Humboldt, Personal Narrative, vi, i, 8, note; Kirby and Spence, Letter x.

J See D. J. Kuenen, Notes, systematic and physiological, on Artemia, Arch. 
Norland. Zool. m, pp. 365-449, 1939; cf. also Abonyi, Z.f. w. Z. cxiv, p. 134, 1915. 
Cf. Mme. Medwedewa, Ueber den osmotischen Druck der Haemolymph v. Artemia; 
in Ztsch. f. vergl. Physiolog. v, pp. 547-554, 1922.

The best-known case is the little brine-shrimp, Artemia salina, 
found in one form or another all the world over, and first discovered 
nearly two hundred years ago in the salt-pans at Lymington. 
Among many allied forms, one, A. milhausenii, inhabits the natron
lakes of Egypt and Arabia, where, under the name of “loul,” or 
“Fezzan-worm,” it is eaten by the Arabs f. This fact is interesting, 
because it indicates (and investigation has apparently confirmed) 
that the tissues of the creature are not impregnated with salt, as 
is the medium in which it lives. In short Artemia, like teleostean 
fishes in the sea, lives constantly in a “hypertonic medium”; the 
fluids of the body, the milieu interne, are no more salt than are those 
of any ordinary crustacean or other animal, but contain only some 
0-8 per cent, of NaClJ, while the milieu externe may contain from 
3 to 30 per cent, of this and other salts; the skin, or body-wall, of 
the creature acts as a “semi-permeable membrane,” through which 
the dissolved salts are not permitted to diffuse, though water passes 
freely. When brought into a lower concentration the animal may 
grow large and turgescent, until a statical equilibrium, or steady 
state, is at length attained.

Among the structural changes which result from increased con- 
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centration of the brine (partly during the life-time of the individual, 
but more markedly during the short season which suffices for the 
development of three or four, or perhaps more, successive genera
tions), it is found that the tail comes to bear fewer and fewer 
bristles, and the tail-fins themselves tend at last to disappear: 
these changes corresponding to what have been described as the 
specific characters of A. milhausenii, and of a still more extreme 
form, A. koppeniana; while on the other hand, progressive dilution 
of the water tends to precisely opposite conditions, resulting in 
forms which have also been described as separate species, and even

Fig. 77. Brine-shrimps (Artemia), from more or less saline water. Upper figures 
shew tail-segment and tail-fins; lower figures, relative length of cephalothorax 
and abdomen. After Abonyi.

referred to a separate genus. Callaonella. closely akin to Branchipus 
(Fig. 77). Pari passu with these changes, there is a marked change 
in the relative lengths of the fore and hind portions of the body, 
that is to say, of the cephalothorax and abdomen: the latter 
growing relatively longer, the salter the water. In other words, 
not only is the rate of growth of the whole animal lessened by the 
saline concentration, but the specific rates of growth in the parts 
of its body are relatively changed. This latter phenomenon lends 
itself to numerical statement, and Abonyi has shewn that we may 
construct a very regular curve, by plotting the proportionate length 
of the creature’s abdomen against the salinity, or density, of the 
water; and the several species of Artemia, with all their other 
correlated specific characters, are then found to occupy successive, 
more or less well-defined, and more or less extended, regions of the 
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curve (Fig. 78). In short, the density of the water is so clearly 
“specific,” that we might briefly define Artemia jelskii, for instance, 
as the Artemio, of density 1000-1010 (NaCl), or all but fresh water, 
and the typical A. salina (or principalis) as the Artemia of density 
1018-1025, and so on*.

Fig. 78. Percentage ratio of length of abdomen to cephalothorax 
in brine-shrimps, at various salinities. After Abonyi.

These Artemiae are capable of living in waters not only of great 
density, but of very varied chemical composition, and it is hard to 
say how far they are safeguarded by semi-permeability or by speci/ic 
properties and reactions of the living colloids f. The natron-lakes,

* Different authorities have recognised from one to twenty species of Artemia. 
Daday de Dees (Ann. sci. nat. 1910) reduces the salt-water forms to one species 
with four varieties, but keeps A. jelskii in a separate sub-genus. Kuenen suggests 
two species, A. salina and gracilis, one for the European and one for the American 
forms. According to Schmankewitsch every systematic character can be shewn 
to vary with the external medium. Cf. Professor Labbe on change of characters, 
specific and even generic, of Copepods according to the pH of saline waters at 
Le Croisic, Nature, March 10, 1928.

+ We may compare Wo. Ostwald’s old experiments on Daphnia, which died in 
a pure solution of NaCl isotonic with normal sea-water. Their death was not to 
be explained on osmotic grounds; but was seemingly due to the fact that the 
organic gels do not retain their normal water-content save in the presence of such 
concentrations of MgCl2 (and other salts) as are present in sea-water. 
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for instance, contain large quantities of magnesium sulphate; and 
the Artemiae continue to live equally well in artificial solutions 
where this salt, or where calcium chloride, has largely replaced the 
common salt of the more usual habitat. Moreover, such waters as 
those of the natron-lakes are subject to great changes of chemical 
composition as evaporation and concentration proceed, owing to the 
different solubilities of the constituent salts; but it appears that 
the forms which the Artemiae assume, and the changes which they 
undergo, are identical, or indistinguishable, whichever of the above 
salts happen to exist or to predominate in their saline habitat. At 
the same time we still lack, so far as I know, the simple but crucial 
experiments which shall tell us whether, in solutions of different 
chemical composition, it is at equal densities, or at isotonic concen
trations (that is to say, under conditions where the osmotic pressure, 
and consequently the rate of diffusion, is identical), that the same 
changes of form and structure are produced and corresponding 
phases of equilibrium attained.

Sea-water has been described as an instance of the “fitness of the 
environment* ” for the maintenance of protoplasm in an appropriate 
milieu; but our Artemias suffice to shew how nature, when hard 
put to it, makes shift with an environment which is wholly abnormal 
and anything but “fit.”

* L. H. Henderson, The Fitness of the Environment, 1913.
f Cf. Schmankewitsch, Z. f. w. Zool. xxv, 1875; xxix, 1877, etc.; transl. in 

appendix to Packard’s Monogr. of N. American Phyllopoda, 1883, pp. 466-514; 
Daday de I>es, Ann. Sci. Nat. (Zool), (9), xi, 1910; Samter und Heymons, Abh. 
d. K. pr. Akad. Wiss. 1902; Bateson, Mat. for the Study of Variation, 1894, pp. 
96-101; Anikin. Mitth. Kais. Univ. Tomsk, xiv: Zool. Centraibl. vi, pp. 756-760, 
1908; Abonyi, Z.f. w. Zool. cxiv, pp. 96-168, 1915 (with copious bibliography), etc.

t Cf. C. F. A. Pantin, Body fluids in animals, Biol. Reviews, vi, p. 4, 1931; 
J. Duclaux, Chimie appliquee a la biologie, 1937, n, chap. 4.

While Hober and others f have referred all these phenomena to 
osmosis, Abonyi is inclined to believe that the viscosity, or 
mechanical resistance, of the fluid also reacts upon the organism; 
and other possible modes of operation have been suggested. But 
we may take it for certain that the phenomenon as a whole is not 
a simple one. We should have to look far in organic nature for 
what the physicist would call simple osmosis J; and assuredly there 
is always at work, besides the passive phenomena of intermolecular 
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diffusion, some other activity to play the part of a regulatory 
mechamsin*.

On growth and catalytic action

In ordinary chemical reactions we have to deal (1) with a specific 
velocity proper to the particular reaction, (2) with variations due 
to temperature and other physical conditions, (3) with variations 
due to the quantities present of the reacting substances, according 
to Van’t Hoff’s “Law of Mass Action,” and (4) in certain cases with 
variations due to the presence of “catalysing agents,” as Berzelius 
called them a hundred years agof. In the simpler reactions, the 
law of mass involves a steady slowing-down of the process as the 
reaction proceeds and as the initial amount of substance diminishes: 
a phenomenon, however, which is more or less evaded in the organism, 
part of whose energies are devoted to the continual bringing-up of 
supplies. *

Catalytic action occurs when some substance, often in very 
minute quantity, is present, and by its presence produces or 
accelerates a reaction by opening “a way round,” without the 
catalysing agent itself being diminished or used up J. It diminishes 
the resistance somehow- little as we know what resistance means

* According to the empirical canon of physiology, that, as Leon Fredericq 
expresses it (Arch, de Zool. 1885), “L'etre vivant est agence de telle maniere que 
chaque influence perturbatrice provoque d’elle-meme la inise en activite de 1’appareil 
compensateur qui doit neutraliser et reparer le dommage.” Herbert Spencer had 
conceived a similar principle, and thought he recognised in it the via medicatrix 
Naturae. It is the physiological analogue of the “principle of Le Chatelier ” (1888), 
with this important difference that the latter is a rigorous and quantitative law, 
based on a definite and stable equilibrium. The close relation between the two is 
maintained by Le Dan tec (La Stability de la Vie, 1910, p. 24), and criticised by 
Lotka (Physical Biology, p. 283 seq.).

f In a paper in the Berliner Jahrbuch for 1836. This paper was translated in 
the Edinburgh New Philosophical Journal in the following year; and a curious 
little paper On the coagulation of albumen, and catalysis, by Dr Samuel Brown, 
followed in the Edinburgh Academic Annual for 1840.

J Such phenomena come precisely under the head of what Bacon called 
Instances of Magic. “By which I mean those wherein the material or efficient 
cause is scanty and small as compared with the work or effect produced; so that 
even when they are common, they seem like miracles, some at first sight, others 
even after attentive consideration. These magical effects are brought about in 
three ways.. .[of which one is] by excitation or invitation in another body, as in 
the magnet which excites numberless needles without losing any of its virtue, or 
in yeast and such-like." Nov. Org., cap. li.
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in a chemical reaction. But the velocity-curve is not altered in 
form; for the amount of energy in the system is not affected by the 
presence of the catalyst, the law of mass exerts its effect, and the 
rate of action gradually slows down. In certain cases we have 
the remarkable phenomenon that a body capable of acting as a 
catalyser is necessarily formed as a product, or by-product, of the 
main reaction, and in such a case as this the reaction-velocity will 
tend to be steadily accelerated. Instead of dwindling away, such 
a reaction continues with an ever-increasing velocity: always 
subject to the reservation that limiting conditions will in time make 
themselves felt, such as a failure of some necessary ingredient (the 
“law of the minimum”), or the production of some substance which 
shall antagonise and finally destroy the original reaction. Such an 
action as this we have learned, from Ostwald, to describe as “auto
catalysis.” Now we know that certain products of protoplasmic 
metabolism—we call them enzymes—are very powerful catalysers, 
a fact clearly understood by Claude Bernard long ago*; and we 
are therefore entitled, to that extent, to speak of an autocatalytic 
action on the part of protoplasm itself.

Going a little farther in the footsteps of Claude Bernard, Chodat 
of Geneva suggested (as we are told by his pupil Monnier) that 
growth itself might be looked on as a catalytic, or autocatalytic 
reaction: “ On peut bien, ainsi que M. Chodat l’a propose, considerer 
1’accroissement comme une reaction chimique complexe, dans 
laquelle le catalysateur est la cellule vivante, et les corps en presence 
sont 1’eau, les seis et l’acide carboniquef.” _

A similar suggestion was made by Loeb, in connection with the

* “Les diastases contiennent, en definitive, le secret de la vie. Or, les actions 
diastatiques nous apparaissent comme des phenomenes catalytiques, en d’autres 
termes, des accelerations de vitesse de reaction.” Cf. M. F. Porchet, Revue 
Scientifique, 18th Feb. 1911. For a last word on this subject, see W. Frankenberger, 
Katdlytische Umsetzungen in homogenen u. enzymatischen Systemen, Leipzig, 1937.

f Cf. R. Chodat, Principes de Botanique (2nd ed.), 1907, p. 133; A. Monnier, La 
loi d’accroissement des vegetaux, Publ. de ITnst. de Bot. de VUniv. de Geneve (7), 
in, 1905. Cf. W. Ostwald, Vorlesungen uber Naturphilosophie, 1902. p. 342; 
Wo. Ostwald, Zeitliche Eigenschaften der Entwicklungsvorgange, in Roux’s 
Vortrage, Heft 5, 1908; Robertson, Normal growth of an individual, and its 
biochemical significance, Arch.f. Entw. Meeh, xxv, pp. 581-614; xxvi, pp. 108-118, 
1908; S. Hatai, Growth-curves from a dynamical standpoint, Anat. Record, v, 
p. 373, 1911; A. J. Lotka, Ztschr. f. physikal. Chemie, lxxii, p. 511, 1910; lxxx, 
p. 159, 1912; etc.
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synthesis of nuclear protoplasm, or nuclein', for he remarked that, 
as in an autocatalysed chemical reaction, the rate of synthesis 
increases during the initial stage of cell-division in proportion to the 
amount of nuclear matter already there. In other words, one of 
the products of the reaction, i.e. one of the constituents of the 
nucleus, accelerates the production of nuclear from cytoplasmic 
material. To take one more instance, Blackman said, in the address 
already quoted, that “the botanists (or the zoologists) speak of 
growth, attribute it to a specific power of protoplasm for assimila
tion, and leave it alone as a fundamental phenomenon; but they 
are much concerned as to the distribution of new growth in innu
merable specifically distind forms. While the chemist, on the 
other hand, recognises it as a familiar phenomenon, and refers it to 
the same category as his other known examples of autocatalysis.”

Later on, Brailsford Robertson upheld the*  autocatalytic theory 
with skill and learning*;  and knowing well that growth was no 
simple solitary chemical reaction, he thought that behind it lay some 
one master-reaction, essentially autocatalytic, by which protoplasmic 
synthesis was effected or controlled. He adduced at least one 
curious case, in the growth and multiplication of the Infusoria, 
which can hardly be described otherwise than as catalytic. Two 
jninute individuals (of Enchelys or Colpodium) kept in the same drop 
of water, so enhance each other’s rate of asexual reproduction that 
it may be many times as great when two are together as when one 
is alone; the phenomenon has been called allelocatalysis. When a 
single infusorian is isolated, it multiplies the quicker the smaller the 
drop it is in- a further proof or indication that something is being 
given off. in this instance by the living cells, which hastens growth 
and reproduction. But even the ordinary multiplication of a 
bacterium, which doubles its numbers every few minutes till (were 
it not for limiting factors) those numbers would be all but incal
culable in a day, looks like and has been cited as a simple but most 
striking instance of the potentialities of protoplasmic catalysis.

* T. B. Robertson, The Chemical Basis of Growth and Senescence, 1923; and 
earlier papers. Cf. his Multiplication of isolated infusoria, Biochem. Journ. xv, 
pp. 598-611, 1921; cf. Journ. Physiol, lvi, pp. 404-412, 1921; R. A. Peters, 
Substances needed for the growth of.. .Colpodium, Journ. Physiol, lv, p. 1, 1921.

TG F

It is not necessary for us to pursue this subject much further. 

17
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It is sufficiently obvious that the normal S-shaped curve of growth 
of an organism ^resembles in its general features the velocity-curve 
of chemical autocatalysis, and many writers have enlarged on the 
resemblance; but the S-shaped curve of growth of a population 
resembles it just as well. When the same curve depicts the growth 
of an individual, and of a population, and the velocity of a chemical 
reaction, it is enough to shew that the analogy between these is a 
mathematical and not a physico-chemical one. The sigmoid curve 
of growth, common to them all, is sufficiently explained as an 
interference effect, due to opposing factors such as we may use a 
differential equation to express: a phase of acceleration is follovred 
by a phase of retardation, and the causes of both are in each case 
complex, uncertain or unknown. Nor are points of difference lacking 
between the chemical and the biological phenomena. As the 
chemical reaction draws to a close, it is by the gradual attainment 
of chemical equilibrium; but when organic growth comes to an end, 
it is (in all but the lowest organisms) by reason of a very different 
kind of equilibrium, due in the main to the gradual differentiation 
of the organism into parts, among whose peculiar properties or 
functions that of growth or multiplication falls into abeyance.

The analogy between organic growth and chemical autocatalysis 
is close enough to let us use, or try to use, just such mathematics as 
the chemist applies to his reactions, and so to reduce certain curves 
of growth to logarithmic formulae. This has been done by many, and 
with no little success in simple cases. So have we done, partially, 
in the case of yeast; so the statisticians and actuaries do with human 
populations; so we may do again, borrowing (for illustration) a 
certain well-known study of the growing sunflower (Figs. 79, 80). 
Taking our mathematics from elementary physical chemistry, we 
learn that:

The velocity of a reaction depends on the concentration a of 
the substance acted on: V varies as a,

V= Ka.
The concentration continually decreases, so that at time t (in a 

monomolecular reaction),
V = ^k(a- x).
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Fig. 79. Growth of sunflower-stem: observed and calculated curves 
From Reed and Holland.

Fig. 80. Growth of sunflower-stem: calculated (autocatalytic) curve. 
After Reed and Holland.

17-2
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But if the substance produced exercise a catalytic effect, then the 
velocity will vary not only as above but will also increase as x 
increases: the equation becomes

I = = k'x (a — x),

which is the elementary equation of autocatalysis. Integrating,
1 . ax ... — log------ - k . at a — x

In our growth-problem it is sometimes found convenient to choose 
for our epoch, t', the time when growth is half-completed, as the 
chemist takes the time at which his reaction is half-way through; 
and we may then write (with a changed constant)

log -—- = K(t-t).

This is the physico-chemical formula which Reed and Holland 
apply to the growing sunflower-stem—a simple case*. For a we 
take the maximum height attained, viz. 254-5 cm.; for t', the epoch 
when one-half of that height was reached, viz. (by interpolation) 
about 34-2 days. Taking an observation at random, say that for 
the 56th day, when the stem was 228-3 cm. high, we have

K in this case is found to be 0-043, and the mean of all such 
determinations! is not far different.

Applying this formula to successive epochs, we get a calculated 
curve in close agreement with the observed one; and by well- 
known statistical methods we confirm, and measure, its “closeness 
of fit.” But just as the chemist must vary and develop his funda
mental formula to suit the course of more and more complicated 
reactions, so the biologist finds that only the simplest of his curves

* H. S. Reed and R. H. Holland, The growth-rate of an annual plant, Hehanthus, 
Proc. Nat. Acad, of Sci. (Washington), v, p. 135, 1919; cf. Lotka, op. cit., p. 74, 
A similar case is that of a gourd, recorded by A. P. Andersoji, Bull. Survey, 
Minnesota, 1895, and analysed by T. B. Robertson, ibid. pp. 72-75.

f Better determined, especially in more complex cases, by the method of least 
squares.
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of growth, or only portions of the rest, can be fitted to this simplest 
of formulae. In a life-time are many ages; and no all-embracing 
formula covers the infant in the womb, the suckling child, the 
growing schoolboy, the old man when his work is done. Besides, 
we need such a formula as a biologist can understand! One which 
gives a mere coincidence of numbers may be of little use or pone, 
unless it go some way to depict and explain the modus operandi of 
growth. As d’Ancona puts it: “Il importe d’appliquer des formules 
qui correspondent non seulement au point de vue geometrique, mais 
soient representees par des valeurs de signification biologique.” 
A mere curve-diagram is better than an empirical formula; for it 
gives us at least a picture of the phenomenon, and a qualitative 
answer to the problem.

Height (cm.)

Growth of sunflower-stem. (After Reed and Holland)

Age (days) Observed Calculated 1st diff.
7

14
17-9
34-4

21-9
37-7 ♦158

24-421 67-8 62-1
28 98-1 95-4 33 3
35 131-0 1346 ‘ 38-4

31-6
22-6
14-4
8-5
4-9
2-8

42 1690 173-0
49 205-5 204-6
56 228-3 227-2
63 247-1 241-6
70 250-5 250-1
77 253-8 255-0
84 254-5 257-8

The chemical aspect of growth

As soon as we touch on such matters as the chemical phenomenon 
of catalysis we are on the threshold of a subject which, if we were 
able to pursue it, would lead us far into the special domain of 
physiology; and there it would be necessary to follow it if we were 
dealing with growth as a phenomenon in itself, instead of mainly 
as a help to our study and comprehension of form. The whole 
question of diet, of overfeeding and underfeeding*, would present

* For example. A. S. Parker has shewn that mice suckled by rats, and conse
quently much overfed, grow so quickly that in three weeks they reach double their 
normal weight; but their development is not accelerated; Ann. Appl. Biol, xvi, 
1929.
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itself for discussion*. But without opening up this large subject, 
we may say one more passing word on the remarkable fact that 
certain chemical substances, or certain physiological secretions, 
have the power of accelerating or of retarding or in some way 
regulating growth, and of so influencing the morphological features 
of the organism.

To begin with there are numerous elements, such as boron, 
manganese, cobalt, arsenic, which serve to stimulate growth, or 
whose complete absence impairs’or hampers it; just as there are 
a few others, such as selenium, whose presence in the minutest 
quantity is injurious or pernicious. The chemistry of the living 
body is more complex than we were wont to suppose.

Lecithin was shewn long ago to have a remarkable power of 
stimulating growth in animalsf, and accelerators of plant-growth, 
foretold by Sachs, were demonstrated by Bottomley and others J; 
the several vitamins are either accelerators of growth, or are indis
pensable in order that it may proceed.

In the little duckweed of our ponds and ditches (Lemna minor) the botanists 
have found a plant in which growth and multiplication are reduced to very 
simple terms. For it multiplies by budding, grows a rootlet and two or three 
leaves, and buds again; it is all young tissue, it carries no dead load; while 
the sun shines it has no lack of nourishment, and may spread to the limits of 
the pond. In one of Bottomley’s early experiments, duckweed was grown 
(1) in a “culture solution” without stint of space or food, and (2) in the same, 
with the addition of a little bacterised peat or “auximone.” In both cases the 
little plant spread freely, as in the first, or Malthusian, phase of a population 
curve; but the peat greatly accelerated the rate, which was not slow before. 
Without the auximone the population doubled in nine or ten days, and with 
it in five or six; but in two months the one was seventy-fold the other!

The subject has grown big from small beginnings. We know 
certain substances, haematin being one, which stimulate the growth 
of bacteria, and seem to act on them as true catalysts. An obscure 
but complex body known as “bios” powerfully stimulates the 
growth of yeast; and the so-called auxins, a name which covers 
numerous bodies both nitrogenous and non-nitrogenous, serve in

♦ For a brief resume of this subject see Morgan’s Experimental Zoology, chap. xvi.
f Hatai, Amer. Journ. Physiology, x, p. 57. 1904; Danilewsky, C.R. cxxi, cxxn, 

1895-96.
J W. B. Bottomley. Proc. R.S. (B), Lxxxvm, pp. 237-247, 1914, and other 

papers. O. Haberlandt, Beitr. z. aUgem. Botanik, 1921.
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minute doses to accelerate the growth of the higher plants*.  Some 
of these “growth-substances” have been extracted from moulds or 
from bacteria, and one remarkable one, to which the name auxin 
is especially applied, from seedling oats. This last is no enzyme 
but a stable non-nitrogenous substance, which seems to act by 
softening the cell-wall and so facilitating the expansion of the cell. 
Lastly the remarkable discovery has been made that certain indol- 
compounds, comparatively simple bodies, act to all intents and 
purposes in the same way as the growth-hormones or natural 
auxins, and one of these “hetero-auxins,” an indol-acetic acidf, 
is already in common and successful use to promote the growth and 
rooting of cuttings.

* The older literature is summarised by Stark, Ergebn. d. Biulogie, 11, 1906; 
the later by N. Nielsen, Jb. wiss. Botan. lxxiii, 1930; by Boyson Jensen, Die 
W uchsstofftheorie, 1935; by F. W. Went and K. V. Thimann, Phytohormones, New 
York, 1937, and by H. L. Pearse, Plant hormones and their practical importance, 
Imp. Bureau of Horticulture, 1939. Cf. Went, Bec. d. Trav. Botan. Nlerl. xxv, p. 1, 
1928; A. N. J. Heyn, ibid, xxvm, p. 113, 1931.

f Discovered byKogi and Kostermans, Ztschr. f. physiol. Chern, ccxxxv, p. 201, 
1934. Cf. (int. al.) P. W. Zimmermann and F. W. Wilcox in Contrib. Boyce- 
Thompson Instit. 1935.

Growth of duckweed, with and without peat-auximone
Without With

r A f A
Weeks Obs. Calc. Obs. Calc.

• 0 20 20 20 20
1 30 33 38 55
2 52 54 102 153
3 77 88 326 424
4 135 155 1,100 1,173
5 211 237 3,064 3,250
6 326 390 6,723 8.980
7 550 640 19,763 2,490
8 1052 1048 69,350 68,800

Percentage increase, 164% 277%
per week

There are kindred matters not less interesting to the morphologist. 
It has long been known that the pituitary body produces, in its 
anterior lobe, a substance by which growth is increased and regulated. 
This is what we now call a “hormone” a substance produced in 
one organ or tissue and regulating the functions of another. In this 
case atrophy of the gland leaves the subject a dwarf, and its hyper
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trophy or over-activity goes to the making of a giant; the limb
bones of the giant grow longer, their epiphyses get thick and clumsy, 
and the deformity known as “acromegaly” ensues*.  This has 
become a familiar illustration of functional regulation, by some 
glandular or “endocrinal” secretion, some enzyme or harmozone 
as Gley called it, or hormone^ as Bayliss and Starling called it in 
the particular case where the function to be regulated is growth, 
with its consequent influence on form. But we may be sure that 
this so-called regulation of growth is no simple and no specific thing, 
but implies a far-reaching and complicated influence oh the bodily 
metabolism]:.

* Cf. E. A. Schafer, The function of the pituitary body, Proc. R.S. (B), lxxxi, 
p. 442, 1904.

f It is not easy to draw a line between enzyme and vitamin, or between hormone 
and enzyme.

J The physiological relations between insulin and the pituitary body might 
seem to indicate that it is the carbohydrate metabolism which is more especially 
concerned. Cf. (e.g.J Eric Holmes, Metabolism of the Living Tissue, 1937.

§ Van der Horst finds this to be the case in Zalophus and in the ostrich, compared 
with smaller seals or birds; cf. Ariens Kappers, Journ. Anat, lxiv, p. 256, 1930.

|| Gudernatsch, in Arch. f. Entw. Meeh, xxxv, 1912.
•J Eidmann, ibid. xlix. pp. 510-537, 1921.
** Allen, Journ. Exp. Zool. xxrv, p. 499, 1918. Cf. (int. al.) E. Uhlenhuth, 

Experimental production of gigantism, Journ. Gen. Physiol, ui, p. 347; iv, p. 321, 
1921-22.

ft W. W. Swingle, Journ. Exp. Zool. xxiv, 1918; xxxvn, 1923; Journ. Gen. 
Physiol. I, ii, 1918-19; etc.

Some say that in large animals the pituitary is apt to be dispro
portionately large §; and the giant dinosaur Branchiosaurus, hugest 
of land animals, is reputed to have the largest hypophyseal recess 
(or cavity for the pituitary body) ever observed.

The thyroid also has its part to play in growth, as Gudernatsch 
was the first to shew||; perhaps it acts, as Uhlenhorth suggests, 
by releasing the pituitary hormone. In a curious race of dwarf 
frogs both thyroid and pituitary were found to be atrophied When 
tadpoles are fed on thyroid their legs grow out long before the usual 
time; on the other hand removal of the thyroid delays metamor
phosis, and the tadpoles remain tadpoles to an unusual size**.

The great American bull-frog (R. Catesbciarm) lives for two or 
three years in tadpole form; but a diet of thyroid turns the little 
tadpoles into bull-frogs before they are a month old f f. The converse 
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experiment has been performed on ordinary tadpoles*;  with their 
thyroids removed they remain normal to all appearance, but the 
weeks go by and metamorphosis does not take place. Gill-clefts 
and tail persist, no limbs appear, brain and gut retain their larval 
features; but months after, or apparently at any time, the belated 
tadpoles respond to a diet of thyroid, and may be turned into frogs 
by means of it. The Mexican axolotl is a grown-up tadpole which, 
when the ponds dry up (as they seldom do), completes its growth 
and turns into a gill-less, lung-breathing newt or salamander]"; but 
feed it on thyroid, even for a single meal, and its metamorphosis is 
hastened and ensured];.

* Bennett Allen, Biol. Bjdl. xxxn, 1917; Journ. Exp. Zool. xxiv, 1918; xxx, 
1920; etc.

t Colorado axolotls are much more apt to metamorphose than the Mexican 
variety.

J Babak, Ueber die Beziehung der Metamorphose.. .zur inneren Secretion, 
Centralbl f. Physiol, x, 1913. Cf. Abderhalden, Studien iiber die von einzelnen 
Organen hervorgebrachten Substanzen mit spezifischer Wirkung. Pfiuger's Archiv, 
cnxn, 1915.

§ Certain experiments by M. Morse (Journ. Biol. Chem. xix, 1915) seemed to 
shew that the effect of thyroid on metamorphosis depended on iodine; but the 
case is by no means clear (cf. O, Shinryo, Sci. Bep. Tohoku Univ, nr, 1928, and 
others). The axolotl is said to shew little response to experimental iodine, and 
its ally Necturus none at all (cf. B. M. Allen, in Biol. Reviews, xni, 1939)^

|| Cf. Krizensky, Die beschleunigende Einwirkung des Hungerns auf die Meta
morphose, Biol. Centralbl. hian, 1914. Cf. antea, p. 170.

Much has been done since these pioneering experiments, all going 
to shew that the thyroid plays its active part in the tissue-changes 
which a^ompany and constitute metamorphosis. It looks as though 
more thyroid meant more respiratory activity, more oxy gen
consumption, more oxidative metabolism, more tissue-change, hence 
earlier bodily development §. Pituitary and thyroid are very different 
things; the one enhances growth, the other-retards it. Thyroid 
stimulates metabolism and hastens development, but the tissues 
waste.

It is a curious fact, but it has often been observed, that starvation 
or inanition has, in the long rim, a similar effect of hastening 
metamorphosis ||. The meaning of this phenomenon is unknown.

An extremely remarkable case is that of the “galls”, brought 
into existence on various plants in response to the prick of a small 
insect’s ovipositor. One tree, an oak for instance, may bear galls 
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of many kinds, well-defined and widely different, each caused to 
grow out of the tissues of the plant by a chemical stimulus contri
buted by the insect, in very minute amount; and the insects are 
so much alike that the galls are easier to distinguish than the flies. 
The same insect may produce the same gall on different plants, 
for instance on several species of willow; or sometimes on different 
parts, or tissues, of the same plant. Small pieces of a dead larva 
have been used to infect a plant, and a gall of the usual kind has 
resulted. Beyerinck killed the eggs with a hot wire as soon as 
they were deposited in the tree, yet the galls grew as usual. Here, 
as Needham has lately pointed out, is a great field for reflection 
and future experiment. The minute drop of fluid exuded by the 
insect has marvellous properties. It is not only a stimulant of 
growth, like any ordinary auxin or hormone; it causes tRe growth 
of a peculiar tissue, and shapes it into a new and specific form*.

Among other illustrations (which are plentiful) of the subtle 
influence of some substance upon growth, we have, for instance, 
the growth of the placental decidua, which Loeb shewed to be due 
to a substance given off by the corpus luteum, lending to the uterine 
tissues an enhanced capacity for growth, to be called into action by 
contact with the ovum or even of a foreign body. Various sexual 
characters, such as the plumage, comb and spurs of the cock, arise 
in hke manner in response to an internal secretion or "male 
hormone”; and when castration removes the source of the secretion, 
well-known morphological changes take place. When a converse 
change takes place the female acquires, in greater or less degree, 
characters which are proper to the male: as in those extreme cases, 
known from time immemorial, when an old and barren hen assumes 
the plumage of the cockf.

The mane of the lion, the antlers of the stag, the tail of the peacock, 
are all examples of intensified differential growth, or localised and

i * Joseph Needham, Aspects nouveaux de la chimie et de la biologie de la crois
sance organisee, Folia Morphologica, Warszawa, vni, p. 32, 1938. On galls, see 
(int. al.) Cobbold, Ross und Hedicke, Die Pflanzengallen, Jena, 1927; etc. And 
on their “morphogenic stimulus”, cf. Herbst, Bidlog. Cblt., 1894—5, passim.

t The hen which assumed the voice and plumage of the male was a portent or 
omen—gallina cecinit. The first scientific account was John Hunter’s celebrated 
Account of an extraordinary pheasant, and Of the appearance of the change 
of sex in Lady Tynte’s peahen, Phil. Trans. lxx, pp. 527, 534, 1780. 
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sexc-linked hypertrophy; and in the singular and striking plumage 
of innumerable birds we may easily see how enhanced growth of a 
tufft of feathers, perhaps exaggeration of a single plume, is at 
thee root of the whole matter. Among extreme instances we may 
thiink of the immensely long first primary of the pennant-winged 
nig^htjar; of the long feather over the eye in Pteridophora alberti,

Fig. 81. A single pair of hypertrophied feathers in a bird-of-paradise, 
Pteridophora alberti.

FFig. 82. Unequal growth in the three pairs of tail-feathers of a humming-bird 
(Loddigesia). 1, rudimentary: 2, short and stiff; 3, long and spathulate.

or- the six long plumes over or behind the eye in the six-shafted 
birrd-of-paradise; or among the humming-birds, of the long outer 
recctrix in Lesbia, the second outer one in Aethusa, or of the extra- 
on di nary inequalities of the tail-feathers of Loddigesia mirabilis, 
soi me rudimentary, some short and straight and stiff, and other two 
imimensely elongated, curved and spathulate. The sexual hormones 
hai ve a potent influence on the plumage of a bird; they serve, somehow, 
to orientate and regulate the rate of growth from one feather-tract 
to • another, and from one end to another, even from one side to the 
otlher, of a single feather' An extreme case is the occasional pheno
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menon of a “gynandrous” feather, male and female on two sides 
of the same vane*.

* See an interesting paper by Frank R. Lillie and Mary Juhn, on The physiology 
of development of feathers: I. Growth-rate and pattern in the individual feather. 
Physiological Zoology, v, pp. 124-184, 1932, and many papers quoted therein.

t Le Neo-vitalisme, Revue Scientifique, March 1911.
J La Vie et la Mort, 1902, p. 43.

While unequal or differential growth is of peculiar interest to 
the morphologist, rate of growth pure and simple, with all the 
agencies which control or accelerate it, remains of deeper importance 
to the practical man. The live-stock breeder keeps many desirable 
qualities in view: constitution, fertility, yield and quality of milk 
or wool are some of these; but rate of growth, with its corollaries 
of early maturity and large ultimate size, is generally more important 
than them all. The inheritance of size is somewhat complicated, 
and limited from the breeder’s point of view by the mother’s 
inability to nourish and bring forth a crossbred offspring of a breed 
larger than her own. A cart mare, covered by a Shetland sire, 
produces a good-sized foal; but the Shetland mare, crossed with 
a carthorse, has a foal a little bigger, but not much bigger, than 
herself (Fig. 83). In size and rate of growth, as in other qualities, 
our farm animals differ vastly from their wild progenitors, or from 
the “un-improved” stock in days before Bakewell and the other 
great breeders began. The improvement has been brought about 
by “selection”; but what lies behind?’ Endocrine secretions, 
especially pituitary, are doubtless at work; and already the stock
raiser and the biochemist may be found hand in hand.

If we once admit, as we are now bound to do, the existence of 
factors which by their physiological activity, and apart from any 
direct action of the nervous system, tend towards the acceleration 
of growth and consequent modification of form, we are led into wide 
fields of speculation by an easy and a legitimate pathway. Professor 
Gley carries such speculations a long, long way: for he saysf that 
by these chemical influences “Toute une partie de la construction 
des etres parait's’expliquer d’une fagontoute mecanique. La forteresse, 
si longtemps inaccessible, du vitalisme est entamee. Car la notion 
morphogenique etait, suivant le mot de DastreJ, comme Te dernier 
reduit de la force vitale’.”
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The physiological speculations we need not discuss: but, to take 
a single example from morphology, we begin to understand the 
possibility, and to comprehend the probable meaning, of the all but 
sudden appearance on the earth of such exaggerated and almost 
monstrous forms as those of the great secondary reptiles and the

Fig. 83. Effect of cross-breeding on rate of growth in Shetland ponies. 
From Walton and Hammond’s data.*

great tertiary mammals f. We begin to see that it is in order to 
account not for the appearance but for the disappearance of such 
forms as these that natural selection must be invoked. And we 
then, I think, draw near to the conclusion that what is true of these 
is universally true, and that the great function of natural selection

* Walton and Hammond, Proc. B.S. (B), No. 840, p. 317, 1938.
t Cf. also Dendy, Evolutionary Biology, 1912, p. 408.
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is not to originate* but to remove: donec ad interitum genus id 
natura redegit^.

The world of things living, like the world of things inanimate, 
grows of itself, and pursues its ceaseless course of creative evolution. 
It has room, wide but not unbounded, for variety of living form 
and structure, as these tend towards their seemingly endless but 
yet strictly limited possibilities of permutation and degree: it has 
room for the great and for the small, room for the weak and for the 
strong. Environment and circumstance do not always make a 
prison, wherein perforce the organism must either live or die; for 
the ways of life may be changed, and many a refuge found, before 
the sentence of unfitness is pronounced and the penalty of exter
mination paid.x But there comes a time when “variation,” in form, 
dimensions, or other qualities of the organism, goes further than is 
compatible with all the means at hand of health and welfare for 
the individual and the stock; when, under the active and creative 
stimulus of forces from within and from without, the active and 

• creative energies of growth pass the bounds of physical and 
physiological equilibrium: and so reach the limits which, as again 
Lucretius tells us, natural law has set between what may and what 
may not be,

et quid quaeque queant per foedera natural 
quid porro nequeant.

Then, at last, we are entitled to use the customary metaphor, and 
to see in natural selection an inexorable force whose function is not 
to create but to destroy—to weed, to prune, to cut down and to 
cast into the fire J.

* So said Yves Delage (L'MrtdM, 1903, p. 397): “La selection naturelle est un 
principe admirable et parfaitement juste. Tout le monde est d’accord sur ce point. 
Mais ou 1’on n’est pas d'accord, e’est sur la limite de sa puissance et sur la question 
de savoir si elle peut engendrer des formes sp^cifiques nouvelles. 11 semble bien 
ddmontr^ aujourd'hui gu'elle ne le peut pas.”

f Lucret, v, 875. “Lucretius nowhere seems to recognise the possibility of 
improvement or change of species by ‘natural selection’; the animals remain as 
they were at the first, except that the weaker and more useless kinds have been 
crushed out. Hence he stands in marked contrast with modern evolutionists.” 
Kelsey’s note, ad loc.

J Even after we have so narrowed its scope and sphere, natural selection is 
still a hard saying; for the causes of extinction are wellnigh as hard to understand 
as are those of the origin of species. If we assert (as has been lightly and too
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Of regeneration, or growth and repair

The phenomenon of regeneration, or the restoration of lost or 
amputated parts, is a particular case of growth which deserves 
separate consideration. It is a property manifested in a high 
degree among invertebrates and many cold-blooded vertebrates, 
diminishing as we ascend the scale, until it lessens down in the 
warm-blooded animals to that vis medwatrix which heals a wound. 
Ever since the days of Aristotle, and still more since the experiments 
of Trembley, Reaumur and Spallanzani in the eighteenth century, 
physiologist and psychologist alike have recognised that the pheno
menon is both perplexing and important. “Its discovery,” said 
Spallanzani, “was an immense addition to the riches of organic philo
sophy, and an inexhaustible source of meditation for the philosopher.” 
The general phenomenon is amply treated of elsewhere*, and we 
need only deal with it in its immediate relation to growth.

Regeneration, like growth in other cases, proceeds with a velocity 
which varies according to a definite law; the rate varies with the 
time, and we may study it as velocity and as acceleration. Let us 
take, as an instance, Miss M. L. Durbin’s measurements of the rate 
of regeneration of tadpoles’ tails : the rate being measured in terms 
of length, or longitudinal increment f. From a number of tadpoles, 
whose average length was in one experiment 34 mm., and in another 
49 mm., about half the tail was cut off, and the average amounts 
regenerated in successive periods are shewn as follows:

Days 3 5 7 10 12 14 17 18 24 28 30
Amount regenerated (mm.):

First experiment 1-4 — 3-4 4-3 —' 5-2 — 5-5 6-2 — 6-5
Second „ 0-9 22 3-7 5-2 60 6-4 7 1 — 7-6 8-2 8-4

confidently done) that Smilodon perished on account of its gigantic tusks, that 
Teleosaurus was handicapped by its exaggerated snout, or Stegosaurus weighed 
down by its intolerable load of armour, we may call to mind kindred forms where 
similar conditions did not lead to rapid extermination, or where extinction ensued 
apart from any such apparent and visible disadvantages. Cf F. A. Lucas, On 
momentum in variation, Amer. Nat. xli, p. 46, 1907.

* See Professor T. H. Morgan’- Regeneration (316 pp.), 1901, for a full account 
and copious bibliography. The early experiments on regeneration, by Vallisneri, 
Dicquemare, Spallanzani, Reaumur, Trembley, Raster, Bonnet and others, are 
epitomised by Haller, Elementa Physiologiae, vin, pp. 156 seq.

f Journ. Exper. Zool. vn, p. 397, 1909.
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Both experiments give us fairly smooth curves of growth within 
the period of the observations; and, with a slight and easy extra
polation, both curves draw to the base-line at zero (Fig. 84). More-

Fig. 84. Curve of regenerative growth in tadpoles’ tails. 
From ivl L. Durbin’s data.

Fig. 85. Tadpoles’ tails: amount regenerated daily, in mm. 
(Smoothed curve).

over, if from the smoothed curves we deduce the daily increments, 
we get (Fig. 85) a bell-shaped curve similar to (or to all appearance 
identical with) a skew curve of error. In point of fact, this instance 
of regeneration is a very ordinary example of growth, with ijs 
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S-shaped curve of integration and its bell-shaped differential curve, 
just as we have seen it in simple cases, or simple phases, of the 
growth of a population or an individual.

If we amputate one limb of a pair in some animal with rapid 
powers of regeneration, we may compare from time to time the 
dimensions of the regenerating limb with those of its uninjured 
fellow, and so deal with a relative rather than an absolute velocity. 
The legs of insect-larvae are easily restored, but after pupation no 
further growth or regeneration takes place. An easy experiment, 
then, is to remove a limb in larvae of various ages, and to compare

Fig. 86. Regenerative growth in mealworms’ legs.

at leisure in the pupa the dimensions of the new limb with the old. 
The following much-abbreviated table shews the gradual increase 
of a regenerating limb in a mealworm, up to final equality with the 
normal limb, the rate varying according to the usual S-shaped 
curve*  (Fig. 86).

* From J. Krizenecky, Versuch zur statisch-graphischen Untersuchung... der 
Regenerationsvorgange, Arch. f. Entw. Meeh, xxxix, 1914; xm, 1917.

Rate of regeneration in the mealworm (Tenebrio molitor, larva)
Daya aftqr amputation ... 0 16 21 25 34 44 58 70 100 121
% ratio of new limb to old 0 7 11 20 29 42 71 83 91 100

TG F i8
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Some writers have found the curve of regenerative growth to be 
different from the curve of ordinary growth, and have commented 
on the apparent difference; but they have been misled (as it seems 
to me) by the fact that regeneration is seen from the start or very 
nearly so, while the ordinary curves of growth, as they are usually 
presented to us, date not from the beginning of growth, but from 
the comparatively late, and unimportant, and even fallacious epoch 
of birth. A complete curve of growth, starting from zero, has the 
same essential characteristics as the regeneration curve.

Indeed the more we consider the phenomenon of regeneration, 
the more plainly does it shew itself to us as but a particular case 
of the general phenomenon of growth*,  following the same lines, 
obeying the same laws, and merely started into activity by the 
special stimulus, direct or indirect, caused by the infliction of a 
wound. Neither more nor less than in other problems of physiology 
are we called upon, in the case of regeneration, to indulge in 
metaphysical speculation, or to dwell upon the beneficent purpose 
which «eemingly underlies this process of healing and repair.

* The experiments of Loeb on the growth of Tubularia in various saline 
solutions, referred to on p. 245, might as well or better have been referred to under 
the heading of regeneration, as they were performed on cut pieces of the zoophyte. 
(Cf. Morgan, op. cit. p. 35.)

t Powers of the Creator, i, p. 7, 1851. See also Rare and Remarkable Animals, 
n, pp. 17-19, 90, 1847.

It is a very general rule, though not a universal one, that 
regeneration tends to fall somewhat short of a complete restoration 
of the lost part; a certain percentage only of the lost tissues is 
restored. This fact was well known to some of those old investi
gators, who, like the Abbe Trembley and like Voltaire, found a 
fascination in the study of artificial injury and the regeneration 
which followed it. Sir John Graham Dalyell, for instance, says, in 
the course of an admirable paragraph on regeneration!: “The 
reproductive faculty... is not confined to one portion, but may 
extend over many; and it may ensue even in relation to the 
regenerated portion more than once. Nevertheless, the faculty 
gradually weakens, so that in general every successive regeneration 
is smaller and more imperfect than the organisation preceding it; 
and at length it is exhausted.”
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In certain minute animals, such as the Infusoria, in which the 
capacity for regeneration is so great that the entire animal may 
be restored from a mere fragment, it becomes of great interest to 
discover whether there be some definite size at which the fragment 
ceases to display this power. This question has been studied by 
Lillie*, who found that in Stentor, while still smaller fragments were 
capable of surviving for days, the smallest portions capable of 
regeneration were of a size equal to a sphere of about 80p. in 
diameter, that is to say of a volume equal to about one' twenty
seventh of the average entire animal. He arrives at the remarkable 
conclusion that for this, and for all other species of animals, there 
is a “minimal organisation mass,” that is to say a “minimal mass 
of definite size consisting of nucleus and cytoplasm within which 
the organisation of the species can just find its latent expression.” 
And in like manner, Boverif has shewn that the fragment of a sea- 
urchin’s egg capable of growing up into a new embryo, and so 
discharging the complete functions of an entire and uninjured ovum, 
reaches its limit at about one-twentieth of the original egg—other 
writers having found a limit at about one-fourth. These magnitudes, 
small as they are, represent objects easily visible under a low power 
of the microscope, and so stand in a very different category to the 
minimal magnitudes in which life itself can be manifested, and 
which we have discussed in another chapter.

The Bermuda “life-plant” (Bryophyllum calycinum) has so 
remarkable a power of regeneration that a single leaf, kept damp, 
sprouts into fresh leaves and rootlets which only need nourishment 
to grow into a new plant. If a stem bearing two opposite leaves 
be split asunder, the two co-equal sister-leaves will produce (as we 
might indeed expect) equal masses of shoots in equal times, whether 
these shoots be many or few; and, if one leaf of the pair have part 
cut off it and the other be left intact, the amount of new growth

* F. R. Lillie, The smallest parts of Stentor capable of regeneration, Journ. 
Morphology, xu, p. 239, 1897.

t Boveri, Entwicklungsfahigkeit kernloser Seeigeleier, etc., Arch. f. Entw. Meeh. 
ii, 1895. See also Morgan, Studies of the partial larvae of Sphaerechinus, ibid. 
1895; J. Loeb, On the limits of divisibility of living matter, Biol. Lectures, 1894; 
Pfinger's Archiv, lix, 1894, etc. Bonnet studied the same problem a hundred 
and seventy years ago, and found that the smallest part of the worm Lumbriculus 
capable of regenerating was 1$ lines (3-4 mm.) long. For other references and 
discussion see H. Przibram, Form und Formel, 1922, ch. v.

18-2
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will be in direct and precise proportion to the mass of the leaf from 
which it grew. The leaf is all the while a living tissue, manu
facturing material to build its own offshoots; and we have a simple 
case of the law of mass action in the relation between the mass of 
the leaf with its included chlorophyll and that of its regenerated 
offshoot*.

Fig. 87. Relation between the percentage amount of tail removed, the percentage 
restored, and the time required for its restoration. Constructed from M. M. 
Ellis’s data.

A number of phenomena connected with the linear rate of 
regeneration are illustrated and epitomised in the accompanying 
diagram (Fig. 87), which I have constructed from certain data 
given by Ellis in a paper on the relation of the amount of tail 
regenerated to the amount removed, in tadpoles. These data are 
summarised in the next table. The tadpoles were all very much

♦ Jacques Loeb, The law controlling the quantity and rate of regeneration, 
Froc. Nat. Acad. Sci. rv, pp. 117-121, 1918; Journ. Gen. Physiol, i, pp. 81-96, 
1918; Botan. Gaz. lxv, pp. 150-174, 1918.
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of a size, about 40 mm.; the average length of tail was very near 
to 26 mm., or 65 per cent, of the whole body-length; and in four 
series of experiments about 10, 20, 40 and 60 per cent, of the tail 
were severally removed. The amount regenerated in successive 
intervals of three days is shewn in our table. By plotting the 
actual amounts regenerated against these three-day intervals of 
time, we may interpolate values for the time taken to regenerate 
definite percentage amounts, 5 per cent., 10 per cent., etc. of the 
amount removed; and my diagram is constructed from the four 
sets of values thus obtained, that is to say from the four sets of 
experiments which differed from one another in the amount of tail 
amputated. To these we have to add the general result of a fifth 
series of experiments, which shewed that when as much as 75 per 
cent, of the tail was cut off, no regeneration took place at all, but 
the animal presently died. In our diagram, then, each curve 
indicates the time taken to regenerate n per cent, of the amount 
removed. All the curves converge towards infinity of time, when 
the amount removed approaches 75 per cent, of the whole; and all 
start from zero, for nothing is regenerated where nothing had been 
destroyed.

The rate of regenerative growth in tadpoles’ tails 
(After M. M. Ellis, Journ. Exp. Zool. vn, p. 421, 1909)

* Each series gives the mean of 20 experiments.

Series*

Body 
length 
mm.

Tail 
length 
mm.

Amount Per cent. % amount regenerated in days
removed 

mm.
of tail 

removed 3 6 9 12 15 18 32
O 39-575 25-895 3-2 12-36 13 31 44 44 44 44 44
P 4021 26-13 5-28 20-20 10 29 40 44 44 44 44
R 39-86 25-70 10-4 40-50 6 20 31 40 48 48 48
S 40-34 26-11 14-8 56-7 0 16 33 39 45 48 48

The amount regenerated varies also with the age of the tadpole, 
and with other factors such as temperature; in short, for any given 
age or size of tadpole, and for various temperatures, and doubtless 
for other varying physical conditions, a similar diagram might be 
constructed!.

The power of reproducing, or regenerating, a lost limb is par-

f Cf. also C. Zeleny, Factors controlling the rate of regeneration, Illinois Biol- 
Monographs, m, p. 1, 1916.
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ticularly well developed in arthropod animals, and is sometimes 
accompanied by remarkable modification of the form of the 
regenerated limb. A case in point, which has attracted much 
attention, occurs in connection with the claws of certain Crustacea*.

* Cf. H. Przibram, Scheerenumkehr bei dekapoden Crustaceen, Arch. f. Entw. 
Meeh, xix, pp. 181-247, 1905; xxv, pp. 266-344, 1907; Emmel, ibid, xxn, p. 542, 
1906; Regeneration of lost parts in lobster, Rep. Comm. Inland Fisheries, Rhode 
Island, xxxv, xxxvi, 1905-6; Science (N.S.), xxvi, pp. 83-87, 1907; Zeleny, 
Compensatory regulation, Journ. Exp. Zool. n, pp. 1-102, 347-369, 1905; etc.

f Lobsters are occasionally found with two symmetrical claws: which are then 
usually serrated, sometimes (but very rarely) both blunt-toothed. Cf. W. T. Caiman, 
P.Z.S. 1906, pp. 633, 634, and reff.

In many of these we have an asymmetry of the great claws, 
one being larger than the other and also more or less different in 
form. For instance in the common lobster, one claw, the larger 
of the two, is provided with a few great “crushing” teeth, while 
the smaller claw has more numerous teeth, small and serrated. 
Though Aristotle thought otherwise, it appears that the crushing
claw may be on the right or left side, indifferently; whether it be 
on one or the other is a matter of “chance.” It is otherwise in 
many other Crustacea, where the larger and more powerful claw is 
always left or right, as the case may be, according to the species: 
where, in other words, the “probability” of the large or the small 
claw being left or being right is tantamount to certainty f.

As we have already seen, the one claw is the larger because it 
has grown the faster; it has a higher “coefficient of growth,” and 
accordingly, as age advances, the disproportion between the two 
claws becomes more and more evident. Moreover, we must assume 
that the characteristic form of the claw is a “function” of its 
magnitude; the knobbiness is a phenomenon coincident with 
growth, and we never, under any circumstances, find the smaller 
claw with big crushing teeth and the big claw with little serrate 
ones. There are many other somewhat similar cases where size 
and form are manifestly correlated, and we have already seen, to 
some extent, how the phenomenon of growth is often accompanied 
by such ratios of velocity as lead inevitably to changes of form. 
Meanwhile, then, we must simply assume that the essential difference 
between the two claws is one of magnitude, with which a certain 
differentiation of form is inseparably associated.
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If we amputate a claw, or if, as often happens, the crab “casts 

it off,” it undergoes a process of regeneration—it grows anew, 
and does so with an accelerated velocity which ceases when 
equilibrium of the parts is once more attained: the accelerated velocity 
being a case in point to illustrate that vis revulsionis of Haller to 
which we have already referred.

With the help of this principle, Przibram accounts for certain 
curious phenomena which accompany the process of regeneration. 
As his experiments and those of Morgan shew, if the large or knobby 
claw (/1) be removed, there are certain cases, e.g. the common 
lobster, where it is directly regenerated. In other cases, e.g. 
Alpheus*,  the other claw (B) assumes the size and form of that 
which was amputated, while the latter regenerates itself in the 
form of the lesser and weaker one; A and B have apparently 
changed places. In a third case, as in the hermit-crabs, the A- 
claw regenerates itself as a small or B-claw, but the B-claw 
remains for a time unaltered, though slowly and in the course of 
repeated moults it later on assumes the large and heavily toothed 
.4-form.

* E. B. Wilson, Reversal of symmetry in Alpheus heterocheles, Biol. Bull, iv, 
p. 197, 1903.

f See p. 205.

Much has been written on this phenomenon, but in essence it is 
very simple. It depends upon the respective rates of growth, upon 
a ratio between the rate of regeneration and the rate of growth of 
the uninjured limb: that is to say, on the familiar phenomenon of 
unequal growth, or. as it has been called, heterogony*.  It is com
plicated a little, however, by the possibility of the uninjured limb 
growing all the faster for a time after the animal has been relieved 
of the other. From the time of amputation, say of A, A begins to 
grow from zero, with a high “regenerative” velocity: while B, 
starting from a definite magnitude, continues to increase with its 
normal or perhaps somewhat accelerai ed velocity. The ratio 
between the two velocities of growth will determine whether, by a 
given time, A has equalled, outstripped, or still fallen short of the 
magnitude of B.

That this is the gist of the whole problem is confirmed (if con
firmation be necessary) by certain experiments of Wilson’s. It is
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known that by section of the nerve to a crab’s claw, its growth is 
retarded, and as the general growth of the animal proceeds the claw 
comes to appear stunted or dwarfed. Now in such a case as that 
of Alpheus, we have seen that the rate of regenerative growth in an 
amputated large claw fails to let it reach or overtake the magnitude 
of the growing little claw: which latter, in short, now appears as 
the big one. But if at the same time as we amputate the big claw 
we also sever the nerve to the lesser one, we so far slow down the 
latter’s growth that the other is able to make up to it, and in this 
case the two claws continue to grow at approximately equal rates, 
or in other words continue of coequal size.

The phenomenon of regeneration goes some little way towards 
helping us to comprehend the phenomenon of “multiplication by 
fission,” as it is exemplified in its simpler cases in many worms and 
worm-like animals. For physical reasons which we shall have to 
study in another chapter, there is a natural tendency for any tube, 
if it have the properties of a fluid or semi-fluid substance, to break 
up into segments after it comes to a certain length*; and nothing 
can prevent its doing so except the presence of some controlling 
force, such for instance as may be due to the pressure of some 
external support, or some superficial thickening or other intrinsic 
rigidity of its own substance. If we add to this natural tendency 
towards fission of a cylindrical or tubular worm, the ordinary 
phenomenon of regeneration, we have all that is essentially implied 
in “reproduction by fission.” And in so far as the process rests 
upon a physical principle, or natural tendency, we may account for 
its occurrence in a great variety of animals, zoologically dissimilar; 
and for its presence here and absence there, in forms which are 
materially different in a physical sense, though zoologically speaking 
they are very closely allied.

But the phenomena of regeneration, like all the other phenomena 
of growth, soon carry us far afield, and we must draw this long 
discussion to a close.

* A morphological polarity, or essential difference between one end and the other 
of a segment, is important even in so simple a case as the internode of a hydroid 
zoophyte; and an electrical polarity seems always to accompany it. Cf. A. P. 
Matthews, Amer. Journ. Physiology, vm, p. 294, 1903; E. J. Lund, Journ. Exper. 
Zool. xxxiv, pp. 477-493; xxxvi, pp. 477-494, 1921-22.
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Summary and Conclusion

For the main features which appear to be common to all curves 
of growth we may hope to have, some day, a simple explanation. 
In particular we should like to know the plain meaning of that point 
of inflection, or abrupt change from an increasing to a decreasing 
velocity of growth, which all our curves, and especially our accelera
tion curves, demonstrate the existence of, provided only that they 
include the initial stages of the whole phenomenon: just as we 
should also like to have a full physical or physiological explanation 
of the gradually diminishing velocity of growth which follows, and 
which (though subject to temporary interruption or abeyance) is 
on the whole characteristic of growth in all cases whatsoever. In 
short, the characteristic form of the curve of growth in length (or 
any other linear dimension) is a phenomenon which we are at 
present little able to explain, but which presents us with a definite 
and attractive problem for future solution. It would look as 
though the abrupt change in velocity must be due, either to a change 
in that pressure outwards from within by which the “forces of 
growth ” make themselves manifest, or to a change in the resistances 
against which they act, that is to say the tension of the surface; 
and this latter force we do not by any means limit to “surface
tension” proper, but may extend to the development of a more or 
less resistant membrane or “skin,” or even to the resistance of fibres 
or other histological elements binding the boundary layers to the 
parts within*.  I take it that the sudden arrest of velocity is much 
more likely to be due to a sudden increase of resistance than to a 
sudden diminution of internal energies: in other words, I suspect 
that it is coincident with some notable event of histological 
differentiation, such as the rapid formation of a comparatively firm 
skin; and that the dwindling of velocities, or the negative accelera
tion, which follows, is the resultant or composite effect of waning 
forces of growth on the one hand, and increasing superficial resistance 

* It is natural to suppose the cell-wall less rigid, or more plastic, in Xhe growing 
tissue than in the full-grown or resting cell. It has been suggested that this plasticity 
is due to, or is increased by, auxins, whether in the course of nature, or in our 
stimulation of growth by the use of these bodies. Cf. H. Soding, Jahrb. d. wiss. Bot. 
Lxxrv, p. 127, 1931.
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on the other. This is as much as to say that growth, while its own 
energy tends to increase, leads also, after a while, to the establish
ment of resistances which check its own further increase.

Our knowledge of the whole complex phenomenon of growth is 
so scanty that it may seem rash to advance even this tentative 
suggestion. But yet there are one or two known facts which seem 
to bear upon the question, and to indicate at least the manner in 
which a varying resistance to expansion may affect the velocity 
of growth. For instance, it has been shewn by Frazee* that 
electrical stimulation of tadpoles, with small current density and 
low voltage, increases the rate of regenerative growth. As just 
such an electrification would tend to lower the surface-tension, and 
accordingly decrease the external resistance, the experiment would 
seem to support, in some slight degree, the suggestion which I have 
made.

To another important aspect of regeneration we can do no more 
than allude. The Planarian worms rival Hydra itself in their powers 
of regeneration; and in both cases even small bits of the animal 
are likely to include endoderm cells capable of intracellular digestion, 
whereby the fragment is enabled to live and to grow. Now if a 
Planarian worm be cut in separate pieces and these be suffered to 
grow and regenerate, they do so in a definite and orderly way; that 
part of a slice or fragment which had been nearer to the original 
head will develop a head, and a tail will be regenerated at the 
opposite end of the same fragment, the end which had been tailward 
in the beginning; the amputated fragments possess sides and ends, 
a front end and a hind end, like the entire worm; in short, they 
retain their polarity. This remarkable discovery is due to Child, 
who has amplified and extended it in various instructive ways. 
The existence of two poles, positive and negative, implies a 
“gradient” between them. It means that one part leads and 
another follows; that one part is dominant, or prepotent over the 
rest, whether in regenerative growth or embryonic development.

We may summarise, as follows, the main results of the foregoing 
discussion:

(1) Except in certain minute organisms, whose form (like that
'♦ Journ. Exper. Zool. vu, p. 457, 1909.
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of a drop of water) is due to the direct action of the molecular forces, 
we may look upon the form of an organism as a “function of growth,” 
or a direct consequence of growth whose rate varies in its different 
directions. In a newer language we might call the form of an 
organism an “event in space-time,” and not merely a “configuration 
in space.”

(2) Growth varies in rate in an orderly way, or is subject, like 
other physiological activities, to definite “laws.” The rates differ 
in degree, or form “gradients,” from one point of an organism to 
another; the rates in different parts and in different directions 
tend to maintain more or less constant ratios to one another in 
each organism; and to the regularity and constancy of these relative 
rates of growth is due the fact that the form of the organism is in 
general regular and constant.

(3) Nevertheless, the ratio of velocities in different directions is 
not absolutely constant, but tends to alter in course of time, or to 
fluctuate in an orderly way; and to these progressive changes are 
due the changes of form which accompany development, and the 
slower changes which continue perceptibly in after life.

(4) Rate of growth depends on the age of the organism. It has 
a maximum somewhat early in life, after which epoch of maximum 
it slowly declines.

(5) Rate of growth is directly affected by temperature, and by 
other physical conditions: the influence of temperature being 
notably large in the case of cold-blooded or “ poecilothermic ” 
animals. Growth tends in these latter to be asymptotic, becoming 
slower but never ending with old age.

(6) It is markedly affected, in the way of acceleration or retarda
tion, at certain physiological epochs of life, such as birth, puberty 
or metamorphosis.

(7) Under certain circumstances, growth may be negative, the 
organism growing smaller; and such negative growth is a common 
accompaniment of metamorphosis, and a frequent concomitant of 
old age.

(8) The phenomenon of regeneration is associated with a large 
transitory increase in the rate of growth (or acceleration of growth) 
in the region of injury; in other respects regenerative growth is 
similar to ordinary growth in all its essential phenomena.
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In this discussion of growth, we have left out of account a vast 
number of processes or phenomena in the physiological mechanism 
of the body, by which growth is effected and controlled. We have 
dealt with growth in its relation to magnitude, and to that relativity 
of magnitudes which constitutes form; and so we have studied it 
as a phenomenon which stands at the beginning of a morphological, 
rather than at the end of a physiological enquiry. Under these 
restrictions, we have treated it as far as possible, or in such fashion 
as our present knowledge permits, on strictly physical lines. That 
is to say, we rule “heredity” or any such concept out of our present 
account, however true, however important, however indispen
sable in another setting of the story, such a concept may be. 
In physics “on admet que 1’etat actuel du monde ne depend que du 
passe le plus proche, sans etre influence, pour ainsi dire, par le 
souvenir d’un passe lointain*.” This is the concept to which the 
differential equation gives expression; it is the step which Newton 
took when he left Kepler behind.

In all its aspects, and not least in its relation to form, the growth 
of organisms has many analogies, some close, some more remote, 
among inanimate things. As the waves grow when the winds strive 
with the other forces which govern the movements of the surface 
of the sea, as the heap grows when we pour corn out of a sack, as 
the crystal grows when from the surrounding solution the proper 
molecules fall into their appropriate places: so in all these cases, 
very much as in the organism itself, is growth accompanied by 
change of form, and by a development of definite shapes and 
contours. And in these cases (as in all other mechanical phenomena), 
we are led to equate our various magnitudes with time, and so to 
recognise that growth is essentially a question of rate, or of velocity.

The differences of form, and changes of form, which are brought 
about by varying rates (or “laws”) of growth, are essentially the 
same phenomenon whether they be episodes in the life-history of 
the individual, or manifest themselves as the distinctive charac
teristics of what we call separate species of the race. From one 
form, or one ratio of magnitude, to another there is but one straight 
and direct road of transformation, be the journey taken fast or

* Cf. H. Poincare, La physique generale et la physique mathematique, Rev. 
gin. des Sciences, xi, p. 1167, 1900.
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slow; and if the transformation take place at all, it will in all 
likelihood proceed in the self-same way, whether it occur within 
the lifetime of an individual or during the long ancestral history of 
a race. No small part of what is known as Wolff’s or von Baer’s 
law, that the individual organism tends to pass through the phases 
characteristic of its ancestors, or that the life-history of the individual 
tends to recapitulate the ancestral history of its race, lies wrapped 
up in this simple account of the relation between growth and form.

But enough of this discussion. Let us leave for a while the 
subject of the growth of the organism, and attempt to study the 
conformation, within and without, of the individual cell.



CHAPTER IV

ON THE INTERNAL FORM AND STRUCTURE 
OF THE CELL

In the early days of the cell-theory, a hundred years ago, Good sir 
was wont to speak of cells as “centres of growth” or “centres of 
nutrition,” and to consider them as essentially “centres of force* ”. 
He looked forward to a time when the forces connected with the 
cell should be particularly investigated: when, that is to say, minute 
anatomy should be studied in its dynamical aspect. “When this 
branch of enquiry,” he says, “shall have been opened up, we shall 
expect to have a science of organic forces, having direct relation 
to anatomy, the science of organic forms.” And likewise, long 
afterwards, Giard contemplated a science of wtorphodynamique -but 
still looked upon it as forming so guarded and hidden a “territoire 
scientifique, que la plupart des naturalistes de nos jours ne le verront 
que comme Moise vit la terre promise, seulement de loin et sans 
pouvoir y entrerf.”

* Anatomical and Pathological Observations, p. 3, 1845; Anatomical Memoirs, 
n, p. 392, 1868. This was a notable improvement on the “kleine wirkungsfahige 
Zentren oder Elementen” of the Cellularpathologie. Goodsir seems to have been 
seeking an analogy between the living cell and the physical atom, which Faraday, 
following Boscovich, had been speaking of as a centre of force in the very year 
before Goodsir published his Observations: see Faraday’s Speculations concerning 
Electrical Conductivity and the Nature of Matter, 1844. For Newton’s “molecules” 
had been turned by his successors into material points; and it was Boscovich (in 
1758) who first regarded these material points as mere persistent centres of force. 
It was the same fertile conception of a centre of force which" led Rutherford, later 
on, to the discovery of the nucleus of the atom.

f A. Giard, L'ceuf et les debuts de Involution, Bull. Sci. du Nord de la Er. vm, 
pp. 252-258, 1876.

To the external forms of cells, and to the forces which produce 
and modify these forms, we shall pay attention in a later chapter. 
But there are forms and configurations of matter within the cell 
which also deserve to be studied with due regard to the forces, 
known or unknown, of whose resultant they are the visible 
expression
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In the long interval since Goodsir's day, the visible structure, 

the conformation and configuration, of the cell, has been studied 
far more abundantly than the purely dynamic problems which are 
associated therewith. The overwhelming progress of microscopic 
observation has multiplied our knowledge of cellular and intra
cellular structure; and to the multitude of visible structures it has 
been often easier to attribute virtues than to ascribe intelligible 
functions or modes of action. But here and there nevertheless, 
throughout the whole literature of the subject, we find recognition 
of the inevitable fact that dynamical problems lie behind the 
morphological problems of the cell.

Biitschli pointed out sixty years ago, with emphatic clearness, 
the failure of morphological methods and the need for physical 
methods if we were to penetrate deeper into the essential nature of 
the cell*.  And such men as Loeb and Whitman, Driesch and Roux, 
and not a few besides, have pursued the same train of thought and 
similar methods of enquiry.

* Entwickdungsvorgange der Eizdle, 1876; Investigations on Microscopic Foams 
and Protoplasm, p. 1, 1894.

f Journ. Morphology, I, p. 229, 1887.
J While it has been very common to look upon the phenomena of mitosis as 

sufficiently explained by the results towards which they seem to lead, we may find 
here and there a strong protest against this mode of interpretation. The following 
is a case in point: “On a tente d’etablir dans la mitose dite primitive plusieurs 
categories, plusieurs types de mitose. On a choisi le plus souvent comme base 
de ces systemes des concepts abstraits et teleologiques: repartition plus ou moins 
exacte de la chromatine entre les deux noyaux-fils suivant qu’il y a ou non des 
chromosomes (Dangeard), distribution particuliere et signification dualjste des 
substances nucleaires (substance kinetique et substance generative ou hereditaire, 
Hartmann et ses dives), etc. Pour moi tous ces essais sont & rejeter categorique- 
ment a cause de leur caract^re finaliste; de plus, ils sont eonstruits sur des concepts 
non demontres, et qui parfois representent des generalisations absolument errondes.” 
A. Alexeieff, Archie fUr Protistenkunde, xix, p. 344, 1913.

Whitman!, for instance, puts the case in a nutshell when, in 
speaking of the so-called “ caryokinetic ” phenomena of nuclear 
division, he reminds us that the leading idea in the term “caryo- 
kinesis” is motion "motion viewed as an exponent of forces 
residing in,, or acting upon, the nucleus. It regards the nucleus 
as a seat of energy, which displays itself in phenomena of motion %”

In short it would seem evident that, except in relation to a 
dynamical investigation, the mere study of cell structure has but 
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little value of its own. That a given cell, an ovum for instance, 
contains this or that visible substance or structure, germinal vesicle 
or germinal spot, chromatin or achromatin, chromosomes or centro- 
somes, obviously gives no explanation of the activities of the cell. 
And in all such hypotheses as that of “pangenesis,” in all the 
theories which attribute specific properties to micellae, chromosomes, 
idioplasts, ids, or other constituent particles of protoplasm or of 
the cell, we are apt to fall into the error of attributing to matter 
what is due to energy and is manifested in force: or, more strictly 
speaking, of attributing to material particles individually what is 
due to the energy of their collocation.

The tendency is a very natural one, as knowledge of structure 
increases, to ascribe particular virtues to the material structures 
themselves, and the error is one into which the disciple is likely 
to fall but of which we need not suspect the master-mind. The 
dynamical aspect of the case was in all probability kept well in view 
by those who, like Goodsir himself, first attacked the problem of 
the cell and originated our conceptions of its nature and functions*.

* See also (int. al.) R. S. Lillie’s papers on the physiology of cell-division in the 
Journ. Exper. Physiology, especially No. vi. Rhythmical changes in the resistance 
of the dividing sea-urchin egg, ibid, xvi, pp. 369-402, 1916.

f Such as the vertu dormitive which accounts for the soporific action of opium. 
We are now more apt, as Le Dantec says, to substitute for this occult quality the 
hypothetical substance dormitin.

J This is the old philosophic axiom writ large: Ignoralo motu, ignoratur natura’, 
which again is but an adaptation of Aristotle’s phrase, i) apxg rys Kivyaews, as 
equivalent to the “Efficient Cause.” FitzGerald holds that “all explanation 
consists in a description of underlying motions” (Scientific Writings, 1902, p. 385); 
and Oliver Lodge remarked, “You can move Matter; it is the only thing you can 
do to it.”

If we speak, as Weismann and others speak, of an “hereditary 
substance,” a substance which is split off from the parent-body, and 
which hands on to the new generation the characteristics of the old, 
we can only justify our mode of speech by the assumption that that 
particular portion of matter is the essential vehicle of a particular 
charge or distribution of energy, in which is involved the capability 
of producing motion, or of doing “work.” For, as Newton said, 
to tell us that a thing “is endowed with an occult specific qualityf, 
by which it acts and produces manifest effects, is to tell us nothing; 
but to derive two or three general principles of motion J from 
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phenomena would be a very great step in philosophy, though the 
causes of those principles were not yet discovered.” The things 
which we see in the cell are less important than the actions which 
we recognise in the cell; and these latter we must especially 
scrutinise, in the hope of discovering how far they may be attributed 
to the simple and well-known physical forces, and how far they be 
relevant or irrelevant to the phenomena which we associate with, 
and deem essential to, the manifestation of life. It may be that in 
this way we shall in time draw nigh to the recognition of a specific 
and ultimate residuum.

And lacking, as we still do lack, direct knowledge of the 
actual forces inherent in the cell, we may yet learn something 
of their distribution, if not also of their nature, from the 
outward and inward configuration of the cell and from the 
changes taking place in this configuration; that is to say from 
the movements of matter, the kinetic phenomena, which the forces 
in action set up.

The fact that the germ-cell develops into a very complex structure 
is no absolute proof that the cell itself is structurally a very com
plicated mechanism: nor yet does it prove, though this is somewhat 
less obvious, that the forces at work or latent within it are especially 
numerous and complex. If we blow into a bowl of soapsuds and 
raise a great mass of many-hued and variously shaped bubbles, if 
we explode a rocket and watch the regular and beautiful configura
tion of its falling streamers, if we consider the wonders of a limestone 
cavern which a filtering stream has filled with stalactites, we soon 
perceive that in all these cases we have begun with an initial system 
of very slight complexity, whose structure in no way foreshadowed 
the result, and whose comparatively simple intrinsic forces only 
play their part by complex interaction with the equally simple 
forces of the surrounding medium. In an earlier age, men sought 
for the visible embryo, even for the homunculus, within the repro
ductive cells; and to this day we scrutinise these cells for visible 
structure, unable to free ourselves from that old doctrine of 
‘ ‘ pre-formation *.”

Moreover, the microscope seemed to substantiate the idea (which
* As when Nageli concluded that the organism is, in a certain sense, “vorge- 

bildet”; Beitr. zur wiss. Botanik, n, 1860.
T G F 19 
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we may trace back to Le'bniz*  and to Hobbes f), that there is no 
limit to the mechanical complexity which we may postulate in an 
organism, and no limit, therefore, to the hypotheses which we may 
rest thereon. But no microscopical examination of a stick of sealing- 
wax, no study of the material of which it is composed, can enlighten 
us as to its electrical manifestations or properties. Matter of itself 
has no power to do, to make, or to become: it is in energy that 
all these potentialities reside, energy invisibly associated with the 
material system, and in interaction with the energies of the 
surrounding universe.

* “La matiere arrangee par une sagesse divine doit etre essentiellement organisee 
partout.. .il y a machine dans les parties de la machine naturelie a 1’infini.” Sur le 
principe de la Vie, p. 431 (Erdmann). This is the very converse of the doctrine 
of the Atomists, who could not conceive a condition “ubi dimidiae partis pars 
semper habebit Dimid am partem, nec res praefiniet ulla."

t Cf. an interesting passage from the Elements (i, p. 445. Molesworth’s edit.), 
quoted by Owen, Hunterian Lectures on the Invertebrates, 2nd ed. pp. 40, 4], 1855.

f “Wir miissen deshalb den lebenden Zellen, abgesehen von der Molekular- 
structur der organischen Verbindungen welche sie enthalt, noch eine andere und 
in anderer Weise complicirte Struetur zuschreiben, und diese es ist welche wir 
mit dem Namen Organisation bezeichnen,” Briicke, Die Elementarorganismen, 
Wiener Sitzungsber. xliv. 1861, P- 386; quoted by Wilson, The Cell, etc., p. 289. 
Cf. also Hardy, Journ. Physiol, xxiv, 1899, p. 159.

§ The term protoplasm was first used by Purkinje, about 1839 or 1840 (cf. 
Reichert, Arch. f. Anat. u. Physiol. 1841). But it was better defined and more 
strictly used by Hugo von Mohl in his paper Ueber die Saftbewegung im Inneren 
der Zellen, Botan. Zeitung, iv, col. 73-78, 89-94, 1846,

That “function presupposes structure” has been declared an 
accepted axiom of biology. Who it was that so formulated the 
aphorism I do not know; but as regards the structure of the cell 
it harks back to Briicke, with whose demand for a mechanism, or 
an organisation, within the cell histologists have ever since been 
trying to comply J. But unless we mean to include thereby 
invisible, and merely chemical or molecular, structure, we come at 
once on dangerous ground. For we have seen in a former phapter 
that organisms are known of magnitudes so nearly approaching the 
molecular, that everything which the morphologist is accustomed to 
conceive as “structure” has become physically impossible; and 
recent research tends to reduce, rather than to extend, our con
ceptions of the visible structure necessarily inherent in living 
protoplasm §. The microscopic structure which in the last resort
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or in the simplest cases it seems to shew, is that of a more or less 
viscous colloid, or rather mixture of colloids, and nothing more. 
Now, as Clerk Maxwell puts it in discussing this very problem, 
“ one material system can differ from another only in the configura
tion and motion which it has at a given instant*.” If we cannot 
assume differences in structure or configuration, we must assume 
differences in motion, that is to say in energy. And if we cannot 
do this, then indeed we are thrown back upon modes of reasoning 
unauthorised in physical science, and shall find ourselves constrained 
to assume, or to “admit, that the properties of a germ are not those 
of a purely material system.”

But we are by no means necessarily in this dilemma. For though 
we come perilously near to it when we contemplate the lowest 
orders of magnitude to which fife has been attributed, yet in the 
case of the ordinary cell, or ordinary egg or germ which is going 
to develop into a complex organism, if we have no reason to assume 
or to believe that it comprises an intricate “mechanism,” we may 
be quite sure, both on direct and indirect evidence, that, like the 
powder in our rocket, it is very heterogeneous in its structure. 
It is a mixture of substances of various kinds, more or less fluid, 
more or less mobile, influenced in various ways by chemical, electrical, 
osmotic and other forces, and in their admixture separated by a 
multitude of surfaces or boundaries, at which these or certain of 
these forces are made manifest.

Indeed, such an arrangement as this is already enough to con
stitute a “mechanism”; for we must be very careful not to let our 
physical or physiological concept of mechanism be narrowed to an 
interpretation of the term derived from the complicated contrivances 
of human skill. From the physical point of view, we understand 
by a “mechanism” whatsoever checks or controls, and guides into 
determinate paths, the workings of energy: in other words, what
soever leads in the degradation of energy to its manifestation in 
some form of work, at a stage short of that ultimate degradation 
which lapses in uniformly diffused heat. This, as Warburg has well 
explained, is the general effect or function of the physiological 
machine, and in particular of that- part of it which we call “cell-

* Precisely as in the Lucretian concursus, motus, ordo, positura, figurae, whereby 
bodies mutato ordine mutant naturam.

19-2
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structure*.” The normal muscle-cell is something which turns 
energy, derived from oxidation, into work; it is a mechanism which / 
arrests and utilises the chemical energy of oxidation in its downward 
course; but the same cell when injured or disintegrated loses its 
“usefulness,” and sets free a greatly increased proportion of its 
energy in the form of heat. It was a saying of Faraday’s, that 
“even a life is but a chemical act prolonged. If death occur, the 
more rapidly oxygen and the affinities run on to their final statef.”

Very great and wonderful things are done by means of a 
mechanism (whether natural or artificial) of extreme simplicity. 
A pool of water, by virtue of its surface, is an admirable mechanism 
for the making of waves; with a lump of ice in it, it becomes an 
efficient and self-contained mechanism for the making of currents. 
Music itself is made of simple things—a reed, a pipe, a string. 
The great cosmic mechanisms are stupendous in their simplicity; 
and, in point of fact, every great or little aggregate of heterogeneous 
matter (not identical in “phase”) involves, ipso facto, the essentials 
of a mechanism. Even a non-living colloid, from its intrinsic hetero
geneity, is in this sense a mechanism, and one in which energy is 
manifested in the movement and ceaseless rearrangement of the 
constituent particles. For this reason Graham speaks somewhere 
or other of the colloid state as “the dynamic state of matter”; in 
the same philosopher’s phrase, it possesses “ energia^.”

Let us turn then to consider, briefly and diagrammatically, the 
structure of the cell, a fertilised germ-cell or ovum for instance, not 
in any vain attempt to correlate this structure with the structure 
or properties of the resulting and yet distant organism; but merely 
to see how far, by the study of its form and its changing internal 
configuration, we may throw fight on certain forces which are for 
the time being at work within it.

We may say at once that we can scarcely hope to learn more of 
these forces, in the first instance, than a few facts regarding their

* Otto Warburg, Beitrage zur Physiologic der Zelle, insbesondere liber die 
Oxidationsgeschwindigkeit in Zellen; in Asher-Spiro’s Ergebnisse der Physiologic, 
xiv pp. 253-337, 1914 (see p. 315).

J See his Life by Bence Jones, n, p. 299.
J Both phrases occur, side by side, in Graham’s classical paper on Liquid 

diffusion applied to analysis, Phil. Trans, cli, p. 184, 1861; Chem. and Phys. 
Researches (ed. Angus Smith), 1876, p. 554.
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direction and magnitude; the nature and specific identity of the 
force or forces is a very different matter. This latter problem is 
likely to be difficult of elucidation, for the reason, among others, 
that very different forces are often much alike in their outward and 
visible manifestations. So it has come to pass that we have a 
multitude of discordant hypotheses as to the nature of the forces 
acting within the cell, and producing in cell division the “caryo- 
kinetic” figures of which we are about to speak. One student may, 
like Rhumbler, choose to account for them by an hypothesis of 
mechanical traction, acting on a reticular web of protoplasm*; 
another, like Leduc, may shew us how in many of their most striking 
features they may be admirably simulated by salts diffusing in a 
colloid medium; others, like Lamb and Graham Cannon, have 
compared them to the stream-lines produced and the field of force 
set up by bodies vibrating in a fluid; others, like Gallardof and 
Rhumbler in his earlier papers J, insisted on their resemblance to 
certain phenomena of electricity and magnetism §; while Hartog 
believed that the force in question is only analogous to these, and 
has a specific identity of its own||. All these conflicting views are 
of secondary importance, so long as we seek only to account for 
certain configurations which reveal the direction, rather than the 
nature, of a force. One and the same system of lines of force may 
appear in a field of magnetic or of electrical energy, of the osmotic 
energy of diffusion, of the gravitational energy of a flowing stream. 
In short, we may expect to learn something of the pure or abstract 
dynamics long before we can deal with the special physics of the

* L. Rhumbler, Mechanische Erklarung der Aehnlichkeit zwischen magne- 
tischen Kraftliniensystemen und Zelltheilungsfiguren, Arch. f. Entw. Meeh, xv, 
p. 482, 1903.

f A. Gallardo, Essai d’interpretation des figures caryocinetiques, Anales del 
Museo de Buenos-Aires (2), n, 1896; Arch. f. Enlw. Meeh, xxvm, 1909, etc.

I Arch. f. Entw. Meeh, in, iv, 1896-97.
§ On various theories of the mechanism of mitosis, see (e.g.) Wilson, The Cell 

in' Development, etc.; Meves, ZeUtheilung, in Merkel u. Bonnet’s Ergebnisse der 
Anatomic, etc., vn, vin, 1897-98; Ida H. Hyde, ylwier. Journ. Physiol, xn, pp. 241- 
275, 1905; and especially A. Prenant, Theories et interpretations physiques de 
la mitose, Journ. de l'A nat. et Physiol, xlvi, pp. 511-578, 1910. See also A. Conard,, 
Sur le mecanisme de la division ccllulaire, et sur les bases morphologiques de la 
Cytologic, Bruxelles, 1939: a work which I find hard to follow.

|| M. Hartog, Une force nouvelle: le mitokinetisme, C.R. 11 Juli 1910; Arch. f. 
Entw. Meeh, xxvn, pp. 141-145, 1909; cf. ibid, xl, pp. 33-64, 1914. 
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cell. For indeed, just as uniform expansion about a single centre, 
to whatsoever physical cause it may be due, will lead to the con
figuration of a sphere, so will any two centres or foci of potential 
(of whatsoever kind) lead to the configurations with which Faraday 
first made us familiar under the name of “lines of force*’’; and 
this is as much as to say that the phenomenon, though physical in the 
concrete, is in the abstract purely mathematical, and in its very essence 
is neither more nor less than a property of three-di men» amal space.

But as a matter of fact, in this instance, that is to say in trying 
to explain the leading phenomena of the caryokinetic division of 
the cell, we shall soon perceive that any explanation which is based, 
like Rhumbler’s, on mere mechanical traction, is obviously inade
quate, and we shall find ourselves limited to the hypothesis of some 
polarised and polarising force, such as we deal with, for instance, 
in magfietism or electricity, or in certain less familiar phenomena 
of hydrodynamics. Let us speak first of the cell itself, as it appears 
in a state of rest, and let us proceed afterwards to study the more 
active phenomena which accompany its division.

Our typical cell is a spherical body; that is to say, the uniform 
surface-tension at its boundary is balanced by the outward resistance 
of uniform forces within. But at times the surface-tension may be 
a fluctuating quantity, as when it produces the rhythmical con
tractions or “Ransom’s waves”! on the surface of a trout’s egg; or 
again, the surface-tension may be locally unequal and variable, giving 
rise to an amoeboid figure, as in the egg of Hydra^.

Within the cell is a nucleus or germinal vesicle, also spherical,
* The configurations, as obtained by the usual experimental methods, were 

of course known long before Faraday’s day, and constituted the “convergent and 
divergent magnetic curves” of eighteenth century mathematicians. As Leslie 
said, in 1821, they were “regarded with wonder by a certain class of dreaming 
philosophers, who did not hesitate to consider them as the actual traces of an 
invisible fluid, perpetually circulating between the poles of the magnet.” Faraday’s 
great advance was to interpret them as indications of stress in a medium—of 
tension or attraction along the lines, and of repulsion transverse to the lines, of the 
diagram.

t W. H. Ransom, On the ovum of osseous fishes, Phil. Trans. clvii, pp. 431-502, 
1867 (vide p. 463 et. seq.) (Ransom, afterwards a Nottingham physician, was 
Huxley’s friend and class-fellow at University College, and beat him for the medal 
in Grant’s class of zoology.)

J Cf. also the curious phenomenon in a dividing egg described as “spinning” 
by Mrs G. F. Andrews, Journ. Morph, xn, pp. 367-389, 1897. 
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and consisting of portions of “chromatin,” aggregated together 
within a more fluid drop. The fact has often been commented 
upon that, in cells generally, there is no correlation of form 
(though there apparently is of size) between the nucleus and the 
“cytoplasm,” or main body of the cell. So Whitman* remarks 
that “except during the process of division the nucleus seldom 
departs from its typical spherical form. It divides and sub-divides, 
ever returning to the same round or oval form.... How different 
with the cell. It preserves the spherical form as rarely as the 
nucleus departs from it. Variation in form marks the beginning 
and the end of every important chapter in its history.” On simple 
dynamical grounds, the contrast is easily explained. So long as 
the fluid substance of the nucleus is qualitatively different from, 
and incapable of mixing with, the fluid or semi-fluid protoplasm 
surrounding it, we shall expect it to be, as it almost always is, of 
spherical form. For on the one hand, it has a surface of its own 
whose surface-tension is presumably uniform, and on the other, it 
is immersed in a medium which transmits on all sides a uniform 
fluid or “hydrostatic” pressuret; thus the case of the spherical 
nucleus is closely akin to that of the spherical yolk within the 
bird’s egg. Again, for a similar reason, the contractile vacuole of 
a protozoon is spherical{. It is just a drop of fluid, bounded by a

♦ Whitman, Journ. Morph, n, p. 40, 1889.
f “Souvent il n’y a qu’une separation physique entre le cytoplasme et le sue 

nucleaire, comme entre deux liquides immiscibles, etc.”; Alexeieff, Sur la mitose 
dite primitive, Arch. f. Protistenk. xxix, p. 357, 1913.

J The appearance of “vacuolation” is a result of endosmosis, or the diffusion 
of a less dense fluid into the denser plasma of the cell. But while water is probably 
taken up at the surface of the cell by purely passive osmotic intake, a definite 
“vacuole” appears at a place where osmotic work is being actively done. A higher 
osmotic pressure than that of the external medium is maintained within the cell, 
but as a “steady state” rathet than a condition of equilibrium, in other words by 
the continual expenditure of energy; and the difference of pressure is at best small. 
The “contractile vacuole” bursts when it touches the surface of the cell, and 
bursting may be delayed by manipulating the vacuole towards the interior. It 
may sometimes burst towards the interior of the cell through inequalities in its 
own surface-tension, and the collapsing vacuole is then apt to shew a star-shaped 
figure. The cause of the higher osmotic pressure within the cell is a matter for 
the colloid chemist, and cannot be discussed here. On the physiology of the 
contractile vacuole, see (int. al.) H. Z. Gow, Arch. f. Protistenk. lxxxvii, pp. 185- 
212, 1936; J. Spek. Einfluss der Salze auf die Plasmkolloide von Actinosphaerium, 
Acta Zool. 1921; J. A. Kitching, Journ. Exp. Biology, xi, xin, xv, 1934-38. 
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uniform surface-tension, and through whose boundary-film diffusion 
is taking place; but here, owing to the small difference between the 
fluid constituting and that surrounding the drop, the surface-tension 
equilibrium is somewhat unstable; it is apt to vanish, and the 
rounded outline of the drop disappears, like a burst bubble, in a 
moment.

If, on the other hand, the substance of the cell acquire a greater 
solidity, as for instance in a muscle-cell, or by reason of mucous 
accumulations in an epithelium cell, then the laws of fluid pressure 
no longer apply, the pressure on the nucleus tends to become 
unsymmetrical, and its shape is modified accordingly. Amoeboid 
movements may be set up in the nucleus by anything which disturbs 
the symmetry of its own surface-tension; and where “nuclear 
material” is scattered in small portions throughout the cell as in 
many Rhizopods, instead of being aggregated in a single nucleus, 
the simple explanation probably is that the “phase difference” (as 
the chemists say) between the nuclear and the protoplasmic substance 
is comparatively slight, and the surface-tension which tends to keep 
them separate is correspondingly small*.

Apart from that invisible or ultra-microscopic heterogeneity 
which is inseparable from our notion of a “colloid,” there is a 
visible heterogeneity of structure within both the nucleus and the 
outer protoplasm. The former contains, for instance, a rounded 
nucleolus or “germinal spot,” certain conspicuous granules or 
strands of the peculiar substance called chromatin f, and a coarse 
meshwork of a protoplasmic material known as “linin’’ or achro 
matin; the outer protoplasm, or cytoplasm, is generally believed 
to consist throughout of a sponge-work, or rather alveolar mesh
work, of more and less fluid substances; it may contain ‘‘mito
chondria,” appearing in tissue-cultures as small amoeboid bodies; 
and lastly, there are generally to be detected (in the animal, rarely 
in the vegetable kingdom) one or more very minute bodies, usually 
in the cytoplasm sometimes within the nucleus, known as the 
centrosome or centrosomes.

♦ The elongated or curved “macronucleus” of an Infusorian is to be looked 
upon as a single mass of chromatin, rather than as an aggregation of particles in 
a fluid drop, as in the case described. It has a shape of its own, in which ordinary 
surface-tension plays a very subordinate part.

f First so-called by W. Flemming, in his Zellsubstanz, Kern und Zelltheilung, 1882.
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The morphologist is accustomed to speak of a “polarity” of the 
cell, meaning thereby a symmetry of visible structure about a 
particular axis. For instance, whenever we can recognise in a cell 
both a nucleus and a centrosome, we may consider a line drawn 
through the two as the morphological axis of polarity; an epithelium 
cell is morphologically symmetrical about a median axis passing 
from its free surface to its attached base. Again, by an extension 
of the term polarity, as is customary in dynamics, we may have 
a “radial” polarity, between centre and periphery; and lastly, we 
may have several apparently independent centres of polarity within 
the single cell. Only in cells of quite irregular or amoeboid form 
do we fail to recognise a definite and symmetrical polarity. The 
morphological polarity is accompanied by, and is but the outward 
expression (or part of it) of a true dynamical polarity, or distribution 
of forces; and the fines of force are, or may be, rendered visible 
by concatenation of particles of matter, such as come under the fa-bc 
influence of the forces in action.

When’ lines of force stream inwards from the periphery towards 
a point in the interior of the cell, particles susceptible of attraction 
either crowd towards the surface of the cell or, when retarded by 
friction, are seen forming lines or “ fibrillae ” which radiate outwards 
from the centre. In the cells of columnar or ciliated epithelium, 
where the sides of the cell are symmetrically disposed to their 
neighbours but the free and attached surfaces are very diverse from 
one another in their external relations, it is these latter surfaces 
which constitute the opposite poles; and in accordance with the 
parallel lines of force so set up, we very frequently see parallel lines 
of granules which have ranged themselves perpendicularly to the 
free surface of the cell (cf. Fig. 149).

A simple manifestation of polarity may be well illustrated by 
the phenomenon of diffusion, where we may conceive, and may 
automatically reproduce, a field of force, with its poles and its 
visible lines of equipotential, very much as in Faraday’s conception^ 
of the field of force of a magnetic system. Thus, in one of Leduc’s 
experiments*, if we spread a layer of salt solution over a level 
plate of glass, and let fall into the middle of it a drop of indian 
ink, or of blood, we shall find the coloured particles travelling

* TMorie physico-chimique de la Vie, 1910, p. 73.
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outwards from the central “pole of concentration” along the lines 
of diffusive force, and so mapping out for us a “monopolar field” 
of diffusion: and if we set two such drops side by side, their lines 
of diffusion will oppose and repel one another. Or, instead of the 
uniform layer of salt solution, we may place at a little distance 
from one another a grain of salt and a drop of blood, representing 
two opposite poles: and so obtain a picture of a “bipolar field” 
of diffusion. In either case, we obtain results closely analogous to 
the morphological, but really dynamical, polarity of the organic 
cell. But in all probability, the dynamical polarity or asymmetry 
of the cell is a very complicated phenomenon: for the obvious 
reason that, in any system, one asymmetry will tend to beget 
another. A chemical asymmetry will induce an inequality of 
surface-tension, which will lead directly to a modification of form; 
the chemical asymmetry may in turn be due to a process of 
electrolysis in a polarised electrical field; and again the chemical 
heterogeneity may be intensified into a chemical polarity, by the 
tendency of certain substances to seek a locus of greater or less 
surface-energy. We need not attempt to grapple with a subject so 
complicated, and leading to so many problems which lie beyond 
the sphere of interest of the morphologist. But yet the morpho
logist, in his study of the cell, cannot quite evade these important 
issues; and we shall return to them again when we have dealt 
somewhat with the form of the cell, and have taken account of 
some of its simpler phenomena.

We are now ready, and in some measure prepared, to study the 
numerous and complex phenomena which accompany the division 
of the cell,'for instance of the fertilised egg. But it is no easy task 
to epitomise the facts of the case, and none the easier that of late 
new methods have shewn us new things, and have cast doubt on 
not a little that we have been accustomed to believe.

Division of the cell is of necessity accompanied, or preceded, by 
a change from a radial or monopolar to a definitely bipolar sym
metry. In the hitherto quiescent or apparently quiescent cell, we 
perceive certain movements, which correspond precisely to what 
must accompany and result from a polarisation of forces within: 
of forces which, whatever be their specific nature, are at least 
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capable of polarisation, and of producing consequent attraction or 
repulsion between charged particles. The opposing forces which 
are distributed in equilibrium throughout the cell become focused 
in two “centrosomes*, ” which may or may not be already visible. 
It generally happens that, in the egg, one of these centrosomes is 
near to and the other far from the “animal pole,” which is both 
visibly and chemically different from the other, and is wrhere the 
more conspicuous developmental changes will presently begin.

* These centrosomes are the two halves of a single granule, and are said (by 
Boveri) to come from the middle piece of the original spermatozoon.

f He did so in the egg of a medusa (Geryon), Jen. Zeitschr. vii, p. 476, 1873. 
Similar ideas have been expressed by Strasbiirger, Henneguy, Van Beneden, 
Errera, Ziegler, Gallardo and others.

Between the two centrosomes, in stained preparations, a spindle- 
shaped figure appears (Fig. 88), whose striking resemblance to the

Fig. 88. Caryokinetic figure in a dividing cell (or blastomere) of a trout’s egg. 
After Prenant, from a preparation by Prof. Bouin.

lines of force made visible by iron-filings between the poles of a 
magnet was at once recognised by Hermann Fol, in 1873, when he 
witnessed the phenomenon for the first timef. On the farther 
side of the centrosomes are seen star-like figures, or “asters,” in 
wrhich we seem to recognise the broken lines of force which run 
externally to those stronger lines which lie nearer to the axis and 
constitute the “spindle.” The lines of force are rendered visible, 
or materialised, just as in the experiment of the iron-filings, by the 
fact that, in the heterogeneous substance of the cell, certain portions 
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of matter are more “permeable” to the acting force than others, 
become themselves polarised after the fashion of a magnetic or 
“paramagnetic” body, arrange themselves in an orderly way 
between the two poles of the field of force, seem to cling to one 
another as it were in threads*,  and are only prevented by the 
friction of the surrounding medium from approaching and con
gregating around the adjacent poles.

* Whence the name “mitosis” (Greek /uros, a thread), applied first by Flemming 
to the whole phenomenon. Kollmann (Biol. Centralbl. n, p. 107, 1882) called it 
divisio per fila, or divisio laqueis implicata. Many of the earlier students, such as 
Van Beneden (Rech, sur la maturation de 1’ceuf, Arch, de Biol, iv, 1883), and 
Hermann Fol (Zur Lehre v. d. Entstehung d. karyokinetischen Spindel, Arch. f. 
mikrosk. Anat, xxxvn, 1891) thought they recognised actual muscular threads, 
drawing the nuclear material asunder towards the respective foci or poles; and 
some such view of Zugkrafte was long maintained by other writers, by Heidenhain 
especially, by Boveri, Flemming, R. Hertwig, Rhumbler, and many more. In fact, 
the existence of contractile threads, or the ascription to the spindle rather than to 
the poles or centrosomes of the active forces concerned in nuclear division, formed 
the main tenet of all those who declined to go beyond the “contractile properties 
of protoplasm” for an explanation of the phenomenon (cf. J. W. Jenkinson, 
Q.J.M.S. xlviii, p. 471, 1904. See also J. Spek’s historical account of the theories 
of cell-division, Arch. f. Entw. Meeh, xliv, pp. 5-29, 1918).

f Cf. O. Biitschli, Ueber die kiinstliche Nachahmung der karyokinetischen 
Figur, Verh. Med. Nat. Ver. Heidelberg, v, pp. 28-41 (1892), 1897.

As the field of force strengthens, the more will the lines of force 
be drawn in towards the interpolar axis, and the less evident will 
be those remoter lines which constitute the terminal, or extrapolar, 
asters: a clear space, free from materialised lines of force, may 
thus tend to be set up on either side of the spindle, the so-called 
“Biitschli space” of the histologistsf. On the other hand, the lines 
of force constituting the spindle will be less concentrated if they 
find a path of less resistance at the periphery of the cell: as happens 
in our experiment of the iron-filings, when we encircle the field of 
force with an iron ring. On this principle, the differences observed 
between cells in which the spindle is well developed and the asters 
small, and others in which the spindle is weak and the asters greatly 
developed, might easily be explained by variations in the potential 
of the field, the large, conspicuous asters being correlated in turn 
with a marked permeability of the surface of the cell.

The visible field of force, though often called the “nuclear 
spindle,” is formed outside of, but usually near to, the nucleus.
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Let us look a little more closely into the structure of this body, 
and into the changes which it presently undergoes.-

Within its spherical outline (Fig. 89 a), it contains an “alveolar” 
meshwork (often described, from its appearance in optical section, 
as a “reticulum”), consisting of more solid substances with more 
fluid matter filling up the interalveolar spaces. This phenomenon, 
familiar to the colloid chemist, is what he calls a “two-phase 
system,” one substance or “phase” forming a continuum through 
which the other is dispersed; it is closely allied to what we call in 

Fig. 89 B.

ordinary language a froth or a foam*, save that in these latter the 
disperse phase is represented by air. It is a surface-tension pheno
menon, due to the interaction of two intermixed fluids not very 
different in density, as they strive to separate. Of precisely the 
same kind (as Biitschli was the first to shew) are the minute alveolar 
networks which are to be discerned in the cytoplasm of the cellf,

* Froth and foam have been much studied of late years for technical reasons, 
and other factors than surface-tension are found to be com erned in their existence 
and their stability. See (int. al.) Freundlich’s Capillarchemie, and various papers 
by Sasaki, in Bull. Chern. Soc. of Japan, 1936-39.

f Biitschli, Untersuchungen Uber mikroskopische Schaume und das Protoplasma, 
1892; Untersuchungen Uber Strukturen, etc., 1898; L. Rhumbler, Protoplasma als 
physikalisches System, Ergebn. d. Physiologic, 1914; H. Giersberg, Plasmabau 
der Amoben, im Hinblick auf die Wabentheorie, Arch. f. Entw. Meeh. LI, pp. 150-250, 
1922; etc.
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and which we now know to be not inherent in the nature of proto
plasm nor of living matter in general, but to be due to various 
causes, natural as well as artificial*.  The microscopic honeycomb 
structure of cast metal under various conditions of cooling is an 
example of similar surface-tension phenomena.

* Arrhenius, in describing a typical colloid precipitate, does so in terms that 
are very closely applicable to the ordinary microscopic appearance of the protoplasm 
of the cell. The precipitate consists, he says, “en un reseau d’une substance solide 
contenant peu d’eau, dans les mailles duquel est inclus un fluide contenant un peu 
de colloide dans beaucoup d’eau.... Evidemment cette structure se forme a cause 
de la petite difference de poids specifique des deux phases, et de la consistance 
gluante des particules separees, qui s’attachent en forme de reseau ” (Rev. Scientifique, 
Feb. 1911). This, however, is far from being the whole story: cf. (e.g.) S. C. 
Bradford, On the theory of gels, Biochem. Journ. xvn, p. 230, 1925; W. Seifritz, 
The alveolar structure of protoplasm. Protoplasma, ix, p. 198, 1930; and A. Frey- 
Wissling, Submikroskopische Morphologic des Protoplasmas, Berlin, 1938.

f See R. Chambers, An apparatus.. .for the dissection and injection of living 
cells, Anatom. Record, xxiv, 19 pp., 1922.

J This centripetal flow of fluid was announced by Biitschli in his early papers, 
and confirmed by Rhumbler, though attributed to another cause.

Such then, in briefest outline, is the typical structure commonly 
ascribed to a cell when its latent energies are about to manifest 
themselves in the phenomenon of cell-division. The account is 
based on observation not of the living cell but of the dead: on the 
assumption, that is to say, that fixed and stained material gives a 
true picture of reality. But in Robert Chambers’s method of micro
dissection f, the living cell is manipulated with fine glass needles 
under a high magnification, and shews us many interesting things. 
Chambers assures us that the spindle fibres never make their 
appearance as visible structures until coagulation has set in; and 
that astral rays are, or appear to be, channels in which the more 
fluid content of the cell flows towards a centrosomej. Within the 
bounds to which we are at present keeping, these things are of no 
great moment; for whether the spindle appear early or late, it still 
bears witness to the fact that matter has arranged itself along 
bipolar fines of force; and even if the astral rays be only streams 
or currents, on lines of force they still approximately lie. Yet the 
change from the old story to the new is important, and may make 
a world of difference when we attempt to define the forces concerned. 
All our descriptions, all our interpretations, are bound to be 
influenced by our conception of the mechanism before us; and he
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who sees threads where another sees channels is likely to tell a 
different story about neighbouring and associated things.

It has also been suggested that the spindle is somehow due to a re-arrange- 
ment of protein macromolecules or micelles; that such changes o£ orientation 
of large colloid particles may be a widespread phenomenon; and that coagu
lation itself is but a polymerisation of larger and larger macromolecules*.

* Cf. J. D. Bernal, on Molecular architecture of biological systems, Proc. Roy. 
Inst., 1938; H. Staudinger, Nature, Aug. 1, 1939.

f H. Fol, Recherches sur la fecondation et le commencement de I'henogenie chez 
divers animaux, Geneve, 1879. pp. 241-242. Cf. A. Dalcq, in Biol. Renews, in, 
p. 24, 1928: “Il serait desirable de nous debarrasser de 1’idee que tout ce qu'il 
y a d’important dans la cellule serait providentiellement colorable par l’h£matoxy- 
line, la safranine ou le violet de gentiane.” «

But here we have touched the brink of a subject so important that we must 
not pass it by without a word, and yet so contentious that we must not enter 
into its details. The question involved is simply whether the great mass of 
recorded observations and accepted beliefs with regard to the visible structure 
of protoplasm and of the cell constitute a fair picture of the Actual living cell, 
or be based on appearances which are incident to death itself and to the 
artificial treatment which the microscopist is accustomed to apply. The great 
bulk of histological work is done by methods which involve the sudden killing 
of the cell or organism by strong reagents, the assumption being that death 
is so rapid that the visible phenomena exhibited during life are retained or 
“fixed” in our preparations.

Hermann Fol struck a warning note full sixty years ago: “Il importe a 
1’avenir de 1’histologie de combattre la tendance a tirer des conclusions des 
images obtenues par des moyens artificiels et a leur donner une valeur intrin- 
seque, sans que ces images aient ete controlees sur le vivantf.” Fol was 
thinking especially of cell-membranes and the delimitation of cells; but still 
more difficult and precarious is the interpretation of the minute internal net
works, granules, etc., which represent the alleged structure of protoplasm. 
A colloid body, or colloid solution, is ipso facto heterogeneous; it ha*  after 
some fashion a structure of its own. And this structure chemical action, 
under the microscope, may demonstrate, or emphasise, or alter and disguise. 
As Hardy put it, “It is notorious that the various fixing reagents are co
agulants of organic colloids, and that the figure varies according to the reagent 
used.”

A case in point is that of the vitreous humour, to which some histologists 
have ascribed a fairly complex structure, seeing in it a framework of fibres 
with the meshes filled with fluid. But it is really a true gel, without any 
structure in the usual sense of the word. The “fibres” seen in ordinary 
microscopic preparations are due to the coagulation of micellae by the fixative 
employed. Under the ultra-microscope the vitreous is optically empty to 
begin with; then innumerable minute fibrillae appear in the beam of light, 
criss-crossing one another. Soon these break down into strings of beads, and 
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finally only separate dots are seen*.  Other sources of error arise from the 
optical principles concerned in microscopic vision; for the diffraction-pattern 
which we call the “image” may, under certain circumstances, be very different 
from the actual object f. Furthermore, the optical properties of living proto
plasm are espet ially complicated and imperfectly known, as in general those 
of colloids may be said to be; the minute aggregates of the “disperse phase” 
of gels produce a scattering action on light, leading to appearances of turbidity 
etc., with no other or more real basis f. '

* W. 8. Duke-Elder, Journ. Physiol, lxviii, pp. 154-165, 1930; cf. Baurmann, 
Arch. f. Ophthalm. 1923, 1926; etc.

t AbW, Arch. f. mikrosk. Anat, ix, p. 413, 1874; Gesammelte Abhandl. i, p. 45, 
1904.

J Cf. Rayleigh, On the light from the sky, Phil. Mag. (4) xli, p. 107, 1871.
§ W. B. Hardy, On the structure of cell protoplasm, Journ. Physiol, xxiv, 

pp. 158-207, 1889; also Hober, Physikalische Chemie der Zelle und der Gewebe, 
1902; W. Berg, Beitrage zur Theorie der Fixation, etc., Arch. f. mikr. Anat, lxii, 
pp. 367-440, 1903. Cf. (int. al.) Flemming, Zellsubstanz, Kern und Zelltheilung, 
1882, p. 51; etc.

|| My description and diagrams (Figs. 89-93) are mostly based on those of 
the late Professor E. B. Wilson.

So it comes to pass that some writers have altogether denied the existence 
in the living cell-protoplasm of a network or alveolar “foam”; others have 
cast doubts on the main tenets of recent histology regarding nuclear structure; 
and Hardy, discussing the structure of certain gland-cells, declared that 
“there is no evidence that the structure discoverable in the cell-substance of 
these cells after fixation has any counterpart in the cell when living.” “A 
large part of it” he went on to say “is an artefact. The profound difference 
in the minute structure of a secretory cell of a mucous gland according to the 
reagent which is used to fix it would, it seems to me, almost suffice to establish 
this statement in the absence of other evidence §.”

Nevertheless, histological study proceeds, especially on the part of the 
morphologists, with but little change in theory or in method, in spite of these 
and many other warnings. That certain visible structures, nucleus, vacuoles, 
“attraction-spheres” or centrosomes, etc., are actually present in the living 
cell we know for certain; and to this class belong the majority of structures 
with which we are at present concerned. That many other alleged structures 
are artificial has also been placed beyond a doubt; but where to draw the 
dividing line we often do not know.

The following is a brief epitome of the visible changes undergone 
by a typical cell, subsequent to the resting stage, leading up to the 
act of segmentation, and constituting the phenomenon of mitosis 
or caryokinetic division. In the fertilised egg of a sea-urchin we 
see with almost diagrammatic completeness, in fixed and stained 
specimens, what is set forth here,].
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1. The chromatin, which to begin with had been dimly seen as 

granules on a vague achromatic reticulum (Figs. 89, 90)—perhaps no 
more than an histological artefact—concentrates to form a skein or 
spireme, often looked on as a continuous thread, but perhaps 
discontinuous or fragmented from the first. It, or its several 
fragments, will presently split asunder; for it is essentially double, 
and may even be seen as a double thread, or pair of chromafids, from 
an early stage. The chromosomes are portions of this double thread, 
which shorten down to form little rods, straight or curved, often

Fig. 90 A. Fig. 90 B.

bent into a V, sometimes ovoid, round or even annular, and which 
in the living cell are frequently seen in active, writhing movement, 
“like eels in a box”*; they keep apart from one another, as by 
some repulsion, and tend to move outward towards the nuclear 
membrane. Certain deeply staining masses, the nucleoli, may be 
present in the resting nucleus, but take no part (at least as a rule) 
in the formation of the chromosomes; they are either cast out of 
the nucleus and dissolved in the cytoplasm, or else fade away in situ.

* T. S. Strangeways, Proc. R.S. (B), xciv, p. 139, 1922. The tendency of the 
chromatin to form spirals, large or small, while the nucleus is issuing from its 
resting-stage, is very remarkable. The tensions to which it is due may be overcome, 
and the chromosomes made to uncoil, by treatment with ammonia or acetic acid 
vapour. See Y. Kuwada, Botan. Mag. Tokyo, xlvi, p. 307, 1932; and C. D. 
Darlington, Mechanical aspects of nuclear division, Sci. Journ. R. Coll, of Sci. 
iv, p. 94, 1934.

TGF 20
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But this rule does not always hold; for they persist in many 
protozoa, and now and then the nucleolus remains and becomes 
itself a chromosome, as in the spermogonia of certain insects.

2. Meanwhile a certain deeply staining granule (here extra- 
nuclear), known as the centrosome*, has divided into two. It is all 
but universally visible, save in the higher plants; perhaps less stress 
is laid on it than at one time, but Bovery called it the “dynamic 
centre” of the cellf. The two resulting granules travel to 
opposite poles of the nucleus, and there each becomes surrounded 
by a starlike figure, the aster, of which we have spoken already; 
immediately around the centrosome is a clear space, the centro
sphere. Between the two centrosomes, or the two asters, stretches 
the spindle. It lies in the long axis, if there be one, of the cell, a 
rule laid down nearly sixty years ago, and still remembered as 
“Hertwig’s Law” J; but the rule is as much and no more than to 
say that the spindle sets in the direction of least resistance. Where 
the egg is laden with food-yolk, as often happens, the latter is 
heavier than the cytoplasm; and gravity, by orienting the egg 
itself, thus influences, though only indirectly, the first planes of 
segmentation §.

3. The definite nuclear outline is soon lost; for the chemical 
“phase-difference” between nucleus and cytoplasm has broken 
down, and where the nucleus was, the chromosomes now he (Figs. 
90, 91). The fines of the spindle become visible, the chromosomes 
arrange themselves midway between its poles, to form the equatorial 
plate, and are spaced out evenly around the central spindle, again 
a simple result of mutual repulsion.

4. Each chromosome separates longitudinally into two j: usually 
at this stage—but it is to be noted that the splitting may have taken 
place as early as the spireme stage (Fig. 92).

* The centrosome has a curious history of its own, none too well ascertained. 
The ovum has a centrosome, and in self-fertilised eggs this is retained; but when 
a sperm-cell enters the egg the original centrosome degenerates, and its place is 
taken by the “middle-piece” of the spermatozoon.

f The stages 1, 2, 5 and 6 are called by embryologists the prophase, metaphase, 
anaphase and telophase.

J C. Hertwig, Jenaische Ztschr. xvm, 1884.
§ See James Gray, The effect of gravity on the eggs of Echinus, JI. Exp. Zool. v, 

pp. 102-11, 1927.
|| A fundamental fact, first seen by Flemming in 1880.



IV] AND STRUCTURE OF THE CELL 307

5. The halves of the split chromosomes now separate from and 
apparently repel one another, travelling in opposite directions 
towards the two poles * (Fig. 92 b), for all the world as though they 
were being pulled asunder by actual threads.

Fig. 92 A. Fig. 92 B.

6. Presently the spindle itself changes shape, lengthens and con
tracts, and seems as it were to push the two groups of daughter-

* Cf. K. Belar, Beitrage zur Causalanalyse der Mitose, Ztschr. f. Zellforschung, 
x, pp. 73-124, 1929.

20-2 
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chromosomes into their new places* (Figs. 92, 93); and its chromo
somes form once more an alveolar reticulum and may occasionally 
form another spireme at this stage. A boundary-surface, or at least a 
recognisable phase-difference, now develops round each reconstructed 
nuclear mass, and the spindle disappears (Fig. 93 b). The centrosome 
remains, as a rule, outside the nucleus.

7. On the central spindle, in the position of the equatorial plate, 
a “cell-plate,” consisting of deeply staining thickenings, has made 
its appearance during the migration of the chromosomes. This cell
plate is more conspicuous in plant-cells.

8. Meanwhile a constriction has appeared in the cytoplasm, and 
the cell divides through the equatorial plane. In plant-cells the 
line of this division is foreshadowed by the “cell-plate,” which 
extends from the spindle across the entire cell, and splits into two 
layers, between which appears the membrane by which the daughter
cells are cleft asunder. In animal cells the cell-plate does not attain 
such dimensions, and no cell-wall is formed.

The whole process takes from half-an-hour to an hour; and this 
extreme slowness is not the least remarkable part of the pheno
menon, from a physical point of view. The two halves of the

* The spindle has no actual threads or fibres, for Robert Chambers’s micro
needles pass freely through it without disturbing the chromosomes: nor is it 
visible at all in living cells in vitro. It seems to be due to partial gelation of the 
cytoplasm, under conditions which, whether they be mechanical or chemical, are 
not easy to understand.
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dividing centrosome, while moving apart, take some twenty minutes 
to travel a distance of 20 p, or at the rate, say, of two years to a 
yard. It is a question of inertia, and the inertia of the system must 
be very large.

The beautiful technique of cell-culture in vitro has of late years 
let this whole succession of phenomena, once only to be deduced 
from sections, be easily followed as it proceeds within the living 
tissue or cell. The vivid accounts which have been given of this 
spectacle add little to the older account as we have related it: 
save that, when the equatorial constriction begins and the halves 
of the split chromosomes drift apart, the protoplasm begins to show 
a curious and even violent activity. The cytoplasm is thrust in 
and out in bulging pustules or “balloons”; and the granules and 
fat-globules stream in and out as the pustules rise and fall away. 
At length the turmoil dies down; and now each half of the cell 
(not an ovum but a tissue-cell or “fibroplast”) pushes out large 
pseudopodia, flattens into an amoeboid phase, the connecting thread 
of protoplasm snaps in the divided cell, and the daughter-cells fall 
apart and crawl away. The two groups of chromosomes, on reaching 
the poles of the spindle, turn into bunches of short thick rods; these 
grow diffuse, and form a network of chromatin within a nucleus; 
and at last the chromosomes, having lost their identity, disappear 
entirely, and two or more nucleoli are all that is to be seen within 
the cell.

The whole, or very nearly the whole, of these nuclear phenomena 
may be brought into relation with some such polarisation of forces 
in the cell as a whole as is indicated by the “spindle” and “asters” 
of which we have already spoken: certain particular phenomena, 
directly attributable to surface-tension and diffusion, taking place 
in more or less obvious and inevitable dependence upon the polar 
system. At the same time, in attempting to explain the phenomena, 
we cannot say too clearly, or too often, that all that we are meanwhile 
justified in doing is to try to shew that such and such actions lie 
within the range of known physical actions and phenomena, or that 
known physical phenomena produce effects similar to them. We 
feel that the whole phenomenon is not sui generis, but is some
how or other capable of being referred to dynamical laws, and to 
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the general principles of physical science. But when we speak of 
some particular force or mode of action, using it as an illustrative 
hypothesis, we stop far short of the implication that this or that 
force is necessarily the very one which is actually at work within 
the living cell; and certainly we need not attempt the formidable 
task of trying to reconcile, or to choose between, the various 
hypotheses which have already been enunciated, or the several 
assumptions on which they depend.

Many other things happen within the cell, especially in the germ
cell both before and after fertilisation. They also have a physical 
element, or a mechanical aspect, like the phenomena of cell
division which we are speaking of; but the narrow bounds to which 
we are keeping hold difficulties enough*.

* Cf. C. D. Darlington, Recent Advances in Cytology, 1932, and other well-known 
works.

Any region of space within which action , is manifested is a field 
of force; and a simple example is a bipolar field, in which the 
action is symmetrical with reference to the fine joining two points, 
or poles, and with reference also to the “equatorial” plane equi
distant from both. We have such a field of force in the neigh
bourhood of the centrosome of the ripe cell or ovum, when it is 
about to divide; and by the time the centrosome has divided, the 
field is definitely a bipolar one.

The quality of a medium filling the field of force may be uniform, 
or it may vary from point to point. In particular, it may depend 
upon the magnitude of the field; and the quality of one medium 
may differ from that of another. Such variation of quality, within 
one medium, or from one medium to another, is capable of diagram
matic representation by a variation of the direction or the strength 
of the field’ (other conditions being the same) from the state 
manifested in some uniform medium taken as a standard. The 
medium is said to be permeable to the force, in greater or less degree 
than the standard medium, according as the variation of the density 
of the lines of force from the standard case, under otherwise identical 
conditions, is in excess or defect. A body placed in the medium will 
tend to move towards regions of greater or less force according as its 
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permeability is greater or less than that of the surrounding medium*.  
In the common experiment of placing iron-filings between the two 
poles of a magnetic field, the filings have a very high permeability; 
and not only do they themselves become polarised so as to attract 
one another, but they tend to be attracted from the weaker to the 
stronger parts of the field, and as we have seen, they would soon 
gather together around the nearest pole were it not for friction 
or some other resistance. But if we repeat the same experiment 
with such a metal as bismuth, which is very little permeable to the 
magnetic force, then the conditions are reversed, and the particles, 
being repelled from the stronger to the weaker parts of the field, 
tend to take up their position as far from the poles as possible. 
The particles have become polarised, but in a sense opposite to that 
of the surrounding, or adjacent, field.

* If the word permeability be deemed too directly suggestive of the phenomena 
of magnetism, we may replace it by the more general term of specific inductive 
capacity. This would cover the particular case, which is by no means an improbable 
one, of our phenomena being due to a “surface charge” borne by the nucleus 
itself and also by the chromosomes: this surface charge being in turn the result 
of a difference in inductive capacity between the body or particle and its surrounding 
medium.

f On the effect of electrical influences in altering the surface-tensions of the 
colloid particles, see Bredig, Anorganische Fermente, pp. 15, 16, 1901.

Now, in the field of force whose opposite poles are marked by 
the centrosomes, we may imagine the nucleus to act as a more or 
less permeable body, as a body more permeable than the surrounding 
medium, that is to say the “cytoplasm” of the cell. It is accordingly 
attracted by, and drawn into, the field of force, and tries, as it 
were, to set itself between the poles and as far as possible from both 
of them. In other words, the centrosome-foci will be apparently 
drawn over its surface, until the nucleus as a whole is involved 
within the field of force which is visibly marked out by the “spindle” 
(Fig. 90 b).

If the field of force be electrical, or act in a fashion analogous 
to an electrical field, the charged nucleus will have its surface
tensions diminished f: with the double result that the inner alveolar 
mesh work will be broken up (par. 1), and that the spherical 
boundary of the whole nucleus will disappear (par. 2). The break
up of the alveoli (by thinning and rupture of their partition walls) 
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leads to the formation of a net, and the further break-up of the net 
may lead to the unravelling of a thread or “spireme”.

Here there comes into play a fundamental principle which, in 
so far as we require to understand it, can be explained in simple 
words. The effect (and we might even say the object) of drawing 
the more permeable body in between the poles is to obtain an 
“easier path” by which the lines of force may travel; but it is 
obvious that a longer route through the more permeable body may 
at length be found less advantageous than a shorter route through 
the less permeable medium. That is to say, the more permeable 
body will only tend to be drawn into the field of force until a point 
is reached where (so to speak) the way round and the way through 
are equally advantageous. We should accordingly expect that (on 
our hypothesis) there would be found cases in which the nucleus 
was wholly, and others in which it was only partially, and in greater 
or less degree, drawn in to the field between the centrosomes. This 
is precisely what is found to occur in actual fact. Figs. 90 a and b 
represent two so-called “types,” of a phase which follows that 
represented in Fig. 89. According to the usual descriptions we are 
told that, in such a case as Fig. 90b, the “primary spindle” 
disappears*  and the centrosomes diverge to opposite poles of the 
nucleus; such a condition being found in many plant-cells, and in 
the cleavage-stages of many eggs. In Fig. 90 a, on the other hand, 
the primary spindle persists, and subsequently comes to form the 
main or “central” spindle; while at the same time we see the 
fading away of the nuclear membrane, the breaking up of the 
spireme into separate chromosomes, and an ingrowth into the nu
clear area of the “astral rays”—all as in Fig. 91 a, which represents 
the next succeeding phase of Fig. 90 b. This condition, of Fig. 91 A, 
occurs in a variety of cases; it is well seen in the epidermal cells 
of the salamander, and is also on the whole characteristic of the 
mode of formation of the “polar bodiesf.” It is clear and obvious 
that the two “types” correspond to mere differences of degree, 

* The spindle is potentially there, even though (as Chambers assures us) it only 
becomes visible after post-mortem coagulation. It is also said to become visible 
under crossed nicols: W. J. Schmidt, Biodynamica, xxn, 1936.

t These were first observed in the egg of a pond-snail (Limnaea) by B. Dumortier, 
Mem. sur I’embryogenie des mollusques, Bruxelles, 1837.
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and are such as would naturally be brought about by differences 
in the relative permeabilities of the nuclear mass and of the 
surrounding cytoplasm, or even by differences in the magnitude of 
the former body.

But now an important change takes place, or rather an important 
difference appears; for, whereas the nucleus as a whole tended to 
be drawn in to the stronger parts of the field, when it comes to break 
up we find, on the contrary, that its contained spireme-thread or 
separate chromosomes tend to be repelled to the weaker parts. 
Whatever this difference may be due to—whether, for instance, to 
actual differences of permeability, or possibly to differences in 
“surface-charge” or to other causes—the fact is that the chromatin 
substance now behaves after the fashion of a “diamagnetic” body, 
and is repelled from the stronger to the weaker parts of the field. 
In other words, its particles, lying in the inter-polar field, tend to 
travel towards the equatorial plane thereof (Figs. 91, 92), and 
further tend to move outwards towards the periphery of that plane, 
towards what the histologist calls the “mantle-fibres,” or outermost 
of the lines of force of which the spindle is made up (par. 5, Fig. 91 b). 
And if this comparatively non-permeable chromatin substance come 
to consist of separate portions, more or less elongated in form, 
these portions, or separate “chromosomes,” will adjust themselves 
longitudinally, in a peripheral equatorial circle (Figs. 92 a, b). This 
is precisely what actually takes place. Moreover, before the breaking 
up of the nucleus, long before the chromatin material has broken 
up into separate chromosomes, and at the very time when it is 
being fashioned into a “spireme,” this body already lies in a polar 
field, and must already have a tendency to set itself in the equatorial 
plane thereof. But the long, continuous spireme thread is unable, 
so long as the nucleus retains its spherical boundary wall, to adjust 
itself in a simple equatorial annulus; in striving to do so, it must 
tend to coil and “kink” itself, and in so doing (if all this be so), 
it must tend to assume the characteristic convolutions of the 
“spireme.”

After the spireme has broken up into separate chromosomes, 
these bodies come to rest in the equatorial plane, somewhere near 
its periphery; and here they tend to set themselves in a symmetrical 
arrangement (Fig. 94), such as makes for still better equilibrium.
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The particles may be rounded or linear, straight or bent, sometimes 
annular; they may be all alike, or one or more may differ from 
the rest. Lying as they do in a semi-fluid medium, and subject 
(doubtless) to some symmetrical play of forces, it is not to be 
wondered at that they arrange themselves in a symmetrical con
figuration; and the field of force seems simple enough to let us 
predict, to some extent, the symmetries open to them. We .do not 
know, we cannot safely surmise, the nature of the forces involved. 
In discussing Brauer’s observations on the splitting of the chromatic 
filament, and on the symmetrical arrangement of the separate 
granules, in Ascaris megalocephala, Lillie*  remarks: “This behaviour

* R. S. Lillie, Conditions determining the disposition of the chromatic filaments, 
etc., in mitosis; Biol. Bulletin, vin, 1905.

Fig. 94. Chromosomes, undergoing splitting and separation. 
After Hatschek and Flemming, diagrammatised.

is strongly suggestive of the division of a colloidal particle under 
the influence of its surface electrical charge, and of the effects of 
mutual repulsion in keeping the products of division apart.” It is 
probable that surface-tensions between the particles and the sur
rounding protoplasm would bring about an identical result, and 
would sufficiently account for the obvious, and at first sight very 
curious symmetry. If we float a couple of matches in water, we 
know that they tend to approach one another till they lie close 
together, side by side; and if we lay upon a smooth wet plate 
four matches, half broken across, a similar attraction brings the 
four matches together in the form of a symmetrical cross. Whether 
one of these, or yet another, be the explanation of the phenomenon, 
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it is at least plain that by some physical cause, some mutual 
attraction or common repulsion of the particles, we must seek to 
account for the symmetry of the so-called “tetrads,” and other 
more or less familiar configurations. The remarkable annular 
chromosomes, shewn in Fig. 95, can be closely imitated by loops 
of thread upon a soapy film, when the film within the annulus is 
broken or its tension reduced; the balance of forces is here a simple 
one, between the uniform capillary tension which tends to widen out 
the ring and the uniform cohesion of its particles which keeps it 
together.

We may find other cases, at once simpler and more varied, where 
the chromosomes are bodies of rounded form and more or less

Fig. 95. Annular chromosomes, formed in the spermatogenesis of the 
mole-cricket. From Wilson, after Vom Rath.

uniform size. These also find their way to an equatorial plate; 
we gather (and Lamb assures us) that they are repelled from the 
centrosomes. They may go near the equatorial periphery, but they 
are not driven there; and we infer that some bond of mutual 
attraction holds them together. If they be free to move in a fluid 
medium, subject both to some common repulsion and some mutual 
attraction, then their circumstances are much like those of Mayer’s 
well-known experiment of the floating magnets. A number of 
magnetised needles stuck in corks, all with like poles upwards, are 
set afloat in a basin; they repel one another, and scatter away to 
the sides. But bring a strong magnet (of unlike pole) overhead, 
and the little magnets gather in under its common attraction, while 
still keeping asunder through their own mutual repulsion. The 
symmetry of forces leads to a symmetrical configuration, which is
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the mathematical expression of a physical equilibrium—and is the 
not too remote counterpart of the arrangement of the electrons in 
an atom. Be thai as it may, it is found that a group of three, 
four or five little magnets arrange themselves at the corners of an 
equilateral triangle, square or pentagon; but a sixth passes within 
the ring, and comes to rest in the centre of symmetry of the 
pentagon. If there be seven magnets, six form the ring, and the 
seventh occupies the centre; if there be ten, there is a ring of eight 
and two within it; and so on, as follows*:

Number of magnets 5 6 7 8
Do. in outer ring 5 5 6 7
Do. in inner ring 0 111

9 10 11 12 13 14 15 16
8 8 8 9 10 10 10 11
1 2 3 3 3 4 5 5

When we choose from the published figures cases where the 
chromosomes are as nearly as possible alike in size and form the 
condition necessary for our parallel to hold—then, as Lillie pre
dicted and as Doncaster and Graham Cannon have shewn, their 
congruent arrangement agrees, even to a surprising degree, with 
what we are led to expect by theory and analogy (Fig. 96).

The break-up of the nucleus, already referred to and ascribed 
to a diminution of its surface-tension, is accompanied by certain 
diffusion phenomena which are sometimes visible to the eye; and 
we are reminded of Lord Kelvin’s view that diffusion is implicitly 
associated with surface-tension changes, of which the first step is 
a minute puckering of the surface-skin, a sort of interdigitation with 
the surrounding medium. For instance, Schewiakoff has observed 
in Euglypha^ that, just before the break-up of the nucleus, a system 
of rays appears, concentred about it, but having nothing to do with 
the polar asters: and during the existence of this striation the 
nucleus enlarges very considerably, evidently by imbibition of fluid 
from the surrounding protoplasm. In short, diffusion is at work, 
hand in hand with, and as it were in opposition to, the surface
tensions which define the nucleus. By diffusion, hand in hand with 
surface-tension, the alveoli of the nuclear meshwork are formed, 
enlarged and finally ruptured: diffusion sets up the movements

* H. Graham Cannon, On the nature of the centrosomal force, Journ. Genetics, 
xm, p. 55, 1923.

f Schewiakoff, Ueber die karyokinetische Kerntheilung der Euglypha alveolata, 
Morph. Jahrb. xm, pp. 193-258, 1888 (see p. 216).
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which give rise to the appearance of rays, or striae, around the 
nucleus: and through increasing diffusion and weakening surface
tension the rounded outline of the nucleus finally disappears.

As we study these manifold phenomena in the individual cases 
of particular plants and animals, we recognise a close identity of 
type coupled with almost endless variation of specific detail; and

Fig. 96. Various numbers of chromosomes in the equatorial plate: the ring
diagrams give the arrangements predicted by theory. From Graham Cannon.

in particular, the order of succession in which certain of the pheno
mena occur is variable and irregular. The precise order of the 
phenomena, the time of longitudinal and of transverse fission of 
the chromatin thread, of the break-up of the nuclear wall, and so 
forth, will depend upon various minor contingencies and “inter
ferences.” And it is worthy of particular note that these variations 
in the order of events and in other subordinate details, while 
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doubtless attributable to specific physical conditions, would seem 
to be without any obvious classificatory meaning or other biological 
significance.

So far as we have now gone, there is no great difficulty in pointing 
to simple and familiar examples of a field of force which are 
similar, or comparable, to the phenomena which we witness within 
the cell. But among these latter phenomena there are others for 
which it is not so easy to suggest, in accordance with known laws, 
a simple mode of physical causation. It is not at once obvious 
how, in any system of symmetrical forces, the chromosomes, which 
had at first been apparently repelled from the poles towards the 
equatorial plane, should then be split asunder, and should presently 
be attracted in opposite directions, some to one pole and some to 
the other. Remembering that it is not our purpose to assert that 
some one particular mode of action is at work, but merely to shew 
that there do exist physical forces, or distributions of force, which 
are capable of producing the required result, I give the following 
suggestive hypothesis, which I owe to my colleague Professor W. 
Peddie. '

As we have begun by supposing that the nuclear or chromosomal 
matter differs in permeability from the medium, that is to say the 
cytoplasm, in which it lies, let us How make the further assumption 
that its permeability is variable, and depends upon the strength of 
the field.

In Fig. 97, we have a field of force (representing our cell), con
sisting of a homogeneous medium, and including two opposite 
poles: lines of force are indicated by full lines, and loci of constant 
magnitude offeree are shewn by dotted lines, these latter being what 
are known as Cayley’s equipotential curves*.

* Phil. Trans, xrv, p. 142, 1857. Cf. also F. G. Teixeira, Traiti des Courbes, 
I, p. 372, Coimbra, 1908.

Let us now consider a body whose permeability (p) depends on 
the strength of the field F. At two field-strengths, such as Fa, Fb, 
let the permeability of the body be equal to that of the medium, 
and let the curved line in Fig. 98 represent generally its permeability 
at other field-strengths; and let the outer and inner dotted curves 
in Fig. 97 represent respectively the loci of the field-strengths Fb 
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and Fa. The body if it be placed in the medium within either 
branch of the inner curve, or outside the outer curve, will tend to 
move into the neighbourhood of the adjacent pole. If it be placed

in the region intermediate to the two dotted curves, it will tend to 
move towards regions of weaker field-strength.

The locus Fb is therefore a locus of stable position, towards which 
the body tends to move; the locus Fa is a locus of unstable position, 
from which it tends to move. If the body were placed across Fa, 
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it might be torn asunder into two portions, the split coinciding 
with the locus Fa.

Suppose a number of such bodies to be scattered throughout the 
medium. Let at first the regions Fa and Fb be entirely outside the 
space where the bodies are situated: and, in making this supposition 
we may, if we please, suppose that the loci which we are calling 
Fa and Fb are meanwhile situated somewhat farther from the axis 
than in our figure, that (for instance) Fa is situated where we have 
drawn Fb, and that Fb is still farther out. The bodies then tend 
towards the poles; but the tendency may be very small if, in 
Fig. 98, the curve and its intersecting straight line do not diverge 
very far from one another beyond Fa; in other words, if, when

situated in this region, the permeability of the bodies is not very 
much in excess of that of the medium.

Let the poles now tend to separate farther and farther from one 
another, the strength of each pole remaining unaltered; in other 
words, let the centrosome-foci recede from one another, as they 
actually do, drawing out the spindle-threads between them. The 
loci Fa, Fb will close in to nearer relative distances from the poles. 
In doing so, when the locus Fa crosses one of the bodies, the body 
may be torn asunder; if the body be of elongated shape, and be 
crossed at more points than one, the forces at work will tend to 
exaggerate its foldings, and the tendency to rupture is greatest 
when Fa is in some median position (Fig. 99).

When the locus Fa has passed entirely over the body, the body 
tends to move towards regions of weaker force; but when, in turn, 
the locus Fb has crossed it, then the body again moves towards 
regions of stronger force, that is to say, towards the nearest pole.
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And, in thus moving towards the pole, it will do so, as appears 
actually to be the case in the dividing cell, along the course of the 
outer lines of force, the so-called “ mantle-fibres” of the histologist*.

* We have not taken account in the above paragraphs of the obvious fact that 
the supposed symmetrical field of force is distorted by the presence in it of the 
more or less permeable bodies; nor is it necessary for us to do so, for to that 
distorted field the above argument continues to apply, word for word.

f Michael Foster, Lectures on the History of Physiology, 1901, p. 62.

Such considerations as these give general results, easily open to 
modification in detail by a change of any of the arbitrary postulates 
which have been made for the sake of simplicity. Doubtless there 
are other assumptions which would meet the case; for instance, 
that during the active phase of the chromatin molecule (when it de
composes and sets free nucleic acid) it carries a charge opposite to 
that which it bears during its resting, or alkaline phase; and that it 
would accordingly move towards different poles under the influence 
of a current, wandering with its negative charge in an alkaline fluid 
during its acid phase to the anode, and to the kathode during its 
alkaline phase. A whole field of speculation is opened up when we 
begin to consider the cell not merely as a polarised electrical field, 
but also as an electrolytic field, full of wandering ions. Indeed it 
is high time we reminded ourselves that we have perhaps been 
dealing too much with ordinary physical analogies: and that our 
whole field of force within the cell is of an order of magnitude where 
these grosser analogies may fail to serve us, and might even play 
us false, or lead us astray. But our sole object meanwhile, as I 
have said more than once, is to demonstrate, by such illustrations 
as these, that, whatever be the actual and as yet unknown modus 
operandi, there are physical conditions and distributions of force 
which could produce just such phenomena of movement as we see 
taking place within the living cell. This, and no more, is precisely 
what Descartes is said to have claimed for his description of the 
human body as a “mechanism!.”

While it can scarcely be too often repeated that our enquiry is 
not directed towards the solution of physiological problems, save 
only in so far as they are inseparable from the problems presented 
by the visible configurations of form and structure, and while we 
try, as far as possible, to evade the difficult question of what 

T G F 21
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particular forces are at work when the mere visible forms produced 
are such as to leave this an open question, yet in this particular 
case we have been drawn into the use of electrical analogies, and 
we are bound to justify, if possible, our resort to this particular 
mode of physical action. There is an important paper by R. S. Lillie, 
on the “Electrical convection of certain free cells and nuclei*,” 
which, while I cannot quote it in direct support of the suggestions 
which I have made, yet gives just the evidence we need in order 
to shew that electrical forces act upon the constituents of the cell, 
and that their action discriminates between the two species of 
collo’ds represented by the cytoplasm and the nuclear chromatin. 
And the difference is such that, in the presence of an electrical 
current, the cell substance and the nuclei (including sperm-cells) 
tend to migrate, the former on the whole with the positive, the 
latter with the negative stream: a difference of electrical potential 
being thus indicated between the particle and the surrounding 
medium, just as in the case of minute suspended particles of various 
kinds in various feebly conducting media f. And the electrical 
difference is doubtless greatest, in the case of the cell constituents, 
just at the period of mitosis: when the chromatin is invariably 
in its most deeply staining, most strongly acid, and therefore, 
presumably, in its most electrically negative phase. In short, Lillie 
comes easily to the conclusion that "electrical theories of mitosis 
are entitled to more careful consideration than they have hitherto 
received.”

* Amer. J. Physiol, vm, pp. 273-283, 1903 (ride supra, p. 314); cf. ibid, xv, 
pp. 46-84, 1905; xxn, p. 106, 1910; xxvn, p. 289, 1911; Journ. Exp. Zool. xv, 
p. 23. 1913; etc.

f f In like manner Hardy shewed that colloid particles migrate with the negative 
stream if the reaction of the surrounding fluid be alkaline, and vice versa. The 
whole subject is much wider than these brief allusions suggest, and is essentially 
part of Quincke’s theory of Electrical Diffusion or Endosmosis: according to 
which the particles and the fluid in which they float (or the fluid and the capillary 
wall through which it flows) each carry a charge: there being a discontinuity of 
potential at the surface of contact and hence a field of force leading to powerful 
tangential or shearing stresses, communicating to the particles a velocity which 
varies with the density per unit area of the surface charge. See W. B. Hardy’s 
paper on Coagulation by electricity, Journ. Physiol, xxiv, pp. 288-304, 1899; 
also Hardy and H. W. Harvey, Surface electric charges of living cells, Proc. R.S. 
(B), lxxxiv, pp. 217-226, 1911, and papers quoted therein. Cf. also E. N. Harvey’s 
observations on the convection of unicellular organisms in an electric field (Studies 
on the permeability of cells, Journ. Exp. Zool. x, pp. 508-556, 1911).
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Among other investigations all leading towards the same general 
conclusion, namely that differences of electric potential play their 
part in the phenomena of cell division, I would mention a note
worthy paper by Ida H. Hyde*,  in which the writer shews (among 
other important observations) that not only is there a measurable 
difference of potential between the animal and vegetative poles of 
a fertilised egg (Fundulus, toad, turtle, etc.), but also that this 
difference fluctuates, or actually reverses its direction, periodically, 
at epochs coinciding with successive acts of segmentation or other 

* On differences in electrical potential in developing eggs, Amer. Journ. Physiol. 
xii, pp. 241-275, 1905. This paper contains an excellent summary, for the time 
being, of physical theories of the segmentation of the cell.

t Gray has demonstrated a temporary increase of electrical conductivity in 
sea-urchin eggs during the process of fertilisation, and ascribes the changes in 
resistance to polarisation of the surface: Electrical conductivity of echinoderm 
eggs, etc., Phil. Trans. (B), ccvn, pp. 481-529, 1916.

Fig. 100. Final stage in the first seg
mentation of’ the egg of Cerebra- 
tulus. From Prenant, after Coe*.

Fig. 101. Diagram of field of force 
with two similar poles.

important phases in the development of the eggf; just as other 
physical rhythms, for instance, in the production of CO2, had already 
been shewn to do. Hence we need not be surprised to find that the 
“materialised” lines of force, which in the earlier stages form the 

21 2
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convergent curves of the spindle, are replaced in the later phases of 
caryokinesis by divergent curves, indicating that the two foci, which 
are marked out in the field by the divided and reconstituted nuclei, 
are now alike in their polarity* (Figs. 100, 101).

The foregoing account is based on the provisional assumption 
that the phenomena of caryokinesis are analogous to those of a 
bipolar electrical field—a comparison which seems to offer a helpful 
and instructive series of analogies. • But there are other forces which 
lead to similar configurations. For instance, some of Leduc’s 
diffusion-experiments offer very remarkable analogies to the dia
grammatic phenomena of caryokinesis, as shewn in Fig. 102 f.

Fig. 102. Artificial caryokinesis (after Leduc), for comparison with Fig. 88, p. 299.

Here we have two identical (not opposite) poles of osmotic con
centration, formed by placing a drop of indian ink in salt water, 
and then on either side of this central drop, a hypertonic drop of 
salt solution more lightly coloured. On either side the pigment of 
the central drop has been drawn towards the focus nearest to it; 
but in the middle line, the pigment is drawn in opposite directions 
by equal forces, and so tends to remain undisturbed, in the form of 
an “equatorial plate.”

To account for the same mitotic phenomena an elegant hypothesis 
has been put forward by A. B. Lamb J, and developed by Graham

* W. R. Coe, Maturation and fertilisation of the egg of Cerebralulus, Zool. 
Jahrbucher (Anat. Abth.), xn, pp. 425-476, 1899.

f Op. cit. pp. 110 and 91.
| A. B. Lamb, A new explanation of the mechanism of mitosis, Journ. Exp. Zool. 

v, pp. 27-33. 1908.
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Cannon*. It depends on certain investigations of the Bjerknes, 
father and sonf, which prove that bodies pulsating or oscillating]: 
in a fluid set up a field of force precisely comparable with the lines 
of force in a magnetic field. Certain old and even familiar observa
tions had pointed towards this phenomenon. Guyot had noticed 
that bits of paper were attracted towards a vibrating tuning-fork; 
and Schellbach found that a sounding-board so acts on bodies in its 
neighbourhood as to attract those which are heavier and repel those 
which are lighter than the surrounding medium; in air bits of 
paper are attracted and a gas-flame is repelled. To explain these 
simple observations, Bjerknes experimented with little drums 
attached to an automatic bellows. He found that two bodies in 
a fluid field, synchronously pulsating or synchronously oscillating, 
repel one another when their oscillations are in the same phase, or 
their pulsations are in opposite phase; and vice versa', while other 
particles, floating passively in the same fluid, tend (as Schellbach 
had observed before) to be attracted or repulsed according as they 
are heavier or lighter than the fluid medium. The two bodies 
behave towards one another like two electrified bodies, or like two 
poles of a magnet; we are entitled to speak of them as “hydro
dynamic poles,” we might even call them “ hydrodynamic magnets”; 
and pursuing the analogy, we may call the heavy bodies para
magnetic, and the light ones diamagnetic with regard to them. 
Lamb’s hypothesis then, and Cannon’s, is that the centrosomes act 
as “hydrodynamic magnets.” The explanation depends on oscilla
tions which have never been seen, in centrosomes which are not 
always to be discovered. But it brings together certain curious 
analogies, and these, where we know so little, may be worth 
reflecting on.

If we assume that each centrosome is endowed with a vibratory 
motion as it floats in the semi-fluid colloids, or hydrosols (to use 
Graham’s word) of the cell, we may take it that the visible intra
cellular phenomena will be much the same as those we have

* Op. cit. Cf. also Gertrud Woken, Zur Physik der Kernteilung, Z. f. allg. Physiol. 
xvni, pp. 39-57, 1918.

f V. Bjerknes, Vorlesungen uber hydrodynamische Fernkrafte, nach C. A. Bjerknes' 
Theorie, Leipzig, 1900.

J A body is said to pulsate when it undergoes a rhythmic change of volume; 
it oscillates when it undergoes a rhythmic change of place. 
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described under an electrical hypothesis; the lines of force will 
have the same distribution, and such movements as the chromo
somes undergo, and such symmetrical configurations as they assume, 
may be accounted for under the one hypothesis pretty much as 
under the other. There are however other phenomena accompanying 
mitosis, such as Chambers’s astral currents and certain Ideal changes 
in the viscosity of the egg, which are more easily explained by the 
hydrodypamic theory.

We may assume that the cytoplasm, however complex it may be, 
is but a sort of microscopically homogeneous emulsion of high 
dispersion, that is to say one in which the minute particles of one 
phase are widely scattered throughout, and freely mobile in, the 
other; and this indeed is what is meant by calling it a hydrosol. 
Let us assume also that the particles are a little less dense than the 
continuous phase in which they are dispersed; and assume lastly 
(it is not the easiest of our assumptions) that these ultra-minute 
particles will be affected, just as are the grosser ones, by the forces 
of the hydrodynamic field.

All this being so, the disperse particles will be repelled from the 
oscillating centrosome, with a force which falls off very rapidly, for 
Bjerknes tells us that it varies inversely as the seventh power of 
the distance; a round clear field, like a drop or a bubble, will be 
formed round the centrosome; and the disperse particles, expelled 
from this region, will tend to accumulate in a crowded spherical 
zone immediately beyond it. Outside of this again they will con
tinue to be repulsed, but slowly, and we may expect a second and 
lesser concentration at the periphery of the cell. A clear central 
mass, or “centrosphere,” will thus come into being; and the 
surrounding cytoplasm will be rendered denser and more viscous, 
especially close around the centrosphere and again peripherally, by 
condensation of the disperse particles. Moreover, all outward 
movements of these lighter particles entail inward movements of 
the heavier, which (by hypothesis) are also the more fluid; stream
lines or visible currents will flow’ towards the centre, giving rise to 
the star-shaped “aster,” and the best accounts of the sea-urchin’s 
egg* tally well with what is thus deduced from the hydrodynamic

* Cf. R. Chambers, in Journ. Exp. Zool. xxin, p. 483, 1917; Trans. R.S. Canada, 
xn, 1918; Journ. Gen. Physiol, n, 1919.
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hypothesis. The round drop of clear fluid which forms the centre 
of the aster grows as the aster grows, fluid streaming towards it 
from all parts of the cell along the channels of the astral rays. 
The cytoplasm between the rays .is in the gel state, but gradually 
passes into a sol beyond the confines of the aster. Seifritz asserts 
that the substance of the centrosphere is “not much more viscous 
than water,” but that the wedges of cytoplasm between the inwardly 
directed streams are stiff and viscous*.

After the centrosome divides we have two oscillating bodies 
instead of one; they tend to repel one another, and pass easily 
through the fluid centrosphere to the denser layer around. But 
now the new centrosomes, on opposite sides of the centrosphere, 
repel, each on its own side, the disperse particles of the denser zone; 
and two new asters are formed, their rays marked by the streams 
coursing inwards to the centrosome-foci. Thus the amphiaster 
comes into being; it is not that the old aster divides, as a definite 
entity; but the old aster ceases to exist when its focus is disturbed, 
and about the new foci new asters are necessarily and automatically 
developed. Again this hypothetic account tallies well with Chambers’s 
description.

The same attractions and repulsions should be manifested, perhaps 
better still, in whatsoever bodies lie or float within the cell, whether 
liquid or solid, oil-globules, yolk-particles, mitochondria, chromo
somes or what not. A zoned, concentric arrangement of yolk
globules is often seen in the egg, with the centrosome as focus; 
and in certain sea-urchin eggs the mitochondria gather around 
the centrosome while the amphiaster is forming, collecting together 
in that very zone to which Chambers ascribes a semi-rigid or viscous 
consistency!. The Golgi bodies found in various germ-cells are, at 
first black rod-like bodies embedded in the centrosphere; they 
undergo changes and complex movements, now scattering through 
the cytoplasm and anon crowding again around the centrosome. 
Some periodic change in the density of these bodies compared with

* Cf. W. Seifritz, Some physical properties of protoplasm, Ann. Bot. xxxv, 
1921. Wo. Ostwald and M. H. Fischer had thought that the astral rays were 
due to local changes of the plasma-sol into a gel, Zur physikal. ehem. Theorie der 
Befruchtung, Pfiuger's Archiv, cvi, pp. 229-266, 1905.

f Cf. F. Vejdovsky and A. Mrazek, Umbildung des Cytoplasma wahrend der 
Befruchtung und Zelltheilung, Arch. f. mikr. Anat, lxii, 431-579, 1903. 
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that of the medium in which they lie seems all that is required 
to account for their excursions; and such changes of density are 
not only of likely occurrence during the active chemical operations 
associated with fertilisation and division, but are in all probability 
inseparable from the changes in viscosity which are known to 
occur*. The movements and arrangements of the chromosomes, 
already described, may be easily accounted for if we postulate, in 
addition to their repulsion from the oscillating centrosomes, induced 
oscillations in themselves such as to cause therp to attract one another.

The well-defined length of the spindle and the position of equili
brium in which it comes to rest may be conceived as resultants of 
the several mutual repulsions of the centrosomes by one another, 
by the chromosomes or other lighter material of the equatorial plate, 
and again by such lighter material as may have accumulated at the 
periphery of the egg; the first two of these will tend to lengthen the 
spindle, the last to shorten it; and the last will especially affect its 
position and direction. When Chambers amputated part of an 
amphiastral egg, the remains of the amphiaster disappeared, and 
then came into being again in a new and more symmetrical position; 
it or its centrosomal focus had been symmetrically repelled, we may 
suppose, by the fresh surface. Hertwig’s law that the spindle-axis 
tends to lie in the direction of the largest mass of protoplasm, in 
other words to point where the cell-surface lies farthest off and its 
repulsion is least felt, may likewise find its easy explanation.

Between these hypotheses we may choose one or other (if we 
choose at all), according to our judgment. As Henri Poincare tells 
us, we never know that any one physical hypothesis is true, we take 
the simplest we can find; and this we call the guiding principle of 
simplicity! In this case, the hydrodynamic hypothesis is a simple 
one; but it all rests on a hypothetic oscillation of the centrosomes, 
which has never been witnessed. Bayliss has shewn that precisely 
such reversible states of gelation as we have been speaking of as

* Cf. G. Odquist, Viscositatsanderungen des Zellplasmas wahrend der ersten 
Entwicklungsstufen des Froscheies, Arch. f. Entw. Meeh. Li, pp. 610-624, 1922; 
A. Gurwitsch, Pramissen und anstossgebende Faktoren der Furchung und 
Zelltheilung, Arch. f. Zellforsch. n, pp. 495-548, 1909; L. V. Heilbronn, 
Protoplasmic viscosity-changes during mitosis, Journ. Exp. Zool. xxxiv, pp. 417-447, 
1921; ibid, xliv, pp. 255-278, 1926; E. Leblond, Passage de 1’etat dc gel a 1’^tat de sol 
dans Ie protoplasme vivant, C.R. Soc. Biol, lxxxii, p. 1150; cf. ibid. p. 1220; etc. 
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“periodic changes in viscosity ’’ may be induced in living protoplasm 
by electrical stimulation*.  On the other hand, the fact that the 
hydrodynamic forces fall off as fast as they do with increasing 
distance limits their efficacy; and the minute disperse particles 
must, under Stokes’s law, be slow to move. Lastly, it may well be 
(as Lillie has urged) that such work as his own, or Ida Hyde’s, or 
Gray’s, on change of potential in developing eggs, taken together 
with that of many others on the behaviour of colloid particles in an 
electrical field, has not yet been followed out in all its consequences, 
either on the physical or the physiological side of the problem.

* W. M. Bayliss, Reversible gelation in living protoplasm, Proc. R.S. (B), xci, 
pp. 196-201. 1920.

But to return to our general discussion.
As regards the actual mechanical division of the cell into two 

halves, we shall see presently that, in certain cases, such as that 
of a long cylindrical filament, surface-tension, and what is known 
as the principle of “minimal areas,” go a long way to explain the 
mechanical process of division; and in all cells whatsoever, the 
process of division must somehow be explained as the result of a 
conflict between surface-tension and its opposing forces. But in 
such a case as our spherical cell, it is none too easy to see what 
physical cause is at work to disturb its equilibrium and its integrity.

The fact that when actual division of the cell takes place, it does 
so at right angles to the polar axis and precisely in the direction 
of the equatorial plane, would lead us to suspect that the new 
surface formed in the equatorial plane sets up an annular tension, 
directed inwards, where it meets the outer surface layer of the cell 
itself. But at this point the problem becomes more complicated. 
Before we can hope to comprehend it, we shall have not only to 
enquire into the potential distribution at the surface of the cell in 
relation to that which we have seen to exist in its interior, but also 
to take account of the differences of potential which the material 
arrangements along the lines of force must themselves tend to 
produce. Only thus can we approach a comprehension of the 
balance of forces which cohesion, friction, capillarity and electrical 
distribution combine to set up.

The manner in which we regard the phenomenon would seem to 
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turn, in great measure, upon whether or no we are justifies! in 
assuming that, in the liquid surface-film of a minute spherical cell, 
local and symmetrically localised differences of surface-tension are 
likely to occur. If not, then changes in the conformation of the 
cell such as lead immediately to its division must be ascribed not 
to local changes in its surface-tension, but rather to direct changes 
in internal pressure, or to mechanical forces due to an induced 
surface-distribution of electrical potential. We have little reason to 
be sceptical; in fact we now know that the cell is so far from being 
chemically and physically homogeneous that local variations in its 
surface-tension are more than likely, they are certain to occur.

Biitschli suggested more than sixty years ago that cell-division 
was brought about by an increase of surface-tension in the equatorial 
region of the cell; and the suggestion was the more remarkable that 
it was (I believe) the very first attempt to invoke surface-tension 
as a factor in the physical causation of a. biological phenomenon*. 
An increase of equatorial tension would 'cause the surface-area there 
to diminish, and the equator to be pinched in; but the total surface- 
area of the cell would be increased thereby, and the two effects 
would strike a balancef. But, as Biitschli knew very well, the 
surface-tension change would not stand alone; it would bring other 
phenomena in its train, currents would tend to be set up, and 
tangential strains would be imposed on the cell-membrane or cell
surface as a whole. The secondary if not the direct effects of 
increased equatorial tension might, after all, suffice for the division of 
the cell. It was Loeb, in 1895, who first shewed that streaming went 
on from the equator towards the divided nuclei. To the violence 
of these streaming movements he attributed the phenomenon of 
division, and many other physiologists have adopted this hypo
thesis]:. The currents of which Loeb spoke call for counter-currents

* O. Biitschli, Uber die ersten Entwicklungsvorgange der Eizelle, A bh. 
Senckenberg, naturf. GeseUsch. x, 1876; Uber Plasmastromungen bei der Zell- 
theilung, Arch. f. Entw. Meeh, x, p. 52, 1900. Ryder ascribed the caryokinetic 
figures to surface-tension in his Dynamics in Evolution, 1894.

j- A relative, not positive, increase of surface-tension, was part of Giardina’s 
hypothesis: Note sul mecanismo della divisione cellulare, Anat. Anz. xxi. 1902.

J J. Loeb, Amer. Journ. Physiol, vi, p. 432, 1902; E. G. Conklin, Protoplasmic 
movements as a factor in differentiatiort, Wood's Hole Biol. Lectures, p. 69, etc., 
1898-99; J. Spek, Oberflachenspannungsdifferenzen als eine Ursache der Zell- 
teilung, Arch.f. Entw. Meeh, xliv, pp. 54-73, 1918.
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towards the equator, in or near the surface of the cell; and theory 
and observation both indicate that precisely such currents are bound 
to be set up by the surface-energy involved in the increase of 
equatorial tension.

An opposite view has been held by some, and especially by 
T. B. Robertson*.  Quincke had shewn that the formation of soap 
at the surface of an oil-droplet lowers the surface-tension of the 
latter, and that if the saponification be local, that part of the surface 
tends to enlarge and spread out accordingly. Robertson, in a very 
curious experiment, found that by laying a thread, moistened with 
dilute caustic alkali or merely smeared with soap, across a drop of 
olive oil afloat in water, the drop at once divided into two. A 
vast amount of controversy has arisen over this experiment, but 
Spek seems to have shewn conclusively that it is an exceptional 
case.

* T. B. Robertson, Note on the chemical mechanics of cell-division, Arch. f. 
Entw. Meeh, xxvn, p. 29, 1909; xxxir, p. 308, 1911; xxxv, p. 402, 1913. Cf. 
R. S. Lillie, Journ. Exp. Zool. xxi, pp. 369—402, 1916; McClendon, loc. cit.; etc.

t In these experiments, and in many of Quincke’s, a little chloroform is added 
to the oil, in order to bring its density as near as may be to that of water.

J J. F. McClendon, Note on the mechanics of cell-division. Arch. f. Entw. Meeh. 
xxxiv, pp. 263-266, 1912.

In a drop of olive-oil, balanced in waterf and touched anywhere 
with an alkali, there is so copious a formation of lighter soaps that 
differences of density tend to drag the drop in two. But in the 
case of other oils (and especially the thinner oils, such as oil of 
bergamot) the saponified portion bulges, as theory directs; and 
when the alkali is applied to two opposite poles the equatorial 
region is pinched in, as McClendon J, in opposition to Robertson, 
had found it to do. Conversely, if an alkaline thread be looped 
around the drop, the zone of contact bulges, and instead of dividing 
at the equator the drop assumes a lens-like form.

We may take it then as proven that a relative increase of equatorial 
surface-tension, whether in oil-drops, mercury-globules or living 
cells, does lead, or tend to lead, to an equatorial constriction. In 
all cases a system of surface-currents is set up among the fluid drops 
towards the zone of increased tension; and an axial counter-current 
flows towards the pole or poles of lowered tension. Precisely such 
currents have been observed to run in various eggs (especially of 
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certain Nematodes) during division of the cell; but if the process 
be slow, more than 7 or 8 minutes long, the slow currents become 
hard to see. Various contents of the cell are transported by these 
currents, and clear, yolk-free polar caps and equatorial accumula
tions of yolk and pigment are among the various manifestations of 
the phenomenon. The extrusion of a polar body, at a small and 
sharply defined region of lowered tension, is a particular case of the 
same principle*.

But purely chemical changes are not of necessity the fundamental 
cause of alteration in the surface-tension of the egg, for the action 
of electrolytes on surface-tension is now well known and easily 
demonstrated. So, according to other views than those with which 
we have been dealing, electrical charges are sufficient in themselves 
to account for alterations of surface-tension, and in turn for that 
protoplasmic streaming which, as so many investigators agree, 
initiates the segmentation of the eggf. A great part of our difficulty 
arises from the fact that in such a case as this the various pheno
mena are so entangled and apparently concurrent that it is hard 
to say which initiates another, and to which this or that secondary 
phenomenon may be considered due. Of recent years the pheno
menon of adsorption has been adduced (as we have already briefly 
said) in order to account for many of the events and appearances 
which are associated with the asymmetry, and lead towards the 
division, of the cell. But our short discussion of this phenomenon 
may be reserved for another chapter.

However, we are not directly concerned here with the phenomena 
of segmentation or cell-division in themselves, except only in so far 
as visible changes of form are capable of easy and obvious correla
tion with the play of force. The very fact of “development” 
indicates that, while it lasts, the equilibrium of the egg is never 
complete]:. And the gist of the matter is that, if you have caryo- 
kinetic figures developing inside the cell, that of itself indicates that 
the dynamic system and the localised forces arising from it are in

* J. Spek, loc. cit. pp. 108-109.
t Cf. D’Arsonval, Relation entre la tension superficielle et certains phenomenes 

electriques d’origine animale, Arch, de Physiol. I, pp. 460-472, 1889; Ida H. Hyde, 
op. cit. p. 242.

J Cf. Plateau’s remarks (Statique des liquides, n, p. 154) on the tendency towards 
equilibrium, rather than actual equilibrium, in many of his systems of soap-films. 
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gradual alteration; and changes in the outward configuration of 
the system are bound, consequently, to take place.

Perhaps we may simplify the case still more. We have learned 
many things about cell-division, but we do not know much in the 
end. \\ e have dealt, perhaps, with too many related phenomena, 
and failed because we tried to combine and account for them all. 
A physical problem, still more a mathematical one, wants reducing 
to its simplest terms, and Dr Rashevsky has simplified and general
ised the problem of cell-division (or division of a drop) in a series of 
papers, which still outrun by far the elementary mathematics of 
this book. If we cannot follow him in all he does, we may find 
useful lessons in his way of doing it. Cells are of many kinds; they 
differ in size and shape, in visible structure and chemical com
position. Most have a nucleus, some few have none; most need 
oxygen, some few do not; some metabolise in one way, some in 
another. What small residuum of properties remains common to 
them all? A living cell is a little fluid (or semi-fluid) system, in 
which work is being done, physical forces are in operation and 
chemical changes are going on. It is in such intimate relation with 
the world outside—its own milieu interne with the great milieu 
externe—that substances are continually entering the cell, some to 
remain there and contribute to its growth, some to pass out again 
with loss of energy and metabolic change. The picture seems 
simplicity itself, but it is less simple than it looks. For on either 
side of the boundary-wall, both in the adjacent medium and in the 
living protoplasm within, there will be no uniformity, but only 
degrees of activity, and gradients of concentration. Substances 
which are being absorbed and consumed will diminish from periphery 
to centre; those which are diffusing outwards have their greatest 
concentration near the centre, decrease towards the periphery, and 
diminish further with increasing distance in the near neighbourhood of 
the system. Size, shape, diffusibility, permeability, chemical properties 
of this and that, may affect the gradients, but in the living cell the 
interchanges are always going on, and the gradients are always there *.

* Outward diffusion makes one of the many contrasts between cell-growth and 
crystal-growth. But the diffusion-gradients round a growing crystal are far more 
complicated than was once supposed, Cf. W F. Berg, Crystal growth from 
solutions, Proc. R.S. (A), clxiv, pp. 79-95, 1938.
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If the cell be homogeneous, taking in and giving out at a constant 
rate in a uniform way, its shape will be spherical, the concentration
field of force, or concentration-field, will likewise have a spherical 
symmetry, and the resultant force will be zero. But if the symmetry 
be ever so little disturbed, and the shape be ever so little deformed, 
then there will be forces at work tending to increase the deformation, 
and others tending to equalise the surface-tension and restore the 
spherical symmetry, and it can be shewn that such agencies are 
within the range of the chemistry of the cell. Since surface
tension becomes more and more potent as the size of the drop 
diminishes, it follows that (under fluid conditions) the smallest 
solitary cells are least likely to depart from a spherical shape, and 
that cell-division is only likely to occur in cells above a certain 
critical order of magnitude; and using such physical constants 
as are available, Rashevsky finds that this critical magnitude 
tallies fairly well with the average size of a living cell. The more 
important lesson to learn, however, is this, that, merely by virtue 
of its metabolism, every cell contains within itself factors which may 
lead to its division after it reaches a certain critical size.

There are simple corollaries to this simple setting of the case. 
Since unequal concentration-gradients are the chief cause which 
renders non-spherical shapes of cell possible, and these last only so 
long as the cell lives and metabolises, it follows that, as soon as the 
gradients disappear, whether in death or in a "resting-stage”, the 
cell reverts to a spherical shape and symmetry. Again, not only is 
there a critical size above which cell-division becomes possible, 
and more and more probable, but there must also be a size beyond 
which the cell is not likely to grow. For the “specific surface” 
decreases, the metabolic exchanges diminish, the gradients become 
less steep, and the rate of growth decreases too; there must come 
a stage where anabolism just balances katabolism, and growth 
ceases though life goes on. When streaming currents are visible 
within the cell, they seem to complicate the problem; but after all, 
they are part of the result, and proof of the existence, of the gradients 
we have described. In any further account of Rashevsky’s theories 
the mathematical difficulties very soon begin. But it is well to 
realise that pure theory often carries the mathematical physicist a 
long way; and that higher and higher powers of the microscope, and 
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greater and greater histological skill are not the one and only way 
to study the physical forces acting within the cell*.

* Cf. N. Rashevsky, Mathematical Biophysics, Chicago, 1938; and many earlier 
papers. E.g. Physico-mathematical aspects of cellular multiplication and de
velopment, Cold Spring Harbor Symposia, ii, 1934; The mechanism of division of 
small liquid systems which are the seat of physico-chemical reactions. Physics, hi, 
pp. 374—379, 1934; papers in Protoplasma, xiv—xx, 1931-33, etc.

f With the classical account by H. Fol, C.R. lxxxiii, p. 667, 1876; Mem. Soc. 
Phys. Genive, xxvi, p. 89, 1879, cf. Robert Chambers, The mechanism of the entrance 
of sperm into the star-fish egg, Journ. Gen. Physiol, v, pp. 821-829, 1923. Here 
a delicate filament is said to run out from the fertilisation-cone and drag the 
spermatozoon in; but this is disputed and denied by E. Just, Biol. Bull, lvii, 
pp. 311-325, 1929.

{ But, under artificial conditions, “polyspermy” may take place, e.g. under 
the action of dilute poisons, or of an abnormally high temperature, these being 
doubtless also conditions under which the surface-tension is diminished.

As regards the phenomena of fertilisation, of the union of the 
spermatozoon with the "pronucleus” of the egg, we might study 
these also in illustration, up to a certain point, of the forces which 
are more or less manifestly at work. But we shall merely take, as 
a single illustration, the paths of the male and female pronuclei, as 
they travel to their ultimate meeting-place.

The spermatozoon, when within a very short distance of the egg
cell, is attracted by it, the same attraction being further manifested 
in a small conical uprising of the surface of the eggf. The nature 
of the attractive force has been much disputed. Loeb found the 
spermatozoon to be equally attracted by other substances, even by 
a bead of glass. It has been held also that the attraction is 
chemotropic, some substance being secreted by the egg which drew 
the sperm towards it: just as Pfeffer, having shewn that malic acid 
has an attraction for fern-antheridia, supposed this substance to 
play its attractive part within the mucus of the archegonia. Again, 
the chemical secretion may be neither attractive nor directive, but 
yet play a useful part in activating the spermatozoa. However 
that may be, Gray has shewn reason to believe that an electromotive 
force is developed in the contact between active spermatozoon and 
inactive ovum; and that it is the electrical change so set up, and 
almost instantaneously propagated, which precludes the entry of 
another spermatozoon]:. Whatever the force may be, it is one 
which acts normally to the surface of the ovum, and after entry the 
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spermatozoon points straight towards the centre of the egg. From 
the fact that other spermatozoa, subsequent to the first, fail to 
effect an entry, we may safely conclude that an immediate con
sequence of the entry of the spermatozoon is an increase in the 
surface-tension of the egg: this being but one of the complex 
reactions exhibited by the surface, or cortex of the cell*. Some
where or other, within the egg, near or far away, lies its own nuclear 
body, the so-called female pro^ucleus, and we find that after a 
while this has fused with the “male pronucleus” or head of the 
spermatozoon, and that the body resulting from their fusion has 
come to occupy the centre of the egg. This must be due (as Whitman 
pointed out many years ago) to a force of attraction acting between 
the two bodies, and another force acting upon one or other or both 
in the direction of the centre of the cell. Did we know the magnitude 
of these several forces, it would be an easy task to calculate the 
precise path which the two pronuclei would follow, leading to con
jugation and to the central position. As we do not know the 
magnitude, but only the direction, of these forces, we can only make 
a general statement: (1) the paths of both moving bodies will lie 
wholly within a plane triangle drawn between the two bodies and 
the centre of the cell; (2) unless the two bodies happen to lie, to 
begin with, precisely on a diameter of the cell, their paths until they 
meet one another will be curved paths, the convexity of the curve 
being towards the straight line joining the two bodies; (3) the two 
bodies will meet a little before they reach the centre; and, having 
met and fused, will travel on to reach the centre in a straight line. 
The actual study and observation of the path followed is not very 
easy, owing to the fact that what we usually see is not the path 
itself, but only a projection of the path upon the plane of the 
microscope; but the curved path is particularly well seen in the frog’s 
egg, where the path of the spermatozoon is marked by a little streak 
of brown pigment, and the fact of the meeting of the pronuclei before 
reaching the centre has been repeatedly seen by many observers f.

* See Mrs Andrews’ beautiful observations on “Some spinning activities of 
protoplasm in starfish and echinoid eggs,” Journ. Morphol. xn, pp. 307—389, 1897.

f W. Pfeffer, Locomotorische Richtungsbewegungen durch chemische Reize, 
Enters. a. d. Botan. Inst. Tubingen, i, 1884; Physiology of Plants, m, p. 345, Oxford, 
1906; W. J. Dakin and M. G. C. Fordham. Journ. Exp. Biol. i. pp. 183-200, 1924. 
Cf. J. Loeb, Dynamics of Living Matter, 1906, p. 153.
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The problem recalls the famous problem of three bodies, which has 
so occupied the astronomers; and it is obvious that the foregoing 
brief description is very far from including all possible cases. 
Many of these are particularly described in the works of Fol, Roux, 
Whitman and others*.

* H. Fol, Recherches sur la ficondation, 1879; W. Roux, Beitrage zur Ent- 
wickelungsmechanik des Embryos, Arch.f. Mikr. Anai, xix, 1887; C. 0. Whitman, 
Ookinesis, Journ. Morph, i, 1887; E. Giglio-Tos, Entwicklungsmechanische 
Studien, I, Arch.f. Entw. Meeh. Li, p. 94, 1922. See also Frank R. Lillie, Problems 
of Fertilisation, Chicago, 1919.

J Wilson, The Cell, p. 77; cf. 3rd ed. (1925), p. 120.
2^

The intracellular phenomena of which we have now spoken have 
assumed great importance in biological literature and discussion 
during the last fifty years; but it is open to us to doubt whether 
they will be found in the end to possess more than a secondary, 
even a remote, biological significance. Most, if not all of them, 
would seem to follow immediately and inevitably from certain 
simple assumptions as to the physical constitution of the cell, and 
from an extremely simple distribution of polarised forces within it. 
We have already seen that how a thing grows, and what it grows 
into, is a dynamic and not a merely material problem; so far as 
the material substance is concerned, it is so only by reason of the 
chemical, electrical or other forces which are associated with it. 
But there is another consideration which would lead us to suspect 
that many features in the structure and configuration of the cell 
are of secondary biological importance; and that is, the great 
variation to which these phenomena are subject in similar or closely 
related organisms, and the apparent impossibility of correlating 
them with the peculiarities of the organism as a whole. In a 
broad and general way the phenomena are always the same. Certain 
structures swell and contract, twine and untwine, split and unite, 
advance and retire; certain chemical changes also repeat themselves. 
But Nature rings the changes on all the details. “ Comparative 
study has shewn that almost every detail of the processes (of 
mitosis) described above is subject to variation in different forms 
of cells f.” A multitude of cells divide to the accompaniment of 
caryokinetic phenomena; but others do so without any visible 
caryokinesis at all. Sometimes the polarised field of force is within, 

t c F
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sometimes it is adjacent to, and at other times it lies remote from, 
the nucleus. The distribution of potential is very often symmetrical 
and bipolar, as in the case described; but a less symmetrical 
distribution often occurs, with the result that we have, for a time 
at least, numerous centres of force, instead of the two main correlated 
poles: this is the simple explanation of the numerous stellate figures,

Haploid number of chromosomea
Fig. 103. Summation diagram shewing the % number of instances (among 2.415 

phanerogams and 1,070 metazoa), in which the chromosomes do not exceed 
a given number. Data from M. .1. D. White.

or “Strahlungen,” which have been described in certain eggs, suc h as 
those of Chaetopterus. The number of chromosomes may be constant 
within a group, as in the tailed Amphibia, with 12; or very variable, 
as in sedges, and in grasshoppers*;  in one and the same species 
of' worm (Ascaris megalocephala), one group or two groups of 
chromosomes may be present. And remarkably constant, in 
general, as the number in any one species undoubtedly is, yet we 
must not forget that, in plants and animals alike, the whole range 
of observed numbers is but a small one (Fig. 103); for (as regards

* There are varieties of Artemia salina which hardly differ in outward characters, 
but differ widely in the number of their chromosomes.
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the germ-nuclei) few have less than six chromosomes, and few have 
more than twenty*. In closely related animals, such as various 
species of Copepods, and even in the same species of worm or insect, 
the form of the chromosomes and their arrangement in relation to 
the nuclear spindle have been found to differ in ways alluded to 
above; while only here and there, as among the chrysanthemums, 
do related species or varieties shew their own characteristic chromo
some numbers. In contrast to the narrow range of the chromo
some numbers, we may reflect on the all but infinite possibilities of 
chemical variability. Miescher shewed that a molecule containing 
40 C-atoms would admit (arithmetically though not necessarily 
chemically) of a million possible isomers; and changes in position 
of the N-atoms of a protein, for instance, might vastly increase 
that prodigious number. In short, we cannot help perceiving 
that many nuclear phenomena are not specifically related to the 
particular organism in which they have been observed, and that 
some are not even specially and indisputably connected with the 
organism as such. They include such manifestations of the physical 
forces, in their various permutations and combinations, as may also 
be witnessed, under appropriate conditions, in non-living things.

When we attempt to separate our purely morphological or “purely
* The commonest numbers of (haploid) chromosomes, both in plants and 

animals, are 8, 12 and 16. The median number is 12 in both, and the lower 
quartile is 8, likewise in both; but the upper quartile is 24 or th< reby in animals, 
and in the neighbourhood of 16 in plants. If we may judge by the long lists given 
by E. B. Wilson (The Cell, 3rd ed. pp. 855 865), by M. Ishikawa in Botan. Mag. 
Tokyo, xxx, 1916, by M. J. D. White in his book on Chromosomes, or by Tischler 
in Tabulae Biologicae (1927), fully 60 per cent, of the observed cases lie between 6 
and 16. As Wilson says (p. 866) ‘ the number of chromosomes is per st a matter 
of secondary importance”; and (p. 868) “We must admit the present inadequacy 
of attempts to reduce the chromosome numbers to any single or consistent 
arithmetical rules.” Clifford Dobell had said the same thing: “Nobody nowadays 
will be prepared to argue that chromosome numbers, as such, have any quantitative 
or qualitative relation to the characters exhibited by their owners. Complexity 
of bodily structure is certainly not correlated in any way with multiplicity of 
chromosomes”; La Cellule, xxxv, p. 188. 1924. On the other hand, Tischler stoutly 
maintains that chromosome-numbers give useful evidence of phylogenetic affinity 
(Biol. Centralbl. xlvhi, pp. 321-345, 1928); and there are a few well-known cases, 
such as the chrysanthemums, where, undoubtedly, the numbers are constant and 
specific. Again in certain cases, the number of the chromosomes may differ in 
different races (diploid and tetrapioid) of the same plant; and the difference is 
accompanied by differences in cell-size, in rate of growth, and even in the shape 
of the fruit (cf. Sinnott and Blakeslee, Nat. Acad, of Sci. 1938, p. 476).

22-2
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embryological” studies from physiological and physical investiga
tions, we tend ipso facto to regard each particular structure and 
configuration as an attribute, or a particular “character,” of this or 
that particular organism. From this assumption we are easily led to 
the framing of theories as.to the ancestral history, the classificatory 
position, the natural affinities of the several organisms: in fact, to 
apply our embryological knowledge to the study of phylogeny. 
When we find, as we are not long of finding, that our phylogenetic 
hypotheses become complex and unwieldy, we are nevertheless 
reluctant to admit that the whole method, with its fundamental 
postulates, is at fault; and yet nothing short of this would seem 
to be the case, in regard to the earlier phases at least of embryonic 
development. All the evidence at hand goes, as it seems to me, to 
shew that embryological data, prior to and even long after the 
epoch of segmentation, are essentially a subject for physiological and 
physical investigation and have but the slightest link, if any, with 
the problems of zoological classification. Comparative embryology 
has its own facts to classify, and its own methods and principles of 
classification. We may classify eggs according to the presence or 
absence, the paucity or abundance, of their associated food-yolk, 
the chromosomes according to their form and their number, the 
segmentation according to its various “types”—radial, bilateral, 
spiral, and so forth. But we have little right to expect, and in 
point of fact we shall very seldom and (as it were) only accidentally 
find, that these embryological categories coincide with the lines of 
“natural” or “phylogenetic” classification which have been arrived 
at by the systematic zoologist.

The efforts to explain “heredity” by help of “genes” and chromo
somes, which have grown up in the hands of Morgan and others since 
this book was first written, stand by themselves in a category which 
is all their own and constitutes a science which is justified of 
itself. To weigh or criticise these explanations would he outside 
my purpose, even were I fitted to attempt the task. When these 
great discoveries began to be made, Bateson crossed the ocean 
to see and hear for himself what Morgan and his pupils had to 
shew and to tell. He came home convinced, and humbly marvelling. 
And I leave this great subject on one side not because I doubt for a 
moment the facts nor dispute the hypotheses nor decry the im
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portance of one or other; but because we are so much in the dark 
as to the mysterious field of force in which the chromosomes lie, 
far from the visible horizon of physical science, that the matter lies 
(for the present) beyond the range of problems which this book 
professes to discuss, and the trend of reasoning which it endeavours 
to maintain.

The cell*, which Goodsir spoke of as a centre of force, is in reality 
a sphere of action of certain more or less localised forces; and of 
these, surface-tension is the particular force which is especially 
responsible for giving to the cell its outline and its morphological 
individuality. The partially segmented differs from the totally 
segmented egg, the unicellular Infusorian from the minute multi-

* The “ cell-theory ” began early and grew slowly. In a curious passage which 
Mr Clifford Dobell has shewn me (Nov. Org. n, 7, ad fin.), Bacon speaks of “cells” 
in the human body: of a “collocatio spiritus per corpoream molem, eiusque pori, 
meatus, venae et cellulae, et rudimenta sive tentamenta corporis organici.” It is 
“surely one of the most strangely prophetic utterances which even Bacon ever 
made.” Apart from this the story begins in the seventeenth century, with Robert 
Hooke’s well-known figure of the “cells” in a piece of cork (1665), with Grew’s 
“bladders” or “bubbles” in the parenchyma of young beans, and Malpighi’s 
“utriculi” or “sacculi” in the parenchyma or “utriculorum substantia” of 
various plants. Christian Fr. v. Wolff conceived, about the same time, a hypo
thetical “cell-theory,” on the analogy of Leibniz’s Monads; but the first clear 
idea of a cellular parenchyma, or contextus cellularis, came from C. Gottlieb 
Ludwig (1742), and from K. Fr. Wolff, who spoke freely of cells or cellulae. 
Fontana, author of a curious Traite sur le venin de la vipere (1781), described 
various histological elements, caught a glimpse of the nucleus, and experi
mented with reagents, using syrup of violets for a stain. Early in the 
eighteenth century the vessels of the plant played an important role, under Kurt 
Sprengel and Treviranus; but it was not till 1831 that Hugo v. Mohl recognised 
that they also arose from “cells.” About this time Robert Brown discovered, 
or re-discovered, the nucleus (1833), which Schleiden called the cytoblast, or “cell
producer.” It was Schleiden’s idea, and a far-seeing one, that the cell lived a double 
life, a life of its own and the life of the plant to which it belonged: “jede Zelle 
fiihrt nun ein zweifaches Leben: ein selbststandiges, nur ihrer eigenen Entwicklung 
angehorigen, und ein anderes mittelbares, insofern sie integrierender Theil einer 
Pflanze geworden ist” (Phytogenesis, 1838, p. 1). The cell-theory, so long a-building, 
may be said to have been launched, and christened, with Schwann’s Mikroskopische 
Untersuchungen of 1839. Within the next five years Martin Barry shewed how 
cell-division starts with the nucleus, Henle described the budding of certain cells, 
and Goodsir declared that all cells originate in pre-existing cells, a doctrine at once 
accepted by Remak, and madf famous in pathology by Virchow. (Cf. (int. al.) 
J. G. McKendrick, On the modern cell-theory, etc., Proc. Phil. Soc. Glasgow, xix, 
pp. 1-55, 1887; J. Stephenson, Robert Brown...and the cell-theory, Proc. Linn. 
Soc. 1931-2, pp. 45-54; M. Mobius, Hundert Jahre Zellenlehre, Jen. Ztschr. lxxi, 
pp. 313-326, 1938.)
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cellular Turbellarian, in the intensity and the range of those surface
tensions which in the one case succeed and in the other fail to form 
a visible separation between the cells. Adam Sedgwick used to 
call attention to the fact that very often, even in eggs that appear 
to be totally segmented, it is yet impossible to discover an actual 
separation or cleavage, through and through, between the cells which 
on the surface of the egg are so clearly delimited; so far and no 
farther have the physical forces effectuated a visible “cleavage.” 
The vacuolation of the protoplasm in Actinophrys or Actmosphaerium 
is due to localised surface-tensions, quite irrespective of the multi- 
nuclear nature of the latter organism. In short, the boundary walls 
due to surface-tension may be present or may be absent, with or 
without the delimination of the other specific fields of force which 
are usually correlated with these boundaries and with the inde
pendent individuality of the cells. What we may safely admit, 
however, is that one effect of these circumscribed fields of force is 
usually such a separation or segregation of the protoplasmic 
constituents, the more fluid from the less fluid and so forth, as to 
give a field where surface-tension may do its work and bring a 
visible boundary into being. When the formation of a “surface” 
is once effected, its physical condition, or phase, will be bound to 
differ notably from that of the interior of the cell, and under 
appropriate chemical conditions the formation of an actual cell-wall, 
cellulose or other, is easily intelligible. To this subject we shall 
return again, in another chapter.

From the moment that we enter on a dynamical conception of 
the cell, we perceive that the old debates were vain as to what 
visible portions of the cell were active or passive, living or non
living. For the manifestations of force can only be due to the 
interaction of the various parts, to the transference of energy from 
one to another. Certain properties may be manifested, certain 
functions may be carried on, by the protoplasm apart from the 
nucleus; but the interaction of the two is necessary, that other 
and more important properties or functions may be manifested. 
We know, for instance, that portions of an Infusorian are incapable 
of regenerating lost parts in the absence of a nucleus, while nucleated 
pieces soon regain the specific form of the organism: and we are 
told that reproduction by fission cannot be initiated, though 
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apparently all its later steps can be carried on, independently of 
nuclear action. Nor, as Verworn pointed out, can the nucleus 
possibly be regarded as the “sole vehicle of inheritance,” since only 
in the conjunction of cell and nucleus do we find the essentials of 
cell-life. “Kern und Protoplasma sind nur vereint lebensfahig,” as 
Nussbaum said. Indeed we may, with E. B. Wilson, go further, 
and say that “the terms 'nucleus’ and ‘cell-body’ should probably 
be regarded as only topographical expressions denoting two 
differentiated areas in a common structural basis.”

Endless discussion has taken place regarding the centrosome, 
some holding that it is a specific and essential structure, a permanent 
corpuscle derived from a similar pre-existing corpuscle, a “fertilising 
element” in the spermatozoon, a special “organ of cell-division,” 
a material “dynamic centre” of the cell (as Van Beneden and 
Boveri call it); while on the other hand, it is pointed out that 
many cells live and multiply without any visible centrosomes, that 
a centrosome may disappear and be created anew, and even that 
under artificial conditions abnormal chemical stimuli may lead to 
the formation of new centrosomes. We may safely take it that the 
centrosome, or the “attraction sphere,” is essentially a “centre of 
force,” and that this dynamic centre may or may not be constituted 
by (but will be very apt to produce) a concrete and visible con
centration of matter.

It is far from correct to say, as is often done, that the cell-wall, 
or cell-membrane, belongs “to the passive products of protoplasm 
rather than to the living cell itself”; or to say that in the animal 
cell, the cell-wall, because it is ‘ slightly developed,” is relatively 
unimportant compared with the important role which it assumes 
in plants. On the contrary, it is quite certain that, whether visibly 
differentiated into a semi-permeable membrane or merely con
stituted by a liquid film, the surface of the cell is the seat of 
important forces, capillary and electrical, which play an essential 
part in the dynamics of the cell. Even in the thickened, largely 
solidified cellulose wall of the plant-cell, apart from the mechanical 
resistances which it affords, the osmotic forces developed in con
nection with it are of essential importance.

But if the cell acts, after this fashion, as a whole, each part 
interacting of necessity with the rest, the same is certainly true of 
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the entire multicellular organism: as Schwann said of old, in very 
precise and adequate words, “the whole organism subsists only by 
means of the reciprocal action of the single elementary parts*.” As 
Wilson says again, “the physiological autonomy of the individual 
cell falls into the background... and the apparently composite 
character which the multicellular organism may exhibit is owing to 
a secondary distribution of its energies among local centres of 
actionf.” It is here that the homology breaks down which is so 
often drawn, and overdrawn, between the unicellular organism and 
the individual cell of the metazoonj.

Whitman, Adam Sedgwick§, and others have lost no opportunity 
of warning us against a too literal acceptation of the cell-theory, 
against the view that the multicellular organism is a colony (or, as 
Haeckel called it, in the case of the plant, a “republic”) of inde
pendent units of life||. As Goethe said long ago, “Das lebendige 
ist zwar in Elemente zerlegt, aber man kann es aus diesen nicht 
wieder zusammenstellen und beleben”; the dictum of the Cellular - 
pathologie being just the opposite, “Jedes Thier erscheint als eine 
Summe vitaler Einheiten, von denen jede den vollen Charakter des 
Lebens an sich tragt.”

Hofmeister and Sachs have taught us that in the plant the growth
* Theory of Cells, p. 191.
f The Cell in Development, etc., p. 59; cf. 3rd ed. (1925), p. 102.
J E.g. Briicke, Elementarorganismen, p. 387: “Wir miissen in der Zelle einen 

kleinen Thierleib sehen, und diirfen die Analogien, welche zwischen ihr und den 
kleinsten Thierformen existiren, niemals aus den Augen lassen.”

§ C. O. Whitman, The inadequacy of the cell-theory, Journ. Morphol. vm, 
pp. 639-658, 1893; A. Sedgwick, On the inadequacy of the cellular theory of 
development, Q.J.M.S. xxxvn, pp. 87-101. 1895; xxxvin, pp. 331-337, 1896. 
Cf. G. C. Bourne, ibid, xxxvin, pp. 137-174, 1896; Clifford Dobell, The principles 
of Protistology, Arch. f. Protistenk: xxm, p. 270, 1911.

|| Cf. O. Hertwig. Die Zelle und die Gewebe, 1893, p. 1: “Die Zellen, in welche 
der Anatom die pflanzlichen und thierischen Organismen zerlegt, sind die Trager 
der Lebensfunktionen; sie sind, wie Virchow sich ausgedriickt hat, die ‘Lebensein- 
heiten.’ Von diesem Gesichtspunkt aus betrachtet, erscheint der Gesammtlebens- 
prozess eines zusammengesetzten Organismus nichts Anderes zu sein als das hochst 
verwickelte Resultat der einzelnen Lebensprozesse seiner zahlreichen, verschieden 
functionirenden Zellen.” But in 1920 Doncaster (Cytology, p. 1) declared that “the 
old idea of discrete and independent cells is almost abandoned,” and that the 
word cell was coming to be used “rather as a convenient descriptive term than 
as denoting a fundamental concept of biology”; and James Gray (Experimental 
Cytology, p. 2) said, in 1931. that “we must be careful to avoid any tacit assumption 
that the cell is a natural, or even legitimate, unit of life and function.” 
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of the mass, the growth of the organ, is the primary fact, that 
“cell formation is a phenomenon very general in organic life, but 
still only of secondary significance.” “Comparative embryology,” 
says Whitman, “reminds us at every turn that the organism 
dominates cell-formation, using for the same purpose one, several, 
or many cells, massing its material and directing its movements 
and shaping its organs, as if cells did not exist*. ” So Rauber 
declared that, in the whole world of organisms, “das Ganze liefert 
die Theile, nicht die Theile das Ganze: letzteres setzt die Theile 
zusammen, nicht diese jenesf.” And on the botanical side De Bary 
has summed up the matter in an aphorism, “Die Pflanze bildet 
Zellen, nicht die Zelle bildet Pflanzen.”

* Journ. Morph, vni, p. 653, 1893.
f Neue Grundlegungen zur Kenntniss der Zelle, Morph. Jahrb. vni, pp. 272, 

313, 333, 1883.
t'Cf. e.g. Ch. van Bainbeke, A propos de la delimitation cellulaire, Bull. Soc. 

beige de Microsc. xxm, pp. 72-87, 1897.
§ Journ. Morph, n, p. 49, 1889.

Discussed almost wholly from the concrete, or morphological 
point of view, the question has for the most part been made to turn 
on whether actual protoplasmic continuity can be demonstrated 
between one cell and another, whether the organism be an actual 
reticulum, or syncytium But from the dynamical point of view 
the question is much simpler. We then deal not with material 
continuity, not with little bridges of connecting protoplasm, but 
with a continuity of forces, a comprehensive field of force, which 
runs through and through the entire organism and is by no means 
restricted in its passage to a protoplasmic continuum. And such 
a continuous field of force, somehow shaping the whole organism, 
independently of the number, magnitude and form of the individual 
cells, which enter like a froth into its fabric, seems to me certainly 
and obviously to exist. As Whitman says, “the fact that physio
logical unity is not broken by cell-boundaries is confirmed in so 
many ways that it must be accepted as one of the fundamental 
truths of biology §.”



CHAPTER V

THE FORMS OF CELLS

Protoplasm, as we have already said, is a fluid* or a semi-fluid 
substance, and we need not try to describe the particular properties 
of the colloid or jelly-like substances to which it is allied, or rather 
the characteristics of the “colloidal state” in which it and they 
exist; we should find it no easy matter f. Nor need we appeal to 
precise theoretical definitions of fluidity, lest we come into a 
debatable land. It is in the most general sense that protoplasm 
is “fluid.” As Graham said (of colloid matter in general), “its 
softness partakes of fluidity, and enables the colloid to become a 
vehicle for liquid diffusion, like water itself J.” When we can deal 
with protoplasm in sufficient quantity we see it flow§\ particles 
move freely through it, air-bubbles and liquid droplets shew round 
or spherical within it; and we shall have much to say about other 
phenomena manifested by its own surface, which are those especially 
characteristic of liquids. It may encompass and contain solid 
bodies, and it may “secrete” solid substances within or around 
itself; and it often happens in the complex living organism that 
these solid stibstances, such as shell or nail or horn or feather, 
remain when the protoplasm which formed them is dead and gone. 
But the protoplasm itself is fluid or semi-fluid, and permits of free 
(though not necessarily rapid) diffusion and easy convection of 
particles within itself, which simple fact is of elementary importance

* Cf. W. Kiihne, Ueber das Protoplasma, 1864.
f Sand, or a heap of millet-seed, may in a sense be deemed a “fluid,” and such 

the learned Father Boscovich held them to be (Theoria, p. 427), but at best they 
are fluids without a surface. Galileo had drawn the same comparison; but went on 
to contrast the continuity, or infinite subdivision, of a fluid with the finite, dis
continuous subdivision of a fine powder. Cf. Boyer, Concepts of the Calculus, 1939, 
p. 291.

J Phil. Trams, cli, p. 183, 1861; Researches, ed. Angus Smith, 1877, p. 553. 
We no longer speak, however, of “colloids” in a specific sense, as Graham did; 
for any substance can be brought into the “colloidal state” by appropriate means 
or in an appropriate medium.

§ The copious protoplasm of a Myxomycete has been passed unharmed through 
filter-paper with a pore-size of about 1 p, or 0-001 mm. 
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in connection with form, throwing light on what seem to be common 
characteristics and peculiarities of the forms of living things.

Much has been done, and more said, about the nature of protoplasm since 
this book was written. Calling cytoplasm the cell-protoplasm after deduction 
of chloroplasts and other gross inclusions, we find it to contain fats, proteins, 
lecithin and some other substances combined with much water (up to 
97 per cent.) to form a sort of watery gel. The microscopic structures 
attributed to it, alveolar, granular or fibrillar, are inconstant or invalid; 
but it does appear to possess an invisible or submicroscopic structure, 
distinguishing it from an ordinary colloid gel, and forming a quasi-solid 
framework or reticulum. This framework is based on proteid macromolecules, 
in the form of polypeptide chains, of great length and carrying in side-chains 
other organic constituents of the cytoplasm*. The polymerised units 
represent the micellae f which the genius of Nageli predicted or postulated 
more than sixty years ago; and we may speak of a “micellar framework” « 
as representing in our cytoplasm the dispersed phase of an ordinary colloid. 
In short, as the cytoplasm is neither true fluid not true solid, neither is it true 
colloid in the ordinary sense. Its micellar structure gives it a certain rigidity 
or tendency to retain its shape, a certa n plasticity and tensile strength, a 
certain ductility or capacity to be drawn out in threads; but yet leaves it 
with a permeability (or semi-permeability), a capacity to swell by imbibition, 
above all an ability to stream and flow, which justify our calling it “fluid 
or semi-fluid,” and account for its exhibition of surface-tension and other 
capillary phenomena.

The older naturalists, in discussing the differences between organic and 
inorganic bodies, laid stress upon the circumstance that the latter grow by 
“agglutination,” and the former by what they termed “intussusception.” 
The contrast is true; but it applies rather to solid or crystalline bodies as 
compared with colloids of all kinds, whether living or dead. But it so happens 
that the great majority of colloids are of organic origin; and out of them our 
bodies, and our food, and the very clothes we wear, are almost wholly made.

A crystal “grows” by deposition of new molecules, one by one 
and layer by layer, each one superimposed on the solid substratum

* See (int. al.) A. Frey-Wyssling, Submikroskopische Morphologic des Protoplasmas, 
Berlin, 1938; cf. Nature, June 10, 1939, p. 965; also A. R. Moore, in Scientia, 
Lxn, July 1, 1937. On the nature of viscid fluid threads, cf. Larmor, Nature, j 
July 11. 1936, p. 74.

f Micella, or micula, diminutive of mica, a crumb, grain or morsel—mica panis, 
salis, turis, etc. Nageli used the word to mean an aggregation of molecules, as 
the molecule is an aggregation of atoms; the one, however, is a physical and the 
other a chemical concept. Roughly speaking, we may think of micellae as varying 
from about 1 to 200pp; they play a corresponding part in the “disperse phase” 
of a colloid to that played by the molecules in an ordinary solution. The macro
molecules of modern chemistry are sometimes distinguished from these as still 
larger aggregates. See Carl Nageli, Das Mikroskop (2nd ed.), 1877; Theorie der 
Gahrung, 1879.
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already formed Each particle would seem to be influenced only 
by the particles in its immediate neighbourhood, and to be in 
a state of freedom and independence from the influence, either 
direct or indirect, of its remoter neighbours. So Lavoisier was 
the first to say. And as Kelvin and others later on explained 
the formation and the resulting forms of crystals, so we believe 
that each added particle takes up its position in relation to its 
immediate neighbours already arranged, in the holes and corners 
that their arrangement leaves, and in closest contact with the 
greatest number*;  hence we may repeat or imitate this process of 
arrangement, with great or apparently even with precise accuracy 
(in the case of the simpler crystalline systems), by piling up spherical 
pills or grains of shot. In so doing, we must have regard to the 
fact that each particle must drop into the place where it can go 
most easily, or where no easier place offers. In more technical 
language, each particle is free to take up, and does take up, its 
position of least potential energy relative to those already there: 
in other words, for each particle motion is induced until the energy 
of the system is so distributed that no tendency or resultant force 
remains to move it more. This has been shewn to lead to the 
production of plane surfaces! (in all cases where, by the limitation 
of material, surfaces must occur); where we have planes, there 
straight edges and solid angles must obviously occur also, and, if 
equilibrium is to follow, must occur symmetrically. Our piling up 
of shot to make mimic crystals gives us visible demonstration that 
the result is actually to obtain, as in the natural crystal, plane 
surfaces and sharp angles symmetrically disposed.

* Cf. Kelvin, On the molecular tactics of a crystal. The Boyle Lecture, Oxford, 
1893; Baltimore Lectures, 1904, pp. 612-642. Here Kelvin was mainly following 
Bravais’s (and Frankenheim’s) theory of “space-lattices,” but he had been largely 
anticipated by the crystallographers. For an account of the development of the 
subject in modern crystallography, by Sohncke, von Fedorow, Schonfliess, Barlow 
and others, see (e.g.) Tutton’s Crystallography, and the many papers by W. E. Bragg 
and others.

f In a homogeneous crystalline arrangement, symmetry compels a locus of one 
property to be a plane or set of planes; the locus in this case being that of least 
surface potential energy. Crystals “seem to be. as it were, the Elemental Figures, 
or the A B C of Nature’s working, the reason of whose curious Geometrical Forms 
(if I may so call them) is very easily explicable” (Robert Hooke, Posthumous Works, 
1745, p. 280).
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But the living cell grows in a totally different way, very much 

as a piece of glue swells up in water, by “imbibition,” or by inter
penetration into and throughout its entire substance. The semi
fluid colloid mass takes up water, partly to combine chemically 
with its individual molecules*; partly by physical diffusion into 
the interstices between molecules or micellae, and partly, as it would 
seem, in other ways; so that the entire phenomenon is a complex 
and even an obscure onef. But, so far as we are concerned, the 
net result is very simple. . For the equilibrium, or tendency to 
equilibrium, of fluid pressure in all parts of its interior while the 
process of imbibition is going on, the constant rearrangement of its 
fluid mass, the contrast in short with the crystalline method of 
growth where each particle comes to rest to move (relatively to the 
whole) no more, lead the mass of jelly to swell up very much as a 
bladder into which we blow air, and so, by a graded and harmonious 
distribution of forces, to assume everywhere a rounded and more 
or less bubble-like external form J. So, when the same school of 
older naturalists called attention to a new distinction or contrast of 
form between organic and inorganic objects, in that the contours 
of the former tended to roundness and curvature, and those of fhe 
latter to be bounded by straight lines, planes and sharp angles, we 
see that this contrast was not a new and different one, but only 
another aspect of their former statement, and an immediate con
sequence of the difference between the processes of agglutination 
and intussusception §.

So far then as growth goes on undisturbed by pressure or other 
external force, the fluidity of the protoplasm, its mobility internal

* This is what Graham called the water of gelatination, on the analogy of water 
of crystallisation; Chem. and Phys. Researches, p. 597.

f On this important phenomenon, see J. R. Katz. Gcsetze der Quellung, Dresden, 
1916. Swelling is due to “concentrated solution,” and is accompanied by increase 
of volume and liberation of energy, as when the Egyptians split granite by the 
swelling of wood.
| Here, in a non-crystalline or random arrangement of particles, symmetry 

ensures that the potential energy shall be the same per unit area of all surfaces; 
and it follows’ from geometrical considerations that the total surface energy will 
be least if the surface be spherical.

§ Intussusception has its shades of meaning; it is excluded from the idea of a 
crystalline body, but not limited to the ordinary conception of a colloid one. When 
new micellar strands become interwoven in the micro-structure of a cellulose cell
wall, that is a special kind of “intussusception.” 
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and external*,  and the way in which particles move freely hither 
and thither within, all manifestly tend to the production of swelling, 
rounded surfaces, and to their great predominance over plane sur
faces in the contours of the organism. These rounded contours 
will tend to be preserved for a while, in the case of naked protoplasm 
by its viscosity, and in presence of a cell-wall by its very lack of 
fluidity. In a general way, the presence of curved boundary 
surfaces will be especially obvious in the unicellular organisms, and 
generally in the external form of all organisms, and wherever 
mutual pressure between adjacent cells, or other adjacent parts, 
has not come into play to flatten the rounded surfaces into planes.

* The protoplasm of a sea-urchin’s egg has a viscosity only about four times, 
and that of various plants not more than ten to twenty times, that of water itself. 
See, for a general discussion, L. V. Heilbrunn, Colloid Symposium Monograph, 1928.

f D. Jordan Lloyd and R. H. Marriott, The swelling of structural proteins, 
Proc. R.S. (B), No. 810, pp. 439-445, 1935.

The swelling of any object, organic or inorganic, living or dead, is bound to 
be influenced by any lack of structural symmetry or homogeneity j\ We 
may take it that all elongated structures, such as hairs, fibres of silk or cotton, 
fibrillae of tendon and connective tissue, have by virtue of their elongation 
an invisible as well as a visible polarity. Moreover, the ultimate fibrils are 
apt to be invested by a protein different from the “collagen” within, and 
liable to swell more or to swell less. In ordinary tendons there is a “reticular 
sheath,” which swells less, and is apt to burst under pressure from within; 
it breaks into short lengths, and when the strain is relieved these roll back, 
and form the familiar annuli. Another instance is the tendency to swell of 
the “macro-molecules” of many polymerised organic bodies, proteins among 
them.

But the rounded contours which are assumed and exhibited by 
a piece of hard glue when we throw it into water and see it expand 
as it sucks the water up, are not near so regular nor so beautiful as 
are those which appear when we blow a bubble, or form a drop, or 
even pour water into an elastic bag. For these curving contours 
depend upon the properties of the bag itself, of the film or membrane 
which contains the mobile gas, or which contains or bounds the 
mobile liquid mass. And hereby, in the case of the fluid or semifluid 
mass, we are introduced to the subject of surface-tension', of which 
indeed we have spoken in the preceding chapter, but which we must 
now examine with greater care.
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Among the forces which determine the forms of cells, whether 

they be solitary or arranged in contact with one another, this force 
of surface-tension is certainly of great, and is probably of paramount, 
importance. But while we shall try to separate out the phenomena 
which are directly due to it, we must not forget that, in each 
particular case, the actual conformation which we study may be, 
and usually is, the more or less complex resultant of surface-tension 
acting together with gravity, mechanical pressure, osmosis, or other 
physical forces. The peculiar beauty of a soap-bubble, solitary or 
in collocation, depends on the absence (to all intents and purposes) 
of these alien forces from the field; hence Plateau spoke of the films 
which were the subject of his experiments as “lames fluides sans 
pesanteur” The resulting form is in such a case so pure and simple 
that we come to look on it as wellnigh a mathematical abstraction.

Surface-tension, then, is that force by which we explain the form 
of a drop or of a bubble, of the surfaces external and internal of 
a “froth” or collocation of bubbles, and of many other things of 
like nature and in like circumstances*.  It is a property of liquids 
(in the sense at least with which our subject is concerned), and it 
is manifested at or very near the surface, where the liquid comes 
into contact with another liquid, a solid or a gas. We note here 
that the term surface is to be interpreted in a wide sense; for 
wherever we have solid particles embedded in a fluid, wherever we 
have a non-homogeneous fluid or semi-fluid, or a “ two-phase colloid ” 
such as a particle of protoplasm, wherever we have the presence of 
“impurities” as in a mass of molten metal, there we have always 
to bear in mind the existence of surfaces and of surface-phenomena, 
not only on the exterior of the mass but also throughout its inter
stices, wherever like and unlike meet.

* The idea of a “surface-tension” in liquids was first enunciated by Segner, and 
ascribed by him to forces of attraction whose range of action was so small “ut 
nullo adhuc sensu percipi potuerat” (De figuris superficierum fluidarum, in Comment. 
Soc. Roy. Gottingen, 1751, p. 301). Hooke, in the Micrographia (1665, Obs. vni, 
etc.), had called attention to the globular or spherical form of the little morsels 
of steel struck off by a flint, and had shewn how to make a powder of such spherical 
grains, by heating fine filings to melting point. “This Phaenomenon” he said 
“proceeds from a propriety which belongs to all kinds of fluid Bodies more or less, 
and is caused by the Incongruity of the Ambient and included Fluid, which so 
acts and modulates each other, that they acquire, as neer as is possible, a spherical 
or globular form....”
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A liquid in the mass is devoid of structure; it is homogeneous, and 
without direction or polarity. But the very concept of surface
tension forbids this to be true of the surface-layer of a body of liquid, 
or of the “interphase’' between two liquids, or of any film, bubble, 
drop, or capillary jet or stream. In all these cases, and more empha
tically in the case of a “ monolayer,” even the liquid has a structure 
of its own; and we are reminded once again of how largely the living 
organism, whether high or low, is composed of colloid matter in 
precisely such forms and structural conditions.

Surface-tension is due to molecular force* : to force, that is to say, 
arising from the action of one molecule upon another; and since 
we can only ascribe a small “sphere of action” to each several 
molecule, this force is manifested only within a narrow range. 
Within the interior of the liquid mass we imagine that such molecular 
interactions negative one another; but at and near the free surface, 
within a layer or film approximately equal to the range of the 
molecular force —or to the radius of the aforesaid “sphere of action ” 
—there is a lack of equilibrium and a consequent manifestation of 
force.

* While we explain certain phenomena of the organism by reference to atomic 
or molecular forces, the following words of Du Bois Reymond’s seem worth 
recalling: ‘Naturerkennen ist Zuriickfiihren der Veranderungen in der Kbrperwelt 
auf Bewegung von Atomen, die durch deren von der Zeit unabhangige Centralkrafte 
bewirkt werden, oder Auflbsung der Naturkrafte in Mechanik der Atome. Es ist 
eine psychologische Erfahrungstatsache dass, wo solche Auflbsung gelangt, unser 
Causalbediirfniss vorlaiifig sich befriedigt fiihlt” (Ueber^ die Grenzen des Natur- 
erkennens, Leipzig, 1873).

f There must obviously be a certain kinetic energy in the molecules within 
the drop, to balance the forces which are trying to contract and diminish the 
surface.

The action of the molecular forces has been variously explained. 
But one simple explanation (or mode of statement) is that the 
molecules of the surface-layer are being constantly attracted into 
the interior by such as are just a little more deeply situated; the 
surface shrinks as molecules keep quitting it for the interior, and 
this surface-shrinkage exhibits itself as a surface-tension. The process 
continues till it can go no farther, that is to say until the surface 
itself becomes a “minimal areaf.” This is a sufficient description 
of the phenomenon in cases where a portion of liquid is subject to 
no other than its own molecular forces, and (since the sphere has,
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of all solids, the least surface for a given volume) it accounts for 
the spherical form of the raindrop*,  of the grain of shot, or of the 
living cell in innumerable simple organisms f. It accounts also, as 
we shall presently see. for many much more complicated forms, 
manifested under less simple conditions.

* Raindrops must be spherical, or they would not produce a rainbow; and the 
fact that the upper part of the bow is the brightest and sharpest shews that the 
higher raindrops are more truly spherical, as well as smaller than the lower ones. 
So also the smallest dewdrops are found to be more iridescent than the large, shewing 
that they also are the more truly spherical; cf. T. W. Backhouse, in Monthly 
Meteorol. Mag. March, 1879. Mercury has a high surface-tension, and its globules 
are very nearly round.

f That the offspring of a spherical cell (whether it be raindrop, plant or animal) 
should be also a spherical cell, would seem to need no other explanation than that 
both are of identical substance, and each subject to a similar equilibrium of 
surface-forces; but the biologists have been apt to look for a subtler reason. 
Giglio-Tos, speaking of a sea-urchin’s dividing egg, asks why the daughter-cells 
are spherical like the mother-cell, and finds the reason in “heredity”: “ Wenn also 
die letztere (d. i. die Mutterzelle) eine spharische Form besass, so nehmen auch die 
Tochterzellen dieselbe ein; ware ursprunglich eine kubische Form vorhanden, 
so wurden also auch die Tochterzellen dieselbe auch aneignen. Die Ursache waruin 
die Tochterzellen die spharische Form anzunehmen trachten liegt darin, dass 
diese die Ur- und Grundform alter Zellen ist, sowohl bei Tieren wie bei den Pflanzen" 
(Arch. f. Entw. Meeh. Li, p. 115, 1922).

Let us note in passing that surface-tension is a comparatively 
small force and is easily measurable: for instance that between 
water and air is equivalent to but a few grains per linear inch, or 
a few grammes per metre. But this small tension, when it exists 
in a curved surface of great curvature, such as that of a minute drop, 
gives rise to a very great pressure, directed inwards towards the 
centre of curvature. VV e may easily calculate this pressure, and so 
satisfy ourselves that, when the radius of curvature approaches 
molecular dimensions, the pressure is of the order of thousands of 
atmospheres - a conclusion which is supported by other physical 
considerations.

The contraction of a liquid surface, and the other phenomena of 
surface-tension, involve the doing of work, and the power to do 
work is what we call Energy. The whole energy of the system is 
diffused throughout its molecules, as is obvious in such a simple 
case as we have just considered; but of the whole stock of energy 
only the part residing at or very near the surface normally manifests 
itself in work, and hence we speak (though the term be open to 

T G F 23
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some objection) of a specific surface-energy. Surface-energy, and 
the way it is increased and multiplied by the multiplication of 
surfaces due to the subdivision of the tissues into cells, is of the 
highest interest to the physiologist; and even the morphologist 
cannot pass it by. For the one finds surface-energy present, often 
perhaps paramount, in every cell of the body; and the other may find, 
if he will only look for it, the form of every solitary cell, like that of 
any other drop or bubble, related to if not controlled by capillarity. 
The theory of “capillarity,” or “surface-energy,” has been set forth 
with the utmost possible lucidity by Tait and by Clerk Maxwell, on 
whom the following paragraphs are based: they having based their 
teaching on that of Gauss*,  who rested on Laplace.

* See Gauss’s Principia generalia Theoriae Figurae Fluidorum in statu equilibrii, 
Gottingen, 1830. The historical student will not overlook the claims to priority 
of Thomas Young, in his Essay on the cohesion of fluids, Phil. Trans. 1805; see 
the account given in his Life by Dean Peacock, 1855, pp. 199-210.

Let E be the whole potential energy of a mass M of liquid; let 
e0 be the energy per unit mass of the interior liquid (we may call it 
the internal energy); and let e be the energy per unit mass for a 
layer of the skin, of surface S, of thickness t, and density p (e being 
what we call the surface-energy). It is obvious that the total energy 
consists of the internal plus the surface-energy, and that the former 
is distributed through the whole mass, minus its surface layers. 
That is to say, in mathematical language,

E = (M — . ^tp) e0 + . Htpe.

But this is equivalent to writing:

- Me0 + £ . Up (e — e0);

and £his is as much as to say that the total energy of the system 
may be taken to consist of two portions, one uniform throughout 
the whole mass, and another, which is proportional on the one hand 
to the amount of surface, and on the other hand to the difference 
between e and e0, that is to say to the difference between the unit 
values of the internal and the surface energy.

It was Gauss who first shewed how, from the mutual attractions 
between all the particles, we are led to an expression for what we 
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now call the potential energy*  of the system; and we know, as a 
fundamental theorem of dynamics, as well as of molecular physics, 
that the potential energy of the system tends to a minimum, and 
finds in that minimum its stable equilibrium.

* The word Energy was substituted for the old via viva by Thomas Young early 
in the nineteenth century, and was used by James Thomson, Lord Kelvin’s brother, 
about 1852, to mean, more generally, “ capacity for doing work.” The term potential, 
or latent, in contrast to actual energy, in other words the distinction between “energy 
of activity and energy of configuration,” was proposed by Macquorn Rankine, and 
suggested to him by Aristotle’s use of Swa/us and ivlpyeta; see Rankine’s paper 
On the general law of the transformation of energy, Phil. Soc. Glasgow, Jan. 
5, 1853, cf. ibid. Jan. 23, 1867, and Phil. Mag. (4), xxvn, p. 404, 1864. The phrase 
potential energy was at once adopted, but kinetic was substituted for actual by 
Thomson and Tait.

f The capacity factor, inasmuch as it leads to diminution of surface, is responsible 
for the concrescence of droplets into drops, of microcrystals into larger units, for 
the flocculation of colloids, and for many other similar “changes of state.”

We see in our last equation that the term Me0 is irreducible, save 
by a reduction of the mass itself. But the other term may be 
diminished (1) by a reduction in the area of surface, S, or (2) by 
a tendency towards equality of e and e0, that is to say by a diminu
tion of the specific surface energy, e.

These then are the two methods by which the energy of the 
system will manifest itself in work. The one, which is much the 
more important for our purposes, leads always to a diminution of 
surface, to the so-called “principle of minimal areas”; the other, 
which leads to the lowering (under certain circumstances) of surface 
tension, is the basis of the theory of Adsorption, to which we shall 
have some occasion to refer as the modus operandi in the develop
ment of a cell-wall, and in a variety of other histological phenomena. 
In the technical phraseology of the day, the “capacity factor” is 
involved in the one case, and the “intensity factor” in the otherf.

Inasmuch as we are concerned with the form of the cell, it is the 
former which becomes our main postulate: telling us that the 
energy-equations of the surface of a cell, or of the free surfaces of 
cells in partial contact, or of the partition-surfaces of cells in contact 
with one another, all indicate a minimum of potential energy in the 
system, by which minimal condition the system is brought, ipso 
facto, into equilibrium. And we shall not fail to observe, with 
something more than mere historical interest and curiosity, how

23 2
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deeply and intrinsically there enter into this whole class of problems 
the method of maxima and minima discovered by Fermat, the “ loi 
universelie de repos” of Maupertuis, “dont tous les cas d’equilibre 
dans la statique ordinaire ne sont que des cas particuliers”, and the 
h neae curvae maximi minimive proprietatibus gaudentes of Euler, by 
which principles these old natural philosophers explained correctly 
a multitude of phenomena, and drew the lines whereon the founda
tions of great part of modern physics are well and truly laid. For 
that physical laws deal with minima is very generally true, and is 
highly characteristic of them. The hanging chain so hangs that the 
height of its centre of gravity is a minimum; a ray of light takes 

। the path, however devious, by which the time of its journey is a 
i I minimum; two chemical substances in reaction so behave that their 

thermodynamic potential tends to a minimum, and so on. The 
natural philosophers of the eighteenth century were engrossed in 
minimal problems; and the differential equations which solve them 
nowadays are among the most useful and most characteristic equa
tions in mathematical physics.

“Voici,” said Maupertuis, “dans un assez petit volume a quoi je 
reduis mes-ouvrages mathematiques! ” And when Lagrange, fol
lowing Euler's lead*, conceived the principle of least action, he 
regarded it not as a metaphysical principle but as “un resultat 
simple et general des lois de la mecaniquef.” The principle of 
least action { explains nothing, it tells us nothing of causation, 
yet it illuminates a host of things. Like Maxwell’s equations and 
other such flashes of genius it clarifies our knowledge, adds weight 
to our observations, brings order into our stock-in-trade of facts. 
It embodies and extends that “law of simplicity” which Borelli 
was the first to lay down: “Lex perpetua Naturae est ut agat 
minimo labore, mediis et modis simplicissimis, facillimis, certis et

* Euler, Traits des Isoplrimetres, Lausanne, 1744.
f Lagrange, Mecanique Analytique (2), n, p. 188; ed. in 4to, 1788.
J This profound conception, not less metaphysical in the outset than physical, 

began in the seventeenth century with Fermat, who shewed (in 1629) that a ray 
of light followed the quickest path available, or, as Leibniz put it, via omnium 
facillima; it was over this principle that Voltaire quarrelled with Euler and 
Maupertuis. The mathematician will think also of Hamilton's restatement of the 
principle, and of its extension to the theory of probabilities by Boltzmann and 
Willard Gibbs. Cf. (int. al.) A. Mayer, Geschichte des Prinzips der kleinsten Action, 
1877.
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tutis: evitando, quam maxime fieri potest, incommoditates et 
prolixitates.” The principle of least action grew up, and grew 
quickly, out of cruder, narrower notions of “least time” or “least 
space or distance.” Nowadays it is developing into a principle of 
“least action in space-time,” which shall still govern and predict 
the motions of the universe. The infinite perfection of Nature is 
expressed and reflected in these concepts, and Aristotle’s great 
aphorism that “Nature does nothing in vain” lies at the bottom 
of them all.

In all cases where the principle of maxima and minima comes 
into play, as it conspicuously does in films at rest under surface
tension, the configurations so produced are characterised by obvious 
and remarkable symmetry* . Such symmetry is highly characteristic 
of organic forms, and is rarely absent in living things - save in such 
few cases as Amoeba, where the rest and equilibrium on which 
symmetry depends are likewise lack-ng And if we ask what 
physical equilibrium has to do with formal symmetry and structural 
regularity, the reason is not far to seek, nor can it be better put 
than in these words of Mach’sf: “In every symmetrical system 
every deformation that tends to destroy the symmetry is com
plemented by an equal and opposite deformation that tends to 
restore it. In each deformation, positive and negative work is done. 
One condition, therefore, though not an absolutely sufficient one, 
that a maximum or minimum of work corresponds to the form of 
equilibrium, is thus supplied by symmetry. Regularity is successive 
symmetry; there is no reason, therefore, to be astonished that the 
forms of equilibrium are often symmetrical and regular.”

* On the mathematical side, cf. Jacob Steiner, Einfache Beweise der isoperi 
metrischen Hauptsatze, Abh. k. Akad. BTss. Berlin, xxm, pp. 116-135, 1836 (1838). 
On the biological side, see (int. al.) F. M. Jaeger, Lectures on the Principle of Symmetry, 
and its application to the natural sciences, Amsterdam, 1917; also F. T. Lewis, 
Symmetry.. .in evolution, Amer. Nat. lvii, pp. 5-41. 1923.

f Science of Mechanics, 1902, p. 395; see also Mach’s article Ueber die physika- 
lische Bedeutung der Gesetze der Symmetric, Lotos, xxi, pp. 139-147, 1871.

A crystal is the perfection of symmetry and of regularity; 
symmetry is displayed in its external form, and regularity revealed 
in its internal lattices. Complex and obscure as the attractions, 
rotations, vibrations and what not within the crystal may be, we 
rest assured that the configuration, repeated again and again, of 
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the component atoms is precisely that for which the energy is a 
minimum; and we recognise that this minimal distribution is of 
itself tantamount to symmetry and to stability.

Moreover, the principle of least action is but a setting of a still 
more universal law—that the world and all the parts thereof tend 
ever to pass from less to more probable configurations; in which 
the physicist recognises the principle of Clausius, or second law of 
thermodynamics, and with which the biologist must somehow 
reconcile the whole “theory of evolution.”

As we proceed in our enquiry, and especially when we approach * 
the subject of tissues, or agglomerations of cells, we shall have from 
time to time to call in the help of elementary mathematics. But 
already, with very little mathematical help, we find ourselves in a 
position to deal with some simple examples of organic forms.

* Similarly, Sir David Brewster and others made powerful lenses by simply 
dropping small drops of Canada balsam, castor oil, or other strongly refractive 
liquids, on to a glass plate: On New Philosophical Instruments (Description of a . 
new fluid microscope), Edinburgh, 1813, p. 413. See also Hooke’s Micrographia, 
1665; and Adam’s Essay on the Microscope, 1798, p. 8: “No person has carried 
the use of these globules so far as Father Torre of Naples, etc.” Leeuwenhoek, 
on the other hand, ground his lenses with exquisite skill.

f Beitrage zur Physiologic des Protoplasma, Pfluger's Archiv, n, p. 307, 1869.

When we melt a stick of sealing-wax in the flame, surface-tension 
(which was ineffectively present in the solid but finds play in the 
now fluid mass) rounds off its sharp edges into curves, so striving 
towards a surface of minimal area; and in like manner, by merely 
melting the tip of a thin rod of glass, Hooke made the little spherical 
beads which served him for a microscope*.  When any drop of 
protoplasm, either over all its surface or at some free end, as at the 
extremity of the pseudopodium of an amoeba, is seen likewise to 
“round itself off,” that is not an effect of “vital contractility,” but, 
as Hofmeister shewed so long ago as 1867, a simple consequence Of 
surface-tension; and almost immediately afterwards Engelmann! 
argued on the same lines, that the forces which cause the contraction 
of protoplasm in general may “be just the same as those which tend 
to make every non-spherical drop of fluid become spherical.” We 
are not concerned here with the many theories and speculations 
which would connect the phenomena of surface-tension with con
tractility, muscular movement, or other special physiological func
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tions, but we find ample room to trace the operation of the same 
cause in producing, under conditions of rest and equilibrium, certain 
definite and inevitable forms.

It is of great importance to observe that the living cell is one 
of those ca+es where the phenomena of surface-tension are by no 
means limited to the outer surface; for within the heterogeneous 
emulsion of the cell, between the protoplasm and its nucle;. -ad 
other contents, and in the “alveolar network” of the cytoplasm 
itself (so far as that alveolar structure is actually present in life), 
we have a multitude of interior surfaces; and, especially among 
plants, we may have large internal “interfacial contacts” between 
the protoplasm and its included granules, or its vacuoles filled with 
the “cell-sap.” Here we have a great field for surface-action; and 
so long ago as 1865, Nageli and Schwendener shewed that the 
streaming currents of plant cells might be plausibly explained by 
this phenomenon. Even ten years earlier, Weber had remarked 
upon the resemblance between the protoplasmic streamings and 
the currents to be observed in certain inanimate drops for which 
no cause but capillarity could be assigned*.  What sort of chemical 
changes lead up to, or go hand in hand with, the variations of 
surface-tension in a living cell, is a vastly important question. It 
is hardly one for us to deal with; but this at least is clear, that the 
phenomenon is more complicated than its first investigators, such 
as Biitschli and Quincke, ever took it to be. For the lowered 
surface-tension which leads, say, to the throwing out of a pseudo
podium, is accompanied first by local acidity, then by local 
adsorption of proteins, lastly and consequently by gelation; and 
this last is tantamount to the formation of “ectoplasm”—a step 
in the direction of encystment f.

* Poggendorff's A nnalen, xciv, pp. 447-459, 1855. Cf. Strethill Wright, Phil. 
Mag. Feb. 1860; Journ. Anat, and Physiol, i, p. 337, 1867.

f Cf. C. J. Pantin, Journ. Mar. Biol. Assoc, xm, p. 24, 1923; Journ. Exp. Biol. 
1923 and 1926; S. O. Mast, Journ. Morph, xli, p. 347, 1926; and O. W. Tiegs, 
Surface tension and the theory of protoplasmic movement, Protoplasma, iv, 
pp. 88-139, 1928. See also (int. al.) N. K. Adam, Physics and Chemistry of Surfaces, 
1930; also Discussion on colloid science applied to biology (passim), Trans. Faraday 
Soc. xxvi, pp. 663 seq., 1930.

The elementary case of Amoeba is none the less a complicated one. 
The “amoeboid” form is the very negation of rest or of equilibrium; 
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the creature is always moving, from one protean configuration to 
another; its surface-tension is never constant, but continually 
varies from here to there. Where the surface tension is greater, 
that portion of the surface will contract into spherical or spheroidal 
forms; where it is less, the surface will correspondingly extend. 
While generally speaking the surface-energy has a minimal value, 
it is not necessarily constant. It may be diminished by a rise of 
temperature; it may be altered by contact with adjacent sub
stances*,  by the transport of constituent materials from the interior 
to the surface, or again by actual chemical and fermentative change; 
for within the cell, the surface-energies developed about its hetero
geneous contents will continually vary as these contents are affected 
by chemical metabolism. As the colloid materials are broken down 
and as the particles in suspension are diminished in size the “free 
surface-energy” will be increased, but the osmotic energy will be 
diminished f. Thus arise the various fluctuations of surface-tension, 
and the various phenomena of amoeboid form and motion, which 
Biitschli and others have reproduced or imitated by means of the 
fine emulsions which constitute their “artificial amoebae.”

* Haycraft and Carlier pointed out long ago (Proc. R.S.E. xv, pp. 220-224, 
1888) that the amoeboid movements of a white blood-corpuscle are only manifested 
when the corpuscle is in contact with some solid substance: while floating freely 
in the plasma or serum of the blood, these corpuscles are spherical, that is to say 
they are at rest and in equilibrium. The same fact was recorded anew by 
Ledingham (On phagocytosis from an adsorptive point of view, Journ. Hygiene, 
xii, p. 324, 1912). On the emission of pseudopodia as brought about by changes 
in surface tension, see also (int. al.) J. A. Ryder, Dynamics in Evolution, 1894; 
Jensen, Ueber den Geotropismus niederer Organismen, Pfluger's Archiv, liii, 1893. 
Jensen remarks that in Orbitolites, the pseudopodia-issuing through the pores of 
the shell first float freely, then as they grow longer bend over till they touch the 
ground, whereupon they begin to display amoeboid and streaming motions. 
Verwom indicates (Allg. Physiol. 1895, p. 429), and Davenport says (Exper. 
Morphology, u, p. 376), that “this persistent clinging to the substratum is a 
‘ thigmotropic ’ reaction, and one which belongs clearly to the category of ‘ response ’. ” 
Cf. Putter, Thigmotaxis bei Protisten, Arch. f. Physiol. 1900, Suppl. p. 247; but 
it is not clear to my mind that to account for this simple phenomenon we need 
invoke other factors than gravity and surface-action.

t Cf. Pauli, Allgemeine physikalische Chemie d. Zellen u. Gewebe, in Asher-Spiro’s 
Ergebnisse der Physiologic, 1912; Przibram, Vitalitat, 1913, p. 6.

A multitude of experiments shew how extraordinarily delicate is 
the adjustment of the surface-tension forces, and how sensitive they 
are to the least change of temperature or chemical state. Thus, 
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on a plate which we have warmed at one side a drop of alcohol 
runs towards the warm area, a drop of oil away from it; and a 
drop of water on the glass plate exhibits lively movements when 
we bring into its neighbourhood a heated wire, or a glass rod dipped 
in ether*. The water-colour painter makes good use of the surface
tension effect of the minutest trace of ox-gall. W hen a plasmodium 
of Aethalium creeps towards a damp spot or a warm spot, or 
towards substances which happen to be nutritious, and creeps 
away from solutions of sugar or of salt, we are dealing with pheno
mena too often ascribed to ‘purposeful’ action or adaptation, but 
every one of which can be paralleled by ordinary phenomena of 
s^rfYcc-tmrorf. Thc s'la’v-FuFbb usHf is mv^r ;n equ;iib’ium: 
for the simple reason that its film, like the protoplasm of Amoeba 
or Aethalium, is exceedingly heterogeneous. Its surface-energies 
vary from point to point, and chemical changes and changes of 
temperature increase and magnify the variation. The surface of 
the bubble is in continual movement, as more concentrated portions 
of the soapy fluid make their way outwards from the deeper layers; 
it thins and it thickens, its colours change, currents are set up in 
it and little bubbles glide over it; it continues in this state of 
restless movement as its parts strive one with another in their 
interactions towards unattainable equilibrium]:. On reaching a 
certain tenuity the bubble bursts: as is bound to happen when 
the attenuated film has no longer the properties of matter in mass.

* So Bernstein shewed that a drop of mercury in nitric acid moves towards, or 
is “attracted by,” a crystal of potassium bichromate; Pfinger's Archiv, lxxx, 
p. 628, 1900.

f The surface-tension theory of protoplasmic movement has been denied by 
many. Cf. (e.g.) H. S. Jennings, Contributions to the behaviour of the lower 
organisms, Carnegie Instit. 1904. pp. 130-230; O. P. Dellinger, Locomotion of 
Amoebae, etc., Journ. Exp. Zool. in, pp. 337-357, 1906; also various papers by 
Max Heidenhain, in Merkel u. Bonnet’s Anatomische Hefte; etc.

J These motions of a liquid surface, and other still more striking movements, 
such as those of a piece of camphor floating on water, were at one time asci ibed 
by certain physicists to a peculiar force, sui generis, the force epipolique of 
Dutrochet: until van der Mensbrugghe shewed that differences of surface-tension 
were enough to account for this whole series of phenomena (Sur la tension super- 
ficielle des liquides, consideree au point de vue de certains mouvements observes 
a leur surface, Mem. Cour. Acad, de Belgique, xxxiv, 1869, Phil. Mag. Sept. 1867; 
cf. Plateau, Statique des Liquides, p. 283). An interesting early paper is by Dr 
G. Carradini of Pisa. Dell’ adesione o attrazione di superficie, Mem. di Matem. e 
di Fisica d. Soc. Itai. d. Sci. (Modena), xi. p. 75, xn, p. 89, 1804-5.
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The film becomes a mere bimolecular, or even a monomolecular, 
layer; and at last we may treat it as a simple “surface of discon
tinuity.” So long as the changes due to imperfect equilibrium are 
taking place very slowly, we speak of the bubble as “at rest”; it is 
then, as Willard Gibbs remarks, that the characters of a film are 
most striking and most sharply defined*.

So also, and surely not less than the soap-bubble, is every cell
surface a complex affair. Face and interface have a molecular 
orientation of their own, depending both on the partition-membrane 
and on the phases on either side. It is a variable orientation, 
changing at short intervals of space and time; it coincides with 
inconstant fields of force, electrical and other; it initiates, and 
controls or catalyses, chemical reactions of great variety and 
importance. In short we acknowledge and confess that, in sim
plifying the surface phenomena of the cell, for the time being and 
for our purely morphological ends, we may be losing sight, or 
making abstraction, of some of its most specific physical and 
physiological characteristics.

In the case of the naked protoplasmic cell, as the amoeboid phase 
is emphatically a phase of freedom and activity, of unstable equi
librium, of chemical and physiological change, so on the other hand 
does the spherical form indicate a phase of stability, of inactivity, 
of rest. In the one phase we see unequal surface-tensions manifested 
in the creeping movements of the amoeboid body, in the rounding- 
off of the ends of its pseudopodia, in the flowing out of its substance 
over a particle of “food,” and in the current-motions in the interior 
of its mass; till, in the alternate phase, when internal homogeneity 
and equilibrium have been as far as possible attained and the 
potential energy of the system is at a minimum, the cell assumes a 
rounded or spherical form, passes into a state of “rest,” and (for a 
reason which we shall presently consider) becomes at the same time 
encysted f.

♦ On the equilibrium of heterogeneous substances, Collected Works, i, pp. 55-353; 
Trans. Conn. Acad. 1876-78.

f We still speak of the naked protoplasm of Amoeba-, but short, and far short, 
of “encystment,” there is always a certain tendency towards adsorptive action, 
leading to a surface-layer, or “plasma-membrane,” still semi-fluid but less fluid than 
before, and different from the protoplasm within; it was one of the first and chief 
things revealed by the new technique of “micro-dissection.” Little is known of
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In their amoeboid phase the various Amoebae are just so many 
varying distributions of surface-energy, and varying amounts of 
surface-potential*. An ordinary floating drop is a figure of equi
librium under conditions of which we .shall soon have something to 
say; and if both it and the fluid in which it floats be homogeneous 
it will be a round drop, a “figure of revolution.” But the least 
chemical heterogeneity will cause the surface-tension to vary here 
and there, and the drop to change its form accordingly. The little 
swarm-spores of many algae lose their flagella as they settle down, 
and become mere drops of protoplasm for the time being; they 
“ put out pseudopodia ”—in other words their outline changes; and 
presently this amoeboid outline grows out into characteristic lobes 
or lappets, a sign of more or less symmetrical heterogeneity in the 
cell-substance.

In a budding yeast-cell (Fig. 103 A), we see a definite and restricted 
change of surface-tension. When a “bud” appears, whether with 
or without actual growth by osmosis or otherwise 
of the mass, it does so because at a certain part 
of the cell-surface the tension has diminished, and 
the area of that portion expands accordingly; but 
in turn the surface-tension of the expanded or ex
truded portion makes itself felt, and the bud 
rounds itself off into a more or less spherical form.
The yeast-cell with its bud is a simple example of an important 
principle. Our whole treatment of cell-form in relation to surface
tension depends on the fact (which Errera was the first to give clear 
expression to) that the incipient cell-wall retains with but little 
impairment the properties of a liquid filmf, and that the growing 
cell, in spite of the wall by which it has begun to be surrounded,1

the physical nature of this so-called membrane. It behaves more or less like a fluid 
lipoid envelope, immiscible with its surroundings. It is easily injured and easily 
repaired, and the well-being of the internal protoplasm is said to depend on the 
maintenance of its integrity. Robert Chambers, Physical Properties of Protoplasm, 
1926; The living cell as revealed by microdissection, Harvey Lectures, Ser. xxn, 
1926-27; Journ. Gen. Physiol, vm, p. 369, 1926; etc.

* See (int. al.) Mary J. Hogue, The effect of media of different densities on the 
shape of Amoebae, Journ. Exp. Zool. xxn, pp. 565-572, 1917. Scheel had said 
in 1889 that A. radiosa is only an early stage of A. proteus (Festschr. z. 70. Geburtstag 
C. V. Kupffer).

f Cf. infra, p. 561.

Fig. 103 A.
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behaves very much like a fluid drop. So, to a first approximation, 
even the yeast-cell shews, by its ovoid and non-spherical form, that 
it has acquired its shape under some influence other than the uniform 
and symmetrical surface-tension which makes a soap-bubble into a 
sphere. This oval or any other asymmetrical form, once acquired, 
may be retained by virtue of the solidification and consequent 
rigidity of the membrane-like wall of the cell; and, unless rigidity 
ensue, it is plain that such a conformation a» that of the yeast-cell 
with its attached bud could not be long retained as a figure of even 
partial equilibrium. But as a matter of fact, the cell in this case 
is not in equilibrium at all; it is in process of budding, and is slowly 
altering its shape by rounding off its bud. In like manner the 
developing egg, through all its successive phases of form, is never 
in complete equilibrium: but is constantly responding to slowly 
changing conditions, by phases of partial, transitory, unstable and 
conditional equilibrium.

There are innumerable solitary plant-cells, and unicellular 
organisms in general, which, like the yeast-cell, do not correspond 
to any of the simple forms which may be generated under the 
influence of simple and homogeneous surface-tension; and in many 
cases these forms, which we should expect to be unstable and 
transitory, have become fixed and stable by reason of some com
paratively sudden solidification of the envelope. This is the case, 
for instance, in the more complicated forms of diatoms or of desmids, 
where we are dealing, in a less striking but even more curious way 
than in the budding yeast-cell, not with one simple act of formation, 
but with a complicated result of successive stages of localised growth, 
interrupted by phases of partial consolidation. The original cell 
has acquired a certain form, and then, under altering conditions 
and new distributions of energy, has thickened here or weakened 
there, and has grown out, or tended (as it were) to branch, at par
ticular points. We can often trace in each particular stage of 
growth, or at each particular temporary growing point, the laws of 
surface tension manifesting themselves in what is for the time being 
a fluid surface; nay more, even in the adult and completed structure 
we have little difficulty in tracing and recognising (for instance in 
the outline of such a desmid as Euastrum) the rounded lobes which 
have successively grown or flowed out from the original rounded and 
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flattened cell. What we see in a many chambered foraminifer, such 
as Globigerina or Rotalia, is the same thing, save that the stages are 
more separate and distinct, and the whole is carried out to greater 
completeness and perfection. The little organism as a whole is not 
a figure of equilibrium nor of minimal area; but each new bud or 
separate chamber is such a figure, conditioned by the forces of 
surface-tension, and superposed upon the complex aggregate of 
similar bubbles after these latter have become consolidated one by 
one into a rigid system.

Let us now make some enquiry into the forms which a fluid 
surface can assume under the mere influence of surface-tension. 
In doing so we are limited to conditions under which other forces 
are relatively unimportant, that is to say where the surface energy 
is a considerable fraction of the whole energy of the system; and 
in general this will be the case when we are dealing with portions 
of liquid so small that their dimensions come within or near to what 
we have called the molecular range, or, more generally, in which 
the “specific surface” is large. In other words it is the small or 
minute organisms, or small cellular elements of larger organisms, 
whose forms will be governed by surface-tension; while the forms 
of the larger organisms are due to other and non-molecular forces. 
A large surface of water sets itself level because here gravity is 
predominant; but the surface of water in a narrow tube is curved, 
for the reason that we are here dealing with particles which lie within 
the range of each other’s molecular forces. The like is the case with 
the cell-surfaces and cell-partitions which we are about to study, and 
the effect of gravity will be especially counteracted and concealed 
when the object is immersed in a liquid of nearly its own density.

We have already learned, as a fundamental law of “capillarity,” 
that a liquid film in equ librium assumes a form which gives it a 
minimal area under the conditions to which it is subject. These 
conditions include (1) the form of the boundary, if such exist, and 
(2) the pressure, if any, to which the film is subject: which pressure 
is closely related to the volume of air, or of liquid, that the film 
(if it be a closed one) may have to contain. In the simplest of cases, 
as when we take up a soap-film on a plane wire ring, the film is 
exposed to equal atmospheric pressure on both sides, and it ob-
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viously has its minimal area in the form of a plane. So long as our 
wire ring lies in one plane (however irregular in outline), the film 
stretched across it will still be in a plane; but if we bend the ring 
so that it lies no longer in a plane, then our film will become curved 
into a surface which may be extremely complicated, but is still the 
smallest possible surface which can be drawn continuously across 
the uneven boundary.

The question of pressure involves not only external pressures 
acting on the film, but also that which the film itself is capable of 
exerting. For we have seen that the film is always contracting to 
the utmost; and when the film is curved, this leads to a pressure 
directed inwards—perpendicular, that is to say, to the surface of 
the film. In the case of the soap-bubble, the uniform contraction 
of whose surface has led to its spherical form, this pressure is 
balanced by the pressure of the air within; and if an outlet be 
given for this air, then the bubble contracts with perceptible force 
until it stretches across the mouth of the tube, for instance across 
the mouth of the pipe through which we have blown the bubble. 
A precisely similar pressure, directed inwards, is exercised by the 
surface layer of a drop of water or a globule of mercury, or by the 
surface pellicle on a portion or “drop” of protoplasm. Only we 
must always remember that in the soap-bubble, or the bubble which 
a glass-blower blows, there is a twofold pressure as compared with 
that which the surface-film exercises on the drop of liquid of which 
it is a part; for the bubble consists (unless it be so thin as to consist 
of a mere layer of molecules*) of a liquid layer, with a free surface 
within and another without, and each of these two surfaces exercises 
its own independent and coequal tension and its corresponding 
pressure f.

If we stretch a tape upon a flat table, whatever be the tension 
of the tape it obviously exercises no pressure upon the table below. 
But if we stretch it over a curved surface, a cylinder for instance, 
it does exercise a downward pfessure; and the more curved the 
surface the greater is this pressure, that is to say the greater is this 
share of the entire force of tension which is resolved in the down-

♦ Or, more strictly speaking, unless its thickness be less than twice the range 
of the molecular forces.

f It follows that the tension of a bubble, depending only on the surface-conditions, 
is independent of the thickness of the film.
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ward direction. In mathematical language, the pressure (p) varies 
directly as the tension (T), and inversely as the radius of curvature 
(R): that is to say, p = T/R, per unit of surface.

If instead of a cylinder, whose curvature lies only in one direction, 
we take a case of curvature in two dimensions (as for instance a 
sphere), then the effects of these two curvatures must be added 
together to give the resulting pressure p: which becomes equal to 
T/R + T/R', or i i

P = R + R*'

And if in addition to the pressure p, which is due to surface-tension, 
we have to take into account other pressures, p', p", etc., due to 
gravity or other forces, then we may say that the total pressure

P = y- + p" + 2’(|+A).

We may have to take account of the extraneous pressures in 
some cases, as when we come to speak of the shape of a bird’s egg; 
but in this first part of our subject we are able for the most part 
to neglect them.

Our equation is an equation of equilibrium. The resistance to 
compression—the pressure outwards—of our fluid mass is a constant 
quantity (P); the pressure inwards, T (1/R + 1/R'), is also con
stant; and if the surface (unlike that of the mobile amoeba) be 
homogeneous, so that T is everywhere equal, it follows that 
1/R + 1/R' = C (a constant), throughout the whole surface in question.

Now equilibrium is reached after the surface-contraction has 
done its utmost, that is to say when it has reduced the surface to 
the least possible area. So we arrive at the conclusion, from the 
physical side, that a surface such that 1/R 4- 1/R' = C, in other 
words a surface which has the same mean curvature at all points, 
is equivalent to a surface of minimal area for the volume enclosed f;

* This simple but immensely important formula is due to Laplace (Mecanique 
Celeste, Bk x, suppi. Theorie de l'action capillaire, 1806).

f A surface may be “minimal” in respect of the area occupied, or of the volume 
enclosed: the former being such as the surface which a soap-film forms when it 
fills up a ring, whether plane or no. The geometers are apt to restrict the term 
“minimal surface” to such as these, or, more generally, to all cases where the mean 
curvature is nil; the others, being only minimal with respect to the volume con
tained, they call “surfaces of constant mean curvature.” 
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and to the same conclusion we may also come by ways purely 
mathematical. The plane and the sphere are two obvious examples 
of such surfaces, for in both the radius of curvature is everywhere 
constant.

From the fact that we may extend a soap-film across any ring 
of wire, however fantastically the wire be bent, we see that there 
is no end to the number of surfaces of minimal area which may be 
constructed or imagined*. While some of these are very com
plicated indeed, others, such as a spiral or helicoid screw, are 
relatively simple. But if we limit ourselves to surfaces of revolution 
(that is to say, to surfaces symmetrical about an axis), we find, as 
Plateau was the first to shew, that those which meet the case are 
few in number. They are six in all, namely the plane, the sphere, 
the cylinder, the catenoid, the unduloid, and a curious surface which 
Plateau called the nodoid.

AB C D E
Fig. 104. Roulettes of the conic sections.

These several surfaces are all closely related, and the passage 
from one to another is generally easy. Their mathematical inter
relation is expressed by the fact (first shewn by Delaunay f, in 1841) 
that the plane curves by whose revolution they are generated are 
themselves generated as “roulettes'' of the conic sections.

Let us imagine a straight line, or axis, on which a circle, ellipse or 
other conic section rolls; the focus of the conic section will describe 
a line in some relation to the fixed axis, and this line (or roulette), 
when wre rotate it around the axis, will describe in space one or 
another of the six surfaces of revolution of which we are speaking.

If we imagine an ellipse so to roll on a base-line, either of its foci 
will describe a sinuous or wavy line (Fig. 104, B) at a distance

* To fit a minimal surface to the boundary of any given closed curve in space is 
a problem formulated by Lagrange, and commonly known as the “problem of 
Plateau,” who solved it with his soap-films.

f bur la surface de revolution dont la courbure moyenne est constante, Journ. 
de M. Liouville, VI, p. 309, 1841. Cf. (int. al.) J. Clerk Maxwell. On the theory of 
rolling curves, Trans. R.S.E. xvi, pp. 519-540, 1849; J. K. \\ ittemore, Minimal 
surfaces of rotation, Ann. Math. (2), xix, 1917, Amer. Journ. Math. XL, p. 69, 
1918; Gino Loria, Courbes planes speciales, theorie et histoire. Milan, 574 pp., 1930. 
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alternately maximal and minimal from the axis; this wavy line, 
by rotation about the axis, becomes the meridional line of the 
surface which we call the unduloid, and the more unequal the two 
axes are of our ellipse, the more pronounced will be the undulating 
sinuosity of the roulette. If the two axes be equal, then our ellipse 
becomes a circle; the path described by its rolling centre is a straight 
line parallel to the axis (^4), and the solid of revolution generated 
therefrom will be a cylinder', in other words, the cylinder is a 
“limiting case” of the unduloid. If one axis of our ellipse vanish, 
while the other remains of finite length, then the elhpse is reduced 
to a straight line with its foci at the two ends, and its roulette will 
appear as a succession of semicircles touching one another upon the 
axis (C); the solid of revolution will be a series of equal spheres. 
If as before one axis of the ellipse vanish, but the other be infinitely 
long, then the roulette described by the focus of this ellipse will be 
a circular arc at an infinite distance; i.e. it will be a straight line 
normal to the axis, and the surface of revolution traced by this 
straight fine turning about the axis will be a plane. If we imagine 
one focus of our elhpse to remain at a given distance from the axis, 
but the other to become infinitely remote, that is tantamount to 
saying that the ellipse becomes transformed into a parabola; and 
by the rolling of this curve along the axis there is described a 
catenary (D), whose solid of revolution is the catenoid.

Lastly, but this is more difficult to imagine, we have the case of 
the hyperbola. We cannot well imagine the hyperbola rolling upon 
a fixed straight line so that its focus shall describe a continuous 
curve. But let us suppose that the fixed line is, to begin with, 
asymptotic to one branch of the hyperbola, and that the rolling 
proceeds until the fine is now asymptotic to the other branch, that 
is to say touching it at an infinite distance; there will then be 
mathematical continuity if we recommence rolling with this second 
branch, and so in turn with the other, when each has run its course. 
We shall see, on reflection, that the line traced by one and the 
same focus will be an “elastic curve,” describing a succession of 
kinks or knots (E), and the solid of revolution described by this 
meridional line about the axis is the so-called nodoid.

The physical transition of one of these surfaces into another can
T G F 24 
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be experimentally illustrated by means of soap-bubbles, or better 
still, after another method of Plateau’s, by means of a large globule 
of oil, supported when necessary by wire rings, and lying in a fluid 
of specific gravity equal to its own.

To prepare a mixture of alcohol and water of a density precisely 
equal to that of the oil-globule is a troublesome matter, and a 
method devised by Mr C. R. Darling is a great improvement on 
Plateau’s*. Mr Darling used the oily liquid orthotoluidene, which 
does not mix with water, has a beautiful and conspicuous red 
colour, and has precisely the same density as water when both 
are kept at a temperature of 24° C. We have therefore only to 
run the liquid into water at this temperature in order to produce 
beautifully spherical drops of any required size: and by adding a 
little salt to the lower layers of water, the drop may be made to 
rest or float upon the denser liquid.

Fig. 105.

he have seen that the soap-bubble, spherical to begin with, is 
transformed into a plane when we release its internal pressure and 
let the film shrink back upon the orifice of the pipe. If we blow 
a bubble and then catch it up on a second pipe, so that it stretches 
between, we may draw the two pipes apart, with the result that 
the spheroidal surface will be gradually flattened in a longitudinal 
direction, and the bubble will be transformed into a cylinder. But 
if we draw the pipes yet farther apart, the cylinder narrows in the 
middle into a sort of hour-glass form, the increasing curvature of 
its transverse section being balanced by a gradually increasing 
negative curvature in the longitudinal section; the cylinder has, in 
turn, been converted into an unduloid. \V hen we hold a soft glass 
tube in the flame and “draw it out,” we are in the same identical 
fashion converting a cylinder into an unduloid (Fig. 105. A); when 
on the other hand we stop the end and blow, we again convert the 
cylinder into an unduloid (B), but into one which is now positively, 
while the former was negatively, curved. The two figures are

* See Liquid Drops and Globules, 1914, p. 11. Robert Boyle used turpentine 
in much the same way; for other methods see Plateau, op. cit. p. 154.
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essentially the same, save that the two halves of the one change 
places in the other.

That spheres, cylinders and unduloids are of the commonest 
occurrence among the forms of small unicellular organisms or of 
individual cells in the simpler aggregates, and that in the processes 
of growth, reproduction and development transitions are frequent 
from one of these forms to another, is obvious to the naturalist*, 
and we shall deal presently with a few of these phenomena. 
But before we go further in this enquiry we must consider, to 
some small extent at least, the curvatures of the six different sur
faces, so far as to determine what modification is required, in each 
case, of the general equation which applies to them all. We shall 
find that with this question is closely connected the question of 
the pressures exercised by or impinging on the film, and also the 
very important question of the limiting conditions which, from the 
nature of the case, set bounds to the extension of certain of the 
figures. The whole subject is mathematical, and we shall only deal 
with it in the most elementary way.

We have seen that, in our general formula, the expression 
1/7? F 1/7?' = C, a constant; and that this is, in all cases, the 
condition of our surface being one of minimal area. That is to say, 
it is always true for one and all of the six surfaces which we have 
to consider; but the constant C may have any value, positive, 
negative or nil.

In the case of the plane, where R and R' are both infinite, 
1/R P 1/R' = 0. The expression therefore vanishes, and our dy
namical equation of equilibrium becomes P = p. In short, we can 
only have a plane film, or we shall only find a plane surface in our 
cell, when on either side thereof we have equal pressures or no 
pressure at all; a simple case is the plane partition between two 
equal and similar cells, as in a filament of Spirogyra.

In the sphere the radii are all equal, R=- R'; they are also positive, 
and T (1/R 4- 1/R'), or 2TP, is a positive quantity, involving a 
constant positive pressure P, on the other side of the equation.

In the cylinder one radius of curvature has the finite and positive 
value R; but the other is infinite. Our formula becomes T R to

* They tend to reappear, no less obviously, in those precipitated structures which 
simulate organic form in the experiments of Leduc, Herrera and Lillie. 

24-2
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which corresponds a positive pressure P, supplied by the surface
tension as in the case of the sphere, but evidently of just half the 
magnitude.

In plane, sphere and cylinder the two principal curvatures are 
constant, separately and together; but in the unduloid the curva
tures change from one point to another. At the middle of one of 
the swollen “beads” or bubbles, the curvatures are both positive; 
the expression (1/R + 1/R') is therefore positive, and it is also finite. 
The film exercises (like the cylinder) a positive pressure inwards, 
to be compensated by an equivalent outward pressure from within. 
Between two adjacent beads, at the middle of one of the narrow 
necks, there is obviously a much stronger curvature in the trans
verse direction; but the total pressure is unchanged, and we now 
see that a negative curvature along the unduloid balances the 
increased curvature in the transverse direction. The sum of the two 
must remain positive as well as constant; therefore the convex or 
positive curvature must always be greater than the concave or 
negative curvature at the same point, and this is plainly the case 
in our figure of the unduloid.

The catenoid, in this respect a limiting case of the unduloid, has 
its curvature in one direction equal and opposite to its curvature 
in the other, this property holding good for all points of the surface; 
R = — R'-, and the expression becomes

(1/R + 1/R') - (L/R - 1/R) = 0.

That is to say, the mean curvature is zero, and the catenoid, 
hke the plane itself, has no curvature, and eXerts no pressure. 
None of the other surfaces save these two share this remarkable 
property; and it follows that we may have at times the plane and 
the catenoid co-existing as parts of one and the same boundary 
system, just as the cylinder or the unduloid may be capped by 
portions of spheres. It follows also that if we stretch a soap-film 
between two rings, and so form an annular surface open at both ends, 
that surface is a catenoid: the simplest case being when the rings are 
parallel and normal to the axis of the figure*.

* A topsail bellied out by the wind is not a catenoid surface, but in vertical 
section it is everywhere a catenary curve; and Durer shews beautiful catenary 
curves in the wrinkles under an Old Man’s eyes. A simple experiment is to invert
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The nodoid is, like the unduloid, a continuous curve which keeps 
altering its curvature as it alters its distance from the axis; but in 
this case the resultant pressure inwards is negative instead of 
positive. But this curve is a complicated one, and its full mathe
matical treatment is too hard for us.

In one of Plateau’s experiments, a bubble of oil (protected from 
gravity by a fluid of equal density to its own) is balanced between 
annuli; and by adjusting the distance apart of these, it may be 
brought to assume the form of Fig. 106, that is to say, of a cylinder 
with spherical ends; there is then everywhere a pressure inwards 
on the fluid contents of the bubble a pressure due to the convexity

of the surface film. This cylinder may be converted into an undu
loid, either by drawing the rings farther apart or by abstracting 
some of the oil, until at length rupture ensues, and the cylinder 
breaks up into two spherical drops. Or again, if the surrounding 
liquid be made ever so little heavier or lighter than that which 
constitutes the drop, then gravity comes into play, the conditions 
of equilibrium are modified accordingly, and the cylinder becomes 
part of an unduloid, with its dilated portion above or below as the. 
case may be (Fig. 107).

In all cases the unduloid, like the original cylinder, is capped 
by spherical ends, the sign and the consequence of a positive 
pressure produced by the curved walls of the unduloid. But if 
our initial cylinder, instead of being tall, be a flat or dumpy one

a small funnel in a large one, wet them with soap-solution, and draw them apart; 
the film which develops between them is a catenoid surface, set perpendicularly 
to the two funnels. On this and other geometrical illustrations of the fact that 
a soap-film sets itself at right angles to a solid boundary, see an elegant paper by 
Mary E. Sinclair, in Annals of Mathematics, vin, 1907.
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(with certain definite relations of height to breadth), then new 
phenomena may occur. For now, if oil be cautiously withdrawn 

.from the mass by help of a small syringe, the cylinder may be made 
to flatten down so that its upper and lower surfaces become plane: 
which is of itself a sufficient indication that the pressure inwards 
is now nil. But at the very moment when the upper and lower 
surfaces become plane, it will be found that the sides curve inwards, 
in the fashion shewn in Fig. 108 B. This figure is a catenoid, which,

as we have seen, is, like the plane itself, a surface exercising no 
pressure, and which therefore may coexist with the plane as part 
of one and the same system.

We may continue to withdraw more oil from our bubble, drop 
by drop, and now the upper and lower surfaces dimple down into
concave portions of spheres, as the 
result of the negative internal 
pressure; and thereupon the peri
pheral catenoid surface alters its 
form (perhaps, on this small scale, 
imperceptibly), and becomes a 
portion of a nodoid. It represents, 
in fact, that portion of the nodoid 

Fig. 109.

which in Fig. 109 lies between such points as O, P. While it is easy to 
draw the outline, or meridional section, of the nodoid, it is obvious 
that the solid of revolution to be derived from it can never be 
realised in its entirety: for one part of the solid figure would cut. or 
entangle with, another. All that we can ever do, accordingly, is to 
realise isolated portions of the nodoid*.

* This curve resembles the looped Elastic Curve (see Thomson and Tait, n. 
p. 148, fig. 7), but has its axis on the other side of the curve. The nodoid was 
represented upside-down in the first edition of this book, a mistake into which others 
have fallen, including no less a person than Clerk Maxwell, in his article “ Capillarity ” 
in the Ensycl. Brit. 9th ed.
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In all these cases the ring or annulus is not merely a means of 
mechanical restraint, controlling the form of the drop or bubble; it 
also marks the boundary, or “locus of discontinuity,” between one 
surface and another.

If. in a sequel to the preceding experiment of Plateau's, we use 
solid discs instead of annuli, we may exert pressure on our oil- 
globule as we exerted traction before. We begin again by adjusting 
the pressure of these discs so that the oil assumes the form of a 
cylinder: our discs, that is to say, are adjusted to exercise a 
mechanical pressure just equal to what in the former case was 
supplied by the surface-tension of the spherical caps or ends of the 
bubble. If we now increase the pressure slightly, the peripheral 
walls become convexly curved, exercising a precisely corresponding 
pressure; the form assumed by the sides of our figure is now that 
of a portion of an* unduloid. If we increase the pressure, the 
peripheral surface of oil will bulge out more and more, and will 
presently constitute a portion of a sphere. But we may continue 
the process yet further, and find within certain limits the system 
remaining perfectly stable. What is this new curved surface which 
has arisen out of the sphere, as the latter was produced from the 
unduloid? It is no other than a portion of a nodoid, that part 
which in Fig. 109 lies between M and N. But this surface, which is 
concave in both directions towards the surface of the oil within, 
is exerting a pressure upon the latter, just as did the sphere out of 
which a moment ago it was transformed; and we had just stated, 
in considering the previous experiment, that the pressure inwards 
exerted by the nodoid was a negative one. The explanation of this 
seeming discrepancy lies in the simple fact that, if we follow the 
outline of our nodoid curve in Fig 109, from OP, the surface con
ceded in the former case, to MN, that concerned in the present, 
we shall see that in the two experiments the surface of the liquid 
is not the same, but lies on the positive side of the curve in the one 
case, and on the negative side in the other.

These capillary surfaces of Plateau’s form a beautiful example 
of the “materialisation” of mathematical law. Theory leads to 
certain equations which determine the position of points in a 
system, and these points we may then plot as curves on a coordinate 
diagram; but a drop or a bubble may realise in an instant the 
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whole result of our calculations, and materialise our whole ap
paratus of curves. Such a case is what Bacon calls a “collective 
instance,” bearing witness to the fact that one common law is 
obeyed by every point or particle of the system. Where the under
lying equations are unknown to us, as happens in so many natural 
configurations, we may still rest assured that kindred mathematical 
laws are being automatically followed, and rigorously obeyed, and 
sometimes half-revealed.

Of all the surfaces which we have been describing, the sphere is 
the only one which can enclose space of itself; the others can only 
help to do so, in combination with one another or with the sphere. 
Moreover, the sphere is also, of all possible figures, that which 
encloses the greatest volume with the least area of surface *;  it is 
strictly and absolutely the surface of minimal area, and it is, ipso 
facto, the form which will be assumed by a'unicellular organism 
(just as by a raindrop), if it be practically homogeneous and if, like 
Orbulina floating in the ocean, its surroundings be likewise homo
geneous and its field of force symmetrical!. It is only relatively 
speaking that the rest of these configurations are surfaces minimae 
areae, for they are so under conditions which involve various 
pressures or restraints. Such restraints are imposed by the pipe or 
annulus which supports and confines our oil-globule or soap-bubble; 
and in the case of the organic cell, similar restraints are supplied 
by solidifications partial or complete, or other modifications local 
or general, of the cell-surface or cell-wall.

* On the circle and sphere as giving the smallest boundary for a given content, 
see (e.g.) Jacob Steiner, Einfache Brweisen der isoperimetrischen Hauptsatze, 
Berlin. Abhandlungen, 1836, pp. 123-132.

f The essential conditions of homogeneity and symmetry are none too common, 
and a spherical organism is only to be looked for among simple things. The 
floating (or pelagic) eggs of fishes, the spores of red seaweeds, the oospheres of 
Fucus or Oedogonium, the plasma-masses escaping from the cells of Vaucheria, 
are among the instances which come to mind.

One thing we must not fail to bear in mind. In the case of the 
soap-bubble we look for stability or instability, equilibrium or non
equilibrium, in its several configurations. But the living cell is 
seldom in equilibrium. It is continually using or expending energy; 
and this ceaseless flow of energy gives rise to a “steady sta1^,” 
taking the place of and simulating equilibrium. In like manner the 
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hardly changing outline of a jet or waterfall is but in pseudo
equilibrium; it is in a steady state, dynamically speaking. Many 
puzzling and apparent paradoxes of physiology, such (to take a 
single instance) as the maintenance of a constant osmotic pressure 
on either side of a cell-membrane, are accounted for by the fact 
that energy is being spent and work done, and a steady state or 
pseudo-equilibrium maintained thereby.

Before we pass to biological illustrations of our surface-tension 
figures we have still another matter to deal with. We have seen 
from our description of two of Plateau’s classical experiments, that 
at some particular point one type of surface gives place to another; 
and again we know that, when we draw out our soap-bubble into 
a cylinder, and then beyond, there comes a certain point at which 
the bubble breaks in two, and leaves us with two bubbles of which 
each is a sphere or a portion of a sphere. In short there are certain 
limits to the dimensions of our figures, within which limits equi
librium is stable, but at which it becomes unstable, and beyond which 
it breaks down. Moreover, in our composite surfaces, when the 
cylinder for instance is capped by two spherical cups or lenticular 
discs, there are well-defined ratios which regulate their respective 
curvatures and their respective dimensions. These two matters we
may deal with together.

Let us imagine a liquid drop which in 
appropriate conditions has been made to 
assume the form of a cylinder; we have 
already seen that its ends will be capped 
by portions of spheres. Since one and 
the same liquid film covers the sides and 
ends of the drop (or since one and the 
same delicate membrane encloses the 
sides and ends of the cell), we assume 
the surface-tension (T) to be everywhere 
identical; and it follows, since the 
internal fluid-pressure is also every
where identical, that the expression (1/R + 1/R') for the cylinder 
is equal to the corresponding expression, which we may call 
(1/r + 1/r'), in the case of the terminal spheres. But in the 
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cylinder 1/7?'= 0, and in the sphere 1/r = 1,F. Therefore our 
relation of equality becomes 1 R = 2/r, or r = 2R; which means 
that the sphere in question has just twice the radius of the cylinder 
of which it forms a cap.

And if Ob, the radius of the sphere, be equal to twice the radius 
(0a) of the cylinder, it follows that the angle aOb is an angle of 60°, 
and bOc is also an angle of 60°; that is to say, the arc be is equal to 
3?t. In other words, the spherical disc which (under the given 
conditions) caps our cylinder is not a portion taken at haphazard, 
but is neither more nor less than that portion of a sphere which is 
subtended by a cone of 60°. Moreover, it is plain that the height 
of the spherical cap, de, = Ob — ab = R (2 — = 0-277?, where
R is the radius of our cylinder, or one-half the radius of our spherical 
cap: in other words the normal height of the spherical cap over 
the end of the cylindrical cell is just a very little more than one
eighth of the diameter of the cylinder, or of the radius of the sphere. 
And these are the proportions which we recognise, more or less, 
under normal circumstances, in such a case as the cylindrical cell 
of Spirogyra, when one end is free and capped by a portion of a 
sphere*.

* The conditions of stability of the cylinder, and also of the catenoid, are 
explained with the utmost simplicity by Clerk Maxwell, in his article, already 
quoted, on “Capillarity.” On the catenoids, see A. Terquem. C.R. xcij, pp. 407 9, 
1881.

Among the many theoretical discoveries which we owe to Plateau, 
one to which we have just referred is of peculiar importance: 
namely that, with the exception of the sphere and the plane, the 
surfaces with which we have been dealing are only in complete 
equilibrium within certain dimensional limits, or in other words, 
have a certain definite limit of stability; only the plane and the 
sphere, or any portion of a sphere, are perfectly stable, because 
they are perfectly symmetrical, figures.

Perhaps it were better to say that their symmetry is such that 
any small disturbance will probably readjust itself, and leave the 
plane or spherical surface as it was before, while in the other 
configurations the chances are that a disturbance once set up will 
travel in one direction or another, increasing as it goes. For 
equilibrium and probability (as Boltzman told us) are nearly allied: 
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so nearly that that state of a system which is most likely to occur, 
or most likely to endure, is precisely that which we call the state of 
equilibrium.

For experimental demonstration, the case of the cylinder is the 
simplest. If we construct a liquid cylinder, either by drawing out 
a bubble or by supporting a globule of oil between two rings, the 
experiment proceeds easily until the length of the cylinder becomes 
just about three times as great as its diameter. But soon afterwards 
instability begins, and the cylinder alters its form; it narrows at

the waist, so passing into an unduloid, and the deformation pro
gresses quickly until our cylinder breaks in two, and its two halves 
become portions of spheres. This physical change of one surface into 
another corresponds to what the mathematicians call a “discon
tinuous solution” of a problem of minima. The theoretical limit of 
stability, according to Plateau, is when the length of the cylinder is 
equal to its circumference, that is to say, when L = 2rrr, or when the 
ratio of length to diame er is represented by it.

The fact is that any small disturbance takes the form of a wave, 
and travels along the cylinder. Short waves do not affect the 
stability of the system; but waves whose length exceeds that of the 
circumference tend to grow in amplitude: until, contracting here, 
expanding there, the cylinder turns into a pronounced unduloid, 
and soon breaks into two parts or more. Thus the cylinder is a 
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stable figure until it becomes longer than its own circumference, 
and then the risk of rupture may be said to begin. But Rayleigh 
shewed that still longer waves, leading to still greater instability, 
are needed to break down material resistance*. For, as Plateau 
knew well, his was a theoretical result, to be departed from under 
material conditions; it is affected largely by viscosity, and, as in 
the case of a flowing cylinder or jet, by inertia. When inertia plays 
a leading part, viscosity being small, the node of maximum in
stability corresponds to nearly half as much again as in the simple 
or theoretical case: and this result is very near to what Plateau 
himself had deduced from Savart’s experiments on jets of water f. 
When the fluid is external (as when the cylinder is of air) the wave
length of maximal instability is longer still. Lastly, when viscosity 
is very large, and becomes paramount, then the wave-length between 
regions of maximal instability may become very long indeed: so 
that (as Rayleigh put it) “ long (viscid) threads do not tend to divide 
themselves into drops at mutual distances comparable with the 
diameter of the cylinder, but rather to give way by attenuation at 
few and distant places.” It is this that renders possible the making 
of long glass tubes, or the spinning of threads of “ viscose ” and like 
materials; but while these latter preserve their continuity, the 
principle of Plateau tends to give them something of a wavy, 
unduloid surface, to the great enhancement of their beauty. We 
are prepared, then, to find that such cylinders and unduloids as 
occur in organic nature seldom approach in regularity to those which 
theory prescribes or a soap-film may be made to shew; but rather 
exhibit all manner of gradations, from something exquisitely neat 
and regular to a coarse and distant approximation to the ideal 
thing J.

The unduloid has certain peculiar properties as regards its limita
tions of stability, but we need mention two facts only: (1) that 
when the unduloid, which we produce with our soap-bubble or our

♦ Rayleigh, On the instability of fluid surfaces, Sei. Papers, in, p. 594.
t Cf. E. Tylor, Phil. Mag. xvi, pp. 504-518, 1933.
J Cf. F. Savart, Sur la constitution des veines liquides lancees par des or flees, 

etc., Ann. de Chimie, liii, pp. 337-386, 1833. Rayleigh, On the instability ot 
a cylinder of viscous liquid, etc., Phil. Mag. (5), xxxiv, 1892, or Sei. Papers, i, 
p. 361. See also Larmor, On the nature of viscid fluid threads, Nature. July 11, 
1936, p. 74.
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oil-globule, consists of the figure containing a complete constriction, 
then it has somewhat wide limits of stability; but (2) if it contain 
the swollen portion, then equilibrium is limited to the case of the 
figure consisting of one complete unduloid, no less nor more; that 
is to say when the ends of the figure are constituted by the narrowest 
portions, and its middle by the widest portion of the entire curve. 
The theoretical proof of this is difficult; but if we take the proof for 
granted, the fact itself will serve to throw light on what we have 
learned regarding the stability of the cylinder. For, when we 
remember that the meridional section of our unduloid is generated 
by the rolling of an ellipse upon a straight line in its own plane, 
we easily see that the length of the entire unduloid is equal to the 
circumference of the generating ellipse. As the unduloid becomes 
less and less sinuous in outline it approaches, and in time reaches, 
the form of the cylinder, as a “limiting case”; and pari passu, the 
ellipse which generated it passes into a circle, as its foci come closer 
and closer together. The cylinder of a length equal to the circum
ference of its generating circle is homologous to an unduloid whose 
length is equal to the circumference of its generating ellipse; and 
this is just what we recognise as constituting one complete segment 
of the unduloid.

The cylinder turns so easily into an unduloid, and the unduloid 
is capable of assuming so many graded differences of form, that we 
may expect to find it abundantly and variously represented among 
the simpler living things. For the same reason it is the very 
stand-by of the glass-blower, whose flasks and bottles are, of 
necessity, unduloids*. The blown-glass bottle is a true unduloid, 
and the potter’s vase a close approach to an unduloid; but the 
alabaster bottle, turned on the lathe, is another story. It may be 
an imitation, or a reminiscence, of the potter’s or the glass-blower’s 
work; but it is no unduloid nor any surface of minimal area at all.

The catenoid, as we have seen, is a surface of zero pressure, and as 
such is unlikely to form part (unless momentarily) of the closed 
boundary of a cell. It forms a limiting case between unduloid and 
nodoid, and, were it realised, it would seldom be visibly different from 
the other two. In Trichodina pediculus, a minute infusorian para-

* Unless, that is to say, their shape be cramped and their mathematical beauty 
annihilated, by compression in a mould.
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site of the freshwater polype, we have a circular disc bounded 
(apparently) by two parallel rings of cilia, with a pulley-like groove

Fig. 112. Trichodina pediculus.

between. The groove looks very like 
that catenoid surface which we have 
produced from two parallel and 
opposite annuli; and the fact that 
the lower surface of the little creature 
is practically plane, where it creeps 
over the smooth body of the Hydra, 
looks like confirming the catenoid 
analogy. But the upper surface of 
the infusorian, with its ciliated 

“gullet,” gives no assurance of a zero pressure; and we must 
take it that the equatorial groove of Trichodina resembles, or 
approaches, but is not mathematically identical with, a catenoid 
surface.

While those figures of equilibrium which are also surfaces of 
revolution are only six in number, there is an infinite number of 
other figures of equilibrium, that is to say of surfaces of constant 
mean curvature, which are not surfaces of revolution; and it can 
be shewn mathematically that any given contour can be occupied 
by a finite portion of some one such surface, in stable equilibrium. 
The experimental verification of this theorem lies in the simple fact 
(already noted) that however we bend a wire into a closed curve, 
plane or not plane, we may always fill the entire area with a con
tinuous film. No more interesting problem has ever been pro
pounded to mathematicians as the outcome of experiment than the 
general problem so to describe a minimal surface passing through 
a closed contour; and no complete solution, no general method of 
approach, has yet been discovered*.

Of the regular figures of equilibrium, or surfaces of constant mean 
curvature, apart from the surfaces of revolution which we have 
discussed, the helicoid spiral is the most interesting to the biologist.

* Partial solutions, closely connected with recent developments of mathematical 
analysis, are due to Riemann, Weierstrass and Schartz. Cf. (int. al.) G. Darboux, 
Theorie des surfaces, 1914, pp. 490-601; T. Bonneson, Problemes des isoperimitres 
et des isep phanes. Paris, 1929; Hilbert’s Anschauliche Geometric. 1932, p. 237 seq.; 
a good account also in G A. Bliss’s Calculus of Variations, Chicago, 1925. See also 
(int. al.) Tibor Rado, Mathem. Ztschr. xxxn, 1930; Jesse Douglas, Amer. Math. 
Journ. xxxitl, 1931, Journ. Math. Phys, xv, 1936.
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This is a helicoid generated by a straight line perpendicular to an 
axis, about which it turns at a uniform rate, while at the same time 
it slides, also uniformly, along this same axis. At any point in this 
surface, the curvatures are equal and of opposite sign, and the sum 
of the curvatures is accordingly nil. Among what are called “ruled 
surfaces,” or surfaces capable of being defined by a system of 
stretched strings*, the plane and the helicoid are the only two whose 
mean curvature is null, while the cylinder is the only one whose 
curvature is finite and constant. As this simplest of helicoids 
corresponds, in three dimensions, to what in two dimensions is 
merely a plane (the latter being generated by the rotation of a 
straight line about an axis without the superadded gliding motion 
which generates the helicoid), so there are other and much more 
complicated helicoids which correspond to the sphere, the unduloid 
and the rest of our figures of revolution, the generating planes of 
these latter being supposed to wind spirally about an axis. In the 
case of the cylinder it is obvious that the resulting figure is indis
tinguishable from the cylinder itself. In the case of the unduloid 
we obtain a grooved spiral, and we meet with something very like 
it in nature (for instance in Spirochaetes, Bodo gracilis, etc.); but in 
point of fact, the screw motion given to an unduloid or catenary 
curve fails to give a minimal screw surface, as we might have 
expected it to do.

The foregoing considerations deal with a small part only of the 
theory of surface-tension, or capillarity: with that part, namely, 
which relates to the surfaces capable of subsisting in equilibrium 
under the action of that force, either of itself or subject to certain 
simple constraints. And as yet we have limited ourselves to the 
case of a single surface, or of a single drop or bubble, leaving to 
another occasion a discussion of the forms assumed when such drops 
or vesicles meet and combine together. In short, what we have 
said may help us to understand the form of a cell considered, as 
with certain limitations we may legitimately consider it, as a liquid 
drop or liquid vesicle; the conformation of a tissue or cell-aggregate 
must be dealt with in the light of another series of theoretical con
siderations. In both cases, we can do no more than touch on the 
fringe of a large and difficult subject. There are many forms

* Or rather, surfaces such that through every point there runs a straight line 
which lies wholly in the surface.
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capable of realisation under surface-tension, and many of them 
doubtless to be recognised among organisms, which we cannot 
deal with in this elementary account. The subject is a very 
general one; it is, in its essence, more mathematical than physical; 
it is part of the mathematics of surfaces, and only comes into relation 
with surface-tension because this physical phenomenon illustrates 
and exemplifies, in a concrete way, the simple and symmetrical 
conditions with which the mathematical theory is capable of dealing. 
And before we pass to illustrate the physical phenomena by biological 
examples, we must repeat that the simple physical conditions which 
we presuppose will never be wholly realised in the organic cell. 
Its substance will never be a perfect fluid, and hence equilibrium 
will be slowly reached; its surface will seldom be perfectly homo
geneous, and therefore equilibrium will seldom be perfectly attained: 
it will very often, or generally, be the seat of other forces, symmetrical 
or unsymmetrical; and all these causes will more or less perturb the 
surface-tension effects*.  But we shall find that, on the whole, these 
effects of surface-tension though modified are not obliterated nor 
even masked; and accordingly the phenomena to which I have 
devoted the foregoing pages will be found manifestly recurring and 
repeating themselves among the phenomena of the organic cell.

* That “every particular that worketh any effect is a thing compounded more 
or less of diverse single natures, more manifest and more obscure” is a point made 
and dwelt on by Bacon. Of the same principle a great astronomer speaks as 
follows: “It is one of the fundamental characteristics of natural science that we 
never get beyond an approximation.. .Nature never offers us simple and undivided 
phenomena to observe, but always infinitely complex compounds of many different 
phenomena. Each single phenomenon can be described mathematically in terms 
of the accepted fundamental laws of Nature:.. .but we can never be sure that we 
have carried the analysis to its full exhaustion, and have isolated one single simple 
phenomenon.” W. de Sitter, in Nature, Jan. 21, 1928, p. 99.

In a spider’s web we find exemplified several of the principles of 
surface-tension which we have now explained. The thread is spun 
out of a glandular secretion which issues from the spider’s body as 
a semi-fluid cylinder, the force of expulsion giving it its length and 
that of surface-tension giving it its circular section. It is too viscid, 
and too soon hardened on exposure to the air, to break up into drops 
or spherules; but it is otherwise with another sticky secretion which, 
coming from another gland, is simultaneously poured over the 
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slacker cross-threads as they issue to form the spiral portion of the 
web. This latter secretion is more fluid than the first, and only 
dries up after several hours*. By capillarity it “wets” the thread, 
spreading over it in an even film or liquid cylinder. As such it 
has its limits of stability, and tends to disrupt at points more 
distant than the theoretical wave-length, owing to the imperfect 
fluidity of the viscous film and still more to the frictional drag of 
the inner thread with which it is in contact. Save for this qualifi
cation the cylinder disrupts in the usual manner, passing first into 
the wavy outline of an unduloid, whose swollen internodes swell 
more and more till the necks between them break asunder, and leave 
a row of spherical drops or beads strung like dewdrops at regular 
intervals along the thread. If we try to varnish a thin taut wire 
we produce automatically the same identical result j; unless our 
varnish be such as to dry almost instantaneously it gathers into 
beads, and do what we will we fail to spread it smooth. It follows 
that, according to the drying qualities of our -varnish, the process 
may stop at any point short of the formation of perfect spherules; 
and as our final stage we may only obtain half-formed beads or the 
wavy outlines of an unduloid. The beads may be helped to form 
by jerking the stretched thread, and so disturbing the unstable 
equilibrium of the viscid cylinder. This the spider has been said 
to do, but Dr G. T. Bennett assures me that she does nothing of the 
kind. She only draws her thread out a little, and leaves it a trifle 
slack; if the gum should break into droplets, well and good, but it 
matters little. The web with its sticky threads is not improved 
thereby. Another curious phenomenon here presents itself.

In Plateau’s experimental separation of a cylinder of oil into two 
spherical halves, it was noticed that, when contact was nearly 
broken, that is to say when the narrow neck of the unduloid had 
become very thin, the two spherical bullae, instead of absorbing 
the fluid out of the narrow neck into themselves as they had done 
with the preceding portion, drew out this small remaining part of

* When we see a web bespangled with dew of a morning, the dewdrops are not 
drops of pure water, but of water mixed with the sticky, gummy fluid of the cross
threads; the radii seldom if ever shew dewdrops. See F. Strehlke, Beobachtungen 
an Spinnengewebe, Poggendorff's Annalen, XL, p. 146, 1937.

f Felix Plateau recommends the use of a weighted thread or plumb-line, to be 
drawn up slowly out of a jar of water or oil; Phil. Mag. xxxiv, p. 246, 1867.

T G F 25 
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the liquid into a thin thread as they completed their spherical form 
and receded from one another: the reason being that, after the 
thread or “neck” has reached a certain tenuity, internal friction 
prevents or retards a rapid exit of the fluid from the thread to the 
adjacent spherule. It is for the same reason that we are able to 
draw a glass rod or tube, which we have heated in the middle, into 
a long and uniform cylinder or thread by quickly separating the 
two ends. But in the case of the glass rod the long thin thread 
quickly cools and solidifies, while in the ordinary separation of a 
liquid cylinder the corresponding intermediate cylinder remains 
liquid; and therefore, like any other liquid cylinder, it is liable to

Fig. 113. Dew-drops on a spider’s web.

break up, provided that its dimensions exceed the limit of stability. 
And its length is generally such that it breaks at two points, thus 
leaving two terminal portions continuous and confluent with the 
spheres, and one median portion which resolves itself into a 
tiny spherical drop, midway between the original and larger two. 
Occasionally, the same process of formation of a connecting thread 
repeats itself a second time, between the small intermediate spherule 
and the large spheres; and in this case we obtain two additional 
spherules, still smaller in size, and lying one on either side of our 
first little one. This whole phenomenon, of equal and regularly 
interspaced beads, often with little beads regularly interspaced 
between the larger ones, and now and then with a third order of 
still smaller beads regularly intercalated, may be easily observed 
in a spider’s web, such as that of Epeira, very often with beautiful 
regularity—sometimes interrupted and disturbed by a slight want 
of homogeneity in the secreted fluid; and the same phenomenon is
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repeated on a grosser scale when the web is bespangled with dew, 
and its threads bestrung with pearls innumerable. To the older 
naturalists, these regularly arranged and beautifully formed globules 
on the spider's web were a frequent source of wonderment. Black
wall, counting some twenty globules in a tenth of an inch, calculated 
that a large garden-spider’s web should comprise about 120,000 
globules; the net was spun and finished in about forty minutes, 
and Blackwall was filled with admiration of the skill and quickness 
with which the spider manufactured these little beads. And no 
wonder, for according to the above estimate they had to be made 
at the rate of about 50 per second*.

* J. Blackwall, Spiders of Creat Britain (Ray Society), 1859, p. 10; Trans. Linn. 
Soc. xvi, p. 477, 1833. On the strength and elasticity of the spider’s web, see 
J. R. Benton, Amer. Journ. Science, xxiv, pp. 75-78, 1907.

f Lehrbuch von der Pflanzenzelle, p. 71; cf. Nageli, Pflanzenphysiologische Unter- 
suchungen (Spirogyra), ni, p. 10.

. Here we see exemplified what Plateau told us of the law of minimal 
areas transforming the cylinder into the unduloid and disrupting it

Fig. 114. Root-hair of Trianea, in glycerine. After Berthold.

into spheres. The little delicate beads which stud the long thin 
pseudopodia of a foraminifer, such as Gromia, or which appear in 
like manner on the film of protoplasm coating the long radiating 
spicules of Globigerina, represent an identical phenomenon. Indeed 
we may study in a protoplasmic filament the whole process of 
formation of such beads: if we squeeze out on a slide the viscid 
contents of a mistletoe-berry, the long sticky threads into which the 
substance runs shew the whole phenomenon particularly well. True' 
many long cylindrical cells, such as are common in plants, shew no 
sign of beading or disruption; but here the cell-walls are never fluid 
but harden as they grow, and the protoplasm within is kept in place 
and shape by its contact with the cell-wall. R was noticed many 
years ago by Hofmeisterf, and afterwards explained by Berthold, 
that if we dip the long root-hairs of certain water-plants, such as 
Hgdrocharis or Trianea, in a denser fluid (a little sugar-solution or 

25-2
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dilute glycerine), the cell-sap tends to diffuse outwards, the proto
plasm parts company with its surrounding and supporting wall, and 
then lies free as a protoplasmic cylinder in the interior of the cell. 
Thereupon it soon shews signs of instability, and commences to 
disrupt; it tends to gather into spheres, which however, as in our 
illustration, may be prevented by their narrow quarters from 
assuming the complete spherical form; and in between these 
spheres, we have more or less regularly alternate ones, of smaller 
size*.  We could not wish for a better or a simpler proof of the 
essential fluidity of the protoplasm f. Similar, but less regular, 
beads or droplets may be caused to appear, under stimulation by an 
alternating current, in the protoplasmic threads within the living 
cells of the hairs of Tradescantia; the explanation usually given is, 
that the viscosity of the protoplasm is reduced, or its fluidity 
increased; but an increase of the surface-tension would seem a more 
likely reason J.

* The intermediate spherules appear with great regularity and beauty whenever 
a liquid jet breaks up into drops. So a bursting soap-bubble scatters a shower 
of droplets all around, sometimes all alike, but often with a beautiful alternation 
of great and small. How the breaking up of thread or jet into drops may be helped, 
regularised, and sometimes complicated, by external vibrations is another and by 
no means unimportant story.

f Though doubtless to speak of the viscid thread as a fluid is but a first approxi
mation; cf. Larmor, in Nature, July 11, 1936.

J Kiihne, Untersuchungen iiber das Protoplasma, 1864, p. 75, etc.
§ Cf. R. Chambers in Colloid Chemistry, theoretical and applied, n, cap. 24, 1928; 

also Ann. de Physiol, vi, p. 234, 1930; etc.

In one of Robert Chambers’s delicate experiments, a filament of 
protoplasm is drawn off, by a micro-needle, from the fluid surface 
of a starfish-egg. If drawn too far it breaks, and part returns within 
the protoplasm while the other rounds itself off on the needle’s 
point. If drawn out less far, it looks like a row of beads or chain 
of droplets; if yet more relaxed, the droplets begin to fuse until 
the whole filament is withdrawn; if drawn out anew the process 
repeats itself. The whole story is a perfect description of the 
behaviour of a fluid jet or cylinder, of varying length and 
thickness §.

We may take note here of a remarkable series of phenomena, 
which, though they seem at first sight to be of a very different order, 
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are closely related to those which attend and which bring about the 
breaking-up of a liquid cylinder or thread.

In Mr Worthington’s beautiful experiments on splashes*, it was 
found that the fall of a round pebble into water from a height first 
formed a dip or hollow in the surface, and then caused a filmy 
“cup” of water to rise up all round, opening out trumpet-fashion

Fig. 115. Phases of a splash. From Worthington.

h

Fig. 116. A wave breaking into spray.

or closing in like a bubble, according to the height from which the 
pebble fell. The cup or “crater” tends to be fluted in alternate 
ridges and grooves, its edges get scolloped into corresponding lobes 
and notches, and the projecting lobes or prominences tend to break 
off or break up into drops or beads (Fig. 115). A similar appearance 
is seen on a great scale in the edge of a breaking wave: for the smooth

* A Study of Splashes, 1908, p. 38, etc.; also various papers in Proc. R.S. 
1876-1882, and Phil. Trans. (A), 1897 and 1900.
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edge becomes notched or sinuous, and the surface near by becomes 
ribbed or fluted, owing to the internal flow being helped here and 
hindered there by a viscous shear; and then all of a sudden the 
uneven edge shoots out an array of tiny jets, which break up into 
the countless droplets which constitute “spray” (Fig. 116). The 
naturalist may be reminded also of the beautifully symmetrical 
notching of the calycles of many hydroid zoophytes, which little 
cups had begun their existence as liquid or semi-liquid films before 
they became stiff and rigid. The next phase of the splash (with 
which we are less directly concerned) is that the crater subsides, 
and where it stood a tall column rises up, which also tends, if it be 
tall enough, to break up into drops. Lastly the column sinks down 
in its turn, and a ripple runs out from’ where it stood. •

The edge of our little cup forms a hquid ring or annulus^ com
parable on the one hand to the edge of an advancing wave, and 
on the other to a liquid thread or cyhnder if only we conceive the 
thread to be bent round into a ring; and accordingly, just as the 
thread segments first into an unduloid and then mto separate 
spherical drops, so likewise will the edge of cup or annulus tend to 
do. This phase of notching, or beading, of the edge of the splash 
is beautifully seen in many of Worthington’s experiments*, and still 
more beautifully in recent work (Frontispiece!). In the second place 
the fact that the crater rises up means that Equid is flowing in from 
below; the segmentation of the rim means that channels of easier 
flow are being created, along which the liquid is led or driven into 
the protuberances; and these last are thereby exaggerated into the 
jets or streams which become conspicuous at the edge of the crater. 
In short any film or film-like fluid or semi-fluid cup will be unstable; 
its instability wdl tend to show itself in a fluting of the surface and 
a notching of the edge; and just such a fluting and notching are 
conspicuous features of many minute organic cup-like structures. 
In the hydroids (Fig. 117), we see that these common features of the

* Cf. A Study of Splash™, pp. 17, 77. The same phenomenon is often well seen 
in the splash of an oar. It is beautifully and continuously evident when a strong 
jet of water from a tap impinges on a curved surface and then shoots off again.

f We owe this picture to the kindness of Mr Harold E. Edgerton, of the 
Massachusetts Institute of Technology. It shews the splash caused by a drop 
falling into a thin layer of milk; a second drop of milk is seen above, following 
the first. The exposure-time was 1/50,000 of a second.



The: latter phase of a splash: the crater has subsided, a columnar jet has risen up. and the jet is 
dividing into droplets. From Harold E. Edgerton, Massachusetts Technical Institution
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ccup and the annulativn of the stem are phenomena of the same order. 
AA cord-like thickening of the edge of the cup is a variant of the 
ssame order of phenomena; it is due to the checking at the rim of 
tthe flow of liquid from below, and a similar thickening is to be seen, 
nnot only in some hydroid calycles but also in many Vorticellae 
(<(cf. Fig. 124) and other cup-shaped organisms. And these are by 
nno means the only manifestations of surface-tension in a splash 
vwhich shew resemblances and analogies to organic form*.

* The same phenomena are modified in various ways, and the drops are given 
obff much more freely, when the splash takes place in an electric field—all owing 
to o the general instability of an electrified liquid surface; and a study of this aspect 
of>f the subject might suggest yet more analogies with organic form. Cf. J. Zeleny, 
PPhys. Rev. x, 1917; J. P. Gott, Proc. Cambridge Philos. Soc. xxxi, 1935; etc.

f We find now and then in certain brick-clays of glacial origin, hard, quoit- 
shhaped rings, each with an equally indurated, round or flattened ball resting on it. 
Tlfhese may be precisely imitated by splashing large drops of water on a smooth 
suurface of fine dry sand. The ring corresponds, apparently, to the crater of the 
spplash, and the ball (or its water content) to the pillar rising in the middle.

The phenomena of an ordinary liquid splash are so swiftly tran- 
ssitory that their study is only rendered possible by photography:

Fig. 117. Calycles of Campanularia spp.

bbut this excessive rapidity is not an essential part of the pheno- 
rnnenon. For instance, we can repeat and demonstrate many of the 
skimpier phenomena, in a permanent or quasi-permanent form, by 
spplashing water on to a surface of dry sandf, or by firing a bullet 
innto a soft metal target. There is nothing, then, to prevent a slow 
annd lasting manifestation, in a viscous medium such as a proto- 
pblasmic organism, of phenomena which appear and disappear with 



392 THE FORMS OF CELLS [ch.

evanescent rapidity in a more mobile liquid. Nor is there anything 
peculiar in the splash itself; it is simply a convenient method of 
setting up certain motions or currents, and producing certain surface
forms, in a liquid medium -or even in such an imperfect fluid as a* bed 
of sand. Accordingly, we have a large range of possible conditions 
under which the organism might conceivably display configurations 
analogous to, or identical with, those which Mr Worthington has 
shewn us how to exhibit by one particular experimental method.

To one who has watched the potter at his wheel, it is plain that 
the potter’s thumb, like the glass-blower’s blast of air, depends for 
its efficacy upon the physical properties of the clay or “slip” it 
works on, which for the time being is essentially a fluid. The cup 
and the saucer, like the tube and the bulb, display (in their simple 
and primitive forms) beautiful surfaces of equilibrium as manifested 
under certain limiting conditions. They are neither more nor less 
than glorified “splashes,” formed slowly, under conditions of 
restraint which enhance or reveal their mathematical symmetry. 
We have seen, and we shall see again before we are done, that the 
art of the glass-blower is full of lessons for the naturalist as also 
for the physicist: illustrating as it does the development of a host 
of mathematical configurations and organic conformations which 
depend essentially on the establishment of a constant and uniform 
pressure within a closed elastic shell or fluid envelope or bubble. 
In like manner the potter’s art illustrates the somewhat obscurer 
and more complex problems (scarcely less frequent in biology) of a 
figure of equilibrium which is an open surface of revolution. The 
two series of problems are closely akin; for the glass-blower can 
make most things which the potter makes, by cutting off portions 
of his hollow ware; besides, when this fails and the glass-blower, 
ceasing to blow, begins to use his rod to trim the sides or turn the 
edges of wineglass or of beaker, he is merely borrowing a trick from 
the still older craft of the potter.

It would seem venturesome to extend our comparison with these 
liquid surface-tension phenomena from the cup or calycle of the 
hydrozoon to the little hydroid polyp within: and yet there is 
something to be learned by such a comparison. The cylindrical 
body of the tiny polyp, the jet-like row of tentacles, the beaded 
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annulations which these tentacles exhibit, the web-like film which 
sometimes (when they stand a little way apart) conjoins their bases, 
the thin annular film of tissue which surrounds the little organism's 
mouth, and the manner in which this annular “peristome” con
tracts*,  like a shrinking soap-bubble, to close the aperture, are 
every one of them features to which we may find a singular and 
striking parallel in the surface-tension phenomena of the splash f.

* See a Study of Splashes, p. 54.
t There is little or no difference between a splash and a burst bubble. The craters 

of the moon have been compared with, and explained by, both of these.
t Helmholtz, in Berlin. Monatsber. 1868, pp. 215-228; Kirchhoff, in Crelle's 

Journal, lxx, pp. 289-298, lxxi, 237-273, 1869-70.
§ W. Thomson, in Proc. R.S.E. vi, p. 94, 1867.

• || See A. Overbeck, Ueber discontinuirliche Fliissigkeitsbewegungen, Wiedemann's 
Annalen, n, 1877; W. Bezold, Ueber Stromungsfiguren in Fliissigkeiten, ibid. 
xxiv, pp. 569-593, 1885; P. Czermak, ibid. L, p. 329, 1893; etc.

•j The frictional drag on the hinder part of the drop is felt alike in the ship, the 
bird and the aeroplane, and tends to produce retarding vortices in them all. It is 
always minimised in one way or another, and it is automatically minimised in the 
present instance, as the drop thins off and tapers down.

Some seventy years ago much interest was aroused by Helmholtz’s 
work (and also Kirchhoff’s) on “discontinuous motions of a fluid J 
that is to say, on the movements of one body of fluid within another, 
and the resulting phenomena due to friction at the surfaces between. 
What Kelvin § called Helmholtz’s “admirable discovery of the law 
of vortex-motion in a perfect fluid” was the chief result of this 
investigation; and was followed by much experimental work; in 
order to illustrate and to extend the mathematical conclusions.

The drop, the bubble and the splash are parts of a long story; 
and a “falling drop,” or a drop moving through surrounding fluid, 
is a case deserving to be considered. A drop of water, tinged with 
fuchsin, is gently released (under a pressure of a couple of milli
metres) at the bottom of a glass of water j|. Its momentum enables 
it to rise through a few centimetres of the surrounding water, and 
in doing so it communicates motion to the water around. In front 
the rising drop thrusts its way through, almost like a solid body; 
behind it tends to drag the •surrounding water after it, by fluid 
friction^; and these two motions together give rise to beautiful vorti- 
coid configurations, the Stromungspilze or Tintenpilze of their first 
discoverers (Fig. 119). Under a higher and more continuous pressure
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Fig. 118. a, b. More phases of a splash, after Worthington. 
c. A hydroid polype, after Allman.

Fig. 119. Liquid jets. From A. Overbeck.
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the drop becomes a jet; the form of the vortex is modified thereby, 
and may be further modified by slight differences of temperature 
(i.e. of density), or by interrupting the rate of flow. To let a drop 
of ink fall into water is a simple and most beautiful experiment*. 
The effect is more violent than in the former case. The descending

A B
Fig. 120. Falling drops. A, ink in water, after J. J. Thomson and Newall.

B, fusel oil in paraffin, after Tomlinson.

drop turns into a complete vortex-ring; it expands and attenuates; 
it waves about, and the descending loops again turn into incipient 
vortices (Fig. 120).

Lastly, instead of letting our drop rise or fall freely, we may use 
a hanging drop, which, while it sinks, remains suspended to the 
surface. Thus it cannot form a complete annulus, but only a

* J. J. Thomson and H. F. Newall, On the formation of vortex-rings by drops, 
Proc. R.S. xxxix, pp. 417-436, 1885. Emil Hatschek, On forms assumed by a 
gelatinising liquid m various coagulating solutions, ibid. (A) xciv, pp. 303-316, 1918.
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partial vortex suspended by a thread or column—just as in Over
beck’s jet-experiments; and the figure so produced, in either case, 
is closely analogous to that of a medusa or jellyfish, with its bell 
or “umbrella,” and its clapper or “manubrium” as well. Some 
years ago Emil Hatschek made such vortex-drops as these of liquid 
gelatine dropped into a hardening fluid. These “artificial medusae” 
sometimes show a symmetrical pattern of radial “ribs”, due to 
shrinkage, and this to dehydration by the coagulating fluid. An

Fig. 121. Various medusoids: 1, Syncoryne; 2, Cordylophora;
3, Cladonema (after Allman).

extremely curious result of Hatsuhek’s experiments is to shew how 
sensitive these vorticoid drops are to physical conditions. For using 
the same gelatine all the while, and merely varying the density of 
the fluid in the third decimal place, we obtain a whole range of 
configurations, from the ordinary hanging drop to the same with a 
ribbed pattern, and then to medusoid vertices of various graded forms.

The living medusa has a geometrical symmetry so marked and regular 
as to suggest a physical or mechanical element in the little creature’s 
growth and construction. It has, to begin with, its vortex-like bell 
or umbrella, with its cylindrical handle or manubrium. The bell is
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traversed by radial canals, four or in multiples of four; its edge is 
beset with tentacles, smooth or often beaded, at regular intervals 
and of graded sizes; and certain sensory structures, including solid 
concretions or “otoliths,” are also symmetrically interspaced. No 
sooner made, than it begins to pulsate; the little bell begins to “ ring.”

Fig. 1216. “Medusoid drops”, of gelatin. After Hatschek.

Buds, miniature replicas of the parent-organism, are very apt to appear 
on the tentacles, or on the manubrium or sometimes on the edge of the 
bell; we seem to see one vortex producing others before our eyes. 
The development of a medusoid deserves to be studied without 
prejudice, from this point of view. Certain it is that the tiny 
medusoids of Obelia, for instance, are budded off with a rapidity 
and a complete perfection which suggest an automatic and all but 
instantaneous act of conformation, rather than a gradual process of 
growth.

Moreover, not only do we recognise in a vorti- 
coid drop a “schema” or analogue of medusoid 
form, but we seem able to discover various actual 
phases of the splash or drop in the all but in
numerable living types of jellyfish; in Cladonema Fig 122. Medmach- 
we seem to see an early stage of a breaking drop, loris, a ciliate 
and in Cordylophora a beautiful picture of incipient infusoria, 

vortices. It is hard indeed to say how much or little all these 
analogies imply. But they indicate, at the very least, how certain 
simple organic forms might be naturally assumed by one fluid mass 
within another, when gravity, surface, tension and fluid friction play
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their part, under balanced conditions of temperature, density and 
chemical composition.

A little green infusorian from the Baltic Sea is, as near as may 
be, a medusa in miniature*. It is curious indeed to find the same 
medusoid, or as we may now call it vorticoid, configuration occurring 
in a form so much lower in the scale, and so much less in order of 
magnitude, than the ordinary medusae.

According to Plateau, the viscidity of the liquid, while it 
retards the breaking up of the cylinder and increases the length 
of the segments beyond that which theory demands, has never
theless less influence in this direction than we might have expected. 
On the other hand any external support or adhesion, or mere 
contact with a solid body, will be equivalent to a reduction of 
surface-tension and so will very greatly increase the stability of 
our cylinder. It is for this reason that the mercury in our thermo
meters seldom separates into drops: though it sometimes does so, 
much to our inconvenience. And again it is for this reason that 
the protoplasm in a long tubular or cylindrical cell need not divide 
into separate cells and internodes until the length of these far 
exceeds the theoretical limits.

An interesting case is that of a viscous drop immersed in another 
viscous fluid, and drawn out into a thread by a shearing motion of 
the latter. The thread seems stable at first, but when left to rest 
it breaks up into drops of a very definite and uniform size, the size 
of the drops, or wave-length of the unduloid of which they are made, 
depending on the relative viscosities of the two threads f.

Plateau’s results, though discovered by way of experiment and 
though (as we have said) they illustrate the “materialisation” of 
mathematical law, are nevertheless essentially theoretical results 
approached rather than realised in material systems. That a liquid 
cylinder begins to be unstable when its length exceeds 2ttt is all 
but mathematically true of an all but immaterial soap-bubble; but 
very far from true,1 as Plateau himself was well aware, in a flowing 
jet, retarded by viscosity and by inertia. The principle is true and 
universal; but our living cylinders do not follow the abstract laws

* Medusachloris phiale, of A. Pascher, Biol. Centralbl. nxxvil, pp. 421—429, 1917.
t See especially Rayleigh, Phil. Mag. xxxrv, p. 145, 1892, by whom the subject 

is carried much further than where Plateau left it. See also (int. al.) G. I. Taylor, 
Proc. R.S. (A), cxlvi, p. 501, 1934; S.’Tomotika, ibid, cl, p. 322, 1935; etc. 



V] OF VISCOUS THREADS 399

of mathematics, any more than do the drops and jets of ordinary 
fluids or the quickly drawn and quickly cooling tubes in the glass
worker’s hands.

Plateau says that in most liquids the influence of viscosity is such 
as to cause the cylinder to segment when its length is about four 
times, or even six times, its diameter, instead of a fraction over 
three times, as theory would demand of a perfect fluid. If we take 
it at four times, the resulting spherules would have a diameter of 
about 1-8 times, and their distance apart would be about 2-2 times, 
the original diameter of the cylinder; and*the  calculation is not 
difficult which would shew how these dimensions are altered in the 
case of a cylinder formed around a solid core, as in the case of a 
spider’s web. Plateau also observed that the time taken in the 
division of the cylinder is directly proportional to its diameter, 
while varying with the nature of the liquid.- This question, of the 
time taken in the division of a cell or filament in relation to its 
dimensions, has not so far as I know been enquired into by biologists.

* Cf. Dewar, On soap-bubbles of long duration, Proc. Roy. Inst. Jan. 19, 1929.

From the simple fact that the sphere is of all configurations that 
whose surface-area for a given volume is an absolute minimum, we 
have seen it to be the one figure of equilibrium assumed by a- drop 
or vesicle when no disturbing factor is at hand; but such freedom 
from counter-influences is likely to be rare, and neither does the rain
drop nor the round world itself retain its primal sphericity. For one 
thing, gravity will always be at hand to drag and distort our drop 
or bubble, unless its dimensions be so minute that gravity becomes 
insignificant compared with capillarity. Even the soap-bubble will 
be flattened or elongated by gravity, according as we support it 
from below or from above; and the bubble which is thinned out 
almost to blackness will, from its small mass, be the one which 
remains most nearly spherical*.

Innumerable new conditions will be introduced, in the shape of 
complicated tensions and pressures, when one drop or bubble 
becomes associated with another, and when a system of inter
mediate films or partition-walls is developed between them. This 
subject we shall discuss later, in connection with cell-aggregates or 
tissues, and we shall find that further theoretical considerations are 
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needed as a preliminary to any such enquiry. Meanwhile let us 
consider a few cases of the forms of cells, either solitary, or in such 
simple aggregates that their individual form is little disturbed thereby. 
Let us clearly understand that the cases we are about to consider 
are those where the perfect symmetry of the sphere is replaced by 
another symmetry, less complete, such as that of an ellipsoidal or 
cylindrical cell. The cases of asymmetrical deformation or dis
placement, such as are illustrated in the production of a bud or 
the development of a lateral branch, are much simpler; for here 

_we need only assume a slight and localised variation of surface
tension, such as may be brought about in various ways through 

. the heterogeneous chemistry of the cell. But such r diffused and 
graded asymmetry as brings about for instance the ellipsoidal shape 
of a yeast-cell is another matter.

If the sphere be the one surface of complete symmetry and 
therefore of independent equilibrium, it follows that in every cell 
which is otherwise conformed there must be some definite cause of 
its departure from sphericity; and if this cause be the obvious one 
of resistance offered by a solidified envelope, such as an egg-shell 
or firm cell-wall, we must still seek for the deforming force which 
was in action to bring about the given shape prior to the assumption 
of rigidity. Such a cause may be either external to, or may lie 
within, the cell itself. On the one hand it may be due to external 
pressure or some form of mechanical restraint, as when we submit our 
bubble to the partial restraint of discs or rings or more complicated 
cages of wire; on the other hand it maybe due to intrinsic causes, which 
must come under the head either of differences of internal pressure, 
or of lack of homogeneity or isotropy in the surface or its envelope*.

* A case which we have not specially considered, but which may be found to 
deserve consideration in biology, is that of a cell or drop suspended in a liquid of 
varying density, for instance in the upper layers of a fluid (e.g. sea-water) at whose 
surface condensation is going on, so as to produce a steady density-gradient. In 
this case the normally spherical drop will be flattened into an oval form, with its 
maximum surface-curvature lying at the level where the densities of the drop 
and the surrounding liquid are just equal. The sectional outline of the drop has 
been shewn to be not a true oval or ellipse, but a somewhat complicated quartic 
curve. (Rice, Phil. Mag. Jan. 1915.) A more general case, which also may well 
deserve consideration by the biologist, is that of a charged bubble in (for instance) 
a uniform field of force: which will expand or elongate in the direction of the lines 
of force, and become a spheroidal surface in continuous transformation with the 
original sphere.
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Our formula of equilibrium, or equation to an elastic surface, i£ 
P = pe + (T/R + T' 'R'), where P is the internal pressure, pe any 
extraneous pressure normal to the surface, R, R' the radii of 
curvature at a point, and T, T' the corresponding tensions, normal 
to one another, of the*envelope.

Now in any given form which we seek to account for, R, R' are 
known quantities; but all the other factors of the equation are 
subject to enquiry. And somehow or other, by this formula, we 
must account for the form of any solitary cell whatsoever (provided 
always that it be not formed by successive stages of solidification), 
the cylindrical cell of Spirogyra, the ellipsoidal yeast-cell, or (as 
we shall see in another chapter) even the egg of any bird. In 
using this formula hitherto we have taken it in a simplified form, 
that is to say we have made several limiting assumptions. We have 
assumed that P was the uniform hydrostatic pressure, equal in all 
directions, of a body of liquid; we have assumed likewise that the 
tension T was due to surface-tension in a homogeneous liquid film, 
and was therefore equal in all directions, so that T = T', and we 
have only dealt with surfaces, or parts of a surface, where extraneous 
pressure, pn. was non-existent. Now in the case of a bird’s egg 
the external pressure pn, that is to say the pressure exercised by 
the walls of the oviduct, will be found to be a very important 
factor; but in the case of the yeast-cell or the Spirogyra, wholly 
immersed in water, no such external pressure comes into play. 
We are accordingly left in such cases as these last with two 
hypotheses, namely that the departure from a spherical form is due 
to inequalities in the internal pressure P, or else to inequalities in 
the tension T, that is to say to a difference between T and T'. 
In other words, it is theoretically possible that the oval form of a 
yeast-cell is due to a greater internal pressure, a greater “tendency 
to grow” in the direction of the longer axis of the ellipse, or 
alternatively, that with equal and symmetrical tendencies to growth 
there is associated a difference of external resistance in respect of 
the tension, and implicitly the molecular structure, of the cell-wall. 
Now the former hypothesis is not impossible. Protoplasm is far 
from being a perfect fluid; it is the seat of various internal forces, 
sometimes manifestly polar, and it is quite possible that the forces, 
osmotic and other, which lead to an increase of the content of the

TG F 26
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cell and are manifested in pressure outwardly directed upon its wall 
may be unsymmetrical, and such as to deform what would otherwise 
be a simple sphere. But while this hypothesis is not impossible, 
it is not very easy of acceptance. The protoplasm, though not a 
perfect fluid, has yet on the whole the properties of a fluid; within 
the small compass of the cell there is little room for the development 
of unsymmetrical pressures: and in such a case as Spirogyra, where 
most part of the cavity is filled by watery sap, the conditions are 
still more obviously, or more nearly, those under which a uniform 
hydrostatic pressure should be displayed. But in variations of T, 
that is to say of the specific surface-tension per unit area, we have 
an ample field for all the various deformations with which we shall 
have to deal. Our condition now is, that (T R + T'/ R') = a con
stant; but it no longer follows, though it may still often be the 
case, that this will represent a surface of absolute minimal area. 
As soon as T and T' become unequal, we are no longer dealing 
with a perfectly liquid surface film; but its departure from perfect 
fluidity may be of all degrees, from that of a slight non-isotropic 
viscosity to the state of a firm elastic membrane*; and it matters 
little whether this viscosity or semi-rigidity be manifested in the 
self-same layer which is still a part of the protoplasm of the cell, 
or in a layer which is completely differentiated into a distinct and 
separate membrane. As soon as, by secretion or adsorption, the 
molecular constitution of the surface-layer is altered, it is clearly 
conceivable that the alteration, or the secondary chemical changes 
which follow it, may be such as to produce an anisotropy, and to 
render the molecular forces less capable in one direction than another 
of exerting that contractile force by which they are striving to reduce 
to a minimum the surface area of the cell. A slight inequality m 
two opposite directions will produce the ellipsoid cell, and a great 
inequality will give rise to the cylindrical cell.

I take it therefore, that the cylindrical cell of Sptrogyra, or any 
other cylindrical cell which grows in freedom from any manifest 
external restraint, has assumed that particular form simply by 
reason of the molecular constitution of its developing wall or

* Indeed any non-isotropic stiffness, even though T remained uniform, would 
simulate, and be indistinguishable from, a condition of non-stiffness and non- 
isotropic T.
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membrane; and that this molecular constitution was anisotropous, 
in such a way as to render extension easier in one direction than 
another. Such a lack of homogeneity or of isotropy in the 
cell-wall is often rendered visible, especially in plant-cells, in the 
form of concentric lamellae, annular and spiral striations, and the 
like. But there exists yet another heterogeneity, to help us account 
for the long threads, hairs, fibres, cylinders, which are so often 
formed. Carl Nageli said many years ago that organised bodies, 
starch-grains, cellulose and protoplasm itself, consisted of invisible 
particles, each an aggregate of many molecules—he called them 
micellae', and these were isolated, or “disper?ed as we should say, 
in a watery medium. This theory was, to begin with, an attempt to 
account for the colloid state; but at the same time, the particles 
were supposed to be so ordered and arranged as to render the 
substance anisotropic, to confer on it vectorial properties as we say 
nowadays, and so to account for the polarisation of light by a starch- 
grain or a hair. It was so criticised by Biitschli and von Ebner that 
it fell into disrepute, if not oblivion; but a great part of it was true. 
And the micellar structure of wool, cotton, silk and similar substances 
is now rendered clearly visible by the same X-ray methods as 
revealed the molecular orientation, or lattice-structure, of a crystal 
to von Laue. I

It is now well known that the cell-wall has in many cases a definite structure 
which depends on molecular assemblages in the material of which it is com
posed, and is made visible by X-rays in the form of "diffraction patterns”. 
The green alga Valonia has very large bubbly cells, 2-3 centimetres long, with 
cell-walls formed, as usual, of cellulose; this substance is a polysaccharide, 
with long-chain molecules some 500 Angstrom-units, or say 0-05 p long, 
bound together sideways to form a multiple sheet or three-dimensional lattice. 
In the cell-wall of Valonia one set of chains runs round in a left-handed 
spiral, another forms meridians from pole to pole, and these two layers 
are superposed alternately to build the wall. Hemp has two layers, both 
running in right-handed spirals; flax two layers, crossing and recrossing in 
spirals of opposite sign. Even the cytoplasm and its contents seem to be 
influenced by molecular “lignes directrices,” orresponding to the striae of 
the cell-wall. Analogous but still more complicated results of molecular 
structure are to be found in wool, cotton and other fibres*.

* Cf. R. D. Preston, Phil. Trans. (B), ccxxiv, p. 131, 1934; Preston and Astbury, 
Proc. R.S. (B), cxxn, pp. 76-97, 1937; and many other important papers by 
Astbury, van Iterson, Heyn, and others. We are brought by them to a borderland

26-2
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But this phenomenon, while it brings about a certain departure 
from complete symmetry, is still compatible with, and coexistent 
with, many of the phenomena which we have seen to be associated 
with surface-tension. The symmetry of tensions still leaves the 
cell a solid of revolution, and its surface is still a surface of equi
librium. The fluid pressure within the cylinder still causes the 
film or membrane which caps its ends to be of a spherical form. 
And in the young cell, where the surface pellicle is absent or but 
little differentiated, as for instance in the oogonium of Achlya or 
in the young zygospore of Spirogyra, we see the tendency of the 
entire structure towards a spherical form reasserting itself: unless, 
as in the latter case, it be overcome by direct compression within 
the cylindrical mother-cell. Moreover, in those cases where the 
adult filament consists of cylindrical cells we see that the young 
germinating spore, at first spherical, very soon assumes with growth 
an elliptical or ovoid form—the direct result of an incipient aniso
tropy of its envelope, which when more developed will convert the 
ovoid into a cylinder. We may also notice that a truly cylindrical 
cell is comparatively rare, for in many cases what we call a 
cylindrical cell shews a distinct bulging of its sides; it is not truly 
a cylinder, but a portion of a spheroid or ellipsoid.

Unicellular organisms in general—protozoa, unicellular crypto
gams, various bacteria and the free isolated cells, spores, ova, etc. 
of higher organisms—are referable for the most part to a small 
number of typical forms; but there are many others in which either 
no symmetry is to be recognised, or in which the form is clearly 
not one of equilibrium. Among these latter we have A mot ba itself 
and all manner of amoeboid organisms, and also many curiously 
shaped cells such as the Trypanosomes and various aberrant 
Infusoria. We shall return to the consideration of these; but in 
the meanwhile it will suffice to say (and to repeat) that, inasmuch 
as their surfaces are not equilibrium-surfaces, so neither are the 
living cells themselves in any stable equilibrium. On the contrary, 
they are in continual flux and movement, each portion of the 
between chemical and histological structure, where micellae and long-chain molecules 
enlarge and alter our conceptions not only of cellulose and keratin, but of pseudopodia 
and cilia, of bone and muscle^ and of the naked surface of the cell. See L. E. R. 
Picken, The fine structure of biological systems, Biol. Reviews, xv, pp. 133-67, 1940.
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surface constantly changing its form, passing from one phase to 
another of an equilibrium which is never stable for more than a 
moment, and which death restores to the stable equilibrium of a 
sphere. The former class, which rest in stable equilibrium, must 
fall (as we have seen) into two classes— those whose equilibrium 
arises from liquid surface-tension alone, and those in whose con
formation some other pressure or restraint has been superimposed 
upon ordinary surface-tension.

To the fact that all these organisms belong to an order of 
magnitude in which form is mainly, if not wholly, conditioned and 
controlled by molecular forces is due the limited range of forms 
which they actually exhibit. They vary according to varying 
physical conditions. Sometimes they do so in so regular and 
orderly a way that we intuitively explain them as “phases of a 
fife-history,” and leave physical properties and physical causation 
alone: but many of their variations of form we treat as exceptional, 
abnormal, decadent or morbid, and are apt to pass these over in 
neglect, while we give our attention to what we call a typical or 
“characteristic” form or attitude. In the case of the smallest 
organisms, bacteria, micrococci, and so forth, the range of form is 
especially limited, owing to their minuteness, the powerful pressure 
which their highly curved surfaces exert, and the comparatively 
homogeneous nature of their substance. But within their narrow 
range of possible diversity these minute organisms are protean in 
their changes of form. A certain species will not only change its 
shape from stage to stage of its little “cycle” of life; but it will 
be remarkably different in outward form according to the circum
stances under which we find it, or the histological treatment to 
which we subject it. Hence the pathological student, commencing 
the study of bacteriology, is early warned to pay little heed to 
differences of form, for purposes of recognition or specific identi
fication. Whatever grounds we may have for attributing to 
these organisms a permanent or stable specific identity (after 
the fashion of the higher plants and animals), we can seldom 
safely do so on the ground of definite and always recognisable 
form', we may often be inclined, in short, to ascribe to them a 
physiological (sometimes a “pathogenic”) rather than a morpho
logical specificity.
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Many unicellular forms, and a few other simple organisms, are 
spherical, and serve to illustrate in the simplest way the point at 
issue. Unicellular algae, such as Protococcus or Halisphaera, the 
innumerable floating eggs of fishes, the floating unilocular foraminifer 
Orbulina, the lovely green multicellular Volvox of our ponds, all 
these in their several grades of simplicity or complication are so 
many round drops, spherical because no alien forces have deformed 
or mis-shapen them. But observe that, with the exception of 
Volvox, whose spherical body is covered wholly and uniformly with 
minute cilia, all the above are passive or inactive forms; and in a 
“resting” or encysted phase the spherical form is common and 
general in a great range of unicellular organisms.

Conversely, we see that those unicellular forms which depart 
markedly from sphericity- -excluding for the moment the amoeboid 

forms and those provided with skeletons 
—are all ciliate or flagellate. Cilia and 
flagella are sui generis: we know nothing 
of them from the physical side, we cannot 
reproduce or imitate them in any non
living drop or fluid surface. But we can 
easily see that they have an influence on 
form, besides serving for locomotion. 
M hen our little Monad or Euglena

Fig. 123. A flagellate “monad,” develops a flagellum, that is in itself an 
Distigma proteus Ehr. indication of asymmetry or “polarity,” 
After Saville Kent. r ~ -x c xv rxxi n jof non-homogeneity of the little cell; and 

in the various flagellate types the flagellum or its analogues always 
stand on prominent points, or ends, or edges of the cell -on parts, 
that is to say, where curvature is high and surface-tension may be 
expected to be low —for the product of surface-tension by mean 
curvature tends to be constant.

The minute dimensions of a cilium or a flagellum are such that the molecular 
forces leading to surface-tension must here be under peculiar conditions and 
restraints; we cannot hope to understand them by comparison with a whip
lash, or through any other analogy drawn from a different order of magnitude. 
I suspect that a ciliary surface is always electrically charged, and that 
a point-charge is formed or induced in each cilium or flagellum. Just as we 
learn the properties of a drop or a jet as phenomena proper to their scale of 
magnitude, so some day we shall learn the very different physical, but 



v] OF CILIA AND FLAGELLA 407
microcosinic, properties of these minute, mobile, pointed, fluid or semi-fluid 
threads.*

Cilia, like flagella, tend to occupy positions, or cover surfaces, 
which would otherwise be unstable; and often indeed (as in a 
trochosphere larva or even in a Rotifer) a ring of cilia seems to 
play the very part of one of Plateau’s wire rings, supporting and 
steadying the semi-fluid mass in its otherwise unstable configura
tion. Let us note here (in passing) what seems to be an analogous 
phenomenon. Chitinous hairs, spines or bristles are common and 
characteristic structures among the smaller Crustacea, and more or 
less generally among the Arthropods. We find them at every 
exposed point or corner; they fringe the sharp edge or border of 
a limb; as we draw the creature, we seem to know where to put 
them in! In short, they tend to occur, as the flagella do, just where 
the surface-tension would be lowest, if or when the surface was in 
a fluid condition.

Of the other surfaces of Plateau, we find cylinders enough and 
to spare in Spirogyra and a host of other filamentous algae and 
fungi. But it is to the vegetable kingdom that we go to find them, 
where a cellulose envelope enables the cylinder to develop beyond 
its ordinary limitations.

The unduloid makes its appearance whenever sphere or cylinder 
begin to give way. AV e see the transitory figure of an unduloid in 
the normal fission of a simple cell, or of the nucleus itself; and we 
have already seen it to perfection in the incipient headings of a 
spider’s web, or of a pseudopodial thread of protoplasm. A large 
number of infusoria have unduloid contours, in part at least; and 
this figure appears and reappears in a great variety of forms. The 
cups of various Vorticellae (Fig. 1'24), below the ciliated ring, look 
like a beautiful series of unduloids, in every gradation of form, from 
what is all but cylindrical to all but a perfect sphere; moreover 
successive phases in their life-history appear as mere graded changes

* It is highly characteristic of a cilium or a flagellum that neither is ever seen 
motionless, unless the cell to which it belongs is moribund. “ I believe the motion 
to be ceaseless, unconscious and uncontrolled, a direct function of the chemical. 
and physical environment”; George Bidder, in Presidential Address to Section D, 
British Association, 1927. Cf. also James Gray, Proc,. R.S. (B), xcix, p. 398, 
1926.
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of unduloid form. It has been shewn lately, in one or two 
instances at least, that species of Vorticella may “metamorphose” 
into one another: in other words, that contours supposed to charac
terise species are not “specific”. These Vorticellid unduloids are

Fig. 124. Various species of Vorticella.

Fig. 125. Various species of Salpingoeca.

Fig. 126. Various species of Tintinnus, Dinobryon and Codonella. 
After Saville Kent and others.

not fully symmetrical; rather are they such unduloids as develop 
when we suspend an oil-globule between two unequal rings, or ble w 
a bubble between two unequal pipes. For our Vorticellid bell hangs 
by two terminal supports, the narrow stalk to which it is attached 
below, and the thickened ring from which spring its circumo’al 
cilia; and it is most interesting to see how, when the bell leaves 
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its stalk (as sometimes happens) and swims away, a new ring of 
cilia comes into being, to encircle and support its narrow end.

Similar unduloids may be traced in even greater variety among 
other families or genera of the Infusoria. Sometimes, as in Vorticella 
itself, the unduloid is seen in the contour of the soft semifluid 
body of the living animal. At other times, as in Salpingoeca, 
Tintinnus, and many other genera, we have a membranous cup 
containing the animal, but originally secreted by, and moulded 
upon, its semifluid living surface. Here we have an excellent 
illustration of the contrast between the different ways in which 
such a structure may be regarded and interpreted. The teleological 
explanation is that it is developed for the sake of protection,

Fig. 127. Vaginicola. Fig. 128. Folliculina.

as a domicile and shelter for the little organism within. The 
mechanical explanation of the physicist (seeking after the “efficient,” 
not the “final” cause) is that it owes its presence, and its actual 
conformation, to certain chemico-physical conditions: that it was 
inevitable, under the given conditions, that certain constituent 
substances present in the protoplasm should be drawn by molecular 
forces to its surface layer; that under this adsorptive process, the 
conditions continuing favourable, the particles accumulated and 
concentrated till they formed (with the help of the surrounding 
medium) a pellicle or membrane, thicker or thinner as the case 
might be; that this surface pellicle or membrane was inevitably 
bound, by molecular forces to contract into a surface of the 
least possible area which the circumstances permitted; that in 
the present case the symmetry and “freedom” of the system 
permitted, and ipso facto caused, this surface to be a surface of 
revolution; and that of the few surfaces of revolution which, as 
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being also surfaces minimae areae, were available, the unduloid was 
manifestly the one permitted, and ipso facto caused, by the dimen
sions of the organism and other circumstances of the case. And

Fig. 129. Trachdo- 
phyllum. After 
Wreszniowski.

just as the thickness or thinness of the pellicle 
was obviously a subordinate matter, a mere 
matter of degree, so we see that the actual 
outline of this or that particular unduloid is 
also a very subordinate matter, such as physico
chemical variants of a minor order would suffice 
to bring about; for between the various undu- 
loids which the various species of Vorb cella 
represent, there is no more real difference than 
that difference of ratio or degree which exists 
between two circles of different diameter, or 
two lines of unequal length.

In many cases (of which Fig. 129 is an 
example) we have a more or less unduloid form 
exhibited not by a surrounding pellicle or shell, 
but by the soft protoplasmic body of a ciliated 
organism; in such cases the form is mobile, 
and changes continually from one to another 
unduloid contour according to the movements 
of the animal.* We are dealing here with no 
stable equilibrium, but possibly with a subtle 
problem of “streain-lines.” as in the difficult 
but beautiful problems suggested by the form 
of a fish. But this whole class of cases, and 

of problems, we merely take note of here; we shall speak of shem 
again,, but their treatment is hard.

In considering such series of forms as these various unduloics we 
are brought sharply up (as in the case of our bacteria or micrococci) 
against the biological concept of organic species. In the insense 
classificatory actiyity of the last hundred years it has come about 
that every form which is apparently characteristic, that is tc say 
which is capable of being described or portrayed, and of being

* Doflein lays stress, in like manner, on the fact that Spirochaete, inlike 
Spirillum, “ist nicht von einer starren Membran umhiillt,” and that warns of 
contraction may be seen passing down its body. 
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recognised when met with again, has been recorded as a species— 
for we need not concern ourselves with the occasional discussions, 
or individual opinions, as to whether such and such a form deserves 
“specific rank,” or be “only a variety.” And this secular labour 
is pursued in direct obedience to the precept of the Systema Naturae 
—“ut sic in summa confusione rerum apparenti, summus conspiciatur 
Naturae ordo.” In like manner the physicist records, and is entitled 
to record, his many hundred “species” of snow-crystals*, or of 
crystals of calcium carbonate. Indeed the snow-crystal illustrates to 
perfection how Nature rings the changes on every possible variation 
and permutation and combination of form: subject only to the 
condition (in this instance) that a snow-crystal shall be a plane, 
symmetrical, rectilinear figure, with all its external angles those of 
a regular hexagon. We may draw what we please on a sheet of 
“hexagonal paper,” keeping to its lines; and when we repeat our 
drawing, kaleidoscope-fashion, about a centre, the stellate figure so 
obtained is sure to resemble one or another of the many recorded 
species of snow-crystals. And this endless beauty of crystalline 
form is further enhanced when the flakes begin to thaw, and all 
their feathery outlines soften. But regarding these “species” of his, 
the physicist makes no assumptions: he records them simpliciter; 
he notes, as best he can, the circumstances (such as temperature or 
humidity) under which each occurs, in the hope of elucidating the 
conditions which determine their formation f; but above all, he

* The case of the snow-crystals is a particularly interesting one; for their 
“distribution” is analogous to what we find, for instance, among our microscopic 
skeletons of Radiolarians. That is to say, we may one day meet with myriads 
of some one particular form or species, and another day with myriads of another; 
while at another time and place we may find species intermingled in all but 
inexhaustible variety. Cf. e.g. J. Glaisher, Illustrated London News, Feb. 17, 1855; 
Q.J.M.S. in, pp. 179-185, 1855; Sir Edward Belcher, Last of the Arctic Voyages, 
n, pp. 288-306 (4 plates), 1855; William Scoresby, An Account of the Arctic Regions, 
Edinburgh, 1820; G. Hellmann, Schneekrystalle, Berlin, 1893; Bentley and Hum
phreys, Snow Crystals, New York, 1931; and the especially beautiful figures of 
Nakaya and Hasikura in Journ. Fac. Sci. Hokkaido, Det-. 1934.

f Every snow-crystal tells, more or less plainly, the story of its own development. 
The cold upper air is saturated with water-vapour, but this is scanty and rarefied 
compared with the space in' which snow-crystallisation is going on. Hence 
crystallisation tends to proceed oniy along the main axes, or cardinal framework, 
of the crystalline structure of ice; in so doing it gives a visible picture or actual 
embodiment of the trigonal-hexagonal space-lattice, in the endless permutations 
and combinations of its constituent elements.
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does not introduce the element of time, and of succession, or discuss 
their origin and affiliation as an historical sequence of events. But 
in biology, the term species carries with it many large though often 
vague assumptions; though the doctrine or concept of the “per
manence of species ” is dead and gone, yet a certain quasi-permanency 
is still connoted by the term. If a tiny foraminiferal shell, a Lagena 
for instance, be found living to-day, and a shell indistinguishable 
from it to the eye be found fossil in the Chalk or some still more 
remote geological formation, the assumption is deemed legitimate 
that that species has “survived,” and has handed down its minute 
specific character or characters from generation to generation, 
unchanged for untold miffions of years*.  If the ancient forms be 
like to rather than identical with the recent, we still assume an 
unbroken descent, accompanied by the hereditary transmission of 
common characters and progressive variations. And if two identical 
forms be discovered at the ends of the earth, still (with occasional 
slight reservations on the score of possible “homoplasy”) we build 
hypotheses on this fact of identity, taking it for granted that the 
two appertain to a common stock, whose'dispersal in space must 
somehow be accounted for, its route traced, its epoch determined, 
and its causes discussed or discovered. In short, the naturalist 
admits no exception to the rule that a natural classification can only 
be a genealogical one, nor ever doubts that “ The fact that we are able 
to classify organisms at all in accordance with the stiuctural charac
teristics which they present is due to the fact of their being related by 
descent^.” But this great and valuable and even fundamental 
generalisation sometimes carries us too far. It may be safe and 
sure and helpful and illuminating when we apply it to such complex 
entities- -such thousand-fold resultants of the combination and 
permutation of many variable characters- -as a horse, a lion or an 
eagle; but (to my mind) it has a very different look, and a fa? less 
firm foundation, when we attempt to extend it to minute organisms 
whose specific characters are few and simple, whose simplicity 

* Cf. Bergson, Creative Evolution, p. 107: “Certain Foraminifera have not 
varied since the Silurian epoch. Unmoved witnesses of the innumerable revolu
tions that have upheaved our planet, the Lingulae are today what they were at 
the remotest times of the palaeozoic era.”

f Ray Lankester, A.M.N.H. (4), xi, p. 321, 1873.
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becomes more manifest from the point of view of physical and 
mathematical analysis, and whose form is referable, or largely 
referable, to the direct action of a physical force. When we come 
to the minute skeletons of the Radiolaria we shall again find our
selves dealing with endless modifications of form, in which it becomes 
more and more difficult to discern, and at last vain and hopeless to 
apply, the guiding principle of affiliation or “ phylogeny.”

Among the Foraminifera we have an immense variety of forms, 
which, in the light of surface-tension and of the principle of minimal 
area, are capable of explanation and of reduction to a small number 
of characteristic types. Many of them are composite structures, 
formed by the successive imposition of cell upon cell, and these we shall 
deal with later on; let us glance here at the simpler conformations 
exhibited by the single chambered or “ monothalamic ” genera, and 
perhaps one or two of the simplest composites.

We begin with forms like Astrorhiza (Fig. 320, p. 703), which are 
large, coarse and highly irregular, and end with others which are 
minute and delicate, and which manifest a perfect and mathe
matical regularity. The broad difference between these two types 
is that the former are characterised, like Amoeba, by a variable 
surface-tension, and consequently by unstable equilibrium; but the 
strong contrast between these and the regular forms is bridged over 
by various transition-stages, or differences of degree. Indeed, as 
in all other Rhizopods, the very fact of the emission of pseudopodia, 
which are especially characteristic of this group of animals, is 
a sign of unstable surface-equilibrium; and we must therefore 
consider, or may at least suspect, that those forms whose shells 
indicate the most perfect symmetry and equilibrium have secreted 
these during periods when rest and uniformity of surface-conditions 
contrasted with the phases of pseudopodial activity. The irregular 
forms are in almost all cases arenaceous, that is to say they have 
no solid shells formed by steady adsorptive secretion, but only a 
looser covering of sand grains with which the protoplasmic body 
has come in contact and cohered. Sometimes, as in Ramulina, we 
have a calcareous shell combined with irregularity of form; but 
here we can easily see a partial and as it were a broken regularity, 
the regular forms of sphere and cylinder being repeated in various 
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parts of the ramified mass. When we look more closely at the 
arenaceous forms, we find the same thing true of them; they 
represent, in whole or part, approximations to the surfaces of 
equilibrium, spheres, cylinders and so forth. In Aschemonella we 
have a precise replica of the calcareous Ramulina; and in Astrorhiza 
itself, in the forms distinguished by naturalists as A. crassatina, 
what is described as the “subsegmented interiot*” seems to shew

Fig. 130. Various species of Lalena. After Brady.

the natural, physical tendency of the long semifluid cylinder of 
protoplasm to contract at its limit of stability into unduloid 
constrictions, as a step towards the breaking up into separate 
spheres: the completion of which process is restrained or prevented 
by contact with the unyielding arenaceous covering.

Passing to the typical calcareous Foraminifera, we have the most 
symmetrical of all possible types in the perfect sphere of Orbulina:, 
this is a pelagic organism, whose floating habitat gives it a field of

* Brady, Challenger Monograph, pl. xx, p. 233. 
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force of perfect symmetry. Save for one or two other forms which 
are also spherical, or approximately so, like Thuramtnina, the rest 
of the monothalamic calcareous 
Foraminifera are all comprised by 
naturalists within the genus 
Lagena. This large and varied 
genus consists of “flask-shaped” 
shells, whose surface is that of an 
unduloid, or, like that of a flask 
itself, an unduloid combined with 
a portion of a sphere. M e do 
not know the circumstances under 
which the shell of Lagena is formed, 
nor the nature of the force by 
which, during its formation, the 
surface is stretched out into the 
unduloid form; but we may be 
pretty sure that it is suspended 
vertically in the sea, that is to 
say in a position of symmetry as 
regards its vertical axis, about 
which the unduloid surface of re
volution is symmetrically formed.

Fig. 131. Roman pottery, for comparison 
with species of Lagena. E.g., 1,2, with 
L. sulcata; 3, L. orbignyana; 4, L. 
striata; 5, L. crenata; 6, L. stelligera.

At the same time we have other
types of the same shell in which the form is more or less flattened; 
and these are doubtless the cases in which such symmetry of position 
was not present, or was replaced by a broader, lateral contact with 
the surface pellicle*.

While Orbulina is a simple spherical drop, Lagena suggests to our 
minds a hanging drop, drawn out to a longer or shorter neck by

* That the Foraminifera not only can but do hang from the surface of the 
water is confirmed by the following apt quotation which I owe to Mr E. Heron- 
Allen: “Quand on place, comme il a ete dit. le depot provenant du lavage des 
fucus dans un flacon que 1’on remplit de nouvelle eau, on voit au bout d’une heure 
environ les ahimaux [Gromia dujardinii] se mettre en mouvement et commencer 
a grimper. Six heures apres ils tapissent 1’exterieur du flacon, de sorte que les plus 
eleves sont a trente-six ou quarante-deux millimetres du fond; le lendemain 
beaucoup d’entre eux, apris avoir atteint le niveau du liquide, ont continui d Tamper 
a sa surface, en se laissant pendre au-dessous comme certains mollusques gastero- 
podes.” (F. Dujardin, Observations nouvelles sur les pretendus cephalopodes 
microscopiques, Ann. des Sci. Nat. (2), in, p. 312, 1835.) 
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its own weight, aided by the viscosity of the material. Indeed the 
various hanging drops, such as Mr C. R. Darling shews us, are the 
most beautiful and perfect unduloids, with spherical ends, that it 
is possible to conceive. A suitable liquid, a little denser than water 
and incapable of mixing with it (such as ethyl benzoate), is poured 
on a surface of water. It spreads over the surface and gradually 
forms a hanging drop, approximately hemispherical; but as more 
liquid is added the drop sinks or rather stretches downwards, still 
adhering to the surface film; and the balance of forces between 
gravity and surface tension results in the unduloid contour, as the 
increasing weight of the drop tends to stretch it out and finally 
break it in two. At the moment of rupture, by the way, a tiny

Fig. 132. Large “hanging drops” of oil. After Darling.

droplet is formed in the attenuated neck, such as we described in 
the normal division of a cylindrical thread.

The thin, fusiform, pointed, non-globular Lagenas are less easily 
explained. Surface-tension, which tends to keep the drop spherical, 
is overmastered here, and the elongate shape suggests the viscous 
drag of a shearing fluid*.

To pass to a more highly organised class of animals, we find the unduloid 
beautifully exemplified in the little flask-shaped shells of certain Pteropod 
mollusca, e.g. Cuvierina^. Here again the symmetry of the figure would 
at once lead us to suspect that the creature lived in a position of symmetry 
to the surrounding forces, as for instance if it floated in the ocean in an 
erect position, that is to say with its long axis coincident with the direction 
of gravity; and this we know to be actually the mode of life of the little 
Pteropod.

* Cf. G. I. Taylor, The formation of emulsions in definable fields of flow, Proc. R.S~ 
(A), No. 858, p. 501, 1934.

f Cf. Boas, Spolia Atlantica, 1886, pl. 6.
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Many species of Lagena are complicated and beautified by a 
pattern, and some by the superaddition to the shell of plane 
extensions or “wings.” These latter give a secondary, bilateral 
symmetry to the little shell, and are strongly suggestive of a phase 
or period of growth in which it lay horizontally on the surface, 
instead of hanging vertically from the surface-film: in which, that 
is to say, it was a floating and not a hanging drop. The pattern 
is of two kinds. Sometimes it consists of a sort of fine reticulation, 
with rounded or more or less hexagonal interspaces: in other cases 
it is produced by a symmetrical series of ridges or folds, usually 
longitudinal, on the body of the flask-shaped cell, but occasionally 
transversely arranged upon the narrow neck. The reticulated and 
folded patterns we may consider separately. The netted pattern 
is very similar to the wrinkled surface of a dried pea, or to the more 
regular wrinkled patterns on poppy and other seeds and even pollen- 
grains. If a spherical body after developing a “skin” begin to 
shrink a little, and if the skin have so far lost its elasticity as to 
be unable to keep pace with the shrinkage of the inner mass, it will 
tend to fold or wrinkle; and if the shrinkage be uniform, and the 
elasticity and flexibility of the skin be also uniform, then the amount 
of foldings will be uniformly distributed over the surface. Little 
elevations and depressions will appear, regularly interspaced, and 
separated by concave or convex folds. These being of equal size 
(unless the system be otherwise perturbed), each one will tend to 
be surrounded by six others; and when the process has reached its 
limit, the intermediate boundary-walls, or folds, will be found 
converted into a more or less regular pattern of hexagons. To these 
symmetrical wrinkles or shrinkage-patterns we shall return again.

But the analogy of the mechanical wrinkling of the coat of a 
seed is but a rough and distant one; for we are dealing with 
molecular rather than with mechanical forces. In one of Darling’s 
experiments,, a little heavy tar-oil is dropped on to a saucer of 
water, over which it spreads in a thin film shewing beautiful 
interference colours after the fashion of those of a soap-bubble. 
Presently tiny holes appear in the film, which gradually increase 
in size till they form a cellular pattern or honeycomb, the oil 
gathering together in the meshes or walls of the cellular net. Some 
action of this sort is in all probability at work in a surface-film

TGF 27
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of protoplasm covering the shell. As a physical phenomenon the 
actions involved are by no means fully understood, but surface
tension, diffusion and cohesion play their respective parts therein*. 
The very perfect cellular patterns obtained by Leduc (to which we 
shall have occasion to refer in a subsequent chapter) are diffusion 
patterns on a larger scale, but not essentially different.

The folded or pleated pattern is doubtless to be explained, in 
a general way, by the shrinkage of a surface-film under certain 

conditions of viscous or frictional restraint. 
A case which (as it seems to me) is closely 
allied to that of our foraminiferal shells is 
described by Quincke f, who let a film of 
chromatised gelatin or of resin set and harden 
upon a surface of quicksilver, and found that 
the little solid pellicle had been thrown into 
a pattern of symmetrical folds, as fine as a 
diffraction grating. If the surface thus folded 

or wrinkled be a cylinder, or any other figure with one principal axis
* This cellular pattern would seem to be related to the “cohesion figures” 

described by Tomlinson in various surface-films (Phil. Mag. 1861-70); to the 
“tesselated structure” on liquid surfaces described by James Thomson in 1882 
(Collected Papers, p. 136); and (more remotely) to the tourbillons cellulaires of 
Benard, Ann. de Chimie (7), xxin, pp. 62-144, 1901; (8), xxiv, pp. 563-566, 1911, 
Rev. ginAr. des Sci. xi. p. 1268, 1900; cf. also E. H. Weber, Mikroskopische Beo- 
bachtungen sehr gesetzmassiger Bewegungen welche die Bildung von Niedersehlagen 
harziger Korper aus Weingeist begleiten, Poggend. Ann. xciv, pp. 447—459, 1855; 
etc. Some at least of Tomlinson’s cohesion-figures arise, according to van Mens- 
brugghe,.from the disengagement of minute bubbles of gas, when a fluid holding 
gases in solution comes in contact with a fluid of lower surface-tension. The whole 
phenomenon is of great interest and various appearances have been referred to 
it, in biology, geology, metallurgy and even astronomy: for the flocculent clouds 
in the solar photosphere shew an analogous configuration. (See letters by Kerr 
Grant, Larmor, Wager and others, in Nature, April 16 to June 11, 1914; also 
Rayleigh,. Phil. Mag. xxxn, p. 529, 1916; G. T. Walker, Clouds, natural and 
artificial, Royal Inst. 8 Feb. 1935; etc.) In many instances, marked by strict 
symmetry or regularity, it is very possible that the interference of waves or ripples 
may play its part in the phenomenon. But in the majority of cases, it is fairly 
certain that localised centres of action, or of diminished tension, are present, such 
as might be provided by dust-particles in the case of Benard’s experiment (cf. 
infra, p. 503).

f Quincke, Ueber physikalische Eigenschaften diinner fester Lamellen, Sitzungsb. 
Berlin. Akad. 1888, p. 789; Ueber ansichtbare Eigenschaften, etc., Ann. d. Physik, 
1920, p. 653. Quincke found that “sehr kleine Menge fremder Substanz haben 
eine grosse Einfluss auf die Bildung der Schaumwande.” 
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of symmetry, such as an ellipsoid or unduloid, the folds will tend 
to be related to the axis of symmetry, and we may expect accordingly 
to find regular longitudinal, or regular transverse wrinkling. Now 
as a matter of fact we almost invariably find in Lagena the former 
condition: that is to say, in our ellipsoid or unduloid shell, the 
puckering takes the form of the vertical fluting on a column, rather 
than that of the transverse pleating of an accordion; and further, 
there is often a tendency for such longitudinal flutings to be more 
or less localised at the end of the ellipsoid, or in the region where 
the unduloid merges into its spherical base*.  In the latter region 
we often meet with a regular series of short longitudinal folds, as 
in the forms denominated Z. semistriata. All these various forms 
of surface can be imitated, or precisely reproduced, by the art of 
the glass-blower; and they can be seen in a contracting bubble of 
saponin, though not in the more fluid soap-bubble. They remind 
one of the ribs or flutings in the film or sheath which splashes up 
to envelop a smooth pebble dropped into a liquid, as Mr Worthington 
has so beautifully shewn.

* Certain palaeontologists (e.g. Haeusler and Spandel) have asserted that in 
each family or genus the plain smooth-shelled forms are primitive and ancient, 
and that the ribbed and otherwise ornamented shells make their appearance at 
later dates in the course of advancing evolution (cf. Rhumbler, Foraminiferen 
der Plankton-Expedition, 1911, p. 21). If this were true it would be of fundamental 
importance: but this book of mine would not deserve to be written.

27-2

In Mr Worthington’s experiment there appears to be something 
of the nature of a viscous drag in the surface-pellicle; but whatever 
be the actual cause of variation of tension, it is not difficult to 
see that there must be in general a tendency towards longitudinal 
puckering or “fluting” in the case of a thin-walled cylindrical or 
other elongated body, rather than a tendency towards transverse 
puckering, or “pleating.” For let us suppose that some chmge 
takes place involving an increase of surface-tension in some small 
area of the curved wall, and leading therefore to an increase of 
pressure: that is to say let T become T + t, and P become P + p. 
Our new equation of equilibrium, then, in place of P = T/r 4- T/r', 
becomes

P tp =
T + t T + t 

r r'
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and by subtraction,
p = t/r + t/r'.

Now if r<r', t/r > t/r'.

Therefore, in order to produce the small increment of pressure p, 
it is easier to do so by increasing t/r than t/r'; that is to say, the 
easier way is to alter or diminish r. And the same will hold good 
if the tension and pressure be diminished instead of increased.

This is as much as to say that, when corrugation or “rippling” 
of the walls takes place owing to small changes of surface-tension, 
and consequently of pressure, such corrugation is more likely to 
take place in the plane of r—that is to say, in the plane of greatest 
curvature. And .it follows that in such a figure as an ellipsoid, 
wrinkling will be most likely to take place not only in a longitudinal 
direction but near the extremities of the figure, that is to say again 
in the region of greatest curvature.

The longitudinal wrinkling of the flask-shaped bodies of our 
Lagenae, and of the more or less cylindrical cells of many other 
Foraminifera (Fig. 134), is in complete accord with the above con
siderations; but nevertheless, we soon find that our result is not 
a geperal one but is defined by certain limiting conditions, and is 
accordingly subject to what are, at first sight, important exceptions 
For instance, when we turn to the narrow neck of the Lagena we 
see at once that our theory no longer holds; for the wrinkling which 
was invariably longitudinal in the body of the cell is as invariably 
transverse in the narrow neck. The reason for the difference is not 
far to seek. The conditions in the heck are very different from 
those in the expanded portion of the cell: the main difference being 
that the thickness of the wall is no longer insignificant, but is of 
considerable magnitude as compared with the diameter, or circum
ference, of the neck. We must accordingly take it into account in 
considering the bending moments at any point in this region of the 
shell-wall. And it is at once obvious that, in any portion of the 
narrow neck, flexure of a wall in a transverse direction will be very 
difficult, while flexure in a longitudinal direction will be compara
tively .easy; just as. in the case of a long narrow strip of iron, we 
may easily bend it into folds running transversely to its long axis, 
but not the other way. The manner in which our little Za^ena-shell 
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tends to fold or wrinkle, longitudinally in its wider part and trans
versely or annularly in its narrow neck, is thus completely explained.

An identical phenomenon is apt to occur in the little flask-shaped 
gonangia, or reproductive capsules, of some of the hydroid zoophytes. 
In the annexed drawings of these gonangia in two species of Cam
panula,! ia, we see that in one case the little vesicle has the flask 
shaped or unduloid configuration of a Lagena', and here the walls 
of the flask are longitudinally fluted, just after the manner we have 
witnessed in the latter genus. In the other Campanularian the 
vesicles are long, narrow and tubular, and here a transverse folding

Fig. 134. Nodosaria scalaris ' Fig. 135. Gonangia of Campanularians.
Batsch. (a) C. gracilis; (b) C. grandis.

After Allman.

or pleating takes the place of the longitudinally fluted pattern; 
and the very form of the folds jor pleats is enough to suggest that 
we are not dealing here with a simple phenomenon of surface-tension, 
but with a condition in which surface-tension and stiffness are both 
present, and play their parts in the resultant form.

An everted rim, or short neck, may arise in various ways apart 
from the phenomenon of the hanging drop. To make a “thistle
head” the glassblower blows a bubble, and from that another one; 
after blowing the latter up large and thin he crushes it to pieces, 
and melting down what is left of it he forms the rim. I take it that 
the neck or rim of the shell in Difflugia is formed in an analogous 
way, in connection with the growth of a new individual at the mouth 
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of the first. There is a very neat expanded orifice in the cyst of 
Chromulina (Fig. 136); it is doubtless fashioned in just as simple 
a way, but how I know not.

Passing from the solitary flask-shaped cell of Lagena, but without 
leaving the Foraminifera, we find in Nodosaria, Rheophax or Sagrina 
constricted cylinders, or successive unduloids, such as are repre
sented in Fig. 137. In some of these, as in the arenaceous genus

Fig. 136. Fla^k-shaped shells or cysts, a, b, Chromulina and 
Deropyxis (Flagellata); c, Difflugia.

Fig. 137. Various species of Nodosaria, Rheophax, Sagrina. After Brady.

Rheophax, we have to do with fhe ordinary phenomenon of a 
partially segmenting cylinder. But in others, the structure is not 
developed out of a continuous protoplasmic cylinder, but, as we 
can see by examining the interior of the shell, it has been formed 
in successive stages, beginning with a simple unduloid “ Lagena, ” 
about which, after it solidified, another drop of protoplasm accu
mulated, and in turn assumed the unduloid or lagenoid form. The 
chains of interconnected bubbles which Morey and Draper made many 
years ago of melted resin are a similar if not identical phenomenon*.

* See Silliman’s Journal, n, p. 179, 1820; and cf. Plateau, op. cit. n, pp. 134, 461.
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Fishes shew a vast though limited variety of form; and some of 
the strangest shapes are found in the great depths of the ocean. 
Here, in unchanging temperature, in darkness save for a few 
phosphorescent rays, above all in unruffled stillness and eternal

Fig. 138. Deep-sea fishes (Stomiatidae). a.LamprotoxusflageUibarbis; b,Eustomias 
dactylobus; c, E. parri; d, E. schmidli; e, E. silvescens. After Tate Regan and 
Trewavas.

calm*, the conditions of life are strange indeed. In deep-sea fishes 
length and attenuation are common characters of the body and of 
its parts. A barbel below the lip may grow to ten times the 
whole length of the fish; it ends, commonly, in a little bulb or blob; 
it may give off threadlike branches, and these last slender filaments

* In Overbeck’s jet-experiments (supra, p. 394) the water into which the jet is 
led must first stand for many hours, till all internal movements and temperature- 
differences are eliminated.
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are sometimes finely beaded*; and slight differences in the beading 
and branching are said to characterise allied species of fish. Such 
a barbel looks like a jet or branching stream of one fluid falling 

Fig. 139. Stentor, a ciliate infusorian: 
from Savile Kent.

through another. It may indeed 
be that in these quiet depths 
growth easily follows its lines of 
least resistance, and that in the 
shaping of these peculiar out
growths hydrodynamical and 
capillary forces are taking the 
upper hand.

We have found it easy to illus
trate the sphere, the cylinder and 
the unduloid, three of the six 
“surfaces of Plateau,” all with 
an endless wealth of illustration 
among the simplest of organisms. 
The plane we need hardly look 
for among the finite outlines of a 
fluid body; and the catenoid, also 
a surface of zero mean curvature, 
can likewise only be a rare and 
transitory configuration. One last 
surface still remains, namely the 
nodoid; and there also remains 
one very common but most re
markable Protozoan configura
tion, that of the ciliate Infusoria, 
to the most characteristic feature 

of which we have not so far found a physical analogue. Here the 
curved contour seems to enter, re-enter, and disappear within the 
substance of the body, so bounding a deep and twisted space or 
passage, which merges with the fluid contents and vanishes within 
the cell, and is called by naturalists the “gullet.” This very 
peculiar and complicated structure is only kept in equilibrium, and 
in existence, by the constant activity of cilia over the general surface

* See, for instance, C. Tate Regan and E. Trewavas on The Stomiatidae oj the 
Dana Expedition, 1930; W. Beebe, Deep-sea Stomiatoids, Copeia, Dec. 1833. 
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of the body and very especially in the said gullet or re-entrant 
portion of the surface. Now we have seen the nodoid to be a curved 
surface, re-entering on itself and endless; no method of support, 
by wire-rings or otherwise, enables us to construct or realise more 
than a small portion of it. But the typical ciliate, such as Para- 
moecium, looks just like what we might expect a nodoid surface to 
be, if we could only realise it (or a single segment of it) in a drop of 
fluid, and imagine it to be kept in quasi-equilibrium by continual 
cdiary activity. I suspect, indeed, that here is nothing more', and 
nothing less, than a partial realisation of the nodoid itself; that the 
so-called gullet is but the characteristic inversion or “kink” in that 
curve; and that the cilia, which normally clothe the surface and 
always line the gullet, are needed to realise and to maintain the 
unstable equilibrium of the figure. If this be so—it is a suggestion 
and no more—we shall have found among our simple organisms the 
complete realisation, in varying abundance, of each and all of the 
six surfaces of Plateau. On each and all of them we have a host 
of beautiful “patterns” of various sorts; all of them so beautiful 
and so symmetrical that they ought to be capable of geometric 
representation—and all waiting for their interpreter!

From all these configurations, which the law of minimal area 
controls and dominates, Amoeba stands aloof and alone. The rest 
are all figures of equilibrium, unstable though it may sometimes be. 
But Amoeba is the characteristic case of a fluid surface without an 
equilibrium; it is the very negation of stability. In composition 
it is neither constant nor homogenequs; its chemistry is in constant 
flux, its surface energies vary from here to there, its fluid substance 
is drawn hither and thither; within and without it is never still, 
be its motions swift or be they slow. The heterogeneity of its 
system points towards a maximal surface-area, rather than a 
minimal one; only here and there, in small portions of its hetero
geneous substance, do we see the rounded contours of a fluid drop, 
in token of temporary equilibrium. Only when its heterogeneous 
reactions quieten down and the little living speck enters on its 
“resting-stage,” does the protoplasmic body withdraw itself into a 
sphere and the law of area minima come into its own. Physically 
analogous is the case of such complicated pseudopodia, or “ axopodia ”, 
as we find among the Foraminifera and Hehozoa: where the whole 
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fabric is in a flux, and currents flow and granules are carried 
hither and thither. Here again there is no statical equilibrium; 
but surface tension varies, as does the chemistry of the protoplasm, 
from one spot to another.

The great oceanic group of the Radiolaria, and the highly com
plicated skeletons which they construct, give us many beautiful 
illustrations of physical phenomena, among which the effects of 
surface-tension are as usual prominent. But we shall deal later on 
with these little skeletons under the head of spicular concretions.

In a simple and typical Heliozoan, such as the sun-animalcule, 
Actinophrys sol, we have a “drop” of protoplasm, contracted by its 
surface tension into .a spherical form. Within this heterogeneous 
protoplasm are more fluid portions, and a similar surface-tension 
causes these also to assume the form of spherical “vacuoles,” or of 
little clear drops within the big one; unless indeed they become 
numerous and closely packed, in which case they run together and 
constitute a “froth,” such as we shall study in the next chapter. 
One or more of such clear spaces may be what is called a “con
tractile vacuole”: that is to say, a droplet whose surface-tension 
is in unstable equilibrium and is apt to vanish altogether, so that 
the definite outline of the vacuole suddenly disappears*. Again, • 
within the protoplasm are one or more nuclei, whose own surface
tension draws them in turn into the shape of spheres. Outwards 
through the protoplasm, and stretching far beyond the spherical 
surface of the cell, run stiff linear threads of modified protoplasm, 
reinforced in some cases by delicate siliceous needles. In either 
case we know little or nothing about the forces which lead to their 
production, and we do not hide our ignorance when we ascribe 
their development to a “radial polarisation” of the cell. In the 
case of the protoplasmic filament, we may (if we seek for a hypo
thesis) suppose that it is somehow comparable to a viscid stream 
or “liquid vein.” thrust or spirted out from the body of the cell. 
But when it is once formed, this long and comparatively rigid 
filament is separated by a distinct surface from the neighbouring

♦ The presence or absence of the contractile vacuole or vacuoles is one of the 
chief distinctions, in systematic zoology, between the Heliozoa and the Radiolaria. 
As we have seen on p. 295 (footnote), it is probably no more than a physical con
sequence of the different conditions of existence in fresh and in salt water. 
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protoplasm, that is to say, from the more fluid surface-protoplasm 
of the cell; and the latter begins to creep up the filament, just as 
water would creep up the interior of a glass tube, or the sides of 
a glass rod immersed in the liquid. It is the simple case of a balance 
between three separate tensions: (1) that between the filament and 
the adjacent protoplasm, (2) that between the filament and the 
adjacent water, and (3) that between the water and the protoplasm. 
Calling these tensions respectively Tfp, Tfw, and Twp, equilibrium 
will be attained when the angle of contact between the fluid

T — T protoplasm and the filament is such that cos a = fw —— . It is

evident in this case that the angle is a very small one. The precise 
form of the curve is somewhat different from that which, under 
ordinary circumstances, is assumed by a liquid which creeps up a 
solid surface, as water in contact with air creeps up a surface of 
glass; the difference being due to the fact that here, owing to the 
density of the protoplasm being all but identical with that of the 
surrounding medium, the whole system is practically immune from 
gravity. Under normal circumstances the curve is part of the 
“elastic curve” by which that surface of revolution is generated 
which we have called, after Plateau, the nodoid; but in the present 
case it is apparently a catenary. Whatever curve it be, it obviously 
forms a surface of revolution around the filament.

Since this surface-tension is symmetrical around the filament, the 
latter will be pulled equally in all directions; in other words the 
filament will tend to be set normally to the surface of the sphere, 
that is to say radiating directly outwards from the centre. If the 
distance between two adjacent filaments be considerable, the curve 
will simply meet the filament at the angle a already referred to; 
but if they be sufficiently near together, we shall have a continuous 
catenary curve forming a hanging loop between one filament and 
the other. And when this is so, and the radial filaments are more 
or less symmetrically interspaced, we may have a beautiful system 
of honeycomb-like depressions over the surface of the organism, 
each cell of the honeycomb having a strictly defined geometric 
configuration (cf. p. 710).

In the simpler Radiolaria, the spherical form of the entire organism 
is equally well marked; and here, as also in the more complicated
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Heliozoa (such as Actinosphaerium), the organism is apt to be 
differentiated into layers, so constituting sphere within sphere, 
whose inter-surfaces become the seat of adsorption, and the locus 
of skeletal secretion. One layer at least is close-packed with 
vacuoles, forming an “alveolar mesh work,” with the confi^tira- 
tions of which we shall attempt in another chapter to correlate 
certain characteristic types of skeleton. In Actinosphaerium the 
radial filaments pass through the outer layer, and seem to rest on 
but do not penetrate the layer below; this must happen if the 
surface-energy between the one plasma-layer and the other be less 
than that between the filament and the water around*.

* Cf. N. K. Koltzoff, Anat. Anzeiger, xli, p. 190, 1912.
f The very minute size of Codosiga, whose collar and flagellum measure about 

30-40p, and of all such collar-cells, make the apparently complex current-system 
all the harder to comprehend. Cf. G. Lepage, Notes on C. botrytis, Q.J.M.S. 
lxix, pp. 471-508, 1925.

A very curious conformation is that of the vibratile “collar,” 
found in Codosiga and the other “Choanoflagellates,” and which we 
also meet with in the “collar-cells” which line the interior cavities 
of a sponge. Such collar-cells are always very minute, and the 
collar is constituted of a very delicate film which shews an undu- 
latory or rippling motion. It is a surface of revolution, and as it 
maintains itself in equilibrium (though a somewhat unstable and 
fluctuating one) it must be, under the restraining circumstances of 
its case, a surface of minimal area. But it is not so easy to see 
what these special circumstances are, and it is obvious that the 
collar, if left to itself, must shrink or shrivel towards its base and 
become confluent with the general surface of the cell; for it has no 
longitudinal supports and no strengthening ring at its periphery. 
But in all these collar-cells, there stands within the annulus of the 
collar a large and powerful cilium or flagellum, in constant move
ment; and by the action of this flagellum, and doubtless in part 
also by the intrinsic vibrations of the collar itself, there is set up a 
constant steady current in the surrounding water, whose direction 
would seem to be such that it passes up the outside of the collar, 
down its inner side, and out in the middle in the direction of the 
flagellum; and there is a distinct eddy, in which foreign particles 
tend to be caught, around the peripheral margin of the collar f.
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When the cell dies, that is to say when motion ceases, the collar 
immediately shrivels away and disappears. It is notable, by the 
way, that the edge of this little mobile cup is always smooth, never 
notched or lobed as in the cases we have discussed 
on p. 390: this latter condition being the outcome 
of a definite instability, marking the close of a 
period of equilibrium. But the vibratile collar of 
Codosiga is in “a steady state,” its equilibrium, 
such as it is, being constantly renewed and per
petuated, like that of a juggler’s pole, by the 
motions of the system. Somehow its existence is 
due to the current motions and to the traction 
exerted upon it through the friction of the stream 
which is constantly passing by. In short, I think 
that it is formed very much in the same way as 
the cup-like ring of streaming ribbons, which we 
see fluttering and vibrating in the air-current of 
a ventilating fan. If we turn once ‘more to 
Mr Worthington’s Study of Splashes, we may 

Fig. 140.

find a curious
suggestion of analogy in the beautiful craters encircling a central 
jet (as the collar of Codosiga encircles the flagellum), which we see 
produced in the later stages of the splash of a pebble.

Another exceptional form of cell, and beautiful manifestation of 
capillarity, occurs in Trypanosomes, those tiny parasites of the 
blood which are associated with sleeping-sickness and certain other 
dire maladies of beast and man. These minute organisms consist 
of elongated solitary cells down one side of which runs a very 
delicate frill, or “undulating membrane,” the free edge of which is 
seen to be slightly thickened, and the whole of which undergoes 
rhythmi» al and beautiful wavy movements. When certain Trypano
somes are artificially cultivated (for instance T. rotatorium, from the 
blood of the frog), phases of growth are witnessed in which the 
organism has no undulating membrane, but possesses a long cilium 
or “flagellum,” springing from near the front end, and exceeding 
the whole body in length*.  Again, in T. lewisii, when it reproduces 
by “multiple fission,” the products of this division are likewise 

* Cf. Doflein, Lehrbuch der Protozoenkunde, 1911, p. 422.
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devoid of an undulating membrane, but are provided with a long 
free flagellum*.  It is a plausible assumption to suppose that, as 
the flagellum waves about, it comes to he near and parallel to the 
body of the cell, and that the frill or undulating membrane is formed 
by the clear, fluid protoplasm of the surface layer springing up in

* Cf. Minchin, Introduction to the Study of the Protozoa, 1914, p. 293, Fig. 127.

Fig. 141. A, Trichomonas muris Hartmann; B, Trichomastix serpentis Dobell; 
C, Trichomonas angusta Alexeieff. After Kofoid.

Fig. 142. A Trypanosome.

a film to run up and along the flagellum, just as a soap-film would 
form under similar circumstances.

This mode of formation of the undulating membrane or frill 
appears to be confirmed by the appearances shewn in Fig. 141. 
Here we have three little organisms closely allied to the ordinary 
Trypanosomes, of which one, Trichomastix (B), possesses four 
flagella, and the other two, Trichomonas, apparently three only: 
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the two latter possess the frill, which is lacking in the first*. But 
it is impossible to doubt that when the frill is present (as in A and 
C), its outer edge is constituted by the apparently missing flagellum 
a, which has become attached to the body of the creature at the 
point c, near its posterior end; and all along its course the super
ficial protoplasm has been drawn out into a film, between the 
flagellum a and the adjacent surface or edge of the body b.

Moreover, this mode of formation has been actually witnessed 
and described, though in a somewhat 
exceptional case. The little flagellate 
monad Herpetomonas is normally desti
tute of an undulating membrane, but 
possesses a single long terminal flagellum. 
According to Prof. D. L. Mackinnon, the 
cytoplasm in a certain stage of growth 
becomes somewhat “sticky,” a phrase 
which we may in all probability interpret 
to mean that its surface-tension is being 
reduced. For this stickiness is shewn in 
two ways. In the first place, the long 
body, in the course of its various bending 
movements, is apt to adhere head to 
tail (so to speak), giving a rounded or 
sometimes annular form to the organism, 
such as has also been described in certain 

Fig. 143. Herpetomonas assuming 
the undulatory membrane 
of a Trypanosome. After 
D. L. Mackinnon.

species or stages of Trypanosomes. But again, the long flagellum, 
if it get bent backwards upon the body, tends to adhere to its 
surface. “Where the flagellum was pretty long and active, its 
.efforts to continue movement under these abnormal conditions 
resulted in the gradual lifting up from the cytoplasm of the body 
of a sort of pseWo-undulating membrane (Fig. 143). The move
ments of this structure were so exactly those of a true undu
lating membrane that it was difficult to believe one was not dealing 
with a small, blunt Trypanosome”*. This in short is a precise

* Cf. C. A. Kofoid and Olive Swezy, On Trichomonad flagellates, etc., Pr. 
Amer. Acad, of Arts and Sci. Li, pp. 289-378, 1915. Also C. H. Martin and Muriel 
Robertson, Q.J.M.S. lvii, pp. 53-81, 1912.

t D. L. Mackinnon, Herpetomonads from the alimentary tract of certain dungflies, 
Parasitology, m, p. 268, 1910.
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description of the mode of development which, from theoretical 
considerations alone, we should conceive to be the natural if not 
the only possible way in which the undulating membrane could 
come into existence.

There is a genus closely allied to Trypanosoma, viz. Trypanoplasnta, . 
which possesses one free flagellum, together with an undulating 
membrane; and it resembles the neighbouring genus Bodo, save 
that the latter has two flagella and no undulating membrane. In 
like manner, Trypanosoma so closely resembles Herpetomomas that, 
when individuals ascribed to the former genus exhibit a free 
flagellum only, they are said to be in the “Herpetomonas stage.” 
In short, all through the order, we have pairs of genera which are 
presumed to be separate and distinct, viz. Trypanosoma-Herpeto- 
monas. Trypanoplasma-Bodo, Trichotnastix-Trichomonas, in which 
one differs from the other mainly if not solely in the fact that a free 
flagellum in the one is replaced by an undulating membrane in the 
other. We can scarcely doubt that the two structures are essen
tially one and the same.

The undulating membrane of a Trypanosome, then, according 
to our interpretation of it, is a liquid film and must obey the law 
of constant mean curvature. It is under curious limitations of 
freedom: for by one border it is attached to the comparatively 
motionless body, while its free border is constituted by a flagellum 
which retains its activity and is being constantly thrown, like the 
lash of a whip, into wavy curves. It follows that the membrane, 
for every alteration of its longitudinal curvature, must at the same 
instant become curved in a direction perpendicular .thereto; it 
bends, not as a tape bends, but with the accompaniment of beautiful 
but tiny waves of double curvature, all tending towards the. 
establishment of an “equipotential surface”, which indeed, as it is 
under no pressure on either side, is really a surface of no curvature 
at all; and its characteristic undulations are not originated by an 
active mobility of the membrane but are due to the molecular tensions 
which produce the very same result in a soap-film under similar 
circumstances. Some of the larger Spirochaetes possess a structure so 
like to the undulating membrane of the Trypanosomes that it has led 
some persons to include these peculiar allies of the bacteria among the 
flagellate protozoa; but it would seem (according to the weight of 
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evidence) that the Spirochaete membrane does not undulate, and 
possesses no thickened border or marginal filament (RaMfade)*.  
It forms a “screw-surface,” or helicoid, and, though we might 
think that nothing could well be more curved, yet its mathematical 
properties are such that it constitutes a “ruled surface” whose 
mean curvature is everywhere nil. Precisely such a surface, and of 
exquisite beauty, may be produced by bending a wire upon itself so 
that part forms an axial rod and part winds spirally round the axis, 
and then dipping the whole into a soapy solution.

* For a discussion of this obscure lamella, and of the crista which seems to 
correspond with it in other species, see Doflein, Problems der Protistenkunde, n, 
Die Natur der Spirochaeten, Jena, 1911; see also Clifford Dobell, Arch.f. Protisten
kunde, 1912.

t Leidy, Parasites of the termites, Journ. Nat. Sci., Philadelphia, vin, pp. 425- 
447, 1874-81; cf. Savile-Kent’s Infusoria, n, p. 551.

28

Fig. 144. Dinenympha gracilis Leidy.

A peculiar type is the flattened spiral of D/nenympha^, which 
reminds us of the cylindrical spiral of a Spirillum among the bacteria. 
Here we have a symmetrical figure, whose two opposite surfaces 
each constitute a surface of constant mean curvature; it is evidently 

T G F
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a figure of equilibrium under certain special conditions of restraint. 
The cylindrical coil of the Spirillum, on the other hand, is a surface 
of constant mean curvature, and therefore of equilibrium, as truly, 
and in the same sense, as the cylinder itself.

A very beautiful “saddle-shaped” surface, of constant mean 
curvature, is to be found in the little diatom Campylbdiscus, and 
others, a little more complicated, in the allied genus Surirella*.

These undulating and.helicoid surfaces are exactly reproduced 
among certain forms of spermatozoa. The tail of a spermatozoon 
consists normally of an axis surrounded by clearer and more fluid 
protoplasm, and the axis sometimes splits up into two or more 
slender filaments. To surface-tension operating between these and 
the surface of the fluid protoplasm (just as in the case of the flagellum 
of the Trypanosome), I ascribe the formation of the undulating 
membrane which we find, for instance, in the spermatozoa of the 
newt or salamander; and of the helicoid membrane, wrapped in a 
far closer and more beautiful spiral than that which we saw in 
Spirochaeta, which is characteristic of the spermatozoa of many 
birds. The undulatory membrane which certain ciliate infusoria 
exhibit is, seemingly, a diff* rent thing. It is not based on a single 
marginal flagellum, but consists of a row of fine cilia fused together. 
The membrane can be broken up by certain reagents into fibrillae, 
and—what is more remarkable—a touch of the micro-dissection 
needle may split it into a multitude of cilia, all active but beating 
out of time; a moment more and they unite again, all but dis
appearing from view as they fuse into the optically homogeneous 
membrane. They unite as quickly and as intimately as though 
they were so many liquid jets, and they manifestly “partake of 
fluidity.” Neither they, nor cilia in general, have received, nor 
seem likely to receive, a simple explanation!. Nevertheless, we 
may see a little light in the darkness after all.

It would be overbold to seek for every form of living cell a parallel 
configuration due to simple capillary forces, as manifested in drop 
or bubble or jet. And yet, if the simple cases of sphere or cylinder 
.be the beginning of the story, they assuredly are not the end. The

* Van Heurck, Synopsis des Diatom^es de Belgique, pls. Ixxiv, 6; Ixxvii, 4.
f H. N. Maier, Der feinere Bau der Wimperapparate der Infusorien, Arch. f. 

Protistenk. n, p. 73, 1903; R. Chambers and J. A. Dawson, Structure of the 
undulating membrane in the ciliate Blephar sma. Biol. Bull, xlvih, p. 240, 1925.
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pointed and flagellate cell of a Monad, one of the least and com
monest of micro-organisms, is far removed from a simple “drop,” 
and all its characters, to the microscopist’s eye, are both generally 
and specifically those of a living thing. But a drop of water falling 
through an electric field, as in a thunderstorm, is found to lengthen 
out to three or four times as long as it is broad; and then, if the 
strength of the field increase a little, the prolate drop becomes 
unstable, it grows spindle-shaped, and suddenly from one of its two 
pointed spindle-ends (the positive end especially) a long and slender 
filament shoots out, to the accompaniment of an electrical discharge. 
We need not assert that the phenomena are identical, nor that the 
forces in action are absolutely the same. Yet it is no small thing to 
have learned that the peculiar conformation of the little flagellate 
Monad has its analogue in an electrified drop, and is not unique after 
all*.

Before we pass from the subject of the conformation of the 
solitary cell we must take some account of certain other exceptional 
forms, less easy of explanation, and still less perfectly understood. 
Such is the case, for instance, of the red blood-corpuscles of man 
and other vertebrates; and among the sperm-cells of the decapod 
Crustacea we find forms still more aberrant and not less perplexing. 
These are among the comparatively few cells or cell like structures 
whose form seems to be incapable of explanation by theories of 
surface-tension.

In all the mammalia (save a very few) the red blood-corpuscles 
are flattened circular discs, dimpled in upon their two opposite sides. 
This configuration closely resembles that of an india-rubber ball 
when we pinch it tightly between finger and thumbf.

The form of the corpuscle is symmetrical; it is a solid of revolu
tion, but its surface is not a surface of constant mean curvature. 
From the surface-tension point of view, the blood-corpuscle is not 
a surface of equilibrium; in other words, it is not a fluid drop poised

♦ Cf. W. A. Macky, On the deformation of water-drops in strong electric fields, 
Proc. R.S. (A), cxxxiii, pp. 565-587, 1931.

f On this analogy we might expect the double concavity to pass, with no great 
difficulty, into the single hollow of a cup or . bell, and such a shape the blood
corpuscles are said s imetimes to assume. Cf. Weidenreich, Arch. f. mikr. Anal. 
Lxvn, 1902; and cf. Clerk-Maxwell on “dimples” in Tr. R.S.E. xxvi, p. 11, 1870. 

28-2



436 THE FORMS OF CELLS [ch.

in another liquid. Some other force or forces must be at work to 
conform it, and the simple effect of mechanical pressure is excluded, 
because the corpuscle exhibits its characteristic shape while floating 
freely in the blood. It has been suggested that the corpuscle is 
perhaps comparable to a solid of revolution described about one of 
Cayley’s equipotential curves*,  such as we have spoken of briefly 
on p. 318. Mere the corpuscle a sphere, or a thin plate, a gas 
diffusing inwards would reach all parts equally soon; but the surface 

would be small in the one case and 
the volume in the other. In so 
far as the corpuscle resembles or 
approaches the equipotential form, 
we might look on it as a com
promise; but however advan
tageous such a shape might be, and 

* Cf. H. Hartridge, Journ. Physiol. Ln, p. Ixxxi, 1919-20; Eric Ponder, Journ. 
Gen. Physiol, ix, pp. 197-204, 625-629, 1925-26

f Cf. A. Gough, On the assumption of a spherical form by human blood
corpuscles, Biochem. Journ. xvm, p. 202, 1924.

however interesting physiologically, we should be as far as ever 
from understanding how it was produced. In all other vertebrates, 
from fishes to birds, sluggish or active, warm-blooded or cold, the 
blood-corpuscles have the simpler form of a flattened oval disc, 
with somewhat sharp edges and ellipsoidal surfaces, and this again 
is manifestly not a surface of fluid equilibrium. But there is 
nothing to choose between the one type and the other in the way 
of physiological efficiency, nor any apparent need for a refinement 
of adaptive form in either of them.

Two facts are noteworthy in connection with the form of the 
mammalian blood-corpuscle. In the first place its form is only 
maintained, that is to say it is only in equilibrium, in specific relation 
to the medium in which it floats. If we add water to the blood, 
the corpuscle becomes a spherical drop, a true surface of minimal 
area and stable equilibrium; if, conversely, we add a little salt, or 
a drop of glycerine, the corpuscle shrinks, and its surface becomes 
puckered and uneven. So far, it merely obeys the laws of diffusion; 
but the phenomenon is more complex than thisf. For the spherical 
form is assumed just as well in various isotonic solutions, leaving 
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the volume unchanged; a little ammonium oxalate impedes or 
inhibits the change of form, a little serum brings the spherical 
corpuscles back to biconcave discs again. We are no longer dealing 
with simple diffusion, but with phenomena of a very subtle kind.

Secondly, the form of the corpuscle can be imitated artificially 
by means of other colloid substances. Many years ago Norris made 
the interesting observation that drops of glue in an emulsion assumed 
a biconcave form closely resembling that of the mammalian cor
puscles*;  the glue was impure and doubtless contained lecithin. 
Waymouth Reid made similar emulsions of cholesterin oleate, in 
which the same conformation of the drops or particles is beautifully 
shewn; and Emil Hatschek has made somewhat similar biconcave 
bodies by dropping gelatine containing potassium ferrocyanide into 
copper sulphate or a tannin solution. Here Hatschek believes that 
his biconcave drops are half formed vortex-rings, arrested by the 
formation of a semi-permeable membrane; but the explanation does 
not seem to fit the blood-corpuscle. The cholesterin bodies in 
Waymouth Reid’s experiment are such as have a place of their own 
among Lehmann’s “fluid crystals”!; and it becomes at least con
ceivable that obscure forces akin to those of crystallisation may 
be playing their part along with surface energy in these strange but 
familiar conformations. The case is a hard one in every way. 
From the physiological point of view it is difficult and complex 
enough. For the surface of the corpuscle is equivalent to a semi- 
permeable membrane^, through which certain substances pass freely 
but not others--for the most part anions and not cations§; and 
accordingly we have here in life a steady state of osmotic inequili
brium, of negative osmotic tension within, and to this comparatively 
simple cause the imperfect distension of the corpuscle may be due.

* Proc. R.S. xn, pp. 251-257, 1862-63.
f Cf. (int. al.) Lehmann, Ueber scheinbar lebende Kristalle und Myelinformen, 

Arch.f. Entw. Meeh, xxvi, p. 483, 1908; Ann. d. Physik. xliv, p. 969. 1914.
J That no “true membrane” exists has long been known; cf. (int. al.) Rohring, 

Roll. Chern. Beihefte, vni, pp. 337-398, 1916. On the other hand the surface of 
the corpuscle is defined by a monolayer, and very probably by the still more stable 
condition of two “interpenetrating” monolayers, a proteid and a lipoid. Cf. 
Eric Ponder, Phys. Ret. xvi, p. 19, 1936; and on “interpenetration,” Schulman 
and Rideal in Proc. R.S. (B), cxxn, pp. 29-57, 1937.

§ Cf. Hamburger, Z f. physikal. Chern, lxix, p. 663, 1909; Pfinger's Archiv, 
1902, p. 442; etc.
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Whatever the forces are which make and keep the man’s corpuscle 
a dimpled disc and the frog’s a flattened ellipsoid, they seem to be 
of a powerful kind. When we submit either to great hydrostatic 
pressure, it tends to become spherical at last, the natural result of 
uniform pressure over its whole surface; but the pressure necessary 
to bring this result about is very great indeed*.  Since the form 
of the blood-corpuscle cannot, then, be rated as a figure of equili
brium, we must be content to regard it as a “steady state”; and 
this, moreover, is all we can say of its physico-chemical condition. 
The red blood-corpuscle, especially the non-nucleated one, is in no 
ordinary sense alive . It has no power of movement, of reproduction 
or of repair; it is a mere haemoglobin-freighted drop of protein; 
its own metabolism, apart from its alternate give and take of 
oxygen, is slight indeed or absent altogether. But all the same, 
chemical change is continually going on; anions (like HCO3) pass 
freely through its walls, simple cations (like Na, K) find it imper
meable; and so, between plasma and corpuscles the conditions are 
fulfilled for that steady osmotic state known as a “Donnan equi
librium.” Somehow, but we know not how, a steady state is 
maintained alike in the corpuscle’s osmotic equilibrium and in its 
form.

* The whole phenomenon would become simple and mechanical if we might 
postulate a stiffer peripheral region to the corpuscle, in the form (for instance) of an 
elastic ring. Such an annular stiffening, like the “ collapse-rings” which an engineer 
inserts in a boiler or the whalebone ring which a Breton fisherman fits into his beret, 
has been repeatedly asserted to exist; by Dehler, Arch.f. mikr. Anat, xlvi, 1895; by 
Meves, ibid, lxxvii, 1911; and especially by J. Riinnstrom, Was bedingt die Form 
und die Formveranderungen der Saiigetiererythrocyten, Arch. f. Entiv. Meeh, i, pp. 
391—409, 1922. It has been denied at least as often; but the remarkable statement 
has been lately m ide that in a corpuscle which has been swollen up and then brought 
back to its bitoncave form, -the dimples reappear on the same sides as before: 
apparently in “strong evidence for some sort of fixed cellular structure”; see 
R. F. Furchgott and Eric Ponder in Journ. Exp. Biol, xvn, pp. 30—44, 117-127, 
1940. See also, on the whole subject, Eric Ponder, The Mammalian Red Cell, 
Berlin, 1934.

f Cf. A. V. Hill, Trans. Faraday Soc. xxvi, p. 667, 1930; Proc. R.S. (B), 1930; 
K. R. Dixon, in Current Sci. vn, p. 169, 1938; etc.

In mammalian blood, the running together of the round biconcave 
corpuscles into “rouleaux” gives a well-known and characteristic 
picture. When cold, rouleaux are formed slowly, in warmed plasma 
they form quickly and well, in salt-solution they do not form at all.
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The phenomenon, though a purely physical one, is none too clear. 
There is a difference of electrical potential between corpuscles and 
plasma, and the charged corpuscles tend to repel one another; but 
they also tend to adhere together, all the more when they meet 
broadside on, whether by actual stickiness or through surface
energy. The attractive forces then overcome the repulsive, and the 
rouleau is formed. But if the potential be reduced, and mutual 
repulsion reduced with it, then the corpuscles stick together just as 
they happen to meet; rouleaux are no longer formed, and ordinary 
“agglutination'’ takes place. Whatever be the precise nature of 
the phenomenon, the number of rouleaux and the mean number of

Fig. 146. Sperm-cells of Decapod Crustacea (after Koltzoff). a, Inachus scorpio; 
b, Galathea squamifera; c, do. after maceration, to shew spiral fibrillae.

corpuscles in each is found, after a given time, to obey a certain 
law (Smoluchowsky’s Law), defining the number of contacts of 
floating bodies under ordinary physical conditions*.

* Smoluchowsky, Ztschr. f. physik. Chemie, xcix, p. 129, 1917; Eric Ponder, 
On Rouieaux-formation, Q. Journ. Exp. Physiol, xvi, pp. 173-194, 1926.

The sperm-cells of the Decapod Crustacea exhibit various singular 
shapes. In the crayfish they are flattened cells with stiff curved 
processes radiating outwards like St Catherine’s wheel; in Inachus 
there are two such circles of stiff processes; in Galathea we have a 
still more complicated form, with long and slightly twisted processes. 
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In all these cases, just as in the case of the blood-corpuscle, the 
structui e alters, and finally loses, its characteristic form when the 
constitution of the surrounding medium is changed*.

Here again, as in the blood-corpuscle, we have to do with the 
important force of osmosis, manifested under conditions similar 
to those of Pfeffer’s classical experiments on the plant-cell f. The 
surface of the cell acts as a semi-permeable membrane, permitting 
the passage of certain dissolved substances (or their ions), and 
including or excluding others: and thus rendering manifest and 
measurable the existence of a definite “osmotic pressure.” Again, 
in the hen’s egg a delicate yolk-membrane separates the yolk from 
the .white. The morphologist looks on it but as the cell-wall of 
a vast yolk laden germ-cell; the physiologist sees in it a semi- 
permeable membrane, the seat of many complex activities. The 
end and upshot of these last is that a steady difference of osmotic 
pressure, the equivalent of some two atmospheres, is maintained 
between yolk and white; and yet there is no current flowing through. 
Somewhere or other in the system there is a constant metabolic 
flux, a continuous liberation of energy, a continual doing of work, 
all leading to the maintenance of a steady dynamical state, which 
is not “equilibrium];.”

In the case of the sperm-cells of Inachus, certain quantitative 
experiments have been performed. The sperm-cell exhibits its 
characteristic conformation while lying in the serous fluid of the 
animal’s body, in ordinary sea-water, or in a 5 per cent, solution 
of potassium nitrate, these three fluids being all “isotonic” with 
one another. As we alter the concentration of potassium nitrate, 
the cell assumes certain definite forms corresponding to definite 
concentrations of the salt; and, as a further and final proof that 
the phenomenon is entirely physical, it is found that other salts 
produce an identical effect when their concentration is proportionate 
to their molecular weight, and whatever identical effect is produced

* Cf. N. K. Koltzoff, Studien fiber die Gestalt der Zelle, Arch. f. mikrosk. Anat. 
Lxvn, pp. 365-572, 1905; Biol. Centralbl. xxin, pp. 680-696, 1903; xxvi, pp. 854— 
863, 1906; xlvhi, pp. 345-369, 1928; Arch. f. Zellforschung, n, pp. 1-65, 1908; 
vn. pp. 344-423, 1911; Anat. Anzeiger, xu, pp. 183-206, 1912.

f W. Pfeffer, Osmotische Untersuchungen, Leipzig, 1877.
J Cf. J. Straub, Der Unterschied in osmotischer Konzentration zwischen Eigelb 

und Eiklar, Bec. Trav. Chim. du Pays-Bas, xlviii, p. 49, 1929.
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by various salts in their respective concentrations, a similarly 
identical effect is produced when these concentrations are doubled 
or otherwise proportionately changed.

Fig. 147. Sperm-cells of Inachus, as they appear in saline solutions of 
• varying density. After Koltzoff.

Thus the following table shews the percentage concentrations of 
certain salts necessary to bring the cell into the forms a and c 
of Fig. 147; in each case the quantities are proportional to the 
molecular weights, and in each case twice the quantity is necessary 
to produce the effect of c, compared with that which gives rise to 
the all but spherical form of a.

Sodium chloride
Sodium nitrate
Potassium nitrate
Acetic acid
Cane sugar

% concentration of salts in which 
the sperm-cell of Inachus 

assumes the form of

a c
0-6 1-2
0-85 1-7
1-0 2-0
2-2 4-5
50 10-0

If w6 look then upon the spherical form of this cell as its true 
condition of symmetry and of equilibrium, we see that what we 
call its normal appearance is just one of many intermediate phases 
of shrinkage, brought about by the abstraction of fluid from its 
interior as the result of an osmotic pressure greater outside than 
inside the cell, and where the shrinkage of volume is not kept pace 
with by a contraction of the surface-area. In the case of the blood
corpuscle, the shrinkage is of no great amount, and the resulting 
deformation is symmetrical; such structural inequality as may be 
necessary to account for it need be but small. But in the case of 
the sperm-cells, we must have, and we actually do find, a somewhat
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complicated arrangement of more or less rigid or elastic structures 
in the wal,l of the cell, which, like the wire framework in Plateau’s 
experiments, restrain and modify the forces acting on the drop. 
In one form of Plateau’s experiments, instead of supporting his 

drop on rings or frames of wire, he laid 
upon its surface one or more elastic 
coils; and then, on withdrawing oil 
from the centre of his globule, he saw 
its uniform shrinkage counteracted by 
the spiral springs, with the result that 
the centre of each elastic coil seemed 
to shoot out into a prominence. Just 
such spiral coils are figured (after

Fig. 148. Spem-oeUof Uremia. Ko|tzoff) j, W8* and th 
After Koltzoff. ' & J

be regarded as closely akin to those 
local thickenings or striations, spiral and other, which are common 
in vegetable cells.

Physically speaking, the protoplasmic colloids are neither simple 
nor uniform. We begin by thinking of our cell as a drop of a homo
geneous fluid and on this bold simplifying assumption we account 
for its form to a first, and often to a near, approximation. For the 
cell is largely composed of fluid “hydrosols,” which are still fluid 
however viscous they may be, and still tend towards rounded, 
drop-like configurations. But it has also its “hydrogels,” which 
shew a certain tenacity, a certain elasticity, a certain reluctance .to 
let their particles move on one another; and of these are formed 
the scarce distinguishable fibrillae within a host of highly specialised 
cells, the elastic fibres of a tendon, the incipient cell-walls of a plant, 
the rudiments of many axial and skeletal structures.

The cases which we have just dealt with lead us to another 
consideration. In a semi-permeable membrane, through which 
water passes freely in and out, the conditions of a liquid surface are 
greatly modified; in the ideal or ultimate case, there is neither 
surface nor surface-tension at all. And this would lead us some-

* As Bethe points out (Zellgestalt, Plateausche Fliissigkeitsfigur und Neuro
fibrille, Anat. Anz. xl, p. 209, 1911), the spiral fibres of which Koltzoff speaks must 
lie in the surface, and not within the substance, of the cell whose conformation is 
affected by them.



V] OF THE PROTOPLASMIC COLLOIDS 443 

what to reconsider our position, and to enquire whether the true 
surface-tension of a liquid film is actually responsible for all that 
we have ascribed to it, or whether certain of the phenomena which 
we have assigned to that cause may not in part be due to the 
contractility of definite and elastic membranes. But to investigate 
this question, in particular cases, is rather for the physiologist: and 
the morphologist may go his way, paying little heed to what is no 
great difficulty. For in surface tension we have the production of 
a film with the properties of an elastic membrane, and with the 
special peculiarity that contraction continues with the same energy 
however far the process may have already gone; while the ordinary 
elastic membrane contracts to a certain extent, and contracts no 
more. But within wide limits the essential phenomena are the 
same in both cases. Our fundamental equations apply to both 
cases alike. And accordingly, so long as our purpose is morpho
logical, so long as what we seek to explain is regularity and definite
ness of form, it matters little if we should happen, here or there, 
to confuse surface-tension with elasticity, the contractile forces 
manifested at a Equid surface with those which come into play at 
the complex internal surfaces of an elastic solid.



CHAPTER VI

A NOTE ON ADSORPTION

An important corollary to, or amplification of, the theory of 
surface-tension is to be found in the chemico-physical doctrine of 
Adsorption; which means, in a word, the concentration of a 
substance at a surface, by reason of that surface-energy of which 
we have had so much to say*.  Charcoal, with its vast internal 
surface-area of carbonised cell-walls, is the commonest and most 
familiar of adsorbents, and of it Du Bois Reymond first used the 
name. In its full statement this subject becomes very complicated, 
and involves physical conceptions and mathematical treatment 
which go far beyond our range. But it is necessary for us to take 
account of the phenomenon, even though it be in the most elemen
tary way.

* Some define adsorption as surface-condensation, without reference to the 
forces which produce it; in other words they recognize chemical, electrical and 
other forces, including cohesion, as producing analogous or indistinguishable 
results: cf. A. P. Mathews, in Physiological Reviews, I, pp. 553-597, 1921.

In the brief account of the theory of surface-tension with which 
our last chapter began, it was shewn that, in a drop of liquid, the 
potential energy of the system could be diminished, and work mani
fested accordingly, in two ways. In the first place we saw that, 
at our liquid surface, surface-tension tends to set up an equilibrium 
of form, in which the surface is reduced or contracted either to the 
absolute minimum of a sphere, or at any rate to the least possible 
area which is permitted by the various circumstances and conditions; 
and if the two bodies which comprise our system, namely the drop 
of liquid and its surrounding medium, be simple substances, and 
the system be uncomplicated by other distributions of force, then 
the energy of the system will have done its work when this 
equilibrium of form, this minimal area of surface, is once attained. 
This phenomenon of the production of a minimal surface-area we 
have now seen to be of fundamental importance in the external 
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morphology of the cell, and especially (so far as we have yet gone) 
of the solitary cell or unicellular organism.

But we also saw, according to Gauss’s equation, that the potential 
energy of the system will be diminished (and its diminution will 
accordingly be manifested in work) if from any cause the specific 
surface-energy be diminished, that is to say if it be brought more 
nearly to an equality with the specific energy of the molecules in 
the interior of the Equid mass. This latter is a phenomenon of 
great moment in physiology, and, while we need not attempt to 
deal with it in detail, it has a bearing on cell-form and cell-structure 
which we cannot afford to overlook.

A diminution of the surface-energy may be brought about in 
various ways. For in tan e, it is known that every isolated drop 
of fluid has, under normal circumstances, a surface-charge of 
electricity: in such a way that a positive or negative charge (as 
the case may be) is inherent in the surface of the drop, while a 
corresponding charge, of contrary sign, is inherent in the imme
diately adjacent molecular layer of the surrounding medium. Now 
the effect of this distribution, by which all tho surface molecules 
of our drop are similarly charged, is that by virtue of the charge 
they tend to repel one another, and possibly also to draw other 
molecules, of opposite charge, from the interior of the mass; the 
result being in either case to antagonise or cancel, more or less, 
that normal tendency of the surface molecules to attract one 
another which is manifested in surface-tension. In other words, 
an increased electrical charge concentrating at the surface of a drop 
tends, whether it be positive or negative, to lower the surface-tension.

Again, a rise of temperature diminishes surface-tension, and 
consequently facilitates the formation of a bubble or a froth. It 
follows (from the principle of Le Chatelier) that foam is warmer than 
the fluid of which it is made, and the difference is all the greater the 
lower the concentration of the foaming (or capillary-active) substance*.

But a still more important case has next to be considered. Let 
us suppose that our drop consists no longer of a single chemical 
substance, but contains other substances either in suspension or 
in solution. Suppose (as a very simple case) that it be a watery

* Cf. Fr. Schutz, in Nature, April 10, 1937. In the case of 0-01 per cent, solution 
of saponin, the temperature-difference is no less than 3-3° C. 
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fluid, exposed to air, and containing droplets of oil: we know that 
the specific surface-tension of oil in contact with air is much less 
than that of water, and it follows that, if the watery surface of 
our drop be replaced by an oily surface the specific surface-energy 
of the system will be notably diminished. Now under these circum
stances it is found that (quite apart from gravity, which might 
cause it to float to the surface) the oil has a tendency to be drawn 
to the surface; and again this pnenomenon of molecular attraction 
or adsorption represents work done, equivalent to the diminished 
potential energy of the system*.  In more general terms, if a liquid 
be a chemical mixture, some one constituent in which, if it entered 
into or increased in amount in the surface layer, would have the 
effect of diminishing its surface-tension, then that constituent will 
have a tendency to accumulate or concentrate at the surface: the 
surface-tension may be said, as it were, to exercise an attraction 
on this constituent substance, drawing it into the surface-layer, 
and this tendency will proceed until at a certain “surface-con
centration” equilibrium is reached, its opponent being that osmotic 
force which tends to keep the substance in uniform solution or 
diffusion. In other words, in any “two-phase” system, a change 
of concentration at the boundary-surface and a diminution of 
surface-tension there accompany one another of necessity; positive 
adsorption means negative surface-tension, and vice versa. Further
more, the lowering of surface-tension (as by saponin) will permit 
(caeteris paribus) an extension of surface, manifesting itself in 
“froth.” Thus the production of a froth and the concentration 
of appropriate substances therein are two sides of one and the same 
phenomenon.

* The first instance of what we now call an adsorptive phenomenon was 
observed in soap-bubbles. Leidenfrost was aware that the outer layer of the 
bubble was covered by an “oily” layer (De aquae communis nonnullis qualitatibus 
tractatus, Duisburg, 1756). A hundred years later Dupre shewed that in a soap- • 
solution the soap tends to concentrate at the surface, so that the surface-tension 
of a very weak solution is very little different from that of a strong one (Thiorie 
mecanique de la chaleur, 1869, p. 376; cf. Plateau, n, p. 100).

In the complex mixtures which constitute the protoplasm of the 
living cell, this phenomenon of adsorption has abundant play: for 
many of its constituents, such as fats, soaps, proteins, lecithin, etc., 
possess the required property of diminishing surface-tension.
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Moreover, the more a substance has the power of lowering the 

surface-tension of the Equid in which it happens to be dissolved, 
the more will it tend to displace another and less effective substance 
from the surface-layer. Thus we know that protoplasm always 
contains fats, not only in visible drops, but also in the finest sus
pension or “ colloidal solution ”; and if under any impulse, such for 
instance as might arise from the Brownian movement, a droplet of 
oil be brought close to the surface, it is at once drawn into that 
surface and tends to spread itself in a thin layer over the whole 
surface of the cell. But a soapy Surface (for instance) in contact 
with the surrounding water would have a surface-tension even less 
than that of the film of oil: and consequently, if soap be present 
in the water it will in turn be adsorbed, and will tend to displace 
the oil from the surface pellicle*.  And all this is as much as to 
say that the molecules qf the dissolved or suspended substance or 
substances will so distribute themselves throughout the drop as to 
lead towards an equilibrium, for each small unit of volume, between 
'the superficial and internal energy; or, in other words, so as to 
reduce towards a minimum the potential energy of the system. 
This tendency to concentration at a surface of any substance within 
the cell by which the surface-tension tends to be diminished, or 
vice versa, constitutes, then, the phenomenon of adsorption; and 
the general statement by which it is defined is known as the Willard- 
Gibbs, or Gibbs-Thomson lawf, and was arrived at not by experi
mental but by theoretical and hydrodynamical methods.

* This identical phenomenon was the basis of Quincke’s theory of amoeboid 
movement (Ueber periodische Ausbreitung von Fliissigkeitsoberflachen, etc., SB. 
Berlin. Akad. 1888, pp. 791-806; cf. Pfinger's Archiv, 1879, p. 136). We must bear 
in mind that to describe an amoeboid cell as “naked” does not imply that its outer 
layer is identical with its internal substance.

f J. Willard Gibbs, Equilibrium of heterogeneous substances, Tr. Conn. Acad. 
m, pp. 380—400, 1876, also in Collected Papers, I, pp. 185—218, London, 1906; 
J. J. Thomson, Applications of Dynamics to Physics and Chemistry, 1888 (Surface 
tension of solutions), p. 190. See also (int. al.) various papers by C, M. Lewis, 
Phil. Mag. (6), xv, p. 499, 1908; xvn, p. 466, 1909; Zeitschr. f. physik. Chemie, 
lxx, p. 129, 1910; Milner, Phil. Mag. (6), Xin, p. 96, 1907; A. B. Macallum, The 
role of surface-tension in determining the distribution of salts in living matter, 
Trans. 15th Int. Congress on Hygiene, etc., Washington, 1912; etc.

An-assemblage of drops or droplets offers a great extension of 
surface, but so also does an assemblage of equally minute cells or 
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pores; both alike are “two-phase” systems, and in both alike the 
phenomenon of adsorption has free play. The occlusion of gases, 
including water-vapour, by charcoal is a familiar phenomenon of 
adsorption, and is due to the minuteness of the pores only in so far 
as surface-area is increased and multiplied thereby. For surface
energy is surface-strain or surface-tension x surface-area, and is 
vastly increased by minute subdivision. And surface-energy is 
such that, whenever a substance is introduced into a two-phase 
system—which merely means two things tn touch (or surface
contact) with one another -it*is apt to concentrate itself on the 
surface where the two phases meet. Absorption implies uniform 
distribution, as when a gas is absorbed by a Equid; adsorption 
impEes a heterogeneous field, and a concentration localised on the 
surfaces therein.

Among the many important physical features or concomitants 
of this phenomenon, let us take note at present that we need not 
conceive of a strictly superficial distribution of the adsorbed sub
stance, that is to say of its direct association with the surface-layer’ 
of molecules such as we imagined in the case of an electrical charge; 
but rather of a progressive tendency to concentrate more and more, 
the nearer the surface is approached. Indeed we may conceive 
the colloid or gelatinous precipitate in which, in the case of our 
protoplasmic cell, the dissolved substance tends often to be thrown 
down, to constitute one boundary layer after another, the general 
effect being intensified and multiplied by the repetition of these 
ijew surfaces.

Moreover, it is not less important to observe that the process 
of adsorption, in the neighbourhood of the surface of a hetero
geneous liquid mass, is a process which takes time', the tendency 
to surface concentration is a gradual and progressive one, and will 
fluctuate with every minute change in the composition of our 
substance and with every change in the area of its surface. In 
other words, it involves (in every heterogeneous substance) a con
tinual instabiEty: and a constant manifestation of motion, some
times in the mere invisible transfer of molecules, but often in the 
production of visible currents, or manifest alterations in the form 
or outline of the system.

Cellular activity is of necessity associated with cellular structure, 
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even in our simplest interpretation thereof, as a mere increase of 
surface due to the existence and the multiplication of cells. In the 
chemistry of the tissues there may be substances (catalysts and 
others) which exhibit their proper reactions even though the cells 
containing them be disintegrated or destroyed; but other processes, 
oxidation itself among them, are essentially surface-actions, based 
on adsorption at the vast cell-surface of the tissue*. The breaking
down of the cell-walls, the disintegration of cellular structure in a 
tissue, brings about “a biochemical chaos, a medley of reactions!.’” 
Cells are not merely there because the tissue has grown by their 
multiplication; there are physico-chemical reasons, even of an 
elementary kind, which render the morphological phenomenon of 
the cell indispensable to physiological action.

The physiologist deals with the surface-phenomena of the cell in 
ways undreamed of when I began to write this book. To begin 
with, the concept of a surface (in the old mathematical or quasi- 
mathematical sense) no longer suffices to describe the boundary 
conditions of even a “naked” protoplasmic cell. As Rayleigh 
foretold, and as Irving Langmuir has proved, the “boundary-state” 
consists of a layer of complex molecules, each one a long array of 
atoms, all set side by side in an orderly and uniform way. There 
is not merely a boundary-surface between two phases (as the older 
colloid chemistry supposed) but a boundary-layer, which itself 
constitutes a third phase, or interphase, and which part of the 
surface-energy has gone to the making of.

Surface-energy plays a leading part in modern theories of muscular 
contraction, and has indeed done so ever since FitzGerald and 
d’Arsonval indicated a connection between them some sixty years 
or more ago J. It plays its part handsomely (we may be sure) in the 
electric pile of the Torpedo, where two million tiny discs present a

* Many surface-active substances are known to be among the most active 
pharmacologically; cf. Michaelis and Rona, Physikal. Chemie, 1930.

f A. V. Hill, Proc. U.S. (B), cm, p. 138; cf. also M. Penrose and J. H. Quastel, 
on Cell structure and cell activity, ibid, evil, p. 168.

J Cf. G. F. FitzGerald, On the theory of muscular contraction, Brit. Ass. Bep. 
1878; also in Scientific Writings, ed. Larmor, 1902, pp. 34, 75. A. d'Arsonval, 
Relations entre 1’electricite animale et la tension superficielle, C.B. cvi, p. 1740, 
1888; A. Imbert, Le mecanisme de la contraction musculaire, deduit de la 
consideration des forces de tension superficielle, Arch. de Phys. (5), ix, pp. 289—301, 
1897; A. J. Ewart, Protoplasmic Streaming in Plants, Oxford, 1903, pp. 112-119. 
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vast aggregate of interfacial contact. It gives us a new conception, 
as Wolfgang Ostwald was the first to shew, of the relation of oxygen 
to the red corpuscles of the blood*. But many more and still more 
complicated “film-reactions” are started or intensified by the oriented 
molecules of the monolayer. The catalytic action of living ferments 
(a subject vast indeed) is largely a question of modified adsorption, 
or of surface-action. The range of bodies so adsorbed is extremely 
limited; the specific reactions, which depend on the bacterium 
engaged, are fewer still; and sometimes a whole class of substances 
may be adsorbed, and only one of them thrown specifically into 
action f. The physiological, and sometimes lethal, actions of 
various substances are examples of similar effects. The chemistry 
of the surface-layer in this cell or that may be elucidated by its 
reactions to various “penetrants.” and depends somehow on the 
molecular orientation of the surfaces, and on the potentials associated 
with the characteristic electric fields which we may suppose to 
correspond to the particular molecular arrangements]:.

It is the dynamic aspect of the case, the ingresses, egresses and 
metabolic changes associated with the boundary-layer, which interest 
the physiologist. He finds the monolayer acting in ways not known 
in a homogeneous liquid—and adsorption is one of these ways. We 
keep as much as may be to the morphological side of the case rather 
than to the physiological, to the static side rather than to the 
dynamic, to the equilibrium attained rather than to the energies to 
which it is due. We continue to speak of surface, and of suriace-

* Ueber die Natur der Bindung der Gase im Blut und in seinen Bestandteilen, 
Kolloid Ztschr. n, pp. 264-272, 1908; cf. Loewy. Dissociationsspannung des 
Oxyhaemoglobin im Blut, Arch. f. Anat. u. Physiol. 1904, p. 231. Arrhenius 
remarked long ago that the forces which produce adsorption are of the same order, 
and of the same nature, as those which cause the mutual attractions of the molecules 
of a gas. Hence the order is constant in which various gases are adsorbed by 
different adsorbents. The question of the inner mechanism of the forces which 
result in surface-tension, adsorption and allied phenomena, and their relation 
to electric charge on particles or ions, belongs to the highest parts of physical 
chemistry. Besides countless recent papers, M. v. Smoluchowski’s Versuch einer 
mathematischen Theorie der Koagulationskritik, Z.f. physik. Chemie, xen, pp. 129- 
168, 1918, is still interesting.

f Cf. N. K. Adams, Physics and Chemistry of Surfaces, 1930. Also (int. al.) 
J. H. Quastel, Mechanism of bacterial action, Trans. Faraday Soc. xxvi, pp. 831- 
861, 1930.

J This is Loeb’s so-called “membrane-effect,” cf. Journ. Biol. Chemistry, xxxn, 
p. 147, 1917; and J. Gray, Journ. Physiol. Liv, pp. 68-78, 1920. 
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energy and of adsorptive phenomena, in a somewhat old-fashioned 
way; but even with this simplifying limitation we find them helpful, 
throwing light upon our subject.

In the first place our preliminary account, such as it is, is already 
tantamount to a description of the process of development of a 
cell-membrane, or cell-wall. The so-called “secretion” of this cell
wall is nothing more than a sort of exudation, or striving towards 
the surface, of certain constituent molecules or particles within the 
cell; and the Gibbs-Thomson law formulates, in part at least, the 
conditions*  under which they do so. The adsorbed material may 
range from an almost unrecognisable pellicle to the distinctly 
differentiated “ectosarc” of a protozoon, and again to the develop
ment of a fully-formed cell-wall, as in the cellulose partitions, of a 
vegetable tissue. In such cases, the dissolved and adsorbtive 
material has not only the property of lowering the surface-tension, 
and hence of itself accumulating at the surface, but has also the 
property of increasing the viscosity and mechanical rigidity of the 
material in which it is dissolved or suspended, and so of constituting 
a visible and tangible “membrane*. ” The “zoogloea” around a 
group of bacteria is probably a phenomenon of the same order. 
In the superficial deposition of inorganic materials we see the same 
process abundantly exemplified. Not only do we have the simple 
case of the building of a shell or “test” upon the outward surface 
of a living cell, as for instance in a Foraminifer, but in a sub
sequent chapter, when we come to deal with spicules and spicular 
skeletons such as those of the sponges and of the Radiolaria, we 
shall see how highly characteristic it is of the whole process of 

* We may trace the first steps in the study of this phenomenon to Meisens, 
who found that thin films of white of egg become firm and insoluble (Sur les 
modifications apportees a 1’albumine.. .par 1’action purement mecanique, C.R. 
xxxiii, p. 247; Ann. de chimie et de physique (3), xxxm, p. 170,1851); and Harting 
made similar observations about the same time. Ramsden investigated the same 
subject, and also the more general phenomenon of the formation of albuminoid 
and fatty membranes by adsorption, and found (inti al.) that on shaking white of egg 
practically all the albumin passes gradually into the froth; cf. his Koagulierung 
der Eiweisskorper auf mechanischer Wege, Arch. f. Anat. u. Phys. (Phys. Abth.), 
1894, p. 517; Abscheidung fester Korper in Oberflachenschichten, Z. f. phys. Chem. 
xlvii, p. 341, 1902; Proc. R.S. lxxii, p. 156, 1904. For a general review of the 
whole subject see H. Zangger, Ueber Membranen und Membranfunktionen, in 
Asher-Spiro’s Ergebnisse der Physiologic, vn, pp. 99-160, 1908.

20 2
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spicule-formation for the deposits to be laid down just in the 
“interfacial” boundaries between cells or vacuoles, and how the 
form of the spicular structures tends in many cases to be regulated 
and determined by the arrangement of these boundaries. The 
so-called collenchyma, in which an excess of cellulose is laid down 
around the angles of contact of adjacent cells, in a kind of exag
gerated “bourrelet,” is another case in point *.

* Cf. G. Haberlandt, Zelle u. Elementarorgane, Biol. Centralbl. 1925, p. 263.
f Cf. F. G. Donnan, Some aspects of the physical chemistry of interfaces, Brit. 

Ass. Address (Section B), 1923; Nature, Dec. 15, 22, 1923.

No pure liquid ever forms a froth or foam. White of egg is no 
exception to the rule; for the albumin is somehow changed, or 
“ denatured,” and becomes a quasi-solid when we beat it«up. But 
in the frothing liquid there must always be some admixture present 
to concentrate on, or be adsorbed by, the surfaces and interfaces 
of the other; and this dispersion must go on completely and uni
formly, so as to leave the whole system homogeneous. The resulting 
diminution of surface-tension facilitates the subdivision of the 
bubbles and dispersion of the air; and the adsorbed surface-layer 
gives firmness and stability to the system. The sudden increase of 
surface diminishes, for the moment, the concentration, or “thick
ness” of the surface-layer; the tension rises accordingly, and the 
cycle of operations begins anewf.

In physical chemistry, a distinction is usually drawn between adsorption 
and pseudo-adsorption, the former being a reversible, the latter an irreversible 
or permanent phenomenon. That is to say, adsorption, strictly speaking, 
implies the surface-concentration of a dissolved substance, under circumstances 
which, if they be altered or reversed, will cause the concentration to diminish 
or disappear. But pseudo-adsorption includes cases, doubtless originating in 
adsorption proper, where subsequent changes leave the concentrated substance 
incapable of re-entering the liquid system. It is obvious that many (though 
not all) of our biological illustrations, for instance the formation of spicules 
or of permanent cell rmembranes, belong to the class of so-called pseudo
adsorption phenomena. But the apparent contrast between the two is in 
the main a secondary one, and however important to the chemist is of little 
consequence to us.

While this brief sketch of the theory of membrane-formation is 
cursory and inadequate, it is enough to shew that the physical 
theory of adsorption tends in part to overturn, in part to simplify
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enormously, the oiler histological descriptions. We can no longer 
be. content with such statements as that of Strasbiirger, that 
membrane-formation in general is associated with the “activity of 
the kinoplasm,” or that of Harper that a certain spore-membrane 
arises directly from the astral rays.  In short, we have easily 
reached the general conclusion that the formation of a cell-wall or 
cell membrane is a chemico-physical phenomenon, which the purely 
objective methods of the biological microscopist do not suffice to 
interpret.

*

* Strasbiirger, Ueber Cytoplasmastrukturen, etc., Jahrb. f. wise. Bot. xxx, 
1897; R. A. Harper, Kerntheilung und freie Zellbildung im Ascus, ibid.; cf. 
Wilson, The Cell in Development, etc., pp. 53-55.

f The “adsorption theory” of dyeing is a case in point, where the precise mode, 
or modes, of action seem still far from settled.

Having reached this conclusion we may wait patiently, and 
confidently, for more. But when the physico-chemical nature of 
these phenomena is admitted, and their dependence on adsorption 
recognised, or at least assumed, we have still to remember that the 
chemist himself is none too certain of his ground. He still finds it 
hard, now and then, to tell how far adsorption and direct chemical 
action go their way together, what parts they severally play, what 
shares they take in their intimate cooperation f.

If the process of adsorption, on which the formation of a mem
brane depends, be itself dependent on the power of the adsorbed 
substance to lower the surface-tension, it is obvious that adsorption 
can only take place when the surface-tension already present is 
greater‘than zero. It is for this reason that films or threads of 
creeping protoplasm shew little tendency, or none, to cover them
selves with an encysting membrane; and that it is only when, in 
an altered phase, the protoplasm has developed a positive surface
tension, and has accordingly gathered itself up into a more or less 
spherical body, that the tendency to form a membrane is manifested, 
and the organism develops its “cyst” or cell-wall. The holes in a 
Globigerina-shell are there “to let the pseudopodia through.” They 
may also be described as due to unequal distribution of surface
energy, such as to prevent shell-substance from being adsorbed 
here and there, and at the same time inducing a pseudopodium to 
emerge. •



454 A NOTE ON ADSORPTION [ch.

It is found that a rise of temperature greatly reduces the 
adsorbability of a substance, and this doubtless comes, either in 
part or whole, from the fact that a rise of temperature is itself a 
cause of the lowering of surface-tension. M e may in all probability 
ascribe to this fact and to its converse, or at least associate with it, 
such phenomena as the encystment of unicellular organisms at the 
approach of winter, or the frequent formation of strong shells or 
membranous capsules in “winter-eggs.”

Again, since a film or a froth (which is a system of films) can 
only be maintained by virtue of a certain viscosity or rigidity of 
the liquid, it may be quickly caused to disappear by the presence 
in its neighbourhood of some substance capable of materially 
reducing the surface-tension; for this substance, being adsorbed, 
may displace from the surface-layer a material to which was due 
the rigidity of the film. In this way a “bathytonic” substance, 
such as ether, causes most foams to subside, and the pouring oil on 
troubled waters not only calms the waves but still more quickly 
dissipates the foam of the breakers. In a very different order of 
things, the breaking up of an alveolar network, as at a certain stage 
in the nuclear division of the cell, may be due in part to just such 
a cause, as well as to the direct lowering of surface-tension by 
electrical agency.

Our last illustration has led us back to the subject of a previous 
chapter, namely to the visible configuration of the interior of the 
cell, in so far (at least) as it represents a “dispersed system,” coarse 
enough to be visible; and in connection with this wide subject there 
are many phenomena on which light is apparently thrown by our 
knowledge of adsorption, of which we took little or no account in 
our former discussion. One of these phenomena is nothing less than 
that visible or concrete “polarity,” which we have seen to be in 
some way associated with a dynamical polarity of the cell.

This morphological polarity may be of a very simple kind, as 
when it is manifested, in an epithelial cell, by the outward shape of 
the elongated or columnar cell itself, by the essential difference 
between its free surface and its attached base, or by the presence 
in the neighbourhood of the former of mucus or other products of 
the cell’s activity. But in a great many cases, this polarised 
symmetry is supplemented by the presence of various fibrillae, or 
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of linear arrangements of particles, which in the elongated or 
“monopolar” cell run parallel with its axis, but tend to a radial 
arrangement in the more or less rounded or spherical cell. Of late 
years great importance has been attached to these various linear or 
fibrillar arrangements, as they are seen (after staining) in the cell
substance of intestinal epithelium, of spermatocytes, of ganglion 
cells, and most abundantly and frequently of all in gland, cells. 
Various functions have been assigned, and hard names given to 
them; for these structures include your mitochondria*  and your 
chondriokonts (both of these being varieties of chondriosomes), your 
Altmann’s granules, your microsomes, pseudo-chromosomes, epi

* Mitochondria are threads which move slowly through the protoplasm, some
times break in two, and often tend to radiate from the centrosphere or division-centre 
of the cell. The nucleoli are two or more opaque bodies /vithin the nucleus, which 
keep shifting their position; within the cytoplasm many small fatty bodies likewise 
move about, and display the Brownian oscillation.

t Cf. A. Gurwitsch. Morphologic und Biologic der Zelle, 1904, pp. 169-185; 
Meves, Die Chondriosomen als Trager erblicher Anlagen, .Arch. f. mikrosk. Anat. 
1908, p. 72; J. O. W. Barratt, Changes in chondriosomes, etc., Q.J.M.S. lviii, 
pp. 553-566, 1913, etc.; A. P. Mathews, Changes in structure of the pancreas cell, 
etc., Journ. Morph, xv (Suppl.), pp. 171-222, 1899.

Fig. 149. A, B, Chondriosomes in kidney-cells, prior to and during secretory
activity (after Barratt); C, do. in pancreas of frog (after Mathews).

dermal fibrils and basal filaments, your archeoplasm and ergasto- 
plasm, and probably your idiozomes, plasmosomes, and many other 
histological minutiae f.

The position of these bodies with regard to the other cell
structures is carefully described. Sometimes they lie in the 
neighbourhood of the nucleus itself, that is to say in proximity to 
the fluid boundary surface which separates the nucleus from the 
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cytoplasm; and in this position they often form a somewhat cloudy 
sphere which constitutes the Nebenkern. In the majority of cases, 
as in the epithelial cells, they form filamentous structures, and rows 
of granules, whose main direction is parallel to the axis of the cell; 
and which may, in some cases, and in some forms, be conspicuous 
at the one end, and in some cases at the other end of the cell. But 
I seldom find the histologists attempting to explain, or to correlate 
with other phenomena, the tendency of these bodies to lie parallel 
with the axis, and perpendicular to the extremities of the cell; it 
is merely noted as a peculiarity, or a specific character, of these 
particular structures. Extraordinarily complicated and diverse 
functions have been ascribed to them. Engelmann’s “Fibrillen- 
konus,” which was almost certainly another aspect of the same 
phenomenon, was held by him and by cytologists like Breda and 
Heidenhain to be an apparatus connected in some unexplained 
way with the mechanism of ciliary movement. Meves looked upon 
the chondriosomes as the actual carriers or transmitters of heredity. 
Altmann invented a new.aphorism, Omne granulum e granulo, as a 
refinement of Virchow’s (or Remak’s) omnis cellula e cellula*; and 
many other histologists, more or less in accord, accepted the chon
driosomes as important entities, sui generis, intermediate in grade 
between the cell itself and its ultimate molecular components. The 
extreme cytologists of the Munich school, Popoff, Goldschmidt and 
others, following Richard Hertwig, declaring these structures to be 
identical with “chromidia” (under which name Hertwig ranked all 
extra-nuclear chromatin), would assign them complex functions in 
maintaining the balance between nuclear and cytoplasmic material; 
and the “chromidial hypothesis,” as every reader of cytological 
literature knows, has become a very abstruse and complicated 
thingf. With the help of the “binuclearity hypothesis” of 
Schaudinn and his school, it has given us the chromidial net, the

* Virchow, Arch. f. pathol. Anat, vin, p. 23, 1855; but used, implicitly, by 
Remak, in his paper L'eber extracellulare Entstehung thierischer Zellen und iiber 
die Vermehrung derselben dutch Theilung, Muller's Archiv, 1852, pp. 47-57. That 
cells come, and only come, from pre-existing cells seems to have been clearly 
understood by John Goodsir, in 1846; see his Anatomical Memoirs, n, pp. 90, 389.

f Cf. Clifford Dobell, Chromidia and the binuclearity hypotheses; a review and 
a criticism, Q.J.M.S. Lin, pp. 279-326, 1909; A. Prenant, Le» Mitochondries et 
1’Ergastoplasme, Journ. de l'Anat. et de la Physiol, xlvi, pp. 217-285, 1910 (both 
with copious bibliography).
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chromidiM apparatus, the trophochromidia, idiochromidia, gameto- 
chromidia, the protogonoplasm, and many other novel and original 
conceptions. There is apt to be confusion between important and 
unimportant things; and the very names are apt to vary somewhat 
in significance from one writer to another.

The outstanding fact, as it seems to me, is that physiological 
science has been heavily burdened in this matter, with a jargon of 
names and a thick cloud of hypotheses; but from the physical point 
of view we see but little mystery in the whole phenomenon. For, 
on the one hand, it is likely enough that these various bodies, 
by vastly extending the intra-cellular surface-area, may serve 
to increase the physico-chemical activities of the cell; and, on 
the other hand, we ascribe their very existence, in all probability 
and in general terms, to the “clumping” together under surface
tension of various constituents of the heterogeneous cell-contents, 
and to the drawing out of the little clumps along the axis of the cell 
towards one extremity or the other, in relation to osmotic currents 
as these are set up in turn jn direct relation to the phenomena of 
surface-energy and of adsorption*. And all this implies that the 
study of these minute structures, even if it taught us nothing else, 
at least surely and certainly reveals the presence of a definite field 
of force, and a dynamical polarity within the cellf.

* Traube in particular has maintained that in differences of surface-tension 
we have the origin of the active force productive of osmotic currents, and that 
herein we find an explanation, or an approach to an explanation, of many phenomena 
which were formerly deemed peculiarly “vital” in their character. “Die Differenz 
der Oberflachenspannungen oder der Oberflachendruck eine Kraft darstellt, welche 
als treibende Kraft der Osmose, an die Stelle des nicht mit dem Oberflachendruck 
identischen osmotischen Druckes zu . setzen ist, etc.” (Oberflachendruck und 
seine Bedeutung im Organismus, Pflilger's Archiv, cv, p. 559, 1904.) There is, 
moreover, good reason to believe that physiological “osmosis” is not a general 
phenomenon common to this or that colloid membrane or dialyser, but depends 
(int. al.) on a specific affinity between the particular membrane (or the particular 
material it is moistened with) and the substance dialysed. This statement, made 
by Kahlenberg in 1906 (Journ. Phys. Chern, x, p. 141; also Nature, lxxv, p. 430, 
1907), has been confirmed (e.g.) by R. Brinkmann and A. von Szent-Gyorgyi 
in Biochem. Ztschr. cxxxix, pp. 261-273, 1923.

f C. E. Walker, in an interesting paper on Artefacts as a guide to the chemistry 
of the cell, Proc. R.S. (B), cm, pp. 397-403, 1928, tells how he took mixtures of 
albumen, gelatine and lipins, with droplets of methyl myristate (with or without 
phosphorus) to act as nuclei; and found on treating with osmic acid that the lipins 
had separated out and arranged themselves very much as do Golgi bodies and 
other structural elements in- ordinary histological preparations.
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Our next and last illustration of the effects of adsorption, which 
we owe to the work of the late Professor A. B. Macallum* of 
Montreal, is of great importance; for it introduces us to phenomena 
in regard to which we seem to stand on firmer ground than in some 
of the foregoing cases, albeit the whole story has not been told. 
In our last chapter we were restricted mainly, though not entirely, 
to a consideration of figures of equilibrium, such as the sphere, the 
cylinder or the unduloid; and we began at once to find ourselves in 
difficulties when we were confronted by departures from symmetry, 
even in such a simple case as the ellipsoidal yeast-cell and the 
production of its bud. W e found the cylindrical cell of Spirogyra, 
with its plane partitions or its spherical ends, a simple matter to 
understand; but when this uniform cylinder puts out a lateral 
outgrowth in the act of conjugation, we have a new and very 
different system of forces to account for and explain. The analogy 
of the soap-bubble, or of the simple liquid drop, was apt to lead us 
to suppose that surface-tension was, on the whole, uniform over 
the surface of the cell; and that its departures from symmetry of 
form were due to variations in external resistance. But if we 
have been inclined to make such an assumption we must now 
reconsider it, and be prepared to deal with important localised 
variations in the surface-tension of the cell. For, as a matter of 
fact, the simple case of a perfectly symmetrical drop, with uniform 
surface, at which adsorption takes place with similar uniformity, 
is probably rare in physics, and rarer still (if it exist at all) in the 
fluid or fluid-containing system which we call in biology a cell. 
We have more to do with cells whose general heterogeneity of 
substance leads to qualitative differences of surface, and hence 
to varying distributions of surface-tension. We must accordingly 
investigate the case of a cell which displays some definite and 
regular heterogeneity of its liquid surface, just as Amoeba displays 
a heterogeneity which is complex, irregular and continually 
fluctuating in amount and distribution. Such heterogeneity as we 
are speaking of must be essentially chemical, and the preliminary 
problem is to devise methods of “microchemical” analysis, which 
shall reveal localised accumulations of particular substances within

* See his Methoden u. Ergebnisse der Mikrochemie in der biologischen Forschung; 
Asher-Spiro’s Ergebnisse, vn. 1908.
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the narrow limits of a cell, in the hope that, their normal effect on 
surface-tension being ascertained, we may then correlate with their 
presence and distribution the actual indications of varying surface
tension which the form or movement of the cell displays. In 
theory the method is all that we could wish, but in practice we 
must be content with a very limited application of it; for the 
substances which have such action as we are looking for, and 
which are also actual or possible constituents of the cell, are very 
numerous, while the means are very seldom at hand to demonstrate 
their precise distribution and localisation. But in one or two cases 
we have such means, and the most notable is in connection with 
the element potassium. As Macallum has shewn, this element can 
be revealed in very minute quantities by means of a certain salt, 
a nitrite of cobalt and sodium*. This salt penetrates readily into 
the tissues and into the interior of the cell; it combines with 
potassium to form a sparingly soluble nitrite of cobalt, sodium and 
potassium; and this, on subsequent treatment with ammonium 
sulphide, is converted into a characteristic black precipitate of 
cobaltic sulphide f.

By this means Macallum demonstrated, years ago, the unexpected 
presence of potassium (i.e. of chlorides or other potassium salts) 
accumulated in particular parts of various cells, both solitary cells 
and tissue cells J; and he arrived at the conclusion that the localised 
accumulations in question were simply evidences of concentration of 
the dissolved potassium salts, formed and localised in accordance 
with the Gibbs-Thomson Law. For potassium (as we now know) 
has a much higher ionic velocity than sodium; and accordingly the

* On the distribution of potassium in animal and vegetable cells. Journ. Physiol. 
xxxii, p. 95, 1905. (The only substance at all likely to be confused with potassium 
in this reaction is creatine.)

f The reader will recognise a fundamental differt ace, and contrast, between 
such experiments as those of Macallum’s and the ordinary staining processes of 
the histologist. The latter are (as a general rule) merely empirical, while the former 
endeavour to reveal the true microchemistry of the cell “On peut dire que la 
microchimie n’est encore qu’a la periode d'essai, et que 1’avenir de 1’histologie 
et specialement de la cytologie est tout entier dans la microchimie”: A. Prenant, 
Methodes et resultate de la microchimie, Journ. de VAnat. et de la Physiol, xlvi, 
pp. 343 -404 1910. There is an interesting paper by Brunswick, on the Limitations 
of microchemical methods in biology, in Die Naturwissenschaften, Nov. 2, 1923.

J It is always conspicuously absent, as are chlorides and phosphates in general, 
from the nuclear substance.
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K-ions reach and occupy the adsorbing surfaces of the cell-membranes 
out of all proportion to their abundance in the external media*. 
And we may take it also that our potassium salts, like inorganic 
substances in general, tend to raise the surface-tension, and will be 
found concentrated, therefore, at a portion of the surface where the 
tension is weakf.

Fig. 150. Adsorptive concentration of potassium salts in (1) a cell of Pleurocarpus 
about to conjugate; (2) conjugating cells of Mesocarpus; (3) sprouting spores 
of Equisetum. After Macallum.

In Professor Macallum’s figure (Fig. 150, 1) of the little green 
alga Pleurocarpus, we see that one side of the cell is beginning to 
bulge out in a wide convexity. This bulge is, in the first place, 
a sign of weakened surface-tension on one side of the cell, which as 
a whole had hitherto been a symmetrical cylinder; in the second 
place, we see that the bulging area corresponds to the position of 
a great concentration of the potassium salt; while in the third place,

* Cf. A. B. Macallum, Address to Section I, Bri*. Ass. 1910; Oberflachen- 
spannung und Lebenserscheinungen, in Asher-Spiro’s Ergebnisse der Physiologic, 
xi, pp. 598-688, 1911; also his important paper on Ionic mobility as a factor in 
influencing the distribution of potassium in living matter, Proc. R.S. (B), civ, 
pp. 440-458, 1929; cf. E. F. Burton, Trans. Faraday Soc. xxvi, p. 677, 1930.

f Tn accordance with the “ principle of Le Chatelier,” which is in fact a corollary 
to the Gibbs-Thomson Law.
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from the physiological point of view, we call the phenomenon 
the first stage in the process of conjugation. In the figure of 
Mesocarpus (a close ally of Spirogyra), we see the same phenomenon 
admirably exemplified in a later stage. From the adjacent cells 
distinct outgrowths are being emitted, where the surface-tension has 
been weakened: just as the glass-blower warms and softens a small 
part of his tube to blow out the softened area into a bubble or 
diverticulum; and in our Mesocarpus cells (besides a certain 
amount of potassium rendered visible over the boundary which 
separates the green protoplasm from the cell-sap), there is a very 
large accumulation precisely at the point where the tension of the 
originally cylindrical cell is weakening to produce the bulge. 
But in a still later stage, when the boundary between the two 
conjugating cells is lost and the cytoplasm of the two cells becomes 
fused together, then the signs of potassium concentration quickly 
disappear, the salt becoming generally diffused through the now 
symmetrical and spherical “zygospore.”

In a spore of Equisetum, while it is still a single cell, no 
localised concentration of potassium is to be discerned; but as 
soon as the spore has divided by an internal partition into two 
cells, the potassium salt is found to be concentrated in the smaller 
one, and especially towards its outer wall which is marked by a 
pronounced convexity. As this convexity (which corresponds 
to one pole of the now asymmetrical, or quasi-ellipsoidal spore) 
grows out into the root-hair, the potassium salt accompanies its 
growth and is concentrated under its wall. The concentration is, 
accordingly, a concomitant of the diminished surface-tension which 
is man ifested in the altered configuration of the system.

The Acinete protozoa obtain their food through suctorial tentacles 
extruded from the surface of the cell: their extrusion being doubtless 
due to a local diminution of surface-tension. A dense concentration 
of potassium reveals itself, accordingly, in the surface-film of each 
tiny tentacle. As the tentacles are withdrawn their potassium 
diffuses into the cytoplasm; when retraction is complete it is again 
found in surface-concentration, but the surface-films on which it 
now concentrates are the surfaces of the protein-spherules (or “food
vacuoles”) within the body of the cell.

In the case of ciliate or flagellate cells, there is to be found a 
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characteristic accumulation of potassium at and near the base of 
the cilia. The relation of ciliary movement to surface-tension* 
lies beyond our range, but the fact which we have just mentioned 
throws light upon the frequent or general presence of a little 
protuberance of the cell-surface just where a flagellum is given off 
(cf. p 406), and of a little projecting ridge or fillet at the base of 
an isolated row of cilia, such as we find in Vorticella.

Yet another of Professor Macallum’s demonstrations, though its 
interest is mainly physiological, will help us somewhat further to 
comprehend what is implied in our phenomenon. In a normal cell 
of Spirogyra, a concentration of potassium is revealed along the 
whole surface of the spiral coil of chlorophyll-bearing, or “chromato- 
phoral,” protoplasm, the rest of the cell being wholly destitute of 
that substance: the inference being that at this particular boundary, 
between chromatophore and cell-sap, the surface-tension is small 
in comparison with any other interfacial surface within the system. 
And again, in certain minute Chytridia-\iV& fungi, parasitic on 
Spirogyra and the like, the potassium-reaction helps to trace the 
delicate haustoria of the parasite in their course within the host-cell 
—a clear indication of low surface-tension at the surface between.

Now as Macs Hum points out, the presence of potassium is known 
to be a factor, in connection with the chlorophyll-bearing proto
plasm, in the synthetic production of starch from CO2 under the 
influence of sunlight; but we are left in some doubt as to the 
consecutive order of the phenomena. For the lowered surface
tension, indicated by the presence of the potassium, may be itself 
a cause of the carbohydrate synthesis; while on the other hand, 
this synthesis may be attended by the production of substances 
(e.g. formaldehyde) which lower the surface-tension, and so conduce 
to the concentration of potassium. All we know for certain is Jhat 
the several phenomena are associated with one another, as ap
parently inseparable parts or inevitable concomitants of a certain 
complex actionf.

* Cf. J. Gray, The mechanism of ciliary movement, Proc. R.S. (B), 1922-24.
t The distribution of potassium within plant-cells is more complicated than it 

seemed at first to be: but it is still the general if not the invariable rule to find it 
associated (by adsorption) with one boundary-surface or another. Cf. E. S. 
Dowding, Regional and seasonal distribution of potassium in plant tissues, Ann. 
Bot. xxxix, pp. 459—476,1925. The whole question, first adumbrated by Macallum,
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And now to return, for a moment, to the question of cell-form. 

When we assert that the form of a cell (in the absence of mechanical 
pressure) is essentially . pendent on Surface-tension, and even when 
we make the preliminary assumption that protoplasm is essentially 
a fluid, we are resting our belief on a general consensus of evidence, 
rather than on compliance with any one crucial definition. The 
simple fact is that the agreement of cell-forms with the forms which 
physical experiment and mathematical theory assign to liquid 
surfaces under the influence of surface-tension is so frequently and 
often so typically manifested that we are led, or driven, to accept 
the surface-tension hypothesis as generally applicable and as equi
valent to a universal law. The occasional difficulties or apparent 
exceptions are such as to call for further enquiry, but fall short of 
throwing doubt on the hypothesis. Macallum’s researches introduce 
a new element of certainty, a “nail in a sure place,” when they 
demonstrate that in certain movements or changes of form which 
we should naturally attribute to weakened surface-tension, a 
chemical concentration which would naturally accompany such 
weakening actually takes place. They further teach us that in the 
cell a chemical heterogeneity may exist of a very marked kind, 
certain substances being accumulated here and absent there, within 
the narrow bounds of the system.

Such localised accumulations can as yet only be demonstrated in 
the case of a very few substances, and of a single one in particular; 
and these few are substances whose presence does not produce, but 
whose concentration tends to follow, a weakening of surface-tension. 
The physical cause of the localised inequalities of surface-tension 
remains unknown. We may assume, if we please, that they are 
due to the prior accumulation, or local production, of bodies which 
have this direct effect; though we are by no means limited to this 
hypothesis. But in spite of some remaining difficulties and un
certainties, we have arrived at the conclusion, as regards unicellular 
organisms, that not only their general configuration but also their 
is part of the general subject of ionic regulation, which has since become a matter 
of great physiological importance; cf. (int. al.) 1). A. Webb, Ionic regulation in 
Carcinus moenas, Proc. R.S. (B), cxxix, pp. 107-136, 1940, and many works 
quoted therein. It is curious and interesting that Macallum’s first work on unequal 
ionic distribution in the tissues and Donnan’s fundamental conception of the Donnan 
equilibrium (Journ. Chern. Soc. xcix, p. 1554, .1911) came just at the same time. 
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departures from symmetry may be correlated with the molecular 
forces manifested in their fluid or semi-fluid surfaces.

Looking at the physiological Side, rather 1—.1 at the morphological 
which is more properly our own, we see how very important a 
cellular system is bound to be, even in respect of its surface-area 
alone. The order of magnitude of the cells which constitute our 
tissues is such as to give a relation of surface to volume far beyond 
anything in all the structures or mechanisms devised and fabricated 
by man. At this extensive surface, capillary energy, a form of 
energy scarcely utilised by man, plays a large predominant part in 
the energetics of the organism. Even the warm-blooded animal is 
not in reality a heat-engine; working as it does at almost constant 
temperatures its output of energy is bound, by the principle of 
Carnot, to be small. Nor is it an electrostatic machine, nor yet an 
electrodynamic one. It- is a mechanism in which chemical energy 
turns into surface-energy, and. working hand in hand, the two are 
transformed into mechanical energy, by steps which are for the 
most part unknown*.

We are led on by these considerations to reflect on the molecular, 
rather than the histological, structure of the cell. We have already 
spoken in passing of “ monomolecular layers,” such as Henri Devaux 
imagined some thirty years ago, and afterwards obtained!, and 
such as Irving Langmuir has lately made his own. The free surface 
of every liquid (provided the form and symmetry of its molecules 
permit) presents a single layer of oriented molecules. Such a surface 
is no mere limit or simple boundary; it becomes a region of great 
importance and peculiar activity in certain cases, when, for instance, 
protein molecules of vast complexity are concerned. It is then 
a morphological field with a molecular structure of its own, and a 
dynamical field with energetics of its own. It becomes a frontier 
where this alien molecule may be excluded and that other be passed 
through: where some must submit to mere adsorption, and others 
suffer chemical change. In a word, we begin to look on a surface-layer 
or membrane, visible or invisible, as a vastly important thing, a place 
of delicate operations, and a field of peculiar and potent activity.

* Lippmann imagined a moteur Hectrocapillaire, unique in the history of 
mechanical invention. Cf. Berthelot, Rev. Sci. Dec. 7, 1913.

t Cf. (int. al.) H. Devaux, La structure moleculaire de la cellule vegetale, Bull. 
Sac. Bot. de France, lxxv, p. 88, 1928.



CHAPTER VII

THE FORMS OF TISSUES OR CELL-AGGREGATES

We pass from the solitary cell to cells in contact with one another 
—to what we may call in the first instance “cell-aggregates,” 
through which we shall be led ultimately to the study of complex 
tissues. In this part of our subject, as in the preceding chapters, 
we shall have to consider the effect of various forces; but, as in 
the case of the solitary cell, we shall probably find, and we may at 
least begin by assuming, that the agency of surface-tension is 
especially manifest and important. The effect of this surface-tension 
will manifest itself in surfaces- minimae areae', where, as Plateau 
was always careful to point out, we must understand by this 
expression not an absolute but a relative minimum, an area, that 
is to say, which approximates to an absolute minimum as nearly as 
the circumstances and material exigencies of the case permit.

There are certain fundamental principles, or fundamental equa
tions, besides those we have already considered, which we shall need 
in our enquiry; for instance, the case which we briefly touched 
on (on p. 426) of the angle of contact between the protoplasm 
and the axial filament in a Heliozoan, we shall now find to be but 
a particular case of a general and elementary theorem.

Let us re-state as follows, in terms of Energy, the general 
principle which underlies the theory of surface-tension or capillarity*.

When a fluid is in contact with another fluid, or with a solid or 
with a gas, a portion of the total energy of the system (that, namely, 
which we call surface energy) is proportional to the area of the 
surface of contact; it is also proportional to a coefficient which is 
specific for each particular pair of substances and is constant for 
these, save only in so far as it may be modified by changes of 
temperature or of electrical charge. Equilibrium, which is the 
condition of minimum potential energy in the system, will accordingly

* See Clerk Maxwell’s famous article on “Capillarity” in the ninth edition of 
the Encyclopedia Britannica, revised by Lord Rayleigh in the tenth edition.

TG F .30
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be obtained, caeteris paribus, by the utmost possible reduction of 
the surfaces in contact.

When we have three bodies in contact with one another the same 
is true, but the case becomes a little more complex. Suppose a 
drop of some fluid, A, to float on another fluid, B, while both are 
exposed to air, C. Here are three surfaces of contact, that of the 
drop with the fluid on which it floats, and those of air with the one 
and other of these two; and the whole surface-energy, E, of the 
system consists of three parts resident in these three surfaces,

or of three specific energies, EAB, EAC, EBC. -The condition of 
equilibrium, or minimal potential energy, will be reached by con
tracting those surfaces whose specific energy happens to be large 
and extending those where it is small—contraction leading to the 
production of a “drop,” and extension to a spreading “film.” 
Floating on water, turpentine gathers into a drop, olive-oil spreads 
out in a film; and these, according to the several specific energies, 
are the ways by which the total energy of the system is diminished 
and equilibrium attained.

A drop will continue to exist provided its own two surface-energies 
exceed, per unit area, the specific energy of the water-air surface 
around: that is to say, provided (Fig. 151)

Eab + &AC > BC-

But if the one fluid happen to be oil and the other water, then the 
combined energy per unit-area of the oil-water and the oil-air 
surfaces together is less than that of the water-air surface:

E > E -4- E

Hence the oil-air and oil-water surfaces increase, the air-water 
surface contracts and disappears, the oil spreads over the water, 
and the “drop” gives place to a “film.” In both cases the total 
surface-area is a minimum under the circumstances of the case, and 
always provided that no external force, such as gravity, complicates 
the situation.
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The surface-energy of which we are speaking here is manifested 
in that contractile force, or tension, of which we have had so much 
to say*. In any part of the free water-surface, for instance, one 
surface-particle attracts another surface-particle, and the multi
tudinous attractions result in equilibrium. But a water-particle in 
the immediate neighbourhood of the drop may be pulled outwards, 

i

so to speak, by another water-particle, but find none on the other 
side to furnish the counter-pull; the pull required for equilibrium 
must therefore be provided by tensions existing in the other two 
surfaces of contact. In short, if we imagine a single particle placed 
at the very point of contact, it will be drawn upon by three different 
forces, whose directions lie in the three surface-planes and whose

* It can easily be proved (by equating the increase of energy stored in an 
increased surface with the work done in increasing that surface), that the tension 
measured per unit breadth, , is equal to the energy per unit area, . Surface
tensions are very diverse in magnitude, but all are positive; Clerk Maxwell 
conceived the existence of negative surface-tensions, but could not point to any 
certain instance. When blood-serum meets a solution of common salt, the two 
fluids hasten to mix, long streamers of the one running into the other; this 
remarkable phenomenon, first observed by Almroth Wright (Proc. R.S. (B), 
xcu, 1921) and called by him “ pseudopodial intertraction,” was described by 
Schoneboom (ibid. (A), ci, 1922) as a case of negative surface-tension. But it 
is a diffusion-phenomenon rather than a capillary one.

30-2
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magnitudes are proportional to the specific tensions characteristic 
of the three “interfacial” surfaces. Now for three forces acting at 
a point to be in equilibrium they must be capable of representation, 
in magnitude and direction, by the three sides of a triangle taken 
in order, in accordance with the theorem of the Triangle of Forces. 
So, if we know the form of our drop as it floats on the surface 
(Fig.J 152), then by drawing tangents P, R, from 0 (the point of 
mutual contact), we determine the three angles of our triangle, and 
know therefore the relative magnitudes of the three surface-tensions 
proportional to its sides. Conversely, if we know the three tensions 
acting in the directions P, R, S (viz. Tab, Tac, Tbc) we know the three 
sides of the triangle, and know from its three angles the form of 
the section of the drop. All points round the edge of the drop being 
under similar conditions, the drop must be circular and its figure 
that of a solid of revolution*.

The principle of the triangle of forces is expanded, as follows, 
in an old seventeenth-century theorem, called Lamy’s Theorem:
• If three forces acting at a point be in equilibrium, each force is 

proportional to the sine of the angle contained between the directions of 
the other two. That is to say (in Fig. 152)

P: R: S — sin : sin p : sin ?,
P R Sor sm 9 sin p sin s t

And from this, in turn, we derive the equivalent formulae by which 
each force is expressed in terms of the other two and of the angle 
between them: viz.

P2 = R2 |- S2 + 2RS cos etc.

From this and the foregoing, we learn the following important 
and useful deductions:

(1) The three forces can only be in equilibrium when each is less
* Bubbles have many beaul iful properties besides the more obvious ones. For 

instance, a floating bubble is always part of a sphere, but never more than a 
hemisphere; in fact it is always rather less, and a very small bubble is considerably 
less, than a hemisphere. Again, as we blow up a bubble, its thickness varies 
inversely as the square of its diameter; the bubble becomes a hundred and fifty 
times thinner as it grows from an inch in diameter to a foot. In an actual calculation 
we must always take account of the tensions on both surfaces of each film or 
membrane.
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than the sum of the other two; otherwise the triangle is impossible. 
In the case of a drop of olive-oil on a clean water-surface, the relative 
magnitudes of the three tensions (at 15° C.) are nearly as follows:

Water-air surface 59
Oil-air „ 25
Oil-water „ 16

No triangle having sides of these relative magnitudes’is possible,
and no such drop can remain in existence*.

(2) The three surfaces may be all alike: as when two soap-bubbles 
are joined together on either side of a partition-film. The three 
•tensions then are all co-equal, and the three angles are co-equal; 
that is to say, when three similar liquid surfaces, or films, meet 
together, they always do so at identical angles of 120°. Whether 
our two conjoined soap-bubbles be equal or unequal, this is still 
the invariable rule; because the specific tension of a particular 
surface is independent of form or magnitude.

(3) If all three surfaces be different, as when a fluid drop lies 
between water and air, the three surface-tensions will (in all likeli
hood) be different, and the two surfaces of the drop will differ in 
their amount of curvature.

Fig. 153.

(4) If two only of the surfaces be alike, then two of the angles 
will be alike and the other will be unlike; and this last will be the 
difference between 360“ and the sum of the other two. A particular 
case is when a film is stretched between solid and parallel walls, 
like a soap-film within a cylindrical tube. Here, so long as no 
external pressure is applied to either side, so long as both ends of 
the tube are open or closed, the angles on either side of the film 
will be equal, that is to say the film will set itself at right angles to 
the sides. Many years ago Sachs laid it down as a principle, which

♦ Nevertheless, if the water-surface be contaminatefi by ever so thin a film of 
oil, the oil-drop may be made to float upon it. See Rayleigh on Foam, Collected 
Works, in, p. 351.
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has become celebrated in botany under the name of Sachs’s Rule, 
that one cell-wall always tends to set itself at right angles to another 
cell-wall. But this rule only applies to the case we have just 
illustrated; and such validity as it possesses is due to the fact that 
among plant-tissues it commonly happens that one cell-wall has 
become solid and rigid before another partition-wall impinges upon it.

(5) Another important principle arises, not out of our equations 
but out of the general considerations which led to them. We saw in 
the soap-bubble that at and near the point of contact between our 
several surfaces, there is a continued balance of forces, carried (so 
to speak) across the interval; in other words, there is physical 
continuity between one surface and another and it follows that the 
surfaces merge one into another by a continuous curve. Whatever 

Fig. 154. Plateau’s bourrelet, 
in an algal filament. After 
Berthold.

be the form of our surfaces and whatever the angle between them, 
a small intervening curved surface is always there to bridge over 
the line of contact; and this little fillet, or “bourrelet,” as Plateau 
called it, is big enough to be a common and conspicuous feature in 
the microscopy of tissues (Fig. 154). A similar “bourrelet” is 
clearly seen at the boundary between a floating bubble and the liquid 
on which it floats: in which case it constitutes a “masse annulaire,” 
whose mathematical properties and relation to the form of the 
nearly hemispherical bubble have been investigated by van der 
Mensbrugghe*. The superficial vacuoles in Actinophrys or Actino- 
sphaerium present an identical phenomenon.

(6) It is a curious effect, or consequence, of the bourrelet that 
a “horizontal” soap-film is never either horizontal or plane. For 
the bourrelet at its edge is deformed by gravity, and the film is 
correspondingly inclined upwards where it meets it (Fig. 1556).

* Cf. Plateau, op. cit. p. 366.
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(7) The bourrelet, a fluid mass connected with a fluid film, is no 
mere passive phenomenon but has its active influence or dynamical 
effect. This was pointed out by Willard Gibbs*, and Plateau’s 
bourrelet is more often called, nowadays, “ Gibbs’s Ring.” The ring 
is continuous in phase with the interior of the film, and fluid is 
sucked into it from the latter, which thins rapidly; and this, 
becoming a more potent factor of unrest than gravity itself, leads 
presently to the rupture of the film. Plateau’s explanation of his 
bourrelet as a “surface of continuity” is thus but a part, and a 
small part of the story.

(8) In the succulent, or parenchymatous, tissue of a vegetable, 
the cells have their internal corners rounded off (Fig. 156) in a way 
which might suggest the bourrelet, but comes of another cause.

Fig. 156. Parenchyma of maize; shewing intercellular spaces.

Where the angles are rounded off the cell-walls tend to split a’part 
from one another, and each cell seems tending to withdraw, as far 
as it can, into a sphere; and this happens, not when the tissue is 
young and the cell-walls tender and quasi-fluid, but later on, when 
cellulose is forming freely at the surface of the cell. The cell-walls 
no longer meet as fluid films, but are stiffening into pellicles; the 
cells, which began as an association of bubbles, are now so many 
balls, in solid contact or partial detachment; and flexibility and 
elasticity have taken the place of the capillary forces of an earlier 
and more liquid phase f.

* Collected Works, i, p. 309.
f J. H. Priestley, Cell-growth... in the flowering plant. New Phytologist, xxvm, 

pp. 54-81, 1929.
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(9) Statically though not dynamically, that is to say as a line or 
surface of continuity in Plateau’s sense, our bourrelet is analogous 
to the accumulation of sand seen where two nodal lines cross in a 
Chladni figure: “Vers les endroits ou des lignes nodales se coupe nt, 
elles s’elargissent toujours, de sorte que la forme des parties vibrantes 
pres de ces endroits n’est pas angulaire mais plus ou moins arrondie, 
souvent en forme d’hyperbole*.” And in somewhat remoter analogy, 
we may look on the three corpora Arantii as so many bourrelets, 
helping to fill the angles where three semilunar valves meet at the 
base of the great arteries.

Me may now illustrate some of the foregoing principles, con
stantly bearing in mind the principles set forth in our chapter on 
the Forms of Cells, and especially those relating to the pressure 
exercised by a curved film.

Fig. 157.

Let us look for a moment at the case presented by the partition
wall in a double soap-bubble. As we have just seen, the three films 
in contact (viz. the outer walls of the two bubbles and the partition- 
wall between) being all composed of the same substance and being 
all alike in contact with air, the three tensions must be equal, and 
the three films must, in all cases, meet at co-equal angles of 120‘. But 
unless the two bubbles be of precisely equal size, and therefore of 
equal curvature, the tangents to the spheres will not meet the plane 
of their circle of contact at equal angles, and the partition-wall will 
of necessity be a curved, and indeed a spherical, surface; it is only 
plane when it divides two equal and symmetrical cells. It is 
obvious, from the symmetry of the figure, that the centres of the 
two bubbles and of the partition between are all on one and the 
same straight line.

The two bubbles exert a pressure inwards which is inversely
* E. F. F. Chladni, Traite d'acoifstique, 1809, p. 127. 
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proportional to their radii: that is to say, p p uA/r: 1/r'; and the 
partition-wall must, for equilibrium, exert a pressure (P) which is 
equal to the difference between these two pressures, that is to say, 
P = 1/P = 1/r' — 1/r = (r — r')/rr'. It follows that the curvature of 
the partition must be just such as is capable of exerting this pressure, 
that is to say, R = rr'/(r — r'). The partition, then,.is a portion of 
a spherical surface, whose radius is equal to the product, divided 
by the difference, of the radii of the two bubbles; if the two bubbles 
be equal, the radius of curvature of the partition is infinitely great, 
that is to say the partition is (as we have already seen) a plane 
surface.

In the typical case of an evenly divided cell, such as a double 
and co-equal soap-bubble (Fig. 158), where partition-wall and outer 
walls are identical with one another and the same air is in contact 
with them all, we can easily determine the form of the system. 
For, at any point of the boundary of the partition, P, the tensions 
being equal, the angles QPP', RPP', QPR are all equal, and each 
is, therefore, an angle of 120°. But PQ, PR being tangents, the 
centres of the two spheres (or circular arcs in the figure) lie on lines 
perpendicular to them; therefore the radii CP, CP meet at an 
angle of 60°, and CPC is* an equilateral triangle. That is to say, 
the centre of each circle lies on the circumference of the other; the 



474 THE FORMS OF TISSUES [ch.

partition lies midway between the two centres; and the diameter
OP V3of the partition-wall, PP', is = sin 60° = —— = 0-866 times the 

diameter of each of the two cells. This gives us, then, the form 
of a combination of two co-equal spherical cells under uniform 
conditions.

By integrating between the known values of the meridian section and the 
plane partition, we should find each half of the double cell (or soap-bubble) 
to be equal to 27/32 of a complete sphere. Therefore the radius of curvature 
of each half of the divided bubble is greater than that of a sphere of equal 
volume in the ratio of:

v32 : ^27 = 2.: 3 = 1058 : 1 = 1 : 0-945.

And the radius of the original sphere, before division, is to the radius of 
each half, or each product of cell-division, as

-^54: -^32 = 3.^2: 2.^4 = 1-191 : 1 = 1 : 0-84.

In the case of three co-equal and united bubbles (to which case we shall 
presently return), each is approximately five-sevenths of a whole sphere: 
and their radii, therefore, are to the radius of the whole sphere as

V7: v5 = 1 : 0-893 = 1 : (0-945)2.

When two co-equal bubbles coalesce, the internal pressure, due to the 
tension of the wall and varying inversely as its radius of curvature, is 
diminished in the ratio of 1 : 0-945, or say 5| per cent. And we begin to see, 
in the case of three bubbles, that the process proceeds in a geometrical 
progression, each new coalescence increasing the radius of curvature and 
diminishing the internal pressure, by a constant fraction of the whole. This 
and other simple corollaries may perchance, some day, be found useful to the 
biologist.

In the ca& of unequal bubbles, the curvature of their partition
wall is easily determined, and is shewn in Fig. 159. The three 
films meeting in P being (as before) identical films, the three 
tangents, PQ, PR, PS, meet at co-equal angles of 120°, and PS 
produced bisects the angle QPR. PQ, PR are tangents perpen
dicular to the radii CP, C P; and C"P, the radius of the spherical 
partition PP', is found by drawing a perpendicular to PS in P. 
The centre C" is, by the symmetry of the figure, in a straight line 
with C, C’.

Whether the partition be or be not a plane surface, it is obvious 
that its line of junction with the rest of the system lies in a plane,
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and is at right angles to the axis of symmetry. The actual curvature 
of the partition-wall is easily seen in optical section; but in surface 
view the line of junction is projected as a plane (Fig. 160), perpen
dicular to the axis, and this appearance has helped to lend support 
and authority to “Sachs’s Rule.”

As soon as the tensions of the cell-walls become unequal, whether 
from changes in their own substance or in the substances with 
which they are in contact, then the form alters. If the tension 
along the partition P diminishes, the partition itself enlarges and 
the angle QPR increases until, when the tension p is very small 
compared with q or r, the whole figure becomes a sphere, and the 
partition-wall, dividing it into two hemispheres, stands at right 
angles to the outer wall. This is the case when the outer wall of 
the cell is practically solid. On the other hand, if p begins to 

Fig. 161.

increase relatively to q and r, then the partition-wall contracts, 
and the two adjacent cells become larger and larger segments of 
a sphere, until at length the system becomes divided into two 
separate cells.

To put the matter still more simply, let the annexed diagrams 
(Fig. 161) represent a system of three films, one being a partition
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wall running between the other two; and where the partition t 
meets the outer wall TT', let the several tensions, or the tractions 
exerted on a point at their meeting-place, be proportional to T, T’ 
and t. Let a, fl, y be, as in the figure, the opposite angles. Then:

(1) If T be equal to T', and t be relatively insignificant, the 
angles a, fl will be of 90°.

(2) If T = T', but be a little greater than t, then t will exert 
an appreciable traction, and a, fl will be more than 90°, say for 
instance, 100°.

(3) If T = T' = t, then a, fl, y will all equal 120°.

Fig. 162. Part of a dragonfly’s wing.

The outer walls of the two cells on either side of the partition 
will be straight, as well as continuous, in the first case, and more 
or less curved in the other two. We have a vivid illustration (if a 
somewhat crude on© of the first case in a section of honey: where 
the waxen walls, which meet one another at 1203, meet the wooden 
sides of the box at 90".

The wing of a dragon-fly shews a seemingly complicated system 
of veins which the foregoing considerations help much to simplify. 
The wing is traversed by a few strong “veins,” or ribs, more or 
less parallel to one another, between which finer veins make a 
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mesh work of “cells,” these lesser veins being all much of a muchness, 
and exerting tensions insignificant compared with those of the 
greater veins. Where (a) two ribs run so near together that only 
one row of cells lies between, these cells are quadrangular in form, 
their thin partitions meeting the ribs at right angles on either side. 
Where (6) two rows of cells are intercalated between a pair of ribs, 
one row fits into the other by angles of 120°, the result of co-equal 
tensions; but both meet the ribs at right angles, as in the former 
case. Where (c) the cell-rows are numerous, all their angles in 
common tend to be co-equal angles of 12U°, and the cells resolve, 
consequently, into a hexagonal mesh work.

Many spherical cells, such as Protococcus, divide into two equal 
halves, separated by a plane partition. Among other lower Algae 
akin to Protococcus, such as the Nostoca 
and Oscillatoriae, in which thexells are 
embedded in a gelatinous matrix, we 
find a series of forms such as are re
presented in Fig. 163, which various 
conditions depend, according to what 
we have already learned, upon the 
relative magnitudes of the tensions at 
the surface of the cells and the boundary 
between them. In some cases (Fig. 
163, B) the cells remain spherical, 
because they are merely embedded in 
the matrix, with no other physical 
continuity between them; even two 
soap-bubbles do not tend to unite, 
unless their surfaces be moist or we 

Fig. 163. Filaments, or chains of 
cells, in various lower Algae. 
(A) Nostoc; (B) Anabaena; 
(C) Rivularia; (D) Oscillatoria.

put a drop of soap-solution between them. In certain other cases, 
the system consists of a relatively thick-walled tube, subdivided by 
more delicate partitions, which latter then tend (as in D) to become 
plane septa, set at right angles to the walls. Or again, side-walls 
and septa may be all alike, or nearly so; and then the configuration 
(as in C, on Fig. 163) is that of a linear cluster of soap-bubbles*.

* Cf. Dewar, Studies on liquid films, Proc. Roy. Inst. 1918, p. 359.

In the spores of liverworts, such as Pellia, the first partition 
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(the equatorial partition in Fig. 165 a) divides the spore into two 
equal halves, and is therefore a plane surface normal to the surface 
of the cell. But the next partitions arise near to either end of the 
original spherical or elliptical cell, and each of these latter will 
likewise tend to set itself normally to the cell-wall—at least the

angles on either side of the partition will tend to be identical, and 
their magnitude will depend on the relative tensions of the cell-wall 
and the partition. The angles will be right angles if the cell-wall is 
solid or nearly so when the partition is formed; but they will be 
somewhat greater, if (in all probability) rigidity of the cell-wall 
has not been quite attained. In either case the partition itself will

a b c
Fig. 165. Early development of a liverwort (PeUia). After Wildeman.

be part of a spherical surface, whose curvature will now correspond 
to the difference of pressures in the two chambers (or cells) which 
it serves to separate.

We have innumerable cases, near the tip of a growing filament 
for instance, where in like manner the partition-wall which cuts off 
the terminal, more or less conical, cell constitutes a spherical lens-
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shaped surface, set normally to the adjacent walls; and the centre 
of curvature is the meeting-point of two tangents to the cone. We 
find such a lenticular partition at the tips of the branches of many 
Florideae; in Dictyota dichotomy, as figured by Reinke, we have 
a succession of them. And by the way, where, in such cases as 
these, the tissues happen to be very transparent, we often have a 
puzzling confusion of fines (Fig. 166); one being the optical section

Fig. 166. Cells of Dictyota. 
After Reinke.

Fig. 167. Terminal and other cells 
of Chara.

of the curved partition-wall, the other being the straight linear 
projection of its outer edge to which we have already referred. In 
the conical terminal cell of Chara, we have the same lens-shaped 
curve; but a little lower down, where the sides of the shoot are 
approximately parallel, we have flat transverse partitions, and the 
form of the cells is, more or less, what we have been led to expect 
in the simple case of successive transverse partitions (Fig. 167).

In the young antheridia of Chat a (Fig. 168), and in the geo
metrically similar case of the sporangium (or 
Mucor, we easily recognise the hemispherical form 
of the septum which shuts off the large spherical 
cell from the cylindrical filament. Here, in the first 
phase of development, we should have to take 
into consideration the different pressures exerted 
by the single curvature of the cylinder and the 
double curvature of its spherical cap (p. 371); and 
we should find that the partition would have a 
somewhat low curvature, with a radius less than 
the diameter of the cylinder, which it would have 
exactly equalled but for the additional pressure 
inwards which it receives from the curvature of

conidiophore) of

Fig. 168. Young 
antheridium of 
Chara.

the large surrounding sphere. But as the latter continues to
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grow its curvature decreases, and so likewise does the inward 
pressure of its surface; and accordingly the little convex partition 
bulges out more and more.

In the ordinary meristematic tissue of a plant, the new partition
wall within a dividing cell will generally meet the old walls at right 
angles to begin with, because its tension is usually small compared 
to what theirs has become. But as the system grows and the old 
wall strengthens, the tensions of all three walls become approxi
mately the same; and they tend towards a new position of equi
librium, in which (as seen in optical section) they meet as before, 
at co-equal angles of 120J*.

* J. H. Priestley, Studies.. .of cambium activity, New Phytologist, xxix, p. 101, 
1930. Cf. also J. J. Beijer, Vermehrung der radialen Reihen in Cambium, Rec. 
de trav. bot. Neerl. xxiv, pp. 631-786. 1927.

Hofmeister, Pringsheim's Jahrb. in, p. 272, 1863; Hdb. d. physiol. Bot. i, 
p. 129, 1867; etc. Hofmeister adds the somewhat curious qualification: “Wohl- 
bemerkt, nicht senkrecht zum grossten Durchmesser der Zelle, der mit der Richtung 
des starksten Wachstums nicht zusammenfallen braucht, und in sehr viel Fallen 
in der That auch nicht mit ihr zusammenfallt.”

Fig. 169. Cambium cells after division, altering from A to B.

The biological facts which the foregoing considerations go far to 
explain and account for have been the subject of much argument 
and discussion on the part of the botanists. Let me recapitulate, 
in a very few words, the history of this long discussion.

Some seventy years ago, Hofmeister laid it down as a general, 
but purely empirical, law that "The partition-wall stands always 
perpendicular to what was previously the principal direction of 
growth in the cell”—or, in most cases, perpendicular to the long 
axis of the cellf. This contains an important truth; for it is as 
much as to say that the cell tends to be divided by the smallest 
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partition capable of doing so. Ten years later, Sachs formulated 
his rule of “rectangular section,” declaring that in all tissues, 
however complex, the cell-walls cut one another (at the time of 
their formation) at right angles*. Years before, Schwendener had 
found in the final results of cell-division a universal system of 
“orthogonal trajectories]"”; and this idea Sachs further developed, 
introducing complicated systems of confocal ellipses and hyperbolae, 
and distinguishing between periclinal walls whose curves approxi
mate to the peripheral contours, radial partitions which cut these 
at an angle of 90°, and finally anticlines, which stand at right angles 
to the other two.

Reinke (in 1880) was the first to throw doubt upon this explana
tion. lie pointed out cases where the angle was not a right angle, 
but very definitely an acute one; and he saw in the commoner 
rectangular symmetry merely what he called a necessary, but 
secondary, result of growth J.

Within the next few years a number of botanical writers were 
content to point out further exceptions to Sachs’s rule§, and in 
some cases to show that the curvatures of the partition-walls, 
especially such cases of lenticular curvature as we have described, 
were by no means accounted for by either Hofmeister or Sachs; 
while within the same period, Sachs himself, and also Rauber, 
attempted to extend the main generalisation to animal tissues^. 
The simple fact is that Sachs’s rule is limited to those many 
cases where one cell-wall grows stiff or solid before another

* Sachs, Ueber die Anordnung d. Zellen in jiingsten Pflanzentheilen, Verh. phys.- 
med. Gesellsch. Wurzburg, xi, pp. 219-242, 1877; Ueber Zellenanordnung u. 
Wachstum, ibid, xn, 1878; cf. Arb. bot. Inst. Wurzburg, ii, 1882; Ueber die durch 
Wachstum bedingte Verschiebung kleinster Theilchen in trajectorischen Curven, 
Monatsb. k. Akad. UTss. Berlin, 1880; Physiology of Plants, chap, xxvn, Oxford, 
1887.

t Schwendener, Bau u. Wachstum des Flechtenthallus, Naturf. Gesellsch. Zurich, 
1860, pp. 272-296.

J Reinke, Lehrbuch d. Botanik, 1880, p. 519; Kienitz-GerloffaBotan. Ztg. 1878, 
p. 58, had already shewn some exceptions to Sachs’s rules, and ascribed them, 
vaguely, to “heredity.” It was a time when heredity overruled everything, and 
when Sachs himself spoke of the difficulty of demonstrating the causes of any 
morphological phenomenon in any other way than “genetically”: Textbook, 1882, 
p. 201.

§ E.g., Leitgeb, Untersuchungen uber die Lebermoose, n, p. 4, Graz, 1881.
“T Rauber, Neue Grundlegungen zur Kenntniss der Zelle, Morphol. Jahrb. vm, 

pp. 279, 334, 1882.
T G F 31 
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impinges upon it; and, subject to this limitation, the rule is strictly 
true.

W hile these writers regarded the form and arrangement of the 
cell-walls as a biological phenomenon, with little if any direct 
relation to ordinary physical laws, or with but a vague reference 
to “mechanical conditions,” the physical side of the case was 
soon urged by others, with more or less force and cogency. Indeed 
the general resemblance between a cellular tissue and a “froth” 
had been pointed out long before. Robert Hooke described the 
cells within the shaft of a feather as forming “a kind of solid or 
hardened froth, or a congeries of very small bubbles,” and Grew 
described a parenchyma as made by “fermentation”, “a^ we see 
Bread in Baking”, and again as being “much the same thing, as to 
its construction which the froth of beer or eggs is.” Later on, within 
the days of the cell-theory, Meisens made an “artificial tissue” by 
blowing into a solution of white of egg*.

In 1886, Berthold published his Protoplasmamechanik, in which he 
definitely adopted the principle of “minimal areas,” and, following 
on the lines of Plateau, compared the forms of many cells and the 
arrangement of their partitions with those assumed under surface
tension by a system of “weightless films.” But. as Klebsf pointed 
out, in reviewing the book, Berthold was so cautious as to stop short 
of attributing the biological phenomena to a mechanical cause. 
They remained for him, as they had done for Sachs, so many 
“phenomena of growth,” or “properties of protoplasm.”

In the same year, but while still unacquainted, apparently, with 
Berthold’s work, Leo Errera published a short but very striking 
article]: in which he definitely ascribed to the cell-wall' (as 
Hofmeister had already done) the properties of a semi-liquid film, 
and drew from this as a logical consequence the deduction that it 
must assume the various configurations which the law of minimal 
areas imposes ^n the soap-bubble. So what we may call Errera's 
Law is formulated as follows: A cell-wall, at the moment of its

* C.R. xxxiii, p. 247, 1851; Ann. de chimie et dephys. (3), xxxm, p. 170, 1851; 
Bull. R. Acad. Belg, xxiv, p. 531, 1857.

f Georg Klebs, Biol. Centralbl. vii, pp. 193-201, 1887.
| L. Errera, Sur une condition fondamentale d’equilibre des cellules vivantes, 

C.R. cm, p. 822, 1886; Bull. Soc. Beige de Microscopic, xm, Oct. 1886; Recueil 
d'oeuvres (Physiologic g&ntrale), 1910, pp. 201-205.
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formation, tends to assume the form which would be assumed under 
the same conditions by a liquid film destitute of weight*.

* There was no lack of hearty antagonism to Berthold and Errera’s views. 
Cf. (e.g.) Zimmermann, Beitr. z. Morphologic und Physiologic der Pflanzenzelle, 
Tubingen, 1891; Jost. Vorlesungen Uber Pflanzenphysiologie, 1904, p. 329, etc.; 
Giesenhagen, Studien uber Zelltheilungen im Pfianzenreiche, 1905. Cf. also K. 
Habermehl, Die mechanische Ursache f ur die regelmdssige Anordnung der Teilungs- 
wande in Pflanzenzellen (Inaug. Diss.), Kaiserslautern, 1909.

f L. Chabry, Embryologie des Ascidiens, J. Anat, et Physiol, xxnr, p. 266, 1887.
J H. Robert, Embryologie des Troques, Arch, de Zool. exper. et gen. (3), x, 1892.
§ “Dass der Furchungsmodus etwas fur das Zukunftige unwesentliches ist,” 

Z. f. w. Z. lv, 1893, p. 37. With this statement compare, or contrast, that of 
Conklin, quoted on p. 5; cf. also p. 287 (footnote).

II E. de Wildeman, Etudes sur 1’attache des cloisons cellulaires, Mem. Couronn. 
de l'Acad. B. de Belgique, mi, 84 pp., 1893-94.

Soon afterwards Chabryf, discussing the segmentation of the 
Ascidian egg, indicated many ways in which cells and cell-partitions 
repeat the surface-tension phenomena of the soap-bubble. He 
came to the conclusion that some, at least, of the embryological 
phenomena were purely physical, and the same line of investigation 
and thought was pursued and developed by RobertJ in connection 
with the embryology of the Mollusca. Driesch also, in a series of 
papers, continued to draw attention to capillary phenomena in the 
segmenting cells of various embryos, and came to the conclusion, 
startling to the embryologists of the time, that the mode of 
segmentation was of little importance as regards the final result§.

Lastly de Wildeman^, in a somewhat wider but also vaguer 
generalisation than Errera’s, declared that “The form of the cellular 
framework of plants and also of animals depends, in its essential 
features, upon the forces of molecular physics.”

Let us return to our problem of the arrangement of partition 
films. W hen we have three bubbles in contact, instead of two as 
in the case already considered, the phenomenon is strictly analogous 
to the former case. The three bubbles are separated by three 
partition surfaces, whose curvature will depend upon the relative 
size of the spheres, and which will be plane if the latter are all of 
equal size; but whether plane or curved, the three partitions will 
meet one another at angles of 120°, in an axial line. Various 
pretty geometrical corollaries accompany this arrangement. For 
instance, if Fig. 170 represent the three associated bubbles in a

31-2
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Fig. 171.
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plane drawn through their centres, c, c', c" (or what is the same 
thing, if it represent the base of three bubbles resting on a plane), 
then the lines uc, uc", or sc, sc', etc., drawn to the centres from the 
points of intersection of the circular arcs, will always enclose an 
angle of 60°. Again (Fig. 171), if we make the angle c"uf equal 
to 60°, and produce uf to meet cc" in f, f will be the centre of the 
circular arc which constitutes the partition Ou; and further, the 
three points f, g, h, successively determined in this manner, 'will lie 
on one and the same straight line. In the case of three co-equal 
bubbles (as in Fig. 170, B), it is obvious that the lines joining their 
centres form an equilateral triangle: and consequently, that the 
centre of each circle (or sphere) lies on the circumference of the 
other two; it is also obvious that uf is now parallel to cc", and 
accordingly that the centre of curvature of the partition is now 
infinitely distant, or (as we have already said) that the partition 
itself is plane.

The mathematician will find a more elegant way of dealing with our 
sphericd bubbles and their associated interfaces by the method of spherical 
inversion, (i) Take three planes through a line, cutting one another at 60°, 
and invert from any point, and you have the case of two spherical bubbles 
fused, with their interface also spherical, (ii) Take the six planes projecting 
the edges of a regular tetrahedron from its centre, and you get by inversion 
the case of the three unequal bubbles and their three interfaces, (iii) Take 
these same planes with a bubble added centrally (thus adding a spherical 
tetrahedron), and inversion gives the general case of four fused bubbles and 
their six spherical partitions.

When we have four bubbles meeting in a plane (Fig. 172), they 
would seem capable of arrangement in two symmetrical ways: 
either (a) with four partition-walls intersecting at right angles, ' 
or (6) with five partitions meeting, three and three, at angles of 120°. 
The latter arrangement is strictly analogous to the arrangement of 
three bubbles in Fig. 170. Now, though both of these figures might 
seem, from their apparent symmetry, to be figures of equilibrium, 
yet in point of fact the latter turns out to be of stable and the 
former of unstable equilibrium. If we try to bring four bubbles 
into the form (a), that arrangement endures only for an instant; 
the partitions glide upon one another, an intermediate wall springs 
into existence,- and the system assumes the form (b), with its two 
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triple, instead of one quadruple, conjunction. In like manner, when 
four billiard-balls are packed close upon a table, two tend to come 
together and separate the other two.

Let us epitomise the Law of Minimal Areas and its chief clauses 
or corollaries in the particular case of an assemblage of fluid films, 
as was first done by Lamarle*. Firstly and in general: In every 
liquid system of thin films in stable equilibrium, the sum of the 
areas of the films is a minimum. From observation and experience, 
rather than by demonstration, it follows that (2) the area of each 
is a minimum under its own limiting conditions; and further that 
(3) the mean curvature of any film is constant throughout its whole 
area, null when the pressures are equal on either side and in other

Fig. 172. A, an unstable arrangement of four cells or bubbles. B, the normal and 
stable configuration, showing the polar furrow.

cases proportional to their difference. Less obvious, very important, 
and likewise subject (but none too easily) to rigorous mathematical 
proof, are the next two propositions, both of which had been laid 
down empirically by Plateau: (4) the films meeting in any one edge 
are three in number; (5) the crests or edges meeting in any one 
corner are four in number, neither more nor less. Lastly, and 
following easily from these: (6) the three films meeting in a crest 
or edge do so at co-equal angles, and the same is true of the four 
edges meeting in a corner.

Wherever we have a true cellular complex, an arrangement of 
cells in actual physical contact by means of their intervening 
boundary walls, we find these general principles in force; we must 
only bear in mind that, for their easy and perfect recognition, we

♦ Ernest Lamarle, Sur la stabilite des systemes liquides en lames minces, Mem. 
de VAcad. R. de Belgique, xxxv, xxxvi, 1864-67. 
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must be able to view the object in a plane at right angles to the 
boundary walls. For instance, in any ordinary plane section of a 
vegetable parenchyma, we recognise the appearance of a “froth,” 
precisely resembling that which we can construct by imprisoning 
a mass of soap-bubbles in a narrow vessel with flat sides of glass; 
in both cases we see the cell-walls everywhere meeting, by threes, 
at angles of 120°, irrespective of the size of the individual cells: 
whose relative size, on the other hand, determines the curvature of 
the partition-walls. On the surface of a honey-comb we have 
precisely the same conjunction, between cell and cell, of three 
boundary walls, meeting at 120°. In embryology, when wre examine 
a segmenting egg, of four (or more) segments, we find in like manner, 
in the majority of cases if not in all, that the same principle is still 
exemplified. The four segments do not meet in a common centre, 
but each cell is in contact with two others; and the three, and only 
three, common boundary walls meet at the normal angle of 120°. 
A so-called polar furrow*, the visible edge of a vertical partition- 
wall, joins (or separates) the two triple contacts, precisely as in 
Fig. 172, B, and so gives rise to a diamond-shaped figure, which 
was recognised more than a hundred years ago (in a newt or 
salamander) by Rusconi, and called by him a tetracitula.

That four cells, contiguous in a plane, tend to meet in a lozenge 
with three-way junctions and a “polar furrow” between the cells, is 
a geometrical theorem of wide bearing. The first four cells in 
a wasp’s nest shew it neither better nor worse than do those of 
a segmenting ovum, or the ambulacral plates of a sea-urchin 
or the oosphere of Oedogonium giving birth to its four zoo
spores y. Going farther afield for an illustration, we find it in the 
molecules of a viscous liquid under shear: where a group of four

* It was so termed by Conklin in 1897, in his paper on Crepidula (Journ. Morph. 
xiii, 1897). It is the Querfurche of Rabi (Morph. Jahrb. v, 1879); the Polarfurche 
of O. Hertwig (Jen. Zeitschr. xiv, 1880); the Brechungslinie of Rauber (Neue 
Grundlage zur Kenntniss der Zelle, Morph. Jahrb. vin, 1882); and the cross-line of 
T. H. Morgan (1897). It is carefully discussed by Robert, op. cit. p. 307 seq.

t Speaking of the complicated polygonal patterns in the test of the protozoon 
genus Peridinium, Barrows says: “In the experience of the writer no case has 
been found in which four sutures actually meet at one point. Cases which at first 
sight appeared as such, upon closer analysis in a favourable position have been 
resolved into two junction-points of three sutures each, etc.” On skeletal variation 
in the genus Peridinium, Univ. Calif. Publ. 1918, p. 463. 
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molecules is supposed to slip from one lozenge-configuration to an 
opposite one, passing on the way through the simple cross or square 
—a configuration of “higher energy” and less stable equilibrium*.

The solid geometry of this four-celled figure is not without 
interest. If the two polar furrows (the one above and the other 
below) run criss-cross, the whole is a more or less flattened and 
distorted spherical tetrahedron. If they run parallel, then it is a 
four-sided lozenge with two curved quadrilateral faces, and two 
bilateral faces each bounded by two curved edges, like the “ liths ”

Fig. 173. Examples of the “polar furrow”. A, Pollen-grains (tetrads) of Neottia. 
B, Egg of hookworm (Ankylostoma). C, First cells of a wasp’s nest (Polistes). 
(From Packard, after Saussure.) D, Four-celled stage of Volvox: from Janet. 
E, Hair of Salvia, after Hanstein.

of an orangef. In either case the lozenge-configuration is under 
some restraint to keep its four cells in a plane; for a tetrahedral 
pile, or pyramid, of four spheres would be the simplest arrangement 
of all.

The polar furrow and the partition of which it forms an edge are, like all 
the edges and partitions in our associated cells, perfectly definite in dimensions 
and position; and to draw them to scale, in projection, is a simple matter. 
Taking the simplest case, when the radii of all four cells are equal to one another, 
let c, c', c* and c'" be the centres of the four cells. Fig. 174. The centres of

♦ Cf. J. D. Bernal. Proc. U.S. (A), No. 914, p. 321, 1937.
t The geometer seldom takes account of such two-sided surfaces or facets; 

but in groups of cells or bubbles they are of common occurrence, and in the theory 
of polyhedra they fit in without difficulty with the rest (cf. infra, p. 737). 
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any two are related precisely as though two cells only were conjoined; the 
centres of three contiguous cells (as c, c' and c") are related as though three 
only were concerned; and the centres of two opposite cells are situated 
symmetrically to one another. This is as much as to say that if there be 
two bubbles in contact the addition of a third does not disturb their symmetry; 
and if there be three in contact, the addition of a fourth leaves the first three 
likewise in statu quo. Thus the triangle cc'c" is equilateral, as we already 
know. The partition so bisects the side cc", and the angle cc'c"; and the 
point o is the centre of gravity of the triangle. Therefore op = \oc" and 
oo'=\c"dn.

Fig. 174. The geometric symmetry of a system of four cells.

V3
Again, in the triangle cpc", where cc" = r, pc" = —^r, and 00' (the polarA

furrow) = r. Once again, in the triangle soc", sc = r; and so (one of 
V3

2
the partitions) = r = twice 00'. The length of the polar furrow, then, as

V.3
seen in vertical projection in a system of four co-equal cells, is (theoretically) 
just one-half that of the four intercellular partitions, and very nearly three- 
fifths that of a cell radius.

It is worth while to remark that the universal phenomenon of a 
polar furrow gives an appearance of bilateral symmetry to every 
egg or embryo in its four-celled stage, no matter to what kind or 
class or organism it belongs.
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In the four-celled stage of the frog’s egg, Rauber (an exception

ally careful observer) shews us three alternative modes in which 
the four cells may be found to be conjoined (Fig. 175). In A we 
have the commonest arrangement, which is that which we have 
just studied and found to be the simplest theoretical one; that 
namely where a straight polar furrow intervenes, and where the 
partition-walls are conjoined at its extremities, three by three. 
In B, we have again a polar furrow, which is now seen to be a 
portion of the first “segmentation-furrow” by which the egg was 
originally divided into two; the four-celled stage being reached by 
the appearance of the two transverse furrows. In this case, the 
polar furrow is seen to be sinuously curved, and Rauber tells us that 
its curvature gradually alters; as a matter of fact, it, or rather the

Fig. 175. Various conjunctions of the first four cells in a 
frog’s egg. After Rauber.

partition-wall corresponding to it. is gradually setting itself into a 
position of equilibrium, that is to say of equiangular contact with 
its neighbours, which position is already attained or nearly so in 
A. In C we have a very different condition, with which we shall 
deal in a moment.

The polar furrow may be longer or shorter, and it may be so 
minute as to be not easily discernible; but it is quite certain that 
no simple and homogeneous system of fluid films such as we are 
dealing with is in equilibrium without its presence. In the accounts 
given, however, by embryologists of the segmentation of the egg, 
while the polar furrow is depicted in the great majority of cases, 
there are others in which it has not been seen and some in which 
its absence is definitely asserted*.  The cases where four cells lying 

* Thus Wilson declared (Journ. Morph, viu, 1895) that in Amphioxus the polar 
furrow was occasionally absent, and Driesch took occasion to criticise and to 
throw doubt upon the statement (Arch. f. Entw. Meeh, i, p. 418, 1895).



VII] OF THE POLAR FURROW 491

in one plane meet in a point, such as were frequently figured by the 
older embryologists, are hard to verify and sometimes not easy to 
believe. Considering the physical stability of the other arrange
ment, the great preponderance of cases in which it is known to 
occur, the difficulty of recognising the polar furrow in cases where 
it is very small and unless it be specially looked for, and the natural 
tendency of the draughtsman to make an all but symmetrical 
structure appear wholly so, I was wont to attribute to error or 
imperfect observation all those cases where the junction-lines of four 
cells are represented (after the manner of Fig. 172, A) as a simple 
cross*. As a matter of fact, the simple cross is no very rare pheno
menon, even in the frog’s egg; but it is a transitory one, and 
unstable. Viscosity and friction may enable it to endure for a 
while, but the partitions inevitably shift into the stable, three-way, 
configuration. In such a case, the polar furrow manifests itself 
slowly and as it were laboriously; but in the more fluid soap-bubble 
it does so in the twinkling of an eye.

While a true four-rayed intersection, or simple cross, is theoretic
ally impossible save as a transitory and unstable condition, there 
is another configuration which may closely simulate it, and which 
is common enough. There are plenty of faithful representations of 
segmenting eggs in which, instead of the triple junctions and polar 
furrow, the four cells (and also their more numerous successors) are 
represented as rounded off, and separated from one another by an 
empty space, or by a little drop of extraneous fluid, evidently not 
directly miscible with the fluid surface of the cells. Such is the 
case in the obviously accurate figure which Rauber gives (Fig. 
175. C) of his third mode of conjunction in the four-celled stage of 
the frog’s egg. Here Rauber is most careful to point out that the 
furrows du not simply “cross,” or meet in a point, but are separated 
by a little space, which he calls the Polgrubchen, and asserts to be 
constantly present whensoever the polar furrow, or Brechungslinie, 
is not to be discerned. This little interposed^ space with its con
tained drop of fluid materially alters the case, and implies a new

* The same remark was made long ago by Driesch: “Das so oft schematisch 
gezeichnete Vierzellenstadium mit zwei sich in zwei Punkten scheidende Medianen 
kann man wohl getrost aus der Reihe des Existierenden streichen” (Entw. mech. 
Studien, Z. f. w. Z. Lin, p. 166, 1892). Cf. also his Math, mechanische Bedeutung 
morphologischer Problems der Biologie, Jena, 59 pp., 1891.
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condition of theoretical and actual equilibrium. For on the one 
hand, we see that now the four intercellular partitions do not meet 
one another at all; but really impinge upon four new and separate 
partitions, which constitute interfacial contacts not between cell 
and cell, but between the respective cells and the intercalated 
drop. And secondly, the angles at which these four little surfaces 
meet the four cell-partitions will be determined, in the usual way, 
by the balance between the respective tensions of these several 
surfaces. In an extreme casp (as in some pollen-grains) it may be 
found that the cells under the observed circumstances are not truly 
in surface contact: that they are so many drops which touch but 
do not “wet” one another, and which are merely held together

by the pressure of the surrounding envelope. But even supposing 
that they are in actual fluid contact, the case from the point of 
view of surface-tension presents no difficulty. In the case of the 
conjoined soap-bubbles, we were dealing with similar contacts and 
with equal surface-tensions throughout the system; but in the 
system of protoplasmic cells which constitute the segmenting egg 
we must make allowance for inequality of tensions, between the 
surfaces where cell meets cell and where on the other hand cell- 
surface is in contact with the surrounding medium -generally water 
or one of the fluids of the body. Remember that our general con
dition is that, in our entire system, the sum of the surface energies 
is a minimum; and, while this is attained by the sum of the surfaces 
being a minimum in the case where the energy is uniformly 
distributed, it is not necessarily so under non-uniform conditions. 
In the diagram (Fig. 176), if the energy per unit area be greater 
along the contact surface cc, where cell meets cell, than along ca 
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or cb, where cell-surface is in contact with the surrounding medium, 
these latter surfaces will tend to increase and the surface of cell
contact to diminish. In short there will be the usual balance of 
forces between the tension along the surface cc', and the two 
opposing tensions along ca and cb. If the former be greater than 
either of the other two, the outside angle will be less than 120°; 
and if the tension along the surface cc’ be as much or more than 
the sum of the other two, then the drops will merely touch one 
another, save for the possible effect of external pressure. This is 
the explanation, in general terms, of the peculiar conditions ob
taining in Nostoc and its allies (p. 477), and it also leads us to a 
consideration of the general properties and characters of a super
ficial or “epidermal” layer*.

* A surface-layer always tends to have, ipso, facto, a character of its own: a “ skin ” 
has such and such characteristics just because it is a skin. The “Beilby layer” 
on a metallic surface is, in its own special way, a consequence of its own externality.

f A froth is a collocation of bubbles containing air; or in the language of colloid 
chemistry, an emulsion with air for its disperse phase. The power of forming 
a froth is not the same as that of forming isolated bubbles; for some liquids, such 
as a solution of saponin, of gum arabic, of albumin itself, give a copious and lasting 
froth, but we find it hard to blow even a single tiny bubble with any of them. 
Something more than surface-tension seems necessary for the production and main
tenance of a film: perhaps a certain amount of viscosity, to resist the tendency of 
surface-tension to tear the film asunder.

While the inner cells of the honeycomb are symmetrically 
situated, sharing with their neighbours in equally distributed 
pressures or tensions, and therefore all tending closely to identity 
of form, the case is obviously different with the cells at the borders 
of the system. So it is with our froth of soap-bubblesf. The 
bubbles, or cells, in the interior of the mass are all alike in general 
character, and if they be equal in size are alike in every respect: 
as we see them in projection their sides are uniformly flattened, 
and tend to meet at equal angles of 120°. But the bubbles which 
constitute the outer layer retain their spherical surfaces (just as 
in the cells of a honeycomb), and these still tend to meet the 
partition-walls connected with them at constant angles of 120°. 
This outer layer of bubbles, which forms the surface of our froth, 
constitutes after a fashion what we should call in botany an 
“epidermal” layer. But in our froth of soap-bubbles we have, as 
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a rule, the same kind of contact (that is to say, contact with air) 
both within and without the bubbles; while in our living cell, the 
outer wall of the epidermal cell is exposed to air on the one side, 
but is in contact with the protoplasm of the cell on the other: and 
this involves a difference of tensions, so that the outer walls and 
their adjacent partitions need no longer meet at precisely equal 
angles of 120°. Moreover a chemical change," due perhaps to 
oxidation or possibly also to adsorption, is very apt to affect the 
external wall and lead to the formation of a “cuticle”; and this 
process, as we have seen, is tantamount to a large increase of tension 
m that outer wall, and will cause the adjacent partitions to impinge 
upon it at angles more and more nearly approximating to 90°: the 
bubble-like, or spherical, surfaces of the individual cells being more

Fig. 177. A froth, with its outer and inner cells or vesicles.

and more flattened in consequence. Lastly, the chemical changes 
which affect the outer walls of the superficial cells may extend in 
greater or less degree to their inner walls also: with the result that 
these cells will tend to become more or less rectangular throughout, 
and will cease to dovetail into the interstices of the next subjacent 
layer. \ These then are the general characters which we recognise 
in an epidermis; and we now perceive that its fundamental character 
simply is that it lies outside, and that its physical characteristics 
follow, as a matter of course, from the position which it occupies 
and from the various consequences which that situation entails.

In the young shoot or growing point of a flowering plant botanists 
(following Hanstein) find three cell-layers, and call them dermatogen, 
periblem and plerome. The first is an epidermis, such as we have 
just described. Its cells grow long as the shoot grows long; new 
partitions cross the lengthening cell and tend to lie at right angles 
to its hardening walls; and this epidermis, once formed, remains 
a single superficial layer. The next few layers, the so-called peri
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blem, are compressed and flattened between the epidermis with its 
tense cuticle and the growing mass within; and under this restraint 
the cell-layers of the periblem also continue to divide in their own 
plane or planes. But the cells of the inner mass or plerome, lying 
in a more homogeneous field, tend to form “space-filling” poly- 
hedra, twelve- or perhaps fourteen-sided according to the freedom 
which they enjoy. In a well-known passage Sachs declares that 
the behaviour of the cells in the growing point is determined not 
by any specific characters or properties of their own, but by their 
position and the forces to which they are subject in the system of 
which they are a part*.  This was a prescient utterance, and is 
abundantly confirmedf.

* Lectures on the Physiology of the Plant, Oxford, 1887, p. 460, etc.
t Cf. J. H. Priestley in Biol. Reviews, in, pp. 1-20, 1928; U. Tetley in Ann. Bot. 

l, pp. 522-557, 1936; etc.

We have hitherto considered our cells, or our bubbles, as lying 
in a plane of symmetry, and have only considered their appearance 
as projected on that plane; but we ^nust also begin to consider 
them as solids, whether they lie in a plane (like the four cells in 
Fig. 172), or are heaped on one another, like a froth of bubbles or 
a pile of cannon-balls. We have still much to do with the study 
of more complex partitioning in a plane, and we have the whole 
subject to enter on of the solid geometry of bodies in “close 
packing,” or three-dimensional juxtaposition.

The same principles which account for the development of 
hexagonal symmetry hold true, as a matter of course, not only of 
cells (in the biological sense), but of any bodies of uniform size and 
originally circular outline, close-packed in a plane; and hence the 
hexagonal pattern is of very common occurrence, under widely 
varying circumstances. The curious reader may consult Sir Thomas 
Browne’s quaint and beautiful account, in the Garden of Cyrus, of 
hexagonal, and also of quincuncial, symmetry in plants and animals, 
which “doth'neatly declare how nature Geometrizeth, and observeth 
order in all things.”

We come back to very elementary geometry. The first and 
simplest of all figures in plane geometry (with which for that reason 
Euclid begins his book) is the equilateral triangle; because three 
straight lines are the least number which enclose twTo-dimensional 
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space, and three equal sides make the simplest of triangles. But 
it by no means follows that equilateral, or any other, triangles 
combine to form the simplest of polygonal associations or patterns. 
On the other hand, three straight lines meeting in a point are the 
least number by which we can subdivide or partition two-dimensional 
space; the simplest case of all is when the three partitions meet at 
co-equal angles, and a pattern of hexagons, so produced, is, geo
metrically speaking, the simplest of all ways in which a surface can 
be subdivided— the simplest of all two-dimensional "space-filling” 
patterns. So it comes to pat-s that we meet with a pattern of 
hexagons here and there and again and again, in all sorts of plane 
symmetrical configurations, from a soapy froth to the retinal 
pigment, from the cells of the honeycomb to the basaltic columns 
of Staffa and the Giant’s Causeway.

We pass to solid geometry, and arrive by similar steps at an 
analogous result. Four plane sides are now the least number which 
enclose space, and (next to the sphere itself) the regular tetrahedron 
is the first and simplest of solids; but its simplicity is that of a 
solitary or isolated figure, and tetrahedra do not combine to fill space 
at all. But as the partitioning of an equilateral triangle was the 
first step towards the symmetrical partitioning of two-dimensional 
space, so we draw from the regular tetrahedron a first lesson in the 
partitioning of space of three dimensions; and as three lines meeting 
in a point were needed to partition two-dimensional space, so here, 
for three-dimensional space, we need four. The simplest case is, a^ 
before, when these meet at co-equal angles, but we do not see quite 
so easily what those four co-equal angles are.

For as the centre of symmetry of our equilateral triangle was defined 
by three lines bisecting its three angles and meeting one another in 
a point at co-equal angles of 120°, so in our regular tetrahedron four 
straight lines, running symmetrically inwards from the four corners, 
meet in a point at co-equal angles, and again define the centre of 
symmetry. If we make (as Plateau made) a wire tetrahedron, and 
dip it into soap-solution, we find that a film has attached itself to 
each of the six wires which constitute the little tetrahedral cage; 
that these six films meet, three by three, in four edges; and that 
these four edges meet at co-equal angles in a point, which is the 
centroid, or centre of symmetry, or centre of gravity, of the system.
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This is the centre of symmetry not only for our tetrahedron, but for 
any close-packed tetrahedral aggregate of co-equal spheres; we meet 
with it over and over again, in a pile of cannon-balls, a froth of 
soap-suds, a parenchyma of cells, or the interior of the honeycomb. 
Moreover, in the actual demonstration by soap-films of this tetra
hedral symmetry, we see realised all the main criteria laid down by 
Plateau and by Lamarle for a system minimae areae', three films 
and no more meet in an edge; four fluid edges and no more meet 
in a point, just as three wire edges and one fluid edge met in a 
point at each corner of the experimental figure. Lastly, the sym
metry of the whole configuration is such that the three fluid films

I’ig. 178. A regular tetrahedron, with its centre of symmetry.

meeting in an edge, or the four fluid edges meeting in a point, all 
do so at co-equal angles.

In the plane configuration we saw without more ado that the 
angles of symmetry were the co-equal angles of 120°; but the four 
co-equal angles between the four edges which meet at the centre of 
our tetrahedron require a little more consideration. If in our figure 
of a regular tetrahedron (Fig. 178) o be the centroid, and we produce 
ao to p. the centre of the opposite side, bed it may be shewn that 
the line ap is so divided that ao — 3op and ao = bu = co = do. 
For let four equal weights be put at the four corners of the tetra
hedron, a, b, c, d. The resultant of the three at b, c, d is equivalent 
to 3 IF at p, the centre of symmetry of the equilateral triangle.

T G F 32 
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The resultant of all four is equal to the resultant of W at a, and 
3 IF at p; it lies, therefore, on the straight line ap, and at the 
point o, such that ao = Sop. Therefore, in the triangle pod, as 
in the other three similar triangles in the figure, cos pod = 1/3, 
and cos aod = —1/3. Our tables tell us that the angle pod, whose 
trigonometrical value is the very simple one of cos pod = 1/3, has, 
in degrees and minutes to the nearest second, the seemingly less 
simple value of 70° 31'43"; and its supplement, the angle aod, 
has the corresponding value of 109° 28' 16".

This latter angle, then, of 109° 28' 16", or very nearly 109 degrees 
and a half, is the angle at which, in this and throughout every other 
three-dimensional system of liquid films, the edges of the partition
walls meet one another It is the fundamental angle in simple 
homogeneous partitioning of three-dimensional space. It is an 
angle of statical equilibrium, an angle of close-packing, an angle 
of repose. In the simplest of carbon-oompounds, the molecule of 
marsh-gas (CH4), we may be sure that this angle governs the 
arrangement of the H-atoms; it determines the relation of the 
carbon-atoms one to another in a diamond—simplest of crystal
lattices; it defines the intersections of the bubbles in a froth, and 
of the cells in the honeycomb of the bee.

It is sometimes called the “ tetrahedral angle ”; it might be better 
called (for a reason we shall see presently) “Maraldi’s angle."1 The 
whole story is less a physical than a mathematical one; for the 
phenomena do not depend on surface tension nor on any other 
physical force, but on such relations between surface and volume 
as are involved in the properties of space. If we take four little 
elastic balloons, half fill them with air, smear them with glycerine 
to lessen friction, place them in a bottle and exhaust the air therein, 
they will expand, adjust themselves together, and group themselves 
in a tetrahedral configuration, whose partition walls, edges and 
centre of symmetry are just those of our experiment of the soap-films.

This characteristic angle, though it leads in ordinary angular measurement 
to an endless decimal of a second, is nevertheless a very simple and perfectly 
definite magnitude. It is a strange property of Number that it fails to express 
certain simple and definite magnitudes, such as it, or V2, or V3, or this four
fold angle made by four lines meeting symmetrically in three-dimensional space. 
It is not these magnitudes that are peculiar, it is Number itself that is so! In 
all of these cases we have to import a new symbol; and in this case, when we
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draw it not from arithmetic but from trigonometry, and define our angle as 
cos — 4, nothing can or need be more precise or simpler. We may put the 
same thing a little differently, and say that Number itself fails us, now and 
then, to express what we want, although we have all the ten digits and their 
apparently endless permutations at our command. In such a deadlock, we 
have only to bring one new symbol, one new quantity, into use; and at once 
a wide new field is open to us.

Out of these two angles—the Maraldi angle of 109° etc., and the 
plane angle of 120°—we may construct a great variety of figures,

plane and solid, which become still more complex and varied when 
we consider associations of unequal as well as of co-equal cells, and 
thereby admit curved as well as plane intercellular partitions. Let 
us consider some examples of these, beginning with such as we need 
only consider in reference to a plane.

Let us imagine a system of equal cylinders, or equal spheres, in 
contact with one another in a plane, and represented in section by 
the equal and contiguous circles of Fig. 179. I borrow my figure 
from an old Italian naturalist, Bonanni (a contemporary of Borelli, 
of Ray and Willoughby, and of Martin Lister), who dealt with this 
matter in a book chiefly devoted to molluscan shells*.

* A. P. P. Bonanni, Ricreatione dell’ occhio e della mente, nell’ Osservatione delle 
Chiocciole^ Roma, 1681.

32-2
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It is obvious, as a simple geometrical fact, that each of these 
co-equal circles is in contact with six others around. Imagine the 
whole system under some uniform stress- of pressure caused by 
growth or expansion within the cells, or due to some uniformly 
applied constricting pressure from without. In these cases the six 
points of contact between the circles in the diagram will be extended 
into lines, representing surfaces of contact in the actual spheres or 
cylinders; and the equal circles of our diagram will be converted 
into regular and co-equal hexagons. The result is just the same 
so far as form is concerned—so long as we are concerned only with 
a morphological result and not with a physiological process --what
ever be the force which brings the bodies together. For instance, 
the cells of a segmenting egg, lying within their vitelline membrane 
or within some common film or ectoplasm, are pressed together as 
they grow, and suffer deformation accordingly; their surface tends 
towards an atea minima, but we need not even enquire, in the first 
instance, whether it be surface-tension, mechanical pressure, or what 
not other physical force, which is the cause of the phenomenon*.

The production by mutual interaction of polygons, which be
come regular hexagons when conditions are perfectly symmetrical, 
is beautifully illustrated by Benard’s tourbillons cellulaires, and also 
in some of Leduc’s diffusion experiments. Tn these latter, a 
solution of gelatine is allowed to set on a plate of glass, and little 
drops of weak potassium ferrocyanide are then let fall at regular 
intervals upon the gelatine. Immediately each little drop becomes 
the centre of a system of diffusion currents, and the several systems 
conflict with and repel one another; so that presently each little 
area becomes the seat of a to-and-fro current system, outwards and 
back again, until the concentration of the field becomes equalised 
and the currents cease. M hen equilibrium is attained, and when 
the gelatin-layer is allowed to dry, we have an artificial tissue of

* The following is one of many curious corollaries to the principle of close
packing here touched upon. A circle, surrounded by six similar circles, the whole 
bounded by a cirde of three times the radius of the original one, forms a unit, so 
to speak, next in order after the circle itself. A round pea or grain of shot will 
pass through a hole of its own size; but peas or shot will not run out of a vessel 
through a hole less than three times their own diameter. There can be no freedom 
of motion among the close-packed grains when confronted by a smaller orifice. 
Cf. K. Takahasi, Sci. Papers Inst. Chern., etc., Tokio, xxvr, p. 19. 1935.
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Fig. 180. An “artificial tissue,” formed by coloured drops of sodium chloride 
solution diffusing in a less dense solution of the same salt. After Leduc.

Fig. 181. An artificial cellular tissue, formed by the diffusion in gelatine of
drops of a solution of potassium ferrocyanide. After Leduc.
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hexagonal “cells,” which simulate an organic parenchyma very 
closely; and by varying the experiment in ways which Leduc 
describes, we may imitate various forms of tissue, and produce cells 
with thick walls or with thin, cells in close contact or with wide 
intercellular spaces, cells with plane or with curved partitions, and 
so forth.

James Thomson (Kelvin’s elder brother) had observed nearly 
sixty years ago a curious “ tesselated structure ” on a liquid surface, 
to wit, the soapy water of a wash-tub. The eddies and streaks of 
swirling water settled down into a cellular configuration, which 
continued for hours together to alter its details; small areoles 
disappeared, large ones grew larger, and subdivided into small ones 
again. With few and transitory exceptions three partitions and no 
more met at every node of the mesh work; and (as it seems to me) 
the subsequent changes were all due to such shifting of the lines as 
tended to make the three adjacent angles more and more nearly 
co-equal with one another: the obvious effect of this being to make 
the pattern more and more regularly hexagonal*.

* James Thomson, On a changing tesselated structure in certain liquids, Proc. 
Glasgow Phil. Soc. 1881-82; Coll. Papers, p. 136--a paper with which M. Benard 
was not acquainted, but see Benard’s later note in Ann. de Chim. Dec. 1911.

t See Graham’s paper, quoted below.
J H. Benard, Les tourbillons cellulaires dans une nappe liquide. Rev. gener, des 

Sciences, xii, pp. 1261-1271, 1309-1328. 1900; Ann. Chimie et Physique (7), xxm, 
pp. 62-144, 1901; Ibid. 1911. Quincke had seen much the same long before: Ann. d. 
Phys, cxxxix, p. 28, 1870. The “figures of de Heen” are an analogous electrical 
phenomenon; cf. P. de Heen, Les tourbillons et les projections de 1’ether, Bull. 
Acad, de Bruxelles (3) xxxvn, p. 589, 1899; A. Lafay, Ann. de Physique (10), xm, 
pp. 349-394, 1930. These various phenomena, all leading to a pattern of hexagons, 
have often been studied mathematically: cf. Rayleigh, Phil. Mag. xxxn, pp. 529- 
546,1916, Coll. Papers, vi, p. 48; also Ann Pellewand R. V. Southwell, Proc. R.S. (A), 
clxxvi, pp. 312-343, 1940. The hexagonal pattern is a particular case of stability, 
but not necessarily the simplest; it is only by experiment that we know it to be 
the permanent condition in an unlimited field.

In a not less homely experiment, hot water is poured into a 
shallow tin and a layer of milk run in below; on blowing gently to 
cool the water, holes, more or less close-packed and evenly inter
spaced, appear in the milk. They shew how cooling has taken place, 
so to speak, in spots, and the cooled water has descended in isolated 
columns f. .

Benard’s “tourbillons cellulaires”|, set up in a thin liquid layer, 
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are similar to but more elegant than James Thomson's tesselated 
patterns, and both of them are in their own way still more curious 
than M. Leduc’s; for the latter depend on centres of diffusion 
artificially inserted into the system and determining the number 
and position of the “cells,” while in the others the cells make 
themselves. In Benard’s experiment a thin layer of liquid is 
warmed in a copper dish. The liquid is under peculiar conditions of 
instability, for the least fortuitous excess of heat here or there would 
suffice to start a current, and we should expect the whole system to 
be highly unstable and unsymmetrical. But if all be kept carefully 
uniform, small disturbances appear at random all over the system; 
a current ascends in the centre of each; and a “steady state,” if 
not a stable equilibrium, is reached in time, when the descending 
currents, impinging on one another, mark out a “cellular system.” 
If we set the fluid gently in motion to begin with, the first “cell
divisions” will be in the direction of the flow; long tubes appear, 
or “vessels,” as the botanist would be apt to call them. As the 
flow slows down new cell-boundaries appear, at right angles to the 
first and at even distances from one another; parallel rows of cells 
arise, and this transitory stage of partial equilibrium *or imperfect 
symmetry is such as to remind the botanist of his cambium tissues, 
which are, so to speak, a temporary phase of histological equilibrium. 
If the impressed motion be not longitudinal but rotary, the first lines 
of demarcation are spiral curves, followed by orthogonal inter
sections.

Whether we start with liquid in motion or at rest, symmetry and 
uniformity are ultimately attained. The cells draw towards uni
formity, but four, five or seven-sided cells are still to be found 
among the prevailing hexagons. The larger cells grow less, the 
smaller enlarge or disappear; where four partition-walls happen to 
meet, they shift till only three converge; the sides adjust themselves 
to equal lengths, the angles also to equality. In the final stage the 
cells are hexagonal prisms of definite dimensions, which depend on 
temperature and on the nature and thickness of the liquid layer; 
molecular forces have not only given us a definite cellular pattern, 
but also a “fixed cell-size.”

Solid particles in the fluid come to rest in symmetrical positions. 
If they be heavier they accumulate in little isolated heaps, each in
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the focus or axis of a cell; if they be lighter they drift to the 
boundaries, then towards the nodes, where they tend to form 
tri-radiate figures like so many “tri-radiate spicules”. But if they 
be in very fine suspension a curious thing happens for as they are 
carried round in the vortex, the lowermost layer of liquid, next to 
the solid floor, keeps free of particles; and this “dust-free coat*”, 
rising in the axis of the cell and descending at its boundary-walls, 
surrounds an inner vortex to which the suspended particles are 
confined. The cell-contents have, so to speak, become differentiated 
into an “ectoplasm” and an “endoplasm”; and an analogy appears 

Fig. 182. Benard patterns in smoke: A, at rest; B, under shear. After K. Chandra.

with the phenomenon of protoplasmic “rotation,” where the outer 
layer of a cell tends to be free from granules. W hen bright glittering 
particles are used for the suspension (such as graphite or butterfly
scales) beautiful optical effects are obtained, deep shadows marking 
the outlines and the centres of the cells. Lastly, and this is by no 
means the least curious part of the phenomenon, the free surface 
of the liquid is not plane; but each little cell is found to be dimpled 
in the centre and raised at the edges, in a surface of very complex 
curvaturef, and there is a curious pulsation in the flow, especially 
when waxes are used.

* Cf. Tyndall, Proc. Roy. hist. vi, p. 3, 1870.
f The differences of level are of a very small order of magnitude, say 1 p in 

a layer of spermaceti 1 nun. thick.
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Ringing the changes on Benard's experiment, we may use unstable 
layers of various liquids or gases, or even a thin layer of smoke 
between a hot plate and a cold (Fig. 182). The smoke will form waves 
and folds and rolling clouds; then, with increasing and more and 
more symmetrical instability, polygonal or hexagonal prisms; and 
all these configurations we may deform or “shear” by sliding one 
plate over the other. Familiar cloud-patterns, as of a dappled or 
mackerel sky, can be imitated in this way. When the hexagonal 
prisms have been developed it is found that a steady shear deforms 
them into a well-known curvilinear tesselated pattern (Fig. 183) 

Fig. 183. Shear-patterns in an unstable layer 
of air or smoke. After Graham.

Fig. 184. Ambulacral plates 
of a sea-urchin (Ltpides- 
thes), to illustrate the 
“shearing” of a pattern 
normally hexagonal. 
After Hawkins*.

and this may be sheared again into hexagons, oriented in an opposite 
direction to the first f. The very same pattern occurs now and then 
in organisms, as a deformation of what is normally a pattern of 
hexagons (Fig. 184).

* From H. L. Hawkins, Phil. Trans. (B), ccix. p. 383. 1920.
f Cf. A. Graham, Shear patterns in an unstable layer of air, Phil. Trans. (A), 

No. 714, 1933; Gilbert Walker and Phillips, Q.J.R. Met. Soc. lviii, p. 23, 1932; 
Mals, Beitr. Phys. frei. Atmosph. xvn, p. 45, 1930; H. Jeffreys, Proc. R.S. (A), 
cxviii, p. 195, 1928; Krishna Chandra, ibid, clxiv. pp. 231-242, 1938. After a 
steady state is reached it is found that in air or smoke the centre of each 
polygon is a funnel of descent, but it is an ascending column if the layer be 
liquid. Now the viscosity of a gas increases, and that of a liquid decreases, with 
rise of temperature, and the greater the viscosity the more stable is the layer. 
Accordingly, for a gas the upper, and for a liquid the lower layer is the more 
unstable, and it is there that in each case the flow begins.
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U e learn from these experiments of Benard and others how 
similar distributions of force, and identical figures of equilibrium, 
may arise through different physical agencies. We see that patterns 
closely analogous to those of living cells and tissues may be due 
to very different causes; and we may be led to scrutinise anew, with 
an open mind, various histological configurations whose origin is 
doubtful or obscure. The chitinous shells of certain water-fleas 
(Cladocera) are beset with a roughly hexagonal pattern, and each 
little chitinous polygon is supposed to correspond to, and to be 
formed by, an underlying “hypodermis” cell*.  But we presently 
discover that the existence of these hypodermis-cells is merely 
deduced from the polygons themselves and from a coincident

* Cf F. Claus, Zur Kenntniss... des feineren Baues der Daphniden, Ztschr. f. 
wiss. Zool. xxiii, xxvii, pp. 362—402, 1876; Ernest Warren. Relationship between 
size of cell and size of body in Daphnia magna, Biometrika, (3) n, pp. 255-259, 
1902; Fritz Werner, Die Veranderung der Schalenform und der Zellenaufbau bei 
Scapholeberis, I nt. Revue der ges. Hydrobiologie, pp. 1-20, 1923.

Fig. 185. Soap-froth under pressure. After Rhumbler.

distribution of pigment; it might not be amiss to look again into 
the development of the pattern, with an open mind as to the 
possibility of its being a purely physical phenomenon. Nor need 
we by any means assume that the calcareous prisms of a molluscan 
shell are necessarily derived from, or associated with, a like number 
of histological elements.

In a soap-froth imprisoned between two glass plates we have a 
symmetrical system of cells which appear in optical section (Fig. 
185, B) as regular hexagons; but if we press the plates a little 
closer together the hexagons become deformed and flattened. The 
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change is from a more to a less probable configuration—the 
entropy is diminished; and if we apply no further pressure the 
tension of the films adjusts itself again, and the system recovers 
its former symmetry*.

The epithelial lining of the blood-vessels shews a curious and 
beautiful pattern. The cells seem diamond-shaped, but looking 
closer we see that each is in contact (usually) with six others; they 
are not rhombs, or diamonds, but elongated hexagons, pulled out 
long by the growth of the vessel and the elastic traction of its walls. 
The sides of each cell are curiously waved, and a simple experiment 
explains this phenomenon. If we make a froth of white-of-egg 
upon a stretched sheet of rubber, the cells of the froth will tend to

Fig. 186. Sinuous outlines of epithelial cells, a, endothelium of a blood-vessel; 
b, epidermis of Impatiens; c, ep'dermal cells of a grass (Festuca).

assume their normal hexagonal pattern; but relax the elastic mem
brane, and the cell-walls are thrown into beautiful sinuous or wavy 
folds. The froth-cells cannot contract as the rubber does which 
carries them, nor can the epithelial cells contract as does the 
muscular coat of the blood-vessel; in both cases alike the cell-walls 
are obliged to fold or wrinkle up, from lack of power to shorten. 
The epithelial cells on the gills of a mussel f are wrinkled after 
the same fashion; but the more coarsely sinuous outlines of the 
epithelium in many plants is another story, and not so easily 
accounted for.

The hexagonal pattern is illustrated among organisms in count
less cases, but those in which the pattern is perfectly regular, by

* That everything is passing all the while towards a "more probable state" is 
known as the “principle of Carnot.*" and is the most general of all physical laws 
or aphorisms.

f Cf. James Gray’s Experimental Cytology, p. 252.
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reason of perfect uniformity of force and perfect equality of the 
individual cells, are not so numerous. The hexagonal cells of the 
pigmented epithelium of the retina are a good example. Here we 
have a single layer of uniform cells, reposing on the one hand upon 
a basement membrane, supported behind by the solid wall of the 
sclerotic, and exposed on the other hand to the uniform fluid 
pressure of the vitreous humour. The conditions all point, and 
lead, to a symmetrical result: the cells, uniform in size, are flattened 
out to a uniform thickness by uniform pressure, and their reaction 
one upon another converts each flattened disc into a regular 
hexagon. An equally symmetrical case, one of the first-known 
examples of an “epithelium,” is to be found on the inner wall of 
the amnion, where, as Theodor Schwann remarked, “die sechs- 
eckige Plattchen sind sehr schon und gross*. ”

* Untersuchungen, p. 84; cf. Sydenham Society’s translation, p. 75.

Fig. 187. Epidermis of Girardia. After Goebel.

In an ordinary columnar epithelium, such as that of the intestine, 
again the columnar cells are compressed into hexagonal prisms; 
but here the cells are less uniform in size, small cells are apt to 
be intercalated among the larger, and the perfect symmetry is 
lost accordingly. But obviously, wherever we have, in addition 
to the forces which tend to produce the regular hexagonal sym
metry, some other component arising asymmetrically from growth 
or traction, then our regular hexagons will be distorted in various 
simple ways. Thus in the delicate epidermis of a leaf or young 
shoot we begin with hexagonal cells of exquisite regularity: on 
which, however, subsequent longitudinal growth may impose an 
equally simple and symmetrical deformation or polarity (Fig. 187).

In the growth of an ordinary dicotyledonous leaf, we see reflected 
in the form of its cells the tractions, irregular but on the whole 
longitudinal, which growth has superposed on the tensions of the 
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partition walls (Fig. 188). In the narrow elongated leaf of a mono
cotyledon, such as a hyacinth, the elongated, apparently quad
rangular cells of the epidermis appear as a 
of the simpler laws of growth which gave its 
simple form to the leaf as a whole. In all 
these cases alike, however, the rule still 
holds that only three partitions (in surface 
view or plane projection) meet in a point; 
and near their point of meeting the walls are 
manifestly curved for a little way, so as to 
permit the triple conjunction to take place 
at or near the co-equal angles of 120", after 
the fashion described above.

Briefly speaking, wherever we have a system 
of cylinders or spheres, associated together 
with sufficient mutual interaction to bring 
them into complete surface contact, there.

necessary consequence

Fig. 188. Epidermal cells 
from leaf of Elodea 
canadensis. After 
Berthold.

in section or in surface view, we tend to get a pattern of hexagons.
In thickened cells or fibres of bast or wood, the “sclerenchyma” 

of vegetable histology, the hexagonal pattern is all but lost, and we 
see in cross-section the more or less circular transverse outlines of 
elongated and tapering cell». Looking closer we see that the 
primitive cell-walls preserve their angular contours, and shew much 
as usual an hexagonal pattern, with only such irregularities as 
follow from the unequal sizes of the associated cells. But when 
these primary walls are once laid down, the secondary deposits which 
follow them are under different conditions; and these obey the law 
of minimal areas in their own way, by filling up the angles of the 
primary cell and by continuing to grow inwards in concentric and 
more and more nearly circular rings.

While the formation of an hexagonal pattern on the basis of ready-formed 
and symmetrically arranged material units is a very common, and indeed the 
general way, it does not follow that there are not others by which such a 
pattern can be obtained. For instance, if we take a little triangular dish of 
mercury and set it vibrating (either by help of a tuning-fork, or by simply 
tapping on the sides) we shall have a series of little waves or ripples starting 
inwards from each of the three faces; and the intercrossing, or interference 
of these three sets of waves produces crests and hollows, and intermediate 
points of no disturbance, whose loci are seen as a beautiful pattern of minute 
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hexagons. It is possible that the very minute and astonishingly regular 
pattern of hexagons which we see on the surface of many diatoms (Fig. 189) 
may be a phenomenon of this order*.  The same may be the case also in Arcella, 
where an apparently hexagonal pattern is found not to consist of simple 
hexagons, but of “straight lines in three sets of parallels, the lines of each 
set making an angle of sixty degrees with those of the other two setsf.” We 
must also bear in mind, in the case of the minuter forms, the large possibilities 
of optical illusion. For instance, in one of Abbe’s “diffraction-plates,” a 
pattern of dots, set at equal interspaces, is reproduced on a very minute scale 
by photography; but under certain conditions of microscopic illumination 
and focusing, these isolated dots appear as a pattern of hexagons.

* Cf. some of J. H. Vincent's photographs of ripples, in Phil. Mag. 1897-99; 
or those of F. R. Watson, in Phys. Review, 1897, 1901, 1916. The appearance will 
depend on the rate of the wave, and in turn on the surface-tension; with a low 
tension one would probably see only a moving “jabble.” Cf. also Faraday, On 
the crispations of fluids resting upon a vibrating support, Phil. Mag. 1831, p. 299; 
and Rayleigh, Sound, n, p. 346, 1896. FitzGerald thought diatom-patterns might 
be due to electromagnetic vibrations (Works, p. 503, 1902); with which cf. W. D. 
Dye, Vibration-patterns of quartz plates, Proc. R.S. (A), cxxxvni, p. 1, 1932. 
Dye’s Fig. 17, which he calls “one of the most beautiful types of minor vibration 
met with in discs”, is closely akin to the diatom Orthoneis splendida. In both cases 
two nodal systems, conjugate to one another, are based on two foci near the ends of 
an elliptical plate; but bands in the experimental plate are further broken up into 
rows of dots in the diatom. See also Max Schultze, Die Struktur der Diatomeenschale 
verglichen mit gewissen aus Fluorkiesel kiinstlich darstellbaren Kieselhauten, Verh. 
naturh. Ver. Bonn, xx, pp. 1-42, 1863; Trans. Microsc. Soc. (N.S.), xi, pp. 120-136, 
1863; H. J. Slack, Monthly Microsc. Journ. 1870, p. 183.

f J. A. Cushman and W. P. Henderson, A mer. Nat. XL, pp. 797-802, 1906.

A symmetrical arrangement of hexagons, such as we have just been studying, 
suggests various geometrical corollaries, of which the following may be a 
useful one. We sometimes desire to estimate the number of hexagonal areas or 
facets in some structure where these are numerous, such for instance as the 
cornea of an insect’s eye, or in the minute pattern of hexagons on many 
diatoms. An approximate enumeration is easily made as follows.

For the area of a hexagon (if we call 8 the short diameter, that namely 
which bisects two of the opposite sides) is 82 x V3/2, the area of a circle 
being d2. tt/4. Then, if the diameter (d) of a circular area include n hexagons, 
the area of that circle equals (n. 8J2 x tt/4. And, dividing this number by 
the area of a single hexagon, we obtain for the number of areas in the circle, 
each equal to a hexagonal facet, the expression n2 x tt/4 x 2/V3 = 0-907n2, or 
9/10.n2, nearly.

This calculation deals, not only with the complete facets, but with the 
areas of the broken hexagons at the periphery of the circle. If we neglect 
these latter, and consider our whole field as consisting of successive rings of 
hexagons about a central one, we obtain a simpler rule. For obviously, 
around our central hexagon there stands a zone of six, and around these
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Fig. 189. A diatom, Triceratium sp., shewing pattern of hexagons; x300. From 
O. Prochnow, Formenkunst der Xatur.

a zone of twelve, and around these a zone of eighteen, and so on. And the 
total number, excluding the central hexagon, is accordingly:

For one zone 6 = 3 x1x 2 = 6 x1
„ two zones 18 2x3 3
„ three zones 36 3x4 6
,, four zones 60 4x5 10
„ five zones 90 5x6 15

and so forth. If N be the number of zones, and if we add one to the above 
numbers for the odd central hexagon, then the rule is that the total number 
H = 3N (N + l) + l. Thus, if in a preparation of a fly’s cornea I can count 
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twenty-five facets in a line from a central one, the total number in the entire 
field is (3 x 25 x 26) +1 -1951 *.

* This estimate neglects not merely the broken hexagons, but all those whose 
centres lie between the circle and a hexagon inscribed in it. The discrepancy 
is considerable, but a correction is easily made. It will be found that the numbers 
arrived at by the two methods are approximately as 6:5. For more detailed 
calculations see a paper by H M (? H. Munro) in Q.J.M.S. vi, p. 83, 1858. The 
methods of enumeration used by older writers, especially by Leeuwenhoek, are 
sometimes curious and interesting; cf. Hooke, Micrographia, 1665, p. 176; 
Leeuwenhoek, Arcana naturae, 1695, p. 477; Phil. Trans. 1698, p. 169; Epist. 
physiolog. 1719, p. 342; Swammerdam, Biblia Naturae, 1737, p. 490. Leeuwenhoek 
found, or estimated, 3181 facets on the cornea of a scarab, and 8000 on that of 
a fly; M. Puget, about the same time, found 17,325 in that of a butterfly. See also 
Karl Leinemann, Die Zahl der Facetten in den.. .Coleopteren, Hildesheim, 1904.

The electrical engineer is dealing with the selfsame problem when he finds 
he can pack 6 + 18 + 36-1- ... wires around a central wire, to form a multiple 
cable of 1, 2 and 3 concentric strands. He counts them by the same formula, 
in the simpler form of Qt +1: where t is a “triangular number,” 1, 3, 6, 10, etc., 
corresponding to the number of strands. Thus 1951 =6a325 +1; 325 being 
the triangular number of 25, 1 + 2 + 3 +... + 25.

We have many varied examples of this principle among corals, 
wherever the polypes are in close juxtaposition, with neither empty 
space nor accumulations of matrix between their adjacent walls. 
Favosites gothlandica, for instance, furnishes us with an excellent 
example. In the great genus Lithostrotion we have some species 
which are “massive” and others which are “fasciculate.” In other 
words, in some the long cylindrical corallites are closely packed 
together, and in others they are separate and loosely bundled (Fig. 
190); in the former the corallites are squeezed into hexagonal 
prisms, while in the latter they retain their cylindrical form. Where 
the polypes are comparatively few, and so have room to spread, 
the mutual pressure ceases to work or only tends to push them 
asunder, letting them remain circular in outline (e.g. Thecosmilia). 
Where they vary gradually in size, as for instance in Cyaihophyllum 
hexagonum, they are more or less hexagonal but are not regular ‘ 
hexagons; and where there is greater and more irregular variation 
in size, the cells will be on the average hexagonal, but some will 
have fewer and some more sides than six, as in the annexed figure 
of Arachnophyllum (Fig. 192). Where larger and smaller cells, 
corresponding to two different kinds of zooids, are mixed together, 
we may get various results. If the larger cells are numerous enough
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to be more or less in contact with one another (e.g. various Monti- 
culiporae) they will be irregular hexagons, while the smaller cells 
between them will be crushed into all manner of irregular angular

Fig. 190. Lithostrotion Martini. 
After Nicholson.

Fig. 191. Cyathophyllum hexagonum. 
From Nicholson, after Zittel.

Fig. 192. Arachnophyllum pentagonum. 
After Nicholson.

Fig. 193. Heliolites. After Woods.

forms. If on the other hand the large cells are comparatively few 
and are large and strong-walled compared with their smaller neigh
bours, then the latter alone will be squeezed into hexagons while 
the larger ones will tend to retain their circular outline undisturbed 
(e.g. Heliopora, Heliolites, etc. (Fig. 193)).

TGF 33
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When, as happens in certain corals, the peripheral walls or 
“thecae” of the individual polypes remain undeveloped but the 
radiating septa are formed and calcified, then we obtain new and 
beautiful mathematical configurations (Fig. 194). For the radiating 
septa are no longer confined to the circular or hexagonal bounds of 
a polypite, but tend to meet and become confluent with their 
neighbours on every side; and, tending to assume positions of 
equilibrium, or of minimum, ilnder the restraints to which they 
are subject, they fall into congruent curves, which correspond in 
a striking manner to fines running in a common field of force 
between a number of secondary centres. Similar patterns may be 
produced in various ways by the play of osmotic or magnetic forces;

Fig. 194. Surface-views of corals with undeveloped thecae and confluent septa. 
A, Thnmnastraea; B, Comoseris. From Nicholson, after Zittel.

and a very curious case is to be found in those complicated forms 
of nuclear division known as triasters, polyasters, etc., whose 
relation to a field of force Hartog in part explained*. It is obvious 
that in our corals these curving septa are all orthogonal to the 
non-existent hexagonal boundaries; and, as the phenomenon is due 
to the imperfect development, or non-existence, of a thecal wall, it 
is not surprising that we find identical configurations among various 
corals, or families of corals, not otherwise related to one another. 
We find the same or very similar patterns displayed, for instance, 
inSynhelia (Oculinidae), in Phillipsastraea (Rugosa), in Thamnastraea 
(Fungida), and in many more.

* Cf. M. Hartog, The dual force of the dividing cell, Science Progress (N.S.), 
i, Oct. 1907, and other papers. Also Baltzer, Mehrpolige Mitosen bei Seeeigeleiern, 
Diss., 1908.
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1A beautiful hexagonal pattern is seen in the male and female 

cones of Zamia, where the scales which bear the pollen-sacs or the 
ovules are crowded together, and are so formed and circumstanced 
that they cannot protrude and overlap. They become 
compressed accordingly into regular hexagons, smaller 
and more regular in the male cone than in the female, 
in which latter the cone as a whole has tendjed to grow 
more in breadth than in length, and the hexagons are 
somewhat broader than they are long. In a cob of 
maize fhe hexagonal form of the grains, such as should 
result from close-packing and mutual compression, is 
exhibited faintly if at all; for growth and elongation 
of the spike itself has relieved, or helped to relieve, the 
mutual pressure of the grains.

The pine-cone shews a simple, but unusual mode of 
close-packing. The spiral arrangement causes each Fig. 195. 
scale to he, to right and to left, on two principal spirals; Female cone 
it has close neighbours on four sides, and mutual Zamw>- 
compression leads to a square or rhomboidal, instead of an hexa
gonal, configuration*. On the other hand, the scales of the larch
cone overlap: therefore they are not subject to compression, but 
grow more freely into leaf-like curves.

The story of the hexagon leads us far afield, and in many directions, 
but it begins with something simpler even than the hexagon. We 
have seen that in a soapy froth three films, and three only, meet 
in an edge, a phenomenon capable of explanation by the law of 
areae minimae. But the conjunction, three by three, of almost any 
assemblage of partitions, of cracks in drying mud, of varnish on an 
old picture, of the various cellular systems we have described, is a 
general tendency, to be explained more simply still. It would be 
a complex pattern indeed, and highly improbable, were all the cracks 
(for instance) to meet one another six by six; four by four would 
be less so, but still too much; and three by three is nature’s way, 
simply because it is the simplest and the least. When the partitions 
meet three by three, the angles by which they do so may vary 
indefinitely, but their average will be 120°; and if all be on the

* In some small, few-scaled cones the packing remains incomplete, and the scales 
are four-, five-, or six-sided, as the case may be.

33-2 
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average angles of 120°, the polygonal areas must, on the average, 
be hexagonal. This, then, is the simple geometrical explanation, 
apart from any physical one, of the widespread appearance of the 
pattern of hexagons.

If the law of minimal areas holds good in a “cellular” structure, 
as in a froth of soap-bubbles or in a vegetable parenchyma, then 
not merely on the average, but actually at every node, three partition
walls (in plane projection) meet together. Under perfect symmetry 
they do so at co-equal angles of 120°, and the assemblage consists

Fig. 196. Cracks in drying mud; a thread encircles and marks out a “polar 
furrow”; cf. p. 487. From R. H. Wodehouse.

(in plane projection) of co-equal hexagons; but the angles may vary, 
the cells be unequal, and the hexagons interspersed with other 
polygonal figures. Nevertheless, so long as three partition-walls and 
only three meet together, the cells are, ipso facto, on the average 
hexagonal*.

We may count the cells if we please. A section of Cycas-petiole 
gave the following numbers:

Number of sides 3 4 5 6 7 8 9
„ „ instances 0 8 97 207 96 9 0

Mean number of sides: 6-00.

The fine emulsion of an Agfa plate shews a beautiful polygonal 
pattern which obeys the law of the triple node; and a patch of a 

* A more elaborate proof is given by W. C. Goldstein, On the average number 
of sides of polygons of a net, Ann. Math. (2), xxxn, pp. 149-153, 1931. 
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thousand cells in such a plate has been found, hke the Cycas-petiole, 
to average out at six sides each, precisely*.

The cracking of a fine varnish may illustrate (as in Fig. 197) the 
same phenomenon. A little water in the varnish tends to accumu
late between the cells, interferes with their close-packing, and 
complicates the arrangement of their partitions.

The horny plates which form the carapace of a tortoise (different 
as the case may seem) still obey the two guiding principles (1) that 
the polygonal boundaries meet in three-way nodes, and (2) that the 
three angles tend towards equality, always provided that no alien 
influences interfere. These principles are of the widest application; 
the carapace of a Eurypterid, the dermal armour of an Old Red

Fig. 197. Cellular patterns in varnish, a, dissolved in dry acetone; 
b, containing a little water.

Sandstone fish hke Hugh Miller’s Asterolepis, exhibit them at a 
glancef. The carapace of our tortoise is formed of a bony framework 
of ribs and vertebrae, overlaid by superficial plates of horn or 
tortoiseshell; it is these latter with which we are about to deal. 
They are arranged in three rows down the back, and a marginal row 
of smaller plates surrounds the others; there are (normally) twenty- 
four plates in the marginal series, and five large ones in the median 
longitudinal row. With these few facts, and our general principles

* F. T. Lewis, Polygons in a film...and the pattern of simple epithelium, 
Anat. Record, l, pp. 235-265, 1931.

f The all but universal law of the triple corner, or triradiate suture, is now 
and then enough to give a deceptive likeness to very different things. When 
Cope marred his brilliant classification of the Ostracoderm fishes by seeing in the 
carapace of Bothriolepis a likeness to the dorsal plates of the tunicate Chelyosoma, 
it was this and this alone which led him astray.
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in hand, how far can we go towards depicting the carapace? The 
five plates of the median row must alternate with their lateral 
neighbours, and four plates in each lateral row will, accordingly, be 
the simplest case or most probable number. If at each three-way 
junction between median and lateral plates the angles tend to 
equality, it follows that the median plates become converted into 
more or less regular, or at least symmetrical, hexagons. As to the 
twenty-four marginal plates, let us put one in front* and one 
behind, leaving eleven for each side; and let us see to it carefully 

Fig. 198. Asterolepis-. an Old Red 
Sandstone fish. After Traquair.

Fig. 199. Horny carapace of a 
tortoise; diagrammatic.

that the sutures between these do not coincide but alternate 
with those of the lateral row. Here we begin to meet with con
ditions of restraint analogous to those of the surface layer of a 
froth, for the long marginal cells must remain marginal, and their 
sides must continue to run more or less parallel, or more or less 
perpendicular, to the edge of the shell; only in the immediate

* The Old World tortoises have twenty-five marginal plates, those of the 
New World lack the anterior median, or “nuchal” plate. This difference is a 
biological accident, it has neither mathematical interest nor functional significance; 
it exemplifies the aphorism that whatsoever is possible Nature will sooner or 
later do.
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neighbourhood of each corner will the sides tend to curve in, so 
forming a notch whose curved sides have tangents approximately 
120° apart, again just as in our projection of the surface of a froth 
(p. 494). Already these considerations lead us to a fair sketch of, 
or first approximation to, the carapace of a tortoise; but we may 
go on a little further. . The horny plates and the bony carapace 
below must grow at such a rate as to keep pace, more or less exactly, 
with one another; but it does not follow that they will keep time 
precisely. If the horny plates grow ever so little faster than the 
bones below, they will fail to fit, will overcrowd one another, and 
will be forced to bulge or wrinkle. Both of these things they often, 
and even characteristically, do; the wrinkles appear in orderly, 
parallel folds, pointing to alternate periods, or spurts, of faster and 
slower growth; and the characteristic patterns which ensue are 
the visible expression of these differential growth-rates.

In all this we assume that the plates are lying in one and the 
same plane or even surface, abutting against one another as they 
grow, and so crowding and squeezing one another into the form of 
straight-edged polygons. The result will be very different if they 
overlap, after the manner of slates on a roof: the difference is what 
we have seen to exist between the cones of Pinus and of Larix. 
The overlapping edges will be free* to grow into natural, rounded 
curves; each plate, uncrowded and unconstrained, will stay smooth 
and unwrinkled; the number and order of the plates will be the 
same as before--but the shell will be no longer that of a tortoise, 
but of the turtle from which “tortoise-shell” is obtained.

A snow-crystal is a very beautiful example of hexagonal sym
metry. It belongs to another order of things to those we have been 
speaking of: for in substance it is a solid, and in form it is a crystal, 
and its own intrinsic molecular forces build it up in its own way. 
But (as we have mentioned once before) it is an exquisite illus
tration of Nature’s way of producing infinite variety from the 
permutations and combinations of a single type. The snowflake is 
a crystal formed by sublimation, that is to say by precipitation 
from -a vapour without passing through a liquid phase. It begins 
as a tiny hexagon, the making of which tends to use up the vapour 
near by; the angles of the hexagon jut out, so to speak, into regions 
of greater, or less depleted, vapour-pressure, and at these corners 
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further crystallisation will next set in. The hexagon will tend to 
grow out into a six-rayed star; and later and more slowly the 
material for further crystallisation will make its way between the 
rays, and begin to build side-growths on them*.

The basaltic column

Hexagonal pattern* are by no means confined to the organic 
world. The basalt of Staffa and the Giant’s Causeway shews a 
wonderful array of prismatic columns of irregular size and form,

Fig. 200. Basalt at Giant’s Causeway. By Mr R. Welch, Belfast.

but mostly hexagonal; so also does the frozen soil of Spitzbergen; 
starch sets on cooling into analogous prisms, but in a ruder fashion 
as on a smaller scale; and all these are due to simple forces in a 
simple field, namely to tension, or shrinkage, in a horizontal mass 
or layer. Imagine a sheet or “sill” of intrusive basalt, thrust 
in as a molten mass between older rocks. It is gradually chilled 
by the cold air above or by the rocks on either side, and its inner 
mass, cooling slower than the outer layer, contracts slowly. Nothing 
hinders its vertical contraction, rather is this helped by its own weight 
and by the load above; but no further lateral contraction can take 
place without splitting the mass, once the basalt sets hard. Con-

* Cf. Gerald Seligmann, Nature, 26 June, 1937, p. 1090. 
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traction, however, does take place, irresistibly, and it may be that 
long cracks appear; the strain being so far relieved, the next cracks 
will tend to take place at right angles to the first. But more 
commonly rupture is delayed until considerable strain-energy has 
been stored up; once started, it proceeds explosively from a number 
of centres, and shatters the whole mass into prismatic fragments. 
However quickly and explosively the cracks succeed one another 
each relieves an existing tension, and the next crack will give relief 
in a different direction to the first. When one crack meets another 
it will seldom cross it, for the strain which led to the former fracture 
does not extend into the new field. In short the cracks will be 
found to meet one another three by three, and therefore at angles 
on the average of 120°, and the columns will be on the average 
hexagonal. For the making of a prismatic structure all that is 
required is more or less uniform tensile strain in the two dimensions 
of a horizontal plane; uniform tension in three dimensions would 
have given rise to a cellular structure, of which the hexagonal 
“causeway” is the two-dimensional analogue.

The columnar structure is accompanied by sundry secondary 
phenomena. The vertical columns tend to break across on further 
contraction, and exhibit rounded or basin-shaped ends, fitting 
together in a shallow ball-and-socket; this beautiful configuration 
has only lately been explained*. When cooling has caused the 
mass to split into vertical columns, air or it may be water enters 
the rifts and further cools or quenches the now solid but still glowing 
basalt. Each column tends to be chilled all round while still hot 
within; but the hot unshrunken mass within checks or hinders the 
contraction of the cooler outer layers. Thus unequal cooling causes 
vertical as well as horizontal tensions; and just as these last are 
relieved by the existing cracks, so new rifts appear crosswise to the 
column, and relieve the vertical tensions.

If the cooling come downward from above, then, at any given 
level, the column will always be cooler above it than below; the

* F. W. Preston, On ball-and-socket jointing in basalt prisms, Proc. R.S. (B), 
cvi, pp. 87-92, 1930; A study of the rupture of glass, Trans. Soc. of Glass Technology, 
1926, p. 263. On the general subject of prismatic structure in igneous rocks, see 
also Robert Mallet, Phil. Mag. (4), l, pp. 122-135, 201-226, 1875; James Thomson, 
Trans. Geol. Soc. Glasgow, March, 1877; Coll. Works, p. 422; R. B. Sosman, Journ. 
Geology, xxrv, p. 215, 1916.
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part above will shrink the more; and this will set up a horizontal 
shear in the interior of the column, in addition to the existing 
vertical tension. The principal stress, compounded of shear and 
tension, will be neither vertical nor horizontal, but inclined 
obliquely between the two. Now in a brittle substance, such as 
glass or basalt, an advancing fracture tends to advance at right 
angles to the principal tension. Where the surface of the column 
meets the cool air the tension is parallel to the face, and the fissure 
enters at right angles to the face, that is to say, horizontally; it is 
for this reason that the ball-and-socket joint is found to have 
a square lip. Once inside the boundary, however, the advancing 
rift finds itself in a region where the principal stress is inclined,

Fig. 201. (1) Diagram of the vertical and shearing stresses in a shrinking column 
of basalt. (2) The same in the neighbourhood of the point P. (3) SS' re
sultant stress, and TT' direction of rupture. After F. W. Preston.

slightly, to the vertical; the crack consequently bends down, the 
downward tilt increases for a short distance and then approaches 
the horizontal again, and the opposing surfaces of “ball and socket” 
are thus defined. The crack often fails to complete its journey, and 
leaves a core of rock unbroken in the middle of the bowl.

The curved sides of the basin, its square lip, its flattened centre, 
often incomplete, are thus all explained; and whether it be convex 
or concave, dome or basin, merely depends on whether the cooling 
or quenching came from above or from below.

The basin, or bowl, will always be a shallow one. For if at 
a point P, within the column, the vertical tension be f, and the 
horizontal shear-stress be fs, then the direction of the principal 
planes will be 2<£ = tan-1 (— 2^//); so that, since f and f8 are both 
positive, lies between 45° and 90°, while fa lies between 135° 
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and 180°. Hence the rift, dipping down at the angle TT', will 
never dip at a greater angle than 45°, and generally much less. 
Now a spherical bowl whose Up is at 45° to the horizontal has a

✓2_ 1
depth of----- ---- times its Up diameter, or approximately one-fifth.

And one-fifth of the diameter of the column is, approximately, the 
depth of the deepest bowl.

The hexagonal pattern and the three-way corners on which it 
is based are characteristic (as we have already explained) of a 
condition of symmetry or uniformity under which a partition is 
as likely to arise in any one direction as in any other, and no 
series of partitions has precedence over the rest. We have seen,

Fig. 202. Crackles on a porcelain bowl. From H. Hukusima.

in the dragon-fly’s wing and in cambium-tissue, how different is 
the result when primary partitions are first established and con
solidated, to be followed by a secondary and a weaker set. The 
“crackles” on a porcelain bowl look somewhat like a cellular 
epithelium; but the porcelain has been Under strain in"more ways 
than one. The plastic clay was first shaped upon a wheel, and 
potential stress-energy so acquired is stored up even in the finished 
ware; again, as the ware cools and shrinks after it is drawn from the 
kiln the glaze is apt to cool quicker and shrink more than the paste 
below, and tension-energy is stored up till the glaze ruptures and 
the cracks appear. Various rates of cooling and of contraction, the 
nature of paste and glaze, the shape of the ware, and even the way 
in which the potter worked the clay, may all influence the pattern 
of the crackle. The primary crack will be perpendicular to the
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main tension; secondaries will tend to be more or less orthogonal 
to the primary cracks; two secondaries on opposite sides of a 
primary will tend to be near together, though not opposite; and 
spiral cracks are often to be seen, the remote effect of plasticity 
under the potter's wheel. The net result is that certain primary 
cracks appear, related (more or less clearly) to the circular or spiral 
shaping of the clay upon the wheel; and each primary crack so 
relieves the tension in one direction that the secondaries tend to 
follow in a direction at right angles to the first. While co-equal 
angles of 120° were likely to occur in certain symmetrical cases, 
leading to a simultaneous pattern of hexagons, in other cases suc-

Fig. 203. Colour-patterns of kidney-beans with diagrammatic contour-lines 
added; a, b, Japanese “quail-beans”; c, scarlet-runner. After M. Hirata.

cessive partitions or cracks tend to be at right angles to one another; 
and Sachs’s Law becomes truer of the porcelain than of the plant*.

In this latter case, and doubtless in many more, we are dealing 
not with a random pattern, but with one based on systematic and 
predetermined fines. The apparently confused or random pattern 
of a kidney-bean comes under the same class of configurations, 
inasmuch as it also is based on an underlying polarity, whose 
centre of symmetry is in the stalk or “hilus.” For simplicity’s 
sake, imagine the bean round like a pea, and its surface mapped 
out, orthogonally, by two sets of boundary-lines, radial and con
centric. Then suppose an asymmetry of growth to be introduced 
so that the round pea grows into the ellipsoid of a bean; and 
suppose that the whole system of boundary-lines is subject to the 
same conformal transformation —which elliptic functions might help

*
* See H. Hukusima, Cracks upon the glazed surface of ceramic wares, Sci. 

Papera, Inai, of Chern. and Phys. Research, Tokyo, xxvn, pp. 235-243. 1935.
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us to define. The colour-pattern of the bean will then be found 
following the direction of the boundary-fines, and occupying areas 
or patches corresponding to parts of the orthogonal system. The 
lines are equipotential lines, or akin thereto. If we varnish an 
elastic bag, dry it and expand it, the varnish will tend to crack along 
the same orthogonal boundaries*.

* M. Hirata, Coloured patches in kidney-beans, Sci. Papers, Inst. Chem. Research, 
Tokyo, xxvr, pp. 122-135, 1936.

f In the combs of certain tropical bees the hexagona structure is imperfect and 
the cells are not far removed from cylinders. They are set in tiers, not contiguous 
but separated by little pillars of wax, and the base of each cell is a portion of 
a sphere. They differ from the ordinary honeycomb in the same sort, of way as 
the fasciculate from the massive corals, of which we spoke on p. 512. Cf. Leonard 
Martin, Sur les Melipones de Bresil, La Nature, 1930, pp. 97-100.

The bee's cell

The most famous of all hexagonal conformations, and one of the 
most beautiful, is the bee’s cell. As in the basalt or the coral, we 
have to deal with an assemblage of co-equal cylinders, of circular 
section, compressed into regular hexagonal prisms; but in this case 
we have two layers of such cylinders or prisms, one facing one 
way and one the other, and a new problem arises in connection 
with their inner ends. We may suppose the original cylinders 
to have spherical endsf, which is their normal and symmetrical way 
of terminating; then, for closest packing, it is obvious that the end 
of any one cylinder in the one layer will touch, and fit in between, 
the ends of three cylinders in the other. It is just as when we 
pile round-shot in a heap; we begin with three, a fourth fits into 
its nest between the three others, and the four form a “tetrad,” 
or regular tetragonal arrangement.

Just as it was obvious, then, that by mutual pressure from the 
sides of six adjacent cells any one cell would be squeezed into a 
hexagonal prism, so is it also obvious that, by mutual pressure 
against the ends of three opposite neighbours, the end of each and 
every cell will be compressed into a trihedral pyramid. The three 
sides of this pyramid are set, in plane projection, at co-equal angles 
of 120° to one another; but the three apical angles (as in the 
analogous case already described of a system of soap-bubbles) are, 
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by the geometry of the case*, co-equal angles of 109° and so many 
minutes and seconds.

If we experiment, not with cylinders but with spheres, if for 
instance we pile bread-pills together and then submit the whole to 
a uniform pressure, as we shall presently find that Buffon did: each 
ball (like the seeds in a pomegranate, as Kepler said) will be in contact 
with twelve others—six in its own plane, three below and three above, 
and under compression it will develop twelve plane surfaces. 
It will repeat, above and below, the conditions to which the bee’s 
cell is subject at one end only; and, since the sphere is symmetrically 
situated towards its neighbours on all sides, it follows that the 
twelve plane sides to which its surface has been reduced will be all 
similar, equal and similarly situated. Moreover, since we have 
produced this result by squeezing our original spheres close t* jgether, it 
is evident that the bodies so formed completely fill space. The regular 
solid which fulfils all these conditions is the rhombic dodecahedron. 
The bee’s cell is this figure incompletely formed; it represents, so 
to speak, one-half of that figure, with its apex and the six 
adjacent corners proper to the rhombic dodecahedron, but six sides 
continued, as a hexagonal prism, to an open or unfinished endf.

The bee’s comb is vertical and the cells nearly horizontal, but 
sloping slightly downwards from mouth to floor; in each prismatic 
cell two sides stand vertically, and two corners lie above and below. 
Thus for every honeycomb or “section” of honey, there is one and 
only one “right way up”; and the work of the hive is so far con
trolled by gravity. Wasps build the other way, with the cells upright 
and the combs horizontal; in a hornet’s nest, or in that of Polistes, 
the cells stand upright like the wasp’s, but fheir mouths look down
wards in the hornet’s nest and upwards in the wasp’s.

What Jeremy Taylor called “the discipline of bees and the rare 
fabric of honeycombs” must have attracted the attention and excited 
the admiration of mathematicians from time immemorial. “Ma 
maison est construite,” says the bee in the Arabian Nights, “selon

* The dihedral angle of 120° is, physically speaking, the essential thing; the 
Maraldi angle, of 109°, etc., is a geometrical consequence. Cf. G. Cesaro, Sur la 
forme de 1’alveole de l’abeille, Bull. Acad. JR. Belgique (Sci.), 1920, p. 100.

f See especially Haiiy, the crystallographer; Sur le rapport des figures qui 
existe entre 1’alveole des abeilles et le grenat dodecafedre, Journ. d'hist, naturelle, 
n, p. 47, 1792.



Vil] OF THE BEE’S CELL 527
les lois d’une severe architecture; et Euclidos lui-meme s’instruirait 
en admirant la geometric de ses alveoles*.” Ausonius speaks of 
the geometrica forma favorum, and Pliny tells of men who gave a 
lifetime to its study.

Pappus the Alexandrine has left us an account of its hexagonal 
plan, and drew from it the conclusion that the bees were endowed 
with “a certain geometrical forethought”!. '“There being, then, 
three figures which of themselves can fill up the space round a point, 
viz. the triangle, the square and the hexagon, the bees have wisely 
selected for their structure that which contains most angles, sus
pecting indeed that it could hold more honey than either of the

Fig. 204. Portion of a honeycomb. After Willem.

other two J.” Erasmus Bartholin wa s apparently the first to 
suggest that the hypothesis of “economy” was not warranted, and 
that the hexagonal cell was no more than the necessary result of 
equal pressures, each bee striving to make its own little circle as 
large as possible.

The investigation of the ends of the cell was a more difficult 
matter than that of its sides, and came later. In general terms the 
arrangement was doubtless often studied and described: as for

* Ed. Mardrus, xv, p. 173.
t <pvfftKr;v -jewueTpiKTjv irpbvoiav. Pappus, Bk. V; cf. Heath, Hist, of Gk. Math, n, 

p. 589. St Basil discusses ryv yewpxrplav ao(kwT6.T7)s p.G\laa-r]s: Hexaem. vm, 
p. 172 (Migne); Virgil speaks of the pars divinae mentis of the bee, and Kepler 
found the bees anima praeditas el geomet. riae suo modo capaces.

J This was according to the “theorem of Zenodorus.” The use by Pappus of 
“economy” as a guiding principle is remarkable. For it means that, like Hero 
with his mirrors, he had a pretty clear adumbration of that principle of minima, 
which culminated in the principle of least action, which guided eighteenth-century 
physics, was generalised (after Fermat) by Lagrange, inspired Hamilton and 
Maxwell, and reappears in the latest developments of wave-mechanics. 
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instance, in the Garden of Cyrus: “And the Combes themselves 
so regularly contrived that their mutual intersections make three 
Lozenges at the bottom of every Cell; which severally regarded 
make three Rows of neat Rhomboidali Figures, connected at the 
angles, and so continue three several chains throughout the whole 
comb.” Or as Reaumur put it, a little later on: “trois cellules 
accolees laissent un vuide pyramidal, precisement semblable a celui 
de la base d’une autre cellule tournee en sens contraire.”

Kepler had deduced from the space-filling symmetry of the honey
comb that its angles must be those of the rhombic dodecahedron; 
and Swammerdam also recognised the same geometrical* figure in 
the base of the cell*. But Kepler’s discovery passed unnoticed, 
and Maraldi the astronomer, Cassini’s nephew, has the credit of 
ascertaining for the first time the shape of the rhombs and of the 
solid angle which they bound, while watching the bees in “les ruches 
vitrees dans le jardin de M. Cassini attenant 1’Observatoire de 
Parisf.” The angles of the rhomb, he tells us, are 110° and 70°: 
“Chaque base d’alveole est formee de trois rombes presque toujours 
egaux et semblables, qui, suivant les metares que nous avons prises, 
ont les deux angles obtus chacun de 110 degres, et par consequent 
les deux aigus chacun de 70 degres.” Further on (p. 312), he 
observes that on the magnitude of the angles of the three rhombs 
at the base of the cell depends that of the basal angles of the six 
trapezia which form its sides; and it occurs to him to ask what 
must these angles be, if those of the floor and those of the sides be 
equal one to another. The solution of this problem is that “les 
angles aigus des rombes etant de 70 degres 32 minutes, et les obtus 
de 109 degres 28 minutes, ceux des trapezes qui leur sont contigus 
doivent etre aussi de la meme grandeur.” And lastly: “11 resuite 
de cette grandeur d’angle non seulement une plus grande facilite et 
simplicity dans la construction, a cause que par cette maniere les 
abeilles n’employent que deux sortes d’angles, mais il en resuite 
encore une plus belle simetrie dans la disposition et dans la figure

* Kepleri Opera omnia, ed. Fritsch, v, pp. 115, 122, 178, vn, p. 719, 1864; 
Swammerdam, Tractatus de apibus (observations made in 1673).

f Obs. sur les abeilles, Mem. Acad. R. Sciences (1712), 1731, pp. 297—331 
Sir C. Wren had used “transparent bee-hives” long before; see his letter concerning 
that pleasant and profitable invention, etc., in S. Hartlib’s Reformed Common- 
Wealth of Bees, 1655. 
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de 1’Alveole.” In short, Maraldi takes the two principles of sim
plicity and mathematical beauty as his sure and sufficient guides.

The next step was that which had been foreshadowed long before 
by Pappus. Though Euler had not yet published his famous 
dissertation on curves maximi minimive proprietate gaudentes, the 
idea of maxima and minima was in the air as a guiding postulate, 
an heuristic method, to be used as Maraldi had used his principle 
of simplicity. So it occurred to Reaumur, as apparently it had not 
done to Maraldi, that a minimal configuration, and consequent 
economy of material in the waxen walls of the cell, might be at 
the root of the matter: and that, just as the close-packed hexagons 
gave the minimal extent of boundary in a plane, so the figure deter
mined by Maraldi, namely the rhombic dodecahedron, might be 
that which employs the minimum of surface for a given content: 
or which, in other words, should hold the most honey for the least 
wax. “Convaincu que les abeilles employent le fond pyramidal qui 
merite d’etre pref ere, j’ai soup^onne que la raison, ou une des 
raisons, qui les avoit decidees etait lYpargne de la cire; qu’entre 
les cellules de meme capacite et a fond pyramidal, celle qui pouvait 
etre faite avec moins de matiere ou de cire etoit celle dont chaque 
rhombe avoit deux angles chacun d’environ 110 degres, et deux 
chacun d’environ 70°.” He set the problem to Samuel Koenig, 
a young Swiss mathematician: Given an hexagonal cell terminated 
by three similar and equal rhombs, what is the configuration which 
requires the least quantity of material for its construction? Koenig 
confirmed Reaumur’s conjecture, and gave 109° 26' and 70° 34' as 
the angles which should fulfil the condition; and Reaumur then 
sent him the Memoires de l’Academie for 1712, where Koenig was 
‘ agreeaoly surprised” to find: “que les rombes que sa solution 
avait determine, avait a deux minutes pres*  les angles que 
M. Maraldi avait trouves par des mesures actuelles a chaque rhombe 
des cellules 'd’abeilles.. . Un tel accord entre la solution et les 
mesures actuelles a assurement de quoi surprendre.” Koenig 
asserted that the bees had solved a problem beyond the reach of 

* The discrepancy was due to a mistake of Koenig’s, doubtless misled by his 
tables, in the determination of V2; but Koenig’s own paper, sent to Reaumur, 
remained unpublished and his method of working is unknown. An abridged 
notice appears in the M^m. de I’Acad. 1739, pp. 30-35.

TGF 34
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the old geometry and requiring the methods of Newton and Leibniz. 
Whereupon Fontenelle, as Secretaire Perpetuel, summed up the 
case in a famous judgment, in which he denied intelligence to the 
bees but nevertheless found them blindly using the highest mathe
matics by divine guidance and command*.

When Cohn Maclaurin studied the honeycomb in Edinburgh, a 
few years after Maraldi in Paris, he proceeded to solve the problem 
without using “any higher Geometry than was known to the 
Antients,” and he began his account by saying: “These bases are 
formed from Three equal Rhombus’s, the obtuse angles of which 
are found to be the doubles of an Angle that often offers itself to 
mathematicians in Questions relating to Maxima and Minima.^” It 
was an angle of 109c 28' 16", with its supplement of 70° 31 44". 
And this angle of the bee’s cell determined by Maraldi, Koenig and 
Maclaurin in their several ways, this angle which has for its cosine 1/3 
and is double of the angle which has for its tangent V2, is on the 
one hand an angle of the rhombic dodecahedron, and on the other 
is that very angle of simple tetrahedral symmetry which the soap
films within the tetrahedral cage spontaneously assume, and whose 
frequent appearance and wide importance we have already touched 
upon J.

That “the true theoretical angles were 109° 28' and 70° 32', 
precisely corresponding with the actual measurement of the bee’s cell,” 
and that the bees had been “proved to be right and the mathema
ticians wrong,” was long believed by many. Lord Brougham

* La grande merveille est que la determination de ces angles passe de beaucoup 
les forces de la Geometric commune, et n’appartient qu’aux nouvelles Methodes 
fondees sur la Theorie de 1’Infini. Mais a la fin les Abeilles en s^auraient trop, 
et 1’excfes de leur gloire en est la ruine. Il faut remonter jusqu’a une Intelligence 
infinie, qui les fait agir aveuglement sous ses ordres, sans leur accorder de ces 
lumidres capables de s’accroitre et de se fortifier par elles-memes, qui font 1’honneur 
de notre Raison.” Histoire de I’Academic Royale, 1739, p. 35.

f Colin Maclaurin, On the bases of the cells wherein the bees deposit their 
honey, Phil. Trans, xm, pp. 561-571, 1743; also in the Abridgement, vm, pp. 709- 
713, 1809; it was characteristic of Maclaurin to use geometrical methods for 
wellnigh everything, even in his book on Fluxions, or in his famous essay on the 
equilibrium of spinning planets. Cf. also Lhuiller, Memoire sur le minimum du 
cite des alveoles des Abeilles, et en particulier sur un minimum minimorum relatif a 
cette matidre, Nouv. Mem. de I’Acad, de Berlin, 1781 (1783), pp. 277-300. Cf. 
Castillon, ibid, (commenting on Lhuiller); also Ettore Carruccio, Notizie storiche 
sulla geometria delle api. Periodico di Mathematiche, (4) xvi, pp. 35 -54, 1936.

| Supra, p. 497. The faces of a regular octahedron meet at the same angle.
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helped notably to spread these and other errors, and his writings 
on the bee’s cell contain, according to Glaisher, “ as striking 
examples of bad reasoning as are often to be met with in writings 
relating to mathematical subjects.” The fact is that, were the 
angles and facets of the honeycomb as sharp and smooth, and as 
constant and uniform, as those of a quartz-crystal, it would still be 
a delicate matter to measure the angles within a minute or two of 
arc, and a technique unknown in Maraldi’s day would be required 
to do it. The minute-hand of a clock (if it move continuously) 
moves through one degree of arc in ten seconds of time, and through 
an angle of two minutes in one-third of a second;—and this last is 
the angle which Maraldi is supposed to have measured. It was 
eighty years after Maraldi had told Reaumur what the angle was 
that Boscovich pointed out for the first time that to ascertain the 
angle to the nearest minute by direct admeasurement of the waxen 
cell was utterly impossible. Yet Reaumur had certainly believed, 
and apparently had persuaded Koenig, that Maraldi’s determina
tions, first and last, were the result of measurement; and Fontenelle, 
the historian of the Academy, epitomising Koenig’s paper, speaks 
of “les mesures actuelles de M. Maraldi,” of the bees being in 
error to the trifling extent of 2', and of the grande merveille of their 
so nearly solving a problem belonging to the higher geometry. 
Boscovich, in a long-forgotten note, rediscovered by Glaisher, puts 
the case in a nutshell: “Mirum sane si Maraldus ex observatione 
angulum aestimasset intra minuta, quod in tam exigua mole fieri 
utique non poterat. At is (ut satis patet ex ipsa ejus determina
tione) affirmat se invenisse angulos circiter 110° et 70°, nec minuta 
eruit ex observatione sed ex equalitate angulorum pertinentium ad 
rhombos et ad trapezia; ad quam habendam Geometria ipsa docuit 
requiri illa minuta*. ” Indeed he goes on to say the wonder is that 
the angles could be measured even within a few degrees, variable 
and irregular as they are seen to be, and as even Reaumur f knew

* In his note De apium cellulis, appended to the philosophical poem of Benedict 
Stay, ii, pp. 498-504, Romae, 1792.

f Op. cit. v, p. 382. Several authors recognised that the cells are far from 
identical, and do no more than approximate to an average or ideal angle: e.g. 
Swammerdam in the Biblia Naturae, n, p. 379; G. S. Kliigel, Grosstes u. Kleinstes, 
in Mathem. Worterb. 1803; Castillon, op. cit.; and especially Jeffries Wyman, 
Notes on the cells of the bee. Proc. Amer. Acad. Sci. and Arts, vu, 1868.

34-2
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well they were. The old misunderstanding was at last explained 
and corrected by Leslie Ellis; and better still by Glaisher, in a 
little-known but very beautiful paper*. For these two mathe
maticians shewed that, though Maraldi’s account of his “measure
ments” led to misunderstanding, yet he had really done well and 
scientifically when he eked out a rough observation by finer theory, 
and deemed himself entitled thereby to discuss the cell and its angles 
in the same precise terms that he would use as a mathematician in 
speaking of its geometrical prototype!.

Many diverse proofs! have been 
given of the minimal character of the 
bee’s cell, some few, like Maclaurin’s, 
purely geometrical, others arrived at by 
help of the calculus. The following 
seems as simple as any:

ABCDEF, abcdef, is a right prism 
upon a regular hexagonal base. The 
corners B, D, F are cut off by planes 
through the lines AC, CE, EA, meeting 
in a point V on the axis VN of the 
prism, and intersecting Bb, Dd, Ff, in 
X, Y, Z. The volume of the figure thus 
formed is the same as that of the 
original prism with its hexagonal ends: 
for, if the axis cut the hexagon ABCDEF 
in N, the volumes ACVN, ACBX are 
equal.

It is required to find the inchnation 
to the axis of the faces forming the

* Leslie Ellis, On the form of bees’ cells, in Mathematical and other Writings, 
1863, p. 353; J. W. L. Glaisher, do., Phil. Mag. (4), xlvi, pp! 103-122, 1873.

f The learned and original Kieser, in his Mimoire sur I’organisation des plantes, 
1812, p. iv, gives advice to the same effect: “Il est indispensable de se former, 
avant de dessiner, une idee de 1’objet dans sa plus grande perfection, et de dessiner 
selon cette idee, et non pas 1’objet plus ou moins imparfait, plus ou moins alt4re 
par le scalpel. Voilk la methode qu’ont suivi Haller, Albinus et tous les autres 
grands anatomistes... .Mais il faut employer pour cela la plus grande precaution, 
la circonspection la plus tranquille pour I’observation, etc.”

J Cf. Koenig, Lhuiller and Boscovich, opp. cit.; H. Hennessy, Proc. U.S. xxxix, 
p. 253, 1885; xli, pp. 442, 443, 1886; XLn, pp. 176, 177, 1887. 
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trihedral angle at V, such that the surface of the whole figure may 
be a minimum.

Let the angle NVX, which is the inclination of the plane of the 
rhombus to the axis of the prism, = 0; the side of the hexagon, as 
AB, = s; and the height, as Aa, = h.

Then AC = 2s cos 30°, = s V3. And, from inspection of the 
triangle LXB,

sin 0

Therefore the area of the rhombus

o2 a/3VAXC = ~-^, 
2 sm 0

And the area of
Q

AabX ~(2h — ^VX cos 0),

Q
= - (2h — |s cot 6).

Therefore the total area of the figure

s2 V 3= the hexagonal base abcdef + 3s (2h — 4s cot 6) + 3 —— .
2 sm 0

Therefore d(area) 
d0

3s2 / 1 V3 cos 0\
2 \sin2 0 sin2 0 /

d (arca) IBut this expression vanishes, or —-------= 0, when cos 0 = —— , 
d0---------------------------- V3

that is to say, when 0 = 54° 44' 8" = | (109° 28' 16").

Such then are the conditions under which the total area of the 
figure has its minimal value.

The following is, in substance, Maclaurin’s elementary but somewhat lengthy 
proof of the minimal properties of the bee’s cell, using ‘‘no higher Geometry 
than was known to the Antients.”

Let ABCD, abed, represent one-half of a right prism on a regular hexagonal 
base; and let AabE, EbcC be the trapezial portions of two adjacent sides, to 
which one of the three rhombs, AECe, is fitted.

Let O be the centre of the hexagon, of which AB, BC are adjacent sides; 
join AC and OB, intersecting in P. Then, because A0C = ABC, and BE = 0e,
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the solid AECB = AeCO; whence it appears that the solid content of the 
whole cell will be the same, wherever the point E be taken in Bb, and will 
in fact be identical with the content of the hexagonal prism. We have then 
to enquire where E is to be taken in Bb, in order that the combined surfaces 
of the rhomb and of the two trapezia may be a minimum.

Because Ee is perpendicular to AC in P, the area of the rhombus = PE.AC; 
and the area of the two trapezia = (Aa + Eb) x BC. The total area in question, 
then, is PE.AC+2BC .Bb — BC.BE. But BC.Bb is constant; so the question 
remains, When is PE .AC—BC .BE a minimum?

Let a point L be so taken in Bb that BL: PL:: BC: AC. From the 
centre P, in the plane PBE, describe the circular arc ER, meeting PL in R; 
and on PL let fall the perpendiculars ES, BT.

Fig. 206.

The triangles LES, LBT, LPB are all similar. Therefore 

LS : LE :: LT : LB :: LB : LP, 

and (by hypothesis) :: BC: AC.

Hence (LT-LS): (LB—LE):: BC : AC,

i.e. ST ; BE ;; BC ; AC.

Therefore ST. AC=BE. BC

and consequently, PE .AC—BE .BC—PE .AC—ST .AC 

= AC (PE-ST).

But PE—PR; therefore AC (PR-ST)=AC (PT + RS).
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But AC and PT do not vary, while RS varies with the position of E. 

Accordingly, AC (PT + RS), or PE .AC — BE .BC, is a minimum when RS 
vanishes: that is to say, when E coincides with L.

“Therefore ALCl is the Rhombus of the most advantageous Form in respect 
of Frugality, when BL is to PL as BC to AC.”

Again, since OB = BC, and OP = PB, BC2 = ±PB2, and PC2 = 3PB2, and 
AC = 2PC = 2 V3.PB.

Therefore BC : AC :: 2PB : 2 V3.PB -.: 1 : V3,

and, by hypothesis, BL-.PL-.-. BC-. AC

= 1 : V3

or '

and

Therefore

PL PB ::V3:V2, 

PB : PC:: 1 : V3. 

PL: PC:: 1 : V2.

“That is, the angle CLP is that whose Tangent is to the Radius as V2 
is to 1, or as 1 4142135 to 1-0000000; and therefore is of 54° 44' 08", and 
consequently the Angle of the Rhombus of the Best Form is that of 
109° 28' 16".”

When we have thus ascertained that the characteristic angles of 
the rhombs are 109° 28' 16" and its supplement 70° 31' 44", the 
cosine of which latter angle is 1/3, the construction of a model is 
of the easiest. ,

Fig. 207. Construction of a model of the bee’s cell

On AD make AB = BC = CD. Let AF = AD meet the perpen
dicular BE in F. Then the angle BAF (whose cosine = 1/3, or 
whose tangent = 2V2) = 70° 31' 44". Complete the rhomb ADGF-, 
and repeat three times as indicated. Make a developed hexagonal 
prism with sides ab, be. = BF. Cut away angles bb'a, bb’c, etc., 
= BAF. Fold, and attach together.
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A soap-bubble, or soap-film, assumes a minimal configuration 
instantaneously*,  however small the saving of surface-area may be. 
But after learning that the bee’s cell has undoubted minimal 
properties, we should like to know what saving is actually obtained 
by substituting a rhomboidal pyramid for a plane base in the 
hexagonal prism. It turns out, after all, to be a small matter! 
The calculation was first made by Maclaurin and by Lhuiller, in 
both cases briefly but correctly. Lhuiller stated that the whole 
amount used in the bee’s cell was to that required for a flat-topped 
prismatic cell of equal volume as 25 + Vo (or 27-45) to 28, the 
saving being thus a little more than 2 per cent, of the whole quantity 
of wax tequiredf. Glaisher recalculated the values, taking the cell 
part by part. Assuming, with Lhuiller, that the radius of the 
inscribed circle of the hexagon is to the depth of the prismatic cell, 
when the latter has the same capacity as the real cell, as 1| to 5, 
then, taking the side of the hexagon as unity, we have for the same 
depth (viz. the longest side of the trapezium in the real cell) the

* For the most part instantaneously; but sometimes, when there are two 
positions of nearly equal potential energy, the film “creeps” from the less to the 
more advantageous of the two.

f We must take into account the depth of the cell, or assume a value for it, 
if we are to estimate the percentage saving of wax on the whole construction. 
But (as Dr G. T. Bennett says) the whole saving is on the roof, and the height 
of the house does not matter; the question rather is, what is saved on the 
rhomboidal sloping roof compared with a flat one? If the short axis of the rhombs 
be 2 units (the edge of the cube), then 3 rhombs have area 6 V2, the wall-saving 
is 2 V2, while the flat hexagonal top is 4 V3. So the actual saving is the difference 
between 4 V2 and 4 V3—which looks much less negligible! But it is only on 
a small portion of the work.

The whole surface of the real cell, accordingly, 
= (i) + (iii) — (ii) = 23-772;

25 V3value ———; and then (to three places of decimals):

Area of the three rhombs, f V2 = 3-182 (i)-
,, „ ,, six triangles, f Vz2
„ ,, „ six sides of the equivalent

= 1-061 (ii)-

prismatic cell, V3 = 21-651 (iii)-
,, „ ,, hexagonal base, | Vo = 2-598 (iv).
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and that of the flat-bottomed hexagonal prism

= (iii) + (iv) - 24-249;
, 24-249 102and - -- = ——, or a little more;23-772 100

so that the saving in the former case amounts to about 2 per cent., 
as Lhuiller had found it to be.

* Glaisher sums up the matter as follows: “As the result of a 
tolerably careful examination of the whole question, I may be 
permitted to say that I agree with Lhuiller in believing that the 
economy of wax has played a very subordinate part in the deter
mination of the form of the cell; in fact I should not be surprised 
if it were acknowledged hereafter that the form of the cell had 
been determined by other considerations, into which the saving of 
wax did not enter (that is to say did not enter sensibly; of course 
I do not mean that the amount of wax required was a matter of 
absolute indifference to the bees). The fact of all the dihedral 
angles being 120° is, it is not unlikely, the cause that determined 
the form of the cell.” This last fact, that in such a cell every plane 
cuts every other plane at an angle of 120°, was known both to Kliigel 
and to Boscovich; it is ho mere corollary, but the root of the 
matter. It is, as Glaisher indicates, the fundamental physical 
principle of construction from which the apical angles of 109° follow 
as a geometrical corollary. And it is curious indeed to see how 
the obtuse angle of the rhomb, and its cosine — drew attention 
all the while; but the dihedral angle of 120° of the rhombohedron, 
and the inclination of its three short diagonals at 90° to one another, 
got rare and scanty notice.

Darwin had listened too closely to Brougham and the rest when 
he spoke of the bee’s architecture as “the most wonderful of known 
instincts”; and when he declared that “beyond this stage of per
fection in architecture natural selection could not lead; for the 
comb of the hive-bee, as far as we can see, is absolutely perfect in 
economising labour and wax.”

The minimal properties of the cell and all the geometrical reasoning 
in the case postulate cell-walls of uniform tenuity and edges which 
are mathematically straight. But the walls, and still more their 
edges, are always thickened; the edges are never accurately straight, 
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nor the cells strictly horizontal. The base is always thicker than 
the side-walls; its solid angles are by no means sharp, but filled up 
with curving surfaces of wax, after the fashion, but more coarsely, 
of Plateau’s bourrelet. Hence the Maraldi angle is seldom or never 
attained; the mean value (according to Vogt) is no more than 
106-7° for the workers, and 107-3° for the drones. The hexagonal 
angles of the prism are fairly constant; about 4° is the limit of 
departure, and about 1-8° the mean error, on either side.

Fig. 208. Brood-comb, with eggs.

The bee makes no economies; and whatever economies lie in the 
theoretical construction, the bee’s handiwork is not fine nor accurate 
enough to take advantage of them *.

The cells vary little in size, so little that Thevenot, a friend of 
Swammerdam’s, suggested using their dimensions as a modulus 
or standard of length; but after all, the constancy is not so great 
as has been supposed. Swammerdam gives measurements which 
work out at 5-15 mm. for the mean diameter of the worker-cells, 
and 7 mm. for those of the drones; Jeffries Wyman found mean 
values for the worker-cells from 5-1 to 5-2 mm.; Vogt, after many 
careful measurements, found a mean of 5-37 mm. for the worker-

* All this Heinrich Vogt has abundantly shewn, in part by making casts of the 
interior of the cells, as Castellan had done a hundred years before. See his 
admirable paper on the Geometric und Oekonomie der Bienenzelle, in Festschrift 
d. Univeraitat Breslau, 1911, pp. 27-274.
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cells, with an insignificant difference in the various diameters, and 
a mean of 6-9 for the drone-cells, with their horizontal diameter some
what in excess, and averaging 7-1 mm. A curious attempt has been 
made of late years by Italian bee-keepers to let the bees work on 
a larger foundation, and so induce them to build larger cells; and 
some, but by no means all, assert that the young bees reared in the 
larger cells are themselves of larger stature*.

That the beautiful regularity of the bee’s architecture ts due to 
some automatic play of the physical forces, and that it were 
fantastic to assume (with Pappus and Reaumur) that the bee 
intentionally seeks for a method of economising wax, is certain; 
but the precise manner of this automatic action is not so clear. 
When the hive-bee builds a solitary cell, or a small cluster of cells, 
as it does for those eggs which are to develop into queens, it makes 
but a rude construction. The queen-cells are lumps of coarse wax 
hollowed out and roughly bitten into shape, bearing the marks of 
the bee’s jaws like the marks of a blunt adze on a rough-hewn log.

Omitting the simplest of all cases, when (among some humble- 
bees) the old cocoons are used to hold honey, the cells built by the 
“solitary” wasps and bees are of various kinds. They may be 
formed by partitioning off little chambers in a hollow stem; they 
may be rounded or oval capsules, often very neatly constructed 
out of mud or vegetable fibre or little stones, agglutinated together 
with a salivary glue; but they shew, except for their rounded or 
tubular form, no mathematical. symmetry. The social wasps and 
many bees build, usually out of vegetable matter chewed into a 
paste with saliva, very beautiful nests of “ combs ”; and the close
set papery cells which constitute these combs are just as regularly 
hexagonal as are the waxen cells of the hive-bee. But in these cases 
(or nearly all of them) the cells are in a single row; their sides are 
regularly hexagonal, but their ends, for want of opponent forces, 
remain simply spherical.

In Melipona domestica (of which Darwin epitomises Pierre Huber’s 
description) “the large waxen honey-cells are nearly spherical, 
nearly equal in size, and are aggregated into an irregular mass.”

* Cf. (int. al.) H. Gontarsi, Sammelleistungen von Bienen aus vergrosserten 
Brutzellen, Arch.f. Bienenkunde, xvi, p. 7, 1935; A. Ghetti, Celli ed api piu grandi, 
IV Congresso nazion. della S.A.I. 1935.
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But the spherical form is only seen on the outside of the mass; 
for inwardly each cell is flattened into “two, three or more flat 
surfaces, according as the cell adjoins two, three or more other cells. 
When one cell rests on three other cells, which from the spheres

Fig. 209. An early stage of a wasp’s nest. Observe the spherical caps, and the 
irregular shape of the peripheral cells. After R. Bott.

being nearly of the same size is very frequently and necessarily the 
case, the three flat surfaces are united into a pyramid; and this 
pyramid, as Huber has remarked, is manifestly a gross imitation 
of the three-sided pyramidal base of the cell of the hive-bee*. ” 

* Origin of Species, ch. vin (6th ed., p. 221). The cells of various bees, humble- 
bees and social wasps have been described and mathematically investigated by 
K. Mullenhoff, Pfinger's Archiv, xxxn, p. 589, 1883; but his many interesting 
results are too Complex to epitomise. For figures of various nests and combs see 
(e.g.) von Biittel-Reepen, Biol. Centralbl. xxxin, pp. 4, 89, 129, 183, 1903.



vn] OF THE BEE’S CELL 541

We had better be content to say that it depends on the same 
elementary geometry.

The question is, To what particular force are we to ascribe the 
plane surfaces and definite angles which define the sides of the cell 
in all these cases, and the ends of the cell in cases where one row 
meets and opposes another? We have seen that Bartholin sug
gested, and it is still commonly believed, that this result is due to 
mere physical pressure, each bee enlarging as much as it can the 
cell which it is a-building, and nudging its wall outwards till it fills 
every intervening gap, and presses hard against the similar efforts 
of its neighbour in the cell next door*.

That the bee, if left to itself, “works in segments of circles,” or 
in other words builds a rounded and roughly spherical cell, is an 
old contention]" which some recent experiments of M. Victor 
Willem amplify and confirm]:. M. Willem describes vividly how 
each cell begins as a little hemispherical basin or “cuvette,” how 
the workers proceed at first with little apparent order and method, 
laying on the wax roughly like the mud when a swallow builds; 
how presently they concentrate their toil, each burying its head in 
its own cuvette, and slowly scraping, smoothing and ramming 
home; how those on the other side gradually adjust themselves

* Darwin had a somewhat similar idea, though he allowed more play to the 
bee’s instinct or conscious intention. Thus, when he noticed certain half-completed 
cell-walls to be concave on one side and convex on the other, but to become perfectly 
flat when restored for a short time to the hive, he says: “It was absolutely im
possible, from the extreme thinness of the little plate, that they could have effected 
this by gnawing away the convex side; and'l suspect that the bees in such cases 
stand on opposite sides and push and bend the ductile and warm wax (which as 
I have tried is easily done) into its proper intermediate plane, and thus flatten it.” 
Huber thought the difference in form between the inner and the outer cells a clear 
proof of intelligence; it is really a direct proof of the contrary. And while cells 
differ when their situations and circumstances differ, yet over great stretches of 
comb extreme uniformity, unbroken by any sign of individual differences, is the 
strikingly mechanical characteristic of the cells.

f It is so stated in the Penny Cyclopedia, 1835, Art. “Bees”; and is expounded 
by Mr G. H. Waterhouse (Trans. Entom. Soc., London, n, p. 115, 1864) in an 
article of which Darwin made good use. Waterhouse shewed that when the 
bees were given a plate of wax, the separate excavations they made therein 
remained hemispherical, or were built up into cylindrical tubes; but cells in 
juxtaposition with one another had their party-walls flattened, and their lorms 
more or less prismatic.

J Victor Willem, L’architecture des abeilles, Bull. Acad. Boy. de Belgique (5), 
xiv, pp. 672-705, 1928.
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to their opposite neighbours; and how the rounded ends of the cells 
fashion themselves into the rhomboidal pyramids, “a la suite de 
1’amincissement progressif des cloisons communes, et des pressions 
antagonistes exercees sur les deux faces de ces cloisons.”

Among other curious and instructive observations, M. Willem has 
watched the bees at work on the waxen “foundations” now com
monly used, on which a rhomboidal pattern is impressed with a 
view to starting the work and saving the labour of the bees. The 
bees (he says) disdain these half-laid foundations of their cells; they 
hollow out the wax, erase the rhombs, and turn the pyramidal 
hollows into hemispherical “cuvettes” in their usual way; and the 
vertical walls which they raise, more or less on the fines laid down 
for them, are not hexagonal but cylindrical to begin with. “La 
forme plane, en facettes, tant de prismes que des fonds, n’est obtenue 
que plus tard, progressivement, comme resultat de retouches, 
d’enlevements et de pressions exercees sur les cloisons qui s’amin- 
cissent, par des groupes d’ouvrieres operant face a face, de maniere 
antagoniste.”

But when all is said and done, it is doubtful whether such 
retouches, enlevements and pressions antagonistes, such mechanical 
forces intermittently exercised, could produce the nearly smooth 
surfaces, the all but constant angles and the close approach to a 
minimal configuration which characterise the cell, whether it be 
constructed by the bee of wrax or by the wasp of papery pulp. 
We have the properties of the material to consider; and it seems 
much more likely to me that we have to do with a true tension 
effect: in other words, that the walls assume their configuration 
when in a semi-fluid state, while the watery pulp is still liquid or 
the wax warm under the high temperature of the crowded hive. 
In the first few cells of a wasp’s comb, long before crowding and 
mutual pressure come into play, we recognise the identical con
figurations which we have seen exhibited by a group of three or 
four soap-bubbles, the first three or four cells of a segmenting 
egg. The dirfect efforts of the wasp or bee may be supposed to be 
limited, at this stage, to the making of little hemispherical cups, 
as thin as the nature of the material permits, and packing these 
little round cups as close as possible together. It is then con
ceivable, and indeed probable, that the symmetrical tensions of the 
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semi-fluid films should suffice (however retarded by viscosity) to 
bring the whole system into equilibrium, that is to say into the 
configuration which the comb actually assumes.

The remarkable passage in which Buffon discusses the bee’s cell 
and the hexagonal configuration in general is of such historical 
importance, and tallies so closely with the whole trend of our 
enquiry, that before we leave the subject I will quote it in full*: 
“Dirai-je encore un mot: ces cellules des abeilles, tant vantees 
tant admirees, me fournissent une preuve de plus contre 1’en- 
thousiasme et l’admiration; cette figure, toute geometrique et toute 
reguliere qu’elle nous parait, et qu’elle est en effet dans la specula
tion, n’est ici qu’un resultat mecanique et assez imparfait qui se 
trouve sou vent dan-s la nature, et que 1’on remarque meme dans les 
productions les plus brutes; les cristaux et plusieurs autres pierres, 
quelques seis, etc., prennent constamment cette figure dans leur 
formation. Qu’on observe les petites ecailles de la peau d’une 
roussette, on verra qu’elles sont hexagones, parce que chaque ecaille 
croissant en meme temps se fait obstacle et tend a occuper le plus 
d’espace qu’il est possible dans un espace donne: on voit ces memes 
hexagones dans le second estomac des animaux ruminans, on les 
trouve dans les graines, dans leurs capsules, dans certaines fleurs, 
etc. Qu’on remplisse un vaisseau de pois, ou plutot de quelque 
autre graine cylindrique, et qu’on le ferme exactement apres y avoir 
verse autant d’eau que les intervalles qui restent entre ces graines 
peuvent en recevoir; qu’on fasse bouillir cette eau, tous ces cylindres 
deviendront de colonnes a six pans. On y voit clairement la 
raison, qui est purement mecanique; chaque graine, dont la figure 
est cylindrique, tend par son renflement a occuper le plus d’espace 
possible dans un espace donne, elles deviennent done toutes neces- 
sairement hexagones par la compression reciproque. Chaque abeille 
cherche a occuper de meme le plus d’espace possible dans un espace 
donne, il est done necessaire aussi, puisque le corps des abeilles est 
cylindrique, que leurs cellules sont hexagones—par la meme raison

* Buffon, Histoire naturelle, rv, p. 99, Paris, 1753. Bonnet criticised Buffon’s 
explanation, on the ground that his description was incomplete; for Buffon took 
no account of the Maraldi pyramids. Not a few others discovered impiety in his 
hypotheses, and some dismissed them with the remark that “philosophical 
absurdities are the most difficult to refute”; cf. W. Smellie, Philosophy of Natural 
History, Edinburgh, 1790, p. 424.
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des obstacles reciproques. On donne plus d'esprit aux mouches 
dont les ouvrages sent les plus regubers; les abeilles sont, dit-on, 
plus ingenieuses que les guepes, que les frelons, etc., qui savent aussi 
V architecture, mais dont les constructions sont plus grossi eres et 
plus irregulieres que celles des abeilles: on ne veut pas voir, ou 1’on 
ne se doute pas, que cette regularity, plus ou moins grande, depend 
uniquement du nombre et de la figure, et nullement de Fintelligence 
de ces petites betes; plus elles sont noinbreuses, plus il y a des forces 
qui agissent egalement et s’opposent de meme, plus il y a par 
consequent de contrainte mecanique, de regularity forcee, et de 
perfection apparente dans leurs productions*. ”

* Among countless papers on the bee’s cell, see John Barclay and others in 
Ann. of Philosophy, ix, x, 1817; Henry Lord Brougham, in Dissertations... 
connected with Natural Theology, app. to Paley’s Works, I, pp. 218-368, 1839; 
C.B. Acad. Sci. Paris, xlvi, pp. 1024-1029,1858 Tracts, Mathematical and Physical, 
1860, pp. 103-121, etc.; E. Carruccio, Note storiche sulla geometria delle api. 
Periodico di Matem. (4), xvi, 20 pp., 1936; G. C^saro, Sur la forme de F alveole 
des abeilles, Bull. Acad. Boy. Belg. (Sci.), Avril 10, 1929; Sam. Haughton, On 
the form of the cells made by various wasps and by the honey-bee, Proc. Nat. 
Hist. Soc. Dublin, m, pp. 128-140, 1863; Ann. Mag. Nat. Hist. (3), xi, pp. 415—^29, 
1863; A. R. Wallace, Remarks on the foregoing paper, ibid, xn, p. 33; J. O. 
Henilum, Arch. f. Math. u. Vidensk., Christiania, ix, p. 301, 1884; F. Huber, 
Nouv. obs. sur les abeilles, n, p. 475, 1814; F. W. Hultmann, Tidsskr. f. Math., 
Uppsala, I, p. 197, 1868; John Hunter, Observations on bees, Phil. Trans. 1792, 
pp. 128-195; Jacob, Nouv. Ann. de Math, n, p. 160, 1843; G. S. Kltigel, Mathem. 
Betrachtungen iib. d. kunstreichen Bau d. Bienenzellen, Hannoversches Mag. 
1772, pp. 353-368; Leon Lalanne, Note sur l’architecture des abeilles, Ann. Sc. Nat. 
Zool. (2), Xin, pp. 358-374, 1840; B. Powell, Proc. Ashmol. Soc. i, p. 10, 1844; 
K. H. Schellbach, Mathem. Lehrstunde: Lehre v. Grossten u. Kleinsten, 1860, 
pp. 35-37; Sam. Sharpe, Phil. Mag. iv, pp. 19-21, 1828; J. E. Siegwart, Die 
Mathematik im Dienste d. Bienenzucht, Schw. Bienenzeitung, m, 1880; O. Terquem, 
Nouv. Ann. de Math, xv, p. 176, 1856; C. M. Willick, On the angle of dock-gates and 
the bee’s cell, Phil. Mag. (4) xvni, p. 427, 1859; C.B. li, p. 633, 1860; Chauncy 
Wright, Proc. Amer. Acad. Arts and Sci. rv, p. 432, 1860.

Of parenchymatous cells

Just as Bonanni and other early writers sought, as we have seen, 
to explain hexagonal symmetry on mechanical principles, so other 
early naturalists, relying more or less on the analogy of the bee’s 
cell, endeavoured to explain the cells of vegetable parenchyma; and 
to refer them to the rhombic dodecahedron or garnet-form, which 
solid figure, in close-packed association, was believed in their time, 
and long afterwards, to enclose space with a minimal extent of surface.
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We have mentioned both Hooke and Grew*,  and we have just heard 
Buffon engaged in such speculations; but the matter was more 
elaborately treated near the beginning of last century by Dieterich 
George Kieser f, an ingenious friend and 
colleague of the celebrated Lorenz Oken. 
Kieser clearly understood that the cell has 
not a shape of its own, but merely one 
impressed on it by physical forces and 
defined by mathematical laws. In his 
Memoire sur V organisation des plantes, he 
gives an admirable historical account of the 
work of Malpighi, Hooke, Grew, John Hill 

* R. Hooke, Micrographia, 1665, pp. 115-116; Nehemiah Grew, Anatomy of 
Plants, 1682, pp. 64, 76, 120.

f D. G. Kieser, Memoire, etc., Haarlem, 1814, p. 89; Phytotomie, oder Grundzllge 
der Anatomic der Pflanzen, Jena, 1815, p. 4.
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and other early microscopists; and then he Fig. 210. A rhombic 
says “La forme des cellules est variee dans dodecahedron.
les plantes differentes, mais il y a des formes principales, fondees sur 
les lois des ma thema tiques, que la nature suit toujours dans ses 
formations.... La forme la plus commune est celle que prennent 
necessairement des globules rondes ou allongees, pressees ensemble, 
celle des corps hexagonaux a parois quadrilaterales, ou d’une cblonne 
tres courte hexagone, coupee horizontalement d’en haut et d’en bas.” 
Here we have, briefly described and sufficiently accounted for, the 
configuration of what we call a “pavement epithelium,” or other 
simple association of cells in a single layer.

But another passage (from the same author’s Phytotomie) is worth 
quoting at length, where he deals with cells in the mass, that is to 
say with the three-dimensional problem. “Die nach mathematische 
Gesetzen bestimmte als nothwendige Grundform der Zelle der voll- 
kommenen Zellengewebe ist das langgezogene Rhombododekaheder. • 
... Mathematisch liegt das Beweis dass diese Figur die Grundform 
der vollkommenen Zellengewebe sei darin, dass unter alien mathe- 
matischen Kbrpern welche durch Zusammensetzung einen soliden 
Kbrper ohne Zwischenraume bilden, das Rhombododekaheder die 
einzige ist welche mit der wenigsten Masse des Umkreises den 
grbssten Raum einschliesst. Sollte also aus dem Globus—dem 

T G F
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urspriinglichsten Schleimblaschen der Pflanzenzelle —ein eckiger 
Korper gebildet werden, so musste dieser das Rhombododekaheder 
sein, weil dieser im Hinsicht des Minimums der AI ass e zu dem 
Maximum des eingeschlossenen Raumes dem Globus am nachsten 
liegt. Ais die Urform der Pflanzenzelle ist nicht Globus sondern 
Ellipsoide, daher muss das Dodekaheder, welche die Grundform der 
eckigen Pflanzenzelle ist, auch aus dem Ellipsoide entstanden sein. 
Das Rhombododekaheder wird also vom unten nach oben gestreckt, 
und die Grundform der eckigen Pflanzenzelle ist das in perpen- 
dicularer Richtung langsgestreckte Rhombododekaheder.”

These views and speculations of Kieser’s, now all but forgotten, 
were by no means neglected in their day. Oken accepted them, 
and taught them*; Schleiden remarks that “the form of cells 
frequently passes into that of the rhombic dodecahedron, so beauti
fully determined, a priori, by Kieserf”; and De Candolle thought 
it necessary to warn his readers that cells are not as geometrically 
regular as published figures might lead one to believe J.

The same principles apply to various orders of magnitude, and 
close-packing may be seen even in the inner contents of a cell. In 
vitally stained “goblet-cells,” the mucin gathers into clumps or 
droplets, of which each appears in optical section to be surrounded 
by six more. When fixed they draw together, appear in optical 
section to be hexagonal, and we may take it that they have become, 
to a first approximation, rhombic dodecahedra§.

These then, and such as these, were the not unimportant specu
lations on the forms of cells by men who early grasped the fact that 
form had a physical cause and a mathematical significance. But 
their conception of the phenomenon was of necessity limited to the 
play of the mechanical forces; for Plateau’s Statique des Liquides 
had not yet shewn what the capillary forces can do, nor opened a 
way thereby for Berthold and for Errera.

A very beautiful hexagonal symmetry as seen in section, or 
dodecahedral as viewed in the solid, is presented by the pith of 
certain rushes (e.g. Juncus effusus), and somewhat less diagram-

* Oken, Physiophilosophy (Ray Society), 1847, p. 209.
f Muller's Archiv, 1838, p. 146.
J Organogenic vegetale, I, p. 13, 1827.
§ E. S. Duthie, in Proc. R.S. (B), cxm, pp. 459-463, 1933.
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matically by the pith of the banana. The cells are stellate, and 
the tissue has the appearance in section of a network of six-rayed 
stars (Fig. 211), linked together by the tips of the rays, and separated 
by symmetrical, air-filled intercellular spaces, which give its snow- 
like whiteness to the pith. In thick sections, the solid twelve-rayed 
“ star-dodecahedra ” may be very beautifully seen under the 
binocular microscope. They are not difficult to understand. 
Imagine, as before, a system of equal spheres in close contact, each 
one touching its twelve neighbours, six of them in the equatorial

Fig. 211. Stellate cells in pith of Juncus.

plane; and let the cells be not only in contact, but become attached 
at the points of contact. Then, instead of each cell expanding so 
as to encroach on and fill up the intercellular spaces, let each tend 
to shrink or shrivel up by the withdrawal of fluid from its interior. 
The result will be to enlarge the intercellular spaces; the attachments 
of each cell to its neighbours will remain fixed, but the walls between 
these points of attachment will be withdrawn in a symmetrical 
fashion towards the centre. As the final result we have the star
dodecahedron, which appears in plane section as a six-rayed figure. 
It is necessary not only that the pith-cells should be attached to 
one another, but also that the outermost should be attached to a 
boundary wall, to preserve the symmetry of the system. What 

35-2
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actually occurs in the rush is tantamount to this, but not absolutely 
identical. It is not so much the pith-cells which tend to shrink 
within a boundary of constant size, but rather the boundary wall 
which continues to expand after the pith-cells w’hich it encloses have 
ceased to grow or to multiply. The points of attachment on the 
surface of each little pith-cell are drawn asunder, but the content 
of the cell does not correspondingly increase; and the remaining 
portions of the surface shrink inwards, accordingly, and gradually 
constitute the complicated figure which Kepler called a star
dodecahedron, which is still a symmetrical figure, and. is still a 
surface of minimal area under the new and altered conditions.

The tetrakaidekahedron

A few years after the publication of Plateau’s book, Lord Kelvin 
shewed, in a short but very beautiful paper*, that we must not 
hastily assume from such arguments as the foregoing that a close- 
packed assemblage of rhombic dodecahedra will be the true and 
general solution of the problem of dividing space with a minimum 
partitional area, or will be present in a liquid “foam,” in which the 
general problem is completely and automatically solved. The 
general mathematical solution of the problem (as we have already 
indicated) is, that every interface or partition-wall must have con
stant mean curvature throughout; that where these partitions meet 
in an edge, they must intersect at angles such that equal forces, in 
planes perpendicular to the line of intersection, shall balance; that 
no more than three such interfaces may meet in a line or edge, 
whence it follows (for symmetry) that the angle of intersection of 
all surfaces or facets must be 120°; and that neither more nor less 
than four edges meet in a point or corner. An assemblage of rhombic 
dodecahedra goes far to meet the case. It fills space; its surfaces 
or interfaces are planes, and therefore surfaces of constant curvature 
throughout; and they meet together at angles of 120°. Never
theless, the proof that the rhombic dodecahedron (which we find 
exemplified in the bee’s cell) is a figure of minimal area is not 
a comprehensive proof; it is limited to certain conditions, and

* Sir W. Thomson, On the division of space with minimum partitional area, 
Phil. Mag. (5), xxiv, pp. 503-514, Dec. 1887; cf. Baltimore Lectures, 1904, p. 615; 
Molecular tactics of a crystal (Robert Boyle Lecture), 1894, pp. 21-25. 
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practically amounts to no more than this, that of the ordinary 
space-filling solids with all sides plane and similar, this one has the 
least surface for its solid content.

The rhombic dodecahedron has six tetrahedral angles and eight 
trihedral angles. At each of the latter three, and at each of the 
former six, dodecahedra meet in a point in close packing; and four 
edges meet in a point in the one ca^e and eight in the other. This 
is enough to shew that the conditions for minimal area are not 
rigorously met. In one of Plateau’s most beautiful experiments*, 
a wire cube is dipped in soap-solution. When lifted out, a film is 
seen to pass inwards from each of the twelve edges of the cube, and 
these twelve films meet, three by three, in eight edges, running
inwards from the eight corners of the 
cube; but the twelve’ films and their 
eight edges do not meet in a point, but 
are grouped around a small central 
quadrilateral film (Fig.. 212). Two of 
the eight edges run to each corner of the 
little square, and, with the two sides pf 
the square itself, make up the four edges 
meeting in a point which the theory of 
area minima requires. We may sub Fig. 212.

stitute (by a second dip) a little cube for the little square; now an 
edge from each corner of the outer cube runs to the corresponding 
corner of the inner one, and with the three adjacent edges of the. 
little cube itself the number four is still maintained. Twelve films, 
and eight edges meeting in a point, were essentially unstable; but 
the introduction of the little square or cube meets most of the 
conditions of stability which Plateau was the first to lay down. 
One more condition has to be met, namely the equality of angles at 
which the four edges meet in each conjunction. These co-equal 
“Maraldi angles” at each corner of the square can only be con
structed by help of a slight curvature of the sides, and the little 
square is seen to have its sides curved into circular arcs accordingly; 
moreover its size and shape, as that of all the other films in the 
system, are perfectly definite. It is all one, according to the

* Also discovered independently by Sir David Brewster, Trans. R.S.E. xxrv, 
p. 505, 1867; xxv, p. 1J5, 1869. 
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symmetry of the figure, to which side of the skeleton cube the 
square hes parallel; wherever it may be, if we blow gently on it, 
then (as M. Van Rees discovered) it alters its place and sets itself 
parallel now to one and now to another of the paired faces of the 
cube.

• The skeleton cube, like the tetrahedron which we have already 
studied, is only one of many interesting cases; for we may vary 
the shape of our wire cages and obtain other and not less beautiful 
configurations. An hexagonal prism, if its sides be square or nearly 
so, gives us six vertical triangular films, whose apices meet the 
corners of a horizontal hexagon*; also six pairs of truncated 
triangles, which link the top and bottom edges of the cage to the 
sides of the median hexagon. But if the height of the hexagonal 
prism be increased, the six vertical films become curvilinear triangles, 
with sides concave towards the apex; and the twelve remaining 
films, which spring from the top and bottom of the hexagon, are 
curved surfaces, looking like a sort of hexagonal hourglass f.

There is a deal of elegant geometry in these various configurations. 
Lamarle shewed that if, in a figure represented by our wire cage, 
we suppress (in imagination) one face and all the other faces 
adjoining it, then the faces which remain are those which appear 
in the centre of the figure after the cage has been withdrawn from 
the soap-solution. Thus, in a cube, we suppress one face and the 
four adjacent to it; only one remains, and it reappears as the central 
square in the middle of the new configuration; in the tetrahedron, 
when we have suppressed one face and the three adjacent to it, 
there is nothing left save a median point, corresponding to the 
opposite corner. In a regular dodecahedron, if we suppress one 
pentagonal face and its five neighbours, the other half of the whole 
figure remains; and the dodecahedral cage, after immersion in the 
soap, shews a central and symmetrical group of six pentagons]:.

Moreover, while the cage is carrying its configuration of films, 
we may blow a bubble within it, and so insert a new polyhedron

* The angles of a hexagon are too big, aa those of a square were too small, to 
form the Maraldi angles of symmetry; hence the sides of the hexagon are found 
to be concave, as those of the square bulged out convexly.

t Cf. Dewar, op. cit. 1918.
J That is to say, if nFm be a polyhedron (of n m-faced sides), the corresponding 

wire cage will exhibit (n-m + 1) Fm as central fenestrae. .
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within the old, and set it in place of the former fenestra. The inner 
polyhedral bubble so produced may be of any dimensions, but it 
resembles the outer polyhedral cage precisely, except in the 
curvature of its sides; it has all its faces spherical, and all of equal 
radius of curvature; its edges are either arcs of circles or straight 
lines. Later on, we shall see that there is no small biological 
interest attaching to these configurations.

Lord Kelvin made the remarkable discovery that the square 
fenestra with the four quadrilateral films impinging on its sides, in 
Plateau’s experiment, represented the one-sixth part of a symmetrical 
figure; that this figure when complete was bounded by six squares 
and eight hexagons; that by means of an assemblage of these

Fig. 213. A set of 14-hedra, to shew close-packing. From F. T. Lewis.

fourteen-sided figures, or “tetrakaidekahedra,” space is filled and 
homogeneously partitioned- -into equal, similar and similarly situated 
cells- -with an economy of surface in relation to volume even greater 
than in an assemblage of rhombic dodecahedra*.

The tetrakaidekahedron, in its most generalised case, is bounded 
by three pairs of equal and opposite quadrilateral faces, and four 
pairs of equal and opposite hexagonal faces, neither the quadri
laterals nor the hexagons being necessarily plane. In its simplest 
case, with all its facets plane and equilateral, it is Kelvin’s “ortho- 
tetrakaidekahedron ”; and also (though Kelvin was unaware of the 
fact) one of the thirteen semi-regular and isogonal polyhedra, or 
“Archimedean bodies.” In a particular case, the quadrilaterals are 
plane surfaces with curved edges, but the hexagons are slightly

* Kelvin, Boyle Lecture and Baltimore Lectures. In the first of these Kelvin 
described the plane-faced tetrakaidekahedron; in the .second he shewed how that 
figure must have its faces warped and edges curved to fulfil all the conditions of 
minimal area.
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curved “anticlastic” surfaces; and these latter have at every point 
equal and opposite curvatures, and are surfaces of minimal curvature 
for a boundary of six curved edges. This figure has the remarkable 
property that, like the plane rhombic dodecahedron, it so partitions 
space that three faces meeting in an edge do so everywhere at 
co-equal angles of 120°; and, unlike the rhombic dodecahedron, 
four edges meet in each point or corner at co-equal angles of 
109° 28'*.

* Von Fedorow had already described (in Russian), unaware that Archimedes 
had done so, the same figure under the name of cubo-octahedron, or hepta- 
parallelohedron, limited however to the case where all the faces are plane and 
regular. This cubo-octahedron, together with the cube, the hexagonal prism, 
the rhombic dodecahedron and the “elongated dodecahedron,” constitute the 
five plane-faced, parallel-sided figures by which space is capable of being completely 
filled and uniformly partitioned; the series so forming the foundation of Von 
Fedorow’s theory of crystalline structure—though the space-fillers are not all, and 
cannot all be, crystalline forms. All of these figures, save the hexagonal prism, 
are related to and derivable from the cube; so we end by recognising two principal 
types, cubic and hexagonal. We have learned to recognise the dodecahedron, 
and we may find in still closer packing the cubo-octahedron, in a parenchyma; 
the elongated dodecahedron is, essentially, the figure of the bee’s cell; the cube 
we have, in essence, in cambium-tissue; the hexagonal prism, dwarf or tall, simple 
or recognisably deformed, we see in every epithelium.

We may take it as certain that, in a homogeneous system of fluid 
films like the interior of a froth of soap-bubbles, where the films 
are perfectly free to glide or turn over one another and are of 
approximately co-equal size, the mass is actually divided into cells 
of this remarkable conformation: and the possibility of such a 
configuration being present even in the cells of an ordinary vegetable 
parenchyma was suggested in the first edition of this book. It is 
all a question of restraint, of degrees of mobility or fluidity. If we 
squeeze a mass of clay pellets together, like Buffon’s peas, they come 
out, or all the inner ones do, in neat garnet-shape, or rhombic 
dodecahedra. But a young student once shewed me (in Yale) that 
if you wet these clay pellets thoroughly, so that they slide easily 
on one another and so acquire a sort of pseudo-fluidity in the mass, 
they no longer come out as regular dodecahedra, but with square 
and hexagonal facets recognisable as those of ill-formed or half- 
formed tetrakaidekahedra.

Dr F. T. Lewis has made a long and careful study of various 
vegetable parenchymas, by simple maceration, wax-plate recon-
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struction and otherwise, and has succeeded in shewing that the 
tetraka'dekahedral form is closely approached, or even attained, in 
certain simple and homogeneous tissues. After reconstructing a 
large model of the cells of elder-pith, he finds that the fourteen-sided 
figure clearly manifests itself as the characteristic or typical form 
to which the cells approximate, in spite of repeated cell-divisions 
and consequent inequalities of size. Counting in a hundred cells 
the number of contacts which each made with its neighbours, that 
is to say the total number both of actual and potential facets, Lewis 
found that 74 per cent, of the cells were either 12, 13, 14, 15 or 
16-sided, 56 per cent, either 13, 14 or 15-sided, and that the average 

Fig. 214. Reconstructed models of cells of elder-pith, shewing a certain
approximation to 14-hedral form. From F. T. Lewis.

number of facets or contacts was, in this instance, just 13-96. These 
figures indicate the general symmetry of the cells, their departure 
from the dodecahedral, and their tendency towards the tetra- 
kaidekahedral, form*.

* F. T. Lewis, The typical shape of polyhedral cells in vegetable parenchyma, 
and the restoration of that shape following cell-division, Proc. Amer. Acad, of Arts 
and Sci. lviii, pp. 537-552, 1923, and other papers. See also (int. al.) J. W. Marvin, 
The aggregation of orthis-tetrakaidekahedra, Science, lxxxiii, p. 188, 1936; 
E. B. Metzger, An analysis of the orthotetrakaidekahedron, Bull. Torrey Bot. Club, 
liv; pp. 341-348, 1927. Professor van Iterson of Delft tells me that Asparagus 
hprengeri (a common greenhouse plant) is a good subject for shewing the 14-hedral 
cells.

But after all, the geometry of the 14-hedron, displayed to per
fection by our soap-films in the twinkling of an eye, is only roughly 
developed in an organic structure, even one so delicate as elder
pith ; the conditions are no longer simple, for friction, viscosity and 
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solidification have vastly complicated the case. We get a curious 
and an unexpected variant of the same phenomenon in the micro
scopic foam-like structure assumed as molten metal cools. If these 
foam-cells were again 14-hedra, their facets would all be either 
squares or hexagons; but pentagonal facets are commoner than 
either, and the cells often approach closely to the form of a regular 
pentagonal dodecahedron! The edges of this figure meet at angles 
of 108°, not far from the characteristic Maraldi angle of 109° 28'; 
and the faces meet at an angle not far removed from 120°. A slight 
curvature of the sides is enough to turn our pentagonal dodecahedron 
into a possible figure of equilibrium for a foam-cell. We cannot 
close-pack pentagonal dodecahedra, whether equal or unequal, so 
as to fill space; but still the figure may be, and seems to be, common, 
interspersed among the polyhedra of various shapes and sizes which 
are packed together in a metallic foam*.

A somewhat similar result, and a curious one, was found by 
Mr J. W. Marvin, who compressed leaden small-shot in a steel 
cylinder, as Buffon compressed his peas; but this time the pressure 
on the plunger ran from 1000 to 35,000 lb. or nearly twenty tons to 
the square inch. When the shot was introduced carefully, so as 
to lie in ordinary close packing, the result was an assemblage of 
regular rhombic dodecahedra, as might be expected and as Buffon 
had found. But the result was very different when the shot was 
poured at random into the cylinder, for the average number of 
facets on each grain now varied with the pressure, from about 8-5 
at 1000 lb. to 12-9 at 10,000 lb., and to no less than 14-16 facets or 
contacts after all interstices were eliminated, which took the full 
pressure of 35,000 lb. to do. An average of just over fourteen 
facets might seem to indicate a tendency to the production of 
tetrakaidekahedra, just as in the froth of soap-bubbles; but this 
is not so. The squeezed grains are irregular in shape, and pentagonal 
facets are much the commonest, just as we found them to be in 
the microscopic structure of a once-molten metal. At first sight 
it might seem that, though the experiment has something to teach 
us about random packing in a limited space, it has no biological 
significance; but it is curious to find that the pith-cells of

* Cf. Cecil H. Desch, The solidification of metals from the liquid state, Journ. 
Inst, of Metals, xxn, p. 247, 1919.
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Eupatorium have a similar average configuration, with the same 
predominance of pentagonal facets*.

* J. W. Marvin, The shape of compressed lead-shot, etc.; Amer. Journ. of 
Botany, xxvi, pp. 280-288, 1939; Cell-shape studies in the pith of Eupatorium, 
ibid. pp. 487-504.

, We learn, in short, from Lewis and from Marvin that the 
mechanical result of mutual pressure, even in an assemblage of 
co-equal spheres, is more varied and more complex than we had 
supposed. The two simple and homogeneous configurations—the 
rhombo-dodecahedral and tetrakaidekahedral assemblages—are 
easily and commonly produced, the one by the compression of solid 
spheres in ordinary close-packing, the other when a liquid system 
of spheres or bubbles is free to slide and glide into a packing which 
is closer still. Between these two configurations there is no other 
symmetrical or homogeneous arrangement possible; but random 
packing and degrees of compression leave their random effects, 
among which are traces here and there of regular shape and 
symmetry.

As a froth has its histological lessons for us, throwing light on 
the structure of a parenchyma, so may we draw an illustration 
or two from the analogous characteristics of an emulsion. Both 
alike are “states of aggregation”; both are “two-phase systems,” 
one phase being dispersed and the other the medium of dispersion. 
Both phases are liquid in the emulsion, in the froth the dispersed 
phase is a gas; our living tissue is, so far, more likely to be an 
emulsion than a froth. The concept widens. A colony of bacteria, 
the blood corpuscles in their plasma, the filaments of an alga, the 
heterogeneous texture of any ordinary tissue, may all be brought 
under the general concept of “phase systems,” and share the 
common character that one phase exposes a large “interface” to 
the other. If we take milk as a simple emulsion, we see its liquid 
oil-globules dispersed in a watery medium and rounded by surface 
tension into spheres. The watery medium, as is usual in such 
emulsions, contains dissolved substances which tend to lower the 
interfacial tension; for were that tension high the globules would 
tend to be larger and their aggregate surface less. Suppose the 
“phase-ratio” to alter, the globules becoming more numerous and 
the disperse medium less and less, the globules will be close-packed
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at last. Then each (provided they be of equal size) will be in touch 
with twelve neighbours; and if the spheres were solid—-were the 
system not an emulsion but a “suspension”—the matter would end* 
here. But our liquid globules are capable of deformation, and the 
points of contact are flattened in still closer packing into planes. 
They become polyhedral, and tend to take the form of rhombic 
dodecahedra, or it may be even of 14-hedra, and the dispersion
medium is reduced to mere films or pellicles between. At the stage 
of mere twelve-point contact, the spherules constitute about 74 per 
cent., and the disperse medium 26 per cent., of the whole. But in 
the final stage the phase-ratio has so altered that the disperse- 
medium is but a small fraction of the whole, the thin film to which 
it has been reduced has the appearance of a cell-membrane separating 
the cells, and the microscopic structure of the whole corresponds to 
the cellular configuration of a parenchymatous tissue*.

Of certain groupings of cells
It follows from all that we have said that the problems connected • 

with the conformation of cells, and with the manner in which a 
given space is partitioned by them, soon become complex; and 
while this is so even when all our cells are equal and symmetrically 
placed, it becomes vastly more so when cells varying even slightly 
in size, in hardness, rigidity or other qualities, are packed together. 
The mathematics of the case very soon become too hard for us, 
but in its essence the phenomenon remains the same. We have 
little reason to doubt, and no just cause to disbelieve, that the 
whole configuration, for instance of an egg in the advanced stages 
of segmentation, is accurately determined by simple physical laws: 
just as much as in the early stages of two or four cells, during which 
early stages we are able to recognise and demonstrate the forces 
and their effects. But when mathematical investigation has become 
too difficult, physical experiment can often reproduce the pheno
mena which Nature exhibits, and which we are striving to com
prehend. In an admirable research, M. Robert not only shewed 
some years ago that the early segmentation of the egg of Trochus 
(a marine univalve mollusc) proceeded in accordance with the laws

♦ Cf. E. Hatschek, Homogeneous partitionings, etc., Phil. Mag. xxxni, p. 83, 
1917. 
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of surface-tension, but he also succeeded in imitating by means of 
soap-bubbles one stage after another of the developing egg.

AL Robert carried his experiments as far as the stage of sixteen 
cells, or bubbles. It is not easy to carry the artificial system quite 
so far, but in the earlier stages the experiment is easy; we have 
merely to blow our bubbles in a little dish, adding one to another, 
and adjusting their s.zes to produce a symmetrical system. One 
of the simplest and prettiest parts of his investigation concerned 
the “ polar furrow ” of which we have spoken on p. 489. On blowing 
four little contiguous bubbles he found (as we may all find with the ’ 
greatest ease) that they form a symmetrical system, two in contact 
with one another by a laminar film, and two which are elevated 
a little above the others and are separated by the length of 
the aforesaid lamina. The bubbles are thus in contact three by 
three, their partition-walls making with one another equal angles 
of 120c. The upper and lower edges of the intermediate lamina 
(the lower one visible through the transparent system) constitute 
the two polar furrows of the embryologist (Fig. 215a 1-3). The 
lamina itself is plane when the system is symmetrical, but it responds 
by a corresponding curvature to the least inequality of the bubbles 
on either side. In the experiment, Jhe upper polar furrow is usually 
a little shorter than the lower, but parallel to it; that is to say, 
the lamina is of trapezoidal form: this lack of perfect-symmetry 
being due (in the experimental case) to the lower portion of the 
bubbles being somewhat drawn asunder by the tension of their 
attachments to the sides of the dish (Fig. 215, 4). A similar 
phenomenon is usually found in Trochus, according to Robert, 
and many other observers have likewise found the upper furrow 
to be shorter than the one below. In the various species of the 
genus Crepidula, Conklin asserts that the two furrows are equal 
in C. convexa, that the upper one is the shorter in C. fornicata, 
and that the upper one all but disappears in C. plana; but we 
may well be permitted to doubt, without the evidence of very 
special investigations, whether these slight physical differences are 
actually characteristic of, and constant in, particular species. 
Returning to the experimental case, Robert found that by with
drawing a little air from, and so diminishing the bulk of the two’ 
terminal bubbles (i.e. those at the ends of the intermediate lamina), 
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the upper polar furrow was caused to elongate, till it became equal 
in length to the lower; and by continuing the process it became 
the longer in its turn. These two conditions have again been 
described by investigators as characteristic of this embryo or that; 
for instance in Unio, Lillie has described the two furrows as 
gradually altering their respective lengths*; and Wilson (as Lillie

Fig. 215. Aggregations of four soap-bubbles, to shew various arrangements of 
the intermediate partition and polar furrows. After Robert.

remarks) had already pointed out that “the reduction of the apical 
cross-furrow, as compared with that at the vegetative pole in 
molluscs and annelids, ‘stands in obvious relation to the different 
size of the cells produced at the two polesf’.”

When the two lateral bubbles are gradually reduced in size, or 
the two terminal ones enlarged, the upper furrow becomes shorter

* F. R. Lillie, Embryology of the Unionidae, Journ. Morph, x, p. 12, 1895.
f E. B. Wilson, The cell-lineage of Nereis, Journ. Morph, vi, p. 452, 1892. 
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and shorter; and at the moment when it is about to vanish, a new 
furrow makes its instantaneous appearance in a direction perpen
dicular to the old one; but the inferior furrow, constrained by its 
attachment to the base, remains unchanged, and it looks *as  though 
our two polar furrows, which were formerly parallel, were now at 
right angles to one another. But in fact, the geometry of the 
whole system is entirely altered. Before, two furrows left each 
end of one polar furrow for the same end of the other polar furrow, 
and the two cells at either end were shaped like “liths” of an orange. 
Under the new arrangement, two furrows leave each end of one for 
the two ends of another. The figure is now divided by six similar 
furrows into four similar curvilinear triangles*;  it has become 
(approximately) a spherical tetrahedron, and the four cells into 
which it is divided are four similar and symmetrical figures, also 
tetrahedral, all meeting in a point at the centroid of the figure. 
Such a four-celled embryo, described as having two polar furrows 
arranged, in a cross, has often been seen and figured by the 
embryologists. Robert himself found this condition in Trochus, as 
an occasional or exceptional occurrence: it has been described as 
normal in Aster ina by Ludwig, in Branchipus by Spangenberg, and 
in Podocoryne and Hydractinia by Bunting.

* That the sphere can be symmetrically divided into four equilateral triangles, 
after the manner of these embryos (or of many pollen-grains), is an elementary 
fact of great importance in geometry and trigonometry.

So, by slight and delicate modifications, we pass through many, 
and perhaps through all, of the possible arrangements of external 
furrows and internal partitions which divide the four cells from one 
another in a four-celled egg or embryo; and many, or most, or 
possibly all of these arrangements have been more or less frequently 
observed in the four-celled stages of various embryos. And all 
these configurations, which the embryologists have witnessed and 
described, belong to that large class of phenomena whose distribution 
among embryos, or among organisms in general, bears no relation 
to the boundaries of zoological classification; through molluscs, 
worms, coelenterates, vertebrates and what not, we meet with now 
one and now another, in a medley which defies classification. They 
are not “vital phenomena,’.’ or “functions” of the organism, or 
special characteristics of this organism or that, but purely physical 
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phenomena. The kindred but more complicated phenomena analogous 
to the polar furrow, which arise when a larger number of cells 
than four are associated together, we shall deal with in the next 
chapter. •

Having shewn that the capillary phenomena are patent and 
unmistakable during the earlier stages of embryonic development, 
but soon become more obscure and less capable of experimental 
reproduction in the later stages when the cells have increased in 
number, various writers including Robert himself have been inclined 
to argue that the physical phenomena die away, and are over
powered and cancelled by agencies of a different order. Here we 
pass into a region where observation and experiment are not at 
hand to guide us, and where a man’s trend of thought, and way of 
judging the whole evidence in the case, must shape his philosophy. 
We must always remember that even in a froth of soap-bubbles 
we can apply an exact analysis only to the simplest cases and 
conditions; we cannot describe, but can only imagine, the forces 
which in such a froth control the respective sizes, positions and 
curvatures of the innumerable bubbles and films of which it con
sists; but our knowledge is enough to leave us assured that what 
we have learned by investigation of the simplest cases includes the 
principles which determine the most complex. In the case of the 
growing embryo we know from the beginning that surface-tension 
is only one of the physical forces at work; and that other forces, 
including those displayed within the interior of each living cell, play 
their part in the determination of the system. But we have no 
evidence whatsoever that at this point, or that point, or at any, the 
dominion of the physical forces over the material system gives place 
to a new condition where agencies at present unknown to the 
physicist impose themselves on the living matter, and become 
responsible for the conformation of its material fabric.

Before we leave for the present the subject of the segmenting 
egg, we may take brief note of two associated problems: viz. 
(1) the formation and enlargement of the segmentation cavity, or 
central interspace around which the cells tend to group themselves 
in a single layer, and (2) the formation of the gastrula, that is to 
say (in a typical case) the conversion by “invagination,” of the 
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one-layered ball into a two-layered cup. Neither problem is free 
from difficulty, and all we can do meanwhile is to state them in 
general terms, introducing some more or less plausible assumptions.

The former problem is comparatively easy, as regards the tendency 
of a segmentation cavity to enlarge, when once it has been estab
lished. We may then assume that subdivision of the cells is due 
to the appearance of a new-formed septum within each cell, that 
this septum has a tendency to shrink under surface-tension, and 
that these changes will be accompanied on the whole by a diminu
tion of surface-energy in the system. This being so, it may be 
shewn that the volume of the divided cells must be less than it was 
prior to division, or in other words that part of their contents must 
exude during the process of segmentation*.  Accordingly, the case 
where the segmentation cavity enlarges and the embryo developes 
into a hollow blastosphere may, under the circumstances, be simply 
described as the case where that outflow or exudation from the cells 
of the blastoderm is directed on the whole inwards.

* Professor Peddie has given me this interesting result, but the mathematical 
reasoning is too lengthy to be set forth here.

t Cf. Biitschli, Arch.f. Entw. Meeh, n, p. 592, 1897; Rhumbler, ibid, xiv, p. 401, 
1902; Assheton, ibid, xxxi, p. 46, 1910.

| Just as there may be some small part which shrinks a little less. But this 
we should not distinguish from the common case where one small part grows 
a little more, and so “produces a bud," as in the yeast-cell on p. 363.

TGF

The physical forces involved in the invagination of the cell-layer 
to form the gastrula have been repeatedly discussed f, but the 
several explanations are conflicting, and are far from clear. There 
is, however, a certain homely phenomenon which goes some way, 
perhaps a long way, to explain this remarkable configuration. An 
ordinary gelatine lozenge, or jujube, has (like the developing 
gastrula) a more or less spherical form, depressed or dimpled at one 
side; this is a very noteworthy conformation, and it arises, auto
matically, by the shrinkage of a sphere. Were the initial sphere of 
gelatine perfectly homogeneous, and so situated as to shrink with 
absolute uniformity, it would merely shrink into a smaller sphere; 
it does nothing of the kind. There is always some part or other 
which shrinks a little more than the rest J; and the dimple so formed 
goes on increasing, until at last a very perfect cup-shaped figure is’ 
formed. I imagine that the gastrula is formed in much the 

36
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same way, save only that the initial dimple, instead of being 
fortuitous, has its constant place, determined by the physico
chemical heterogeneity of the embryo. We may even go one step 
further, and see (or imagine we see) in the formation of the gastrula 
a physico-chemical or physiological turning-point, the segmentation 
cavity being due (as we have seen) to an inward flow, and a reversal 
of the current leading to that shrinkage which produces the gastrula.

Fig. 216. Effect of shrinkage on a globule of gelatine.
After E. Hatschek.

A note on shrinkage

We have dealt much with growth, but the fact is that negative 
growth, or shrinkage, is also an important matter; and just as we 
find a whole series of phenomena to be based on the extension or 
expansion of bubbles, vesicles, etc., so there is another series, 
physically alike and mathematically identical, which depend on the 
shrinkage of a solid or semi-fluid mass. After all, growth and its 
converse go hand in hand, and a special case of shrinkage is that 
surface-tension to which all the Plateau configurations are due. 
One clear case, the gastrula, we have touched on, and we have 
discussed another which led to the stellate dodecahedra of the Rush.

As a cube of gelatine, or of paraffin, dries, and shrinks, it alters 
its shape in a remarkable way*.  Its corners become more salient, 
its sides become concave; its cross-section ha^ the form of a four-

* Emil Hatschek. Kolloid Ztschr. xxxv, pp. 67-76, 1924; Nature, 1st Nov. 1924.
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rayed star with rounded angles. The block has dried unequally; 
its corners and its edges were naturally the first to dry*, and the 
twelve dried and hardened edges began to play the part of the wire 
frame in Plateau’s soap-bubble experiment. The shrinking cube is 
tending .towards the identical configuration shewn in Fig. 212; it is 
a minimal configuration, partially realised in a coarse material, but 
realisable to perfection in a film.

A shrinking' cylinder (as Plateau knew) shews various 
phenomena, depending on its proportions. A low, squat cylinder 
begins to showa pulley-like groove—a catenoid—around its periphery, 
precisely like the soap-film between its two wire rings in Fig. 108; 
and as the groove deepens, the plane surfaces of the cylinder also begin

Fig. 217. Shrinkage of cube and cylinder.

to dimple in. They become spherical as they grow more concave, and 
the deepening groove of the pulley passes from a catenoid to a nodoid 
curve—so at least theory tells us f, for, beautiful as the experimental 
configurations are, they hardly lend themselves to precise measure
ments of curvature. But this shrunken cylinder is now wonderfully 
like the “amphicoelous” vertebra of a cartilaginous fish, the simplest 
and most “primitive” vertebra of all. A series of cracks, or splits, 
around the circular groove in the vertebra seem to be a final result 
of irregular shrinkage, not shewn in the more homogeneous gelatine.

A long cylinder, or thread, of gelatine tends to become fluted, 
with three or more ribs or folds, and it is in this way that threads

* Just as, conversely, the prominent parts of a crystal tend to grow more 
rapidly than the rest in a super-saturated solution, and to dissolve mqre rapidly 
in one below saturation; cf. O. Lehmann, Ueber das Wachstum der Krystalle, 
Ztschr. f. Krystallogr. I, p. 453.

f See p. 369.
36-2
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of viscose, or artificial silk, tend likewise to have a ridged or fluted 
structure, and gain in lustre thereby. The subject is new, and 
hardly ripe for full discussion; but it holds out promise (as it seems 
to me) of many biological lessons and illustrations.

We glanced in passing at such “ shrinkage-patterns ” as are found, 
for instance, on the little shells of Lagena, or on those other hanging 
drops which constitute Emil Hatschek’s artificial medusae; it 
is no small subject. A stretched elastic membrane, circular or 
spherical, remains spherical or circular when we let its tension 
relax; but if, to begin with, we coat the rubber with a pliant but 
non-elastic material such as wax, the waxen layer, failing to con

Fig. 218. Amphicoelous vertebrae of a shark.

tract, is thrown into more or less characteristic folds. In a dried 
pea the seed has shrunken through loss of moisture, and the loose 
outer coat wrinkles up*.  The pretty pattern of a poppy-seed arises 
in the same way; but so do the wrinkles on an old man's withered 
skin. When our experimental elastic with its non-contractile coat 
is suffered to contract, the first sign of the coat’s inability to keep 
pace is the appearance of little domes, or hummocks, or blisters; 
and soon from each of these there run out folds, which tend to fork, 
and the angles between the three branches tend to equalise. They 
tend, in simple and symmetrical cases, to form a pattern of hexagons, 
with occasional pentagons or quadrilaterals between; but where the 
surface is larger and the coat more flexible the folds form an irregular 
network, still with the various anticlines mostly meeting in three

* The difference between a smooth and a wrinkled pea, familiar to Mendelians, 
merely depends, somehow, on amount and rate of shrinkage.
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way nodes*. Nature will ring the changes on the resultant patterns, 
according as the surface be plane or curved, spherical or cylindrical, 
coarse or fine, fragile or tough. But on these general fines very 
many structures, both regular and irregular, spines, bristles, ridges, 
tubercles and wrinkled patterns, bid fair to find their physical or 
mechanical interpretation; and it is in the more or less hardened 
parts of plant or animal that we find them one and all displayed. 
On the egg of a butterfly, on the grooved and-dotted elytron of a 
beetle, on the notched forehead of a scarab, in the saw-like teeth on 
a grasshopper’s leg. in the little fines of dotted tubercles on the 
shell of a Rissoa, more crudely in the lozenged bark of elm or pine, 
we see a very few of this innumerable class of.“ shrinkage-patterns.”

* The fact that such triplets of divergent ridges or crests are not a feature in 
the topography of mountain-ranges is a strong argument against the view that 
general shrinkage accounts for the pattern of the earth’s crust. Cf. A. J. Bull, 
The pattern of a contracting earth, Geolog. Mag. lxix, pp. 73-75, 1932; A. E. B. 
de Chancourtois, C.R. lix, p. 348, 1903.



CHAPTER VIII

THE FORMS OF TISSUES OR CELL-AGGREGATES (continued)

The problems which we have been considering, and especially that 
of the bee’s cell, belong to a class of “isoperimetrical” problems, 
which deal with figures whose surface is a minimum for a definite 
content or volume. Such problems soon become difficult*, but we 
may find many easy examples which lead us towards the explanation 
of biological phenomena; and the particular subject which we shall 
find most easy of approach is that of the division, in definite pro
portions, of some definite portion of space, by a partition-wall of 
minimal area. The theoretical principles so arrived at we shall then 
attempt to apply, after the manner of Berthold and Errera, to the 
biological phenomena of cell-division.

This investigation may be approached in two ways: by con
sidering the partitioning off from some given space or area of one-half 
(or some other fraction) of its content; or again, by dealing with the 
partitions necessary for the breaking up of a given space into a 
definite number of compartments.

If we begin with the simple case of a cubical cell, it is obvious that, 
to divide it into two halves, the smallest partition-wall is one which 
runs parallel to, and midway between, two of its opposite sides. 
If we call a the length of one of the edges of the cube, then a2 is the 
area, alike of one of its sides and of the partition which we have 
interposed parallel thereto. But if we now consider the bisected 
cube, and wish to divide the one-half of it again, it is obvious that 
another partition parallel to the first, so far from being the smallest 
possible, is twice the size of a cross-partition perpendicular to it; 
for the area of this new partition is a x a/2. And again, for a 
third bisection, our next partition must be perpendicular to the other 
two, and is obviously a little square, with an area of (^a)2 — ^a2.

* Minkowski and others have shewn how hard it is, for instance, to prove the 
seemingly obvious proposition that the sphere, of all figures, has the greatest volume 
for a given surface; cf. (e.g.) T. Bonnesoix Les probDmes des isoperimetres et des 
isepiphanes, Paris, 1929. For a historical account of this class of •problems, see 
G. Enestrom, in Bibi. Math. 1888. <
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From this we may draw the simple rule that, for a rectangular 
body or parallelepiped to be bisected by means of a partition of 
minimal area, (1) the partition must cut across the longest axis of 
the figure; and (2) in successive bisections, each partition must run 
at right angles to its immediate predecessor.

We have already spoken of “Sachs’s Rules,” which are an 
empirical statement of the method of cell-division in plant-tissues; 
and we may now set them forth as follows:

(1) The cell tends to divide into two co-equal parts.
(2) Each new plane of division tends to intersect the preceding 

plane of division at right angles.
The first of these rules is a statement of physiological fact, not 

without its exceptions, but so generally true that it will justify us 
in limiting our enquiry for the most part to cases of equal sub
division. That it is by no means universally true for cells generally 
is shewn, for. instance, by such well-known cases as the unequal 
segmentation of the frog’s egg. It is true, when the dividing cell 
is homogeneous and under the influence of symmetrical forces; but 
it ceases to be true when the field is no longer dynamically sym
metrical, as when the parts differ in surface tension or internal 
pressure, or, speaking generally, in their chemico-physical properties 
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and conditions. This latter condition, of asymmetry of field, is 
frequent in segmenting eggs*, and it then covers or includes the 
principle upon which Balfour laid stress as leading to “unequal” or 
to “partial” segmentation of the egg— viz. the unequal or asym
metrical distribution of protoplasm and of food-yolk.

The second rule, which also has its exceptions, is true in a large 
number of cases, and owes its validity, as we may judge from the 
illustration of the repeatedly bisected cube, to the guiding principle 
of minimal areas. It is in short subordinate to a much more 
important and fundamental rule, due not to Sachs but to Errera; 
that (3) the incipient partition-wall of a dividing cell tends to be 
such that its area is the least possible by which the given space-content 
can be enclosed.

Let us return to the case of our cube, and suppose that, instead 
of bisecting it, we desire to shut off some small portion only of its 
volume. It is found in the course of experiments upon soap-films, 
that if we try to bring a partition-film too near to one side of a 
cubical (or rectangular) space it becomes unstable, and is then easily 
shifted to a new position in which it constitutes a curved cylindrical 
wall cutting off one corner of the cube. It still meets the sides of 
the cube at right angles (for reasons which we have already con
sidered); and, as we may see from the symmetry of the case, it 
constitutes one-quarter of a cylinder. Our plane transverse parti
tion had always the same area, wherever it was placed, viz. a2; 
and it is obvious that a cylindrical wall, if it cut off a small corner, 
may be much less than this. We want, accordingly, to determine 
what volume might be partitioned off with equal economy of wall
space in one way as the other, that is to say, what area of cylindrical

* M. Robert (loc. cit. p. 305) has compiled a long list of cases among the molluscs 
and the worms, where the initial segmentation of the egg proceeds by equal or 
unequal division. The two cases are about equally numerous. But like most 
other writers of his time, he would ascribe this equality or inequality rather to 
a provision for the future than to a direct effect of immediate physical causation: 
“11 semble assez probable, comme on l’a dit souvent, que la plus grande taille 
d’un blastomere est liee a 1’importance et au developpement precoce des parties 
du corps qui doivent en naitre: il y aurait la une sorte de reflet des stades posterieures 
du developpement sur les premieres phenomenes, ce que M. Ray Lankester appelle 
precocious segregation. Il faut avouer pourtant qu’on est parfois assez embarrasse 
pour assigner une cause a pareilles differences.” 
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wall would be neither more nor less than the area a2. The calculation 
is easy:

The surface-area of a cylinder of length a is 2-r . a, and that 
of our quarter-cylinder is, therefore, a.vrr^; and this being, by 
hypothesis, — a2, we have a = 7rr/2, or r = 2a/~.

The volume of a cylinder of length a is a^r2, and that of our 
quarter-cylinder is a. 7rr2/4, which (by substituting the value of r) 
is equal to a3/ tt.

Now precisely this same volume is, obviously, shut off by a 
transverse partition of area a2 if the third side of the rectangular 
space be equal to a/rr; and this fraction, 
if we take a = 1, is equal to 0-318..., or 
rather less than one-third. And, as- we 
have just seen, the radius, or side, of 
the corresponding quarter-cylinder will 
be twice that fraction, or equal to 0-636 
times the side of the cubical cell.

If then, in tile process of division of 
a cubical cell, it so divide that the two 
portions be not equal in volume but 
that one portion be anything less than 
about three-tenths of the whole or three- 
sevenths of the other portion, there will be a tendency for the cell 
to divide, not by means of a plane transverse partition, but by means 
of a curved, cylindrical wall cutting off one corner of the original 
cell; and the part so cut off will be one-quarter of a cylinder.

By a similar calculation we can shew that a spherical wall, cutting 
off one solid angle of the cube and constituting an octant of a sphere, 
would likewise be of less area than a plane partition as soon as the 
volume to be enclosed was not greater than about one-quarter of 
the original cell*. But while both the cylindrical wall and the

♦ The principle is well illustrated in an experiment of Sir David Brewster’s 
(Trans. R.S.E. xxv, p. Ill, 1869). A soap-film is drawn over the rim of a wine
glass, and then covered by a watch-glass. The film is inclined or shaken till it 
becomes attached to the glass covering, and it then immediately changes place, 
leaving its transverse position to take up that of a spherical segment extending 
from one side of the wine-glass to its cover, and so enclosing the same volume of 
air as formerly but with a great economy of surface, precisely as in the case of our 
spherical partition cutting off one corner of a cube.
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spherical wall would be of less area than the plane transverse 
partition after that limit (of one-quarter volume) was passed, the 
cylindrical would still be the better of the two up to a further limit. 
It is only when the volume to be partitioned off is no greater than

about 0-15, or somewhere about one-seventh of the whole, that the 
spherical cell-wall in a corner of the cubical cell, that is to say the 
octant of a sphere, is definitely of less area than the quarter-cylinder. 
In the accompanying diagram (Fig. 221) the relative areas of the 
three partitions are shewn for all fractions, less than one-half, of 
the divided cell.

In this figure, we see that the plane transverse partition, whatever fraction 
of the cube it cut off, is always of the same dimensions, that is to say is 
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always equal to a2, or =1. If one-half of the cube have to be cut off, this 
plane transverse partition is much the best, for we see by the diagram that a 
cylindrical partition cutting off an equal volume would have an area about 
25 per cent, and a spherical partition would have an area about 50 per cent, 
greater. The point A in the diagram corresponds to the point where the 
cylindrical partition would begin to have an advantage over the plane, thati i 
to say (as we have seen) when the fraction to be cut off is about one-third, 
or 0-318 of the whole. In like manner, at B the spherical octant begins to 
have an advantage over the plane; and it is not till we reach the point C 
that the spherical octant becomes of less area than the quarter-cylinder.

The case we have dealt with is of little practical importance to 
the biologist, because the cases in which a cubical, or rectangular, 
cell di vides unequally and unsymmetrically are apparently few; but 
we can find, as Berthold pointed out, a few examples, as in the hairs 
within the reproductive “conceptacles” of 
certain Fuci (Sphacelaria, etc., Fig. 222), or 
in the “paraphyses” of mosses (Fig. 226). 
But it is of great theoretical importance: as 
serving to introduce us to a large class of 
cases in which, under the guiding principle 
of minimal areas, the shape and relative 
dimensions of the original cavity lead to 
cell-division in very definite and sometimes 
unexpected ways. It is not easy, nor indeed possible, to give a general 
account of these cases, for the limiting conditions are somewhat 
complex and the mathematical treatment soon becomes hard. But 
it is easy to comprehend a few simple cases, which carry us a good 
long way; and which will go far to persuade the student that, in 
other cases which we cannot fully master, the same guiding principle 
is at the root of the matter.

The bisection of a solid (or its subdivision in other definite propor
tions) soon leads us into a geometry which, if not necessarily difficult, 
is apt to be unfamiliar; but in such problems we can go some way, 
and often far enough for our purpose, if we merely consider the 
plane geometry of a side or section of our figure. For instance, in 
the case of the cube which we have just been considering, and* in 
the case of the plane and cylindrical partitions by which, it has been 
divided, it is obvious, since these two partitions extend symmetrically 
from top to bottom of our cube, that we need only have considered 
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the manner in which they subdivide the base of the cube; in short 
the problem of the solid, up to a certain point, is contained in our 
plane diagram of Fig. 221. And when our particular solid is a 
solid of revolution, then it is equally obvious that a study of its 
plane of symmetry (that is to say any plane passing through its 
axis of rotation) gives us the solution of the whole problem. The 
right cone is a case in point, for here the investigation of its modes 
of symmetrical subdivision is completely met by an examination 
of the isosceles triangle which constitutes its plane of symmetry.

The bisection of an isosceles triangle by a line which shall be the 
shortest possible is an easy problem; for it is obvious that, if the 
triangle be low, a vertical partition will be shortest; if it be high, 
a horizontal one; if it be equilateral, the partition may run parallel 
to any side; and if it be right-angled, the partition may bisect the 
right angle or run parallel to either side equally well.

Let ABC be an isosceles triangle of which A is the apex; it may 
be shewn that, for its shortest line of bisection, we are limited to 
three cases: viz. to a vertical fine AD, bisecting the angle at A and 
the side BC; to a transverse line parallel to the base BC; or to an 
oblique Une parallel to AB or to AC. The lengths of these partition 
lines follow at once from the magnitudes of the angles of our triangle. 
We know, to begin with, since the areas of similar figures vary as 
the squares of their linear dimensions, that, in order to bisect the 
area, a line parallel to one side of our triangle must always have 
a length equal to 1/V2 of that side. If then, we take our base, 
BC, in all cases of a length = 2, the transverse partition, EF, drawn 
parallel to it will always have a length equal to 2/V2, or = Vz. 
The vertical partition, AD, since BD = 1, will always equal tan/2; 
and the oblique partition, GH, being equal to ABfV^, = 1/V2 cos /?. 
If then we call our vertical, transverse and oblique partitions V, 
T, and 0, we have V — tan ft; T = V^; and 0 = 1/V2 cos /3, or

V: T ■ 0 - tan £/V2 :1:1/2 cos fi.

And, working out these equations for various values of [3, we soon 
see that the vertica! partition (I ) is the least of the three until 
/3 = 45°, at which limit V and 0 are each equal to 1/V2 = 0-707; 
that 0 then becomes the least of the three, and remains so until 
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fi = 60°, when cos fi = 0-5, and 0 = T; after which T (whose value 
always = 1) is the shortest of the three partitions. And, as we have

Basal angle of triangle
Fig. 224. Comparative length of the partitions, transverse, oblique 

or vertical, bisecting an isosceles triangle.

seen, these results are at once applicable, not only to the case of 
the plane triangle, but also to that of the conical or pyramidal 
cell.
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In like manner, if we have a spheroidal body less than a hemi
sphere, such for instance as a low, watchglass-shaped cell (Fig. 
225, A), it is obvious that the smallest partition by which we can 
divide it into two halves is (as in our flattened disc) a median 
vertical one; and likewise, the hemisphere itself can be bisected 
by no smaller partition meeting the walls at right angles than that 
median one which divides it into two similar quadrants of a sphere. 
But if we produce our hemisphere into a more elevated conical 
body, or into a cylinder with spherical cap, there comes a point 
where a transverse horizontal partition will bisect the figure with 
less area of partition-wall than a median vertical one (C). And 
furthermore, there will be an intermediate region, a region where 
height and base have their relative dimensions nearly equal (as

in B), where an oblique partition will be better than either the 
vertical or the transverse; though here the analogy of our triangle 
does not suffice to give us the precise limiting values.

We need not examine these limitations in detail, but we must 
look at the curvatures which accompany the several conditions. We 
have seen that a film tends to set itself at equal angles to the surface 
which it meets, and therefore, when that surface is a solid, to meet 
it (or its tangent) at right angles. Our vertical partition is, there
fore, a plane surface, everywhere normal to the original cell-walls. 
But in the taller, conical cell with transverse partition, the latter 
still meets the opposite sides of the cell at right angles, and it 
follows that it must itself be curved; moreover, since the tension, 
and therefore the curvature, of the partition is everywhere uniform, 
it follows that its curved surface must be a portion of a sphere, 
concave towards the apex of the original cell. In the intermediate 
case, where we have an oblique partition meeting both the base 
and the curved sides of the mother-cell, the contact must still be 



viii] OF SIGMOID PARTITIONS 575

everywhere at right angles: provided we continue to suppose that 
the walls of the mother-cell (like those of our diagrammatic cube) 
have become practically rigid before the partition appears, and are 
therefore not affected and deformed by the tension of the latter. 
In such a case, and especially when the cell is elliptical in cross
section or still more complicated in form, the partition may have 
to assume a complex curvature in order to remain a surface of 
minimal area.

Fig. 226. S-shaped partitions: A, Taonia atomaria (after Reinke); B, paraphyses 
of Fucus; C, rhizoids of moss; D, paraphyses of Polytrichum.

While in very many cases the partitions (like the walls of the 
original cell) will be either plane or spherical, a more complex 
curvature will sometimes be assumed. It will be apt to occur when 
the mother-cell is irregular in shape, and one particular case of 
such asymmetry will be that in which (as in Fig. 227) the cell has 
begun to branch before division takes place. And again, whenever 
we have a marked internal asymmetry of the cell, leading to irregular 
and anomalous modes of division, in which the cell is not necessarily 
divided into two equal halves and in which the partition-wall may 
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assume an oblique position, then equally anomalous curvatures will 
tend to make their appearance*.

* Cf. Wildeman, Attache des cloisons, etc., pls. 1, 2.
•J- Nova Acta K. Leop. Akad. xi, 1, pl. iv.

Suppose an oblong cell to divide by means of an oblique partition 
(as may happen through various causes or conditions of asymmetry), 
such a partition will still have a tendency to set itself at right angles 
to the rigid walls of the mother-cell: and it follows that our oblique 
partition, throughout its whole extent, will assume the form of a 
complex, saddle-shaped or anticlastic surface.

Many such partitions of complex or double curvature exist, but 
they are not always easy of recognition, nor do they often appear 
in a terminal cell. We may see them in the roots (or rhizoids) of

Fig. 227. Diagrammatic explanation of S-shaped partition.

mosses, especially at the point of development of a new rootlet 
(Fig. 226, C); and again among mosses, in the “paraphyses” of the 
male plants (e.g. in Polytrichum), we find more or less similar 
partitions (D). They are frequent also among Fuci. as in the hairs 
or paraphyses of Fucus itself (B). In Taonia atomaria, as figured 
in Reinke’s memoir on the Dictyotaceae of the Gulf of Naples f, 
we see, in hke manner, oblique partitions, which on more careful 
examination are seen to be curves of double curvature (Fig. 226, A).

The physical cause and origin of these S-shaped partitions is 
somewhat obscure, but we may attempt a tentative explanation. 
When we assert a tendency for the cell to divide transversely to 
its long axis, we are not only stating empirically that the partition 
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tends to appear in a small, rather than a large cross-section of the 
cell: but we are also ascribing to the cell a longitudinal polarity 
(Fig. 227, A), and implicitly asserting that it tends to divide (just 
as the segmenting egg does), by a partition transverse to its polar 
axis. Such a polarity may conceivably be due to a chemical 
asymmetry, or anisotropy, such as we have learned of (from 
Macallum’s experiments) in our chapter on Adsorption. Now if the 
chemical concentration, on which this anisotropy or polarity (by 
hypothesis) depends, be unsymmetrical, one of its poles being as it 
were deflected to one side where a little branch or bud is being 
(or about to be) given off—all in precise accordance with the 
adsorption phenomena described on p. 460—then our “polar axis” 
would necessarily be a curved axis, and the partition, being con
strained (again ex hypothesi) to arise transversely to the polar axis, 
would lie obliquely to the apparent axis of the cell (as in B or C). 
And if the oblique partition be so situated that it has to meet the 
opposite walls (as in C), then, in order to do so symmetrically (i.e. 
either perpendicularly, as when the cell-wall is already solidified, or 
at least at equal angles on either side), it is evident that the partition, 
in its course from one side of the cell to the other, must necessarily 
assume a more or less S-shaped curvature (D).

The complex curvature of the partition-walls in such cases .as 
these may be illustrated by the following experiment. Set two 
plates of glass (as in Fig. 228) in a wire 
frame, so that they may he parallel or 
at any angle to one another; and dip 
the whole thing in soap-solution, so that 
a sheet of film is formed between the 
two plates and is framed by the two 
wires which carry them. The film is, 
of course, a surface of minimal area; its Fig. 228.

mean curvature is constant everywhere, and (since the film is an 
open surface with identical pressure on both sides) the mean curvature 
is everywhere nil. A related condition is that the film must meet 
its solid framework, glass or wire, everywhere at right angles or 
“orthogonally”; and this last constraint leads to curvatures of 
extreme complexity, which continually vary as we rotate one plate 
on the plane of the other.

T G F 37
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As a matter of fact, while we have abundant simple illustrations 
of the principles which we have now begun to study, apparent 
exceptions to this simplicity, due to an asymmetry of the cell itself 
or of the system of which the single cell is a part, are by no means 
rare. We know that in cambium-cells division often takes place 
parallel to the long axis of the cell, though a partition of much less 
area would suffice if it were set cross-ways: and it is only when a 
considerable disproportion has been set up between the length and 
breadth of the cell that the balance is in part redressed by the 
appearance of a transverse partition. It was owing to such excep
tions that Berthold was led to qualify and even to depreciate the 
importance of the law of minimal areas as a factor in cell-division, 
after he himself had done so much to demonstrate and elucidate 
it*. He was deeply and rightly impressed by the fact that other 
forces besides surface tension, both external and internal to the cell, 
play their part in determining its partitions, and that the answer 
to our problem is not to be given in a word. How fundamentally 
important it is, however, in spite of all conflicting tendencies and 
apparent exceptions, we shall see better and better as we proceed.

But let us leave the exceptions and consider the simpler and 
more general phenomena. And let us leave the case of the cubical, 
quadrangular or cylindrical cell, and examine that of a spherical 
cell and of its successive divisions, or the still simpler case of a 
circular, discoidal cell.

When we attempt to investigate mathematically the place and 
form of a partition of minimal area, it is plain that we shall be 
dealing with comparatively simple cases wherever even one dimen
sion of the cell is much less than the other two. Where two 
dimensions are small compared with the third, as in a thin cylindrical 
filament like that of Spirogyra, we have the problem at its simplest; 
for it is obvious, then, that the partition must he transversely to 
the long axis of the thread. But even where one dimension only 
is relatively small, /is for instance in a flattened plate, our problem

* Cf. Protoplasmamechanik, p. 229: “Insofern liegen also die Verhaltnisse hier 
wesentlich anders als bei der Zertheilung hohler Korperformen durch fliissige 
Lamellen. Wenn die Membran bei der Zelltheilung die von dem Prinzip der 
kleinsten Flachen geforderte Lage und Kriimmung annimmt, so werden wir den 
Grund dafiir in andrer Weise abzuleiten haben.”
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is so far simplified that we see at once that the partition cannot be 
parallel to the extended plane, but most cut the cell, somehow, at 
right angles to that plane. In short, the problem of dividing a 
much flattened solid becomes identical with that of dividing a 
simple surface of the same form.

There are a number of small algae growing in the form of small 
flattened discs, and consisting (for a time at any rate) of but a 
single layer of cells, which, as Berthold shewed, exemplify this 
comparatively simple problem; and we shall find presently that 
it is admirably illustrated in the cell-divisions which occur in the 
egg of a frog or a sea-urchin, when it is flattened out under artificial 
pressure. These same little algae which serve to exemplify the 
partitioning of a disc also illustrate, now 
and then, a curious feature of its contour.
Such a small green alga as Castagna 
(Fig. 229) shews, and many Desmids 
shew just as well, a sinuous border 
running out into rounded crenations or 
lobes. This is a surface-tension phe
nomenon. A little milk poured over an 
apple-pie gives a homely illustration of Fig. 229. Castagna polycarpa. 
the same sinuous outlines; a drop on a Swarm-spore and young plants. 

’ 1 After Berthold.
greasy plate spreads in the same uneven 
way, and does so indeed unless the utmost care be taken to ensure 
absolute cleanliness and surface equilibrium*.

* Cf. Quincke’s “ Ausbreitungserscheinungen,” in Poggendorffs Annalen, cxxxix, 
p. 37, 1870; also Tomlinson’s papers in Phil. Mag. vm-xxxix; and Van der 
Mensbrugghe, Mem. Cour, de VAcad. R. Belgique, xxxiv, 1870; xxxvn, 1873.

f From Berthold’s Monograph of the Naples Bangiaceae, 1882.

Fig. 230 f represents younger and older discs of the little alga 
Erythrotrichia discigera; and it will be seen that in all stages save 
the first we have an arrangement of cell-partitions which looks 
somewhat complex, but into which we must attempt to throw some 
light and order. Starting with the original single, and flattened, 
cell, we have no difficulty with the first two cell-divisions; for we 
know that no bisecting partitions can possibly be shorter than the 
two diameters, which divide the cell into halves and into quarters. 
We have only to remember that, for the sum total of partitions to 

37-2



580 THE FORMS OF TISSUES [ch.

be a minimum, three only must meet in a point; and therefore, 
the four quadrantal walls must shift a little, producing the usual 
little median partition, or cross-furrow, instead of one common 
central point of junction. This intermediate partition, however,

Fie. 230. Development of Erythrotrichia. After Berthold.

will be small, and to all intents and purposes we may deal with the 
case as though we had now to do with four equal cells, each one 
of them a perfect quadrant; so our problem is, to find the shortest 
fine which shall divide the quadrant of a circle into two halves of

equal area. A radial partition (Fig. 231, A), starting from the 
apex of the quadrant, is at once excluded, for the reason just referred 
to; our choice must he between two modes of division such as are 
illustrated in Fig. 231, where the partition is either (as in B) con
centric with the outer border of the cell, or else (as in C) cuts that 
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outer border; in other words, our partition may (B) cut both radial 
walls, or (C) may cut one radial wall and the periphery. These are 
the two methods of division which Sachs called, respectively, 
(B) periclinal, and (C) anticlinal*. We may either treat the walls 
of the dividing quadrant as already solidified, or at least as having 
a tension compared with which that of the incipient partition film 
is inconsiderable; in either case the new partition must meet the 
old wall, on either side, at right angles, and (its own tension and 
curvature being everywhere uniform) must take the form of a 
circular arc.

We find that a flattened cell wdiich is approximately a quadrant 
of a circle invariably divides after the manner of Fig. 231, C, that 
is to say, by an approximately circular, anticlinal wall, and this 
we now recognise in the eight-celled stage of Erythrotrichia (Fig. 
230); let us then consider that Nature has solved our problem, and 
let us work out the actual geometric conditions.

Let the quadrant OAB (in Fig. 232) be divided into two parts 
of equal area, by the circular arc MP. It is required to determine

♦ There is, I think, some ambiguity or disagreement among botanists as to the 
use of this latter term: the sense in which I am using it, viz. for any partition 
which meets the outer or peripheral wall at right angles (the strictly radial partition 
being for the present excluded), is, however, clear.



582 THE FORMS OF TISSUES [ch.

(1) the position of P upon the arc of the quadrant, that is to say 
the angle BOP; (2) the position of the point M on the side OA; 
and (3) the length of the arc MP in terms of a radius of the quadrant.

(1) Draw OP; also PC a tangent, meeting OA in C; and PN, 
perpendicular to OA. Let us call a a radius; and 0 the angle at C, 
which is equal to OPN, or POB. Then

CP = a cot 0; PN = a cos 0; NC = CP cos 0 = a . cos2 0/sin 0.

The area of the portion PMN

= ^CP2 0 - $PN . NC
= ^a2 0 cot2 0 — I» cos 0 . a cos2 0/sin 0
= ^a2 (0 cot2 0 — cos3 0/sin 0).

And the area of the portion PNA

= |a2 (77/2 - 0) - ION . NP
= ^a2 (tt/2 — 0) — sin 0 . a cos 0
= ^a2 (77/2 — 0 — sin 0 . cos 0).

Therefore the area of the whole portion PMA

= a2/2 (77/2 — 0 + 0 cot2 0 — cos3 0/sin 0 — sin 0 . cos 0)
= a2/2 (77/2 — 0 + 0 cot2 0 — cot 0),

and also, by hypothesis, = |. area of the quadrant, = 77a 2/8.
Hence 0 is defined by the equation

a2(2 (77/2 — 0+0 cot2 0 — cot 0) = Tra2/8,

or 77/4 — 0 + 0 cot2 0 — cot 0 - 0.

We may solve this equation by constructing a table (of which 
the following is a small portion) for various values of 0.

e 7t/4 - e - cot 6 + 8 cot2 8 = X

34° 34' 0-7854 - 0-6033 - 1-4514 4- 1-2709 = 0-0016
35' 0-7854 0-6036 1-4505 1-2700 0-0013
36' 0-7854 0-6039 1-4496 1-2690 0-0009
37' 0-7854 0-6042 1-4487 1-2680 0-0005
38' 0-7854 0-6045 1-4478 1 2671 0-0002
39' 0-7854 0-6048 1-4469 1-2661 -0-0002
40' 0-7854 0-6051 1-4460 1-2652 - 0-0005

We see accordingly that the equation is solved (as accurately 
as need be) when 0 is an angle somewhat over 34° 38', or say 
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34° 38|'. That is to say, a quadrant of a circle is bisected by a 
circular arc cutting the side and the periphery of the quadrant 
at right angles, when the arc is such as to include (90° — 34° 38'), 
i.e. 55° 22' of the quadrantal arc. This determination of ours is 
practically identical with that which Berthold arrived at by a 
rough and ready method, without the use of mathematics. He 
simply tried various ways of dividing a quadrant of paper by means 
of a circular arc, and went on doing so till he got the weights of 
his two pieces of paper approximately equal. The angle, as he 
thus determined it, was 34-6°, or say 34° 36'.

(2) The position of M on the side of the quadrant OA is given 
by the equation OM = a cosec 6 — a cot 6; the value of which 
expression, for the angle which we have just discovered, is 0-3028. 
That is to say, the radius (or side) of the quadrant will be divided 
Jay the new partition into two parts, in the proportions, nearly, of 
three to seven.

(3) The length of the arc MP is equal to aO cot 0; and the 
value of this for the given angle is 0-8751. This is as much as to 
say that the curved partition-wall which we are considering is 
shorter than a radial partition in the proportion of 8| to 10, or 
seven-eighths, almost exactly.

But we must also compare the length of this curved anticlinal 
partition-wall (MP) with that of the concentric, or periclinal, one 
(RS, Fig. 233) by which the quadrant might also 
be bisected. The length of this partition is 
obviously equal to the arc of the quadrant (i.e. 
the peripheral wall of the cell) divided by V2; 
or, in terms of the radius, = tt/2 V2 = 1-111.
So that, not only is the anticlinal partition (such 
as we actually find in nature) notably the best, 
but the periclinal one, when it comes to dividing 
an entire quadrant, is very considerably larger even than a radial 
partition.

The two cells into which our original quadrant is now divided 
are equal in volume, but of very different shapes; the one is a 
triangle (MAP) with circular arcs for two of its sides, and the other 
is a four-sided figure (MOBP), which we may call approximately 
oblong. How will they continue to divide? We cannot say as 
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yet how the triangular portion ought to divide; but it is obvious 
that the least possible partition-wall which shall bisect the other 
must run across the long axis of the oblong, that is to say periclinally. 
This is precisely what tends actually to take place. In the following 
diagrams (Fig. 234) of a frog’s egg dividing under pressure, that 
is to say when reduced to the form of a flattened plate, we see, 
firstly (A), the division into four quadrants (by the partitions 1, 2); 
secondly (B), the division of each quadrant by means of an anti
clinal circular arc (3, 3), cutting the peripheral wall of the quadrant 
approximately in the proportions of three to seven; and thirdly

(C), we see that of the eight cells (four triangular and four oblong) 
into which the whole egg is now divided*, the four which we have 
called oblong now proceed to divide by partitions transverse to 
their long axes, or roughly parallel to the periphery of the egg.

The question how the other, or triangular, portion of the divided 
quadrant will next divide leads us to a well-defined problem which 
is only a slight extension, making allowance for the circular arcs, 
of that elementary problem of the triangle we have already con
sidered. We know now that an entire quadrant (in order that its 
bisecting wall shall have the least possible area) must divide by 
means of an anticlinal partition, but how about any smaller sectors 
of circles? It is obvious in the case of a small prismatic sector, 
such as that shewn in Fig. 235, that a periclinal partition is the 
least by which we can bisect the cell; we want, accordingly, to 
know the limits below which the periclinal partition is always the 
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best, and above which the anticlinal arc has the advantage, as in 
the case of the whole quadrant.

This may be easily determined; for the preceding investigation 
is a perfectly general one, and the results hold good for sectors of 
any other arc, aS well as for the quadrant, or arc of 90°. That is 
to say, the length of the partition-wall MP is always determined 
by the angle 9, according to our equation MP — ad cot 0; and the 
angle 0 has a definite relation to a, the angle of arc.

Moreover, in the case of the periclinal boundary, RS (Fig. 233) 
(or ab, Fig. 235), we know that, if it bisects the cell,

RS = a . a/-\/2.

Accordingly, the arc RS will be just equal to the arc MP when

0 cot 0 = a/\/2.

When 0 cot 0 > a/-\/2, or MP < RS,

then division will take place as in RS, or periclinally.

When 0 cot 0 < tz/\/2, or MP > RS,

then division will take place as. in MP, or anticlinally.
In the accompanying diagram (Fig. 236), I have plotted the 

various magnitudes with which we are concerned, in order to 
exhibit the several limiting values. Here we see, in the first place, 
the curve marked a, which shews on the (left-hand) vertical scale 
the various possible magnitudes of that angle (viz. the angle of arc 
of the whole sector which we wish to divide), and on the horizontal 
scale the corresponding values of 0, or the angle which determines 
the point on the periphery where it is cut by the partition-wall,
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MP. Two limiting cases are to be noticed here: (1) at 90° (point 
A in diagram), because we are at present only dealing with arcs 
no greater than a quadrant; and (2), the point (B) where the angle 0
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comes to equal the angle a, for after that point the construction 
becomes impossible, since an anticlinal bisecting partition-wall 
would be partly outside the cell. The only partition which, after 
that point, can possibly exist is a periclinal one; and this point,
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as our diagram shews us, occurs when the two angles (a and 0) are 
both rather under 52°.

Next I have plotted on the sam§ diagram, and in relation to 
the same scale of angles, the corresponding lengths of the two 
partitions, viz. RS and MP, their lengths being expressed (on the 
right-hand side of the diagram) in terms of the radius of the circle 
(a), that is to say the side wall, OA, of our cell.

The limiting values here are (1), C, C', where the angle of arc 
is 90°, and where, as we have already seen, the two partition-walls 
have the relative magnitudes of MP: RS = 0-875 :1-111: (2) the 
point D, where RS equals unity, that is to say where the periclinal 
partition has the same length as a radial one; this occurs when 
a is rather under 82° (cf. the points D, D'): (3) the point E, where 
RS and MP intersect, that is to say the point at which the two 
partitions, periclinal and anticlinal, are of the same magnitude; 
this is the case, according to our diagram, when the angle of arc 
is just over 62J°. We see from this that what we have called an 
anticlinal partition, as MP, is only likely to occur in a triangular 
or prismatic cell whose angle of arc lies between 90° and 621 ; in 
all narrower or more tapering cells the periclinal partition will be 
of less area, and will therefore be more and more likely to occur.

The case (F) where the angle a is just 60° is of some interest. 
Here, owing to the curvature of the peripheral border, and the 
consequent fact that the peripheral angles are somewhat greater 
than the apical angle a, the periclinal partition has a very slight 
and almost imperceptible advantage over the anticlinal, the relative 
proportions being about as MP : RS:: 0-73: 0-72. But if the 
triangle be a plane equiangular triangle, bounded by circular arcs, 
then we see that there is no longer any distinction at all between 
our two partitions; MP and RS are now identical.

On the same diagram, I have inserted the curve for values of 
cosec 0 — cot 0 — OM, that is to say the distances from the centre, 
along the side of the cell, of the starting-point (M) of the anticlinal 
partition. The point C" represents its position in the case of a 
quadrant, and shews it to be (as we have already said) about 3/10 
of the length of the radius from the centre. If on the other hand 
our cell be an equilateral triangle, then we have to read off the 
point on this curve corresponding to a = 60°; and we find it at
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the point F'" (vertically under F), which tells us that the partition 
now starts 45/100, or nearly halfway, along the radial wall.

The foregoing considerations carry us a long way in our investi
gation of the simpler forms of cell-division. Strictly speaking they 
are limited to the case of flattened cells, in which we can treat the 
problem as though we were partitioning a plane surface. But it is 
obvious that, though they do not teach us the whole conformation 
of the partition which divides a more complicated solid into two 
halves, yet, even in such a case they so far enlighten us as to tell 
us the appearance presented in one plane of the actual solid. And, 
as this is all that we see in a microscopic section, it follows that 
the results we have arrived at will help us greatly in the interpreta
tion of microscopic appearances, even in comparatively complex 
cases of cell-division.

Let us now return to our quadrant cell (OAPB), which we have 
found to be divided into a triangular and a quadrilateral portion, 
as in Figs. 233 or 237; and let us 
now suppose the whole system to 
grow, in a uniform fashion, as a 
prelude to further subdivision. The 
whole quadrant, growing uniformly 
(or with equal radial increments), 
will still remain a quadrant, and it 
is obvious, therefore, that for every 
new increment of size, more will be 
added to the margin of its triangular 
portion than to the narrower margin 
of the quadrilateral; and the in
crements will be in proportion to 
the angles of arc, viz. 55° 22': 34° 38', or as 0-96 : 0-60, i.e. as 8 : 5. 
Accordingly, if we may assume (and the assumption is a very 
plausible one), that, just as the quadrant itself divided into two 
halves after it got to a certain size, so each of its two halves will 
reach the same size before again dividing, it is obvious that the 
triangular portion will be doubled in size, and therefore ready to 
divide, a considerable time before the quadrilateral part. To work 
out the problem in detail would lead us into troublesome mathe-
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matics; but if we simply assume that the increments are propor
tional to the increasing radii of the circle, we have the following 
equations:

Call the triangular cell T, and the quadrilateral Q (Fig. 237); 
let the radius, OA, of the original quadrantal cell = a = 1; and let 
the increment which is required to add on a portion equal to T 
(such as PP'A'A) be called x, and let that required, similarly, for 
the doubling of Q be called x'.

Then we see that the area of the original quadrant

= T + Q = fra2 = 0-7854a2,

while the area of T = Q = 0-3927a2.

The area of the enlarged sector, P'OA',

= (a + x)2 x (55° 22') 4- 2 = 0-4831 (a + x)2, 

and the area OP A

= a2 x (55° 22') 4- 2 = 0-4831a2.

Therefore the area of the added portion, T',

= 0-4831 {(a + x)2 - a2}.

And this, by hypothesis,

= T = 0-3927a2.

We get, accordingly, since a = 1,

x2 + 2x = 0-3927/0-4831 = 0-810, 
and, solving,

x + 1 = Vl-81 = 1-345, or x = 0-345.

Working out x’ in the same way, we arrive at the approximate 
value, xr + 1 = 1-517.

This is as much as to say that, supposing each cell tends to 
divide into two halves when (and not before) its original size is 
doubled, then, in our flattened disc, the triangular cell T will tend 
to divide when the radius of the disc has increased by about a 
third (from 1 to 1-345), but the quadrilateral cell, Q, will not tend 
to divide until the linear dimensions of the disc have increased by 
fully a half (from 1 to 1-517).
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The case here illustrated is of no small importance. For it shews 
us that a uniform and symmetrical growth of the organism (sym
metrical, that is to say, under the limitations of a plane surface, 
or plane section) by no means involves a uniform or symmetrical 
growth of the individual cells, but may under certain conditions 
actually lead to inequality among these; and this phenomenon 
(or to be quite candid, this hypothesis, which is due to Berthold) 
is independent of any change or variation in surface tensions, 
and is essentially different from that unequal segmentation (studied 
by Balfour) to which we have referred on p. 568.

After this fashion we might go on to consider the manner, and 
the order of succession, in which subsequent cell-divisions should 
tend to take place, as governed by the principle of minimal areas.

Fig. 238.

The calculations would grow more difficult, and the results got 
by simple methods would grow less and less exact; at the same 
time some of the results would be of great interest, and well worth 
our while to obtain. For instance, the precise manner in which our 
triangular cell, T, would next divide would be interesting to know, 
and a general solution of this problem is certainly troublesome to 
calculate. But in this particular case we see that the width of the 
triangular cell near P (Fig. 238) is so obviously less than that near 
either of the other two angles, that a circular arc cutting off that 
angle is bound to be the shortest possible bisecting line; and that, 
in short, our triangular cell will tend to subdivide, just like the 
original quadrant, into a triangular and a quadrilateral portion.

But the case will be different next time, because in this new 
triangle, PRQ, the least width is near the innermost angle, that 
at Q; and the bisecting circular arc will therefore be opposite to Q, 
or (approximately) parallel to PR. The importance of this fact is 
at once evident; for it means to say that there comes a time 
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when, whether by the division of triangles or of quadrilaterals, we 
find only quadrilateral cells adjoining the periphery of our circular 
disc. In the subsequent division of these quadrilaterals, the parti
tions will arise transversely to their long axes, that is to say, radially 
(as U, I ); and we shall consequently have a superficial or peripheral 
layer of quadrilateral cells, with sides approximately parallel, that 
is to say what we are accustomed to call an epidermis. And this 
epidermis or superficial layer will be in clear contrast with the more 
irregularly shaped cells, the products of triangles and quadrilaterals, 
which make up the deeper, underlying layers of tissue.

In following out these theoretic principles, and others like to 
them, in the actual division of living cells, we must bear in mind 
certain conditions and qualifications. In the first place, the law 
of minimal area and the other rules which we have arrived at are 
not absolute but relative: they are finks, and very important finks, 
in a chain of physical causation; they are always at work, but their 
effects may be overridden and concealed by the operation of other 
forces. Secondly, we must remember that, in most cases, the cell
system which we have in view is constantly increasing in magnitude 
by active growth; and by this means the form and also the propor
tions of the cells are continually altering, of which phenomenon we 
have already had an example. Thirdly, we must carefully remember 
that, until our cell-walls become absolutely solid and rigid, they are 
always apt to be modified in form owing to the tension of the 
adjacent walls; and again, that so long as our partition films are 
fluid or semifluid, their points and lines of contact with one another 
may shift, like the shifting outlines of a system of soap-bubbles. 
This is the physical cause of the movements frequently seen among 
segmenting cells, like those to which Rauber called attention in 
the segmenting ovum of the frog, and like those more striking 
movements or accommodations which give rise to a so-called 
“spiral” type of segmentation.

Bearing in mind these considerations, let us see what our flattened 
disc is likely to look like, after a few successive cell-divisions. In 
Fig. 239 a, we have a diagrammatic representation of our disc, after 
it has divided into four quadrants, and each quadrant into a 
triangular and a quadrilateral portion; but as yet, this figure has
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scarcely anything like the normal look of an aggregate of living 
cells. But let us go a little further, still limiting ourselves to the 
consideration of the eight-celled stage. Wherever one of our 
radiating partitions meets the peripheral wall, there will (as we 
know) be a mutual tension between the three convergent films, 
which will tend to set their edges at equal angles to one another, 
angles that is to say of 120°. In consequence of this, the outer wall 
of each individual cell will (in this surface view of our disc) be an 
arc of a circle of which we can determine the centre by the method 
used on p. 485; and, furthermore, the narrower cells, that is to say 
the quadrilaterals, will have this outer border somewhat more

Fig. 239. Diagram of flattened or discoid cell dividing into octants: to shew 
gradual tendency towards a position of equilibrium.

curved than their broader neighbours We arrive, then, at the 
condition shewn in Fig. 239 b. Within the cell, also, wherever 
wall meets wall, the angle of contact must tend, in every case, to 
be an angle of 120°; in no case may more than three films (as seen 
in section) meet in a point (c); and this condition, of the partitions 
meeting three by three and at co-equal angles, will involve the 
curvature of some, if not all, of the partitions (d) which to begin 
with we treated as plane. To solve this problem in a general way 
is no easy matter; but it is a problem which Nature solves in 
every case where, as in the case we are considering, eight bubbles 
or eight cells. meet together in a plane or curved surface. An 
approximate solution has been given in d; and it will at once be 
recognised that this figure has vastly more resemblance to an
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aggregate of living cells than had the diagram of a, with whieh we 
began.

Just as we have constructed in this case a series of purely 
diagrammatic or schematic figures, so will it be possible as a rule 
to diagrammatise, with but little alteration, the complicated ap
pearances presented by any ordinary aggregate of cells. The 
accompanying little figure (Fig. 240), of a germinating 
spore of a Liverwort (Riccio), after a drawing of D. H. 
Campbell’s, scarcely needs further explanation: for it is 
well-nigh a typical diagram of the method of space
partitioning which we are now considering. The same is 
equally true of any one of Hanstein’s figures of the
hairs on a leaf-bud*, or Berthold’s of the small discoid algae. Let 
us look again at our figures of Erythrotrichia or Chaetopeltis from 
Berthold’s Monograph, and redraw some of the earlier stages.

Fig. 241. Embryo-stages of Chaetopeltis orbicularis. After Berthold.

In the following diagrams (Fig. 242) the new partitions, or those just 
about to form, are in each case outlined; and in the next succeeding 
stage they are shewn after settling down into position, and after 
exercising their respective tractions on the walls previously laid 
down. It is clear, I think, that these four diagrammatic figures 
represent all that is shewn in the first five stages drawn by Berthold 
from the plant itself; but the correspondence cannot in this case 
be precisely accurate, for the reason that Berthold’s figures are 
taken from different individuals, and so are not strictly and con
secutively continuous. The last of the six drawings in Fig. 230 is 
already too complicated for diagrammatisation, that is to say it is 
too complicated for us to decipher with certainty the order of 
appearance of the numerous partitions which it contains. But in 
Fig. 243 I shew one more diagrammatic figure, of a disc which has

* Bot. Zeitung, xxvi, p. 11, xi, xii, 1868.
TG F 38
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divided, according to the theoretical plan, into about sixty-four 
cells; and making due allowance for the changes which mutual 
tensions and tractions bring about, increasing in complexity with 
each succeeding stage, we can see, even at this advanced and

Fig. 242. Theoretical arrangement of successive partitions in a discoid cell; 
for comparison with Figs. 230 and 241.

complicated stage, a very considerable resemblance between the 
actual picture and the diagram which we have here constructed 
in obedience to a few simple rules.

Fig. 243. Theoretical division of a discoid cell into sixty-four chambers: no 
allowance being made for the mutual tractions of the cell-walls.

In like manner, in the annexed figures representing sections 
through a young embryo of a moss, we have little difficulty in 
discerning the successive stages which must have intervened between 
the two stages shewn: so as to lead from the just divided or dividing 
quadrants (a), to the stage (b) in which a well-marked epidermal 
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layer surrounds an at first sight irregular agglomeration of “funda
mental tissue”.

In the last paragraph but one, I have spoken of the difficulty of 
so arranging the meeting-places of a number of cells that at each 
junction only three cell-walls shall meet in a point, and all three 
shall meet at equal angles of 120°. As a matter of fact, the problem 
is soluble in a number of ways; that is to say, when we have a 
number of cells enclosed in a common boundary, say eight as in 
the case considered, there are various ways in which their walls 
may meet internally, three by three, at equal angles; and these 
differences will entail differences also ih the curvature of the walls, 
and consequently in the shape of the cells. The question is some-

Fig. 244. Sections of embryo of a moss. After Kienitz-Gerloff.

what complex; it has been dealt with by Plateau, and treated 
mathematically by M. Van Rees*.

If within our boundary we have only three cells all meeting 
internally, they must meet in a point; furthermore, they tend to 
do so at equal angles of 120°, and there is an end of the matter. 
If we have four cells, then, as we have already seen, the conditions 
are satisfied by interposing a little intermediate wall, the two 
extremities of which constitute the meeting-points of three cells 
each, and the upper edge of which marks the “polar furrow.” 
In the case of five cells, we require two little intermediate walls, 
and two polar furrows; and we soon arrive at the rule that, for 
n cells, we require n - 3 little longitudinal partitions (and corre
sponding polar furrows), connecting the triple junctions of the cellsf; 
and these little walls, like all the rest within the system, tend to

* Cit. Plateau, Statique. des Liquides, I, p. 358.
j There is an obvious analogy between this rule for the number of internal 

partitions within a polygonal system, and Lamarle’s rule for the number of “ free 
films” within a polyhedron. Vide supra, p. 550.

38-2
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incline to one another at angles of 120°. \\ here we have only one 
such wall (in the case of four cells), or only two (in the case 
of five cells), there is no room for ambiguity. But where we have 
three little connecting-walls, in the case of six cells, we can 
arrange them in three different ways, as Plateau* found his six

Fig. 245. Various possible arrangements of intermediate positions, 
in groups of 3, 4, 5, 6, 7 or 8 cells.

soap-films to do (Fig. 246). In the system of seven cells, the four 
partitions can be arranged in four ways; and the five partitions 
required in the case of eight cells can be arranged in no less than

Fig. 246.

twelve different waysf. It does not follow that these various 
arrangements are all equally good; some are known to be more 
stable than others, and some are hard to realise in actual experiment.

Examples of these various arrangements meet us at every turn, 
in all sorts of partitioning, whether there be actual walls or mere

* Plateau experimented with a wire frame or “cage”, in the form of a low 
hexagonal prism. When this was plunged in soap-solution and withdrawn upright, 
a vertical film occupied its six quadrangular sides and nothing more. But when 
it was dr<»wn out sideways, six films starting from the six vertical edges met some
how in the middle, and divided the hexagon into six cells. Moreover the partition - 
films automatically solved the problem of meeting one another three-by-three, at 
co-equal angles of 120 ’; and did so in more ways than one, which could be controlled 
more or less, according to the manner and direction of lifting the cage.

f Plateau, on Van Rees’s authority, says thirteen; but this is wrong—unless 
he meant to include the case where one cell is wholly surrounded by the seven 
others.
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rifts and cracks in a broken surface. The phenomenon is in the 
first instance mathematical, in the second physical; and the limited 
number of possible arrangements appear and reappear in the most 
diverse fields, and are capable of representation by the same 
diagrams. We have seen in Fig. 196 how the cracks in drying mud 
exhibit to perfection the polar furrow joining two three-way nodes, 
which is the characteristic feature of the four-celled stage of a 
segmenting egg.

The possible arrangements of the intermediate partitions becomes 
a question of permutations. Let us call the flexure between two 
consecutive furrows a or b, according to its direction, right or left; 
and let a triple conjunction be called c. Then the three possible 
arrangements in a system of six cells are aa, ab, c; the four in a 
system of seven cells are aaa, aab, aba, ac\ and the twelve possible 
arrangements in a system of eight ce^s are as follows* :

* I believe that Kirkman, in a paper of more than 80 years ago, said that the 
number of 8-sided convex, Eulerian polyhedra, with trihedral corners, was thirteen.

a aac / aabb
b abc 9 aaba
c acb h aaab
d aca i aaaa
e bcb j abab

k abba
I cc

We may classify, and may denote or symbolise, these several 
arrangements in various ways. In the following table we see: 
A, the twelve arrangements of the five intermediate partitions 
which are necessary to enable all the boundary walls of a plane 
assemblage of eight cells (none being “insular”) to meet in three- 
way junctions; B, the literal permutations which symbolise the 
same; C, the number of sides (other than the external boundary) 
which in each case each cell possesses, i.e. the number of contacts 
each makes with its neighbours. The total number of contacts 
(as we shall see presently) is 26, and the mean number 3-25; if we 
take the departures from the mean, and sum them irrespective of 
sign, the sum is shewn under D.
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A B c D

° 1
r( aac 222 33 446 8-5

e 1
aca 222 33 44 6 8-5

e 1
acb 222 33 4 55 8-5

d I bcb 222 33 4 55 8-5

b abc 222 3 4445 8-0

3 ^bab 22 33 4444 6-0

f aabb 22 3333 55 7-0

9 aaba 22 333 44 5 6-5

k abba 22 333 445 6-5

h ( — aaab 22 3333 4 6 7-0

i (KKK1 2233333 7 7-5

I CC 2222 4455 10-0

Nine cells may be arranged in twenty-seven ways. In higher 
series the numbers increase very rapidly, but the cells will tend to 
overlap, and so introduce a new complication*.

We may draw help from the theory of polyhedra (in an elementary 
way) if we treat our group of eight cells (none of them “insular”) 
as part of a polyhedron, to be completed by one eight-sided cell, 

* Max Bruckner states the number of possible arrangements of thirteen cells, 
with trihedral junctions, as nearly 50,000; of sixteen, nearly 30 millions; and of 
eighteen, “bereits iiber einige Billionen” {Proc. Math. Congress, Bologna, 1930, vol. 
iv, p. 11). It is plain that the study of “ cell-lineage,” or the mapping out in detail 
of the cell-arrangements after repeated cell-divisions, is only possible under severe 
limitations.
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serving (so to speak) as a base under all the rest. Then, calling 
F3, Fi, etc., the number of three-sided and four-sided facets, we re
classify our twelve configurations as follows:

Polyhedral arrangements of eight cells (none of them “insular”), 
considered as part of a nine-faced polyhedron, whose ninth face 
is octagonal.

Fi Ft Fi Fi Fi
I 4 — 2 2 — 1
ae 3 2 2 — 1 1
cd 3 2 1 2 — 1
b 3 1 3 1 — 1
i 2 5 — — __ 2
h 2 4 1 — 1 1
f 2 4 — 2 — 1
gk 2 3 9 1 — 1
3 2 2 4 — — 1

It is of interest, and of more than mere mathematical interest, 
to know, not only that these possible arrangements are few, but 
that they are strictly defined as to the number and form of the 
respective faces. For we know that we are limited to three-way 
corners or nodes; and, that being so, the following simple rule holds 
for the facets—a rule which we shall use later on in still more 
curious circumstances, and which may be easily verified in any line 
of the foregoing table:

3F3 4- 2Fi 4- F5 ± O.F6 - F7 - 2F8 - etc. = 12.

We may produce and illustrate all these configurations by blowing 
bubbles in a dish and here (Fig. 247) is the complete series, up to 
seven cells. They correspond precisely to the diagrams shewn on 
p. 596, and their resemblance to embryological diagrams is only 
cloaked a little by the circular outline, the artificial boundary of 
the system. Of the twelve eight-celled arrangements, four seem 
unstable; these include the one case (i) where one cell of the eight 
is in contact with all seven others, and the three cases (a, e, h) 
where one is in contact with six others. The reason of this insta
bility is, I imagine, that the internal angles cannot be angles of 
120°, as equilibrium demands, unless the- sides be curved, and 
convex inwards; but this implies a combined pressure from without 
on the large cell in the middle. While it adjusts its walls, then, 
to the required angles, the large cell tends to close up, to lose hold 
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of the boundary of the system, and to become an island-cell entirely 
surrounded by the rest.

Fig. 247. Group of soap-bubbles, blown in Petri dishes, a, b, c, the normal 
partitioning of groups of three, four or five cells or bubbles, d, the three ways 
of partitioning a group of six cells or bubbles, e, three of the four ways of 
partitioning a group of seven cells.

Among the published figures of embryonic stages and other cell 
aggregates, we only discern the little intermediate partitions in 
cases where the investigator has drawn carefully just what lay 
before him, without any preconceived notions as to radial or other 
symmetry; but even in other cases we can often recognise, 
without much difficulty, what the actual arrangement was whereby
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the cell-walls met together in equilibrium. I suspect that a leaning 
towards Sachs’s Rule, that one cell-wall tends to set itself at right 
angles to another cell-wall (a rule whose strict limitations and 
narrow range of application we have already considered) is responsible 
for many inaccurate or incomplete representations of the mutual 
arrangement of associated cells.

In the accompanying series of figures (Figs. 248-255) I have set 
forth a few aggregates of eight cells, mostly from drawings of 

Fig. 248. Segmenting egg 
of Troch us. After Robert.

Fig. 249. Two views of segmenting egg of 
Cynthia partita. After Conklin.

Fig. 250. (a) Section of apical cone of Salvinia. After Pringsheim*. 
(b) Diagram of probable actual arrangement.

segmenting eggs. In some cases they shew clearly the manner in 
which the cell-walls meet one another, always by three-way junctions, 
at angles of about 120°, more or less, and always with the help of 
five intermediate boundary walls within the eight-celled system; 
in other cases I have added a slightly altered drawing, so as to shew, 
with as little change as possible, the arrangement of boundaries

* This, like many similar figures, is manifestly drawn under the influence of 
Sachs's theoretical views, or assumptions, regarding orthogonal traje< tories, coaxial 
circles, confocal ellipses, etc.
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which may have existed, and given rise to the appearance which the 
observer drew. These drawings may be compared with the diagrams 
on p. 598, in which the twelve possible arrangements of five inter
mediate partitions for a system of eight cells have been set forth.

It will be seen that Robert-Tornow’s figure of the segmenting egg 
of Trochus (Fig. 248) clearly shews the cells grouped after the fashion 
of I; while Conklin’s figure of the ascidian egg (Cynthia) shews 
equally clearly the arrangement e. A sea-urchin egg segmenting 

Fig. 251. Egg of Pyrosoma. 
After Korotneff.

Fig. 252. Egg of Echinus, segmenting 
under pressure. After Driesch.

Fig. 253. (a) Part of segmenting egg of Cephalopod (after Watase); 
(b) probable actual arrangement.

under pressure, as figured by Driesch, scarcely wants any modifica
tion of the drawing to appear in one case as type/, in another as g. 
Turning to a botanical illustration, we have a figure of Pringsheim’s 
shewing an eight-celled stage in the apex of the young cone of 
Salvinia: it is ill drawn, but may be referable, as in my diagram, 
to type /; after it is figured a very different object, a segmenting 

/egg of the ascidian Pyrosoma, after Korotneff, also, but still more
doubtfully, referred to /. In the cuttlefish egg there is again some 
uncertainty, but it is probably referable to g. Lastly, I have 
copied from Roux a curious figure of the frog’s egg, viewed from 
the animal pole; it is obviously inaccurate, but may perhaps - 
belong to type e. Of type i, in which the five partitions form
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four re-entrant angles, that is to say a figure representing the five 
sides of a hexagon, and one cell is in touch with seven others, 
I have found no examples among published figures of segmenting 
eggs. It is obvious enough, without more ado, that these phenomena

Fig. 254. (a) Egg of Echinus; (6) do. of Nereis, under pressure. 
After Driesch.

are in the strictest and completest way common to both plants and 
animals, in which respect they tally with, and further extend, the 
fundamental conclusions laid down by Schwann wellnigh a hundred 
years ago, in his Mikroskopische Untersuchungen iiber die Ueberein- 
stimmung in der Struktur und dem Wachsthum der Thiere und 
Pflanzen*.

But now that we have seen how a certain limited number of 
types of eight-celled segmentation (or of arrangements of eight 
cell-partitions) appear and reappear here and there throughout the 
whole world of organisms, there still remains the very important

* Berlin, 1839; Sydenham Society, 1847. 



604 THE FORMS OF TISSUES [CH.

question, whether in each particular organism the conditions are 
such as to lead to one particular arrangement being predominant, 
characteristic, or even invariable. In short, is a particular arrange
ment of cell-partitions to be looked upon (as the published figures 
of the embryologist are apt to suggest) as a specific character, or at 
least a constant or normal character, of the particular organism? 
The answer to this question is a direct negative, but it is only in 
the work of the most careful and accurate observers that we find 
it revealed. Rauber (whom we have more than once had occasion 
to quote) was one of those embryologists who recorded just what 
he saw, without prejudice or preconception; as Boerhaave said 
of Swammerdam, quod vidit id asseruit. Now Rauber has put on 
record a considerable number of variations in the arrangement of 
the first eight cells, which form a discoid surface about the dorsal 
(or “animal”) pole of the frog’s egg. In a certain number of 
cases these figures are identical with one another in type, identical 
(that is to say) save for slight differences in magnitude, relative 
proportions, or orientation. But I have selected (Fig. 256) six 
diagrammatic figures, which are all essentially different, and these 
diagrams seem to me to bear intrinsic evidence of their accuracy: 
the curvatures of the partition-walls and the angles at which 
they meet agree closely with the requirements of theory, and when 
they depart from theoretical symmetry they do so only to the 
slight extent which we might expect in a material system*. 
Of these six illustrations, two are exceptional. In Fig. 256, 5, 
we observe that one of the eight cells is insular, and surrounded 
by the other seven. This is a perfectly natural condition, and 
represents, like the rest, a phase of partial or conditional equili
brium; but it is not included in the series we are now considering, 
which is restricted to the case of eight cells extending outwards _ 
to a common boundary. The condition shewn in Fig. 256, 6, is

* Such preconceptions as Rauber entertained were all in a direction likely to 
lead him away from such phenomena as he has faithfully depicted. Rauber had 
no idea whatsoever of the principles by which we are guided in this discussion, 
nor does he introduce at all the analogy of surface-tension, or any other purely 
physical concept; but he was deeply under the influence of Sachs’s rule of 
rectangular intersection, and he was accordingly disposed to look upon the 
configuration represented above in Fig. 256, 6, as the most typical or primitive. 
His articles on Thier und Pflanze, in Biol. Cbt. iv, 1881, tell us much about this and 
other biological theories of his time.
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again peculiar, and is probably rare, but it is included under the 
cases considered on p. 491, in which the cells are not in complete 
fluid contact but are separated by little droplets of extraneous 
matter; it needs no further comment. But the other four cases 
are beautiful diagrams of space-partitioning, similar to those we 
have just been considering, but so exquisitely clear that they need 
no modification, no “touching-up,” to exhibit their mathematical 
regularity. It will easily be recognised that in Fig. 256, 1 and 2,

Fig. 256. Various modes of grouping of eight cells, at the dorsal or 
epiblastic pole of the frog’s egg. After Rauber.

we have the arrangements corresponding to I and g, and in 3 and 4 to c 
in our table on p. 598. One thing stands out as very certain indeed: 
that the elementary diagram of the frog’s segmenting egg given in 
textbooks of embryology—in which the cells are depicted as 
uniformly symmetrical and more or less quadrangular bodies —is 
entirely inaccurate and grossly misleading*.

* Cf. Rauber, Neue Grundlegungen z. K. der Zelle, Morphol. Jahrb. vin, p. 273, 
1883: “ Ich betone noch, dass unter meinen Figuren diejenige gar nicht enthalten ist, 
welche zum Typus der Batrachierfurchung gehorig am meisten bekannt ist.... Es 
haben so ausgezeichnete Beobachter sie als vorhanden beschrieben, dass es mir 
nicht einfallen kann, sie iiberhaupt nicht anzuerkennen.” See also O. Hertwig, 
Ueber den Werth d. erste Furchungszelle fur die Organbildung des Embryo, 
Arch.f. Anat, xlhi, 1893; here O. Hertwig maintains that there is no such thing 
as “cellular homology.”
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We begin to realise the remarkable fact, which may even appear 
a startling one to the biologist, that all possible groupings or 
arrangements whatsoever of eight cells in a single layer or surface 
(none being submerged or wholly enveloped by the rest) are referable 

- to one or another of twelve types or patterns; and that all the 
thousands and thousands of drawings which diligent observers have 
made of such eight-celled embryos or blastoderms, or other eight
celled structures, animal or vegetable, anatomical, histological or

Fig. 257. Photographs of frogs’ eggs, shewing various arrangements, or 
partitionings, of the first eight cells.

embryological, are one and all of them representations of some one 
or other of these twelve types- or rather for the most part of less 
than the whole twelve; for a certain small number are essentially 
unstable, and have at best but a transitory and evanescent existence. 
But that even the unstable cases should now and then be seen is 
not to be wondered at: when viscidity and friction, and in general 
the imperfect fluidity of the system, retard the adjustment of the cells 
and delay the advent of equilibrium.

As soon as we realise that the number of cell-patterns, for instance 
in a segmenting egg, is strictly limited, we want to know how many
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patterns actually occur and in what proportions they do so in a 
random sample of identical eggs. Some years ago Mr Martin 
Adamson photographed more than a thousand frogs’ eggs in my 
laboratory, all at the stage shewing an eight-celled group of epiblastic 
cells: with the remarkable result that every one of the twelve 
possible arrangements was found to occur, but some were common 
and some rare, and the following were their comparative frequencies:

Type Frequency Type Frequency
c 19-0 % d 6’7%
3 17-0 h 6-6
b 12-8 f 51
g 10-3 k 3-0
a 7-8 I 2-4
e 6-9 i 1-8

In six separate batches of eggs (combined in the above list) one 
or other of the first two types (c or j) was always the commonest; 
and the first four taken together made up from 50 to 80 per cent, of 
each separate sample. On the other hand, when Roux, many years 
ago, shewed how various cell-configurations might be simulated by 
oil-drops* —as. we have done by means of soap-bubbles—he found 
that the type i was essentially unstable, the large drop with its 
seven contacts easily slipping into the centre of the system, and 
there taking up a stable position of equilibrium. That the latter 
is the more stable, and therefore the more probable, configuration, 
seems obvious enough; and indeed type i seems so obviously 
unstable that we are not surprised to find it at the bottom of 
Martin Adamson’s list of frequencies. The order in which the rest 
occur is by no means so easy of explanation.

* Roux’s experiments were performed with drops of paraffin suspended in 
dilute alcohol, to which a little calcium acetate was added to form a soapy pellicle 
over the drops and prevent them from reuniting with one another.

There is a point worth considering in regard to the number of 
contacts between cell and cell. In a system of eight cells, all 
reaching the boundary and all with three-way junctions, there are, 
besides the eight peripheral boundary-walls, thirteen internal parti
tions, or 2 (n — 2) + 1; the number of interfacial contacts is double 
that number, or twenty-six; and the mean number of contacts for 
each cell is 26/8, or 3-25. But, looking at the diagrams in Fig. 259 
(which represent three out of our twelve possible arrangements of
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eight cells), we see that, in type j, two cells are each in contact with 
two others, two with three others, and four each with four other 
cells; in type I, four cells are each in contact with two, two with

Fig. 258. Aggregations of oil-drops. After Roux.
Nos. 5, 6 represent successive changes in a single system.

four and two with five; and in type i, two are in contact with two, 
four with three and one with no less than seven. And if we sum 
up, irrespective of sign, the differences from the mean in these three 
cases, the sum amounts in / to 6, in i to 7-5, and in I to no less than

10. We might expect to find in such arrangements, that the com
monest and most stable types were those in which the cell-contacts 
were most evenly distributed, and the fact that j is (according to 
Martin Adamson’s results) one of the commonest, and I one of the 
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rarest of all looks like supporting the conjecture. Moreover, in all 
the commonest types we have a more or less equable division; but 
on the other hand, the number of contacts in type/is just the same 
as in h, but the latter occurred thrice as often, and k, which is as 
equable as any, was one of the least frequent of all. Coincidences 
are weighed down by discrepancies, and we are left pretty much in 
the dark as to why some types are much commoner than others.

The rules and principles which we have arrived at from the point 
of view of surface tension have a much wider bearing than is at 
once suggested by the problems to which we have applied them; 
for in this study of a segmenting egg we are on the verge of a subject 
adumbrated by Leibniz, studied more deeply by Euler, and greatly 
developed of recent years. It is the Geometria Situs of Gauss, the 
Analysis Situs of Riemann, the Theory of Partitions of Cayley, of 
Spatial Complexes or Topology of Johann Benedict Listing*. It 
begins with regions, boundaries and neighbourhoods, but leads 
to abstruse developments in modern mathematics. Leibniz 
had pointed outf that there was room for an analysis of mere 
position, apart from magnitude: “je croy qu’il nous faut encor une 
autre analyse, qui nous exprime directement situm, comme 1’Algebre 
exprime magnitudinem.” There were many things to which the 
new Geometria Situs could be applied. Leibniz used it to explain 
the game of solitaire, Euler to explain the knight’s move on the 
chess-board, or the routes over the bridges of a town. Vandermonde 
created a geometric de tissage\, which Leibniz himself had foreseen, 
to describe the intricate complexity of interwoven threads in a satin 
or a brocade §. Listing, in a famous paper [|, admired by Maxwell, 
Cayley and Tait, gave a new name to this new “algorithm,” and 
shewed its application to the curvature of a twining stem or tendril,

* Cf. Clerk Maxwell, On reciprocal figures, Trans. R.S.E. xxvi, p. 9, 1870.
f In a letter to Huygens, Sept. 8, 1679; see Hugenii Exercitationes math, et 

philos., etc., ed. Uylenbroeck, p. 9, 1833.
I Remarques sur les problemes de situation, Mem. Acad. Sci. Paris (1771), 

1774, p. 566.
§ A problem developed by many eminent mathematicians, and which Edouard 

Lucas shewed to be intimately related to the construction of Magic Squares: 
Recreations mathem. i, p. xxii, 1891.

|| Vorstudien liber Topologie, Gottinger Studien, i, pp. 811-75, 1847; Der Census 
raumlicher Complexe, ibid, x, pp. 97 seq., 1861.

TG F 39
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the aestivation of a flower, the spiral of a snail-shell, the scales on 
a fir-cone, and many other common things. The theory of “ spatial 
complexes,” as illustrated especially by knots, is a large part of 
the subject.

Topological analysis seems somewhat superfluous here; but it 
may come into use some day to describe and classify such com
plicated, and diagnostic, patterns as are seen in the wings of a 
butterfly or a fly. Let us look for a moment at how the topologist 
might begin to study one of our groups of cells; he would probably

call it an island divided into n counties, all maritime (i.e. none 
encircled by the rest), and having inland none but three-way 
junctions*. Here (in Fig. 260 a) is an island with nine counties; 
and here (6) is a 9-gon, whose corners represent the same count ies, and 
the lines connecting these (whether sides or chords) represent the 
contacts between. The polygon is now divided by six chords into 
seven triangles. Three of these are peripheral, BCD, FGH, HJA; 
mark their vertices, C, G, J, each with the symbol 4, and obliterate 
these three triangles (as in c). The remaining polygon has two 
peripheral triangles BDE, EFH; obliterate these, after marking

* This, like many another thing, comes from my good friend Dr G. T. Bennett.
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their vertices with the symbol 3. There remains the quadrilateral 
ABEH, containing two peripheral triangles ABE, EH A; mark B 
and H each with the symbol 2. The residual points A, E are to be 
marked 1 and 1. The polygon ABCDEFGHJ may now be read 
off: 124313424; and this formula, resulting from the triangula
tion, defines completely the system of chords and the topology of the 
“island.” This is one of the twenty-seven cases of a nine-celled 
arrangement; and here are our twelve arrangements of eight cells, 
recatalogued under the new method:

a 11231323 9 12341243
b 11321323 h 12341342
c 12312313 i 12341432
d 12313132 3 12431243
e 12313213 k 12431342
f 12341234 I 13231323

The crucial point for the biologist to comprehend is, that in a 
closed surface divided into a number of faces, the arrangement of 
all the faces, lines and points in the system is capable of analysis, 
and that, when the number of faces or areas is small, the number 
of possible arrangements is small also. This is the simple reason 
why we meet in such a case as we have been discussing (viz. the 
arrangement of a group or system of eight cells) with the same few 
types recurring again and again in all sorts of organisms, plants as 
well as animals, and with no relation to the lines of biological 
classification: and why, further, we find similar configurations 
occurring to mark the symmetry, not of cells merely, but of the 
parts and organs of entire animals. The phenomena are not 
“functions,” or specific characters, of this or that tissue or organism, 
but involve general principles, even “properties of space,” which 
lie within the province of the mathematician.

The theory of space-partitioning, to which the segmentation of 
the egg gives us an easy practical introduction, is illustrated in 
innumerable ways, some simple, some extremely complicated, in 
other fields of natural history; and some serve the better to illustrate 
the mathematical, and others the physical groundwork of the 
phenomenon.

39-2
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Very beautiful instances are to be found in insects’ wings. In the 
dragonfly’s wing (which we have already spoken of on p. 476) we 
see at first sight a vague assemblage of reticulate cells; but their 
arrangement is both orderly and simple. The long narrow wing is 
stiffened by longitudinal “ veins,” which in front lie near and parallel, 
for reasons well known to the student of aerodynamics*,  but become 
remote and divergent over the rest of the wing; finer veinlets, 
running between the veins, break up the surface into cells or 
areolae. Where two large veins rim parallel, and so near together 
that there is only room for one row of cells between, the walls of 
these meet the large veins at right angles, for the reason that the

* Sir George Cayley was the first to shew that in a sail—or wing—set at an 
acute angle to the wind, the centre of pressure lay near the front edge, which 
had, therefore, to be supported or stiffened (Nicholson's Journal, xxv, 1810).

Fig. 261. Wing of “demoiselle” dragonfly (Agrion).

tension in these latter is much greater than their own; and this 
happens nearly all over the delicate wings of the little dragonflies 
called “demoiselles.” But in the big dragonflies (Aeschna), and 
in general wherever there is space enough between two strong veins 
to hold a double row of cells, the walls of these intercalate with one 
another at co-equal angles of 120°, while still impinging at right 
angles on the strong longitudinal partitions. Wherever, as in the 
hinder parts of the wing, the great veins are few, the cells numerous, 
and their walls equally delicate, then the reticulum of cells becomes 
an hexagonal network of all but perfect regularity. In a cicada and 
in many others there is less contrast between great veins and small; 
the cells are few, the veins meet neither orthogonally nor at co-equal 
angles, and the shape of the cells suggests a common deformation 
under strain. In this last case, and generally in flies, bees and 
butterflies, the few cells form a complex space-arrangement, simplified 
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only by the condition that the walls impinge on one another three 
by three; and this being so. the assemblage includes a number of 
small intermediate partitions analogous to the “polar furrows” of 
embryology. We have seen how complex such configurations become 
as the cells increase in number; and another source of complexity 
comes in when the veins are of varying thickness and unequal tension, 
and hence meet one another at varying angles.

The entomologist is much concerned with the number and 
arrangement of these veins. In Fig. 263 we shew three forewings 
of a certain stonefly, which serve first to shew how constantly the 
veins meet jn three-way junctions; and then we notice how the

three wings are not exactly alike, for all their close resemblance, 
because in two of them there is one cell less than in the third, a being 
confluent with b in one of these cases and with c in the other*.  In 
other words, the veinlet ab has gone amissing in the one, and ac in 
the other, and in each case the remaining veinlet has sprung into a 
position of equilibrium. This is one of more than two hundred 
variations which have been recorded in the wing-veins of this one 
insect; it might seem superfluous to look for more.

* From Arthur Willey, Graded mutations in wings of a stonefly (Allocapnia 
pygmaea Burm.), Nature, July 17, 1937.

The lower algae shew us many beautiful patterns or collocations 
of cells, sometimes very complicated, as in Volvox or Hydroddctyon. 
A simpler case is that of Gonium. Of its sixteen cells four commonly 
form a square, being so thrust apart out of closer packing by accu
mulated intercellular substance; the other twelve are grouped 
around these four, and obey the rule that three cells and no more 
meet at each node or point of contact (Fig. 264). The twelve cells
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Fig. 264. The four-sided, 16-celled disc of Gonium, 
a minute algae. After Harper, diagrammatic.
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are thus in three series, four in touch with six neighbours each, 
four with four, and four with three; and this arrangement leads 
to curved contour-lines which may be seen in some of Cohn’s figures. 
Sometimes the interstitial substance is not enough to keep the four 
cells apart; then they come together in the usual rhomb or lozenge, 
and the rest group themselves around in the simplest and most sym
metrical way. That the whole arrangement is as compact as possible 
under the conditions, that it is in accord with the principle of minimal 
areas, and is “ such as would result from surface-tension and adhesion 
between viscous colloidal globules” is now well known to botanists*.

The tiny plates which form the microscopic shell of a Peridinian 
illustrate over again by their various collocations the principles 
which we have been studying in the partition-walls of the segmenting 
egg; and if the one case has shewn us pitfalls in the way of the 
embryologist, the other shews how the systematist, in his endless 
task of describing the forms and patterns of things, may sometimes 
base distinctions on what seem trivial differences from the physical 
or mathematical point of view.

On the upper half (or epitheca) of the globular test of a Peridinium 
we have fourteen little plates, or fourteen “cells,” to use the word 
in a mathematical rather than a histological sense, whose boundary - 
walls always meet in three-way nodes. We may reproduce the 
identical arrangement of the Peridinial plates by blowing bubbles 
in a saucer; but to deal with so many bubbles at once needs more 
patience than do the other similar experiments which we have 
described. That the cells are fourteen in number is, from the 
physical point of view, the merest accident, but from the zoologist’s 
it is a criterion of the genus; when there are more cells or fewer, 
the organism is called by another name. The number of possible 
arrangements of fourteen polygonal cells, linked by three-way nodes, 
is very large; but the “characters of the genus” exclude many of 
the variants. Many of them occur—it is quite possible that all 
occur -in Nature; but they are not called Peridinium. The fol
lowing arrangement defines the genus. There is a central or apical 
cell, around which are grouped six others; of these six, one extends 
to the boundary of the figure, that is, to the equator of the globular

* R. A. Harper, The colony in Gonium, Trans. Amer. Microsc. Soc. xxxi, pp. 65- 
84, 1912; cf. F. Cohn, in Nova Acta Acad. C.L.C., xxiv, p. 101, 1854. 
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shell, and seven other “equatorial cells” complete the boundary. 
In other words, the apical hexagon is surrounded by two concentric 
rows, originally of six cells each, whereof one cell of the inner row 
has (as it were) burst through a cell of the outer row, soreaching 
the boundary itself, and so dividing into two the equatorial cell 
which it encroached on and bisected.

In any such collocation as this, the number of sides and the 
number of nodes or corners are strictly determined; there are here 
fourteen cells, all conjoined by three-way nodes, and it follows that 
there are just 39 separate walls or edges, and just 26 nodes or 
corners. Many of these last are already defined for us; for six of 
them are the corners of the central hexagon, eight lie on the equator, 
and six more are at the inner ends of the radial partitions which 
separate the equatorial cells from one 
determined, those, namely, where the 
partitions running outwards from the 
apical cell meet the walls of the 
equatorial cells. The diagram (Fig. 
265) shews us two sets of radiating 
partitions, six running inwards from 
the equator (a, b, c, d, e, f) and six 
running outwards from the central 
hexagon (A...F), those of the one 
set being nearly opposite to those of 
the other; but near as they may be 
they never meet, for to do so would 
be to make a four-way node, which 
theory forbids and which observation 

another. Six remain to be

Fig. 265. Dorsal view of a 
Peridinium: diagrammatic.

tells us does not occur. In
every case, one partition must be slewed a little to one side or 
other of its opposite neighbour; and the whole range of possible 
variations depends on whether the shift be to the one side or to the 
other. We have six pairs of partitions, and in each of the six there 
is this possible alternative of right or left; there are therefore 26 or 
64 possible variations in all. Whether all six may vary, I do not 
know; there is no obvious reason why they should not. But 
alternative variation does occur in the two anterior and two posterior 
pairs of partitions; and these four give us 24 or 16 possible arrange
ments.
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When the partitions A, F meet the equatorial cells on the hither 
side of the partitions a, f, then, obviously, the large cell R is an 
irregular hexagon, and is in contact with two equatorial cells only; 
such an arrangement is said to define the genus Orthoperidinium. 
When A, F happen to fall on the farther sides of a, f, the large cell 
has eight sides, and is in contact with four equatorial cells; we have 
the new genus Paraperidinium. When A falls within a, but F falls 
beyond/, we have the genus Metaperid inium. There remains one 
alternative case, the converse of the last, to which the systematists 
have not given a name. z

The same physical phenomenon occurs at the opposite pole of the 
disc, where the partitions C, D may fall within or without, or one 
within and one without the positions of c, d; where, in other words, 
the intercalated cell CD is in contact with one, with three, or with 
two equatorial cells. Jorgensen, seeing these three types occurring 
both among the Orthoperidinia and the Metaperidinia, draws the 
conclusion that this character is more primitive, or more ancestral, 
than that by which Ortho- and Metaperidinia are separated from 
one another, a phylogenetic deduction concerning which topology 
has nothing to say*.  Within the restricted genus Peridinium we 
have at present two sub-genera and seven sub-groups of these, this 
being the number of the 64 possible arrangements so far recognised 
and named. These may have a certain constancy or stability; and 
trivial as their differences may seem to the physicist, they may still 
be worth the naturalist’s while to study and record.

* E. Jorgensen, Ueber Planktonproben, Svenska Hydrogr. Biol. Komm. Skrifter, 
iv, 1913.

t See K. R. Greville, Monograph of the genus Asterolampra, Q.J.M.S. vm, 
(Trans.), pp. 102-124, 1860; cf. ibid. (n.s.). n, pp. 41-55, 1862.

Another case, geometrically akin but biologically very different, 
is to be found in the little diatoms of the genus Asterolampra, and 
their immediate congenersf. In Asterolampra we have a little disc, 
in which we see (as it were) radiating spokes of one material alter
nating with intervals occupied on the flattened wheel-like disc by 
another (Fig. 266). The spokes vary in number, but the general 
appearance is in a high degree suggestive of the Chladni figures 
produced by the vibration of a circular plate. The spokes broaden 
out towards the centre, and interlock by visible junctions, which
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generally obey the rule of triple intersection, and accordingly 
exemplify the partition-figures with which we have been dealing. 
But whereas we have found the particular arrangement in which 
one cell is in contact with all the rest to be unstable, according to 
Roux’s oil-drop experiments, and to be conspicuous by its absence 
from our diagrams of segmenting eggs, here in Asterolampra, on the 
other hand, it occurs frequently, and is indeed the commonest 
arrangement (Fig. 266, B). In all probability, we are entitled to 
consider this marked difference natural enough. For we may 
suppose that in Asterolampra (unlike the case of the segmenting 
egg) the tendency is to perfect radial symmetry, all the spokes 
emanating from a point in the centre: such a condition would be 

Fig. 266. (A) Asterolampra marylandica Ehr.; 
(B, C) A. variabilis Grev. After Greville.

eminently unstable, and would break down under the least asym
metry. A very simple, perhaps the simplest case, would be that 
one single spoke should differ slightly from the rest, and should so 
tend to be drawn in amid the others, these latter remaining similar 
and symmetrical among themselves. Such a configuration would 
be vastly less unstable than the original one in which all the 
boundaries meet in a point; and the fact that further progress is 
not made towards other configurations of still greater stability may 
be sufficiently accounted for by viscosity, rapid solidification, or 
other conditions of restraint. A perfectly stable condition would of 
course be obtained if, as in the case of Roux’s oil-drop (Fig. 257, 6), 
one of the cellular spaces passed into the centre of the system, the 
other partitions radiating outwards from its circular wall to the 
periphery of the whole system. Precisely such a condition occurs 
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among our diatoms; but when it does so, it is looked upon as the 
mark and characterisation of the allied genus Arachnoidiscus.

A simple case, introductory to others of a more complex kind, 
is that of the radial canals of the Medusae. Here, in certain cases 
(e.g. Eleutheria), the usual arrangement of eight radial canals is not 
seldom modified, as for example, when two or more of them arise

Fig. 267. Variations observed in the canal-system of a medusoid (Eleutheria); after 
Hans Lengerich. 1-8, the eight possible arrangements of eight radial canals; 
9-16, some observed instances of nine radial canals.

not separately but by bifurcation*.  We then have just eight 
possible arrangements, as shewn in Fig. 267, 1-8, and of these eight 
no less than six have been actually observed. The other two are 
just as likely to occur, and we may take it that they also will in 
due time be recorded. It is yet another simple illustration of the

* Hans Lengerich. Verzweigungsarten der Radialkanale bei Eleutheria, Zool. 
Jahrbuch, 1922, p. 325.
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aphorism that whatsoever is possible, that Nature does, all in her 
own time and way; what things Nature does not do are the things 
which are mathematically impossible or are barred by physical 
conditions. It is possible for our little Medusa to develop nine 
radial canals instead of eight, and so at times she does; again they 
may be simple or branched, and trifurcations as well as bifurcations 
may appear. So we may extend our list of possible permutations 
and combinations, and find as before that a fair proportion of these 
possible arrangements have been observed already. There are 
many other Medusae (e.g. Willsia), where the number of radial

Fig. 268. A medusa (Willsia ornata) Fig. 269. Section of Alcyonarian 
shewing, diagrammatically, the order polyp.
of development of the numerous radial
canals. After Mayor.

canals much exceeds the simple symmetry of four or eight; and in 
these we may sometimes see, very beautifully, how the successive 
canals arrange themselves according to the same principles which 
we have now studied in so many diverse cases of partitioning 
(Fig. 268)*.

In a diagrammatic section of an Alcyonarian polyp (Fig. 269), 
we have eight chambers set, symmetrically, about a ninth, which 
constitutes the “stomach.” In this arrangement there is no diffi
culty, for it is obvious that, throughout the system, three boundaries 
meet (in plane section) in a point. In many corals we have as

* Such branching canals are characteristic of the Dendrostaurinae, a subfamily 
of the Oceanidae, a family of Anthomedusae; and very much the same occur in 
a certain subfamily of Leptomedusae. See Mayor’s Medusae of the World, I, 
p. 190.
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simple or even simpler conditions, for the radiating calcified 
partitions either converge upon a central chamber, or fail to meet 
it and end freely. But in a few cases, the partitions or “septa” 
converge to meet one another, there being no central chamber on 
which they may impinge; and here the manner in which contact 
is effected becomes complicated, and involves problems identical 
with those which we are now studying.

In the great majority of corals we have as simple or even simpler 
conditions than those of Alcyonium', for as a rule the calcified 
partitions or septa of the coral either con
verge upon a central chamber (or central 
“ columella ”), or else fail to meet it and end 
freely. In the latter case the problem of 
space-partitioning does not arise; in the 
former, however numerous the septa be, 
their separate contacts with the wall of the 
central chamber comply with our funda
mental rule according to which three lines. Fig. 270. Heterophyllia angu-
and no more meet in a point, and from After Nicholson,
this simple and symmetrical arrangement
there is little tendency to variation. But in a few cases, the septal 
partitions converge to meet one another, there being no central 
chamber on which they may impinge; and here the manner in which 
contact is effected becomes complicated, and involves problems of 
space-partitioning identical with those which we are now studying. 
In the genus Heterophyllia and in a few allied forms we have such 
conditions, and students of the Coelenterata have found them very 
puzzling. McCoy*, their first discoverer, pronounced these corals 
to be “totally unlike” any other group, recent or fossil; and 
Professor Martin Duncan, writing a memoir on Heterophyllia and 
its allies f, described them as “paradoxical in their anatomy.”

The simplest or youngest Heterophylliae known have six septa 
(as in Fig. 271, A); in the case figured, four of these septa are 
conjoined two and two, thus forming the usual triple junctions 
together with their intermediate partition-walls; and in the case 
of the other two we may fairly assume that their proper and original

* Ann. Mag. N.H. (2), in, p. 126, 1849.
f Phil. Trans. clvii, pp. 643-656, 1867.
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arrangement was that of our type 6 b (Fig. 245), though the central 
intermediate partition has been crowded out by partial coalescence. 
When with increasing age the septa become more numerous, their 
arrangement becomes exceedingly variable; for the simple reason 
that, from the mathematical point of view, the number of possible 
arrangements, of 10, 12 or more cellular partitions in triple contact, 
tends to increase with great rapidity, and there is little to choose 
among many of them in regard to symmetry and equilibrium. But 
while, mathematically speaking, each particular case among the

Fig. 271. Heterophyllia sp. After Martin Duncan.

multitude of possible cases is an orderly and definite arrangement, 
from the purely biological point of view on the other hand no law 
or order is recognisable; and so McCoy described the genus as 
being characterised by the possession of septa “destitute of any 
order of arrangement, but irregularly branching and coalescing in 
their passage from the solid external walls towards some indefinite 
point near the centre where the few main lamellae irregularly 
anastomose.”

In the two examples figured (Fig. 271 B, C), both comparatively 
simple ones, it will be seen that, of the main chambers, one is in each 
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case an unsymmetrical one; that is to say, there is one chamber which 
is in contact with a greater number of its neighbours than any 
other, and which at an earlier stage must have had contact with 
them all; this was the case of our type i, in the eight-celled system, 
(p. 598). Such an asymmetrical chamber (which may occur in 
a system of any number of cells greater than six) constitutes what 
is known to students of the Coelenterata as a “fossula”; and we 
may recognise it not only here, but also in Zaphrentis and its allies, 
and in a good many other corals besides. Moreover, certain corals 
are described as having more than one fossula: this appearance 
being naturally produced under certain of the other asymmetrical 
variations of normal space-partitioning. Where a single fossula 
occurs, we are usually told that it is a symptom of “bilaterality”; 
and this is in turn interpreted as an indication of a higher grade of 
organisation than is implied in the purely “radial symmetry” of the 
cojnmoner types of coral. The mathematical aspect of the case 
gives no warrant for this interpretation.

Let us carefully notice (lest we run the risk of confusing two 
distinct problems) that the space-partitioning of Heterophyllia by 
no means agrees with the details of that which we have studied 
in (for instance) the case of the developing disc of Erythrotrlchia: 
the difference simply being that Heterophyllia illustrates the general 
case of cell-partitioning as Plateau and Van Rees studied it, while 
m Erythrotrichia, and in our other embryological and histological 
instances, we have found ourselves justified in making the additional 
assumption that each new partition divided a cell into co-equal 
parts. No such law holds in Heterophyllia, whose case is essentially 
different from the others: inasmuch as the chambers whose parti
tion we are discussing in the coral are mere empty spaces (empty 
save for the mere access of sea-water); while in our histological 
and embryological instances, we were speaking of the division of 
a cellular unit of living protoplasm. Accordingly, among other 
differences, the “transverse” or “periclinal” partitions, which were 
bound to appear at regular intervals and in definite positions, when 
co-equal bisection was a feature of the case, are comparatively few 
and irregular in the earlier stages of Heterophyllia, though they 
begin to appear in numbers after the main, more or less radial, 
partitions have become numerous, and when accordingly these
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radiating partitions come to bound narrow and almost parallel-sided 
interspaces; then it is that the transverse or periclinal partitions 
begin to come in, and form what the student of the Coelenterata calls 
the “dissepiments” of the coral. We need go no further into the 
configuration and anatomy of the corals; but it seems to me beyond 
a doubt that the whole question of the complicated arrangement 
of septa and dissepiments throughout the group (including the 
curious vesicular or bubble-like tissue of the Cyathophyllidae and 
the general structural plan of the Tetracoralla, such as Streptoplasma 
and its allies) is well worth investigation from the physical and 
mathematical point of view, after the fashion which is here slightly 
adumbrated.

The method of dividing a circular, or spherical, system into 
eight parts, equal as to their areas but unequal in their peripheral 
boundaries, is probably of wide biological application; that is»to 
say, without necessarily supposing it to be rigorously followed, the 
typical configuration which it yields seems to recur again and

Fig. 272. Diagrammatic section of a Ctenophore (Eucharis).

again, with more or less approximation to precision, and under 
widely different circumstances. I am inclined to think, for instance, 
that the unequal division of the surface of a Ctenophore by its 
meridian-like ciliated bands is a case in point (Fig. 272). Here, if we 
imagine each quadrant to be twice bisected by a curved anticline, 
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we shall get what is apparently a close approximation to the actual 
position of the ciliated bands. The case however is complicated 
by the fact that the sectional plan of the organism is never quite 
circular, but always more or less elliptical. One point, at least, is 
clearly seen in the symmetry of the Ctenophores; and that is that 
the radiating canals which pass outwards to correspond in position 
with the ciliated bands have no common centre, but diverge from 
one another by repeated bifurcations, in a manner comparable to 
the conjunctions of our cell-walls.

In the early development of the shell (or "test”) of a sea-urchin*, 
each interambulacral area consists of a lozenge of four plates, in the 
familiar configuration assumed by four cells or bubbles, the polar 
-furrow lying in the direction of a “ radius ” 
of the shell. A fifth plate, or “cell,” 
presently fits itself in between the third 
and fourth, that is to say between the 
terminal plate and one of the lateral ones, 
and in doing so thrusts the former to 
one side; a sixth intercalates itself be
tween the fourth and fifth, and so on 
alternately. An ambulacrum consists of 
two columns of calcareous plates, which 
fit into one another in the usual way by 

Fig. 273. A “triad” and a 
“lozenge”: stages in the de
velopment of the ambulacra! 
and interambulacral plates of 
a sea-urchin. After I. Gor
don.

sutures set at angles of 120°. Each plate consists of three platelets; 
a “primary” plate (a) is succeeded by a smaller and narrower 
secondary plate (b); the squarish primary has one corner cut off by 
a curved partition, to form a “demiplate”, and the whole is called by 
students of this group an “echinoid triad”. Though we do not know 
precisely how the partitions arise, nor can we prove by measurement 
their obedience to the laws of maxima and minima, yet their 
general analogy to the principles we have explained is sufficiently 
obvious.

I am even inclined to think that the same principle helps us to 
understand the arrangement of the skeletal rods of a larval 
Echinoderm, and the complex conformation of the larva which is 
brought about by the presence of these long, slender skeletal

* Isabella Gordon, The development of the calcareous test of Echinus miliaris, 
Phil. Trans. (B), No. 214, p. 282, 1926; etc.

T G F 40 
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radii*. In Fig. 274 I have divided a circle into its four quadrants, 
and have bisected each quadrant by a circular arc (BC), passing from 
radius to periphery, as in the foregoing cases of cell-division (e.g. 
p. 590); and I have again bisected, in a similar way, the triangular

Fig. 274. Diagrammatic arrangement of partitions, represented by skeletal 
rods, in a larval Echinoderm (Ophiura).

halves of each quadrant (D, D). I have also inserted a small circle in 
the middle of the figure, concentric with the large one. If now we 
imagine the partition-lines in the figure to be replaced by solid 
rods, we shall have at once the frame-work of an Ophiurid (Pluteus)

Fig. 275. Pluteus-larva of Ophiurid.

larva. Let us imagine all these arms to be bent symmetrically 
downwards, so that the plane of the paper is transformed into 
a conical surface with curved sides; let a membrane be spread, 
umbrella-like, between the outstretched skeletal rods, and let

* J. Loeb has shewn (Amer. Journ. Physiol, vn, p. 441, 1900) that the sea-urchin’s 
egg can be reared for a time in a balanced solution of sodium, potassium and 
calcium chloride, developing no spicules and so forming no pluteus larva; on 
adding sodium carbonate the spicules are laid down and the pluteus larva takes 
shape accordingly.
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its margin loop from rod to rod in curves which are possibly 
catenaries but are more probably portions of an “elastic curve,” 
and the outward resemblance to a Pluteus larva is now complete. 
By various slight modifications, by altering the relative lengths of 
the rods, by modifying their curvature or by replacing the curved 
rod by a tangent to itself, we can ring the changes which lead us 
from one known type of Pluteus to another. The case of the 
Bipinnaria larvae of Echinids is certainly analogous, but it becomes 
very much more complicated; we have to do with a more complex 
partitioning of space, and I confess that I am not yet able to 
represent the more complicated forms in so simple a way.

There are a few notable exceptions (besides the various unequally 
segmenting eggs) to the general rule that in cell-division the mother
cell tends to divide into equal halves; and one of these exceptional 
cases is to be found in connection with the development of 
“stomata” in the leaves of plants*. The epidermal cells by which 
the leaf is covered may be of various shapes; sometimes, as in a 
hyacinth, they are oblong, but more often they have an irregular 
shape in which we can recognise, more or less clearly, a distorted 
or imperfect hexagon. In the case of the oblong cells, a transverse 
partition will be the least possible, whether the cell be equally or 
unequally divided, unless (as we have already seen) the space to 
be cut off be a very small one, not more than about three-tenths 
the area of a square based on the short side of the original rectangular 
cell. As the portion usually cut off is not nearly so small as this, 
we get the form of partition shewn in Fig. 276, and the cell so cut 
off is next bisected by a partition at right angles to the first; this 
latter partition splits, and the two last-formed cells constitute the 
so-called “guard-cells” of the stoma. In other cases, as in Fig. 277, 
there will come a point where the minimal partition necessary to 
cut off the required fraction of the cell-content is no longer a

* We know more about the physical activities of the stomata than about the 
mechanics of their development. It is known that the rate of gaseous diffusion 
through apertures of their order of magnitude is inversely proportional to the 
diameters of the apertures; and this law, by which the sufficient entry of carbonic 
acid through the stomata is fully accounted for, is (like Pfeffer’s work on natural 
semi-permeable membranes) one of the notable cases where physiology has enlarged 
the boundaries of physical science. Cf. Horace T. Brown, Some recent work on 
diffusion, Proc. Roy. Instit. March, 1901.

40-2
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transverse one, but is a portion of a cylindrical wall (2) cutting off 
one corner of the mother-cell. The cell so cut off is now a certain 
segment of a circle, with an arc of approximately 120°; and its 
next division will be by means of a curved wall cutting it into a

Fig. 276. Diagrammatic development of stomata in hyacinth.

triangular and a quadrangular portion (3). The triangular portion 
will continue to divide in a similar way (4, 5), and at length (for 
a reason which is not yet clear) the partition wall between the 
new-formed cells splits, and again we have the phenomenon of a

Fig. 277. Diagrammatic development of stomata in Sedum. 
(Cf. fig. in Sachs’s Botany, 1882, p. 103.)

“stoma” with its attendant guard-cells. In Fig. 277 are shewn the 
successive stages of division, and the chailging curvatures of the 
various walls which ensue as each subsequent partition appears, 
and introduces a new tension into the system. Among the oblong 
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cells of the epidermis in the hyacinth the stomata will be found 
arranged in regular rows, while they will be irregularly distributed 
over the surface of the leaf in such a case as we have depicted in 
Sedum.

As I have said, the mechanical cause of the split which constitutes 
the orifice of the stoma is not quite clear. It may be directly due 
to the subepidermal air-space which the stoma communicates with, 
for an air-surface on both sides of the delicate epidermis might 
well cause such an alteration of tensions that the two halves of 
the dividing cell would tend to part company. In Professor 
Macallum’s experiments, which we have briefly discussed in our 
short chapter on Adsorption, it was found that large quantities of 
potassium gathered together along the outer walls of the guard-cells 
of the stoma, thereby indicating a low surface-tension along these 
outer walls. The tendency of the guard-cells to bulge outwards 
is so far explained, and it is possible that, under the existing 
conditions of restraint, we may have here a force tending, or helping, 
to split the two cells asunder. It is clear enough, however, that 
the last stage in the development of a stoma is, from the physical 
point of view, not yet properly understood*. _It is noteworthy, 
and Nageli took note of it wellnigh a hundred years ago, that the 
stomatai mother-cells remain small while the others grow, and also 
that they only divide once for all, while their neighbours divide 
and divide again, to produce the lateral or accessory guard-cells.

In all our foregoing examples of the development of a “tissue” 
we have seen that the process consists in the successive division 
of cells, each act of division being accompanied by the formation 
of a boundary-surface, which, whether it become at once a solid 
or semi-solid partition or whether it remain semi-fluid, exercises 
in all cases an effect on the position and the form of the boundary 
which comes into being with the next act of division. In contrast 
to this general process stands the phenomenon known as “free 
cell-formation,” in which, out of a common mass of protoplasm, 
a number of separate cells are simultaneously, or all but simul
taneously, differentiated; and the case is all the more interesting

* Botanische Beitrage. Linnaea, xvi, p. 238, 1842. Cf. Garreau, Mem.* sur Ies 
stomates, Ann. Sc. Nat., Bot. (4), I, p. 213, 1854. 
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when the daughter-cells remain, for a time at least, within the 
envelope of the mother-cell. It sometimes happens, to begin with, 
that a number of mother-cells are formed simultaneously, and 
that the content of each divides, by successive divisions, into four 
“daughter-cells.” These daughter-cells tend to group themselves, 
just as would four soap-bubbles, into a “tetrad,” the four cells 
forming a spherical tetrahedron. For the system of four bodies 
is in perfect symmetry. The four cells are closely packed within 
the cell-wall of the mother-cell; their outer walls divide the 
sphere into four equiangular triangles; their inner walls meet 
three-by-three in an edge, and the four edges converge in the 
geometrical centre of the system; and these partition walls and 
their respective edges meet one another everywhere at co-equal 
angles. This is the typical mode of development of pollen-grains, 
common among monocotyledons and all but universal among 
dicotyledonous plants. By a loosening of the surrounding tissue 
and an expansion of the cavity, or anther-cell, in which they lie, 
the pollen-grains afterwards fall apart, and their individual form 
will depend upon whether or no their walls have solidified before 
this liberation takes place. For if not, then the separate grains will 
be free to assume a spherical form as a consequence of their own 
individual and unrestricted growth; but if they become set or rigid 
prior to the separation of the tetrad, then they will conserve more or 
less completely the plane interfaces and sharp angles of the elements 
of the tetrahedron. The latter is apparently the case in the pollen
grains of Epilobium (Fig. 278,1) and in many others. In the passion
flower (2) we have an intermediate condition: in which we can still see 
an indication of the facets where the grains abutted on one another 
in the tetrad, but the plane faces have been swollen by growth into 
spheroidal or spherical surfaces. In heaths and in azaleas the four 
cells of the tetrad remain attached together, and form a compound 
tetrahedral pollen-grain. Six furrows correspond to the six edges 
of the tetrahedron, and each is continued across a pair of cells; they 
are formed (I take it) along lines of weakness at the edges of the 
tetrahedron, and they make three furrows upon each one of the 
four coherent grains, just as we see them on a large number of 
ordinary separate and non-coherent pollen-grains. On the other 
hand, there may easily be cases where the tetrads of daughter-cells 
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fail to assume, even temporarily, the tetrahedral form: cases, in a 
general way, where the four cells escape from the confinement of 
their envelope, and fall into a looser, less close-packed arrangement*. 
The figures given by Goebel of the development of the pollen of 
Neottia (3, a e: all the figures referring to grains taken from a 
single anther) illustrate this to perfection, and it will be seen that,

Fig. 278. Various pollen-grains and spores (after Berthold. Campbell. Goebe 
and others). (1) Epilobium; (2) Passiflora; (3) Neottia; (4) Periploca 
graeca; (5) Apocynum; (6) Erica; (7) spore of Osmunda; (8) tetraspore of 
Callithamnion.

Fig. 279. Pollen of bulrush (Typha). After Wodehouse.

when the four cells lie'in a plane, they conform exactly to our 
typical diagram of the first four cells in a segmenting ovum; 
physically, as well as biologically, the tetrads a -d and the tetrad e 
are “allelomorphs” of one another. Again in the bulrush (Fig. 279),

* Cf. C. Nageli, Zur Entwicklungsgeschichte des Pollens bei den Phanerogamen, 
36 pp., Zurich, 1842; Hugo Fischer, V ergleichende Morphologic der Pollenkbrner, 
Berlin. 1890; see also, for many and varied illustrations, R. P. Wodehouse’s 
beautiful book on Pollen, 574 pp., New York, 1935, and earlier papers. 
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the four cells remain attached to one another, and lie upon a level 
with a “ polar furrow ” well displayed. Occasionally, though the four 
cells he in a plane, the diagram seems to fail us, for the cells appear 
to meet in a simple cross (as in 5); but here we soon perceive that 
the cells are not in complete interfacial contact, but are kept apart 
by a little intervening drop of fluid or bubble of air. The spores of 
fems (7) for the most part develop in much the same way as pollen
grains; they also very often retain traces of the shape which they 
assumed as members of a tetrahedral figure, and the same is equally 
true of liverworts. Among the “tetraspores” (b) of the Florideae, 
or red seaweeds, we have a condition which is in every respect 
analogous. The same thing happens in certain simple algae allied to 
Protococcus', where four daughter-cells, confined within a mother
cell, form a spherical tetrahedron, much like a spore of Osmunda on 
a smaller scale*.

Here again it is obvious that, apart from differences in actual 
magnitude, and apart from superficial or “accidental” differences 
(referable to other physical .phenomena) in the way of colour, 
texture and minute sculpture or pattern, a very small number of 
diagrammatic figures will sufficiently represent the outward forms 
of all the tetraspores, four-celled pollen-grains, and other four
celled aggregates which are known or are even capable of existence. 
And it is equally obvious that the resemblance of these things, to 
this extent, is a matter of physical and mathematical symmetry, and 
carries no proof of near relationship or common ancestry.

We have been dealing hitherto (save for some slight exceptions) 
with the partitioning of cells on the assumption that the system 
either remains unaltered in size or else that growth has proceeded 
uniformly in all directions. But we extend the scope of our enquiry 
greatly when we begin to deal with unequal growth, with cells so 
growing and dividing as to produce a greater extension along 
some one axis than another. And here we come close in touch 
with that great and still (as I think) insufficiently appreciated 
generalisation of Sachs, that the manner in which the cells divide 
is the result, and not the cause, of the form of the dividing structure: 
that the form of the mass is caused by its growth as a whole, and

* Cf. A. Pascher, Arch. f. Protozoenk. lxxvi, p. 409; Lxxvn, p. 195, 1932. 
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is not a resultant of the growth of the cells individually considered *.  
Such asymmetry of growth may be easily imagined, and may 
conceivably arise from a variety of causes. In any individual cell, 
for instance, it may arise from molecular asymmetry of the structure 
of the cell-wall, giving it greater rigidity in one direction than 
another, while all the while the hydrostatic pressure within the 
cell remains constant and uniform. In an aggregate of cells, it 
may very well arise from a greater chemical, or osmotic, activity 
in one than another, leading to a localised increase in the fluid 
pressure, and to a corresponding bulge over a certain area of the 
external surface. It might conceivably occur as a direct' result of 
preceding cell-divisions, when these are such as to produce many 
peripheral or concentric walls in one part and few or none in another, 
with the obvious result of strengthening the boundary wall here 
and weakening it there; that is to say, in our dividing quadrant, 
if its quadrangular portion subdivide by periclines, and the 
triangular portion by oblique anticlines (as we have seen to be 
the natural tendency), then we might expect that external growth 
would be more manifest over the latter than over the former areas. 
As a direct and immediate consequence of this we might expect 
a tendency for special outgrowths, or “buds,” to arise from the 
triangular rather than from the quadrangular cells; and this turns 
out to be not merely a tendency towards which theoretical con
siderations - point, but a widespread and important factor in the 
morphology of the cryptogams. But meanwhile, without enquiring 
further into this complicated question, let us simply take it that, 
if we start from such a simple case as a round cell which has divided 
into two halves or four quarters (as the case may be), we shall at 
once get bilateral symmetry about a main axis, and other secondary 
results arising therefrom, as soon as one of the halves, or one of 
the quarters, begins to shew a rate of growth in advance of the 
others; for the more rapidly growing cell, or the peripheral wall 
common to two or more such rapidly growing cells, will bulge out, 
and may finally extend into a cylinder with rounded end. This 
latter very simple case is illustrated in the development of a 

* Sachs, Pjlanzenphysiologie (Vorlesung xxiv), 1882; cf. Rauber, Neue Grund- 
legungen zur Kenntniss der Zelle, Morphol. Jahrb. viii, p. 303 seq., 1883; 
E. B. Wilson, Cell-lineage of Nereis, Journ. Morph, vi, p. 448, 1892; etc.
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pollen-tube, where the rapidly growing cell develops into the 
elongated cylindrical tube, and the slow-growing or quiescent part 
remains behind as the so-called “vegetative” cell or cells.

Just as we have found it easier to study the segmentation of 
a circular disc than that of a spherical cell, so let us begin in the 
same way, by enquiring into the divisions which will ensue if the 
disc tend to grow, or elongate, in» some one particular direction 
instead of in radial symmetry. The figures which we shall then 
obtain will not only apply to the disc, but will also represent, in 
all essential features, a projection or longitudinal section of a solid 
body, spherical to begin with, preserving its symmetry as a solid 
of revolution, and subject to the same general laws as we study 
in the disc*.

(1) Suppose, in the first place, that the axis of growth lies 
symmetrically in one of the original quadrantal cells of a segmenting 
disc; and let this growing cell elongate with comparative rapidity 
before it subdivides. When it does divide, it will ^ecessarily do 
so by a transverse partition, concave towards the apex of the cell: 
and, as further elongation takes place, the cylindrical structure 
which will be developed thereby will tend to be again and again 
subdivided by similar transverse partitions (Fig. 280). If at any 
time, through this process of concurrent elongation and subdivision, 
the apical cell become equivalent to, or less than, a hemisphere, 
it will next divide by means of a longitudinal, or vertical partition; 
and similar longitudinal partitions will arise in the other segments 
of the cylinder, as soon as it conies about that their length (in the 
direction of the axis) is less than their breadth.

But when we think of this structure in the solid, we at once 
perceive that each of these flattened segments, into which our 
cylinder divided to begin with, is equivalent to a flattened circular 
disc; and its further division will accordingly tend to proceed like

* In the following account I follow closely on the lines laid down by Berthold; 
Protoplasmamechanik, cap. vii. Many botanical phenomena identical and similar 
to those here dealt with are elaborately discussed by Sachs in his Physiology of 
Plants (chap, xxvii, pp. 431-459, Oxford, 1887), and in his earlier papers, Ueber 
die Anordnung der Zellen in jiingsten Pflanzentheilen. and Ueber Zellenanordnung 
und Wachsthum (Arb. d. botan. Inst. Wurzburg, 1877 '78). But Sachs’s treatment 
differs entirely from that which I adopt and advocate here: his explanations being 
based on his “law” of rectangular succession, and involving complicated systems 
of confocal conics, with their orthogonally intersecting ellipses and hyperbolas. 
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any other flattened disc, namely into four quadrants, and afterwards 
by anticlines and periclines in the usual way. A section across the 
cylinder, then, will tend to shew us precisely the same arrangements 
as we have already so fully studied in connection with the typical 
division of a circular cell into quadrants, and of these quadrants 
into triangular and quadrangular portions, and so on.

But there are other possibilities to be considered, in regard to 
the mode of division of the elongating quasi-cylindrical portion, as 
it gradually develops out of the growing and bulging quadrantal 
cell; for the manner in which this latter cell divides will simply 
depend upon the form it has assumed before each successive act

Fig. 280. Diagrammatic, or hypothetical, result of asymmetrical growth.

of division takes place, that is to say upon the ratio between its 
rate of growth and the frequency of its successive divisions. For, 
as we have already seen, if the growing cell attain a markedly 
oblong or cylindrical form before division ensues, then the partition 
will arise transversely to the long axis; if it be but a little more 
than a hemisphere, it will divide by an oblique partition; and if 
it be less than a hemisphere (as it may come to be after successive 
transverse divisions) it will divide by a vertical partition, that is 
to say by one coinciding with its axis of growth. An immense 
number of permutations and combinations may arise in this way, 
and we must confine our illustrations to a small number of cases. 
The important thing is not so much to trace out the various 
conformations which may arise, but to grasp the fundamental 
principle: which is, that the forces which dominate the form of 
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each cell regulate the manner of its subdivision, that is to say the 
form of the new cells into which it subdivides; or in other words, • 
the form of the growing organism regulates the form and number 
of the cells which eventually constitute it. The complex cell
network is not the cause but the result of the general configuration, 
which latter has its essential cause in whatsoever physical and 
chemical processes have led to a varying velocity of growth in one 
direction as compared with another.

In the annexed figure of an embryo of Sphagnum we see a mode 
of development almost precisely corresponding to the hypothetical 
case which we have just described—the case, 
that is to sajJ, where one of the four original 
quadrants of the mother-cell is the chief 
agent in future growth and development. 
We see at the base of our first figure (a), 
the three stationary, or undivided quadrants, 
one of which has further slowly divided in 
the stage b. The active quadrant has grown 
quickly into a cylindrical structure, which 
inevitably divides, in the next place, into a 
series of transverse partitions; and accord
ingly, this mode of development carries with 
it the presence of a single “apical cell.” whose 
lower wall is a spherical surface with its 
convexity downwards. Each cell of the 
subdivided cylinder now appears as a more 

Fig. 281. Development of 
Sphagnum. After Camp
bell.

or less flattened disc, whose mode of further subdivision we may 
prognosticate according to our former investigation, to which subject 
we shall presently return.

(2) In the next place, still keeping to the case where only one 
of the original quadrant-cells continues to grow and develop, let us 
suppose that this growing cell falls to be divided when by growth 
it has become just a little greater than a hemisphere; it will then 
divide, as in Fig. 282, 2, by an oblique partition, in the usual way, 
whose precise position and inclination to the base will depend 
entirely on the configuration of the cell itself, save only, of course, 
that we may have also to take into account the possibility of the 
division being into two unequal halves. By our hypothesis, the 
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growth of the whole system is mainly in a vertical direction, which 
is as much as to say that the more actively growing protoplasm, 
or at least the strongest osmotic force, will be found near the apex; 
where indeed there is obviously more external surface for osmotic 
action. It will therefore be that one of the two cells which contains, 
or constitutes, the apex which will grow more rapidly than the 
other, and which therefore will be the first to divide; and indeed 
in any case, jt will usually be this one of the two which will tend 
to divide first, inasmuch as the triangular and not the quadrangular 
half is bound to constitute the apex*. It is obvious that (unless

Fig. 282. Development of antheridium of liverwort (diagrammatic).

the act of division be so long postponed that the cell has become 
quasi-cylindrical) it will divide by another oblique partition, starting 
from, and running at right angles to, the first. And so division 
will proceed by oblique alternate partitions, each one tending to 
be, at first, perpendicular to that on which it is based and also to 
the peripheral wall; but all these points of contact soon tending, 
by reason of the equal tensions of the three films or surfaces which 
meet there, to form angles of 120°. There will always be a single 
apical cell, of a triangular form. The developing antheridium of a 
liverwort (Riccid) is a typical example of such a case. In Fig. 283 
which represents a “gemma” of a moss, we see just the same thing; 
with this addition, that here the lower of the two original cells has 
grown even more quickly than the other, constituting a long cylin- 

* Cf. p. 590.
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drical stalk, and dividing in accordance with its shape by means of 
transverse septa. In all such cases the cells may continue to sub
divide, and the manner in which they do so must depend upon 
their own proportions; and in all cases there will sooner or later be 
a tendency to the formation of periclinal walls, cutting off an 
epidermal layer of cells, as Fig. 284 illustrates very well.

The method of division by means of oblique partitions is a 
common one in the case of “growing points”; for it evidently 
includes all cases in which the act of cell-division does not lag far 
behind that elongation which is determined by the specific rate of 

Fig. 283. Gemma 
of moss. After 
Campbell.

Fig. 284. Development of antheridium
of Riccia. After Campbell.

growth. And it is also obvious that, under a common type, there 
must here be included a variety of cases which will, at first sight, 
present a very different appearance one from another. For instance, 
in Fig. 285 which represents a growing shoot of SeJaginella, and 
somewhat less diagrammatically in the young embryo of Junger- 
mannia (Fig. 286), we have the appearance of an almost straight 
vertical partition running up in the axis of the system, and the 
primary cell-walls are set almost at right angles to it—almost 
transversely, that is to say, to the outer walls and to the long axis 
of the structure. We soon recognise, however, that the difference 
is merely a difference of degree. The more remote the partitions 
are, that is to say the greater the velocity of growth relatively to 
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that of division, the less abrupt will be the alternate kinks or 
curvatures of the portions which lie along the axis, and the more will 
these portions appear to constitute a single unbroken wall.

(3) But an appearance nearly, if not quite, indistinguishable 
from this may be got in another way, namely, when the original 
growing cell is so nearly hemispherical that it is actually divided 

Fig. 285. Section of growing shoot 
of Sdagindla, diagrammatic.

Fig. 286. Embryo of Jungermannia. 
After Kienitz-Gerloff.

by a vertical partition into two quadrants, and when from this vertical 
partition, as it elongates, lateral partition-walls arise on either 
side. Then, by the tensions exercised by these, the vertical partition

Fig. 287.

will be bent into little portions set at 120° one to another, and the 
whole will come to look j ust like that which, in the former case, was 
made up of parts of many successive oblique partitions (Fig. 287).

Let us now, in one or two cases, follow out a little further the 
stages of cell-division whose beginnings we have studied in the 
last paragraphs. In the antheridium of Riccia, after successive 
oblique partitions have produced the longitudinal series of cells 
shewn in Fig. 284, 4, it is plain that the next partitions will arise 
periclinally, that is to say parallel to the outer wall, which coin
cides with the short axis of the oblong cells. The effect is to produce 
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an epidermal layer, whose cells subdivide further by partitions 
perpendicular to the surface, that is to say crossing the flattened 
cells by their shortest diameter. The inner mass consists of cells 
which are still more or less oblong, or which become so in process of 
growth; and these again divide, parallel to their short axes, into 
squarish cells, which as usual, by the mutual tension of their walls, 
become hexagonal as seen in a plane section. There is a clear dis
tinction, then, in form as well as in position, between the outer 
covering-cells and those which lie within this envelope; the latter 
are reduced to a condition which fulfils the mechanical function of a 
protective coat, while the former undergo less modification, and 
become the actively living, reproductive elements.

Fig. 288. Development of sporangium of Osmunda,. After Bower.

In Fig. 288 is shewn the development of the sporangium of a 
fern (Osmunda) We may trace here the common phenomenon of 
a series of oblique partitions, built alternately on one another, and 
cutting off a conspicuous triangular apical cell. Over the whole 
system an epidermal layer is formed, in the manner we have 
described; and in this case it covers the apical cell also, owing to 
the fact that it was of such dimensions that, at one stage of growth, 
a periclinal partition wall, cutting off its outer end, was indicated 
as of less area than an anticlinal one. This periclinal wall cuts 
down the apical cell to the proportions, very nearly, of an equi
lateral triangle, but the solid form of the cell is obviously that of 
a tetrahedron with curved faces; and accordingly, the least possible 
partitions by which further subdivision can be effected will run 
successively parallel to its four sides (or its three sides when we 
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confine ourselves to the appearances as seen in section). The effect 
is to cut off on each side of the apical cell a characteristically 
flattened cell, oblong as seen in section, still leaving a triangular 
(or strictly speaking, a tetrahedral) one in the centre. The oblong 
cells, which constitute no specific structure and perform no specific 
physiological function*, but which merely represent certain direc
tions in space towards which the whole system of partitioning has 
gradually led, are called by botanists the “tapetum.” The active 
growing tetrahedral cell which lies between them, and from which 
in a sense every other cell in the system has been either directly 
or induectly segmented off, still manifests its vigour and activity, 
and becomes, by internal subdivision, the mother-cell of the spores.

In all these cases, for simplicity’s sake, we have merely con
sidered the appearances presented in a single longitudinal plane 
of optical section. But it is not difficult to interpret from these 
appearances what would be seen in another plane, for instance in 
a transverse section. In our first example, for instance, that of 
the developing embryo of Sphagnum (Fig. 281 c, d), we see that, 
at appropriate levels, the cells of the original cylindrical row have 
divided into transverse rows of four, and then of eight cells. We 
may be sure that the Tour cells represent, approximately, quadrants 
of a cylindrical disc, the four cells, as usual, not meeting in a point, 
but intercepted by a small intermediate partition. Again, where 
we have a plate of eight cells, we may well imagine that the eight 
octants are arranged in what we have found to be the way naturally 
resulting from the division of four quadrants, that is to say into 
alternately triangular and quadrangular portions; and this is found 
by means of sections to be the case. The figure is precisely com
parable to our previous diagrams of the arrangement of eight cells in 
a dividing disc, save only that, in two cases, the cells have already 
undergone a further subdivision.

It follows that we are apt to meet with this characteristic figure, in 
one or other of its possible and strictly limited variations, in tne 
cross-sections of many growing structures, just as we have alreadv

* This is not to say that Nature makes no use of the tapetai cells. In the end 
they break down and contribute to the growth of the spore-mother-cell: very 
much as the “superfluous” eggs in a fly’s ovary contribute yolk-material to the 
developing ovum.

T G F 4i 
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seen it appear in cases where the entire system consists of eight 
cells only. For example, we have it in a section of a young embryo 
of a moss (Phascum), and again, in a section of an embryo of a 
fern (Adiantum). In Fig. 290, shewing a section through a growing 
frond of a sea-weed (Girardia), we have a case where the partitions 
forming the eight octants have conformed to the usual type: but 
instead of the usual division by periclines of the four quadrangular 
spaces, these latter are dividing by means of oblique septa, apparently 
owing to the fact that the cell is not dividing into two equal, but 
into two unequal portions. In this last figure we have a peculiar 
look of stiffness or formality, such that it appears at first to bear 
little resemblance to the rest. The explanation is of the simplest. 
The mode of partitioning differs little (except to some slight extent

Fig. 289. (A, B) Sections of younger and older embryos of Phascum; 
(C) do. of Adiantum. After Kienitz-Gerloff.

in the way already mentioned) from the normal type; but in this 
case the partition walls are so thick and become so soon com
paratively solid and rigid, that the secondary curvatures due to their 
successive mutual tractions are here imperceptible.

A curious and beautiful case, apparently aberrant but which 
would doubtless be found conforming strictly to physical laws if 
only we clearly understood the actual conditions, is indicated in 
the development of the antheridium of a fern, as described by 
Strasbiirger. Here the antheridium develops from a single cell, 
which (Fig. 291) has grown to something more than a hemisphere; 
and the first partition, instead of stretching transversely across the 
cell, as we should expect it to do if the cell were actually spherical, 
has as it were sagged down to come in contact with the base, and 
so to develop into an annular partition, running round the lower
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margin of the cell. The phenomenon is precisely identical to that 
bisection of a quadrant by means of a circular arc, of which we 
spoke on p. 581, and the annular film is very easy to reproduce 
by means of a soap-bubble in the bottom of a cylindrical dish or 
beaker. The next partition is a periclinal one, concentric with the 
outer surface of the young antheridium, and this in turn is followed 
by a concave partition which cuts off the apex of the original cell: 
but which becomes connected with the second, or periclinal partition 
in precisely the same annular fashion as the first partition did with 
the base of the little antheridium. The result is that, at this stage, 
we have four cell-cavities in the little antheridium: (1) a central

Fig. 290. Section through frond of 
Girardia sphacdaria. After Goebel.

ridium of Pteris. After Stras- 
burger.

cavity; (2) an annular space around the lower margin; (3) a narrow 
annular or cylindrical space around the sides of the antheridium; 
and (4) a small terminal or apical cell. It is evident that the 
tendency, in the next place, will be to subdivide the flattened 
external cells by means of anticlinal partitions, and so to convert 
the whole structure into a single layer of epidermal cells, surrounding 
a central cell within which, in course of time, the antherozoids are 
developed.

The foregoing account deals only with a few elementary pheno
mena, and may seem to fall far short of an attempt to deal in general 
with “the forms of tissues.” But it is the principle involved, and 
not its ultimate and very complex results, that we can alone attempt 
to grapple with. The stock-in-trade of mathematical physics, in 
all the subjects with which that science deals, is for the most part 

41-2
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made up of simple, or simplified, cases of phenomena which in their 
actual and concrete manifestations are usually too complex for 
mathematical analysis; hence, even in physics, the full mechanical 
explanation of a phenomenon is seldom if ever more than the 
“cadre ideal” towards which our never-finished picture extends. 
When we attempt to apply the same methods of mathematical 
physics to our biological and histological phenomena, we need 
not wonder if we be limited to illustrations of a simple kind, 
which cover but a small part of the phenomena with which 
histology has to do. But yet it is only relatively that these pheno
mena to which we have found the method applicable are to be 
deemed simple and few. They go already far beyond the simplest 
phenomena of all, such as we see in the dividing Protococcus, and 
in the first stages, two-celled or four-celled, of the segmenting egg. 
They carry us into stages where the cells are already numerous, 
and where the whole conformation has become by no means easy 
to depict or visualise, without the help and guidance which the 
phenomena of surface-tension, the laws of equilibrium and the 
principle of minimal areas are at hand to supply. And so far as 
we have gone, and so far as we can discern, we see no sign of the 
guiding principles failing us, or of the simple laws ceasing to hold 
good.



CHAPTER IX

ON CONCRETIONS, SPICULES, AND 
SPICULAR SKELETONS

The deposition of inorganic material in the living body, usually 
in the form of calcium salts or of silica , is a common phenomenon. 
It begins by the appearance of small isolated particles, crystalline 
or non-crystalline, whose form has little relation or none to the 
structure of the organism; it culminates in the complex skeletons 
of the vertebrate animals, in the massive skeletons of the corals, or 
in the polished, sculptured and mathematically regular molluscan 
shells. Even among very simple organisms, such as diatoms, 
radiolarians, foraminifera or sponges, the skeleton displays extra
ordinary variety and beauty, whether by reason of the intrinsic 
form of its elementary constituents or the geometric symmetry with 
which these are interconnected and arranged.

With regard to the form of these various structures (and this is 
all that immediately concerns us here), we have to do with two 
distinct problems, which merge with one another though they are 
theoretically distinct. For the form of the spicule or other skeletal 
element may depend solely on its chemical nature, as for instance, 
to take a simple but not the only case, when it is purely crystalline; 
or the inorganic material may be laid down in conformity with the 
shapes assumed by cells, tissues or organs, and so be, as it were, 
moulded to the living organism; and there may well be intermediate 
stages in which both phenomena are simultaneously at work, the 
molecular forces playing their part in conjunction with the other 
forces inherent in the system.

So far as the problem is a purely chemical one we must deal 
with it very briefly indeed: all the more because special investiga
tions regarding it have as yet been few, and even the main facts 
of the case are very imperfectly known. This at least is clear, that 
the phenomena with which we are about to deal go deep into the 
subject of colloid chemistry, and especially that part of the science 
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which deals with colloids in connection with surface phenomena. 
It is to the special student of the chemistry and physics of the 
colloids that we must look for the elucidation of our problem*.

* There is much information regarding the chemical composition and minera
logical structure of shells and other organic products in H. C. Sorby’s Presidential 
Address to the Geological Society (Proc. Geol. Soc. 1879, pp. 56-93); but Sorby 
failed to recognise that association with “organic” matter, or with colloid matter 
whether living or dead, introduced a new series of purely physical phenomena.

f Julien Vesque, Sur la production artificielle de cristaux d’oxalate de chaux 
semblables a ceux qui se forment dans les plantes. Jan. Sc. Nat. (Bot.) (5) xix, 
pp. 300-313, 1874.

In the first and simplest part of our subject, the essential problem 
is the problem of crystallisation in presence of colloids. In the cells 
of plants true crystals are found in comparative abundance, and 
consist, in the majority of cases, of calcium oxalate. In the stem 
and root of the rhubarb for instance, in the leaf-stalk of Begonia 
and in countless other cases, sometimes within the cell, sometimes 
in the substance of the cell-wall, we find large and well-formed 
crystals of this salt; their varieties of form, which are extremely 
numerous, are simply the crystalline forms proper to the salt itself, 
and belong to the twTo systems, cubic and monoclinic, in one or other 
of which, according to the amount of water of crystallisation, this 
salt is known to crystallise. When calcium oxalate crystallises 
according to the latter system (as it does when its molecule is com 
bined with two molecules of water), the microscopic crystals have 
the form of fine needles, or “raphides”; these are very common in 
plants, and may be artificially produced when the salt is crystallised 
out in presence of glucose or of dextrinf.

Calcium carbonate, on the other hand, when it occurs in plant
cells, as it does abundantly (for instance in the “cystoliths” of the 
Urticaceae and Acanthaceae, and in great quantities in Meldbesia 
and the other calcareous or “stony” algae), appears in the form 
of fine rounded granules, whose inherent crystalline structure is 
only revealed (like that of a molluscan shell) under polarised light. 
Among animals, a skeleton of carbonate of lime occurs under a 
multitude of forms, of which we need only mention a few of the 
most conspicuous. The spicules of the calcareous sponges are 
triradiate, occasionally quadriradiate, bodies, with pointed rays, not 
crystalline in outward form but wTith a definitely crystalline internal 
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structure; we shall return again to these, and find for them what 
would seem to be a satisfactory explanation of their form. Among 
the Alcyonarian zoophytes we have a great variety of spicules*, 
which are sometimes straight and slender rods, sometimes flattened 
and more or less striated plates, and still more often disorderly 
aggregations of micro-crystals, in the form of rounded or branched 
concretions with rough, or knobby surfacesf (Figs. 292, 298). A 
third type, presented by several Very different things, such as a

Fig. 292. Alcyonarian spicules: Siphonogorgia and Aiithogorgia. After Studer.

pearl or the ear-bone of a bony fish, consists of a more or less rounded 
body, sometimes spherical, sometimes flattened, in which the cal
careous matter is laid down in concentric zones, denser and clearer 
layers alternating with one another. In the development of the 
molluscan shell and in the calcification of a bird’s egg or a crab’s 
shell, small spheroidal bodies with similar concentric striation make 
their appearance; but instead of remaining separate they become

* Cf. Kblliker, Icones Histologicae, 1864, p. 119, etc,
t In rare cases, these shew a single optic axis and behave as individual crystals: 

VV J. Schmidt, Arch. f. Entw. Meeh. li, pp, 509-551, 1922. 
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crowded together, and in doing so are apt to form a pattern of 
hexagons. In some cases the carbonate of lime, on being dissolved 
away by acid, leaves behind it a certain small amount of organic 
residue; in many cases other salts, such as phosphates of lime, 
ammonia or magnesia, are present in small quantities; and in most 
cases, if not all, the developing spicule or concretion is somehow so 
associated with living cells that we are apt to take it for granted 
that it owes its form to the constructive or plastic agency of these.

The appearance of direct association with living cells, however, 
is apt to be fallacious; for the actual precipitation takes place, as 
a rule, not in actively living, but in dead or at least inactive tissue*;  
that is to say in the “formed material” or matrix which accumulates 
round the living cells, or in the interspaces between these latter, 
or, as often happens, in the cell-wall or cell-membrane rather than 
within the substance of the protoplasm itself. We need not go the 
length of asserting that this is a rule without exception; but, so 
far as it goes, it is of great importance and to its consideration we 
shall presently return f.

* In an interesting paper by Robert Irvine and Sims Woodhead on the Secretion of 
carbonate of lime by animals (Proc. R.S.E. xv, pp. 308-316; xvi, pp. 324-351, 
1889-90) it is asserted (p. 351) that “lime salts, of whatever form, are deposited 
only in vitally inactive tissue.”

f The tube of Teredo shews no trace of organic matter, but consists of irregular 
prismatic crystals: the whole structure “being identical with that of small veins 
of calcite, such as are seen in thin sections of rocks” (Sorby. Proc. Geol. Soc. 1879, 
p. 58). This, then, would seem to be a somewhat exceptional case of a shell laid 
down completely outside of the animal’s external layer of organic substance.

J Cf. Pouchet and Chabry, C.R. Soc. Biol. Paris (9). I. pp. 17-20. 1889; C.R. 
Acad. Sci. cvni, pp. 196-198, 1889.

Cognate with this is the fact that, at least in some cases, the 
organism can go on, in apparently unimpaired health, when stinted 
or even wholly deprived of the material of which it is wont to make 
its spicules or its shell Thus the eggs of sea-urchins reared in lime- 
free water develop, in apparent health and comfort, into larvae 
which lack the usual skeleton of calcareous rods: and in which, 
accordingly, the long arms of the Pluteus larva, which the rods 
should support and extend, are entirely absent J. Again, when 
foraminifera are kept for generations in water from which they 
gradually exhaust the lime, their shells grow hyaline and trans
parent, and dwindle to a mere chitinous pellicle; on the other hand, 
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in the presence of excess' of lime their shells become much altered, 
are strengthened with various ridges or “ornaments,” and come to 
resemble other varieties and even “species*.”

The crucial experiment, then, is to attempt the formation of 
similar spicules or concretions apart from the living organism. But 
however feasible the attempt may be in theory, we must be prepared 
to encounter many difficulties; and to realise that, though the 
reactions involved may be well within the range of physical chemistry, 
yet the actual conditions of the case may be so complex, subtle and 
delicate that only now and then, and only in the simplest of cases, 
has it been found possible to imitate the natural objects successfully. 
Such an attempt is part of that wide field of enquiry through which 
Stephane Leduc and other workers have sought to produce, by 
synthetic means, forms similar to those of living things; but it is 
a circumscribed and well-defined part of that wider invest igationf.

When we find ourselves investigating the forms assumed by 
chemical compounds under the peculiar circumstances of association 
with a living body, and when we find these forms to be characteristic 
or recognisable, and somehow different from those which the same 
substance is wont to assume under other circumstances, an analogy, 
captivating though perhaps remote, presents itself to our minds 
between this subject of ours and certain synthetic problems of the 
organic chemist. There is doubtless an essential difference, as well 
as a difference of scale, between the visible form of a spicule or con-

* Cf. Heron-Allen, Phil. Trans. (B), ccvi, p. 262, 1915.
f Leduc’s artificial growths were mostly obtained by introducing salts of the 

heavy metals or alkaline earths into solutions which form with them a “ precipitation
membrane”—as when we introduce copper sulphate into a ferrocyanide solution. 
See his Mechanism of Life, 1911, ch. x, for copious references to other works on 
the “artificial production of organic forms.” Closely related to Leduc’s experi
ments are those of Denis Monnier and Carl Vogt. Sur la fabrication artificielle 
des formes des elements organiques, Journ. de l'Anat. xvm, pp. 117-123, 1882; 
cf. Moritz Traube, Zur Geschichte der mechanischen Theorie des Wachstums der 
organischen Zelle, 'Botan. Ztg. xxxvi, 1878. Cf. also A. L. Herrera, Sur les 
phenom^nes de vie apparente observes dans les emulsions de carbonate de chaux 
dans la silice gelatineuse, Mem. Soc. Alzate, Mexico, xxvi, 1908; Los Protobios, 
Boll, de la Dir. de Estud. Biolog., Mexico, i, pp. 607-631, and other papers. Also 
(int. al.) R. S. Lillie and E. N. Johnston, Precipitation-structures simulating organic 
growth, Biol. Bull, xxxiii, p. 135, 1917; xxxvi, pp. 225-272, 1919; Scientific 
Monthly, Feb. 1922, p. 125; H. W. Morse, C. H. Warren and J. D. H. Donnay, 
Artificial spherulites, etc., Amer. JI. of Sci. (5) xxiii, pp. 421-439, 1932.
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cretion and the hypothetical form of an individual molecule. But 
molecular form is a very important concept; and the chemist has 
not only succeeded, since the days of Wohler, in synthetising many 
substances which are characteristically associated with living matter, 
but his task has included the attempt to account for the molecular 
forms of certain “asymmetric” substances—glucose, malic acid and 
many more—as they occur in Nature. These are bodies which, when 
artificially synthetised, have no optical activity, but which, as we 
actually find them in organisms, turn (when in solution) the plane 
of polarised light in one direction rather than the other; thus 
dextroglucose and laevomalic acid are common products of plant 
metabolism, but dextromalic acid and laevoglucose do not occur in 
Nature at all. The optical activity of these bodies depends, as 
Pasteur shewed eighty years ago*, upon the form, right-handed or 
left-handed, of their molecules, which molecular asymmetry further 
gives rise to a corresponding right- or left-handedness (or enantio
morphism) in the crystalline aggregates. It is a distinct problem 
in organic or physiological chemistry, and by no means without its 
interest for the morphologist, to discover how it is that Nature, for 
each particular substance, habitually builds up, or at least selects, 
its molecules in a one-sided fashion, right-handed or left-handed as 
the case may be. It will serve us no better to assert that this pheno
menon has its origin in “fortuity” than to repeat the Abbe Galiani’s 
saying, “les des de la nature sont pipes”

The problem is not so closely related to our immediate subject 
that we need discuss it at length; but it has its relation, such as it 
is, to the general question of form in relation to vital phenomena, 
and it has its historic interest aS a theme of long-continued discussion. 
According to Pasteur, there lay in the molecular asymmetry of 
the natural bodies and their symmetry when artificially produced, 
one of the most deep-seated differences betweep vital and non-vital 
phenomena: he went further, and declared that “this was perhaps 
the only well-marked line of demarcation that can At present [1860] 
be drawn between the chemistry of dead and of living matter.” 
Nearly forty years afterwards the same theme was pursued and

* Lectures on the molecular asymmetry of natural organic compounds, Chemical 
Soc. of Paris, 1860; also in Ostwald’s Klassiker d. exact. Wiss. No. 28, and in 
Alembic Club Reprints, No. 14, Edinburgh, 1897; cf. G. M. Richardson, Foundations 
of Stereochemistry, New York, 1901.
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elaborated by Japp in a celebrated lecture*, and the distinction 
still has its weight, I believe, in the minds of many chemists. 
“We arrive at the conclusion,’’ said Professor Japp, “that the 
production of single asymmetric compounds, or their isolation from 
the mixture of their enantiomorphs, is, as Pasteur firmly held, the 
prerogative of life. Only the living organism, or the living intelli
gence with its conception of asymmetry, can produce this result. 
Only asymmetry can beget asymmetry.’’ In these last words 
(which, so far as the chemist and the biologist are concerned, we 
may acknowledge to be truef) lies the crux of the difficulty.

Observe that it is only the first beginnings of chemical asymmetry 
that we need discover; for when asymmetry is once manifested, 
it is not disputed that it will continue “to beget asymmetry.” 
A plausible suggestion is at hand, which if it were confirmed and 
extended would supply or at least sufficiently illustrate the kind of 
explanation that is required. M e know that when ordinary non
polarised light acts upon a chemical substance, the amount of 
chemical action is proportionate to the amount of light absorbed. 
We know in the second place J that light circularly polarised is 
absorbed in certain cases in different amounts by the right-handed 
or left-handed varieties of an asymmetric substance. And thirdly, 
we know that a portion of the light which comes to us from the sun 
is already plane-polarised light, which becomes in part circularly 
polarised, by reflection (according to Jamin) at the surface of the 
sea, and then rotated in a particular direction under the influence 
of terrestrial magnetism. We only require to be assured that the 
relation between absorption of light and chemical activity will 
continue to hold good in the case of circularly polarised light; 
that js to say that the formation of some new substance or other, 
under the influence of light so polarised, will proceed asymmetrically 
in consonance with the asymmetry of the light itself; or conversely,

* F R. Japp, Stereochemistry and vitalism, Brit. Ass. Rep. (Bristol), 1898, p. 813; 
cf. also a voluminous discussion in Nature, 1898-99.

f They represent the general theorem of which particular cases are found, for 
instance, in the asymmetry of the ferments (or enzymes) which act upon 
asymmetrical bodies, the one fitting the other,’ according to Emil Fischer’s well- 
known phrase, as lock and key. Cf. his Bedeutung der Stereochemie fiir die 
Physiologie, Z. f. physiol. Chemie, v, p. 60, 1899, and various papers in the Ber. 
d. d. chem. Ges. from 1894.

J Cf. Cotton. Ann. de Chirn. et de Phys. (7), vm, pp. 347-432 (cf. p. 373), 1896.
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that the asymmetrically polarised light will tend to more rapid 
decomposition of those molecules by which it is chiefly absorbed. 
This latter proof is said to be furnished by Byk*. who asserts 
that certain tartrates become unsymmetrical under the continued 
influence of the asymmetric rays. Here then we seem to have 
an example, of a particular kind and in a particular instance, an 
example limited but yet crucial if confirmed, of an asymmetric 
force, non-vital in its origin, which might conceivably be the 
starting-point of that asymmetry which is characteristic of so many 
organic products.

The mysteries of organic chemistry are great, and the differences 
between its processes or reactions as they are carried out in the 
organism and in the laboratory are manyt; the actions, catalytic 
and other, which go on in the living cell are of extraordinary 
complexity. But the contention that they are different in kind 
from ordinary chemical operations, or that in the production of 
single asymmetric compounds there is actually, as Pasteur main
tained, a “prerogative of life,” would seem to be no longer tenable. 
Our historic interest in the whole question is increased by the 
fact, or the great probability, that “the tenacity with which Pasteur 
fought against the doctrine of spontaneous generation was not 
unconnected with his belief that chemical compounds of one-sided 
symmetry could not arise save under the influence of life J.” But 
the question whether spontaneous generation be a fact or not does 
not depend upon theoretical considerations; our negative response 
is based, and is soundly based, on repeated failures to demonstrate 
its occurrence. Many a great law of physical science, not excepting 
gravitation itself, has no higher claim on our acceptance.

Let us return from this digression to the general subject of the 
forms assumed by certain chemical bodies when deposited or 
precipitated within the organism, and to the question of how far 
these forms may be artificially imitated or theoretically explained.

* A. Byk, Zur Frage der Spaltbarkeit von Racemverbindungen durch zirkular- 
polarisiertes Lieht, ein Beitrag zur primaren Entstehung optisch-activer Substanzen, 
Zeitsch. f. physikal. Chemie, xlix* pp. 641-687, 1904. It must be admitted that 
positive evidence on these lines is still awanting.

f Cf. (int. al.) Emil Fischer, Untersuchungen uber Aniiuosauren, Proteine, etc. 
Berlin, 1906.

J Japp, loc. cit. p. 828.
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Mr George Ra ney, of St Thomas’s Hospital (of whom we have 
spoken before), and Professor P. Harting, of Utrecht, were the 
first to deal with this specific problem. Rainey published, between 
1857 and 1861, a series of valuable and thoughtful papers to shew 
that shell and bone and certain other organic structures were formed 
“by a process of molecular coalescence, demonstrable in certain 
artificially formed products*. ” Harting, after thirty years of 
experimental work, published in 1872 a paper, which has become 
classical, entitled Recherches de morphologie synthetique, sur la pro
duction artificielle de quelques formations calcaires organiques^; his 
aim was to pave the way for a “ morphologic synthetique,” as 
Wohler had laid the foundations of a “chimie synthetique” by his 
classical discovery forty years before.

* George Rainey, On the elementary formation of the skeletons of animals, and 
other hard structures formed in connection with living tissue, Brit, and For. Med. 
Ch. Rev. xx, pp. 451-476, 1857; published separately with additions, 8vu, London, 
1858. For other papers by Rainey on kindred subjects see Q.J.M.S. vi (Tr. 
Microsc. Soc.), pp. 41-50, 1858; vn, pp. 212-225, 1859; vin, pp. 1-10, 1860; 
I (n.s.), pp. 23-32, 1861. Cf. also W. Miller Ord, On the influence exercised by colloids 
upon crystalline form, pp. x, 179, 1874; cf. also Q.J.M.S. xn, pp. 219-239, 1872; 
also the early but still interesting observations of Mr Chai les Hatchett, Chemical 
experiments on zoophytes; with some observations on the component parts of 
membrane, Phil. Trans. 1800, pp. 327-402. For early references to sclerites formed 
in cells, see (e.g.) L. Seienka, Z.f.w.Z. xxxm, p. 45, 1879 and R. Semon, Mitth. 
Zool. St. Neapel, vn, fj. 288, 1886 (both in holothurians); Blochmann, Die 
Epithelfrage bei Cestoden u. Trematoden, Hamburg, 1896; also Leger’s Observations 
on crystals of calcium oxalate in the cysts of Lithocustis Schneideri, A.M.N.H. (6), 
xvm, p. 479, 1895.

t Cf. Q.J.M.S. xn, pp. 118-123, 1872.

Rainey and Harting used similar methods—and these were such 
as other workers have continued to employ—partly with the direct 
object of explaining the genesis of organic forms and partly as an ' 
integral part of what is now known as Colloid Chemistry. The gist 
of the method was to bring some soluble salt of lime, such as the 
chloride or nitrate, into solution within a colloid medium, such as 
gum, gelatine or albumin; and then to precipitate it out in the 
form of some insoluble compound, such as the carbonate or oxalate. 
Harting found that, when he added a little sodium or potassium 
carbonate to a concentrated solution of calcium chloride in albumin, 
he got at first a gelatinous mass, or “colloid precipitate”: which 
slowly transformed by the appearance of tiny microscopic particles, 
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shewing, as they grew larger, the typical Brownian movement. So 
far, much the same phenomena were witnessed whether the solution 
were albuminous or not, and similar appearances indeed had been 
witnessed and recorded by Gustav Rose, so far back as 1837*; but 
in the later stages the presence of albuminoid matter made a great 
difference. Now, after a few days, the calcium carbonate was seen 
to be deposited in the form of large rounded concretions, each with 
a more or less distinct central nucleus and with a surrounding 
structure at once radiate and concentric; the presence of concentric 
zones or lamellae, alternately dark and clear, was especially charac
teristic. These round “calcospherites” shewed a tendency to 
aggregate in layers, and then to assume polyhedral, often regularly 
hexagonal, outlines. In this latter condition they closely resemble 
the early stages of calcification in a molluscan (Fig. 296), or still 
more in a crustacean shell f; w’hile in their isolated condition they

* Cf. Quincke, Ueber unsichtbare Fliissigkeitsschichten, etc., Ann. der Physik 
(4), vii, pp. 631-682, 701-744, 1902.

•f See for instance other excellent illustrations in Carpenter’s article “Shell,” 
in Todd’s Cyclopaedia, iv, pp. 556-571, 1847-49. According to Carpenter, the 
shells of the mollusca (and also of the Crustacea) are “essentially composed of 
cells, consolidated by a deposit of carbonate of lime in their interior.” That is 
to say, Carpenter supposed that the spherulites or calcospherites of Harting were, 
to begin with, just so many living protoplasmic cells. Soon afterwards, however, 
Huxley pointed out that the mode of formation, while at first sight “irresistibly 
suggesting a cellular structure.. .is in reality nothing of the kind,” but “is simply 
the result of the concretionary manner in which the calcareous matter is deposited ”; 
ibid. art. “Tegumentary organs,” v, p. 487, 1859. Quekett (Lectures on Histology, 
ii, p. 393, 1854, and Q.J.M.S. xi, pp. 95-104, 1863) supported Carpenter; but 
Williamson (Histological features in the shells of the Crustacea, Q.J.M.S. viii, 
pp. 35-47, 1860) amply confirmed Huxley’s view, which in the end Carpenter 
himself adopted (The Microscope, 1862, p. 604). A like controversy arose later 
in regard to corals. Mrs Gordon (M. M. Ogilvie) asserted that the coral was built 
up “of successive layers of calcined cells, which hang together at first by their 
cell-walls, and ultimately, as crystalline changes continue, form the individual 
Jaminae of the skeletal structures” (Phil. Trans. clxxxvii, p. 102, 1896): whereas 
von Koch had figured the coral as formed out of a mass of “ Kalkconcremente ” 
or “crystalline spheroids,” laid down outside the ectoderm, and precisely similar 
both in their early rounded and later polygonal stages (though von Koch was not 
aware of the fact) to the calcospherites of Harting (Entw. d. Kalkskelettes von 
Astroides, Mitth. Zool. St. Neapel, in, pp. 284-290, pl. xx, 1882). Lastly, W. H. 
Bryan finds all ordinary corals (Hexac.oralla) to be mineAd aggregates formed by 
“spherulitic crystallisation,” due in turn to the presence of a colloid matrix secreted 
by certain areas of ectoderm; see Proc. R.S. Queensland, lii, pp. 41-53. 1940; Univ, 
of Queensland Papers, Geology, n, 4 and 5, 1941. Cf. J. E. Duerden, On Siderastraea. 
Carnegie Inst. Washington, 1904, p. 34.
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Fig. 293. Calcospherites, or con
cretions of calcium carbonate, 
deposited in white of egg. 
After Harting.

Fig. 294. A single 
calcospherite, with 
central “nucleus,” 
and striated, iride
scent border. After 
Harting.

Fig. 295. Later stages in the same experiment.

A
Fig. 29(5. A, Section of shell; B, Section of hinge-tooth of Mya.

After Carpenter.
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closely resemble the little calcareous bodies in the tissues of a 
trematode or a cestode worm, or in the oesophageal glands of an 
earthworm*.

* Cf. Claparede, Z.f.w.Z. xix, p. 604, 1869. On the structure of the molluscan 
shell, see O. B. Boggild, K. Vidensk. Selsk. Skr., Kjobenh., (9) n, 1930. On nacre, 
or mother-of-pearl, see Brewster, Treatise on Optics, 1853, p. 137; Schmidt, Die 
Bausteine der Tierkorper in polarisirtem Licht, Bonn, 1924. Also S. Ruma Swamy, 
Proc. Indi Acad. Sci. (A), i, p. 871, 1935; P. S. Srinivasam, ibid, v, pp. 464—483, 
1937; and, on the specific qualities of the nacre in the several divisions of the 
Mollusca, Sir C. V. Raman, ibid. pp. 559, etc., 1935.

f On the deposition of phosphates in organisms, cf. Pauli u. Samec, Biochem. 
Ztschr. xvn, p. 235, 1909; Wiener mediz. Wochenschr. 1910, pp. 2287-2292.

J Spicules much like those of the Alcyonaria occur also in a few sponges; cf. (e.g.), 
Vaughan Jennings, Journ. Linn. Soc. xxm, p. 531, pl. 13, fig. 8, 1891.

When the albumin was somewhat scanty, or when it was mixed 
with gelatine, and especially when a little phosphate of lime was 
added to the mixture, the spheroidal globules tended to become 
rough, by an outgrowth of spinous or digitiform projections; and

Fig. 297. Large irregular calcareous concretions, or spicules, deposited in a piece 
of dead cartilage, in presence of calcium phosphate. After Harting.

in some cases, but not without the presence of the phosphate!, the 
result was an irregularly shaped knobby spicule, precisely similar 
to those which are characteristic of the Alcyonaria^-

The rough spicules of the Abyonana are extraordinarily variable in shape 
and size, as, looking at them from the chemist’s or the physicist’s point of 
view, we should expect them to be. Partly upon the form of these spicules, 
and partly on the general form or mode of branching of the entire colony of 
polyps, a vast number of separate “species” have been based by systematic 
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zoologists. But it is now admitted that even in specimens of a single species, 
from one and the same locality, the spicules may vary immensely in shape 
and size: and Professor S. J. Hickson declared that after many years of 
laborious work in striving to determine species of these animal colonies, he 
felt “quite convinced that we have been engaged in a more or less fruitless 
task*.”

The formation of a tooth is a phenomenon of the same order. That is to 
say, “calcification in both dentine and enamel is in great part a physical 
phenomenon; the actual deposit in both tissues occurs in the form of calco- 
spherites, and the process in mammalian tissue is identical in every point with

Fig. 298. Additional illustrations of alcyonarian spicules: Eunicea. After Studer.

the same process occurring in lower organismsf.” The ossification of bone, 
we may be sure, is in the same sense and to the same extent a physical 
phenomenon.

The typical structure of a calcospherite is no other than that of 
a pearl, nor does it differ essentially from that of the otolith of a 
mollusc or of a bony fish. (The otoliths of the elasmobranch fishes, 
like those of reptiles and birds, are not developed after this fashion, 
but are true crystals of calc-spar.)

The effect of surface-tension is manifest throughout these pheno
mena. It is by surface-tension that ultra-microscopic particles are 
brought together in the first floccular precipitate or coagulum; by

♦ Mem. Manchester Lit. and PhU. Soc. lx, p. 11, 1916.
f J. H. Mummery, On calcification in enamel and dentine, Phil. Trans. (B), 

ccv, pp. 95-111, 1914
T G F 42
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the same agency the coarser particles are in turn agglutinated into 
visible lumps; and the form of the calcospherites, whether it be 
that of the solitary spheres or that assumed in various stages of 
aggregation (e.g. Fig. 300)*, is likewise due to the same agency.

From the point of view of colloid chemistry the whole pheno
menon is important and significant; and not the least significant 
part is this tendency of the solidified deposits to assume the form 
of “spherulites” and other rounded contours. In the phraseology

calcareous concretions, precipitated Fig. 300. Aggregated calco
at the surface of an albuminous spherites. After Harting,
solution. After Harting.

of that science, we are dealing with a two-phase system, which 
finally consists of solid particles in suspension in a liquid- a disperse 
phase in a dispersion med um. In accordance with a rule first 
recognised by Ostwald, when a substance begins to separate out 
from a solution, so making its appearance as a new phase, it always 
makes its appearance first as a liquid f. Here is a case in point. 
The minute quantities of material, on their way from a state of 
solution to a state of “suspension,” pass through a liquid to a solid 
form; their temporary sojourn in the former leaves its impress in 
the rounded contours which surface-tension brought about while the 
little aggregate was still labile or fluid: while coincidently with this 
surface-tension effect, crystallisation tends to take place throughout 
the little liquid mass, or in such portions of it as have not yet con
solidated and crystallised.

♦ The artificial concretion represented in Fig. 300 is identical in appearance 
with the concretions found in the kidney of Nautilus, as figured by Willey (Zoological 
Results, p. Ixxvi, Fig. 2, 1902).

f This rule, undreamed of by Errera, supports and justifies his cardinal 
assumption (of which we have had so much to say in discussing the forms of cells 
and tissues) that the incipient cell-wall behaves as, and indeed actually is, a liquid 
film (cf. p. 482).
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W here we have simple aggregates of two or three calcospherites 
the resulting figure is that of so many contiguous soap-bubbles. 
In other cases composite forms result which are not so easily ex
plained, but which, if we could only account for them, would be 
of very great interest to the biologist. For instance, when smaller 
calcospheres seem, as it were, to invade the substance of a larger one, 
we get curious conformations which somewhat resemble the outlines 
of certain diatoms (Fig. 30L). Another curious formation, which 
Harting calls a "conostat,” is of frequent occurrence, and in it we

Fig. 301. Composite calcospheres. After Harting.

see at least a suggestion of analogy with the configuration which, 
in a protoplasmic structure, we have spoken of as a “collar-cell.” 
The conostats, which are formed in the surface layer of the solution, 
consist of a portion'of a spheroidal calcospherite, whose upper part 
is continued into a thin spheroidal collar of somewhat larger radius 
than the solid sphere; but the precise manner in which the collar 
is formed, possibly around a bubble of gas, possibly about a vortex
like diffusion-current, is not obvious.

Among these various phenomena, the concentric striation of the . 
calcospherite has acquired a special interest and importance*. It 
is part of a phenomenon now widely known under the name of 
‘ ‘ Liesegang’s Rings +. ”

* Cf. Harting, op. cit. pp. 22, 50: “J’avais cru d’abord que ces couches 
concentriques etaient produites par 1’alternance de la chaleur ou de la lumiere, 
pendant le jour et la nuit. Mais 1’experience, expressement instituee pour 
examiner cette question, y a repondu negati vement.”

f R. E. Liesegang, Ueber die Schichlungen bei Diffusionen, Leipzig, 1907, and 
earlier papers. A periodic precipitate is said to have been first noticed (on filter
paper) by Runge, in 1885; cf. Quincke, Ueber unsichtbare Fliissigkeitsschichten, 
Ann. d. Physik (4), vil, pp. 643-7, 1902. On a very minute periodicity in the 
so-called Hookham’s crystals, formed by crystallising copper sulphate and salicin 
in strong syrup, see Rayleigh, Collected Papers, vi, p. 661: “There is much here,” 
says Rayleigh, “to excite admiration and perplexity.”

42-2
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If we dissolve, for instance, a little potassium bichromate in 
gelatiile. pour it on to a glass plate, and after it is set pour upon it a 
drop of silver nitrate solution, there appears in the course of a few 
hours the phenomenon of Liesegang’s rings. At first the silver

Fig. 302. Conostats. After Harting.

forms a central patch of abundant reddish-brown chromate pre
cipitate; but around this, as the silver nitrate diffuses slowly 
through the gelatine, the precipitate no longer comes down con
tinuously, but forms a series of concentric rings or zones, beautifully

Fig. 303. Liesegang’s rings. After Leduc.

regular, which alternate with clear interspaces of jelly and stand 
farther and farther apart in a definite ratio as they recede from 
the centre*. For a discussion of the raison d'etre of this phenomenon, 
the student will consult the textbooks of physical and colloid 
chemistry. But. speaking generally, we may say that the appearance

* It is now known that periodic precipitation may be exhibited even in aqueous 
solutions, and that what the gel does is to enlarge the intervals, and to enhance 
the phenomenon, by affecting the rate or relative rates of diffusion. Cf. H. W. 
Morse, Journ. Phys. ('hem. 1931.
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of Liesegang’s rings is but a particular case of a more general 
phenomenon, namely the influence on crystallisation of the presence 
of foreign bodies or "impurities,” represented in this case by the 
gel or colloid matrix. F. S. Beudant had shewn in a fine paper, 
more than a hundred years ago, that impurities were the chief cause 
of variation of crystal habit*.  Faraday proved that to diffusion 
in presence of slight impurities, not to actual stratification or 
alternate deposition, could be ascribed the banded structure of ice,

* F. >S. Beudant. Recherches sur les causes qui peu vent varier les formes crystal
lines d’une meme substance minerale, Ann. de Chimie, vm, pp. 5-52, 1818. See 
also his Memoire sur les parties solides des Mollusques, Mein, du Museum, xv, 
pp. 66-75, 1810.

f Cf. Faraday, On ice of irregular fusibility, Phil. Trans. 1858, p. 228; Researches 
in Chemistry, etc., 1859. p. 374; Canon Moseley, On the veined structure of the 
ice of glaciers, Phil. Mag. (4), xxxix, p. 241, 1870; R. Weber, in Puggend. Ann. 
cix, p. 379, 1860; Tyndall, Forms of Water, 1872, p. 178; C. Tomlinson, On some 
effects of small quantities of foreign matter on crystallisation, Phil. Mag. (5) 
xxxi, p. 393, 1891, and other papers. Cf. Liesegang, Centralbl. f. Mineralogie, 
xvi, p. 497, 1911; E. S Hedges and J. E. Myers, The problem of physico-chemical 
periodicity, London. 1926; W, F. Berg. Crystal growth from solutions, Proc. R.S. (A), 
clxiv, pp. 79-95, 1938.

Fig. 3<>4 The Liesegang phenomena. After Emil Hatschek.

of agate or of onyx; and Quincke and Tomlinson added to our 
scanty knowledge of this remarkable phenomenonf. Ruskin, who 
knew a great deal about agates, spoke of the perpetual difficulty of 
distinguishing “between concretionary separation and successive 
deposition.” And Rayleigh shewed how to such a periodic, but
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unstratified structure all the colours of the opal and the iridescence 
of ancient glass are alike due.

Besides the tendency to rhythmic action, as manifested in 
Liesegang’s rings, the association of colloid matter with a crystalloid 
in solution may lead to othA well-marked effects. These include*: 
(1) the total prevention of crystallisation; (2) suppression of certain 
of the lines of crystal growth; (3) extension of the crystal to 
abnormal proportions, with a tendency to become compound; 
(4) a curving or gyrating of the crystal or its parts.

It would seem that, if the supply of material to the growing 
' crystal begin to run short (as may well happen in a colloid medium 
for lack of convection-currents), then growth will follow only the 
strongest lines of crystallising force, and will be suppressed or 
partially suppressed along other axes. The crystal will have a 
tendency to become filiform, or “fibrous”; and the raphides of our 
plant-cells, and the needle-like “oxyotes” of sponges, are cases in 
point. Again, the long slender crystal so formed, pushing its way 
into new material, may start a new centre of crystallisation: 
whereby we get the phenomenon known as a “relay," along the 
principal lines of force and sometimes along subordinate axes as 
well. This phenomenon is illustrated in the accompanying figure 
of common salt crystallising in a colloid medium; and it may be 
that we have here an explanation, or part of an explanation, of 
the compound siliceous spicules of the Hexactinellid sponges. 
Lastly, when the crystallising force is nearly equalled by the 
resistance of the viscous medium, the crystal takes the line of least 
resistance, with very various results. One of these results would 
seem to be a gyratory course, giving to the crystal a curious wheel
like shape, as in Fig. 306; and other results are the feathery, 
fern-like or arborescent shapes so frequently seen in microscopic 
crystallisation.

To return to Liesegang’s rings, the typical appearance of con
centric rings upon a plate of gelatine may be modified in various 
experimental ways. For instance, if our gelatinous medium be placed 
in a capillary tube immersed in a solution of the precipitating salt, 
we obtain (Fig. 304) a vertical succession of bands or zones regularly

* Cf. J. H. Bowman, A study in crystallisation, Journ. Soc. of Chern. Industry, 
xxv, p. 143, 1906.
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interspaced: the result being very closely comparable to the banded 
pigmentation which we see in the hair of a rabbit or a rat. In the 
ordinary plate preparation, the free surface of the gelatine is under 
different conditions to the layers below and especially to the lowest 
layer of all in contact with the glass; and so we often obtain a

Fig. 305. Relay-crystals of common salt. After Bowman.

double series of rings, one deep and the other superficial, which by 
occasional blending or interlacing may produce a netted pattern. 
Sometimes, when only the inner surface of our capillary tube is 
covered with a layer of gelatine, there is a tendency for the deposit

Fig. 306. Wheel-like crystals in a colloid. After Bowman.

to take place in a continuous spiral, rather than in concentric and 
separate zones. By such means, according to Kuster*, various 
forms of annular, spiral and reticulated thickenings in the vascular 
tissue of plants may be closely imitated; and he and certain other 
writers have been inclined to carry the same chemico-physical

* E. Kiister, Ueber die Schichtung der Starkekorner, Ber. d. botan. Gesellsch. 
xxxi, pp. 339-346, 1913; Ueber Zonenbildung in kolloidalen Medien, Koll. Ztschr. 
xni, pp. 192-194; xiv, pp. 307-319, 1913-14.
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phenomenon a very long way, in the explanation of various banded, 
striped, and other rhythmically successional types of structure or 
pigmentation. The striped leaves of many plants (such as Eulalia 
japonica), the striped or clouded colouring of many feathers or of 
a cat’s skin, the patterns of many fishes, such for instance as the 
brightly coloured tropical Chaetodonts and the like, are all regarded 
by him as so many instances of “diffusion-figures’’ closely related 
to the typical Liesegang phenomenon. Gebhardt*  declares that the 
banded wings of Papilio poclalirius are analogous to or even closely 
imitated in Liesegang’s experiments; that the finer markings on 
the wings of the goatmoth shew a double rhythm, alternately 
coarse and fine, such as is manifested in certain experimental cases 
of the same kind; that the alternate banding of the antennae (for 
instance in Sesia sphectformis), a pigmentation not concurrent with 
the antennal joints, is explicable in the same way; and that the 
ocelli on the wings of the Emperor moth are typical illustrations 
of the common concentric type. Darwin’s well-known disquisition 
on the ocellar pattern of the feathers of the Argus pheasant, as a 
result of sexual selection, will occur to the reader’s mind, in striking 
contrast to this or to any other direct physical explanation!.

* Verh. d. d. zool. Gesellsch. p. 179, 1912.
f As a matter of fact, the phenomena associated with the development of an 

“ocellus” are or may be of great complexity, inasmuch as they involve not only 
a graded distribution of pigment, but also, in “optical” coloration, a symmetrical 
distribution of structure or form. The subject therefore deserves very careful 
discussion, such as Bateson gives to it (Variation, chap. xn). This, by the way, 
is one of the very rare cases in which Bateson appears inclined to suggest a purely 
physical explanation of an organic phenomenon: “The suggestion is strong that 
the whole series of rings (in Morpho) may have been formed by some one central 
disturbance, somewhat as a series of concentric waves may be formed by the splash 
of a stone thrown into a pool.” Cf. Darwin, Descent of Man, n, p. 132, 1871.

To turn from the distribution of pigment to more deeply seated 
structural characters, Leduc has argued, for instance, that the 
laminar structure of the cornea or the lens is, or may be, a similar 
phenomenon. In the lens of the fish’s eye, we have a very curious 
appearance, the consecutive lamellae being roughened or notched 
by close-set, interlocking sinuosities; and the same appearance, 
save that it is not quite so regular, is presented in one of Kiister’s 
figures as the effect of precipitating a little sodium phosphate in 
a gelatinous medium. Biedermann has studied, from the same 
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point of view, the structure and development of the mblluscan shell, 
the problem which Rainey had first attacked more than fifty years 
before*;  and Liesegang himself has applied his results to the 
formation of pearls, and, as Bechhold has also done, to the develop
ment of bonef.

* Cf. also Sir I). Brewster, On optical properties of mother of pearl, Phil. Trane. 
1814, p. 397; and ,1 F. \V. Herschel, in Edin. Phil. Journ. n. p. 116, 1819.

f W. Biederniann, L eber die Bedeutung von KristaHisationsprozessen der 
Skelette wirbelloser Thiere, namentlich der Molluskenschalen, Z. f. ally. Physiol. 
i, p. 154, 1902; LTeber Bau und Entstehung der Molluskenschale, Jen. Zeitschr. 
xxxvi, pp. 1-164. 1902. Cf. also Steininann, Lieber Schale und Kalksteinbildungcn, 
Ber. Naturf. Ges. Freiburg i. Br. iv, 1889; Liesegang. Naturw. Wochenschr. 1910. 
p. 641; Arch, f Entw. Meeh, xxxiv, p. 452, 1912; H. Bechhold, Ztschr. f. phys. 
Chem. lii, p. 185, 1905.

I Cf. Biitschli, L’eber die Herstelhing kiinstlicher Starkekorner oder von 
Spharokrystallen der Starke, Verh. nat. med. Ver. Heidelberg, v, pp. 457-472, 1896^

§ U ntersuchungen uber die Starkekorner, Jena, 1905.

The presence of concentric rings or zones in slow-growing 
structures is evidently after some fashion a function of the time, 
and an indication of periodic acceleration or variation of growth; 
it is apt to be referred, rightly or wrongly, to the seasons of the 
year, and to be interpreted (with or without confirmation and proof) 
as a sure mark and measure of the creature’s age. This is the case, 
for instance, with the scales, bones and otoliths of fishes; and a 
kindred phenomenon in starch-grains has given rise, in like manner, 
to the belief that they indicate a diurnal and nocturnal periodicity 
of activity and rest J on the part of the cell wherein they grew.

That this is actually the case in growing starch-grains is often 
if not generally believed, on the authority of Meyer§; but while 
under, certain circumstances a marked alternation of growing and 
resting periods may occur, and may leave its impress on the structure 
of the grain, there is now more reason to believe that, apart from 
such external influences, the internal phenomena of diffusion may, 
just as in the typical Liesegang experiment, produce the well-known 
concentric rings. The spherocrystals of inulin, in like manner, 
shew, like the calcospherites of Harting (Fig. 307), a concentric 
structure which in all likelihood has had no causative impulse save 
from within.

The striation, or concentric lamellation, of the scales and otoliths 
of fishes has been much employed, not as a mere indication, but
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as a trustworthy and unmistakeable measure of the fish’s age (see 
a,-de, p. 180). There are some difficulties in the way of accepting 
this hypothesis, not the least of which is the fact that the otolith
zones, for instance, are extremely well marked even in the case of 
some fishes which spend their lives in deep water, where temperature 
and other physical conditions shew little or no appreciable fluctuation 
with the seasons of the year. There are, on the other hand, pheno
mena which seem strongly confirmatory of the hypothesis: for 
instance, the fact (if it be fully established) that in such a fish as 
the cod, zones of growth, identical in number, are found both on 

Fig. 307. A sphero- 
crystal of inulin.

Fig. 308. Otoliths of plaice, shewing 
four zones or “age-rings.” After 
Wallace.

the scales and in the otoliths*. The subject is as difficult as it is 
important, but it is at least certain, with the Liesegang pheno
menon in view, that we have no right to assume, without proof 
and confirmation, that rhythm and periodicity in structure and 
growth are necessarily bound up with, and indubitably brought 
about by, a periodic or seasonal recurrence of particular external 
conditions!.

But while in the ordinary Liesegang phenomenon rhythmic
* Cf. Winge, Meddel. fra Komm. for Havundersogelse (Fiskeri), iv, p. 20, Copen

hagen, 1915.
f A. W. Morosow strongly supports the view— uncerta tn as it seems to be— 

that the concentric pattern of a fish’s scale is due to the Liesegang phenomenon; 
he produces an “artificial scale,” with its “summer and winter rings,” by 
precipitating sodium carbonate and calcium chloride in gelatin: Zur Frage fiber 
die Natur des Schuppenwachstums bei Fischen (and in Russian), Nation. Comm. 
Agriculture: Rep. Sci. Inst. Fisheries, i, Moscow, 1924; abstract in Michael 
.Graham’s Studies of age-determination in fish, Rep. Ministry of Agr. and Fisheries, 
Fishery Investigations, (2) xi, no. 3, p. 28, 1928.
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precipitation depends only on forces intrinsic to the system, and 
is independent of any corresponding rhythmic changes in external 
conditions, we have not far to seek for analogous chemico-physical 
phenomena where rhythmic alternations of structure are produced 
in close relation to periodic fluctuations of temperature. The 
banding, or “varving,” of Swedish and Irish glacial clays is a re
markable instance. A well-known and a simple case is that of the 
Stassfurt deposits, where the rock-salt alternates with thin layers of 
“anhydrite,” or (in another series of beds) with “polyhalite*”: 
and where these zones are commonly regarded as marking years, 
and their alternate bands as due to the seasons. A discussion, 
however, of this remarkable and significant phenomenon, and of 
how the chemist explains it, by help of the “phase-rule,” in con
nection with temperature conditions, would lead us far beyond our 
scope.

We may turn aside to touch, for a single moment, on certain 
forms and patterns not easy to classify: some of which depend on 
the molecular structure of a colloid matrix, while others are of a 
coarser and more mechanical grade. So many organic forms and 
patterns await explanation that we cannot seek too widely for 
examples, nor for explanations, of such things. For instance, a 
drop of dried egg-albumin shews beautiful radial cracks, with cross
lines here and there; and a drop of blood drying on a glass plate 
shews a complete system of radial fissures, in series after series, 
sometimes with and sometimes without a clear central space. The 
general resemblance to the cross-section of a stem, with its pith and 
its primary and secondary medullary rays, is striking enough to 
have led some even to look upon a tree as one great complicated 
but symmetrical colloid massf. We may compare also the beautiful 
radiating structure which Biitschli observed long ago around small

* The anhydrite is sulphate of lime (CaSO4); the polyhalite is a triple sulphate 
of lime, magnesia and potash (2CaSO4.MgSO4. K2SO4 ; 2H2O).

f Cf. H Wislicenus, Ztschr. f. Chemie u. Kolloide, vi, 1910; A. Lingelsheim. 
Pflanzenanatomische Strukturbilder in trocknenden Kolloiden, Arch. f. Entw. Meeh. 
xlii, pp. 117-125, 1917. Cf. also Liesegang, Trocknungserscheinungen bei Gelen, 
Ztschr. f. Ch. u. K. x, p. 229 sq., 1912; Biitschli, Verh. n. h. Ver. Heidtlberg, vn, 
p. 653, 1904. Also (int. al.) Norman Stuart, on Spiral growths in silica gel. Nature, 
Oct. 2, 1937, p. 589.
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bubbles in chrome-gelatine, and which he used in one of his early 
(and none too fortunate) speculations on the nature of the nuclear 
spindle.

We see that the methods by which we attempt to study the 
chemico-physical characteristics of an inorganic concretion or spicule 
within the body of an organism soon introduce us to a multitude 
of phenomena of which our knowledge is extremely scanty, and 
which we must not attempt to discuss at greater length. As regards 
our main point, namely the formation of spicules and other 
elementary skeletal forms, we have seen that some of them may 
be safely ascribed to precipitation or crystallisation of inorganic 
materials in ways modified by the presence of albuminous or other 
colloid substances. The effect of these latter is found to be much 
greater in the case of some crystallisable bodies than in others. * 
For instance Harting, and Rainey also, found that calcium oxalate 
was much less affected by a colloid medium than was calcium 
carbonate; it shewed in their hands no tendency to form rounded 
concretions or “ calcospherites ” in presence of a colloid, but con
tinued to crystallise, either normally or with a tendency to form 
needles or raphides. It is doubtless for this reason that, as we have 
seen, crystals of calcium oxalate are so common in the tissues of 
plants, while those of other calcium salts are rare; but true calco
spherites, or spherocrystals, even of the oxalate are occasionally 
found, for instance in certain Cacti, and Biitschli* has succeeded 
in making them artificially in Harting's usual way, that is to say 
by crystallisation in a colloid medium. If the nature of the salt 
has a marked specific effect, so also has the gel: silver chromate 
is thrown down in rings in gelatin but not in agar; replace the 
silver by lead, and the rings come in agar but not in gelatin; while 
neither lead nor silver produce them in silicic acid gel.

There link on to such observations as Harting’s, and to the 
statement already quoted that calcareous deposits are associated 
with the dead residua, or “formed materials,” rather than with 
the living cells of the organism, certain very interesting facts in 
regard to the solubility of salts in colloid media, which go far to 
account for the presence (apart from the form) of calcareous pre-

* Spharocrystalle von Kalkoxalat bei Kakteen, Ber. d. d. Bot. Gesellsch. p. 178, 
1885.
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cipitates within the organism*. It has been shewn, in the first 
place, that the presence of albumin has a notable effect on the 
solubility in a watery solution of calcium salts, increasing the 
solubility of the phosphate in a marked degree and that of the 
carbonate in still greater proportion; but the sulphate is only very 
little more soluble in presence of albumin than in pure water, and 
the rarity of its occurrence within the organism is accounted for 
thereby. On the other hand, the bodies derived from the breaking 
down of the albumins- -their “ catabolic ” products, such as the 
peptones, etc.—dissolve the calcium salts to a much less degree than 
albumin itself; and phosphate of lime is scarcely more soluble in 
them than in water. The probability is, therefore, that the actual 
precipitation of the calcium salts is not due to the direct action of 
carbonic acid on a more soluble salt (as was at one time believed); 
but to catabolic changes in the proteids of the organism, which 
throw down salts that had been already formed, but had remained 
hitherto in albuminous solution. The very slight solubility of 
calcium phosphate under such circumstances accounts for its pre
dominance in mammalian bonef; and, in short, wherever a supply 
of this salt has been available to the organism.

To sum up, we see that, whether from food or from sea-water, 
calcium sulphate will tend to pass but little into solution in the 
albuminoid substances of the body: that calcium carbonate will 
enter more freely, but a considerable part of it will tend to remain 
in solution: while calcium phosphate will pass into solution in 
considerable amount, but will be almost wholly precipitated again 
as the albumin becomes broken down in the normal process of 
metabolism. \\ e have still to wait for a similar and equally 
illuminating study of the solution and precipitation of silica in 
presence of organic colloids.

When carbonate of lime is secreted or precipitated by living 
organisms, to form bone, shell, egg-shell, coral and what not, its 
mineralogical form may vary, but the causes which determine it

* W. Pauli u. M. Sainec, I eber Ldslichkeitsbeeinflussung von Elektrolyten 
durch Eiweisskorper, Blochem. Zeitschr. xvn, p. 235, 1910. Some of these results 
were known much earlier; cf. Fokker in Pfluger's Archiv, vit, p. 274. 1873; also 
Robert Irvine and Sims Woodhead, op. cit. p. 347.

f Which, in 1000 parts of ash. contains about 840 parts of phosphate and 
76 parts of calcium carbonate.
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are all but unknown. It is amorphous in our bones. It has the 
form of calcite in an oyster, a starfish, a Gorgonia, a Globigerina; 
but of aragonite in most molluscs and in all ordinary corals. It is 
of calcite in a bird’s egg, of aragonite in a tortoise’s; of the one 
in Argonauta, of the other in Nautilus', of the one in an Ammonite, 
and the other in its Aptychus-\u\.', of the one in Ostrea, the other in 
Unio', of the one in the outer and the other in the inner layers of 
a limpet or a mussel-shell. Physical chemistry has little to say 
of the formation of these two, of the parts played by temperature, 
by the presence of sulphate of lime, or of magnesia or of various 
impurities; it leaves us in the dark as to what brings the one form 
or the other into being in the organism*.

Organic fibres, animal and vegetable, proteid and non-proteid, 
hair and wool, silk, cotton and the rest, may be mentioned here 
in passing: because, as formed material, they have a certain analogy 
to the spicular formations with which we are concerned. A hair 
or a wool-fibre may shew upon its surface the scaly or scurfy 
remnants of the living cells among which its substance was laid 
down; but the wool itself is by no means living, but is so nearly 
crystalline as to shew, in an X-ray photograph, the Laue interference- 
figures well known to physicists. Moreover, the same identical 
figure is obtained from such diverse sources as human hair, merino
wool and porcupine’s quill. But if we stretch the thread, whether 
of hair or wool, the first Laue diagram changes to another; one 
crystalline arrangement has shifted over into a new form of molecular 
equilibrium. Me are dealing with a crystalline, or crystal-like, 
form of keratin, the substance of which hoof and horn, nail, scale 
and feather are made; and this remarkable substance turns out to 
be a comparatively simple substance after all, with no very high 
or protein-like molecule f.

From the comparatively small group of inorganic formations 
which, arising within living organisms, owe their form to precipita
tion or to crystallisation, that is to say to chemical or other molecular

* Cf. Marcel Prenant, Les formes mineralogiques du calcaire chez les etres 
vivants, Biol. Reviews, n, pp. 365-393, 1927.

f The study of wool and other fibres has much technical importance, and has 
gone far during the last few years; cf. W. T. Astbury, in Phil. Trans. (A), ccxxx, 
pp. 75-100, 1931, and other papers.
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forces, we shall presently pass to that other and larger group which 
appears to be conformed in direct relation to the forms and the 
arrangement of cells or other protoplasmic elements*. The two 
principles of conformation are both illustrated in the spicular 
skeletons of the sponges.

In a considerable number but withal a minority of cases, the 
form of the sponge-spicule may be deemed sufficiently explained 
on the lines of Harting’s and Rainey’s experiments, that is to say 
as the direct result of chemical or physical phenomena associated 
with the deposition of lime or of silica in presence of colloids f. 
This is the case, for instance, with various small spicules of a 
globular or spheroidal form, consisting of amorphous silica, con
centrically striated within, and often developing irregular knobs 
or tiny tubercles over their surfaces. In the aberrant sponge 
AstroscleraX, we have, to begin with, rounded, striated discs or 
globules, which in like manner are nothing more nor less than the 
calcospherites of Harting’s experiments; and as these grow 
they become closely aggregated together (Fig. 309), and assume an 
angular, polyhedral form, once more in complete accordance with 
the results of experiment§. Again, in many monaxonid sponges, 
we have irregularly shaped, or branched spicules, roughened or 
tuberculated by secondary superficial deposits, and reminding one 
of the spicules of the Alcyonaria. These also must be looked 
upon as the simple result of chemical deposition, the form of the 
deposit being somewhat modified in conformity with the surrounding 
tissues: just as in the simple experiment the form of the con
cretionary precipitate is affected by the heterogeneity, visible or 
invisible, of the matrix. Lastly, the simple needles of amorphous

* Cf. Fr. Dreyer, Die Principien der Gerustbildung bei Rhizopoden, Spongien 
und Echinodermen, Jen. Zeitschr. xxni, pp. 204-468, 1892.

f In a very anomalous Australian sponge, described by Professor Dendy (Nature, 
May 18, 1916, p. 253) under the name of Collosderophora, the spicules are 
“gelatinous,” consisting of a gel of colloid silica with a high percentage of water. 
It is not stated whether an organic colloid is present together with the silica. 
These gelatinous spicules arise as exudations on the outer surface of cells, and 
come to lie in intercellular spaces or vesicles.

f J. J. Lister, in Willey’s Zoological Results, pt iv, p. 459, 1900.
§ The peculiar spicules of Astrosclera are said to consist of spherules, or calco

spherites, of aragonite, spores of a certain red seaweed forming the nuclei or 
starting-points of the concretions (R. Kirkpatrick, Proc. R.S. (B), lxxxiv, p. 579, 
1911).
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silica which constitute one of the commonest types of spicule call 
for little in the way of explanation; they are accretions or deposits 
about a linear axis, or fine thread of organic material, just as the 
ordinary rounded calcospherite is deposited about some minute 
point or centre of crystallisation, and as ordinary crystallisation 
may be started by a particle of dust; in some cases they also, like 
the others, are apt to be roughened by more irregular secondary

Fig. 309. Close-packed calcospherites, or so-called “spicules,” 
of Astrosclera. After Lister.

deposits, which probably, as in Harting’s experiments, assume this 
irregular form when material runs short.

Our few foregoing examples, diverse as they are in look and kind, 
from the spicules of Astrosclera or Alcyonium to the otoliths of a 
fish, seem all to have their free origin in some larger or smaller 
fluid-containing space or cavity of the body: pretty much as 
Harting’s calcospheres made their appearance in the albuminous 
content of a dish. But we come at last to a much larger class of 
spicular and skeletal structures, for whose regular and often complex 
forms some other explanation than the intrinsic forces of crystal
lisation or molecular adhesion is required. As we enter on this 
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subject, which is certainly no small nor easy one, it may conduce 
to simplicity and to brevity if we make a rough classification, by 
way of forecast, of the conditions we are likely to meet with.

Just as we look upon animals as constituted, some of a great 
number of cells, others of a single cell or of but few, and just as 
the shape of the former has no longer a visible relation to the 
individual shapes of its constituent cells while in the latter it is 
cell-form which dominates or is actually equivalent to the form of 
the organism, so shall we find it to be, with more or less exact 
analogy, in the case of the skeleton. For example, our own skeleton 
consists of bones, in the formation of each of which a vast number 
of minute living cellular elements are necessarily concerned; but 
the form and even the arrangement of these bone-forming cells or 
corpuscles are monotonously simple, and give no physical explana
tion of the outward and visible configuration of the bone. It is as 
part of a far larger field of force—in which we must consider gravity, 
the action of various muscles, the compressions, tensions and 
bending moments due to variously distributed loads, the whole 
interaction of a very complex mechanical system—that we must 
explain (if we are to explain at all) the configuration of a bone.

In contrast to these massive skeletons we have other skeletal 
elements whose whole magnitude is commensurate with that of a 
living cell, or (as comes to very much the same thing) is comparable 
to the range of action of the molecular forces. Such is the case 
with the ordinary spicules of a sponge, with the delicate skeleton 
of a radiolarian, or with the denser and robuster shells of the 
foraminifera. The effect of* scale, then, of which we had so much 
to say in our introductory chapter on Magnitude, is bound to be 
apparent in the study of skeletal fabrics, and to lead to essential 
differences between the big and the little, the massive and the 
minute, in regard to their controlling forces and resultant forms. 
And if all this be so, and if the range of action of the molecular 
forces be now the important and fundamental thing, then we may 
somewhat extend our statement of the case, and include among our 
directive or constructive influences not only association with the 
living cellular elements of the body, but also association with any 
bubbles, drops, vacuoles or vesicles which may be comprised within 
the bounds of the organism, and which are (as their names and

TGF 43
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characters connote) of the order of magnitude of which we are 
speaking.

Proceeding a little farther in our classification, we may conceive 
each little skeletal element to be associated with, and developed by, 
a single cell or vesicle, or alternatively a cluster or "system” of 
consociated cells. In either case there are various possibilities. 
For instance, the calcified or other skeletal material may tend to 
overspread the entire outer surface of the cell or cluster of cells, 
and so tend to assume a configuration comparable to the surface 
of a fluid drop or aggregation of drops; this, in brief, is the gist and 
essence of our story of the foraminiferal shell. Another common 
but very different condition will arise if, in the case of the cell
aggregates, the skeletal material tends to accumulate in the inter
stices between the cells, in the partition-walls which separate them, 
or in the still more restricted edges, or junctions between these 
partition-walls; conditions such as these will go a long way to 
help us to understand many sponge-spicules and an immense 
variety of radiolarian skeletons. And lastly (for the present), 
there is a possible and very interesting case of a skeletal element 
associated with the surface of a cell, not so as to cover it like 
a shell, but only so as to pursue a course of its own within it, 
and subject to the restraints imposed by such confinement to a 
curved and limited surface. With this curious condition we shall 
deal immediately.

This preliminary and much simplified classification of the lesser 
skeletal, or micro-skeletal, forms does not pretend (as is evident 
enough) to completeness. It leaves out of account some conforma
tions and configurations with which we shall attempt to deal, and 
others which we must perforce omit. But nevertheless it may help 
to clear or mark our way towards the subjects which this chapter 
has to consider, and the conditions by which they are at least 
partially defined.

Among the possible, or conceivable, types of microscopic skeletons 
let us begin with the case of a spicule, more or less simply 
linear as far as its intrinsic powers of growth are concerned, but 
which owes its more complicated form to a restraint imposed by 
the cell to which it is confined, and within whose bounds it is generated.
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The conception of a spicule developed under such conditions came 
from that very great mathematical physicist, G. F. FitzGerald. 
Many years ago, Sollas pointed out that if a spicule begin to grow 
in some particular way, presumably under the control or constraint 
imposed by the organism, it continues to grow by further chemical 
deposition in the same form or direction even after it has got beyond 
the boundaries of the organism or its cells. This phenomenon is 
what we see in, and this imperfect explanation goes so far to account 
for, the continued growth in straight fines of the long calcareous 
spines of Globigerina or Hastigerina, or the similarly radiating but 
siliceous spicules of many Radiolaria. In physical language, if our 
crystalline structure has once begun to be laid down in a definite 
orientation, further additions tend to accrue in a like regular fashion 
and in an identical direction: corresponding to the phenomenon 
of so-called “ orientirte Adsorption,” as described by Lehmann.

In Globigerina or in Acanthocystis the long needles grow out 
freely into the surrounding medium, with nothing to impede their 
rectilinear growth and approximately radiate symmetry. But let 
us consider some simple cases to illustrate the forms which a spicule 
will tend to assume when, striving (as it were) to grow straight, 
it comes under some simple and constant restraint or compulsion.

If we take any two points on a smooth curved surface, such 
as that of a sphere or spheroid, and imagine a string stretched 
between them, we obtain what is known in mathematics as a 
“geodesic” curve. It is the shortest line which can be traced 
between the two points upon the surface itself, and it has always 
the same direction upon the surface to which it is confined; the 
most familiar of all cases, from which the name is derived, is that 
curve, or “rhumb-line,” upon the earth’s surface which the navi
gator learns to follow in the practice of “great-circle sailing,” never 
altering his direction nor departing from his nearest road. Where 
the surface is spherical, the geodesic is literally a “great circle,” 
a circle, that is to say, whose centre is the centre of the sphere. 
I£ instead of a sphere we be dealing with a spheroid, whether 
prolate or oblate (that is to say a figure of revolution in which an 
ellipse rotates about its long or its short axis), then the system of 
geodesics becomes more complicated. For in it the elliptic meridians 
are all geodesics, and so is the circle of the equator; though the

43-2
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circles of latitude are not so, any more than in the sphere. But 
a line.which crosses the equator at an oblique angle, if it is to be 
geodesic, will go on so far and then turn back again, winding its 
way in a continual figure-of-eight curve between two extreme 
latitudes, as when we wind a ball of wool. To say, as we have done, 
that the geodesic is the shortest line between two points upon the 
surface, is as much as to say that it is a trace of some particular 
straight line upon the surface in question; and it follows that, if any 
linear body be confined to that surface, while retaining a tendency to 
grow (save only for its confinement to that surface) in a straight line, 
the resultant form which it will assume will be that of a geodesic.

Let us now imagine a spicule whose natural tendency is to grow 
into a straight linear element, either by reason of its own molecular 
anisotropy or because it is deposited about a thread-like axis, and 
let us suppose that it is confined either within a cell-wall or in 
adhesion thereto; its line of growth will be a geodesic to the surface 
of the cell. And if the cell be an imperfect sphere, or a more or 
less regular ellipsoid, the spicule will tend to grow into one or other 
of three forms: either a plane curve of nearly circular arc; or, 
more commonly, a plane curve which is a portion of an ellipsG; 
or, most commonly of all, a curve which is a portion of a spiral in 
space. In the latter case, the number of turns of the spiral will 
depend not only on the length of the spicule, but on the relative 
dimensions of the ellipsoidal cell, as well as on the angle by which 
the spicule is inclined to the ellipsoid axes; but a very common 
case will probably be that in which the spicule looks at first sight 
to be a plane C-shaped figure, but is discovered, on more careful 
inspection, to lie not in one plane but in a more complicated twist. 
This investigation includes a series of forms which are abundantly 
represented among actual sponge-spicules, as illustrated in Figs. 310 
and 311.

Growth or motion, when confined to some particular curved 
surface, may appear in various forms and in unexpected places. 
An amoeba, creeping along the inside or the outside of a glass tube, 
was found in either case to follow a winding, spiral path: it was 
really doing its best to go straight—in other words it was following 
a geodesic or loxodromic path, determined by whatsoever angle of 
obliquity to the axis of the tube it had chanced to start out upon.
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The spiral bands of chlorophyll in Spirogyra, set at varying angles 
of helicoid obliquity, are (I take it) very beautiful examples of con
tinuous growth under the restraint of a cylindrical surface.

Fig. 310. Sponge and holothurian spicules.

To return to our sponge-spicules. If the spicule be not restricted 
to linear growth, but have a tendency to expand, or to branch out 
from a main axis, we shall obtain a series of more complex figures, 
all related to the geodesic system of curves. A notable case will 
arise where the spicule occupies, in the first instance, the axis of the 
containing cell, and then, on reaching its boundary, tends to branch 
or spread outwards. We shall now get various figures, in some of

Fig. 312. An “amphidisc” 
of Hyalonema.

which the spicule will appear as an axis expanding into a disc or 
wheel at either end; and in other cases, the terminal disc will be 
replaced by rays or spokes with a reflex curvature, corresponding 
to the spherical or ellipsoid curvature of the cell. Such spicules as 
these are exceedingly common among various sponges (Fig. 312).
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Furthermore, if these mechanical methods of conformation, and 
others like to these, be the true cause of the shapes which the 
spicules assume, it is plain that the production of these spicular 
shapes is not a specific function of the sponge, but that we shoidd 
expect the same or similar spicules to occur in other organisms, 
wherever the conditions of inorganic secretion within closed cells 
were very much the same. As a matter of fact, in the sea-cucumbers, 
where the formation of intracellular spicules is a characteristic 
feature of the group, all the principal types of conformation which 
we have just described can be closely paralleled; indeed, in many 
cases, the forms of the holothurian spicules are identical and indis
tinguishable from those of the sponges*.  But the holothurian 
spicules are composed of calcium carbonate while those which we 
have just described in the case of sponges are siliceous: this being 
just another proof of the fact that in such cases as these the form 
of the spicule is not due to its chemical nature or molecular 
structure, but to the external forces to which it is subjected.

* See for instance the plates in Theel’s Monograph of the Challenger Holo- 
thuroidea; also Sollas’s Tetractinellida, p. Ixi. Cf. also E. Mcrke, Studien am Skelet 
der Echinodermen, Zool. Jahrbucher (Abth. f. allgem. Zoologie), 1916-19.

f The particles of lime and silica tend to bear opposite charges; siliceous 
organisms seem to flourish in the colder waters as the calcareous certainly do in 
warmer seas. And such facts, or tendencies, as these may help some day to explain 
the phenomenon.

The broad fact that the skeleton is calcareous in certain large 
groups of animals and calcareous in others is as remarkable as its 
causes are obscure. I for one have no idea why some sponge
skeletons are of the one and some the other, with never the least 
admixture of the two: or why the diatoms and radiolarians are all 
the one, and the molluscs and corals and foraminifera are all the 
otherf.

So much for that small class of sponge-spicules whose forms seem 
due to the fact that they are developed within, or under the restraint 
imposed by, the surface of a single cell or vesicle. Such spicules 
are usually of small size as well as of simple form; and they are 
greatly outstripped in number, in size, and in supposed importance 
as guides to zoological classification, by another class of spicules. 
These are the many and various cases which we explain on the 
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assumption that they develop in association (of some sort or another) 
with the lines of junction, or boundary-edges, of contiguous cells. 
They include the triradiate spicules of the calcareous sponges, the 
quadriradiate or “ tetractinellid ” spicules which occur sometimes 
in the same group but more characteristically in certain siliceous 
sponges known as the Tetractinellidae, and perhaps (though these 
last are somewhat harder to understand) the six-rayed spicules of 
the Hexactinellids. We shall come later on to more complicated 
skeletons of the same type among the Radiolaria.

The spicules of the calcareous sponges are commonly triradiate, 
and the three radii are usually inclined to one another at nearly 
equal angles; in certain cases, two of the three rays are nearly in 
a straight line, and at right angles to the third *.  They are not always 
in a plane, but are often inclined to one another in a trihedral 
angle, not easy of precise measurement under the microscope. The 
three rays are often supplemented by a fourth, which is set tetra
hedrally, making nearly co-equal angles with the other three. The 
calcareous spicule consists mainly of carbonate of lime in the form 
of calcite, with (according to von Ebner) some admixture of soda 
and magnesia, of sulphates and of water. According to the same 
writer there is no organic matter in the spicule, either in the form 
of an axial filament or otherwise, and the appearance of stratifica
tion, often simulating the presence of an axial fibre, is due to “mixed 
crystallisation” of the various constituents. The spicule is a true 
crystal, and therefore its existence and its form are primarily due 
to the molecular forces of crystallisation; moreover it is a single 
crystal and not a group of crystals, as is seen by its behaviour in 
polarised light. But its axes are not crystalline axes, its angles are 
variable and indefinite, and its form neither agrees with, nor in any 
way resembles, any one of the countless, polymorphic forms in 
which calcite is capable of crystallising. It is as though it were 
carved out of a solid crystal; it isf in fact, a crystal under restraint, 
a crystal growing, as it were, in an artificial mould, and this mould 
is constituted by the surrounding cells or structural vesicles of the 
sponge.

* For very numerous illustrations of the triradiate and quadriradiate spicules 
of the calcareous sponges, see (int. al.), papers by Dendy (Q.J.M.S. xxxv, 1893), 
Minchin (P.Z.S. 1904), Jenkin (P.Z.S. 1908), etc.
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We have already studied in an elementary way, but enough for 
our purpose, the manner in which three, four oY more cells, or 
bubbles, meet together under the influence of surface-tension, in 
configurations geometrically similar to what may be brought about 
by a uniform distribution of mechanical pressure. And we have 
seen how surface-energy leads to the adsorption of certain chemical 
substances, first at the corners, then at the edges, lastly in the 
partition-walls, of such an assemblage of cells. A spicule formed 
in the interior of such a mass, starting at a corner where four cells 
meet and extending along the adjacent edges, would then (in theory) 
have the characteristic form which the geometry of the bee’s cell 
has taught us, of four rays radiating from a point, and set at co-equal 
angles to one another of 109°, approximately. Precisely such 
“ tetractinellid ” spicules are often formed.

But when we confine ourselves to a plane assemblage of cells, or 
to the outer surface of a mass, we need only deal with the simpler 
geometry of the hexagon. In such a plane assemblage we find the 
cells meeting one another in threes; when the cells are uniform in 
size the partitions are straight lines, and combine to form regular 
hexagons; but when the cells are unequal, the partitions tend to be 
curved, and to combine to form other and less regular polygons. 
Accordingly, a skeletal secretion originating in a layer or surface 
of cells will begin at the corners and extend to the edges of the cells, 
and will thus take the form of triradiate spicules, whose rays (in a 
typical case) will be set at co-equal angles of 120° (Fig. 313, F). This 
latter condition of inequality will be open to modification in various 
ways. It will be modified by any inequality in the specific tensions 
of adjacent cells; as a special case, it will be apt to be greatly modified 
at the surface of the system, where a spicule happens to be formed 
in a plane perpendicular to the cell-layer, so that one of its three rays 
lies between two adjacent cells and the other two are associated 
with the surface of contact between the cells and the surrounding 
medium; in such a case (as in the cases considered in connection 
with the forms of the cells themselves on p. 494), we shall tend to 
obtain a spicule with two equal angles and one unequal (Fig. 313, 
A, C); in the last case, the two outer, or superficial rays, will tend 
to be markedly curved. Again, the equiangular condition will be 
departed from, and more or less curvature will be imparted to the
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rays, wherever the cells of the system cease to be uniform in size, 
and when the hexagonal symmetry of the system is lost accordingly. 
Lastly, although we speak of the rays as meeting at certain definite 
angles, this statement applies to their axes rather than to the rays 
themselves. For if the triradiate spicule be developed in the 
interspace between three juxtaposed cells it is obvious that its sides 
will tend to be concave, because the space between three contiguous 
equal circles is an equilateral, curvilinear triangle; and even if our

Fig. 313. Spicules of Grantia and other calcareous sponges. 
After Haeckel.

spicule be deposited, not in the space between our three cells, but 
in the mere thickness of an intervening wall, then we may recollect 
that the several partitions never actually meet at sharp angles, but 
the angle of contact is always bridged over by an accumulation of 
material (varying in amount according to its fluidity) whose boundary 
takes the form of a circular arc, and which constitutes the “ bourrelet” 
of Plateau. In any sample of the triradiate spicules of Grantia, 
or in any series of careful drawings, such as Haeckel’s, we shall find 
all these various configurations severally and completely illustrated.
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The tetrahedral, or rather tetractinellid, spicule needs no further 

explanation in detail (Fig. 313, D, E). For just as a triradiate 
spicule corresponds to the case of three cells in mutual contact, so 
does the four-rayed spicule to that of a solid aggregate of four cells: 
these latter tending to meet one another in a tetrahedral system, 
shewing four edges, at each of which three facets or partitions meet, 
their edges being inclined to one another at equal angles of about 
109^ the “Maraldi” angle. And even in the case of a single layer, 
or superficial layer, of cells, if the skeleton originate in connection 
with all the edges of mutual contact, we shall (in complete and 
typical cases) have a four-rayed spicule, of which one straight limb 
will correspond to the line of junction between the three cells, and 
the other three limbs (which will then be curved limbs) will corre
spond to the three edges where the three cells meet in pairs on the 
surface of the system.

But if such a physical explanation of the forms of our spicules is 
to be accepted, we must seek for some physical agency to explain 
the presence of the solid material just at the junctions or interfaces 
of the cells, and for the forces by which it is confined to, and moulded 
to the form of, these intercellular or interfacial contacts. We owe 
to Dreyer the physical or mechanical theory of spicular conforma
tion which I have just described—a theory which ultimately rests 
on the form assumed, under surface-tension, by an aggregation of 
cells or vesicles. But this fundamental point being granted, we 
have still several possible alternatives by which to explain the 
details of the phenomenon.

Dreyer, if I understand him aright, was content to assume that 
the solid material, secreted or excreted by the organism, accumu
lates in the interstices between the cells, and is there subjected 
to mechanical pressure or constraint as the cells get crowded 
together by their own growth and that of the system generally. 
As far as the general form of the spicules goes such explanation is 
not inadequate, though under it we might have to renounce some 
of our assumptions as to what takes place at the surface of 
the system. But where a few years ago the concept of secretion 
seemed precise enough, we turn now-a-days to the phenomenon of 
adsorption as a further stage towards the elucidation of our facts, 
and here we have a case in point. In the tissues of our sponge, 
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wherever two cells meet, there we have a definite surface of contact, 
and there accordingly we have a manifestation of surface-energy; 
and the concentration of surface-energy will tend to be a maximum 
at the lines or edges whereby such surfaces are conjoined. Of the 
micro-chemistry of the sponge-cells our ignorance is great; but 
(without venturing on any hypothesis involving the chemical details 
of the process) we may safely assert that there is an inherent prob
ability that certain substances will tend to be concentrated and 
ultimately deposited just in these lines of intercellular contact and 
conjunction. In other words, adsorptive concentration, under 
osmotic pressure, at and in the surface-film which bounds contiguous 
cells, and especially in the edges where these films meet and intersect, 
emerges as an alternative (and, as it seems to me, a highly preferable 
alternative) to Dreyer's conception of an accumulation under 
mechanical pressure in the vacant spaces left between one cell and 
another.

But a purely chemical, or purely molecular, adsorption is not the 
only form of the hypothesis on which we may rely. For from the 
purely physical point of view, angles and edges of contact between 
adjacent cells will be loci in the field of distribution of surface
energy, and any material particles whatsoever will tend to undergo 
a diminution of freedom on entering one of those boundary regions. 
Let us imagine a couple of soap bubbles in contact with one another; 
over the surface of each bubble tiny bubbles and droplets glide in 
every direction; but as soon as these find their way into the groove 
or re-entrant angle between the two bubbles, there their freedom 
of movement is so far restrained, and out of that groove they have 
little tendency, or little freedom, to emerge. A cognate phenomenon 
is to be witnessed in microscopic sections of steel or other metals. 
Here, together with its crystalline structure, the metal develops a 
cellular structure by reason of its lack of homogeneity; for in the 
molten state one constituent tends to separate out into drops, while 
the other spreads over these and forms a filmy reticulum between 
—the disperse phase and the continuous phase of the colloid chemists. 
In a polished section we easily observe that the little particles of 
graphite and other foreign bodies common in the matrix have 
tended to aggregate themselves in the walls and at the angles of 
the polygonal cells- this being a direct result of the diminished
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freedom which they undergo on entering one of these boundary 
regions. And the same phenomenon is turned to account in the 
various “ separation-processes ” in whkh metallic particles are caught 
up in the interstices of a froth, that is to say in the walls of the 
foam-cells or Schaumkammern* .

* The crystalline composition of iron was recognised by Hooke in the Micro- 
graphia (1665); and the cellular or polyhedral structure of the metal was clearly 
recognised by Reaumur, in his Art de convertir lef er forge en acier, 1722.

It is by a combination of these two principles, chemical adsorp
tion on the one hand and physical quasi-adsorption or concentration 
of grosser particles on the other, that I conceive the substance of 
the sponge-spicule to be concentrated and aggregated at the cell 
boundaries; and the forms of the triradiate and tetractinellid 
spicules are in precise conformity with this hypothesis. A few 
general matters, and a few particular cases, remain to be considered. 
It matters little or not at all for the phenomenon in question, what 
is the histological nature or “grade” of the vesicular structures 
on which it depends. In some cases (apart from sponges), they 
may be no more than little alveoli of an intracellular protoplasmic 
network, and this would ^eem to be the case at least in the protozoan 
Entosolenia aspera, within the vesicular protoplasm of whose single 
cell Mobius has described tiny spicules in the shape of little tetra- 
hedra with sunken or concave sides. It is probably the case also 
in the small beginnings of Echinoderm spicules, which are likewise 
intracellular and are of similar shape. Among the sponges we have 
many varying conditions. In some cases there is reason to believe 
that the spicule is formed at the boundaries of true cells or histo
logical units; but in the case of the larger triradiate or tetractinellid 
spicules they far surpass in size the actual “cells.” We find them 
lying, regularly and symmetrically arranged, between the “pore
canals” or “ciliated chambers,” and it is in conformity with the 
shape and arrangement of these large rounded or spheroidal struc
tures that their shape is assumed.

Again, it is not at variance with our hypothesis to find that, in 
the adult sponge, the larger spicules may greatly outgrow the 
bounds not only of actual cells but also of the ciliated chambers, 
and may even appear to project freely from the surface of the 
sponge. For we have already seen that the spicule is capable of 
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growing, without marked change of form, by further depositior^ or 
crystallisation, of layer upon layer of calcareous molecules, even in 
an artificial solution; and we are entitled to believe that the same 
process may be carried on in the tissues of the sponge, without 
greatly altering the symmetry of the spicule, long after it has 
established its characteristic but non-crystalline form of a system 
of slender trihedral or tetrahedral rays.

Neither is it of great importance to our hypothesis whether the 
rayed spicule necessarily arises as a single structure, or does so from 
separate minute centres of aggregation. Minchin has shewn that, 
in some cases at least, the flatter is the case; the spicule begins, 
he tells us, as three tiny rods, separate from one another, each 
developed in the interspace between two sister-cells, which are 
themselves the results of the division of one of a little trio of cells; 
and the little rods meet and fuse together while still very minute, 
when the whole spicule is only about of a millimetre long. 
At this stage, it is interesting to learn that the spicule is non
crystalline; but the new accretions of calcareous matter are soon 
deposited in crystalline form.

This observation threw difficulties in the way of former mechanical 
theories of the conformation of the spicule, and was quite at variance 
with Dreyer’s theory, according to which the spicule was bound to 
begin from a central nucleus coinciding with the meeting-place of 
three contiguous cells, or rather the interspace between them. But 
the difficulty is removed when we import the concept of adsorption; 
for by this agency it is natural enough, or conceivable enough, that 
deposition should go on at separate parts of a common system of 
surfaces; and if the cells tend to meet one another by their interfaces 
before these interfaces extend to the angles and so complete the 
polygonal cell, it is again only natural that the spicule should first 
arise in the form of separate and detached limbs or rays.

Among the “tetractinellid” sponges, whose spicules are com
posed of amorphous silica or opal, all or most of the above-described 
main types of spicule occur, and, as the name of the group implies, 
the four-rayed, tetrahedral spicules are especially represented. 
A somewhat frequent type of spicule is one in which one of the four 
rays is greatly developed, and the other three constitute small 
prongs diverging at equal' angles from the main or axial ray. In 
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all probability, as Dreyer suggest^, we have here had to do with a 
group of four vesicles, of which three were large and co-equal, while

a fourth and very much smaller one lay 
above and between the other three. In 
certain cases where we have likewise one 
large and three much smaller rays, the 

Fig. 314. Spicules of tetracti
nellid sponges (after Sollas).

latter are recurved, as in Fig. 314, a-c. 
This type, save for the constancy of the 
number of rays and the limitation of the 
terminal ones to three, and save also for 
the more important difference that they 
occur only at one and not at both ends of 
the long axis, is similar to the type of 
spicule illustrated in Fig. 312, which we 
have explained as being probably de
veloped within an oval cell, by whose 
walls its branches have been cabined and 
confined. But it is more probable that 
we have here to do with a spicule de
veloped in the midst of a group of three

a-e, anatriaenes; d-f, pro- co-equal and more or less elongated or
triaenes. cylindrical cells or vesicles, the long axial

ray corresponding to their common edge or line of contact, and the 
three short rays having each lain in the surface furrow between two 
out of the three adjacent cells.

Just as in the case of the little S-shaped spicules formed within 
the bounds of a single cell, so also in the case of the larger tetrac
tinellid types do we find the same configurations reproduced among 
the holothuroids as we have dealt with in the sponges. The holo
thurian spicules are a little less neatly formed, a little rougher, than 
the sponge-spicules, and certain forms occur among the former 
group which do not present themselves among the latter; but for 
the most part a community of type is obvious and striking (Fig. 315).

The very peculiar spicules of the holothurian Synapta where a 
tiny anchor is pivoted or hinged on a perforated plate, are a puzzle 
indeed; but we may at least solve part of the riddle. How the 
hinge is formed, I do not know; the anchor gets its shape, perhaps, 
in some such w’ay as we have supposed the “ amphidiscs ”of Hyalo- 
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nema to acquire their reflexed spokes, but the perforated plate is 
more comprehensible. Each plate starts in a little clump of cells 
in whose boundary-walls calcareous matter is deposited, doubtless 
by adsorption, the holes in the finished plate thus corresponding to 
the cells which formed it. Close-packing leads to an arrangement 
of six cells round a central one, and the normal pattern of the plate 
displays this hexagonal configuration. The calcareous plate begins 
as a little rod whose ends fork, and then fork again: in the same 
inevitable trinodal pattern which includes the “polar furrow” of 
the embryologists. The anchor had been first formed, and the

Fig. 315. Various holothurian spicules. After Theel.

little plate is added on beneath it. The first spicular rudiment of 
the plate may lie parallel to the stock of the anchor or it may lie 
athwart* it. From the physical point of view it would seem to be 
a mere matter of chance which way the cluster of cells happens to 
lie; but this difference of direction will cause a certain difference 
in the symmetry of the resulting plate. It is this very difference 
which systematic zoologists at one time seized upon to distinguish 
8. Buskii from our two commoner “species.” The two latter

* Cf. S. Becher, Nicht-funktionelle Korrelation in der Bildung selbstandiger 
Skeletelemente, Zool. Jahrbucher (Physiol.), xxxi, pp. 1-189, 1912; Hedwiga 
Wilhelmi, Skeletbildung der fiisslosen Holothurien, ibid, xxxvn. pp. 493-547, 
1920; Arch. f. Entw. Meeh, xlvi, pp. 210-258, 1920. See also W. Woodland, 
Studies in spicule-formation, Q.J.M.S. xlix, pp. 535-559, 1906; li, pp. 483-509, 
1907 and R. Semon, Naturgeschichte der Synaptiden, Mitth. Zool. St. Neapel, vu, 
pp. 272-299, 1886. On the common species of Synapta, see Koehler, Faune de 
France, Echinodermes, 1921, pp. 188-9.



688 ON CONCRETIONS, SPICULES, ETC [ch.

(8. inhaerens and S. digitala) are mainly distinguished from one 
another by the number of holes in the plate, that is to say, by the 
average number of cells in the little cluster of which the plate or 
spicule was formed. In many or perhaps most other holothurians

Fig. 316. Development of anchor-plate in Synapta. After Sefiion.

the spicules consist of little perforated plates or baskets, developed 
in the same way, about cells or vesicles more or less close-packed, 
and therefore more or less symmetrically arranged (Fig. 316).

Fig. 317. Spicules of hexactinellid sponges. After F. E. Schultze.

The six-rayed siliceous spicules of the hexactinellid sponges, while 
they are perhaps the most regular and beautifully formed spicules 
to be found within the entire group, have been found very difficult 
to explain, and Dreyer has confessed his complete inability to 
account for their conformation*. But, though it may only be

* Cf. Albr. Schwan, Ueber die Funktion des Hexactinellidenskelets, u. seine 
Vergleichbarkeit mit dem Radiolarienskelet, Zool. Jb., Abth. allg. Zool. u. Physiol. 
xxxin, pp. 603-616, 1913; cf. V. Hacker, Bericht fiber d. Tripyleenausbeute 
d. d. Tiefsee-Exped. Verh. d. zool. Ges. 1904.
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throwing the difficulty a little further back, we may so far account 
for them by considering that the cells or vesicles by which they 
are conformed are not arranged in what is known as “closest 
packing,” but in linear series; so that in their arrangement, and 
by their mutual compression, we tend to get a pattern not of 
hexagons but of squares: or, looking to the solid, not of dodeca- 
hedra but of cubes or parallelepipeda. This indeed appears to be 
the case, not with the individual cells (in the histological sense), 
but with the larger units or vesicles which make up the body of the 
hexactinellid. And this being so, the spicules formed between the 
linear, or cubical series of vesicles, will have the same tendency 
towards a “hexactinellid” shape, corresponding to the angles and 
adjacent edges of a system of cubes, as in our former case they had 
to a triradiate or a tetractinellid form, when developed in connection 
with the angles and edges of a system of hexagons, or a system of 
rhombic dodecahedra.

However the hexactinellid spicules be arranged (and this is none 
too easy to determine) in relation to the tissues and chambers of 
the sponge, it is at least clear that, whether they lie separate or 
be fused together in a composite skeleton, they effect a symmetrical 
partitioning of space according to the cubical system, in contrast 
to that closer packing which is represented and effected by the 
tetrahedral system*.

Histologically, the case is illustrated by a well-known pheno
menon in embryology. In the segmenting ovum, there is a tendency 
for the cells to be budded off in linear series; and so they often 
remain, in rows side by side, at least for a considerable time and 
during the course of several consecutive cell divisions. Such an 
arrangement constitutes what the embryologists call the “radial 
type” of segmentation!. But in what is descnoed as the “spiral 
type” of segmentation, it is stated that as soon as the first hori
zontal furrow has divided the cells into an upper and a lower layer, 
those of “the upper layer are shifted in respect to the lower layer,

* ('hall. Rep., Hexactinellida, pls. xvi, liii, Ixxvi, Ixxxviii.
f See, for instance, the figures of-the segmenting egg ofSynapta (after Seienka), 

in Korschelt and Heider’s V ergleichende Entwicldunqsgeschichte. On the spiral 
type of segmentation as a secondary derivative, due to mechanical causes, of the 
“radial” type of segmentation, see E. B. Wilson, Cell-lineage of Nereis, Journ. 
Morph, vi, p. 450, 1892.

TG F 44
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by means of a rotation about the vertical axis*.” It is, of course, 
evident that the whole process is merely that which is familiar to 
physicists as “close packing.” It is a very simple case of what 
Lord Kelvin used to call “a problem in tactics.” It is a mere 
question of the rigidity of the system, of the freedom of movement 
on the part nf its constituent cells, whether or at what stage this 
tendency to slip into the closest propinquity, or position of minimum 
potential, will be found to manifest itself.

Lastly, a curious case is presented by the so-called “chessman” 
spicules of Latrunculia and of a few other sponges, where the spicular 
shaft is thickened at regular intervals, and the thickenings grow 
into whorled and flattened lobes. Dendy suggested that the 
developing spicule is in a state of vibration (due perhaps to the 
water-currents of the sponge), and that the whorls correspond to 
nodes, or loci of comparative rest, where the formative cells tend 
to settle down and do their work undisturbed. The position of 
the nodes and internodes will depend on many circumstances, on 
whether the spicule be a fixed rod or a free one, straight or curved, 
uniform in section or tapering towards either end. In the free bar 
there should tend, in any case, to be a node in the middle, and 
two more at definite distances from either end. It so happens that 
in the forms investigated there are only two whorls, the median 
and one other; but J. W. Nicholson has calculated the positions 
of these according to the vibration theory, and the theoretical 
results are found to agree with those of observation very closely 
indeed. That one of the whorls should be lacking might seem to 
imperil the proof; but on the other hand among large numbers of 
spicules no one was found to have its whorls in a position incon
sistent with the theory, and there was the required agreement 
between the shape of the spicule and the position of the whorls. 
The absence of a third whorl is explained as due to a la< k of the 
necessary formative cells at that part of the spiculef. The theory 
is in a way supported by recent work (by R. W. Wood of Baltimore 
and others) on “supersonic vibrations,” showing excessively rapid

* Korschelt and Heider, p. 16.
f A. Dendy and J. W. Nicholson, On the influence of vibration upon the form 

of certain sponge-spicules, Proc. R.S. (B), lxxxix, pp. 573—587, 1917; A. Dendy, 
The chessman spicules of the genus Latrunculia, etc., Journ. Quekett Microsc. Club, 
XIII, pp. 1-16, 1917.
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vibrations in quartz rods, more rapid even than Dendy’s hypothesis 
would seem to require. But on the other hand, it is only to few 
and even exceptional spicules that the theory would seem to apply.

This question of the origin and causation of the forms of sponge
spicules, with which we have now sought to deal, is all the more 
important and all the more interesting because it has been discussed 
time and again, from points of view which are characteristic of 
very different schools-of thought in biology. Haeckel found in the 
form of the sponge-spicule a typical illustration of his theory of 
“bio-crystallisation”; he considered that these “biocrystals” re
presented something midway—ein Mittelding- -between an inorganic 
crystal and an organic secretion; that there was a “compromise 
between the crystallising efforts of the calcium carbonate and the 
formative activity of the fused cells of the syncytium”; and that 
the semi-crystalline secretions of calcium carbonate “were utilised 
by natural selection as ‘spicules’ for building up a skeleton, and 
afterwards, by the interaction of adaptation and heredity, became 
modified in form, and differentiated in a vast variety of ways, in 
the struggle for existence*.” What Haeckel precisely meant by 
these words is not clear to me.

F. E. Schultze, perceiving that identical forms of spicule were 
developed whether the material were crystalline or non-crystalline, 
abandoned all theories based upon crystallisation; he simply saw 
in the form and arrangement of the spicules something which was 
“best fittedJ’ for its purpose, that is to say for the support and 
strengthening of the porous walls of the sponge, and finding clear 
evidence of “utility” in the specific characters of these skeletal 
elements, had no difficulty in ascribing them to natural selection.

Sollas and Dteyer, as we have seen, introduced in various ways 
the conception of physical causation—as indeed Haeckel himself 
had done in regard to one particular, when he supposed the position 
of the spicules to be due to the constant passage of the water-

* “Hierbei nahm der kohlensaure Kalk eine halb-krystallinische Beschaffen- 
heit an, und gestaltete sich unter Aufnahme von Krystallwasser und in Verbindung 
mit einer geringen Quantitat von organischer Substanz zu jenen individuellen, 
festen Korpern, welche durch die natiirliche Ziichtung ais Spicula zur Skeletbildung 
beniitzt, und spaterhin durch die Wechselwirkung von Anpassung und Vererbung 
im Kampfe urns Dasein auf das Vielfaltigste umgebildet und differenziert wurden.” 
Die Kalkschwamme, I, p. 377, 1872; cf. also pp. 482, 483.

44'2
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currents; though even here, by the way, if I understand Haeckel 
aright, he was thinking not of a direct or immediate physical 
causation, but rather of one manifesting itself through the agency 
of natural selection*. Sollas laid stress upon the “path of least 
resistance” as determining the direction of growth; while Dreyer 
dealt in greater detail with the tensions and pressures to which the 
growing spicule was exposed, amid the alveolar or vesicular structure 
which was represented alike by the chambers of the sponge, by the 
constituent cells, or by the minute structure of the intracellular 
protoplasm. But neither of these writers, so far as I can discover, 
was inclined to doubt for a moment the received canon of biology, 
which sees in such structures as these the characteristics of true 
organic species, the indications of blood-relationship and family like
ness, and the evidence by which evolutionary descent throughout 
geologic time may be deduced or deciphered.

Minchin, in a well-known paperf, took sides with F. E. Schultze, 
and gave his reasons for dissenting from such mechanical theories as 
those of Sollas and of Dreyer. For example, after pointing out 
that all protoplasm contains a number of “granules” or micro
somes, contained in an alveolar framework and lodged at the nodes 
of a reticulum, he argued that these also ought to acquire a form 
such as the spicules possess, if it were the case that these latter 
owed their form to their similar or identical position. “ If vesicular 
tension cannot in any other instance cause the granules at the 
nodes to assume a tetraxon form, why should it do so for the 
sclerites I ” The answer is not far to seek. If the force which the 
“mechanical” hypothesis has in view were simply that of mechanical 
pressure, as between solid bodies, then indeed we should expect 
that any substances lying between the impinging spheres would ' 
tend to assume the quadriradiate or "tetraxon” form; but this 
conclusion does not follow at all, in so far as it is to surface-energy 
that we ascribe the phenomenon. Here the specific nature of the 
substance makes all the difference. M e’ cannot argue from one

* Op. cit. p. 483. “Die geordnete, oft so sehr regelmassige und zierliche Zusam- 
mensetzung des Skeletsystems ist zum grossten Theile unmittelbares Product 
der Wasserstromung; die characteristische Lagerung der Spicula ist von der 
constanten Richtung des Wasserstroms hervorgebracht; zum kleinsten Theile ist 
sie die Folge von Anpassungen an untergeordnete aussere Existenzbedingungen.”

f Materials for a Monograph of the Ascones, Q.J.M.S. xl, pp. 469—587, 1898. 
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substance to another; adsorptive attraction shews its effect on one 
and not on another; and we have no reason to be surprised if we 
find that the little granules of protoplasmic material, which as they 
lie bathed in the more fluid protoplasm have (presumably, and as 
their shape indicates) a strong surface-tension of their own, behave 
towards the adjacent vesicles in a very different fashion to the 
incipient aggregations of calcareous or siliceous matter in a colloid 
medium. “The ontogeny of the spicules,” says Professor Mine bin, 
“points clearly to their regular form being a phylogenetic adaptation, 
which has become fixed and handed on by heredity, appearing in the 
ontogeny as a prophetic adaptation." And again, “The forms of the 
spicules are the result of adaptation to the requirements of the 
sponge as a whole, produced by the action of natural selection upon 
variation in every direction." It would scarcely be possible to 
illustrate more briefly and more cogently than by these few words 
(or the similar words of Haeckel quoted on p. 691), the fundamental 
difference between the Darwinian conception of the causation and 
determination of Form, and that which is based on, and characteristic 
of, the physical sciences.

Last of all, Dendy took a middle course. Mhile admitting that 
the majority of sponge-spicules are “the outcome of conditions 
which are in large part purely physical,” he still saw in them “a very 
high taxonomic value,” as “indications of phylogenetic history” 
all on the ground that “it seems impossible to account in any other 
way for the fact that we can actually arrange the different forms 
in such well-graduated series.” At the same time he believed that 
“the vast majority of spicule-characters appear to be non-adaptive,” 
“that no one form of spicule has, as a rule, any greater survival
value than another,” and that “the natural selection of favourable 
varieties can have had very little to do with the matter*. ”

* Cf. A. Dendy, The Tetraxonid sponge-spicule: a study in evolution, Acta 
Zoolog ica, 1921, pp. 136, 146, etc. Cf. also’. Bye-products of organic evolution, 
Journ. QuekcttMicroscop. Club, xrr, pp. 65-82, 1913.

The quest after lines and evidences of descent dominated morpho
logy for many years, and preoccupied the minds of two or three 
generations of naturalists. M e find it easier to see than they did 
that a graduated or consecutive series of forms may be based on 
physical causes, that forms mathematically akin may belong to 
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organisms biologically remote, and that, in general, mere formal 
likeness may be a fallacious guide to evolution in time and to 
relationship by descent and heredity.

If I have dealt comparatively briefly with the inorganic skeletons 
of sponges, in spite of the interest of the subject from the physical 
point of view, it has been owing to several reasons. In the first 
place, though the general trend of the phenomena is clear, it must 
be admitted that many points are obscure, and could only be 
discussed at the cost of a long argument. In the second place, the 
physical theory is too often (as I have shewn) in conflict with the 
accounts given by embryologists of the development of the spicules, 
and with the current biological theories which their descriptions 
embody; it is beyond our scope to deal with such descriptions 
in detail. Lastly, we find ourselves able to illustrate the same 
physical principles with greater clearness and greater certitude in 
another group of animals, namely the Radiolaria.

The group of microscopic organisms known as the Radiolaria is 
extraordinarily rich in diverse forms or “species.” I do not know 
how many of such species have been described and defined by 
naturalists, but some fifty years ago the number was said to be 
over four thousand, arranged in more than seven hundred genera*; 
of late years there has been a tendency to reduce the number. 
But apart from the extraordinary multiplicity of forms among the 
Radiolaria, there are certain features in this multiplicity which 
arrest our attention. Their distribution in space is curious and 
vague; many species are found all over the world, or at least every 
here and there, with no evidence of specific limitations of geo
graphical habitat; some occur in the neighbourhood of the two 
poles, some are confined to warm and others to cold currents of 
the ocean. In time their distribution is not less vague: so much 
so that it has been asserted of them that “from the Cambrian age 
downwards, the families and even genera appear identical with 
those now living.” Lastly, except perhaps in the case of a few 
large “colonial forms,” we seldom if ever find, as is usual in most 
animals, a local predominance of one particular species. On the

* Haeckel, in his Challenger Monograph, p. clxxxviii (1887), estimated the 
number of known forms at 4314 species, included in 739 genera. Of these, 3508 
species were described for the first time in that work.
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contrary, in a little pinch of deep-sea mud or of some fossil “radio- 
larian earth,” we shall probably find scores, and it may be even 
hundreds, of different forms. Moreover, the radiolarian skeletons 
are of quite extraordinary delicacy and complexity, in spite of their 
minuteness and the comparative simplicity of the “unicellular” 
organisms within which they grow; and these complex conforma
tions have a wonderful and unusual appearance of geometric 
regularity. All these general considerations seem such as to prepare 
us for some physical hypothesis of causation. The little skeletons 
remind us of such things as snow-crystals (themselves almost endless 
in their diversity), rather than of a collection of animals, constructed 
in accordance with functional needs and distributed in accordance 
with their fitness for particular situations. Nevertheless, great 
efforts have been made to attach “a biological meaning” to these 
elaborate structures, and “to justify the hope that in time their 
utilitarian character will be more completely recognised*.”

As Ernst Haeckel described and figured many hundred “species” 
of radiolarian skeletons, so have the physicists depicted snow
crystals in several thousand different forms f. These owe their 
multitudinous variety to symmetrical repetitions of one simple 
crystalline form—a beautiful illustration of Plato’s One among the 
Many, to ev wapa ra TroXXd. On the other hand, the radiolarian 
skeleton rings its endless changes on combinations of certain facets, 
corners and edges within a filmy and bubbly mass. The broad 
difference between the two is very plain and instructive.

• Kepler studied the snowflake with care and insight, though he 
said that to care for such a trifle was like Socrates measuring the 
hop of a flea. The first drawings 1 know are by Dominic Cassini; 
and if that great astronomer was content with them they shew how 
the physical sciences lagged behind astronomy. They date from the 
time when Maraldi, Cassini’s nephew, was studying the bee’s cell;

* Cf. Gamble, Radiolaria (Lankester’s Treatise on Zoology), i, p. 131, 1909. 
Cf. also papers by V. Hacker, in Jen. Zeitschr. xxxix, p. 581, 1905; Z. f. wiss. 
Zool. Lxxxm, p. 336, 1905; Arch. f. Protistenkunde, ix, p. 139, 1907; etc.

f See above, p. 411; and see (besides the works quoted there) Kepler, De nive 
sexangula (1611), Opera, ed. Fritsch, vn, pp. 715-730; Erasmus Bartholin, De 
figura nivis, Diss., Hafniae, 1661; Dom. Cassini, Obs. de la figure de la neige 
(Abstr.), Mem. Acad. R. des Sciences (1666-1699), x, 1730; J. C. Wilcke, Om de 
naturliga sno-figurers, K. F. Akad. Handl, xxn, 1761.
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and they shew once more how very rough his measurements of the 
honeycomb are bound to have been

Crystals lie outside the province of this book; yet snow-crystals, 
and all the rest besides, have much to teach us about the variety, 
the beauty and the very nature of form. To begin with, the 
snow-crystal is a regular hexagonal plate or thin prism; that is to

Fig. 318 a. Snow-crystals, or “snow flowers.” From Dominic Cassini (c. 1600).

say, it shews hexagonal faces above and below, with edges set at 
co-equal angles of 120°. Ringing her changes on this fundamental 
form, Nature superadds to the primary hexagon endless combina
tions of similar plates or prisms, all with identical angles but varying 
lengths of side; and she repeats, with an exquisite symmetry,

Fig. 318 6. Snow-crystals. From Bentley and Humphreys, 1931.

about all three axes of the hexagon, whatsoever she may have 
done for the adornment and elaboration of one. These snow-crystals 
seem (as Tutton says) to give visible proof of the space-lattice on 
which their structure is framed.

The beauty of a snow-crystal depends on its mathematical 
regularity and symmetry; but somehow the association of many 
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variants of a single type, all related but no two the same, vastly 
increases our pleasure and admiration. Such is the peculiar beauty 
which a Japanese artist sees in a bed of rushes or a clump of 
bamboos, especially when the wind’s ablowing; and such (as we 
saw before) is the phase-beauty of a flowering spray when it shews 
every gradation from opening bud to fading flower.

The snow-crystal is further complicated, and its beauty is notably 
enhanced, by minute occluded bubbles of air or drops of water, whose 
symmetrical form and arrangement are very curious and not always 
easy to explain*. Lastly, we are apt to see our snow-crystals after 
a slight thaw has rounded their sharp edges, and has heightened 
their beauty by softening their contours.

In the majority of cases, the skeleton of the Radiolaria is com
posed, like that of so many sponges, of silica; in one large family, 
the Acantharia, and perhaps in some others, it is made of a very 
unusual constituent, namely strontium sulphate f. There is no 
important morphological character in, which the shells made of these 
two constituents differ from one another; and in no case can the 
chemical properties of these inorganic materials be said to influence 
the form of the complex skeleton or shell, save only in this general 
way that, by their hardness, toughness and rigidity, they give rise 
to a fabric more slender and delicate than we find among calcareous 
organisms.

A slight exception to this rule is found in the presence of true 
crystals, which occur within the central capsules of certain Radio
laria, for instance the genus Collosphaera^. Johannes Muller 
(whose knowledge and insight never fail to astonish us§) remarked

* We may find some suggestive analogies to these occlusions in Emil Hatschek’s 
paper, Gestalt und Orientirung von Gasblasen in Gelen, Kolloid. Ztschr. xx, pp. 
226-234, 1914.

t Biitschli, Ueber die chemische Natur der Skeletsubstanz der Acantharia, 
Zodl. Anz. xxx. p. 784. 1906.

J For figures of these crystals see Brandt, F. u. Fl. d. Golfes von Neap J. xin, 
Radiolaria, 1885, pl. v. Cf. Johannes Muller, Ueber die Thalassicollen. etc., Abh. K. 
Akad. IFiss. Berlin, 1858.

§ It is interesting to think of the lesser discoveries or inventions, due to men 
famous for greater things. Johannes Muller first used the tow-net, and Edward 
Forbes first borrowed the oyster-man’s dredge. When we watch a living polyp 
under the microscope in its tiny aquarium of a glass-cell, we are doing what John 
Goodsir was the first to do; and the microtome itself was the invention of that 
best of laboratory-servants, “old Stirling,” Goodsir’s right-hand man.
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that these were identical in form with crystals of celestine, a 
sulphate of strontium and barium; and Butschli's discovery of 
sulphates of strontium and of barium in kindred forms renders it 
all but certain that they are actually true crystals of celestine*.

* Celestine, or celestite, is SrSO4 with some BaO replacing SrO.
f With the colloid chemists, we may adopt (as Rhumbler has done) the terms 

spumoid or emulsoid to denote an agglomeration of fluid-filled vesicles, restricting 
the name froth to such vesicles when filled with air or some other gas.

In its typical form, the radiolarian body consists of a spherical 
mass of protoplasm, around which, and separated from it by some 
sort of porous “capsule,” lies a frothy protoplasm, bubbled up into 
a multitude of alveoli or vacuoles, filled with a fluid which can 
scarcely differ much from sea-water f. According to their surface
tension conditions, these vacuoles may appear more or less isolated 
and spherical, or joined together in a “froth” of polyhedral cells; 
and in the latter, which is the commoner condition, the cells tend 
to be of equal size, and the resulting polygonal meshwork beautifully 
regular. In some cases a large number of such simple individual 
organisms are associated together, forming a floating colony; and 
it is probable that many others, with whose scattered skeletons we 
are alone acquainted, had likewise formed part of a colonial 
organism.

In contradistinction to the sponges, in which the skeleton always 
begins as a loose mass of isolated spicules, which only in a few 
exceptional cases (such as Euplectella and Farrea) fuse into a 
continuous network, the characteristic feature of the radiolarians 
lies in the production of a continuous skeleton, of netted rnesh or 
perforated lacework, sometimes replaced by and oftener associated 
with minute independent spicules. Before we proceed to treat of 
the more complex skeletons, we may begin by dealing with those 
comparatively few simple cases where the skeleton is represented 
by loose, separate spicules or aciculae, which seem, like the spicules 
of Alcyonium,, to, be isolated formations or deposits, precipitated in 
the colloid matrix, with no relation to cellular or vesicular boun
daries. These simple acicular spicules occupy a definite position 
in the organism. Sometimes, as for instance among the fresh-water 
Heliozoa (e.g. Raphidiophrys), they lie on the outer surface of the 
organism, and not infrequently (when few in number) they tend to 
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collect round the bases of the pseudopodia, or around the larger 
radiating spicules or axial rays in cases where these latter are 
present. When the spicules are thus localised around some pro
minent centre, they tend to take up a position of symmetry in 
regard to it; instead of forming a tangled or felted layer, they come 
to lie side by side, in a radiating cluster round the focus. In other 
cases (as for instance in the well-known radiolarian Aulacantha 
scolymantha) the felted layer of aciculae lies at some depth below 
the surface, forming a sphere concentric with the entire spherical 
organism. In either case, whether the layer of spicules be deep or 
be superficial, it tends to mark a “surface of discontinuity,” a 
meeting place either between two distinct layers of protoplasm or 
between the protoplasm and the water around; and it is evident 
that, in either case, there are manifestations of surface-energy at 
the boundary, which cause the spicules to be retained there and to 
take up their position in its plane. The case is analogous to that 
of a cirrus cloud, which marks a surface of discontinuity in a 
stratified atmosphere.

We have, then, to enquire what are the conditions, apart from 
gravity, which confine an extraneous body to a surface-film; and
we may do this very simply, by con
sidering the surface-energy of the entire 
system. In Fig. 319 we have two fluids 
in contact with one another (let us call 
them water and protoplasm), and a 
body (b) which may be immersed in 
either, or may be restricted to the 
boundary between. We have here 
three possible “interfacial contacts,” 
each with its own specific surface- 
energy per unit of surface area: 
namely, that between our particle and 
the water (let us call it a), that between 
the particle and the protoplasm and 

Fig. 319.

that between water and protoplasm (y). W hen the body lies in 
the boundary of the two fluids, let us say half in one and half 
in the other, the surface-energies concerned are equivalent to 
(8/2) a + (8/2) ft; but we must also remember that, by the presence 
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of the particle, a small portion (equal to its sectional area s) of the 
original contact-surface between water and protoplasm has been 
obliterated, and with it a proportionate quantity of energy, equi
valent to sy, has been set free. When, on the other hand, the body 
lies entirely within one or other fluid, the surface-energies of the 
system (so far as we are concerned) are equivalent to Sa + sy, or 
Sfl + sy, as the case may be. Accordingly as a be less or greater 
than fl, the particle will have a tendency to remain immersed in 
the water or in the protoplasm; but if (S/2) (a V fl) — sy be less 
than either Sa or Sfl, then the condition of minimal potential will 
be found when the particle lies, as we have said, in the boundary 
zone, half in one fluid and half in the other; and, if we were to 
attempt a more general solution of the problem, we should have 
to deal with possible conditions of equilibrium under which the 
necessary balance of energies would be attained by the particle 
rising or sinking in the boundary zone, so as to adjust the relative 
magnitudes of the surface-areas concerned. This principle may, in 
certain cases, help us to explain the position even of a radial spicule, 
which is just a case where the surface of the solid spicule is dis
tributed between the fluids with a minimal disturbance, or minimal 
replacement, of the original surface of contact between the one 
fluid and the other.

In like manner we may provide for the case (a common and 
an important one) where the protoplasm “creeps up” the spicule, 
covering it with a delicate film, and forming catenary curves or 
festoons between one spicule and another; and a less fluid or more 
tenacious thread of protoplasm may serve, like a solid spicule, to 
extend the more fluid film, as we see, for instance, in CJdamydomyxa 
or in Gromia. When the spicules are numerous and close-set, the 
surface-film of protoplasm stretching between them will tend to look 
like a layer of concave or inverted bubbles; and this honeycombed 
bubbly surface is sometimes beautifully regular, to judge from a 
well-known figure of the living Globigerina*. In Acanthocystis we 
have yet another special case, where the radial spicules plunge only 
a certain distance into the protoplasm of the cell, being arrested 
at a boundary-surface between an inner and an outer layer of

* See H. B. Brady’s Challenger Monograph, pl. Ixxvii; and see the figure of 
Chlamydomyxa in Doflein’s Protozoenkunde, p. 374.
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cytoplasm; here we have only to assume that there is a 
tension at this surface, between the two layers of protoplasm, 
sufficient to balance the tensions which act directly on the 
spicule*.

In various Acanthometridae, besides such typical characteristics 
as the radial symmetry, the concentric layers of protoplasm, and 
the capillary surfaces in which the outer vacuolated protoplasm 
is festooned upon the projecting radii, we have another curious 
feature. On the surface of the protoplasm where it creeps up the 
sides of the long radial spicules, we find a number of elongated 
bodies, forming in each case one or several little groups, and 
lying neatly arranged in parallel bundles. A Russian naturalist, 
Schewiakoff, whose views have been accepted in the text-books, 

^tells us that these are muscular structures, serving to raise or 
lower the conical masses of protoplasm about the radial spicules, 
which latter serve as so many “tent-poles” or masts, on which the 
protoplasmic membranes are hoisted up; and the little elongated 
bodies are dignified with various names, such as “myonemes” or 
“myophriscs,” in allusion to their supposed muscular nature f. 
This explanation is by no means convincing. To begin with, we 
have precisely similar festoons of protoplasm in a multitude of other 
cases w’here the “myonemes” are lacking; from their minute size 
(0-0060012 mm.) and the amount of contraction they are said to 
be capable of, the myonemes can hardly be very efficient instruments 
of traction; and further, for them to act (as is alleged) for a specific 
purpose, namely the “hydrostatic regulation” of the organism 
giving it power to sink or to swim, would seem to imply a mechanism 
of action and of coordination not easy to conceive in these minute 
and simple organisms. The fact is that the whole explanation is 
unnecessary. Just as the supposed “hauling up” of the proto
plasmic festoons may be at once explained by capillary phenomena, 
so also (in all probability) may the position and arrangement of 
the little elongated bodies. Whatever the actual nature of these 
bodies may be, whether they be truly portions of differentiated 
protoplasm, or whether they be foreign bodies or spicular structures 
(as bodies occupying a similar position in other cases undoubtedly

* Cf. Koltzoff, Zur Frage der Zellgestalt, Anat. Anzeiger, xli, p. 190, 1912.
t Mem. de VAcad. des Sci., St Petersbourg, xn, Nr. 10, 1902.
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are), we can explain their situation on the surface of the protoplasm, 
and their arrangement around the radial spicules, all by the prin
ciples of capillarity.

This last case is not of the simplest; and I do not forget that 
my explanation of it, which is wholly theoretical, implies a doubt 
of Schewiakoff’s statements, founded on his personal observation. 
This I am none too willing to do; but whether it be justly done 
in this case or not, I hold that it is in principle justifiable to look 
with suspicion upon all such statements where the observer has 
obviously left out of account the physical aspect of the pheno
menon, and all the opportunities of simple explanation which the 
consideration of that aspect might afford.

Whether it be applicable to this particular and complex case or^ 
no, our general theorem of the localisation and arrestment of solid 
particles in a surface-film is of great biological significance; for on 
it depends the power displayed by many little naked protoplasmic 
organisms of covering themselves with an “agglutinated” shell. 
Sometimes, as in Difflugia, Astrorhiza (Fig. 320) and others, this 
covering consists of sand-grains picked up from the surrounding 
medium, and sometimes, on the other hand, as in Quadrula, it 
consists of solid particles said to arise as inorganic deposits or 
concretions within the protoplasm itself, and to find their way 
outwards to a position of equilibrium in the surface-layer; and in 
both cases, the mutual capillary attractions between the particles, 
confined to the boundary-layer but enjoying a certain measure of 
freedom therein, tends to the orderly arrangement of the particles 
one with another, and even to the appearance of a regular “pattern” 
as the result of this arrangement.

The “picking up” by the protoplasmic organism of a solid 
particle with which “to build its house” (for it is hard to avoid 
this customary use of figures of speech, misleading though it be) 
is a physical phenomenon akin to that by which an amoeba 
“swallows” a particle of food. This latter process has been repro
duced or imitated in various pretty experimental ways. For 
instance, Rhumbler has shewn that if a splinter of glass be covered 
with shellac and brought near a drop of chloroform suspended in 
water, the drop takes in the spicule, robs it of its shellac covering,



IX] OF AGGLUTINATED SKELETONS 703

Fig. 320. Arenaceous Foraminifera; Astrorhiza limicola and arenaria. 
From Brady’s Challenger Monograph.
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and then passes it out again*. In another case a thread of shellac, 
laid on a drop of chloroform, is drawn in and coiled within it: 
precisely as we may see a filament of Oscillatoria ingested by an 
Amoeba, and twisted and coiled within its cell. It is all a question 
of relative surface-energies, leading to different degrees of “ adhesion ” 
between the chloroform and the splinter of glass or its shellac 
covering. Thus it is that the Amoeba takes in the diatom, dissolves 
off its proteid covering, and casts out the shell.

Furthermore, as the whole phenomenon depends on a distribu
tion of surface-energy, the amount of which is specific to certain 
particular substances in contact with one another, we have no 
difficulty in understanding the selective action which is very often 
a conspicuous feature in the phenomenon!. Just as some caddis
worms make their houses of twigs, and others of shells and again 
others of stones, so some Rhizopods construct their agglutinated 
“test” out of stray sponge-spicules, or frustules of diatoms, or 
again of tiny mud particles or of larger grains of sand. In all these 
cases, we have to deal with specific surface-energies, and also 
doubtless with differences in the total available amount of surface-

* Rhumbler, Physikalische Analyse von Lebenserscheinungen der Zelle, Arch, 
f. Entw. Meeh, vn, p. 250, 1898.

t The whole phenomenon has been described as a “surprising exhibition of 
constructive and selective activity,” and ascribed, in varying phraseology, to 
intelligence, skill, purpose, psychical activity, or “microscopic mentality”: that is 
to s4y, to Galen’s TexvtKV <pvais, or “artistic creativeness” (cf. Brock’s Galen, 1916, 
p. xxix); ^f. Carpenter, Mental Physiology, 1874, p. 41; Norman, Architectural 
achievements of Little Masons, etc., Ann. Mag. Nat. Hist. (5), i, p. 284, 1878; Heron- 
Allen, Contributions... to the study of the Foraminifera, Phil. Trans. (B), ccvi, 
pp. 227-279, 1915;' Theory and phenomena of purpose and intelligence exhibited by 
the Protozoa, as illustrated by selection and behaviour in the Foraminifera, Journ. 
R. Microsc. Soc. 1915, pp. 547-557; ibid., 1916, pp. 137-140. Sir J. A. Thomson 
(New Statesman, Oct. 23, 1915) describes a certain little foraminifer, whose proto
plasmic body is overlaid by a crust of sponge-spicules, as “a psycho-physical 
individuality, whose experiments in self-expression include a masterly treatment of 
sponge-spicules, and illustrate that organic skill which came before the dawn of Art.” 
Sir Ray Lankester finds it “not difficult to conceive of the existence of a mechanism 
in the protoplasm of the Protozoa which selects and rejects building-material, 
and determines the shapes of the structures built, comparable to that mechanism 
which is assumed to exist in the nervous system of insects and other animals which 
‘automatically’ go through wonderfully elaborate series of complicated actions.” 
And he agrees with “Darwin and others [who] have attributed the building up of 
these inherited mechanisms to the age-long action of Natural Selection, and the 
survival of those individuals possessing qualities or ‘tricks’ of life-saving value,” 
Journ. R. Microsc. Soc. April, 1916, p. 136.
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energy in relation to gravity or other extraneous forces. In my 
early student days, Wyville Thomson used to tell us that certain 
deep-sea “Difflugias,” after constructing a shell out of particles of 
the black volcanic sand common in parts of the North Atlantic, 
finished it off with “a clean white collar” of little grains of quartz. 
Even this phenomenon may be accounted for on surface-tension 
principles, if we may assume that the surface-energy ratios have 
tended to change, either with the growth of the protoplasm or by 
reason of external variation of temperature or the like; we are by 
no means obliged to attribute even this phenomenon to a mani
festation of volition, or taste, or aesthetic skill, on the part of the 
microscopic organism. Nor, when certain Radiolaria tend more 
than others to attract into their own substance diatoms and such
like foreign bodies, is it scientifically correct to speak as some 
text-books do, of species “in which diatom-selection has become 
a regular habit.” To do so is an exaggerated misuse of anthropo
morphic phraseology.

The formation of an “agglutinated” shell is thus seen to be a 
purely physical phenomenon, and indeed a special case of a more 
general physical phenomenon which has important consequences in 
biology. For the shell to assume the solid and permanent character 
which it acquires in Difilugia, we have only to make the further 
assumption that small quantities of a cementing substance are 
secreted by the animal, and that this substance flows or creeps by 
capillary attraction through all the interstices of the little quartz 
grains, and ends by binding them together Rhumbler* has shewn 
us how these agglutinated tests of spicules or of sand-grains can 
be precisely imitated, and how they are formed with greater or less 
ease and greater or less rapidity according to the nature of the 
materials employed, that is to say according to the specific surface
tensions which are involved. If we mix up a little powdered glass 
with chloroform, and set a drop of the mixture in water, the glass 
particles gather neatly round the surface of the drop so quickly that 
the eye cannot follow the operation. If we do the same with oil 
and fine sand, dropped into 70 per cent, alcohol, a still more

♦ Rhumbler, Beitrage z. Kenntniss d. Rhizopoden, i-v, Z. f. w. Z. 1891-5; Das 
Protoplasma als physikalisches System, Jena, p. 591, 1914; also in Arch. f. Ent- 
wickelungsmech. vn, pp. 279-335, 1898; Biol. Centralbl. xvni, 1898; etc.
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beautiful artificial Rhizopod-shell is formed, but it takes some three 
hours to do. Where the action is quick the little test forms as the 
droplet exudes from the pipette: precisely as in the living Diffiugia 
when new protoplasm, laden with solid particles, is being extruded 
from the mouth of the parent-cell. The experiment can be varied, 
simply and easily. Instead of a spherical drop a pear-shaped one 
may easily be formed, so exactly like the common Diffiugia pyriformis 
that Rhumbler himself was unable, sometimes, to tell under the 
microscope the real from the artefact. Again he found that, when 
the alcohol dissolved the oily substance of the drop and shrinkage 
took place accordingly, the surface-layer with its solid particles got 
kinked or folded in—and reproduced in doing so, with startling 
accuracy, a little shell of common occurrence, known by the generic 
name of Lesqueureusia, or Diffiugia spiralis. The peculiar shape 
of this little twisted and bulging shell has been taken to shew that 
“ it had enlarged after its first formation, a very rare occurrence in this 
group*”; the very opposite is the case. Neither here nor in any 
allied form does the agglutinated test, once set in order by capillary 
forces, yield scope for intercalation and enlargement.

At the very time when Rhumbler was thus demonstrating the 
physical nature of the Difflugian shell, Verworn, a very notable 
person, was studying the same and kindred organisms from the 
older standpoint of an incipient psychology]-. But as Rhumbler 
himself admits, Verworn (unlike many another) was doing his best 
not to over-estimate the appearance of volition, or selective choice, 
in the little organism’s use of materials to construct its dwelling.

This long parenthesis has led us away, for the time being, from 
the subject of the radiolarian skeleton, and to that subject we must 
now return. Leaving aside, then, the loose and scattered spicules, 
which we have sufficiently discussed, the more perfect radiolarian 
skeletons consist of a continuous and regular structure; and the 
siliceous (or other inorganic) material of which this framework is 
composed tends to be deposited in one or other of two ways or in 
both combined: (1) in long radial spicules, emanating symmetrically 
from, and usually conjoined at, the centre of the protoplasmic body;

* Cf. Cambridge Natural History, Protozoa, p. 55.
j- Max Verworn, Psycho-physiologische Protisten-Studien, Jena, 1889 (219 pp.); 

Biologische Protisten-Studien, Z.f. wiss. Z. l, pp. 445—467, 1890.
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(2) in the form of a crust, developed either on the outer surface of 
the organism or in relation to one or more of the internal surfaces 
which separate its concentric layers or its component vesicles. 
Not infrequently, this superficial skeleton comes to constitute a 
spherical shell, or a system of concentric spheres.

We have already seen that a great part of the body of the 
Radiolarian, and especially that outer portion to which Haeckel 
has given the name of the “calymma,” is built up of a mass of 
“vesicles,” forming a sort of stiff froth, and equivalent in the 
physical though not necessarily in the biological sense to “cells,” 
inasmuch as the little vesicles have their own well-defined boun
daries, and their own surface phenomena. In short, all that we 
have said of cell-surfaces and cell-conformations in our discussion 
of cells and of tissues will apply in like manner, and under appro
priate conditions, to these. In certain cases, even in so common 
and so simple a one as the vacuolated substance of an Actino- 
sphaerium, we may see a close resemblance, or formal analogy, to 
a cellular or parenchymatous tissue in the close-packed arrangement 
and consequent configuration of these vesicles, and even at times 
in a slight membranous hardening of their walls. Leidy has figured * 
some curious little bodies like small masses of consolidated froth, 
which seem to be nothing else than the dead and empty husks, or 
filmy skeletons, of Actinosphaerium; and Carnoyf has demon
strated in certain cell-nuclei an all but precisely similar framework, 
of extreme minuteness and tenuity, formed by adsorption or partial 
solidification of interstitial matter in a close-packed system of 
alveoli (Fig. 321). In short, we are again dealing or about to deal 
with a network or basketwork, whose meshes correspond to the 
boundary lines between associated cells or vesicles. It is just in 
those boundary walls or films, still more in their edges or at their 
corners, that surface-energy will be concentrated and adsorption 
will be hard at work; and the whole arrangement will follow, or 
tend to follow, the rules of areae minimae- -the partition-walls 
meeting at co-equal angles, three by three in an edge, and their 
edges meeting four by four in a corner.

Let us suppose the outer surface of our Radiolarian to be covered

* J. Leidy, Fresh-water Rhizopods of North America, 1879, p. 262, pl. xli, figs. 11,12. 
f Carnoy, Biologie Cellulaire, p. 244, fig. 108; cf. Dreyer, op. cit. 1892, fig. 185.
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by a layer of froth-like vesicles, uniform in size or nearly so. We 
know that their mutual tensions will tend to conform them into the 
fashion of a honeycomb, or regular meshwork of hexagons, and 
that the free end of each hexagonal prism will be a little spherical 
cap. Suppose now that it be at the outer surface of the protoplasm 
(in conf act with the surrounding sea-water) that the siliceous 
particles have a tendency to be secreted or adsorbed; the distribu
tion of surface-energy will lead them to accumulate in the grooves 
which separate the vesicles, and the result will be the development 

Fig. 321. "Reticulum plasmatique.” 
After Carnoy.

Fig. 322. Aulonia hexagona Hkl.

of a delicate sphere composed of tiny rods arranged, or apparently 
arranged, in a hexagonal network after the fashion of Carnoy’s 
reticulum plasmatique, only more solid, and still more neat and 
regular. Just such a spherical basket, looking like the finest 
imaginable Chinese ivory ball, is found in the siliceous skeleton of 
Aulonia, another of Haeckel’s Radiolaria from the Challenger.

But here a strange thing comes to light. No system of hexagons 
can enclose space; whether the hexagons be equal or unequal, 
regular or irregular, it is still under all circumstances mathematically 
impossible. So we learn from Euler: the array of hexagons may 
be extended as far as you please, and over a surface either plane or 
curved, but it never closes in. Neither our reticulum plasmatique 
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nor what seems the very perfection of hexagonal symmetry in 
Aulonia are as we are wont to conceive them; hexagons indeed 
predominate in both, but a certain number of facets are and must 
be other than hexagonal. If we look carefully at Carnoy’s careful 
drawing we see that both pentagons and heptagons are shewn in 
his reticulum, and Haeckel actually states, in his brief description 
of his Aulonia hexagona, that a few square or pentagonal facets are 
to be found among the hexagons.

Such skeletal conformations are common: and Nature, as in all 
her handiwork, is quick to ring the changes on the theme. Among

Fig. 323. Actinomma arcadophorum Hkl.

its many variants may be found cases (e.g. Actinomma) where the 
vesicles have been less regular in size; and others in which the 
mesh work has been developed not on an outer surface only but at 
successive levels, producing a system of concentric spheres. If the 
siliceous material be not limited to the linear junctions of the cells 
but spread over a portion of the outer spherical surfaces or caps, 
then we shall have the condition represented in Fig. 324 (Ethmo- 
sphaera), where the shell appears perforated by circular instead 
of hexagonal apertures and the circular pores are’ set on slight 
spheroidal eminences; and, interconnected with such types as this, 
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we have others in which the accumulating pellicles of skeletal matter 
have extended from the edges into the substances of the boundary 
walls and have so produced a system of films, normal to the surface 
of the sphere, constituting a very perfect honeycomb, as in Ceno- 
sphaera favosa and vesparia*.

In one or two simple forms, such as the fresh-water Clathrulina, 
just such a spherical perforated shell is produced out of some 

Fig. 324. Ethmosphaera conosiphonia 
Hkl.

Fig. 325. Portions of shells 
of two “species” of 

Cenosphaera: upper
figure, C. favosa; lower, 
C. vesparia Hkl.

organic, acanthin-like substance; and in some examples of Clath- 
rulina the chitinous lattice-work of the shell is just as regular and 
delicate, with the meshes for the most part as beautifully hexagonal 
as in the siliceous shells of the oceanic Radiolaria. This is only 
another proof (if proof be needed) that the peculiar form and 
character of these little skeletons are due not to the material of 
which they are composed, but to the moulding of that material 
upon an underlying vesicular structure.

Let us next suppose that another and outer layer of cells or 
vesicles develops upon some such lattice-work as has just been

* In all these letter cases we recognise a relation to, or extension of, the principle 
of Plateau’s bourrelet, or van der Mensbrugghe’s masse annulaire, or Gibbs’s ring, 
of which we have had much to say.
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described; and that instead of forming a second hexagonal lattice- 
work, the skeletal matter tends to be developed normally to the 
surface of the sphere, that is to say along the radial edges where 
the external vesicles (now compressed into hexagonal prisms) meet 
one another three by three. The result will be that, if the vesicles 
be removed, a series of radiating spicules will be left, directed 
outwards from the angles of the original polyhedron meshwork, all 
as is seen in Fig. 326. And it may further happen that these 
radiating skeletal rods branch at their outer ends into divergent 
rays, forming a triple fork, and corresponding (after the fashion

Fig. 326. Aulastrum triceros Hkl.

which we have already described as occurring in certain sponge
spicules) to the superficial furrows between the three adjacent cells; 
this is, as it were, a halfway stage between simple rods or radial 
spicules and the full completion of another sphere of latticed 
hexagons. Another possible case, among many, is when the large, 
uniform vesicles of the outer protoplasm are replaced by smaller 
vesicles, piled on one another in concentric layers. In this case 
the radial rods will no longer be straight, but will be bent zig-zag, 
with their angles in three vertical planes corresponding to the 
alternate contacts of the successive layers of cells (Fig. 327).

The solid skeleton is confined, in all these cases, to the boundary
lines, or edges, or grooves between adjacent cells or vesicles, but 
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adsorptive energy may extend throughout the intervening walls. 
This happens in not a few Radiolaria, and in a certain group called 
the Nassellaria it produces geometrical forms of peculiar elegance 
and mathematical beauty.

When Plateau made the wire framework of a regular tetrahedron 
and dipped it in soap-solution, he obtained in an instant (as we 
well know) a beautifully symmetrical system of six films, meeting 

Fig. 327. Fig. 328. A Nassellarian skeleton, Callimitra agnesae Hkl. 
(0-15 inm. diameter).

three by three in four edges, and these four edges running from the 
corners of the figure to its centre of symmetry. Here they meet, 
two by two, at the Maraldi angle; and the films meet three by 
three, to form the re-entrant solid angle which we have called a 
“Maraldi pyramid” in our account of the architecture of the honey
comb. The very same configuration is easily recognised in the 
minute siliceous skeleton of Callimitra. There are two discrepancies, 
neither of which need raise any difficulty. The figure is not a 
rectilinear but a spherical tetrahedron, such as might be formed 
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by the boundary-edges of a tetrahedral cluster of four co-equal 
bubbles; and just as Plateau extended his experiment by blowing 
a small bubble in the centre of his tetrahedral system, so we have 
a central bubble also here.

This bubble may be of any size*; but its situation (if it be 
present at all) is always the same, and its shape is always such 
as to give the Maraldi angles at its own four corners. The tensions

Fig. 329. Diagrammatic construction of CaUimitra. A, a bubble suspended within 
a tetrahedral cage. B, another bubble within a skeleton of the former bubble.

of j|s own walls, and those of the films by which it is supported or 
slung, all balance one another. Hence the bubble appears in plane 
projection as a curvilinear equilateral triangle; and we have only 
got to convert this plane diagram 
into the corresponding solid to obtain 
the spherical tetrahedron we have 
been seeking to explain (Fig. 329).

We may make a simplified model 
(omitting the central bubble) of the 
tetrahedral skeleton of Callimitra, after 
the fashion of that of the bee’s cell 
(p. 535). Take OC = CD = DB, and 
draw a circle with radius OB and 
diameter AB. Erect a perpendicular Fig- 33°- Geometrical construction 
to AB at C, cutting the circle at E, F. of C^imUra-.k^.
AOE, AQF will be (as before) Maraldi angles of 109°; the arcs AE,

* Plateau introduced the central bubble into his cube or tetrahedron by dipping 
the cage a second time, and so -adding an extra face-film; under these circum
stances the bubble has a definite magnitude.
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AF will be edges of the spherical tetrahedron, and 0 will be the 
centre of symmetry. Make the angle FOG = FOA = EO A. Cut out 
the circle EAFG, and cut through the radius EO: fold at AO, FO, 
GO, and fasten together, using EOG for a flap. Make four such 
sheets, and fasten together back to back. The model will be much 
improved if little cusps be left at the corners in the cutting out.

The geometry of the little inner tetrahedron is not less simple 
and elegant. Its six edges and four faces are all equal. The films 
attaching it to the outer skeleton are all planes. Its faces are 
spherical, and each has its centre in the opposite corner. The 
edges are circular arcs, with cosine |: each is in a plane perpendicular 
to the chord of the arc opposite, and each has its centre in the middle 
of that chord. Along each edge the two intersecting spheres meet 
each other at an angle of 120°*.

This completes the elementary geometry of the figure; but one 
or two points remain to be considered.

We may notice that the outer edges of the little skeleton are 
thickened or intensified, and these thickened edges often remain 
whole or strong while the rest of the surfaces shew signs of imper
fection or of breaking away; moreover, the four corners of the 
tetrahedron are not re-entrant (as in a group of bubbles) but a 
surplus of material forms a little point or cusp at each corner. 
In all this there is nothing anomalous, and nothing new. For we 
have already seen that it is at the margins or edges, and a fortiori 
at the corners, that the surface-energy reaches its maximum—with 
the double effect of accumulating protoplasmic material in the form 
of a Gibbs’s ring or bourrelet, and of intensifying along the same 
lines the adsorptive secretion of skeletal matter. In some other 
tetrahedral systems analogous to Callimitra, the whole of the 
skeletal matter is concentrated along the boundary-edges, and none 
left to spread over the boundary-planes or interfaces: just as among 
our spherical Radiolaria it was at the boundary-edges of their many 
cells or vesicles, and often there alone, that skeletal formation 
occurred, and gave rise to the spherical skeleton and its meshwork

* For proof, see Lamarle, op. cit. pp. 6-8. Lamarle shewed that the sphere 
can be so divided in seven ways, but of these seven figures the tetrahedron alone 
is stable. The other six are the cube and the regular dodecahedron; prisms, 
triangular and pentagonal, with equilateral base and a certain ratio of base to 
height; and two polyhedra constructed of pentagons and quadrilaterals.
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of hexagons. In the beautiful form which Haeckel calls Archi- 
scenium the boundary edges disappear, the four edges converging 
on the median point are intensified, and only three of the six 
convergent facets are retained; but, much as the two differ in 
appearance, the geometry of this and of Callimitra remain essentially 
the same.

We learned also from Plateau that, just as a tetrahedral bubble 
can be inserted within the tetrahedral skeleton or cage, so may a 
cubical bubble be introduced within a cubical cage; and the edges 
of the inner cube will be just so curved as to give the Maraldi angles 
at the corners. We find among Haeckel’s Radiolaria one (he calls 
it Lithocubus geometricus) which precisely corresponds to the skeleton 

Fig. 331. A, bubble suspended within a cubical cage.
B, Lithocubus geometricus Hkl.

of this inner cubical bubble; and the little spokes or spikes which 
project from the corners are parts of the edges which once joined 
the corners of the enclosing figure to those of the bubble within 
(Fig. 331).

Again, if we construct a cage in the form of an equilateral 
triangular prism, and proceed as before, we shall probably see a 
vertical edge in the centre of the prism connecting two nodes near 
either end, in each of which the Maraldi figure is displayed. But 
if we gradually shorten our prism there comes a point where the 
two nodes disappear, a plane curvilinear triangle appears horizon
tally in the middle of the figure, and at each of its three corners four 
curved edges meet at the familiar angle. Here again we may insert 
a central bubble, which will now take the form of a curvilinear
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equilateral triangular prism; and Haeckel’s Prismatium tripodium 
repeats this configuration (Fig. 332).

In a framework of two crossed rectangles, we may insert one 
bubble after another, producing a chain of superposed vesicles whose 
shapes vary as we alter the relative positions of the rectangular 
frames. Various species of Triulompas, Theocyrtis, etc. are more 
or less akin to these complicated figures of equilibrium. A very 
beautiful series of forms may be made by introducing successive 
bubbles within the film-system formed by a tetrahedron or a

Fig. 332. Prismatium tripodium Hkl.

parallelepi^edon. The shape and the curvature of the bubbles 
and of their suspensory films become extremely beautiful, and we 
have certain of them reproduced unmistakably in various Nassel- 
larian genera, such as Podocyrtis and its allies.

In Fig. 333 we see a curious little skeletal structure or complex 
spicule, whose conformation is easily accounted for. Isolated spicules 
such as this form the skeleton in the genus Dictyocha, and occur 
scattered over the spherical surface of the organism (Fig. 334). The 
basket-shaped spicule has evidently been developed about a cluster 
of four cells or vesicles, lying in or on the surface of the organism, 
and therefore arranged, not in the three-dimensional, tetrahedral 
form of Callimitra, but in the manner in which four contiguous cells 
lying side by side in one plane normally set themselves, like the
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four cells of a segmenting egg: that is to say with an intervening 
“polar furrow,” whose ends mark the meeting place, at equal angles, 
of the four cells in groups of three. The little projecting spokes, or 
spikes, which are set normally to the main basket-work, seem to be 
uncompleted portions of a larger basket, corresponding to a more 
numerous aggregation of cells. Similar but more complex forma-

Fig. 333. An isolated portion of the skeleton of Dityocha.

tions, all explicable as basket-like frameworks developed around 
a cluster of cells, and adsorbed or secreted in the grooves common 
to adjacent cells or bubbles, are found in great variety.

Fig. 334. Dictyocha stapedia Hkl.

The Dictyocha-spicule, laid down as a siliceous framework in 
the grooves between a few clustered cells, is too simple and natural 
to be confined to one group of animals. We have already seen it, 
as a calcareous spicule, in the holothurian genus Thyone, and we 
may find it again, in many various forms, in the protozoan group 
known as the Silicoflagellata*. Nothing can better illustrate the 
physico-mathematical character of these configurations than their

* See (int. al.) G. Deflandre, Les Silicoflagelles, etc., Hull. Soc. Fr. de Microscopic, 
i, p. 1, 1932: the figures in which article are mostly drawn from Ehrenberg’s 
M ikrogeologie, 1854.
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common occurrence in diverse groups of organisms. And the simple 
fact is, that we seem to know less and less of these things on the 
biological side, the more we come to understand their physical and

Fig. 335. Various species of Distephanus (Silicoflagellata). 
From Deflandre, after Ehrenberg.

mathematical characters. I have lost faith in Haeckel’s four 
thousand “species” of Radiolaria.

In Callimitra itself, and elsewhere where the boundary-walls (and 
not merely their edges) are silicified, the skeletal matter is not

Fig. 336. Holothurian spicules. A, of Thyone (Mortensen); B, Holothuria lactea 
(Perrier); P, D, Holothuria and Phyllophorus (Deichman).

deposited in an even layer, like the waxen walls of a bee’s cell, but 
in a close mesh work of fine curvilinear threads; and the curves 
seem to form three main series more or less closely related to the 
three edges of the partition. Sometimes (as may also be seen in 
our figure) the system is further complicated by a radial series 
running from the centre towards the free edge of each partition. 
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As to the former, their arrangement is such as would result if 
deposition or solidification had proceeded in waves, starting inde
pendently -from each of the three boundary-edges of the little 
partition-wall, and something of this kind is doubtless what actually 
happened. We are reminded of the wave-like periodicity of the 
Liesegang phenomenon, and especially, perhaps, of the criss-cross 
rings which Liesegang observed in frozen gelatine (supra, p. 663). 
But there may be other explanations. For instance the film, liquid 
or other, which originally constituted the partition, might conceivably 
be thrown into vibrations, and then (like the dust upon a Chladni 
plate) minute particles in or on the film would tend to take up 
position in an orderly way, in relation to the nodal points or lines 
of the vibrating surface*. Some such hypothetical vibration may 
(to my thinking) account for the minute and varied and very 
beautiful patterns upon many diatoms, the resemblance of which 
patterns to the Chladni figures (in certain of their simpler cases) 
seems here and there striking and obvious. But I have not attempted 
to investigate the many special problems suggested by the diatom
skeleton.

The cusps at the four corners of the tetrahedral skeleton are a 
marked peculiarity of our Nassellarian shell, and we should by no 
means expect to see them in a skeleton formed at the boundary
edges of a simple tetrahedral pyramid of four bubbles or cells. But 
when we introduce another bubble into the centre of a system of 
four, then, as Plateau shewed, the tensions of its walls and of the 
surrounding partitions so balance one another that it becomes a 
regular curvilinear tetrahedron, or, as seen in plane projection 
(Fig. 337), a curvilinear, equilateral triangle, with prominent, not 
re-entrant angles. A drop of fluid tends to accumulate at each 
corner where four edges meet, and forms a bourreletf; it is drawn 
out in the directions of the four films which impinge upon it, and

* Cf. Faraday’s beautiful experiments, On the moving groups of particles found 
on vibrating elastic surfaces, etc., Phil. Trans. 1831, p. 299; Researches, 1859, 
pp. 314-358.

f The bourrelet is not only, as Plateau expresses it, a “surface of continuity,” 
but we also recognise that it tends (so far as material is available for its production) 
to further lessen the free surface-area. On its relation to vapour-pressure and to 
the stability of foam, see FitzGerald’s interesting note in Nature, Feb. 1, 1894 
(Works, p. 309); and on its effect in thinning the soap-bubble to bursting-point, 
see Willard Gibbs, Coll. Papers, I, p. 307 seq.
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so tends to assume in miniature the very same shape as the tetra
hedron to whose corner it is attached. Out of these bourrelets, then, 
the cusps at the four corners of our little skeleton are formed.

A large and curiously beautiful family of radiolarian (or “poly
cystine”) skeletons look, in a general way, like tiny helmets or 
Pickelhauben, with spike above, and three (or sometimes six) curved 
lobes, like helmet-straps, below. We recognise a family likeness, 
even a mathematical identity, between this figure and the last, for 
both alike are based on a tetrahedral symmetry: the body of the 
helmet corresponding to the inner vesicle of Callimitra, and the 
spike and the three straps to the four edges which ran Out from the 
inner to the outer tetrahedron. In the one case an inner vesicle

is surrounded by a tetrahedral figure whose outer walls, indeed, are 
absent, but its edges remain, and so do the walls connecting the 
outer and inner vesicles. In the other case the outer edges are 
gone, and so are the filmy partition-walls, save parts which corre
spond to the four internal edges between them*. There are apt 
to be two slight discrepancies. The helmet is often of somewhat 
complicated form, easily explained as due to the presence of two 
superposed bubbles instead of one. The other apparent anomaly 
is that the three helmet-straps are curved, while the corresponding 
edges are straight in Plateau’s figure of the regular tetrahedron. 
But it is a paramount necessity (as we well know) for each set of 
four edges in a system of fluid films to meet in a point two and two 
at the Maraldi angle; just as it is necessary for the faces to meet

* Looking through Haeckel’s very numerous figures, we see that now and then 
something more is left than the mere edges of the partition-walls.
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at 120°; and faces and edges become curved, whenever necessary, 
in order that these conditions may be fulfilled. The need may arise 
in various ways. Suppose (as in Fig. 339) that our little central 

bubble be no longer in the centre of 
symmetry, but near one corner of the 
enclosing tetrahedron; the short edge 
running out from that corner will tend 
to remain straight (and so form the 
spike of the helmet); while the other 
three will each form an S-shaped curve, 
as a condition of making co-equal angles 
at their two extremities. An analogous 
case is figured in one of Sir David 
Brewster’s papers where he repeats and 
amplifies some experiments of Plateau’s*.

Fig. 339. Diagram of one of the He made a tetrahedral cage, and fitted 
helmet-shaped radiolaria, e.g. jf with three more wires, leading from 
Podocyrtis-. to shew its tetra- ., , •in • . r i i_ i
hedral symmetry the apex to the middle point oi each basal

edge. On dipping this into soap-solution, 
various complications were seen. At the apex, six films must not 
meet together, for no more than three surfaces may meet in an edge; 
intermediate or interstitial films make their appearance, with which 
we are not greatly concerned. But six films now ascend towards the 
apex from the base instead qf three, and the three which come from 
the corners have a longer path than the other three which come from 
the mid-points of the basal edges; they must be curved in different 
degrees in order that all three may make at either end their co-equal 
angles. And if we now introduce a bubble (or two bubbles) into the 
interior of the system, we obtain the characteristic form of our helmet
shaped Radiolarian—the spike above, the single or double vesicle 
of the body, and the straps or lappets with their peculiar and 
characteristic curvatures.

The little shell is perforated with many rounded holes, and it 
remains to account for these. They are required, so we are told, 
for the passage of pseudopodia; well and good. We have referred 
the DicZ^ocAa-spicule and the hexagonal meshwork of Aulonia to 
froth-like associations of vesicles and to adsorption taking place

* On the figures of equilibrium in liquid films, Trans. R.S.E. xxrv, 1866. 
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between; so far so good, again. But the irregular lacework of the 
little helmets does not suit this explanation very well, and there 
may be yet other possibilities. We have already mentioned 
Tomlinson’s “cohesion figures*.” Experimenting with a great 
variety of substances, Tomlinson studied the innumerable ways in 
which drops, jets or floating films “cohere,” disrupt or otherwise 
behave, under the resultant influences of surface-tension, cohesion, 
viscosity and friction; in one case a film runs out into a wavy or 
broken edge, in another it gives way here and there, and makes 
rents or holes in its surface. I take the little holes in our polycystine 
skeleton to be cohesion-figures, in Tomlinson’s sense of the word— 
spots where the delicate film has given way and run into holes, and 
where surface-tension has rounded off the broken edges, and made 
the rents into rounded apertures.

In the foregoing examples of Radiolaria, the symmetry which 
the organism displays seems identical with that symmetry of forces 
which results from the play and interplay of surface-tensions in the 
whole system: this symmetry being displayed, in one class of ca ses, 
in a more or less spherical mass of froth, and in another class in 
a simpler aggregation of a few, otherwise isolated, vesicles. In 
either case skeletons are formed, in great variety, by one and the 
same kind of surface-action, namely by the adsorptive deposition 
of silica in walls and edges, corresponding to the manifold surfaces 
and interfaces of the system. But among the vast number of 
known Radiolaria, there are certain forms (especially among the 
Phaeodaria and Acantharia) which display a no less remarkable 
symmetry the origin of which is by no means clear, though surface
tension may play a part in its causation. Even this is doubtful; 
for the fact that three-way nodes are no longer to be seen at the 
junctions of the cells suggests that another law than that of minimal 
areas had been in action here. They are cases in which (as in some 
of those already described) the skeleton consists (1) of radiating 
spicular rods, definite in number and position, and (2) of inter
connecting rods or plates, tangential to the more or less spherical 
body of the organism, whose form becomes, accordingly, that of a 
geometric, polyhedral solid. The great regularity, the numerical

* Cf. supra, p. 418
46-2



724 ON CONCRETIONS, SPICULES, ETC. [ch. 

symmetries and the apparent simplicity of these latter forms makes 
of them a class apart, and suggests problems which have not been 
solved or even investigated.

The matter is partially illustrated by the accompanying figures 
(Fig. 340) from Haeckel’s Monograph of the Challenger. Radiolaria*. 
In one of these we see a regular octahedron, in another a regular, 
or pentagonal, dodecahedron, in a third a regular icosahedron. In 
all cases the figure appears to be perfectly symmetrical, though 
neither the triangular facets of the octahedron and icosahedron, 
nor the pentagonal facets of the dodecahedron, are necessarily plane 
surfaces. In all of these cases, the radial spicules correspond to the 
comers of the figure; and they are, accordingly, six in number 
in the octahedron, twenty in the dodecahedron, and twelve in the 
icosahedron. If we add to these three figures the regular tetra
hedron which we have just been studying, and the cube (which is 
represented, at least in outline, in the skeleton of the hexactinellid 
sponges), we have completed the series of the five regularpolyhedra 
known to geometers, the Platonic bodies^ of the older mathema
ticians. It is at first sight all the more remarkable that we should 
here meet with the whole five regular polyljedra, when we remember 
that, among the vast variety of crystalline forms known among 
minerals, the regular dodecahedron and icosahedron, simple as they 
are from the mathematical point of view, never occur. Not only 
do these latter never occur in crystallography, but (as is explained 
in textbooks of that science) it has been shewn that they cannot 
occur, owing to the fact that their indices (or numbers expressing 
the relation of the faces to the three primary axes) involve an 
irrational quantity: whereas it is a fundamental law of crystallo
graphy, involved in the whole theory of space-partitioning, that 
“the indices of any and every face of a crystal are small whole 
numbers J.” At the same time, an imperfect pentagonal dodeca-

* Of the many thousand figures in the hundred and forty plates of this beautifully 
illustrated book, there is scarcely one which does not depict some subtle and 
elegant geometrical configuration.

f They were known long before Plato: llXdrwv bl Kai lv tovtois irvSayopifa.
J If the equation of any plane face of a crystal be written in the form 

hx + ky + lz = l, then h, k, I are the indices of which we are speaking. They are 
the reciprocals of the parameters, or reciprocals of the distances from the origin 
at which the plane meets the several axes. In the case of the regular or pentagonal 
dodecahedron these indices are 2, 1 + V5, 0. Kepler described as follows, briefly 
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hedron, whose pentagonal sides are non-equilateral, is common 
among crystals. If we may safely judge from Haeckel’s figures, 
the pentagonal dodecahedron of the Radiolarian (Circorhegma) is 
perfectly regular, and we may rest assured, accordingly, that it is 
not brought about by principles of space-partitioning similar to 
those which manifest themselves in the phenomenon of crystallisa
tion. It will be observed that in all these radiolarian polyhedral 
shells, the surface of each external facet is formed of a minute 
hexagonal network, whose probable origin, in relation to a vesicular 
structure, is such as we have already discussed.

In certain allied Radiolaria of the family Acanthometridae (Fig. 
341), which have twenty radial spines, the arrangement of these 
spines is commonly described in a somewhat singular way. The 
twenty spines are referred to five whorls of four spines each, arranged 
as parallel circles on the sphere, and corresponding to the equator, 
the tropics and the polar circles. This rule was laid down by the 
celebrated Johannes Muller, and has ever since been used and 
.quoted as Muller’s law*. But when we come to examine the figure, 
we find that Muller’s law hardly does justice to the facts, and seems 
to overlook a simpler symmetry. We see in the first place that 
here, unlike our former cases, the twenty radial spines issue through 
the facets (and all the facets) of the polyhedron, instead of coming 
from its corners; and that our twenty spines correspond, therefore, 
not to the corners of a dodecahedron, but to the facets of some sort 
of an icosahedron. We see, in the next place, that this icosahedron 
is composed of faces of two kinds, hexagonal and pentagonal; and 
that the whole figure may be described as a hexagonal prism, whose 
twelve corners are truncated, and replaced by pentagonal facets. 
Both hexagons and pentagons appear to be equilateral, but if we 
but adequately, the common characteristics of the dodecahedron and icosahedron: 
‘‘Duo sunt corpora regularia, dodecaedron et icosaedron, quorum illud quin- 
quangulis figuratur expresse, hoc triangulis quidem sed in quinquanguli formam 
coaptatis. Utriusque horum corporum ipsiusque adeo quinquanguli structura 
perfici non potest sine proportione illa, quam hodierni geometrae divinam appellant" 
(De nive sexangula (1611), Opera, ed. Fritsch, vn, p. 723). Here Kepler was dealing, 
somewhat after the manner of Sir Thomas Browne, with the mysteries of the 
quincunx, and also of the hexagon; and was seeking for an explanation of the 
mysterious or even mystical beauty of the 5-petalled or 3-petalled flower—pulchri
tudinis aut proprietatis figurae, quae animam harum plantarum characterisavit.

* See Johannes Muller, Ueber die Thalassicollen, Polycistinen und Acantho- 
metren des Mittelmeeres, Abh. d. Akad. IPiss. Berlin, 1858, pp. 1-62, 11 pl.
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try to construct a plane-sided polyhedron of this kind, we find it 
to be impossible; for into the angles between the six equatorial

Fig. 340. Skeletons of various Radiolarians, after Haeckel. 1, Circoporus sexfurcus;
2, C. octahedrus; 3, Circog onia icosahedra; 4, Circospathis novena; 5, Circorrhegma 
dodecahedra.

regular hexagons six regular pentagons will not fit. The figure, 
however, can be easily constructed if we replace the straight edges 
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(or some of them) by curves, the plane facets by slightly curved 
surfaces, or the regular by non-equilateral polygons*.

In some cases, such as Haeckel’s Phatnaspis cristata (Fig. 342), 
we have an ellipsoidal body from which the spines emerge in the 
order described, but which is not obviously divided into facets. 
In Fig. 234 I have indicated the facets corresponding to the rays, 
and dividing the surface in the usual symmetrical way.

Fig. 341. Dorataspis cristata Hkl. A, viewed according to Muller’s law: a, four 
polar plates; b, four intermediate or “tropical” plates; c, four equatorial 
plates. B, an alternative description: F6, two polar and six equatorial 
hexagonal plates; F5, two rows of six intermediate pentagonal plates.

About any polyhedron (within or without) we may describe 
another whose corners correspond to the sides, and whose sides to 
the corners, of the original figure; or the one configuration may 
be developed from the Qther by bevelling off, to a certain definite 
extent, the corners of the original polyhedron. The two figures, 
thus reciprocal to one another, form a “conjugate pair,” and the 
principle is known as the “principle of duality” in polyhedraf. 
Of the regular solids, cube and octahedron, dodecahedron and

* Muller’s interpretation was emended by Brandt, and what is known as Brandt’s . 
Law, viz. that the symmetry consists of two polar rays and three whorls of six 
each, coincides so far with the above description: save only that Brandt says plainly 
that the intermediate whorls stand equidistant between the equator and the poles, 
i.e. in latitude 45°, which, though not very far wrong, is geometrically inaccurate. 
But Brandt, if I understand him rightly, did not propose his “law” as a substitute 
for Muller’s, but rather as a second law, applicable to a few special cases.

f First proved by Legendre, Elem. de Geometric, vn, Prop. 25, 1794.
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Fig. 342 B. The same, diagrammatic.
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icosahedron, are conjugate pairs; but the first and simplest of all 
solid figures, the tetrahedron, has no conjugate but itself.

In our little shell of Do rat as pis, the twenty spicules (as we have 
seen) spring from and correspond to the twenty facets of the poly
hedron, twelve pentagonal and eight hexagonal, meeting at thirty-six 
corners, in all cases three by three; we may write the formula of 
the polyhedron, accordingly, as

12F5 + 8F6 + 36C3.
If we now connect up the twenty spicules, three by three, we 

shall obtain thirty-six triangles, completely covering the figure; 
but we shall find that of the twenty corners twelve are surrounded 
by five, and eight by six triangles. The formula is now

36F3 + 12C5 + 8C6,

and the two figures are fully reciprocal or conjugate.
I do not know of any radiolarian in which this configuration is 

to be found; nor does it seem a likely one, owing to the large and 
variable number of edges which meet in its corners. But we may 
have polyhedra related to, or derived from, one another in a less 
full and perfect degree. For instance, letting the twenty spicules 
of Dorataspis again serve as corners for the new figure, let four 
facets meet in each corner; or (which comes to the same thing) let 
each spicule give off four branches or offshoots, which shall meet 
their corresponding neighbours, and form the boundary-edges of a 
new network of facets. The result (Fig. 343) is a symmetrical 
figure, not geometrically perfect but elegant in its own way, which 
we recognise in a number of described forms*. It shews eight 
triangular and fourteen rhomboidal facets; and its formula is

8F3 + 14F4 + 20C4.
Many subsidiary varieties may arise in turn: when, for instance, 
certain of the little branches fail to meet, or others grow large and 
widely confluent, always in symmetrical fashion.

We now see how in all such cases as these there is a double 
symmetry involved, that of two superimposed, and conjugate or 
semi-conjugate, figures. And the ambiguity which attends such 
descriptions as that which Johannes Muller embodied in his “law”

* Cf. W. Miekk, Acanthometren aus Neu-Pommem, Diss., Kiel, 1907. 
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seerns due to a failure to recognise this twofold or alternative 
symmetry.

In all these latter cases it is the arrangement of the axial rods- 
the “polar symmetry” of the entire organism- which lies at the 
root of the matter; and which, if only we could account for it, 
would make it comparatively easy to explain the superficial con
figuration. But there are no obvious mechanical forces by which 
we can so explain this peculiar polarity. This at least is evident, 
that it arises in the central mass of protoplasm, which is the essential 
living portion of the organism as distinguished from that frothy 

Fig. 343. Acanthomeira ep. A 
derivative of the Dorataspis 
figure. After Mielck.

Fig. 344. Phractaspis prototypus Hkl.

peripheral mass whose structure has helped us to explain so many 
phenomena of the superficial or external skeleton. To say that the 
arrangement depends upon a specific polarisation of the cell is 
merely to refer the problem to other terms, and to set it aside for 
future solution. But it is possible that we may learn something 
about the lines in which to seek for such a solution by considering 
the case of Lehmann’s “fluid crystals,” and the light which they 
throw upon the phenomena of molecular aggregation.

The phenomenon of “fluid crystallisation” is found in a number 
of chemical bodies; it is exhibited at a specific temperature for each 
substance; and it would seem to be limited to bodies in which 
there is an elongated, or “long-chain” arrangement of the atoms 
in the molecule. Such bodies, at the appropriate temperature, tend 
to aggregate themselves into masses, which are sometimes spherical
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drops or globules (the so-called “spherulites”), and sometimes have 
the definite form of needle-like or prismatic crystals. In either case 
they remain liquid, and are also doubly refractive, polarising light 
in brilliant colours. Together with them are formed ordinary solid 
crystals, also with characteristic polarisation, and into such solid 
crystals all the fluid material ultimately turns. It seems that in 
these liquid crystals, though the molecules are freely mobile, just 
as are those of water, they are yet subject to, or endowed with, 
a “directive force,” a force which confers upon them a definite 
configuration or “polarity,” the “Gestaltungskraft” of Lehmann.

Such an hypothesis as this has been gradually extruded from the 
theories of mathematical crystallography*;  and it has come to be 
understood that the symmetrical conformation of a homogeneous 
crystalline structure is sufficiently explained by the mere mechanical 
fitting together of appropriate structural units along the easiest and 
simplest lines of “close packing”: just as a pile of oranges becomes 
definite, both in outward form and inward structural arrangement, 
without the play of any specific directive force. But while our 
conceptions of the tactical arrangement of crystalline molecules 
remain the same as before, and our hypotheses of “modes of 
packing” or of “space-lattices” remain as useful and as adequate 
as ever for the definition and explanation of the molecular arrange
ments, a new conception is introduced when we find something like 
such space-lattices maintained in what has hitherto been considered 
the molecular freedom of a liquid field; and Lehmann would per
suade us, accordingly, to postulate a specific molecular force, or 
“Gestaltungskraft” (not unlike Kepler’s “facultas formatrix”), to 
account for the phenomenonf.

* Cf. Tutton, Crystallography, 1911, p. 932.
t Kepler, if I understand him aright, saw his way to account for the shape of the 

bee’s cell or the pomegranate-seed; and it was for want of any such mechanical 
explanation, and as little more than a confession of ignorance, that he fell back 
on a facultas formatrix to account for the six rays of the snow-crystal or the five 
petals of the flower. He was equally ready, unfortunately, to explain, by the 
same facultas formalrix in acre, the appearance of a plague of locusts or a swarm 
of flies.

Now just as some sort of specific “Gestaltungskraft” had been 
of old the deus ex machina accounting for all crystalline phenomena 
(gnara totius geometriae, et in ea exercita, as Kepler said), and as 



732 A NOTE ON POLYHEDRA [ch.

such an hypothesis, after being dethroned and repudiated, has now 
fought its wav back and claims a right to be heard, so it may be 
also in biology. We begin by an easy and general assumption of 
specific properties, by which each organism assumes its own specific 
form; we learn later (as it is the purpose of this book to shew) that 
throughout the whole range of organic morphology there are innu
merable phenomena of form which are not peculiar to living things, 
but which are more or less simple manifestations of ordinary physical 
law. But every now and then we come to deep-seated signs of 
protoplasmic symmetry or polarisation, which seem to lie beyond 
the reach of the ordinary physical forces. It by no means follows 
that the forces in question are not essentially physical forces, more 
obscure and less familiar to us than the rest; and this would seem 
to be a great part of the lesson for us to draw from Lehmann’s 
beautiful discovery. For Lehmann claims to have demonstrated, 
in non-living, chemical bodies, the existence of just such a deter
minant, just such a “Gestaltungskraft,” as would be of infinite help 
to us if we might postulate it for the explanation (for instance) of 
our Radiolarian’s axial symmetry. Further than this we cannot 
go; such analogy as we seem to see in the Lehmann phenomenon 
soon evades us, and refuses to be pressed home. The symmetry 
of crystallisation, which Haeckel tried har’d to discover and to reveal 
in these and other organisms, resolves itself into remote analogies 
from which no conclusions can be drawn. Many a beautiful 
protozoan form has lent itself to easy physico mathematical ex
planation ; others, no less simple and no more beautiful prove harder 
to explain. That Nature keeps some of her secrets longer than 
others—that she tells the secret of the rainbow and hides that of 
the northern fights—is a lesson taught me when I was a boy.

A note on Polyhedra.

The theory of Polyhedra, Euler’s doctrina solidorum, is a branch 
of geometry which deals with the more or less regular solids; and 
the rudiments of the theory may help us to study certain more or 
less symmetrical organic forms. Euler, a contemporary of Lin
naeus, is the most celebrated of the many mathematicians who 
have carried this subject beyond where Pythagoras, Plato, Euclid 
and Archimedes had left it. He drew up a classification of poly
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hedral solids, using a binomial nomenclature based on the number 
of their corners or vertices, and sides or faces. Thus, for example, 
he called a figure with eight corners and seven faces Octogonum 
heptaedrum; and the analogy between this and Linnaeus’s botanical 
classification and nomenclature—e.g. Hexandria trigynia and the 
rest—is very close and curious.

A simple theorem, of which Euler was vastly proud and which 
we still speak of as Euler’s Law*, is fundamental to the theory of 
polyhedra. It tells us that in every polyhedron whatsoever, the 
faces and corners together outnumber the edges by twof:

C-E+F=2 .......(1).

Another fundamental theorem follows. We know from Euclid 
that the three angles of a triangle are equal to two right angles; 
consequently, that in a polygon of C angles, the sum of the angles 
= 2 (0 — 2) right angles. And there follows from this—but by no 
means expectedly—the analogous and extremely simple relation

* Euler, Elementa doctrinae solidorum, Novi Comment. Acad. Sci. Imp. 
Petropol. iv, p. 109 seq. (ad annos 1752 et 1753), 1758: “In omni solido hedris 
planis inclusum, aggregatum ex numero angulorum solidorum et ex numero 
hedrarum binario excedit numerum acierum.” For a proof, see (int. al.) De 
Morgan, article Polyhedron in the Penny Cyclopaedia. There is reason to believe 
that Descartes was acquainted with this theorem between 1672 and 1676; cf. 
Poucher de Careil, (Euvres inidites de Descartes, Paris, n, p. 214. Cf. Baltzer, 
Monatsber. Berlin. Akad. 1861, p. 1043; and de Jonqui^res, C.R. 1890, p. 261. 
(The student will be struck by the resemblance between this formula and the phase 
rule of Willard Gibbs.)

f If we include, besides the corners, edges and faces (i.e. points, lines and 
surfaces) the solid figure itself, Euler’s Law becomes

C-E + F-S = \.
And in this form the theorem extends to n dimensions, as follows:

kg k^ “I- k2 k3 + k^ ... — 1 • •
With equal beauty and simplicity, the simplest figure in each n-dimensional 

space is given as follows:
kg ^2 k3 k^ etc.

n —0 1 = 1 (point)
1 2 -1 = 1 (line)
2 3 -3 + 1 = 1 (triangle)
3 4 -6 + 4 - 1 = 1 (tetrahedron)
4 5 -10 + 10 -5 + 1 =1 (pentahedroid)

etc.
And, in a figure of n-dimensions, the sum of the plane angles =2(n 11 (C -2) 

right angles.
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that in a polyhedron of C corners, the sum of the plane 
angles
• = 4 (0 — 2) right angles .......(2)*.

Hence, if the polyhedron be isogonal, the sum of the plane angles 
at each comer

= x 90°, or (4 — right angles .......(3).

The five regular solids, or Platonic bodies—there can be no more 
—have been known from remote antiquity; they have their corners 
all alike and their faces all alike, they are isogonal and isohedral. 
Three of them, the tetrahedron, octahedron and icosahedron, have 
triangular faces; three of them, the tetrahedron, cube and dodeca
hedron, have trihedral or three-way corners. One or other of these, 
triangles or three-way corners, must (as we shall soon see) be present 
in every polyhedron whatsoever.

The semi-regular solids are regular in one respect or other, but 
not in both; they are either isogonal or isohedral -isohedral, when 
every face is an identical polygon and isogonal when at every corner 
the same set of faces is combined. The semi-regular isogonal solids, 
with all their corners alike but with two or more kinds of regular 
polygons for their faces, are thirteen in dumber- -there can be no 
more; they were all described by Archimedes, and we call them 
by his name. One of them, with six square and eight hexagonal 
facets, derived by truncating the octahedron or the cube, we have 
found to be of peculiar interest, and it has become familiar to us 
as, of all homogeneous space-fillers, the one which encloses a given 
volume within a minimal area of surface. It is the cubo-octahedron 
of Kepler or of Fedorow, the tetrakaidekahedron of Kelvin, which 
latter name we commonly use.

Of semi-regular isohedral bodies, with all their sides alike (though 
no longer regular polygons) and their corners of two kinds or more, 
only one was known to antiquity; it is the rhombic dodecahedron, 
which is the crystalline form of the garnet, and appears in part

* On this remarkable parallel see Jacob Steiner, Gesammelte Werke, I, p. 97. 
It follows that the sum of the plane angles in a polyhedron, as in a plane polygon, 
is at once determined by the number of its comers: a result whidh delighted 
Euler, and led him to base his primary or generic classification of polyhedra on 
their comers rather than their sides.
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again as a “space-filler” at the base of the bee’s cell. A closely 
related rhombic icosahedron was known to Kepler; but it was 
left to Catalan*  to discover, only some seventy-five years ago, 
that the isohedral bodies were thirteen in number, and were 
precisely comparable with and reciprocal to the Archimed» an 
solids.

* Journal de I'ecole impir. polytechnique, xli, pp. 1-71, 1865.
f It follows that the Chinese carved and perforated ivory balls, which are 

based on regular and symmetrical division of the sphere, can all be referred to one 
or another of the Platonic or Archimedean bodies.

t As a matter of fact, the Catalan bodies can be formed by adding to the Platonic 
bodies, just as (but not so easily as) the Archimedean bodies can be formed by 
truncating them.

The semi-regular solids, both of Archimedes and of Catalan, are 
all, like the Platonic bodies, related to the sphere f, for a circum
scribing sphere meets all the corners of an Archimedean solid, and 
an inscribed sphere touches all the faces of a solid of Catalan; and 
while the isogonal bodies can be constructed by various simple - 
geometrical means, the general method of construating the thirteen 
isohedral bodies is by dividing the sphere into so many similar and 
equal areas J. It is a matter of spherical trigonometry rather than of 
simple geometry, and the problem, for that very reason, remained 
long unsolved.

The thirteen Archimedean bodies are derivable from the five 
Platonic bodies, in most cases easily, by so truncating their corners 
and their edges as to produce new and regularly polygonal faces in 
place of the old faces, corners and edges, and the possible number 
of faces in the new figure will be easily derived from the edges, 
corners and faces of the old. Part of the old faces will remain; 
each truncated corner will yield one new face; but each edge may 
be truncated, or bevelled, more than once, so as to yield one, two, 
or possibly three new faces. In short, if the faces, corners and 
edges of a regular solid be F, C, E, those of the Archimedean solids 
derivable from it (FA) will be

FA = F + mC + nE,

where m — 0 or 1, and n — 0, 1, or 2.
From the cube six Archimedean bodies may be derived, from the 

dodecahedron six, and from the tetrahedron one.
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The derivatives of the cube (with its six sides and eight corners) 
have the following numbers of sides:

FA = F + C = 6 + 8 =14
F pC + E = 6 + 8+ 12 = 26
F + C + 2E = 6 + 8 + 24 = 38.

The derivatives of the dodecahedron have, in like manner, 32, 62
or 92 sides; while the tetrahedron yields, by truncation of its four 
corners, a solid with eight sides.

The growth and form of crystals is a subject alien to our own, 
yet near enough to attract and tempt us. It is a curious thing 
(probably traceable to the Index Law of the crystallographer) that 
the Archimedean or isogonal bodies seldom occur and certainly play 
no conspicuous part in crystallography, while several of Catalan’s 
isohedral figures are the characteristic forms of well-known minerals*.

* E.g. the triakis, tetrakis and hexakis octahedra of fluor-spar. However the 
Archimedean tetrakaidekahedron (6F4 8F6) occurs in alum.

Just as we pass from the Platonic to the Archimedean bodies by 
truncating the corners or edges of the former, so conversely, by 
producing their faces to a limit we obtain another family of figures 
—in all cases save the tetrahedron, which admits of no such 
extension; and the figures of this family are remarkable for the 
“twinned,” or duplicate or multiple appearance which they present. 
If we extend the faces of an octahedron we get what looks like two 
tetrahedra, “twinned with” or interpenetrating one another; but 
there has been no interpenetration in the construction of this twin- 

t like figure, only further accretion upon, and extension of, the facets 
of the octahedron. Among the higher polyhedra there are many 
figures which look, in a far more complicated way, like the twinning 
of simpler but still complicated forms; and these also have been 
constructed, not by interpenetration, but by the mere superposition 
of new parts on old.

An elementary, even a very elementary, knowledge of the theory 
of polyhedra becomes useful to the naturalist in various ways. 
Among organic structures we often find many-sided boxes (or what 
may be regarded as such), like the capsular seed-vessels of plants, 
the skeletons of certain Radiolaria, the shells of the Peridinia, the 
carapace of a tortoise, and a great many more. Or we may go 
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further and treat any cluster of cells, such as a segmenting ovum, 
as a species of polyhedron and study it from the point of view 
of Euler’s Law and its associated theorems. We should have to 
include, as the geometer seldom does, the case of two-sided facets - 
facets with two corners and two curved sides or edges—like the 
“liths”* of a peeled orange; but the general formula would include 
these as a matter of course. On the other hand, we need very 
seldom consider any other than trihedral or three-way corners.

When we limit ourselves to polyhedra with trihedral corners the 
following formula applies:

4/2 + % + 2/„ +/6± - 2f, - ... = 12 .......(4).
That this formula applies to the tetrahedron with its four triangles, 

the cube with its six squares and the dodecahedron with its twelve 
pentagons, is at once obvious. The now familiar case of our four
celled egg with its polar furrows (Fig. 486, B, etc.) appears in two 
forms, according as the polar furrows run criss-cross or parallel. 
In the one case we have a curvilinear tetrahedron, in the other a 
figure with two two-sided and two four-sided facets; in either case 
the formula is obviously satisfied.

But the main lesson for us to learn is the broad, general principle 
that we cannot group as we please any number and sort of polygons 
into a polyhedron, but that the number and kind of facets in the 
latter is strictly limited to a narrow range of possibilities. For 
example, the case of Aulonia has already taught us that a poly
hedron composed entirely of hexagons is a mathematical impossi
bility!; and the zero-coefficient which defines the number of 
hexagons in the above formula (4) is the mathematical statement 
of the fact]:. can state it still more simply by the following 
corollary, likewise limited to the case of three-way corners:

(6-n)Fn=12.

* Llth, a useful Scottish word for a joint or segment. Cromwell, according to 
Carlyle, “gat’d kings ken they had a lith in their necks.”

f That hexagons cannot enclose space, or form a "three-way graph,” has been 
recognised as a significant fact in organic chemistry: where, for instance, it limits, 
somewhat unexpectedly, the ways in which a closed cyclol, or space-enclosing 
protein molecule, can be imagined to be built up. Cf. Dorothy Wrinch, in 
Proc. R. S. (A), No. 907, p. 510, 1937.

I Euler shewed at the same time the singular fact that no polyhedron can exist 
with seven edges.

TG F 47
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This applies at once to the tetrahedron, the cube and the regular 
dodecahedron, and at once excludes the possibility of the closed 
hexagonal network.

We found in Dorataspis a closed shell consisting only of hexagons 
and pentagons; without counting these latter we know, by our 
formula, that they must be twelve in number, neither more nor 
less. Lord Kelvin’s tetrakaidekahedron consists only of squares 
and hexagons; the squares are, and must be, six in number.

In a typical Peridinian, such as Goniodoma, there are twelve 
plates, all meeting by three-way nodes or corners; we know, and 
we have no difficulty in verifying the fact, that the twelve plates 
are all pentagonal.

Fig. 345. Goniodoma, from above and below.

Without going beyond the elements of our subject we may want 
to extend our last formula, and remove the restriction to three-way 
corners under which it lay. We know that a tetrahedron has four 
triangles and four trihedral corners; that a cube has six squares and 
eight trihedral corners; an octahedron eight triangles and six four-way 
corners; an icosahedron twenty triangles and twelve five-way corners. 
By inspection of these numbers we are led to the following rule, and 
may establish it as a deduction from Euler’s Law:

(/3 + = 8 + 0 (/4 + c4) 4- (/5 4- c5) 4- 2 (/6 4- c6) 4- etc........... (5).
This important formula further illustrates the limitations to which 

all polyhedra are subject; for it shews us, among other things, that 
(if we neglect the exceptional case of dihedral facets or “liths”) 
every polyhedron must possess either triangular faces or trihedral 
corners, and that these taken together are never less than eight in 
number.
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We may add yet two more formulae, both related to the last, and 
all derivable, ultimately, from Euler’s Law*:

+ 2/4 +/6 = 12 + O.c3 4- 2c4 + 4c5 + ... + O./6 +/7 4- 2/8 ...... (6)
and
3c3 b 2e4 + c6 = 12 + O./3 4-2/4 + 4/5 + ... 4-O.c6 4-c7 4-2c8 ...(7).

These imply that in every polyhedron the triangular, quadrangular 
and pentagonal faces (or corners) must, taken together and multi
plied as above, be at least twelve in number. Therefore no poly
hedron can exist which has not a certain number of triangles, 
squares or pentagons in its composition; and the impossibility of 
a polyhedron consisting only of hexagons is demonstrated once 
again.

Formulae (5), (6) and (7) further shew us that not only is a three- 
way polyhedron of hexagons impossible, but also a four-way 
polyhedron of quadrangles, or one of six-way corners and triangular 
facets; all of which become the more obvious when we reflect that 
the plane angles meeting in each point or node must be, on the 
average, in the first case 3 x 120°, in the second 4 x 90°, and in the 
th’rd 6 x 60°.

Lastly, having now considered the case of other than trihedral 
corners, we may learn a simple but very curious relation between 
the number of faces and corners, arising (like so much else) out of 
Euler’s Law. In a polyhedron whose corners are all n-hedral, 
nC = 2E; therefore (by Euler) nCf2 4- 2 = F 4- C; therefore 
2F - (n - 2) C + 4.

Therefore, if
n = 3, 2F=4+ Cl 

- 4, = 4 + 201 .......(8).
= 5, = 4 + 30 J

Let us look again at the microscopic skeleton of Dorataspis 
(Fig. 341). We have seen that some of its facets are hexagonal, 
the rest pentagonal; there happen to be eight of the former, and 
therefore (as we now know) there must be twelve of the latter.

* Derivable from Euler together with the formulae for the “edge-counts,” 
viz. 'EnFn--2E, and 'EnCn=2E; which merely mean that each edge separates 
two faces, and joins two corners.

47-2
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We know also that, having no triangular facets, the polyhedral 
skeleton must possess trihedral corners; and these, moreover, must 
(by equation 5) be eight in number, plus the number of pentagons, 
plus twice the number of hexagons. The total,

8 4-/5 + 2/6 = 8 + 12 + (2 x 8) = 36,

is precisely the number of corners in the figure, all of them trihedral. 
We also know (from equation 2) that the sum of its plane angles

- 4 (36 - 2) x 90° = 12,240°, 
which agrees with the sum of the angles of twelve pentagons and 
eight hexagons. The configuration, then, is a possible one.

So here and elsewhere an apparently infinite variety of form is 
defined by mathematical laws and theorems, and limited by the 
properties of space and number. And the whole matter is a running 
commentary on the cardinal fact that, under such foedera Naturai 
as Lucretius recognised of old, there are things which are possible, 
and things which are impossible, even to Nature herself.



CHAPTER X

A PARENTHETIC NOTE ON GEODESICS

W e have made use in the last chapter of the mathematical principle 
of Geodesics (or Geodetics) in order to explain the conformation 
of a certain class of sponge-spicules; but the principle is of much 
wider application in morphology, and would seem to deserve atten
tion which it has not yet received. The subject is not an easy one, 
and if we are to avoid mathematical difficulties we must keep within 
narrow bounds.

Fig. 346. Annular and spiral thickenings in the walls of plant-cells.

Defining, meanwhile, our geodesic line (as we have already done) 
as the shortest distance between two points on the surface of a 
solid of revolution, we find that the cylinder gives us some of the 
simplest of cases. Here it is plain that the geodesics are of three 
kinds: (1) a series of annuli around the cylinder, that is to say, a 
system of circles, in planes parallel to one another and at right 
angles to the axis of the cylinder (Fig. 346, A);. (2) a series of 
straight lines parallel to the axis; and (3) a series of spiral curves 
winding round the wall of the cylinder (B, C). These three systems 
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are all of frequent occurrence, and are illustrated in the local 
thickenings of the wall of the cylindrical cells or vessels of plants.

The spiral, or rather helical, geodesic is particularly common in 
cylindrical structures, and is beautifully shewn for instance in the 
spiral coil which stiffens the tracheal tubes of an insect, or the 
so-called tracheides of a woody, stem. A like phenomenon is 
often witnessed in the splitting of a glass tube. If a crack appear 
in a test-tube it has a tendency to be prolonged in its own direction, 
and the more isotropic be the glass the more evenly will the split 
tend to follow the straight course in which it began. As a result, 
the crack often continues till our test-tube is split into a continuous 
spiral ribbon.

One may stretch a tape along a cylinder, but it no sooner swerves 
• to one side than it begins to wind itself around; it is tracing its 

geodesic*.
In a circular cone, the spiral geodesic falls into closer and closer 

coils as the cone narrows, till it comes to the end, and then it winds 
back the same way; and a beautiful geodesic of this kind is 
exemplified in the sutural line of a spiral shell, such as Turritella, 
or in the striations which run parallel with the spiral suture. On 
a prolate spheroid, the coils of a spiral geodesic come closer together 
as they approach the ends of the long axis of the ellipse, and wind 
back and forward from one pole to the other f. We have a case of 
this kind in an Equisetum-spors, when the integument splits into the 
spiral “elaters,” though the spire is not long enough to shew all its 

. geodesic features in detail.
We begin to see that our first definition of a geodesic requires to 

be modified; for it is only subject to conditions that it is “the 
shortest distance between two points on the surface of the solid,” 
and one of the commonest of these restricting conditions is that 
our geodesic may be constrained to go twice, or many times, round 
the surface on its way. In short, we may re-define a geodesic, as 
a curve drawn upon a surface such that, if we take any two adjacent

* It is not that the geodesic is rectified into a straight line; but that a straight 
line (the midline of the tape or ribbon) is converted into the geodesic on the given 
surface.

j- In all these cases, r cos a = a consta nt, where r is the radius of the circular 
section, and a the angle at which it is crossed by the geodesic. And the constant 
is measured by the smallest circle which the geodesic can reach. 
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points on the curve, the curve gives the shortest distance between 
them. It often happens, in the geodesic systems which we meet 
with in morphology, that two opposite spirals or rather helices 
run separate and distinct from one another, as in Fig. 346, C; 
and it is also common to find the two interfering with one another, 
and forming a criss-cross or reticulated arrangement. This indeed 
is a common source of reticulated patterns.

The microscopic and even ultramicroscopic structure of the cell
wall shews analogous configurations: as in the large cells of the 
alga Valonia, where the wall consists of many lamellae, each com
posed of parallel fibrillae running in spiral geodesics, and alternating 
in direction from one lamella to another. Here, and not less clearly 
in the young parenchyma of seedling oats, it is the long-chain 
cellulose molecules which follow a spiral course around the cell-wall, 
right-handed or left-handed as the case may be, and inclined more 
or less steeply according to the elongation of the cell. But these 
highly interesting questions of molecular, or micellar, structure 
lie beyond our scope*.

* Cf. (e.g.) C. Correns, Innere Struktur einiger Algenmembranen, Beitr. zur 
Morphol. u. Physiol, d. Pflanzenzelle, 1893, p. 260; W. T. Astbury and others, 
Proc. R.S. (B), cix, p. 443, 1932, and other papers; G. van Iterson, jr., Nature, 
cxxxvm, p. 364, 1936; R. D. Preston, Proc. R.S. (B), cxxv, p. 772, 1938; etc.

Among the ciliated infusoria, we have a variety of beautiful 
geodesic curves in the spiral patterns in which their cilia are 
arranged; though it is probable enough that in some complicated 
cases these are not simple geodesics, but developments of curves other 
than a straight fine upon the surface of the organism. In other words, 
they seem to be instances of “geodesic curvature.”

Lastly, an instructive case is furnished by the arrangement of 
the muscular fibres on the surface of a hollow organ, such as the 
heart or the stomach. Here we may consider the phenomenon 
from the point of view of mechanical efficiency, as well as from 
that of descriptive anatomy. In fact we have a right to expect 
that the muscular fibres covering such hollow organs will coincide 
with geodesic lines, in the sense in which we are using the term. 
For if we imagine a contractile fibre, or an elastic band, to be fixed 
by its two ends upon a curved surface, it is obvious that its first 
effort of contraction will tend to expend itself in accommodating 
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the band to the form of the surface, in “stretching it tight.” or in 
other words in causing it to assume a direction which is the shortest 
possible line upon the surface between the two extremes: and it is 
only then that further contraction will have the effect of constricting 
the tube and so exercising pressure on its contents. Thus the 
muscular fibres, as they wind over the curved surface of an organ, 
arrange themselves automatically in geodesic curves: in precisely 
the same manner as we also automatically construct complex 
systems of geodesics whenever we wind a ball of wool or a spindle 
of tow, or when the skilful surgeon bandages a limb; indeed the 
surgeon must fold and crease his bandage if it is not to keep on 
geodesic lines. It is as a simple, necessary result of geodesic 
principles that we see those “ figures-of-eight ” produced, to which, 
in the case for instance of the heart-muscles, Pettigrew and other 
anatomists have ascribed peculiar importance. In the case of 
both heart and stomach we must look upon these organs as de
veloped from a simple cylindrical tube, after the fashion of the 
glass-blower, as is further discussed on p. 1049 of this book, the 
modification of the simple cylinder consisting of various degrees of 
dilatation and of twisting. In the primitive un’distorted cylinder, 
as in an artery or in the intestine, the muscles run in simple geodesic 
lines, and constitute the circular and longitudinal coats which form 
(or are said to form) the normal musculature of all tubular organs, 
or the cylindrical body of a worm. However, we can often recog
nise, in a small artery for instance, that the so-called circular fibres 
tend to take a slightly oblique or spiral course; and that the 
so-called annular muscle-fibres are really spirals is an old statement 
which may very likely be true*. If we consider each muscular 
fibre as an elastic strand embedded in the elastic membrane which 
constitutes the wall of the organ, it is evident that, whatever be 
the distortion suffered by the entire organ, the individual fibre will 
follow its own course, which will still, in a sense, be geodesic. 
But if the distortion be considerable, as for instance if the tube

* See A Discourse concerning the Spiral, instead of the supposed Annular, 
structure of the Fibres of the Intestins; discover’d and shewn by the Learn’d 
and Inquisitive Dr. William Cole to the Royal Society, Phil. Trans, xi, pp. 603-609, 
1676. Cf. Eben J Carey, Studies on the.. .small intestine, Anat. Record, xxi, pp. 
189-215, 1921; F. T. Lewis, The spiral trend of intestinal muscle fibres, Science, lv, 
June 30, 1922.
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become bent upon itself, or if at some point its walls bulge outwards 
in a diverticulum or pouch, then the old system of geodesics will 
only mark the shortest distance between two points more or less 
approximate to one another, and new systems of geodesics, 
peculiar to the new surface, will tend to appear, and link 
up points more remote from one another. This is evidently the 
case in the human stomach. We still have the systems, or their 
unobliterated remains, of circular and longitudinal muscles; but 
we also see two new systems of fibres, both obviously geodesic 
(or rather, when we look more closely, both parts of one and the 
same geodesic system), in the form of annuli encircling the pouch 
or diverticulum at the cardiac end of the stomach, and of oblique 
fibres taking a spiral course from the neighbourhood of the 
oesophagus over the sides of the organ.

In the heart we have a similar, but more complicated pheno
menon. Its musculature consists, in great part, of the original 
simple system of circular and longitudinal muscles which enveloped 
the original arterial tubes, which tubes, after a process of local 
thickening, expansion, and especially twisting, came together to 
constitute the composite, or double, mammalian heart; and these 
systems of muscular fibres, geodesic to begin with, remain geodesic 
(in the sense in which we are using the word) after all the twisting 
which the primitive cylindrical tube or tubes have undergone. 
That is to say, these fibres still run their shortest possible course, 
from start to finish, over the complicated curved surface of the 
organ; and, as Borelli well understood, it is only because they do 
so that their contraction, or longitudinal shortening, is able to 
produce its direct effect in the contraction or systole of the heart*.

As a parenthetic corollary to the case of the spiral pattern upon 
the wall of a cylindrical cell, we may consider for a moment the 
spiral line which many small organisms tend to follow in their path

* The spiral fibres, or a large portion of them, constitute what Searle called 
“the rope of the heart” (Todd’s Cyclopaedia, n, p. 621, 1836). The “twisted 
sinews of the heart” were known to early anatomists, and have been frequently 
and elaborately studied: for instance, by Gerdy (Bull. Fac. Med. Paris, 1820, 
pp. 40-148),’ and by Pettigrew (Phil. Trans. 1864), and again by J. B. Macallum 
(Johns Hopkins Hospital Report, ix, 1900) and by Franklin P. Mall (Amer. Journ. 
Anat, xi, 1911).
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of locomotion*.  A certain physiologist observed that an Amoeba, 
crawling within a narrow tube, wound its slow way in a spiral course 
instead of going straight along the tube. The creature was going 
nowhere in particular, but merely following the direction in which 
it had begun: in curious illustration of a familiar statement in the 
“dynamics of a particle,” that a particle moving on a surface 
without constraint will describe geodesic lines.

* Cf. Biitschli, “Protozoa,” in Bronn’s Thierreich, n, p. 848, in, p. 1785, etc., 
1883-87; Jennings, Amer. Nat. xxxv, p. 369, 1901; Putter, Thigmotaxie bei 
Protisten, Arch. f. Anat. u. Phys. (Phys. Abth. Suppl.), pp. 243-302, 1900.

t Cf. W. Ludwig, Ueber die Schraubenbahnen niederer Organismen, Arch. f. 
vergl. Physiologic, ix, 1919.

But it is after a different fashion, and without any constraint to 
a surface, that the smaller ciliated organisms, such as the ciliate 
and flagellate infusoria, the rotifers, the swarm-spores of various 
Protista, and so forth, shew a tendency to pursue a spiral path in 
their ordinary locomotion. The means of locomotion which they 
possess in their cilia are at best somewhat primitive and inefficient; 
they have no apparent means of steering, or modifying their 
direction; and, if their course tended to swerve ever so little to 
one side, the result would be to bring them round and round again 
in an approximately circular path (such as a man astray on the 
prairie is said to follow), with little or no progress in a definite 
longitudinal direction. But as a matter of fact, by reason of a 
more or less unsymmetrical form of the body, all these creatures 
tend more or less to rotate about their long axis while they swim. 
And this axial rotation, just as in the case of a rifle-bullet, causes 
their natural swerve, which is always in the same direction as 
regards their own bodies, to be in a continually changing direction 
as regards space: in short, to make a spiral course around, and more 
or less near to, a straight axial linef.

In this short chapter we have touched on phenomena where form 
repeats itself, and mathematical analogies recur, in very different 
things and very different orders of magnitude. The spiral muscles 
of heart or stomach are the mechanical outcome of twists which 
these tubular organs have undergone in the course of their develop
ment, and come, accordingly, under the general category of organic 
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or embryological growth. But the spiral thickenings in the woody 
fibres of a plant are of another order of things, and lie in the region 
of molecular phenomena. The delicate spirals of the cell-wall of 
a cotton-hair are based on a complicated cellulose space-lattice, 
recalling Nageli’s micellar hypothesis in a new setting; and giving 
us a glimpse of organic growth after the very fashion of crystalline 
growth, that is to say from the starting-point of molecular structure 
and configuration*.

* W. Lawrence Balls, Determiners of cellulose structure as seen in the cell-wall 
of cotton-hairs, Proc. R.S. (B), xcv, pp. 72-89, 1923, and other papers. Cf. also 
Wilfred Robinson, Microscopical features of mechanical strains in timber, and the 
bearing of these on the structure of the cell-wall in plants, Phil. Trans. (B), ccx, 
pp. 49-82, 1920.



CHAPTER XI

THE EQUIANGULAR SPIRAL

The very numerous examples of spiral conformation which we 
meet with in our studies of organic form are peculiarly adapted 
to mathematical methods of investigation. But ere we begin to 
study them we must take care to define our terms, and we had 
better also attempt some rough preliminary classification of the 
objects with which we shall have to deal.

In general terms, a Spiral is a curve which, starting from 
a point of origin, continually diminishes in curvature as it recedes 
from that point; or, in other words, whose radius of curvature 
continually increases. This definition is wide enough to include 
a number of different curves, but on the other hand it excludes 
at least one which in popular speech we are apt to confuse with 
a true spiral. This latter curve is the simple screw, or cylindrical 
helix, which curve neither starts from a definite origin nor changes 
its curvature as it proceeds. The “spiral” thickening of a woody 
plant-cell, the “spiral” thread within an insect’s tracheal tube, or 
the “spiral” twist and twine of a climbing stem are not. mathe
matically speaking, spirals at all, but screws or helices. They belong 
to a distinct, though not very remote, family of curves.

Of true organic spirals we have no lack*. We think at once of 
horns of ruminants, and of still more exquisitely beautiful molluscan 
shells- -in which (as Pliny says) magna ludentis Naturae varietas. 
Closely related spirals may be traced in the floreis of a sunflower; 
a true spiral, though not, by the way, so easy of investigation, is seen 
in the outline of a cordiform leaf; and yet again, we can recognise 
typical though transitory spirals in a lock of hair, in a staple of 
woolf, in the coil of an elephant’s trunk, in the “circling spires”

* A great number of spiral forms, both organic and artificial, are described 
and beautifully illustrated in Sir T. A. Cook’s Spirals in Nature and Art, 1903, and 
Curves of Life, 1914.

f On this interesting case see, e.g. J. E. Duerden, in Science, May 25, 1934. 
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of a snake, in the coils of a cuttle-fish’s arm, or of a monkey’s or 
a chameleon’s tail.

Fig. 347. The shell of Nautilus pompilius, from a radiograph: to shew the 
equiangular spiral of the shell, together with the arrangement of the internal 
septa. From Green and Gardiner, in Proc. Malacol. Soc. n, 1897.

Among such forms as these, and the many others which we 
might easily add to them, it is obvious that we have to do with 
things which, though mathematically similar, are biologically
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speaking fundamentally different; and not only are they biologically 
remote, but they are also physically different, in regard to the causes 
to which they are severally due. For in the first place, the spiral 
coil of the elephant’s trunk or of the chameleon’s tail is, as we have 
said, but a transitory configuration, and is plainly the result of 
certain muscular forces acting upon a structure of a definite, and 
normally an essentially different, form. It is rather a position, or 
an attitude, than & form, in the sense in which we have been using 
this latter term; and, unlike most of the forms which we have been 
studying, it has little or no direct relation to the phenomenon of 
growth.

Fig. 348. A foraminiferal shell (Pulvinulina).

Again, there is a difference between such a spiral conformation 
as is built up by the separate and successive florets in the sunflower, 
and that which, in the snail or Nautilus shell, is apparently a single 
and indivisible unit. And a similar if not identical difference is 
apparent between the Nautilus shell and the minute shells of the 
Foraminifera which so closely simulate it: inasmuch as the spiral 
shells of these latter are composite structures, combined out of 
successive and separate chambers, while the molluscan shell, though 
it may (as in Nautilus) become secondarily subdivided, has grown 
as one continuous tube. It follows from all this that there cannot 
be a physical or dynamical, though there may well be a mathematical 
law of growth, which is common to, and which defines, the spiral 
form in Nautilus, in Globigerina, in the ram’s horn, and in the 
inflorescence of the sunflower. Nature at least exhibits in them all 
“un reflet des formes rigoureuses qu’etudie la geometric*

* Haton de la Goupilliere, in the introduction to his important study of the 
Surfaces Nautiloides, Annaes sci. da Acad. Poly technica do Porto, Coimbra, in, 1908.
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Of the spiral forms which we have now mentioned, every one 
(with the single exception of the cordate outline of the leaf) is an 
example of the remarkable curve known as the equiangular or 
logarithmic spiral. But before we enter upon the mathematics of 
the equiangular spiral, let us carefully observe that the whole of the 
organic forms in which it is clearly and permanently exhibited, 
however different they may be from one another in outward appear
ance, in nature and in origin, nevertheless all belong, in a certain 
sense, to one particular class of conformations.’ In the great 
majority of cases, when we consider an organism in part or whole, 
when we look (for instance) at our own hand or foot, or contemplate 
an insect or a worm, we have no reason (or very little) to consider 
one part of the existing structure as older than another; through 
and through, the newer particles have been merged and commingled 
among the old; the outline, such as it is, is due to forces which for 
the most part are still at work to shape it, and which in shaping it 
have shaped it as a whole. But the horn, or the snail-shell, is 
curiously different; for in these the presently existing structure is, 
so to speak, partly old and partly new. It has been conformed by 
successive and continuous increments; and each successive stage of 
growth, starting from the origin, remains as an integral and un
changing portion of the growing structure.

We may go further, and see that horn and shell, though they 
belong to the living, are in no sense alive*. They are by-products 
of the animal; they consist of “formed material,” as it is sometimes 
called; their growth is not of their own doing, but comes of living 
cells beneath them or around. The many structures which display 
the logarithmic spiral increase, or accumulate, rather than grow. 
The shell of nautilus or snail, the chambered shell of a foraminifer, 
the elephant’s tusk, the beaver’s tooth, the cat’s claws or the 
canary-bird’s—all these shew the same simple and very beautiful 
spiral curve. And all alike consist of stuff secreted or deposited by 
living cells; all grow, as an edifice grows, by accretion of accumulated

* For Oken and Gooi Isir the logarithmic spiral had a profound significance, for 
they saw in it a manifestation of life itself. For a like reason Sir Theodore Cook 
spoke of the Curves of Life; and Alfred Lartigues says (in his Biodynamique generale, 
1930, p. 60): “Nous verrons la Conchyliologie apporter une magnifique contribution 
a la Stereodynamique du tourbillon vital.” The fact that the spiral is always 
formed of non-living matter helps to contradict these mystical conceptions. 
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material; and in all alike the parts once formed remain in being, 
and are thenceforward incapable of change.

In a slightly different, but closely cognate way, the same is true 
of the spirally arranged florets of the sunflower. For here again 
we are regarding serially arranged portions of a composite structure, 
which portions, similar to one another in form, differ in age; and 
differ also in magnitude in the strict ratio of their age. Somehow 
or other, in the equiangular spiral the time-element always enters 
in; and to this important fact, full of curious biological as well as 
mathematical significance, we shall afterwards return.

In the elementary mathematics of a spiral, we speak of the point 
of origin as the pole (0); a straight line having its extremity in the 
pole, and revolving about it, is called the radius vector: and a 
point (P), travelling along the radius vector under definite conditions 
of velocity, will then describe our spiral curve.

Of several mathematical curves whose form and development 
may be so conceived, the two most important (and the only two 
with which we need deal) are those which are known as (1) the 
equable spiral, or spiral of Archimedes, and (2) the equiangular or 
logarithmic spiral.

The former may be roughly illustrated by the way a sailor 
coils a rope upon the deck; as the rope is of uniform thickness, so 
in the whole spiral coil is each whorl of the same breadth as that 
which precedes and as that which follows it. Using its ancient 
definition, we may define it by saying, that “If a straight line 
revolve uniformly about its extremity, a point which likewise travels 
uniformly along it will describe the equable spiral*.” Or, putting 
the same thing into our more modern words, “If, while the radius 
vector revolve uniformly about the pole, a point (P) travel with 
uniform velocity along it, the curve described will be that called 
the equable spiral, or spiral of Archimedes.” It is plain that the 
spiral of Archimedes may be compared, but again roughly, to a 
cylinder coiled up. It is plain also that a radius (r = OP), made 
up of the successive and equal whorls, will increase in arithmetical 
progression: and will equal a certain constant quantity (a) multiplied

* Leslie’s Geometry of Curved Lines, 1821, p. 417. This is practically identical 
with Archimedes’ own definition (ed. Torelli, p. 219); cf. Cantor, Geschichte der 
Mathematik, I, p. 262, 1880.



XI] AND THE SPIRAL OF ARCHIMEDES 753 

by the whole number of whorls, (or more strictly speaking) multiplied 
by the whole angle (6) through which it has revolved: so that 
r = a9. And it .is also plain that the radius meets the curve (or 
its tangent) at an angle which changes slowly but continuously, 
and which tends towards a right angle as the whorls increase in 
number and become more and more nearly circular.

But, in contrast to this, in the equiangular spiral of the Nautilus 
or the snail-shell or Globigerina, the whorls continually increase 
in breadth, and do so in a steady and unchanging ratio. Our 
definition is as follows: 7If, instead of travelling with a uniform 
velocity, our point move along the radius vector with a velocity 
increasing as its distance from the pole, then the path described is

Fig. 349. The spiral of Archimedes.

called an equiangular spiral.” Each whorl which the radius vector 
intersects will be broader than its predecessor in a definite ratio; 
the radius vector will increase in length in geometrical progression, as 
it sweeps through successive equal angles; and the equation to the 
spiral will be r = ae. As the spiral of Archimedes, in our example of 
the coiled rope, might be looked upon as a coiled cylinder, so (but 
equally roughly) may the equiangular spiral, in the case of the shell, 
be pictured as a cone coiled upon itself; and it is the conical shape 
of the elephant’s trunk or the chameleon’s tail which makes them coil 
into a rough simulacrum of an equiangular spiral.

While the one spiral was known in ancient times, and was 
investigated if not discovered by Archimedes, the other was first

T G F 48 
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recognised by Descartes, and discussed in the year 1638 in his letters 
to Mersenne*. Starting with the conception of a growing curve 
which should cut each radius vector at a constant angle- -just as 
a circle does—Descartes shewed how it would necessarily follow that 
rai/ii at equal angles to one another at the pole would be in con
tinued proportion; that the same is therefore true of the parts cut off 
from a common radius vector by successive whorls or convolutions 
of the spire; and furthermore, that distances measured along the 
curve from its origin, and intercepted by any radii, as at B, C, are 
proportional to the lengths of these radii. OB, OC. It follows that

the sectors cut off by successive radii, at equal vectorial angles, are 
similar to one another in every respect; and it further follows that 
the figure may be conceived as growing continuously without ever 
changing its shape the while.

If the whorls increase very slowly, the equiangular spiral will come to look 
like a spiral of Archimedes. The Nummulite is a case in point. Here we have 
a large number of whorls, very narrow, very close together, and apparently of 
equal breadth, which give rise to an appearance similar to that of our coiled 
rope. And, in a case of this kind, we might actually find that the whorls 
were of equal breadth, being produced (as is apparently the case in the 
Nummulite) not by any very slow and gradual growth in thickness of a con
tinuous tube, but by a succession of similar cells or chambers laid on, round 
and round, determined as to their size by constant surface-tension conditions 
and therefore of unvarying dimensions. The Nummulite must always have 
a central core, or initial cell, around which the coil is not only wrapped, but 
out of which it springs; and this initial chamber corresponds to our a' in the 
expression r=a'+a6 cot a.

* (Euvres, ed. Adam et Tannery, Paris, 1898, p. 360.
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The many specific properties of the equiangular spiral are so 
interrelated to one another that we may choose pretty well any 
one of them as the basis of our definition, and deduce the others 
from it either by analytical methods or by elementary geometry. 
In algebra, when mx — n, x is called the logarithm of n to the base 
m. Hence, in this instance, the equation r = a® may be written in 
the form log r — 0 log a, or 0 = log r/log a, or (since a is a constant) 
0 = k log r*. Which is as much as to say that (as Descartes dis
covered) the vector angles about the pole are proportional to the 
logarithms of the successive radii; from which circumstance the 
alternative name of the “logarithmic spiral” is derived]".

Moreover, for as many properties as the curve exhibits, so many 
names may it more or less appropriately receive. James Bernoulli 
called it the logarithmic spiral, as we still often do; P. Nicolas called 
it the geometrical spiral, bet ause radii at equal polar angles are in 
geometrical progression; Halley, the proportional spiral, because 
the parts of a radius cut off by successive whorls are in continued 
proportion; and lastly, Roger Cotes, going back to Descartes’ first 
description or first definition of all, called it the equiangular spiral J. 
We may also recall Newton’s remarkable demonstration that, had 
the force of gravity varied inversely as the cube instead of the 
square of the distance, the planets, instead of being bound to their

* Instead of r=ae, we might write r=roae; in which case r0 is the value of r 
for zero value of 0.

f Of the two names for this spiral, equiangular and logarithmic, I used the 
latter in my first edition, but equiangular spiral seems to be the better name; 
for the constant angle is its most distinguishing characteristic, and that which 
leads to its remarkable property of continuous self-similarity. Equiangular spiral 
is its name in geometry; it is the analyst who derives from its geometrical pro
perties its relation to the logarithm. The mechanical as well as the mathematical 
properties of this curve are very numerous. A Swedish admiral, in the eighteenth 
century, shewed an equiangular spiral (of a certain angle) to be the best form for 
an anchor-fluke (Sv. Vet. Akad. Hdl. xv, pp. 1-24, 1796), and in a parrot's 
beak it has the same efficiency. Macquorn Rankine shewed its advantages in 
the pitch of a cam or non-circular wheel (Manual of Mechanics, 1859, pp. 99-102; 
cf. R. C. Archibald, Scripta Mathem. in (4), p. 366, 1935).

{ James Bernoulli, in%Acto Eruditorum, 1691, p. 282; P. Nicolas, De novis 
spiralibus, Tolosae, 1693, p. 27; E. Halley, Phil. Trans, xix, p. 58, 1696; Roger 
Cotes, ibid. 1714, and Harmonia Mensurarum, 1722, p. 19. For the further history 
of the curve see (e.g.) Gomes de Teixeira, TraM des courbes remarquables, Coimbre, 
1909, pp. 76-86; Gino Loria, Spezielle algebraische Kurven, n, p. 60 seq., 1911; 
R. C. Archibald (to whom I am much indebted) in Amer. Mathem. Monthly, ttv, 
pp. 189-193, 1918, and in Jay Hambidge’s Dynamic Symmetry, 1920, pp. 146-157. 

48-2
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ellipses, would have been shot off in spiral orbits from the sun, the 
equiangular spiral being one case thereof.*

* Principia, I, 9; n, 15. On these “Cotes’s spirals” see Tait and Steele, p. 147.
t Cf. W. Buddenbroek, Sitzungsber. Heidelb. Akad., 1917; V. H. Wigglesworth, 

Insect Physiology, 1839, p. 167.

A singular instance of the same spiral is given by the route which 
certain insects follow towards a candle. Owing to the structure 
of their compound eyes, these insects do not look straight ahead 
but make for a light which they see abeam, at a certain angle. 
As they continually adjust their path to this constant angle, a spiral 
pathway brings them to their destination at lastf.

In mechanical structures, curvature is essentially a mechanical 
phenomenon. It is found in flexible structures as the result of 

Fig. 351. Spiral path of an insect, 
as it draws towards a light. 
From Wigglesworth (after van 
Buddenbroek).

Fig. 352. Dynamical aspect 
of the equiangular spiral.

bending, or it may be introduced into the construction for the 
purpose of resisting such a bending-moment. But neither shell nor 
tooth nor claw are flexible structures; they have not been bent into 
their peculiar curvature, they have grown into it.

We may for a moment, however, regard the equiangular or logarithmic 
spiral of our shell from the dynamical point of view, by looking on growth 
itself as the force concerned. In the growing structure, let growth at any 
point P be resolved into a force F acting along the line joining P to a pole O, 
and a force T acting in a direction perpendicular to OP; and let the magnitude 
of these forces (or of these rates of growth) remain constant. It follows that 
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the resultant of the forees F and T (as PQ) makes a constant angle with 
the radius vector. But a constant angle between tangent and radius vector 
is a fundamental property of the “equiangular” spiral: the very property 
with which Descartes started his investigation, and that which gives its 
alternative name to the curve.

In such a spiral, radial growth and growth in the direction of the curve 
bear a constant ratio to one another. For, if we consider a consecutive 
radius vector, OP', whose increment as compared with OP is dr, while ds is 
the small arc PP', then dr I ds = cos a — constant.

In the growth of a shell, we can conceive no simpler law than 
this, namely, that it shall widen and lengthen in the same unvarying 
proportions: and this simplest of laws is that which Nature tends 
to follow. The shell, like the creature within it, grows in size 
but does not change its shape; and the existence of this constant 
relativity of growth, or constant similarity of form, is of the essence, 
and may be made the basis of a definition, of the equiangular spiral*.

Such a definition, though not commonly used by mathematicians, 
has been occasionally employed; and it is one from which the other 
properties of the curve can be deduced with great ease and sim
plicity. In mathematical language it would run as follows: “Any 
[plane] curve proceeding from a fixed point (which is called the 
pole), and such that the arc intercepted between any two radii at 
a given angle to one another is always similar to itself, is called an 
equiangular, or logarithmic, spiral.”

In this definition, we have the most fundamental and “intrinsic” 
property of the curve, namely the property of continual similarity, 
and the very property by reason of which it is associated with 
organic growth in such structures as the horn or the shell. For it 
is peculiarly characteristic of the spiral shell, for instance, that it 
does not alter as it grows; each increment is similar to its predecessor, 
and the whole, after every spurt of growth, is just like what it was 
before.. We feel no surprise when the animal which secretes 
the shell, or any other animal whatsoever, grows by such sym
metrical expansion as to preserve its form unchanged; though even 
there, as we have already seen, the unchanging form denotes a nice 
balance between the rates of growth in various directions, which is

* See an interesting paper by W. A. Whitworth, The equiangular spiral, its chief 
properties proved geometrically, Messenger of Mathematics (1), i, p. 5, 1862. The 
celebrated Christian Wiener gave an explanation on these lines of the logarithmic 
spiral of the shell, in his highly original Grundzilge der Weltordnung, 1863. 
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but seldom accurately maintained for long. But the shell retains 
its unchanging form in spite of its asymmetrical growth; it grows 
at one end only, and so does the horn. And this remarkable 
property of increasing by term inal growth, but nevertheless retaining 
unchanged the form of the entire figure, is characteristic of the 
equiangular spiral, and of no other mathematical curve. It well 
deserves the name, by which James Bernoulli was wont to call it, 
of spira 'mirabilis.

XV e may at once illustrate this curious phenomenon by drawing 
the outline of a little Nautilus shell within a big one. We know, 
or we may see at once, that they are of precisely the same shape; 
so that, if we look at the little shell through a magnifying glass, 
it becomes identical with the big one. But we know, on the other 
hand, that the little Nautilus shell grows into the big one, not by 
growth or magnification in all parts and directions, as when the boy 
grows into the man, but by growing at one end only.

If we should want further proof or illustration of the fact that the spiral 
shell remains of the same shape while increasing in magnitude by its terminal 
growth, we may find it by help of our ratio IF : L3, which remains constant 
so long as the shape remains unchanged. Here are weights and measurements 
of a series of small land-shells (Clausilia): *

* In 100 specimens of Clausilia the mean value of B7Z was found to be 
2-517, the coefficient of variation 0-092, and the standard deviation 3-6. That 
is to say, over 90 per cent, grouped themselves about a mean value of 2-5 with 
a deviation of less than 4 per cent. Cf. C. Petersen, Das Quotientengesetz, 1921, 
p. 55.

W (mgm.) L (mm.)
50 14-4 2-56
53 15-1 2-49
56 15-2 2-52
56 15-2 2-52
56 15-4 2-44
58 15-5 2-50
61 16-4 2-40
63 16-0 2-49
67 16-0 2-54
69 16-1 2-56

Mean 2-50

Though of all plane curves, this property of continued similarity 
is found only in the equiangular spiral, there are many rectilinear 
figures in which it may be shewn. For instance, it holds good of 
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any cone; for evidently, in Fig. 353. the little inner cone (repre
sented in its triangular section) may become identical with the larger 
one either by magnification all round (as in a), or by an increment 
at one end (as in b); or for that matter on the rest of its surface, 
represented by the other two sides, as in c. All this is associated 
with the fact, which we have already noted, that the Nautilus shell 
is but a cone rolled up; that, in other words, the cone is but a 
particular variety, or “limiting case,” of the spiral shell.

This singular property of continued similarity, which we see in 
the cone, and recognise as characteristic of the logarithmic spiral, 
would seem, under a more general aspect, to have engaged the 
particular attention of ancient mathematicians even from the days 
of Pythagoras, and so, with little doubt, from the still more ancient 
days of that Egyptian school whence he derived the foundations of

Fig. 353.

his learning*; and its bearing on our biological problem of the 
shell, however indirect, is close enough to deserve our very careful 
consideration.

There are certain things, says Aristotle, which suffer no alteration 
(save of magnitude) when they growf. Thus if we add to a square 
an L-shaped portion, shaped like a carpenter’s square, the resulting 
figure is still a square; and the portion which we have so added, with 
this singular result, is called in Greek a “gnomon.”

Euclid extends the term to include the case of any parallelogram];, 
whether rectangular or not (Fig. 354); and Hero of Alexandria

* T am well aware that the debt of Greek science to Egypt and the East is 
vigorously denied by many scholars, some of whom go so far as to believe that the 
Egyptians never had any science, save only some “rough rules of thumb for 
measuring fields and pyramids” (Burnet’s Greek Philosophy, 1914. p. 5).

t Categ. 14, 15a, 30: lari riva aii^avbpiera a ouk aXXoiovrai, olov rb TeTpayuvov, 
•}vd>p.ovos rrepireOlvros, yv^rai p.ev dXXoibrepoy bl ovbev yeylyyrai.

t Euclid (it, def. 2).
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specifically defines a gnomon (as indeed Aristotle had implicitly 
defined it), as any figure which, being added to any figure what
soever, leaves the resultant figure similar to the original. Included 
in this important definition is the case of numbers, considered 
geometrically; that is to say, the cl&itlkoI dpcOpol, which can be 
translated into form, by means of rows of dots or other signs (cf. 
Arist. Metaph. 1092 b 12), or in the pattern of a tiled floor: all 
according to “the mystical way of Pythagoras, and the secret

Fig. 354. Gnomonic figures.

magick of numbers.” For instance, the triangular numbers, 1, 3, 
6, 10 etc., have the natural numbers for their “differences”; and 
so the natural numbers may be called their gnomons, because they 
keep the triangular numbers still triangular. In like manner the 
square numbers have the successive odd numbers for their gnomons, 
as follows:

0 + 1 - U
I2 + 3 = 22
22 + 5 = 32
32 + 7 = 42 ^etc.

And this gnomonic relation we may illustrate graphically (a^qparo- 
ypacfriv) by the dots whose addition keeps the annexed figures 
perfect squares*:

There are other gnomonic figures more curious still. For example, 
if we make a rectangle (Fig. 355) such that the two sides are in the

* Cf. Treutlein, Ztschr. f. Math. u. Phys. (Hist. litt. Abth.), xxviii, p. 209, 1883.
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ratio of 1: V2, it is obvious that, on doubling it, we obtain a similar 
figure; for 1 : V2:: V2 : 2; and each half of the figure, accordingly, 
is now a gnomon to the other. M ere we to make our paper of such 
a shape (say, roughly, 10 in. x 7 in.), we might fold and fold it, 
and the shape of folio, quarto and octavo pages would be all the 
same. For another elegant example, let us start with a rectangle 
(A) whose sides are in the proportion of the “divine” or “golden 
section*” that is to say as 1: | (V5 — 1), or, approximately, as 
1 : 0-618.... The gnomon to this rectangle is the square (B) 
erected on its longer side, and so on successively (Fig. 356).

Fig. 355.

In any triangle, as Hero of Alexandria tells us, one part is always 
a gnomon to the other part. For instance, in the triangle ABC 
(Fig. 357), let us draw BD, so as to make the angle CBD equal to 
the angle A. Then the part BCD is a triangle similar to the whole 
triangle ABC, and ABD is a gnomon to BCD. A very elegant case 
is when the original triangle ABC is an isosceles triangle having 
one angle of 36°, and the other two angles, therefore, each equal 
to 72° (Fig. 358). Then, by bisecting one of the angles of the base, 
we subdivide the large isosceles triangle into two isosceles triangles, 
of which one is similar to the whole figure and the other is its 
gnomon f. There is good reason to believe that this triangle was 
especially studied by the Pythagoreans; for it lies at the root of

* Euclid, n, 11.
f This is the so-called Dreifachgleichschenkelige Dreieck; cf. Naber, op. infra 

cit. The ratio 1 : 0-618 is again not hard to find in this construction.
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many interesting geometrical constructions, such as the regular 
pentagon, and its mystical "pentalpha,” and a whole range of other 
curious figures beloved of the ancient mathematicians*: culminating

in the regular, or pentagonal, dodecahedron, which symbolised the 
universe itself, and with which Euclidean geometry ends.

If we take any one of these figures, for instance the isosceles 
triangle which we have just described, and add to it (or subtract 

from it) in succession a series of gnomons, so converting it into larger 
and larger (or smaller and smaller) triangles all similar to the first, 
we find that the apices (or other corresponding points) of all these 
\ * See. on the mathematical history of the gnomon. Heath’s Euclid, i, passim, 
1908; Zeuthen, Theorems de Pythagore, Geneve, 1904; also a curious and 
interesting book, Das Theorem des Pythagoras, by Dr H A. Naber, Haarlem, 1908. 
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triangles have their locus upon a equiangular spiral: a result which 
follows directly from that alternative definition of the equiangular 
spiral which I have quoted from Whitworth (p. 757).

If in this, or any other isosceles triangle, we take corresponding 
median lines of the successive triangles, by joining C to the mid
point (M) of AB, and D to the mid-point (N) of BC, then the pole 
of the spiral, or centre of similitude of ABC and BCD, is the point 
of intersection of CM and DN*.

Again, we may build up a series of right-angled triangles, each 
of which is a gnomon to the preceding figure; and here again, an 
equiangular spiral is the locus of corresponding points in these suc
cessive triangles. And lastly, whensoever we fill up space with a 
collection of equal and similar figures, as in Figs. 360, 361, there 
we can always discover a series of equiangular spirals in their 
successive multiplesf.

Once more, then, we may modify our definition, and say that: 
“Any plane curve proceeding from a fixed point (or pole), and such 
that the vectorial area of any sector is always a gnomon to the 
whole preceding figure, is called an equiangular, or logarithmic, 
spiral.” And we may now introduce this new concept and nomen
clature into our description of the Nautilus shell and other related 
organic forms, by saying that: (1) if a growing structure be built 
up of successive parts, similar in form, magnified in geometrical 
progression, and similarly situated with respect to a centre of 
similitude, we can always trace through corresponding points a 
series of equiangular spirals; and (2) it is characteristic of the

* I owe this simple but novel construction, like so much else, to Dr G. T. Bennett.
f In each and all of these gnomonic figures we may now recognise a never

ending polygon, with equal angles at its corners, and with its successive sides in 
geometrical progression; and such a polygon we may look upon as the natural 
precursor of the equiangular spiral. If we call the exterior or “bending” angle 
of the polygon /3, and the ratio of its sides A, then the vertices lie on an equiangular 
spiral of angle a, given by loge A = /3 cot a. In the spiral of Fig. 359 the constant 
angle is thus found to be about 75° 40', in that of Fig. 355, 77° 40', and in that of 
Fig. 356, 72° 50'.

The calculation is as follows. Taking, for example, the successive triangles of 
I ig. 359, the ratio (A) of the sides, as BC : AC,is that of the golden section, 1: 1-618. 
The external angle (/3), as ADB, is 108°, or in radians 1-885. Then

log 1-618=0-209, from which log£ 1-618 =0-481
and cot a=^k^=2A?l:-o.255=cot 75° 45'.

p l’o8o
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growth of the horn, of the shell, and of all other organic forms in 
which an equiangular spiral can be recognised, that each successive 
increment of growth is similar, and similarly magnified, and simi larly

Fig. 360*. Logarithmic spiral derived from corresponding points in 
a system of squares.

Fig. 361. The same in a system of hexagons. From Naber.

situated to its predecessor, and is in consequence a gnomon to the entire 
pre-existing structure. Conversely (3) it follows that in the spiral

* This diagram was at fault in my first edition (p. 512), as Dr G. T. Bennett shews 
me. The curve met its chords at equal angles at either end: whereas it ought to 
meet the further end at a lesser angle than the other, and ought in consequence to 
intersect the lines of the coordinate framework. The constant angle of this spiral 
is about 66° 11' (tan a —tt/2 loge2).
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outline of the shell or of the horn we can always inscribe an endless 
variety of other gnomonic figures, having no necessary relation, 
save as a mathematical accident, to the nature or mode of develop
ment of the actual structure*. But observe that the gnomons to 
a square may form increments of any size, and the same is true of 
the gnomons to a Haliotis-sheW; but in the higher symmetry of a 
chambered Nautilus, or of the successive triangles in Fig. 359, 
growth goes on by a progressive series of gnomons, each one of 
which is the gnomon to another.

Fig. 362. A shell of Ha^otis, with two of the many lines of growth, or generating 
curves, marked out in black: the areas bounded by these lines of growth being 
in all cases gnomons to the pre-existing shell.

Of these three propositions, the second is of great use and 
advantage for our easy understanding and simple description of 
the molluscan shell, and of a great variety of 6ther structures whose 
mode of growth is analogous, and whose mathematical properties 
are therefore identical. We see that the successive chambers of a 
spiral Nautilus or of a straight Orthoceras, each whorl or part of a 
whorl of a periwinkle or other gastropod, each new increment of the 
operculum of a gastropod, each additional increment of an elephant’s 
tusk, or each new chamber of a spiral foraminifer, has its leading 
characteristic at once described. and its form so far explained by the

* For many beautiful geometrical constructions based on the molluscan shell, 
see S. Colman and C. A. Coan, Nature’s Harmonic Unity (ch. ix, Concholugy), 
New York, 1912.
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simple statement that it constitutes a gnomon to the whole previously 
existing structure. And herein lies the explanation of that “time
element” in the development of organic spirals of which we have 
sooken already; for it follows as a simple corollary to this theory

Fig. 363. A spiral foraminifer (Pulvinulina), to shew how each successive chamber 
continues the symmetry of, or constitutes a gnomon to, the rest of the structure.

Fig. 364. Another spiral fora
minifer, Cristellaria.

of gnomons that we must never expect to find the logarithmic spiral 
manifested in a structure whose parts are simultaneously produced, 
as for instance in the margin of a leaf, or am^ng the many curves 
that make the contour of a fish. But we most look for it wherever 

the organism retains, and still presents 
at a single view, the successive phases of 
prece< ling gro wth: the successive magni
tudes attained, the successive outlines 
occupied, as growth pursued the even 
tenor of its way. And it follows from 
this that it is in the hard parts of 
organisms, and not the soft, fleshy, 
actively growing parts, that this spiral 
is commonly and characteristically 
found: not in the fresh mobile tisssue 
whose form is constrained merely by 
the active forces of the moment; but 

in things like shell and tusk, and horn and claw, visibly composed
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of parts successively and permanently laid down. The shell-less 
molluscs are never spiral; the snail is spiral but not the slug*.  In 
short, it is the shell which curves the snail, and not the snail which 
curves the shell. The logarithmic spiral is characteristic, not of the 
living tissues, but of the dead. And for the same reason it will 
always or nearly always be accompanied, and adorned, by a pattern 
formed of “fines of growth,” the lasting record of successive stages 
of form and magnitude f.

* Note also that Chiton, where the pieces of the shell are disconnected, shews 
no sign of spirality.

f That the invert to an equiangular spiral is identical with the original curve 
does not concern us in our study of organic form, but it is one of the most beautiful 
and most singular properties of the curve. It was this which led James Bernoulli, 
in imitation of Archimedes, to have the logarithmic spiral inscribed upon his tomb; 
and on John Goodsir’s grave near Edinburgh the same symbol is reinscribed. 
Bernoulli’s account of the matter is interesting and remarkable: “Cum autem 
ob proprietatem tam singularem tamque admirabilem mire mihi placeat spira 
haec mirabilis, sic ut ejus contemplatione satiari vix nequeam: cogitavi illam 
ad varias res symbolice repraesentandas non inconcinne adhiberi posse. Quoniam 
enim semper sibi et eandem spiram gignit, utcunque volvatur, evolvatur, radiet, 
hinc poterit esse vel so bolis parentibus per omnia similis Emblema: Simillima 
Filia Matri; vel (si rem aeternae veritatis Fidei mysteriis accommodare non est

The cymose inflorescences of the botanists are analogous in a 
curious and instructive way to the equiangular spiral.

In Fig. 365 B (which represents the Cicinnus of Schimper, or cyme, unipare 
scorpioide of Bravais, as seen in the Borage), we begin with a primary shoot
from which is given off, at a certain definite angle, 
a secondary shoot: and from that in turn, on the 
same side and at the same angle, another shoot, and 
so on. The deflection, or curvature, is continuous 
and progressive, for it is caused by no external 
force but only by causes intrinsic in the system. 
And the whole system is symmetrical: the angles 
at which the successive shoots are given off being 
all equal, and the lengths of the shoots diminishing 
in constant ratio. • The result is that the successive 
shoots, or successive increments of growth, are 
tangents to a curve, and this curve is a true 
logarithmic spiral. Or in other words, we may 
regard each successive shoot as forming, or defining, 
a gnomon to the preceding structure. While in 
this simple case the successive shoots are depicted 

Fig. 365. A, a helicoid; 
B, a scorpioid cyme.

as lying in a plane, it may also happen that, in addition to their successive 
angular divergence from one another within that plane, they also tend to 
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diverge by successive equal angles from that plane of reference; and by 
this means, there will be superposed upon the equiangular spiral a twist or 
screw. And, in the particular case where this latter angle of divergence is 
just equal to 180°, or two right angles, the successive shoots will once more 
come to lie in a plane, but they will appear to come off from one another on 
alternate sides, as in Fig. 365 A. This is the Schraubel or Bostryx of Schimper, 
the cyme unipare helicoide of Bravais. The equiangular spiral is still latent 
in it, as in the other; but is concealed from view by the deformation resulting 
from the helicoid. Many botanists did not recognise (as the brothers Bravais 
did) the mathematical significance of the latter case, but were led by the 
snail-like spiral of the scorpoid cyme to transfer the name “helicoid” to it*.

The spiral curve of the shell is, in a sense, a vector diagram of its 
own growth; for it shews at each instant of time the direction, 
radial and tangential, of growth, and the unchanging ratio of 
velocities in these directions. Regarding the actual velocity of 
growth in the ^hell, we know very little by way of experimental 
measurement; but if we make a certain simple assumption, then 
we may go a good deal further in our description of the equiangular 
spiral as it appears in this concrete case.

Let us make the assumption that similar increments are added 
to the shell in equal times; that is to say, that the amount of 
growth in unit time is measured by the areas subtended by equal 
angles. Thus, in the outer whorl of a spiral shell a definite area 
marked out by ridges tubercles, etc., has very different linear 
dimensions to the corresponding areas of an inner whorl, but the 
symmetry of the figure implies that it subtends an equal angle 
with these; and it is reasonable to suppose that the successive 
regions, marked out in this way by successive natural boundaries 
or patterns, are produced in equal intervals of time.

X

prohibitum) ipsius aeternae generationis Filii, qui Patris veluti Imago, et ab illo ut 
Lumen a Lumine emanans, eidem buotoiaios existit, qualiscunque adumbratio. Aut, 
si mavis, quia Curva nostra mirabilis in ipsa mutatione semper sibi constantissime 
manet similis at numero eadem, poterit esse vel fortitudinis et constantiae in 
adversitatibus, vel etiam Camis nostrae post varias alterationes et tandem ipsam 
quoque mortem, ejusdem numero resurrecturae symbolum: adeo quidem, ut si 
Archimedem imitandi hodiernum consuetudo obtineret, libenter Spiram hanc tumulo 
meo juberem incidi, cum Epigraphe, Eadem numero mutata resurget”; Acta Erudi
torum, M. Maii, 1692, p. 213. Cf. L. Isely, Epigraphies tumulaires de mathe- 
maticiens. Bull. Soc. Sci. nat. Neuchatel, hhnu, p. 171, 1899.

* The names of these structures have been often confused and misunderstood; 
cf. S. H. Vines, The history of the scorpioid cyme, Journ. Bot. (n.s.), x, pp. 3-9, 
1881.
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If this be so, the radii measured from the pole to the boundary 
of the shell will in each case be proportional to the velocity of 
growth at this point upon the circumference, and at the time when 
it corresponded with the outer lip, or region of active growth; and 
while the direction of the radius vector corresponds with the 
direction of growth in thickness of the animal, so does the tangent 
to the curve correspond with the direction, for the time being, of 
the animal’s growth in length. The successive radii are a measure 
of the acceleration of growth, and the spiral curve of the shell 
itself, if the ladius rotate uniformly, is no other than the hodograph 
of the growth of the contained organism*.

So far as we have now gone, we have studied the elementary 
properties of the equiangular spiral, including its fundamental 
property of continued similarity; and we have accordingly learned 
that the shell or the horn tends necessarily to assume the form 
of this mathematical figure, because in these structures growth 
proceeds by successive increments which are always similar in 
form, similarly situated, and of constant relative magnitude one 
to another. Our chief objects in enquiring further into the mathe
matical properties of the equiangular spiral will be: (1) to find 
means of confirming and verifying the fact that the shell (or other 
organic curve) is actually an equiangular spiral; (2) to learn how, 
by the properties of the curve, we may further extend our knowledge 
or simplify our descriptions of the shell; and (3) to understand the 
factors by which the characteristic form of any particular equiangular 
spiral is determined, and so to comprehend the nature of the specific 
or generic differences between one spiral shell and another.

Of the elementary properties of the equiangular spiral the 
following are those which we may most easily investigate in the 
concrete case of the molluscan shell: (1) that the polar radii whose 
vectorial angles are in arithmetical progression are themselves in 
geometrical progression; hence (2) that the vectorial angles are pro
portional to the logarithms of the corresponding radii; and (3) that 
the tangent at any point of an equiangular spiral makes a constant 
angle (called the angle of the spiral) with the polar radius vector.

* The hodograph of a logarithmic spiral (i.e. of a point which lies on a uniformly 
revolving radius and describes a logarithmic spiral) is likewise a logarithmic spiral: 
W. Walton, Collect ion of Probit ms in Theoretical Mechanics (3rd ed.), 1876, p. 296.

TGF 49
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The first of these propositions may be written in a simpler form, 
as follows: radii which form equal angles about the pole of the 
equiangular spiral are themselves continued proportionals. That 

Fig. 366.

is to say, in Fig. 366, when the angle ROQ is equal 
to the angle QOP, then OP: OQ:: OQ : OR.

A particular case of this proposition is when the 
equal angles are each angles of 360°: that is to say 
when in ea ch case the radius vector makes a complete 
revolution, and when, therefore, P, Q and R all lie 
upon the same radius.

It was by observing with the help of very careful 
measurement this continued proportionality, that 
Moseley was enabled to verify his first assumption, 
based on the general appearance of the shell, that 
the shell of Nautilus was actually an equiangular 
spiral, and this demonstration he was soon after
wards in a position to generalise by extending it to 

all spiral Ammonitoid and Gastropod mollusca*.  For, taking a 
median transverse section of a Nautilus pompilius, and carefully 
measuring the successive breadths of the whorls (from the dark line 
which marks what was originally the outer surface, before it was 
covered up by fresh deposits on the part of the growing and 
advancing shell), Moseley found that “the distance of any two of its 
whorls measured upon a radius vector is one-third that of the two 
next whorls measured upon the same radius vectorf. Thus (in

* The Rev. H. Moseley, On the geometrical forms of turbinated and discoid 
shells, Phil. Trans. 1838, Pt. I, pp. 351-370. Reaumur, in describing the snail-shell 
(Mem. Acad, des Sci. 1709, p. 378), had a glimpse of the same geometrical law: 
“ Le diametre de chaque tour de spirale, ou sa plus grande longueur, est A peu pres 
double de cehii qui la precede et la moitie de celui qui la suit.” Leslie (in his 
Geometry of Curved Lines, 1822, p. 438) compared the “general form and the 
elegant septa of the Nautilus" to an equiangular spiral and a series of its involutes.

f It will be observed that here Moseley, speaking as a mathematician and 
considering the linear spiral, speaks of whorls when he means the linear boundaries, 
or lines traced by the revolving radius vector; while the conchologist usually 
applies the term whorl to the whole space between the two boundaries. As con- 
chologists, therefore, we call the breadth of a whorl what Moseley looked upon as 
the distance between two consecutive whorls. But this latter nomenclature Moseley 
himself often uses. Observe also that Moseley gets a very good approximate result 
by his measurements “upon a radius-vector,” although he has to be content with 
a very rough determination of the pole.
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Fig. 367), ab is one-third of be, de of ef, gh of hi, and kl of Im. The 
curve is therefore an equiangular spiral.”

The numerical ratio in the case of the Nautilus happens to be 
one of unusual simplicity. Let us take, with Moseley, a somewhat 
more complicated example.

Fig. 368. Turritella dupli
cata (L.), Moseley’s 
Turbo duplicatus. From 
Chenu. x J.

From the apex of a large Turritella (Turbo) duplicata* a line 
was drawn across its whorls, and their widths were measured upon 
it in succession, beginning with the last but one. The measure-

* In the case of “Turbo", and all other turbinate shells, we are dealing not with 
a plane logarithmic spiral, as in Nautilus, but with a “gauche” spiral, such that 
the radius vector no longer revolves in a plane perpendicular to the axis of the 
system, but is inclined to that axis at some constant angle (/3). The figure still 
preserves its continued similarity, and may be called a logarithmic spiral in space; 
indeed it is commonly spoken of as a logarithmic spiral wrapped upon a cone, its pole 
coinciding with the apex of the cone. It follows that the distances of successive 
whorls of the spiral measured on the same straight line passing through the apex 
of the cone are in geometrical progression, and conversely; just as in the former 
case. But the ratio between any two consecutive interspaces (i.e. Rs - RzfRg - Rd 
is now equal to e^BinPcota^ p being the semi-angle of the enveloping cone. (Cf. 
Moseley, Phil. Mag. xxi, p. 300, 1842.)

49-2
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ments were, as before, made with a fine pair of compasses and a 
diagonal scale. The sight was assisted by a magnifying glass. 
In a parallel column to the following admeasurements are the 
terms of a geometric progression, whose first term is the width of 
the widest whorl measured, and whose common ratio is 1-1804.

Turritella duplicata
Widths of successive 
whorls, measured in 

inches and parts 
of an inch

1-31
112
0-94
0-80
0-67
0-57
0-48
0-41

Terms of a geometrical progression, 
whose first term is the width of 

t the widest whorl, and whose 
common ratio is 11804

1-310
1-110
0-940
0-797
0-675
0-572
0-484
0-410

The close coincidence between the observed and the calculated 
figures is very remarkable, and is amply sufficient to justify the 
conclusion that we are here dealing with a true logarithmic spiral*.

* Moseley, writing a hundred years ago, uses an obsolete nomenclature which 
is apt to be very misleading. His Turbo duplicatus, of Linnaeus, is now Turritella 
duplicata, the common large Indian Turritella, a slender, tapering shell with a 
very beautiful spiral, about six or seven inches long. But the operculum which 
he describes as that of Turbo does indeed belong to that genus, sensu stricto; it is 
the well-known calcareous operculum or “eyestone” of some such common species 
as Turbo petholatus. Turritella has a very different kind of operculum, a thin 
chitinous disc in the form of a close spiral coil, not nearly filling up the aperture 
of the shell. Moseley’s Turbo phasianus is again no true Turbo, but is (to judge 
from his figure) Phasianella bulimoides Lam. —P. australis (Gmelin); and his 
Buccinum subulatum is Terebra subulata (L.).

Nevertheless, in order to verify his conclusion still further, 
and to get partially rid of the inaccuracies due to successive small 
measurements, Moseley proceeded to investigate the same shell, 
measuring not single whorls but groups of whorls taken several 
at a time: making use of the following property of a geometrical 
progression, that “if p represent the ratio of the sum of every 
even number (m) of its terms to the sum of half that number of 
terms, then the common ratio (r) of the series is represented by 
the formula

2
r - (y - l)w.”
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Accordingly, Moseley made the following measurements, begin
ning from the second and third whorls respectively:

Width of Ratio p

Six whorls Three whorls
5-37 203 2-645
4-55 1-72 2-645

Four whorls Two whorls
4-15 1-74 2-385
3-52 1-47 2-394

“By the ratios of the two first admeasurements, the formula 
gives

r = (1-645)* = 1-1804.

By the mean of the ratios deduced from the second two admeasure
ments, it gives

r = (1-389)* = 1-1806.

“It is scarcely possible to imagine a more accurate verification 
than is deduced from these larger admeasurements, and we may 
with safety annex to the species Turbo duplicatus the characteristic 
number 1-18.”

By similar and equally concordant observations, Moseley found 
for Turbo phasianus the characteristic ratio, 1-75; and for Bucci- 
num subulatum that of 1-13.

From the measurements of Turritella duplicata (on p. 772), it is 
perhaps worth while to illustrate the logarithmic statement of the 
same thing: that is to say, the elementary fact, or corollary, that if 
the successive radii be in geometric progression, their logarithms will 
differ from one another by a constant amount.

Turriti Ila duplicata
Widths of sue- . Logarithms Differences Ratios of sue-
cessive whorls of do. of logarithms cessive widths

131 2-11727 — —
112 2-04922 0-06805 1-170
94 1-97313 0-07609 1-191
80 1-90309 0-07004 1-175
67 1-82607 0-0771 »2 1-194
57 1-75587 0-07020 1-175
48 1-68124 0-07463 1-188
41 1-61278 0-06846 1-171

Mean 0-07207 1-1806

And 0-07207 is the logarithm of 1-1805.
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Lastly, we may if we please, in this simple case, reduce the whole 
matter to arithmetic, and, dividing the width of each whorl by 
that of the next, see that these quotients are nearly identical, and 
that their mean value, or common ratio, is precisely that which 
we have already found.

We may shew, in the same simple fashion, by measurements 
of Terebra (J’ig. 397), how the relative widths of successive whorls 
fall into a geometric progression, the criterion of a logarithmic 
spiral.

Measurements of a large specimen (15-5 cm.) of Terebra maculata, 
along three several tangents (a, b. c) to the whorls. (After Chr. 
Peterson, 1921.)

a b c

Width (mm.) Ratio Width Ratio Width Ratio
25

1-25
24-5

1-32
23

1-31
20

1-33
18-5

1-32
17-5

1-31
15

1-25
14

1-30
1.3-3

1-36
12

1-33
10-75

1-34
9-75

1-34
9 8 7-25

Mean 1-29 1-32 1-33

Mean ratio, 1-31

The logarithmic spiral is not only very beautifully manifested in 
the molluscan shell*, but also, in certa n cases, in the little fid or 
“operculum” by which the entrance to the tubular shell is closed 
after the animal has withdrawn itself with inf. In the spiral shell 
of Turbo, for instance, the operculum is a thick calcareous structure, 
with a beautifully curved outline, which grows by successive incre
ments applied to one portion of its edge, and shews, accordingly, 
a spiral line of growth upon its surface. The successive increments 
leave their traces on the surface of the operculum (Fig. 370), which 
traces have the form of curved lines in Turbo, and of straight lines

* It has even been proposed to use a logarithmic spiral in place of a table of 
logarithms. Cf. Ant. Favaro, Statique graphique, Paris, 1885; Hele-Shaw, in 
Brit. Ass. Rep. 1892, p. 403.

f Cf. Fred. Haussay, Recherches sur I'opercule, Diss., Paris, 1884.
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in (e.g.) Nerita (Fig. 371); that is to say, apart from the side con
stituting the outer edge of the operculum (which side is always and 
of necessity curved) the successive increments constitute curvilinear

Fig. 369. Operculum of Turbo.

triangles in the one case, and rectilinear triangles in the other. 
The sides of these triangles are tangents to the spiral line of the

P4
Fig. 370. Fig. 371.

Figs. 370, 371. Opercula of Turbo and Nerita. After Moseley.

operculum, and may be supposed to generate it by their consecutive 
intersections.

In a number of such opercula, Moseley measured the breadths 
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of the successive whorls along a radius vector*, just in the same 
way as he did with the entire shell in the foregoing cases; and 
here is one example of his results.

Operculum of Turbo sp.; breadth (in inches) of successive 
whorls, measured from the pole

Distance Ratio Distance Ratio Distance Ratio Distance Ratio
0-24 016 0-2 0-18

2-28 2-31 2-30 2-30
0-55 0-37 0-6 0-42

2-32 2-30 2-30 2-24
1-28 0-85 1-38 0-94

The ratio is approximately constant, and this spiral also is, 
therefore, a logarithmic spiral.

But here comes in a very beautiful illustration of that property 
of the logarithmic spiral which causes its whole shape to remain 
unchanged, in spite of its apparently unsymmetrical, or unilateral, 
mode of growth. For the mouth of the tubular shell, into which 
the operculum has to fit, is growing or widening on all sides: while 
the operculum is increasing, not by additions made at the same 
time all round its margin, but by additions made only on one side 
of it at each successive stage. One edge of the operculum thus 
remains unaltered as it advances into its new position, and comes to 
occupy a new-formed section of the tube, similar to but greater than 
the last. Nevertheless, the two apposed structures, the chamber and 
its plug, at all times fit one another to perfection. The mechanical 
problem (by no means an easy one) is thus solved: “How to shape 
a tube of a variable section, so that a piston driven along it shall, by 
one side of its margin, coincide continually with its surface as it 
advances, provided only that the piston be made at the same time 
continually to revolve in its own plane.”

As Moseley puts it: “That the same edge which fitted a portion 
of the first less section should be capable of adjustment, so as to 
fit a portion of the next similar but greater section, supposes a 
geometrical provision in the curved form of the chamber of great

* As the successive increments evidently constitute similar figures, similarly 
related to the pole (P), it follows that their linear dimensions are to one another 
as the radii vectores drawn to similar points in them: for instance as PP„ PP^, 
which (in Fig. 370) are radii vectores drawn to the points where they meet the 
common boundary.
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apparent complication and difficulty. But God hath bestowed 
upon this humble architect the practical skill of a learned geo
metrician, and he makes this provision with admirable precision 
in that curvature of the logarithmic spiral which he gives to the 
section of the shell. This curvature obtaining, he has only to turn 
his operculum slightly round in its own plane as he advances it 
into each newly formed portion of his chamber, to adapt one margin 
of it to a new and larger surface and a different curvature, leaving 
the space to be filled up by increasing the operculum wholly on 
the other margin.” The fact is that self-similar or gnomonic growth 
is taking place both in the shell and its operculum; in both of them 
growth is in reference to a fixed centre, and to a fixed axis through 
that centre; and in both of them growth proceeds in geometric 
progression from the centre while rotation takes place in arithmetic 
progression about the axis. The same architecture which builds 
the house constructs the door. Moreover, not only are house and 
door governed by the same law of growth, but, growing together, 
door and doorway adapt themselves to one another.

The operculum of the gastropods varies from a more or less close-wound 
spiral, as in Turritella, Trochus or Pleurotomaria, to cases in which accretion 
takes place, by concentric (or more or less excentric) rings, all round. But 
these latter cases, so Mr Winckworth tells me, are not very common. Paludina 
and Ampullaria come near to having a concentric operculum, and so do some 
of the Murices, such as M. tribulus, and a few Turrids, and the genus Helicina; 
but-even these opercula probably begin as spirals, adding on their gnomonic 
increments at one end or side, and only growing on all sides later on. There 
would seem to be a truly concentric operculum in the Siphonium group of 
Vermetus, where the spiral of the shell itself is lost, or nearly so; but it is 
usually overgrown with Melobesia, and hard to see.

Fig. 372.

One more proposition, an all but self-evident one, we may make 
passing mention of here: If upon any polar radius vector OP, 



778 THE EQUIANGULAR SPIRAL [ch.

a triangle OPQ be drawn similar to a given triangle, the locus of 
the vertex Q will be a spiral similar to the original spiral. We may 
extend this proposition (as given by Whitworth) from the simple 
case of the triangle to any similar figures whatsoever; and see from 
it how every spot or ridge or tubercle repeated symmetrically from 
one radius vector, (or one generating curve) to another becomes 
part of a spiral pattern on the shell.

Viewed in regard to its own fundamental properties and to those 
of its limiting cases, the equiangular spiral is one of the simplest 
of all known curves; and the rigid uniformity of the simple laws by 
which it is developed sufficiently account for its frequent manifesta
tion in the structures built up by the slow and steady growth of 
organisms.

In order to translate into precise terms the whole form and 
growth of a spiral shell, we should have to employ a mathematical 
notation considerably more complicated than any that I have 
attempted to make use of in this book. But we may at least try 
to describe in elementary language the general method, and some of 
the variations, of the mathematical development of the shell. But 
here it is high time to observe that, while we have been speaking of 
the shell (which is a surface) as a logarithmic spiral (which is a line), 
we have been simplifying the case, in a provisional or preparatory 
way. The logarithmic spiral is but one factor in the case, albeit 
the chief or dominating one. The problem is one not of plane but 
of solid geometry, and the solid in question is described by the 
movement in space of a certain area, or closed curve*.

Let us imagine a closed curve in space, whether circular or 
elliptical or of some other and more complex specific form, not 
necessarily in a plane: such a curve as we see before us when we 
consider the mouth, or terminal orifice, of our tubular shell. Let

* For a more advanced study of the family of surfaces of which the Nautilus 
is a simple case, see M. Haton de la Goupilliere (op. cit.). The turbinate shells 
represent a sub-family, which may be called that of the “surfaces cerithioides”; 
and “ surfaces a front generateur ” is a short title of the whole family. The form of 
the generating curve, its rate of expansion, the direction of its advance, and the 
angle wfiich the generating front makes with the directrix, define, and give a wide 
extension to. the family. These parameters are all severally to be recognised in the 
growth of the living object; and they make of a collection of shells an unusually 
beautiful materialisation of the rigorous definitions of geometry. 
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us call this closed curve the “generating curve”; the surface which 
it bounds we may call (if need arise) the “generating front,” and 
let us imagine some one characteristic point within this closed 
curve, such as its centre of gravity. Then, starting from a fixed 
origin, let this characteristic point describe an equiangular spiral

Fig. 373. Mdo elhiopicus L.

in space about a fixed axis or “ conductrix ” (namely the axis of the 
shell), while at the same time the generating curve grows with each 
increment of rotation in such a way as to preserve the symmetry 
of the entire figure, with or without a simultaneous movement of 
translation along the axis.

The resulting shell may now be looked upon in either of two ways. 
It is, on the one hand, an ensemble of similar closed curves, spirally 
arranged in space, and gradually increasing in dimensions in pro
portion to the increase of their vector-angle from the pole*. In

* The plumber, the copper-smith and the glass-blower are at pains to conserve 
in every part of their tubular constructions, however these branch or bend, the 
constant form which their cross-sections ought to have. Throughout the spiral 
twisting of the shell, throughout the windings and branchings of the blood-vessels, 
the same uniformity is maintained.
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other words, we can imagine our shell cut up into a system of rings, 
following one another in continuous spiral succession, from that 
terminal and largest one which constitutes the lip of the orifice of 
the shell. Or on the other hand, we may figure to ourselves the 
whole shell as made up of an ensemble of spiral lines in space, each 
spiral having been traced out by the gradual growth and revolution 
of a radius vector from the pole to a given point on the boundary 
of the generating curve.

1 2
Fig. 374. 1, Hai pa; 2, Dolium. The ridges on the shell correspond 

in (1) to generating curves, in (2) to generating spirals.

Both systems of lines, the generating spirals (as these latter may 
be called), and the closed generating curves corresponding to suc
cessive margins or lips of the shell, may be easily traced in a great 
variety of cases. Thus, for example, in Dolium, Eburna, and a 
host of others, the generating spirals are beautifully marked out 
by ridges, tubercles or bands of colour. In Trophon, Scalaria, and 
(among countless others) in the Ammonites, it is the successive 
generating curves which more conspicuously leave their impress on 
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the shell. And in not a few cases, as in Harpa, Dolium perdix, etc., 
both alike are conspicuous, ridges and colour-bands intersecting 
one another in a beautiful isogonal system.

In ordinary gastropods the shell is formed at or near the mantle
edge. Here, near the mantle-border, is a groove lined with a 
secretory epithelium which produces the horny cuticle or perio 
stracum of the shell*. A narrow zone of the mantle just behind 
this secretes lime abundantly, depositing it in a layer below the 
periostracum; and for some little way back more lime may be 
secreted, and pigment superadded from appropriate glands. Growth 
and secretion are periodic rather than continuous. Even in a snail
shell it is easy to see how the shell is built up of narrow annular 
increments; and many other shells record, in conspicuous colour
patterns, the alternate periods of rest and of activity which their 
pigment-glands have undergone.

The periodic accelerations and retardations in the growth of a 
shell are marked in various ways. Often we have nothing more 
than an increased activity from time to time at or near the mantle
edge--enough to give rise to slight successive ridges, each corre
sponding to a “generating curve” in the conformation of the shell. 
But in many other cases, as in Murex, Ranella and the like, the 
mantle-edge has its alternate phases of rest and of turgescence, its 
outline being plain and even in the one and folded and contorted 
in the other; and these recurring folds or pleatings of the edge 
leave their impress in the form of various ridges, ruffles or comb-like 
rows of spines upon the shell f.

In not a few "cases the colour-pattern shews, or seems to shew, 
how some play of forces has fashioned and transformed the first 
elementary pattern of pigmentary drops or jets. As the book
binder drops or dusts a little colour on a viscous fluid, and then 
produces the beautiful streamlines of his marbled papers by stirring

* That the shell grows by accretion at the mantle-edge was one of Reaumur’s 
countless discoveries (Mem. Acad. Roy. des Sc. 1709, p. 364 seq.). It follows 
that the mathematical*? generating curves,” as Moseley chose them, correspond to 
the material increments of the shell.

f The periodic appearance of a ridge, or row of tubercles, or other ornament 
on the growing shell is illustrated or even exaggerated in the delicate “combs” 
of Murex aculeatus. Here normal growth is interrupted for the time being, the 
mantle-edge is temporarily folded and reflexed, and shell-substance is poured out 
into the folds.
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and combing the colloid mass, so we may see, in the harp-shells 
or the volutes, how a few simple spots or lines have been drawn out 
into analogous wavy patterns by streaming movements during the 
formation of the shell. -

In the complete mathematical formula for any given turbinate 
shell, we may include, with Moseley, factors for the following 
elements: (1) for the specific form of a section of the tube, or 
(as we have called it) the generating curve; (2) for the specific rate 
of growth of this generating curve; (3) for its inclination to the 
directrix, or to the axis; (4) for its specific rate of angular rotation 
about the pole, in a projection perpendicular to the axis; and 
(5) in turbinate (as opposed to nautiloid) shells, for its rate of 
screw-translation, parallel to the axis, as measured by the angle 
between a tangent to the whorls and the axis of the shell*. It seems 
a complicated affair; but it is only a pathway winding at a steady 
slope up a conical hill. This uniform gradient is traced by any 
given point on the generating curve while the vector angle increases 
in arithmetical progression, and the scale changes in geometrical 
progression; and a certain ensemble, or bunch, of these spiral curves 
in space constitutes the self-similar surface of the shell.

But after all this is not the only way, neither is it the easiest way, 
to approach our problem of the turbinate shell The conchologist 
turned mathematician is apt to think of the generating curve by 
which the spiral surface is described as necessarily identical, or 
coincident, with the mouth or lip of the shell; for this is where 
growth actually goes on, and where the successive increments of 
shell-growth are visibly accumulated. But it does not follow that 
this particular generating curve is chosen for the best from the 
mathematical point of view; and the mathematician, unconcerned 
with the physiological side of the case and regardless of the suc
cession of the parts in time, is free to choose any other generating 
curve which the geometry of the figure may suggest to him. We 
are following Moseley’s example (as is usually done) when we think 
of no other generating curve but that which takes the form of a

* Note that this tangent touches the curve at a series of points, whorl by whorl, 
instead of at one only. Observe also that we may have various tangent-cones, 
all centred on the apex of the shell. In an open spiral, like a ram’s horn, or a 
half-open spiral like the shell Solarium, we have two cones, one touching the 
outside, the other the inside of the shell.
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frontal plane, outlined by the lip, and sliding along the axis while 
revolving round it; but the geometer takes a better and a simpler 
way. For, when of two similar figures in space one is derived from 
the other by a screw-displacement accompanied by change of scale— 
as in the case of a big whelk and a little whelk -there is a unique 
(apical) point which suffers no displacement; and if we choose for 
our generating curve a sectional figure centred on the apical pomt 
and passing through the axis of rotation, the whole development 
of the surface may be simply described as due to a rotation of this 
generating figure about the axis (z), together with a change of scale 
with the point 0 as centre of similitude. We need not, and now 
must not, think' of a slide or shear as part of the operation; the 
translation along the axis is merely part and parcel of the magnifica
tion of the new generating curve. It follows that angular rotation 
in arithmetical progression, combined with change of scale (from 0) 
in geometrical progression, causes any arbitrary point on the 
generating curve to tr^ce a path of uniform gradient round a 
circular cone, or in other words to describe a helico-spiral or gauche 
equiangular spiral in space. The spiral curve cuts all the straight- 
line generators of the cone at the same angle; and it further follows 
that the successive increments are, and the whole figure constantly 
remains, “self-similar”*.

Apart from the specific form of the generating curve, it is the 
ratios which happen to exist between the various factors, the ratio 
for instance between the growth-factor and the rate of angular 
revolution, which give the endless possibilities of permutation of 
form. For example, a certain rate of growth in the generating 
curve, together with a certain rate of vectorial rotation, will give 
us a spiral shell of which each successive whorl will just touch its 
predecessor and no more; with a slower growth-factor the whorls 
will stand asunder, as in a ram’s horn; with a quicker growth-factor

♦ The equation to the surface of a turbinate shell is discussed by Moseley both 
in terms of polar and of rectangular coordinates, and the method of polar co
ordinates is used also by Haton de 1g, Goupilliere; but both accounts are subject 
to mathematical objection. Dr G. T. Bennett, choosing his generating curve 
(as described above) in the axial plane from which the vertical angles are measured 
(the plane B =0), would state his equation in cylindrical coordinates, f (zae, rae)=0: 
that is to say in terms of z, conjointly with ordinary plane cylindrical coordi
nates.
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each will cut or intersect its predecessor, as in an Ammonite or 
the majority of gastropods, and so on.

A similar relation of velocities suffices to determine the apical 
angle of the resulting cone, and give us the difference, for example, 
between the sharp, pointed cone of Turritella, the less, acute one of 
Fusus or Buccinum, and the obtuse one of Harpa or of Dolium. 
In short it is obvious that all the differences of form which we 
observe between one shell and another are referable to matters of 
degree, depending, one and all, upon the relative magnitudes of the 
various factors in the complex equation to the curve. This is an 
immensely important thing. To learn that all the multitudinous 
shapes of shells, in their all but infinite variety, may be reduced to 
the variant properties of a single simple curve, is a great achieve
ment. It exemplifies very beautifully what Bacon meant in saying 
that the forms or differences of things are simple and few, and the 
degrees and coordinations of these make all their variety*.  And 
after such a fashion as this John Goodsir imagined that the naturalist 
of the future would determine and classify his shells, so that 
conchology should presently become, like mineralogy, a mathe
matical science f.

* For a discussion of this idea, and of the views of Bacon and of J. S. Mill, see 
J. M. Keynes, op. cit. p. 271.

f On the employment of mathematical modes of investigation in the determina
tion of organic forms; in Anatomical Memoirs, n, p. 205, 1868 (posthumous 
publication).

t The Rev. Henry Moseley (1801-1872), of St John’s College, Cambridge, 
Canon of Bristol, Professor of Natural Philosophy in King’s College, London, was 
a man of great and versatile ability. He was father of H. N. Moseley, naturalist 
onboard the Challenger and Professor of Zoology in Oxford; and he was grand
father of H. G. J. Moseley (1887-1915)—-Moseley of the Moseley numbers—whose 
death at Gallipoli, long ere his prime, was one of the major tragedies of the Four 
Years War.

The paper in which, more than a hundred years ago, Canon Moseley { 
gave a simple mathematical account, on fines like these, of the 
spiral forms of univalve shells, is one of the classics of Natural 
History. But other students before, and sometimes long before, 
him had begun to recognise the same simplicity of form and 
structure. About the year 1818 Reinecke had declared Nautilus 
to be a well-defined geometrical figure, whose chambers followed
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one another in a constant ratio or continued proportion*; and 
Leopold von Buch and others accepted and even developed the 
idea.

Long before, Swammerdam had grasped with a deeper insight 
the root of the whole matter; for, taking a few diverse examples, 
such as Helix and Spirula, he shewed that they and all other spiral 
shells whatsoever were referable to one common type, namely to 
that of a simple tube, variously curved according to definite mathe
matical laws; that all manner of ornamentation, in the way of 
spines, tuberosities, colour-bands and so forth, might be superposed 
upon them, but the type was one throughout and specific differences 
were of a geometrical kind. “Omnis enim quae inter eas anim
advertitur differentia ex sola nascitur diversitate gyrationum: 
quibus si insuper externa quaedam adjunguntur ornamenta pin
narum, sinuum, anfractuum, planitierum, eminentiarum, profundi
tatum, extensionum, impressionum, circumvolutionum, colorumque: 
... tunc deinceps facile est, quarumcumque Cochlearum figuras 
geometricas, curvosque, obliquos atque rectos angulos, ad unicam 
omnes speciem redigere: ad oblongum videlicet tubulum, qui 
vario modo curvatus, crispatus, extrorsum et introrsum flexus, 
ita concrevit!.”

Nay more, we may go back yet another hundred years and find 
Sir Christopher Wren contemplating the architecture of a snail-shell, 
and finding in it the logarithmic spiral. For Wallis J, after defining 
and describing this curve with great care and simplicity, tells us 
that Wren not only conceived the spiral shell to be a sort of cone 
or pyramid coiled round a vertical axis, but also saw that on the 
magnitude of the angle of the spire depended the specific form of 
the shell: “Hanc ipsam curvam... contemplatus est AArennius 
noster. Nec tantum curvae longitudinem, partiumque ipsius, et

* J. C. M. Reinecke, Maris prologaei Nautilos, etc., Coburg, 1818, p. 17: “In 
eius forma, quae canalis spiram convoluti formam et proportiones simul sub
ministrat, totius testae forma quoddammodo data est. Restaret solum scire, 
quota cujusque anfractus pars sequenti inclusa sit, ut testam geometrice construere 
possimus.” Cf. Leopold von Buch, Ueber die Ammoniten in den alteren Gebirgs- 
schichten, Abh. Berlin. Akad., Phys. KI. 1830, pp. 135-158; Ann. Sc. Nat. xxvin, 
pp. 5-43, 1833; cf. Elie de Beaumont, Sur 1’enroulement des Ammonites, Soc. 
Philom., Pr. verb. 1841, pp. 45-48.

t Biblia Naturae sive Historia Insectorum, Leydae, 1737, p. 152.
t Job. Wallis, Tractatus duo, de Cycloide, etc., Oxon., 1659, pp. 107, 108.

TG F 50



786 THE EQUIANGULAR SPIRAL [ch.

magnitudinem adjacentis plani; sed et, ipsius ope, Limacum et 
Conchiliorum domunculos metitur. Existimat utique, magna veri
similitudine, domunculos hosce non alios esse quam Pyramides 
convolutas: quarum Axis sit, istiusmodo Spiralis: non quidem in 
plano jacens, sed sensim in convolutione (circa erectum axim) 
assurgens: pro variis autem curvae, sive ad rectam circumductam 
sive ad subjacens planum, angulis, variae Conchiliorum formae 
enascantur. Atque hac hypothesi, mensurata Pyramide, metitur 
etiam ea conchiliorum spatia.”

For some years after the appearance of Moseley’s paper, a number 
of writers followed in his footsteps, and attempted in various ways 
to put his conclusions to practical use. For instance, d’Orbigny

devised a very simple protractor, which he called a Helicometer*, 
and which is represented in Fig. 375. By means of this little 
instrument the apical angle of the turbinate shell was immediately 
read off, and could then be used as a specific and diagnostic character. 
By keeping one limb of the protractor parallel to the side of the 
cone while the other was brought into line with the suture between 
two adjacent whorls, another specific angle, the “sutural angle,” 
could in like manner be recorded. And, by the linear scale upon 
the instrument, the relative breadths of the consecutive whorls, 
and that of the terminal chamber to the rest of the shell, might

* Alcide d’Orbigny, Bull, ^e la soc. geol. Fr. xui, p. 200, 1842; Cours diem, 
de Paldontologie, n, p. 5, 1851. A somewhat similar instrument was described by 
Boubee, in Bull. soc. geol. I, p. 232. 1831. Naumann’s conchyliometer (Poggend. 
Ann. Liv, p. 544, 1845) was an application of the screw-micrometer; it was provided 
also with a rotating stage for angular measurement. It was adapted for the 
study of a discoid or ammonitoid shell, while d’Orbigny’s instrument was meant 
for the study of a turbinate shell.



XI] OF THE MOLLUSCAN SHELL 787

also, though somewhat roughly, be determined. For instance, in 
Terebra dimidiata the apical angle was found to be 13°, the sutural 
angle 109°, and so forth.

It was at once obvious that, in such a shell as is represented in 
Figs. 369 and 375 the entire outline (always excepting that of 
the immediate neighbourhood of the mouth) could be restored from 
a broken fragment. For if we draw our tangents to the cone, it 
follows from the symmetry of the figure that we can continue the 
projection of the sutural line, and so mark off the successive whorls, 
by simply drawing a series of consecutive parallels, and by then 
filling into the quadrilaterals so marked off a series of curves similar 
to one another, and to the whorls which are still intact in the broken 
shell. But the use of the helicometer soon shewed that it was 
by no means universally the case that one and the same cone was 
tangent to all the turbinate whorls; in other words, there was not 
always one specific apical angle which held good for the entire 
system. In the great majority of cases, it is true, the same tangent 
touches all the whorls, and is a straight fine. But in others, as in 
the large Cerithium nodosum, such a fine is slightly concave to the 
axis of the shell; and in the short spire of Dolium, for instance, 
the concavity is marked, and the apex of the spire is a distinct 
cusp. On the other hand, in Pupa and Clausilia the common 
tangent is convex to the axis of the shell.

So also is it, as we shall presently see, among the Ammonites: 
where there are some species in which the ratio of whorl to whorl 
remains, to all appearance, perfectly constant; others in which 
it gradually though only slightly increases; and others again in 
which it slightly and gradually falls away. It is obvious that, 
among the manifold possibilities of growth, such conditions as 
these are very easily conceivable. It is much more remarkable 
that, among these shells, the relative velocities of growth in various 
dimensions should be as constant as they are than that there 
should be an occasional departure from perfect regularity. In these 
latter cases the logarithmic law of growth is only approximately 
true. The shell is no longer to be represented simply as a cone which 

■ has been rolled up, but as a cone which (while rolling up) had grown 
trumpet-shaped, or conversely whose mouth had narrowed in, and 
which in longitudinal section is a curvilinear instead of a rectilinear

50-2
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triangle. But . all that has happened is that a new factor, usually 
of small or all but imperceptible magnitude, has been introduced 
into the case; so that the ratio, logr= 01oga, is no longer con
stant but varies slightly, and in accordance with some simple law.

Some writers, such as Naumann* and Grabau, maintained that 
the molluscan spiral was no true logarithmic spiral, but differed 
from it specifically, and they gave it the name of Conchospiral. 
They said that the logarithmic spiral originates in a mathematical 
point, while the molluscan shell starts with a little embryonic shell, 
or central chamber (the “protoconch” of the conchologists), around 
which the spiral is subsequently wrapped. But this need not affect 
the logarithmic law of the shell as a whole; indeed we have already 
allowed for it by writing our equation in the form r = ma?. And 
Grabauf, while he clung to Naumann’s conchospiral against 
Moseley’s logarithmic spiral, confessed that they were so much alike 
that ordinary measurements would seldom shew a difference between 
them.

Fig. 376.

nitude of the space a are determined by the “angle of retardation,” or ratio 
of rate of growth between the inner and outer curves of the spiral shell. They

many cases what is described as the “protoconch” 
is merely an empty space in the middle of the spiral 

j coil, resulting from the fact that the actual spiral 
I shell must have some magnitude to begin with, and 
' that we cannot follow it down to its vanishing point 
' in infinity. For instance, in the accompanying 

figure, the large space a is styled the protoconch, 
but it is the little bulbous or hemispherical chamber 
within it, at the end of the spire, which is the real 
beginning of the tubular shell. The form and mag-

There would seem, by the way, to be considerable confusion in the books 
with regard to the so-called “protoconch.” In many cases it is a definite 

structure, of simple form, representing the more or 
less globular embryonic shell before it began to 
elongate into its conical or spiral form. But in

* C. F. Naumann, Beitrag zur Konchyliometrie, Poggend. Ann. L, p. 223, 1840; 
Ueber die Spiralen der Ammoniten, ibid, li, p. 245,1840; ibid, liv, p. 541, 1845; etc. 
(See also p. 755.) Cf. also Lehmann, Die von Seyfriedsche Konckyliensammlung 
und das Windungsgesetz von einigen Planorben, Constanz, 1855.

t A. H.. Grabau, Ueber die Naumannoche Conchospirale, und ihre Bedeutung 
fur die Conchyliometrie, Inauguraldiss., Leipzig, 1872; Ueber die Spiralen der 
Conchylien, etc., Leipzig Progr. No. 502, 1880; cf. Sb. naturf. Gesellsch. Leipzig, 
1881, pp. 23-32.
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are independent of the shape and size of the embryo, and depend only (as we 
shall see better presently) on the direction and relative rate of growth of the 
double contour of the shell*.

* J. F. Blake (cf. infra, p. 793) says of Naumann’s formula: “By such a 
modification he hoped to bring the measurements of actual shells more into 
harmony with calculation. The errors of observation, however, are always greater 
than this change would correct—if founded on fact, which is doubtful; and all 
practical advantage is lost by the complication of the equations.”

Fig. 377.

Now that we have dealt, in a general way, with some of the more 
obvious properties of the equiangular or logarithmic spiral, let us 
consider certain of them a little more particularly, keeping in view 
as our chief object of study the range of variation of the molluscan 
shell.

There is yet another equation to the logarithmic 
spiral, very commonly employed, and without the 
help of which we cannot get far. It is as follows: 
q*  — cot CL

This follows directly from the fact that the angle 
a (the angle between the radius vector and the 
tangent to the curve) is constant.

For then,

tan a (= tan ^>) = rdO’dr;

therefore dr/r = dd cot a, 

and, integrating, log r = 6 cot a, 
0 p cot CL

It is easy to see (we might indeed have noted it before) that the 
logarithmic spiral is but a plotting in polar coordinates of increase 
by compound interest. For if A be the “amount” of £1 in one year 
(A = 1 + a, where a is the rate of interest), and PA the amount 
of P in one year, then the whole amount, M, in t years is M = PA1: 
this, provided that interest is payable once a year. But, as we are 
taught by algebra, and as we have seen in our study of growth, 
this formula becomes Pea< when the intervals of time between the 
payments of interest decrease without limit, that is to say, when we 
may consider growth to be continuous. And this formula Peat is 
precisely that of our logarithmic spiral, when we represent the time 
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by a vector angle 0, and when for a, the particular rate of interest 
in the case, we write cot a, the constant measure of growth of the 
particular spiral.

As we have seen throughout our preliminary discussion, the two 
most important constants (or “specific characters,” as the naturalist 
would say) in an equiangular or logarithmic spiral are (1) the magni
tude of the angle of the spiral, or “constant angle” a, and (2) the 
rate of increase of the radius vector for any given angle of revolution, 0. 
But our two magnitudes, that of the constant angle and that of the 
ratio of the radii or breadths of whorl, are directly related to one 
another, so that we may determine either of them by measurement 
and calculate the other.

In any complete spiral, such as that of Nautilus, it is (as we 
have seen) easy to measure any two radii (r), or the breadths in 
a radial direction of any two whorls (IE). Me have then merely 
to apply the formula

r W'«Hl _ e6cota or ”+1 = ^cota
Tn ’ Wn

which we may simply write r = e0cota, etc., when one radius or whorl 
is regarded, for the purpose of comparison, as equal to unity.

Thus, in Fig. 378, OC/OE, or EF[BD, or DCjEF, being in 
each case radii, or diameters, at right angles to one another, are 

all equal to e2cota_ While in like manner, EO (OF, EGjFH, or 
GOjHO, all equal e7700**; and BCfBA, or CO^OB = e277 COta.
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As soon, then, as we have prepared tables for these values, the 
determination of the constant angle a in a particular shell becomes 
a very simple matter.

A complete table would be cumbrous, and it will be sufficient 
to deal with the simple case of the ratio between the breadths of 
adjacent, or immediately succeeding, whorls.

Here we have r = e2?rCOta, or log r = log e x 2-n- x cot a, from 
which we obtain the following figures*:

The shape of a nautiloid spiral
Ratio of breadth of each
'horl to the next preceding Constant angle

RI (X
11 89° 8'
1-25 87 58
1-5 86 18
20 83 42
2-5 81 42
30 80
3 5 78 43
4-0 77 34
4-5 76 32
5-0 75 38

1U0 69 53
20-0 64 31
50-0 58 5

100-0 53 46
1000-0 42 17

10.000 34 19
100.000 28 37

1.000,000 24 28
10.000.000 21 18

100,M|0"00 18 50
1,000,000,000 16 52

We learn several interesting things from this short table. We 
see, in the first place, that where each whorl is about three times 
the breadth of its neighbour and predecessor, as is the case in 
Nautilus, the constant angle is in the neighbourhood of 80°; and 
hence also that, in all the ordinary ammonitoid shells, and in all 
the typically spiral shells of the gastropods f, the constant angle 
is also a large one, being very seldom less than 80°, and usually 
between 80° and 85°. In the next place, we see that with smaller

* It is obvious that the ratios of opposite whorls, or of radii 180 apart, are 
represented by the square roots of these values; and the ratios of whorls or radii 
90° apart, by the square roots of these again.

f For the correction to be applied in the case of the helicoid, or “turbinate” 
shells, see p. 816. 
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angles the apparent form of the spiral is greatly altered, and the 
very fact of its being a spiral soon ceases to be apparent (Figs. 379, 
380). Suppose one whorl to be an inch in breadth, then, if the 
angle of the spiral were 80°, the next whorl would (as we have just 
seen) be about three inches broad; if it were 70°, the next whorl 
would be nearly ten inches, and if it were 60r, the next whorl would 
be nearly four feet broad. If the angle were 28°, the next whorl 
would be a mile and a half in breadth; and if it were 17°, the next 
would be some 15,000 miles broad.

In other words, the spiral shells of gentle curvature, or of small 
constant angle, such as Dentalium or Cristellaria, are true equi
angular spirals, just as are those of Nautilus or Rotalia', from

Fig. 379. Fig. 380.

which they differ only in degree, in the magnitude of an angular 
constant. But this diminished magnitude of the angle causes the 
spiral to dilate with such immense rapidity that, so to speak, 
it never comes round; and so, in such a shell as Dentalium, we 
never see but a small portion of a single whorl.

We might perhaps be inclined to suppose that, in such a shell as Dentalium, 
the lack of a visible spiral convolution was only due to our seeing but a small 
portion of the curve, at a distance from the pole, and when, therefore, its 
curvature had already greatly diminished. That is to say we might suppose 
that, however small the angle a, and however rapidly the whorls accordingly 
increased, there would nevertheless be a manifest spiral convolution in the 
immediate neighbourhood of the pole, as the starting point of the curve. 
But it is easy to see that it is not so. It is not that there cease to be con
volutions of the spiral round the pole v hen a is a small angle; on the contrary, 
there are infinitely many, mathematically speaking. But as a diminishes, 
and cot a increases towards infinity, the ratio between the breadth of one 
whorl and the next increases very rapidly. Our table shews us that even 
when a is no less than 40\ and our shell still looks strongly curved, one whorl 
is a thousandth part of the breadth of the next, and a thousandfold that 
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of the one before; we cannot expect to see either of them under the materialised 
conditions of the actual shell. Our shells of small constant angle and gentle 
curvature, such as Dentalium, are accordingly as much as we can ever expect 
to see of their respective spirals.

The spiral whose constant angle is 45° is both a simple case and 
a mathematical curiosity; for, since the tangent of 45° is unity, 
we need merely write r — ee; which is as much as to say that the 
natural logarithms of the radii give us, without more ado, the 
vector angles. In this spiral the ratio between the breadths of 
two consecutive whorls becomes r = e2n = e2x3-i4i6 Reducing this 
from Naperian to common logs, we have log r = 2-729; which tells 
us (by our tables) that the radius vector is multiplied about 535| 
times after a whole polar revolution; it is doubled after turning 
through a polar angle of less than 40°. Spirals of so low an angle 
as 45J are common enough in tooth and claw, but rare among 
molluscan shells; but one or two of the more strongly curved 
Dentaliums, like D. elephantinum, come near the mark. It is not 
easy to determine the pole, nor to measure the constant angle, in 
forms like these.

Let us return to the problem of how to ascertain, by direct 
measurement, the spiral angle of any particular shell. The method 
already employed is only applicable to complete spirals, that is to 
say to those in which the angle of the spiral is large, and further
more it is inapplicable to portions, or broken fragments, of a shell. 
In the case of the broken fragment, it is plain that the determination 
of the angle is not merely of theoretic interest, but may be of great 
practical use to the conchologist as the one and only way by which 
he may restore the outline of the missing portions. We have a con
siderable choice of methods, which have been summarised by, and 
are partly due to, a very careful student of the Cephalopoda, the 
late Rev. J. F. Blake*.

(1) When an equiangular spiral rolls on a straight line, the pole 
traces another straight line at an angle to the first equal to the 
complement of the constant angle of the spiral; for the contact 
point is the instantaneous centre of the rotational movement, and 
the line joining it to the pole of the spiral is normal to the roulette 
path of that point. But the difficulty of determining the pole

* On the measurement of the curves formed by Cephalopods and other Mollusks, 
Phil. Mag. (5), vi, pp. 241-263, 1878.
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(which is indeed asymptotic) makes this of little use as a method of 
determining the constant angle. It is. however, a beautiful property 
of the curve, and all the more interesting that Clerk Maxwell dis
covered it when he was a boy*.

* Clerk Maxwell, On the theory of rolling curves, Trans. R.S.E. xvi, pp. 519- 
540, 1849; Sci. Papers, I, pp. 4-29.

(2) The following method is useful and easy when we have a 
portion of a single whorl, such as to shew both its inner and its 
outer edge. A broken whorl of an Ammonite, a curved shell such 
as Dentalium, or a horn of similar form to the latter, will fall under 

Fig. 381.

this head. AV e have merely to draw a tangent, 
GEH, to the outer whorl at any point E; then 
draw to the inner whorl a tangent parallel to GEH, 
touching the curve in some point F. The straight 
line joining the points of contact, EF, must 
evidently pass through the pole: and, accordingly, 
the angle GEF is the angle required. In shells 
which bear longitudinal striae or other ornaments, 
any pair of these will suffice for our purpose, 
instead of the actual boundaries of the whorl. 
But it is obvious that this method will be apt to 
fail us when the angle a is very small; and 
when, consequently, the points E and F are very 
remote.

(3) In shells (or horns) shewing rings or other transverse 
ornamentation, we may take it that these ornaments are set at

Fig. 382. An Ammonite, to 
shew corrugated surface- 
pattern.
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a constant angle to the spire, and therefore to the radii. The angle 
(0) between two of them, as AC, BD, is therefore equal to the 
angle 0 between the polar radii from A and B, or from C and D\ 
and therefore BD[AC = e0001», which gives us the angle a in terms 
of known quantities.

(4) If only the outer edge be available, we have the ordinary 
geometrical problem —given an arc of an equiangular spiral, to find 
its pole and spiral angle. The methods we may employ depend 
(i) on determining directly the position of the pole, and (ii) on 
determining the radius of curvature.

The first method is theoretically simple, but difficult in practice; 
for it requires great accuracy in determining the points. Let AD,
DB be two tangents drawn to the 
curve. Then a circle drawn through 
the points A, B, D will pass through 
the pole 0, since the angles OA D, 
OBE (the supplement of OBD) are 
equal. The point 0 may be deter
mined by the intersection of two 
such circles; and the angle DBO is 
then the angle, a, required.

Or we may determine graphically, 
at two points, the radii of curvature

Fig. 384.

pYp2. Then, if s be the length of the arc between them (which may 
be determined with fair accuracy by rolling the margin of the shell
along a ruler),

cot a = (pi — p2)/s.
The following method*, given by Blake, will save actual determination of 

the radii of curvature.
Measure along a tangent to the curve the distance, AC, at which a certain 

small offset, CD, is made by the curve; and from another point B, measure 
the distance at which the curve makes an equal offset. Then, calling the 
offset p; the arc AB, s; and AC, BE, respectively x2, we have

X fl"
p1= 1 ■ , approximately,

and
‘V 2_ 2^2 Ji cot a = —„ .
2ps

Of all these methods by which the mathematical constants, or 
specific characters, of a given spiral shell may be determined, the 

* For an example of this method, see Blake, loc. cit. p. 251.
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only one of which much use has been made is that which Moseley 
first employed, namely, the simple method of determining the 
relative breadths of the whorl at distances separated by some 
convenient vectorial angle such as 90°, 180°, or 360°.

Very elaborate measurements of a number of Ammonites have 
been made by Naumann*,  by Grabau, by Sandbergerf, and by 
Muller, among which we may choose a couple of cases for considera
tion]:. In the following table I have taken a portion of Grabau’s

* C. F. Naumann, Ueber die Spiralen von Conchylien, Abh. k. sacks. Ges. 1846, 
pp. 153-196; Ueber die cyclocentrische Conchospirale u. uber das Windungsgesetz 
von Planorbis corneus, ibid. I, pp. 171-195, 1849; Spirale von Nautilus u. Ammonites 
galeatus, Ber. k. sachs. Ges. n, p. 26, 1848; Spirale von Amm. Ramsaueri, ibid, xvi, 
p. 21, 1864. Oken, reviewing Naumann’s work (in Isis, 1847, p. 867) foretold how 
some day the naturalist and the mathematician would each learn of the other: 
“Um die Sache zu Vollendung zu bringen wird der Mathematiker Zoolog und 
Physiolog, und diese Mathematiker werden mussen.”

f G. Sandberger, Clymenia subnautilina, Jahresber. d. Ver.f. Naturk. im Herzogth. 
Nassau, 1855, p. 127; Spiralen des Ammonites Amaltheus, A. Gaytani und Goniatites 
intumescens, Ztschr. d. d. Geolog. Gesellsch. x, pp. 446—449, 1858. Also Muller, 
Beitrag zur Konchyliometrie, Poggend. Ann. lxxxvi, p. 533, 1850; ibid, xc, p. 323, 
1853. These two authors upheld the logarithmic law against Naumann and Grabau.

J See also Chr. Petersen, Das Quotientengesetz, eine biologisch-statistische Unter- 
suchung, 119 pp., Copenhagen, 1921; E. Spom, Ueber die Gesetzmassigkeit im 
Baue der Muschelgehaiiser, Arch. f. Entw. Meeh, cvm, pp. 228-242, 1926.

Ammonites intuslabiatus
Ratio of breadth of

Breadth of whorls successive whorls The angle (a)
(180° apart) (360° apart) as calculated

0-30 mm. — — —
0-30 1-333 87° 23'
0-40 1-500 86 19
0-45 1-500 86 19
0-60 1-444 86 39
0-65 1-417 86 49
0-85 1-692 85 13
110 1-588 85 47
1-35 1-545 86 2
1-70 1-630 85 33
2-20 1-441 86 40
2-45 1-432 86 43
315 1-735 85 0
4-25 1-683 85 16
5-30 1-482 86 9^
6-30 1-519 86 12
8-05 1-635 85 32

10-30 1-416 86 50
11-40 1-252 87 57
12-90 — — —

Mean 86° 15'
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determinations of the breadth of the whorls in Ammonites (Arcestes) 
intuslabiatus; these measurements Grabau gives for every 45° of 
arc, but I have only set forth successive whorls measured along 
one diameter on both sides of the pole. The ratio between alternate 
measurements is therefore the same ratio as Moseley adopted, 
namely the ratio of breadth between contiguous whorls along a 
radius vector. I have then added to these observed values the 
corresponding calculated values of the angle a, as obtained from 
our usual formula.

There is considerable irregularity in the ratios derived from these 
measurements, but it will be seen that this irregularity only implies 
a variation of the angle of the spiral between about 85° and 87°; 
and the values fluctuate pretty regularly about the mean, which 
is 86° 15'. Considering the difficulty of measuring the whorls, 
especially towards the centre, and in particular the difficulty of 
determining with precise accuracy the position of the pole, it is 
clear that in such a case as this we are not justified in asserting that 
the law of the equiangular spiral is departed from.

Ammonites tornatus
Ratio of breadth of The spiral

Breadth of whorls successive whorls angle (a) as
(180° apart) (360J apart) calculated

0-25 mm. — --- _
0-30 - 1-400 86° 56'
0-35 1-667 85 21
0-50 2-000 83 42
0-70 2-000 83 42
1-00 2-000 83 42
1-40 2-100 83 16
2-10 2-179 82 56
305 2-238 82 42
4-70 2-492 81 44
7-60 2-574 81 27

1210 2-546 81 33
19-35

Mean 2-11 83° 22'

In some cases, however, it is undoubtedly departed from. Here 
for instance is another table from Grabau, shewing the corre
sponding ratios in an Ammonite of the group of Arcestes tornatus. 
In this case we see a distinct tendency of the ratios to increase as 
we pass from the centre of the coil outwards, and consequently for 
the values of the angle a to diminish. The case is comparable to 
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that of a cone with slightly curving sides: in which, that is to say, 
there is a slight acceleration of growth in a transverse as compared 
with the longitudinal direction.

In a tubular spiral, whether plane or helicoid, the consecutive 
whorls may either be (1) isolated and remote from one another; 
or (2) they may precisely meet, so that the outer border of one 
and the inner border of the next just coincide; or (3) they may 
overlap, the vector plane of each outer whorl cutting that of its 
immediate predecessor or predecessors.

Looking, as we have done, upon the spiral shell as being essentially 
a cone rolled up*, it is plain that, for a given spiral angle, intersection 
or non-intersection of the successive whorls will depend upon the 
apical angle of the original cone. For the wider the cone, the more 
will its inner border tend to encroach on the preceding whorl. But 
it is also plain that the greater the apical angle of the cone, and the 
broader, consequently, the cone itself, the greater difference will 
there be between the total lengths of its inner and outer borders. 
And, since the inner and outer borders are describing precisely 
the same spiral about the pole, we may consider the inner border 
as being retarded in growth as compared with the outer, and as 
being always identical with a smaller and earlier part of the latter.

If A be the ratio of growth between the outer and the inner curve, 
then, the outer curve being represented by

r = ae6c(Aa, ■

the equation to the inner one will be

r' = a\ee^a,

or r' = ae^_^cota,

* To speak of a cone “rolling up,” and becoming a nautiloid spiral by doing so, 
is a rough and non-mathematical description; nor is it easy to see how a cone of 
wide angle could roll up. and yet remain a cone. But if (i) the centre of a sphere 
move along a straight line and its radius keep proportional to the distance the 
centre has moved, the sphere generates as its envelope a circular cone of which 
the straight line is the axis; and so, similarly, if (ii) the centre of a sphere move 
along an equiangular spiral and its radius keep proportional to the arc-distance 
along the spiral back to the pole, the sphere generates as its envelope a Self-similar 
shell-surface, or nautiloid spiral.
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and y may then be called the angle of retardation, to which the 
inner curve is subject by virtue of its slower rate of growth.

Dispensing with mathematical formulae, the several conditions 
may be illustrated as follows:

In the diagrams (Fig. 385), OP^^P^, etc. represents a radius, 
on which P1} P2, P3 are the points attained by the outer border 
of the tubular shell after as many entire consecutive revolutions. 
And Pf, P2, P3 are the points similarly intersected by the inner 
border; OP/OP' being always = A, which is the ratio of growth, 
or “ cutting-down factor.” Then, obviously, (1) when 0Px is less than

Fig. 385.

0P2 the whorls will be separated by an interspace (a); (2) when 
OPy — 0P2 they will be in contact (b), and (3) when 0Px is greater 
than 0P2 there will be a greater or less extent of overlapping, 
that is to say of concealment of the surfaces of the earlier by the 
later whorls (c). And as a further case (4), it is plain that if A be 
very large, that is to say if OPy be greater, not only than 0P2 
but also than OPf, OPf, etc., we shall have complete, or all but 
complete, concealment by the last formed whorl of the whole of 
its predecessors. This latter condition is completely attained in 
Nautilus pompilius, and approached, though not quite attained, in 
N. umbilicatus; and the difference between these two forms, or 
“species,” is constituted accordingly by a difference in the value 
of A. (5) There is also a final case, not easily distinguishable
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externally from (4), where P' lies on the opposite side of the radius 
vector to P, and is therefore imaginary. This final condition is 
exhibited in A /gonauta.

The limiting values of A are easily 
ascertained.

In Fig. 386 we have portions of 
two successive whorls, whose corre
sponding points on the same radius 
vector (as R and Rj are, therefore, 
at a distance apart corresponding to 

2tf. Let r and r' refer to the inner, and R, R' to the outer sides of 
the two whorls. Then, if we consider

R =

it follows that R' = ae(0+277)cotaj

f r = Aaeecota =

and y' = ^ag(6+277)cota _ y)cota

Now in the three cases (a, b, c) represented in Fig. 385, it is 
plain that r' = R, respectively. That is to say,

Aae^+2^cota = ttg0cota

and cot a J

The case in which Ae27rcota = 1, or — log A = cot a log e, is 
the case represented in Fig. 385, b: that is to say, the particular 
case, for each value of a, where the consecutive whorls just touch, 
without interspace or overlap. For such cases, then, we may 
tabulate the values of A as follows:

We see, accordingly, that in plane spirals whose constant angle 
Ues, say, between 65° and 70°, we can only obtain contact between

Constant angle a Ratio (A) of rate of growth of inner border of tube.
of spiral as compared with that of the outer border

89° 0-896
88 0-803
87 0-720
86 0-645
85 0-577
80 0-330
75 0-234
70 0-1016
65 0-0534
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consecutive whorls if the rate of growth of the inner border of the 
tube be a small fraction—a tenth or a twentieth—of that of the 
outer border. In spirals whose con
stant angle is 80°, contact is attained 
when the respective rates of growth 
are, approximately, as 3 to 1; while 
in spirals of constant angle from about 
85° to 89°,contact is attained when the 
rates of growth are in the ratio of from 
about f to /g.

If on the other hand we have, for 
any given value of a, a value of A 
greater or less than the value given 
in the above table, tlien we have, 
respectively, the conditions of separa
tion or of overlap which are exemplified 
in Fig. 385, a and c. And, just as we
have constructed this table for the Flg* 387,

* It has been pointed out to me that it does not follow at once and obviously 
that, because the interspace AB is a mean proportional between the breadths of 
the adjacent whorls, therefore the whole distance OB is a mean proportional 
between OA and OC. This is a corollary which requires to be proved; but the 
proof is easy.

TG F

particular case of simple contact, so we could construct similar tables 
for various degrees of separation or of overlap.

For instance, a case which admits of simple solution is that in 
which the interspace between the whorls is everywhere a mean pro 
portional between the breadths of the whorls themselves (Fig. 387). 
In this case, let us call OA = R, 0C = R1, and 0B = r. We then 
have

Rr =< OA = ae(0cota).

R2 = OC = aeW+Weota,

R1R2 = ae2^0^ cot a — r2*.

And r2 = (1/A)2 . e20004*

whence, equating, 1/A = e^cota

5i



802 THE EQUIANGULAR SPIRAL [ch.

The corresponding values of A are as follows:

Ratio (A) of rates of growth of outer and inner 
border, such as to produce a spiral with interspaces 

between the whorls, the breadth of which 
interspaces is a mean proportional between the

Constant angle (a) breadths of the whorls themselves
90° 1-00 (imaginary)
89 0-95
88 0-89
87 0-85
86 0-81
85 0-76
80 0-57
75 0-43
70 0-32
65 0-23
60 0-18
55 013
50 0090
45 0-063
40 (/042
35 0-026
30 0-016

As regards the angle of retardation, y, in the formula
cot cl or — ^0 y) cot cl 

and in the case
r' — e^7r-y)co\.a.^ or _ }Og _ ^77 — y) cot a,

it is evident that when y = 2?7, that will mean that A = 1. In 
other words, the outer and inner borders of the tube are identical, 
and the tube is constituted by one continuous line.

When A is a very small fraction, that is to say when the rates 
of growth of the two borders of the tube are very diverse, then 
y will tend towards infinity -tend that is to say towards a condition 
in which the inner border of the tube never grows at all. This 
condition is not infrequently approached in nature. I take it that 
Cypraea is such a case. But the nearly parallel-sided cone of 
Dentalium, or the widely separated whorls of Lituites, are cases 
where A nearly approaches unity in the one case, and is still large 
in the other, y being correspondingly small; while we can easily find 
cases where y is very large, and A is a small fraction, for instance 
in Haliotis, in Calyptraea, or in Gryphaea.

For the purposes of the morphologist, then, the main result of 
this last general investigation is to shew that all the various types 
of “open” and “closed” spirals, all the various degrees of separation
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or overlap of the successive whorls, are simply the outward ex
pression of a varying ratio in the mte of growth of the outer as 
compared with the inner border of the tubular shell.

The foregoing problem of contact, or intersection, of successive 
whorls is a very simple one in the case of the discoid shell but 
a more complex one in the turbinate. For in the discoid shell 
contact will evidently take place when the retardation of the inner 
as compared with the outer whorl is just 360°, and the shape of 
the whorls need not be considered.

As the angle of retardation diminishes from 360°, the whorls stand 
further and further apart in an open coil; as it increases beyond 360°, 
they overlap more and more; and when the angle of retardation is 
infinite, that is to say when the true inner edge of the whorl does 
not grow at all, then the shell is said to be completely involute. Of 
this latter condition we have a striking example in Argonauta, and 
one a little more obscure in Nautilus pompilius.

In the turbinate shell the problem of contact is twofold, for we 
have to deal with the possibilities of contact on the same side of 
the axis (which is what we have dealt with in the discoid) and also 
with the new possibility of contact or intersection on the apposite 
side; it is this latter case which will determine the presence or 
absence of an open umbilicus. It is further obvious that, in the 
case of the turbinate, the question of contact or no contact will 
depend on the shape of the generating curve; and if we take the 
simple case where this generating curve may be considered as an 
ellipse, then contact will be found to depend on the angle which 
the major axis of this ellipse makes with the axis of the shell. The 
question becomes a complicated one, and the student will find it 
treated in Blake’s paper already referred to.

When one whorl overlaps another, so that the generating curve 
cuts its predecessor (at a distance of 2tt) on the same radius vector, 
the locus of intersection will follow a spiral line upon the shell 
which is called the “suture” by conchologists. It is one of that 
ensemble of spiral lines in space of which, as we have seen, the 
whole shell may be conceived to be constituted; and we might call 
it a “contact-spiral,” or “spiral of intersection.” In discoid shells, 
such as an Ammonite or a Plan J,Lis, or in Nautilus umbilicatus, 
there are obviously two such contact-spirals, one on each side of

51-2
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the shell, that is to say one on each side of a plane perpendicular 
to the axis. In turbinate shells such a condition is also possible, 
but is somewhat rare. We have it for instance in Solarium per- 
spectivum, where the one contact-spiral is visible on the exterior of

Fig. 388. Solarium perspectivum.

the shell, and the other lies internally, winding round the open 
cone of the umbilicus*; but this second contact-spiral is usually 
imaginary, or concealed within the whorls of the turbinated shell.

Fig. 389. Haliotis tuberculata L.; the ormer, 
or ear shell.’

Fig. 390. Scalaria 
pretiosa L.; the 
wentletfap. From 
Cooke’s Spirals.

Aga.n in Haliotis, one of the contact-spirals is non-existent, because 
of the extreme obliquity of the plane of the generating curve. In 

* A beautiful construction: stupendum Naturae artificium, Linnaeus.



XI] OF SHELLS GENERALLY 805

Scalaria pretiosa and in Spirula* there is no contact-spiral, because 
the growth of the generating curve has been too slow in comparison 
with the vector rotation of its plane. In Argonauta and in Cypraea 
there is no contact-spiral, because the growth of the generating 
curve has been too quick. Nor, of course, is there any contact
spiral in Patella or in Dentalium, because the angle a is too small

Fig. 392. Turbindla napus 
Lam.; an Indian chank- 
shell. From Chenu.

Fig. 391. Thatcheria mirabilis Angas;
from a radiograph by Dr A. Muller.

ever to give us a colhplete revolution of the spire. Thatcheria 
mirabilis is a peculiar and beautiful shell, in which the outline of 
the lip is sharply triangular, instead of being a smooth curve: with 
the result that the apex of the triangle forms a conspicuous “gene
rating spiral”, which winds round the shell and is more conspicuous 
than the suture itself.

In the great majority of helicoid or turbinate shells the innermost

* “It [Spirula] is curved so as its roundness is kept, and the Parts do not touch 
one another”: R. Hooke, Posthumous Works, 1745, p. 284. 
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or axial portions of the whorls tend to form a solid axis or 
“columella”; and to this is attached the columellar muscle which 
on the one hand withdraws the animal within its shell, and on the 
other hand provides the controlling force or trammel, by which (in 
the gastropod) the growing shell is kept in its spiral course. This 
muscle is apt to leave a winding groove upon the columella (Fig. 373); 
now and then the muscle is spht into strands or bundles, and then 
it leaves parallel grooves with ridges or pleats between, and the 
number of these folds or pleats may vary with the species, as in the 
Volutes, or even with race or locality. Thus, among the curiosities 
of conchology, the chank-shells on the Trincomali coast have four 
columellar folds or ridges; but all those from Tranquebar, just north 
of Adam’s Bridge, have only three (Fig. 392)*.

* Cf. R. Winckworth, Proc. Malacol. Soc. xxni, p. 345, 1939.
f English edition, 1900, p. 537. The chapter is revised by Professor Alpheus 

Hyatt, to whom the nomenclature is largely due. For a more copious terminology, 
see Hyatt, Phylogeny of an Acquired Characteristic, 1894, p. 422 seq. Cf. also 
L. F. Spath, The evolution of the Cephalopoda, Biol. Reviews, vin, pp. 418-462, 
1933.

J Th is latter conclusion is adopted by Willey, Zoological Results, 1902, p. 747. 
Cf. also Graham Kerr, on Spirula:. Dana Reports, No. 8, Copenhagen, 1931.

The various forms of straight or spiral shells among the Cephalo
pods, which we have seen to be capable of complete definition by 
the help of elementary mathematics, have received a very com
plicated descriptive nomenclature from the palaeontologists. For 
instance, the straight cones are spoken of as orthoceracones or 
hactriticones, the loosely coiled forms .as gyroceracones or mimo- 
ceracones, the more closely coiled shells, in which one whorl overlaps 
the other, as nautilicones or ammoniticones, and so forth. In such 
a series of forms the palaeontologist sees undoubted and unquestioned 
evidence of ancestral descent. For instance we read in Zittel’s 
Palaeontology^: “ The bactriticone obviously represents the primitive 
or primary radical of the Ammonoidea, and the mimoceracone the 
next or secondary radical of this order”; while precisely the opposite 
conclusion was drawn by Owen, who supposed that the straight 
chambered shells of such fossil Cephalopod^ as Orthoceras had been 
produced by the gradual unwinding of a coiled nautiloid shell J. 
The mathematical study of the forms of shells lends no support to these 
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or any suchlike phylogenetic hypotheses*.  If we have two shells 
in which the constant angle of the spire be respectively 80° and 
60°, that fact in itself does not at all justify an assertion that the 
one is more primitive, more ancient, or more “ancestral” than the 
other. Nor, if we find a third in which the angle happens to be 
70°, does that fact entitle us to say that this shell is intermediate 
between the other two, in time, or in blood relationship, or in 
any other sense- whatsoever save only the strictly formal and 
mathematical one. For it is evident that, though these particular 
arithmetical constants manifest themselves in visible and recog
nisable differences of form, yet they are not necessarily more 
deep-seated or significant than are those which manifest themselves 
only in difference of magnitude; and the student of phylogeny 
scarcely ventures to draw conclusions as to the relative antiquity 
of two allied organisms on the ground that one happens to be 
bigger or less, or longer or shorter, than the other.

* Phylogenetic speculation, fifty years ago the chief preoccupation of the 
biologist, has had its caustic critics. Cf. (int. al.) Rhumbler, in Arch. f. Entw. 
Meeh, vii, p. 104, 1898: “ Phylogenetische Speculationen... werden immer auf 
Anklang bei den Fachgenossen rechnen diirfen, sofern nicht ein anderer Fachgenosse 
auf demselben Gebiet mit gleicher Kenntniss der Dinge und mit gleicher Scharfsinn 
zufallig zu einer anderen Theorie gekommen ist... .Die Richtigkeit ‘guter’ phylo- 
genetischer Schliisse lasst sich im schlimmsten Faile anzweifeln, aber direkt 
widerlegen lasst sich in der Regel nicht.”

v At the same time, while it is obviously unsafe to rest conclusions 
upon such features as these, unless they be strongly supported 
and corroborated in other ways—for the simple reason that there 
is unlimited room for coincidence, or separate and independent 
attainment of this or that magnitude or numerical ratio—yet on 
the other hand it is certain that, in particular cases, the evolution 
of a race has actually involved gradual increase or decrease in 
some one or more numerical factors, magnitude itself included— 
that is to say increase or decrease in some one or more of the 
actual and relative velocities of growth. When we do meet with 
a clear and unmistakable series of such progressive magnitudes or 
ratios, manifesting themselves in a progressive series of “allied” 
forms, then we have the phenomenon of “orthogenesis.” For 
orthogenesis is simply that phenomenon of continuous lines or 
series of form (and also of functional or physiological capacity), 
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which was the foundation of the Theory of Evolution, alike to 
Lamarck and to Darwin and Wallace; and which we see to exist 
whatever be our ideas of the “origin of species,” or of the nature 
and origin of “functional adaptations.” And to my mind, the 
mathematical (as distinguished from the purely physical) study of 
morphology bids fair to help us to recognise this phenomenon of 
orthogenesis in many cases where it is not at once patent to the 
eye; and, on the other hand, to warn us in many other cases that 
even strong and apparently complex resemblances in form may be 
capable of arising independently, and may sometimes signify no 
more than the equally accidental numerical coincidences which are 
manifested in identity of length or weight or any other simple 
magnitudes.

I have already referred to the fact that, while in general a very 
great and remarkable regularity of form is characteristic of the 
molluscan shell, yet that complete regularity is apt to be departed 
from. We have clear cases of such a departure in Pupa, Clausilia 
and various Bulimi, where the spire is not conical, but its sides are 
curved and narrow in.

The following measurements of three specimens of Clausilia shew 
a gradual change in the ratio to one another of successive whorls, or 
in other words a marked departure from the logarithmic law:

Clausilia lamellosa. (From Chr. Petersen*.)

* From Chr. Petersen, Das Quotientengesetz, p. 36. After making a careful 
statistical study of 1000 Clausilias, Peterson found the following mean ratios of the 
successive whorls, a/b, b,'c, etc.: 1-37, 1-33, 1-27, 1-24, 1-22, 1-19.

Width of successive 
whorls (mm.)

Ratios, or “quotients” 
successive whorls

’ of

r A r
I II III I II III Mean

a 2-42 2-51 2-49 a[b 1-43 1-45 1-42 ] 44
b 1-69 1-72 1-75 * bfc 1-36 1-33 1-31 1-33
c 1-24 1-30 1-33 c/d 1-21 1-29 1-23 1-24
d 102 1-00 1-08 d/e 1-22 1-20 1-26 1-23
e 0-83 0-83 0-86

In many ammonites, where the helicoid factor does not enter into 
the case, we have a clear illustration of how gradual and marked 
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changes in the spiral angle may be detected even in ammonites which 
present nothing abnormal to the eye. But let us suppose that the 
spiral angle increases somewhat rapidly; we shall then get a spiral 
with gradually narrowing whorls, which condition is characteristic of 
Oekotraustes, a subgenus of Ammonites. If on the other hand, the 
angle a gradually diminishes, and even falls away to zero, we shall 
have the spiral curve opening out, as it does in Scaphites, Ancyloceras

Fig. 393. An ammonitoid shell (Macroscaphites) to shew change of 
curvature.

and Lituites. until the spiral coil is replaced by a spiral curve so 
gentle as to seem all but straight. Lastly, there are a few cases, 
such as Bellerophon expansus and some Goniatites, where the outer 
spiral does not perceptibly change, but the whorls become more 
“embracing” or the whole shell more involute. Here it is the 
angle of retardation, the ratio of growth between the outer and 
inner parts of the whorl, which undergoes a gradual change.

In order to understand the relation of a close-coiled shell to its 
straighter congeners, to compare (for example) an Ammonite with 
an Orthoceras, it is necessary to estimate the length of the right 
cone which has, so to speak, been coiled up into the spiral shell. Our 
problem is, to find the length of a plane equiangular spiral, in 
terms of the radius and the constant angle a. Then, if OP be a 
radius vector, OQ a line of reference perpendicular to OP, and 
PQ a tangent to the curve, PQ, or sec a, is equal in length to the 
spiral arc OP. In other words, the arc measured from the pole is 
equal to the polar tangent*.  And this is practically obvious: for 

* Descartes made this discovery, and records it in a letter to Mersenne, 1638 
The equiangular spiral was thus the first transcendental curve to be “rectified.”
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PP'fPR = dsfdr = sec a, and therefore sec a = s[r, or the ratio of 
arc to radius vector.

Accordingly, the ratio of I, the total length, to r, the radius 
vector up to which the total length is to be measured, is expressed 
by a simple table of secants; as follows:

a Z/r a Z/r
5° 1004 87° 19-1

10 1015 88 28-7
20 1064 89 57-3
30 1165 89° 10' 68-8
40 1-305 20 85-9
50 156 30 114-6
60 2-0 40 171-9
70 2-9 50 343-8
75 3-9 55 687-5
80 5-8 59 3437-7
85 11-5 yo Infinite
86 14-3

Putting the same table inversely, so as to shew the total length 
in terms of the radius, we have as follows:

Total length (in terms
of the radius) 

2
Constant angle 

60°
3 70 31'
4 75 32
5 78 28

10 84 16
20 87 8
30 88 6
40 88 34
50 88 51

100 89 26
1000 89 56' 36"

10,000 89 59' 30
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Accordingly, we see that (1), when the constant angle of the 
spiral is small, the shell (or for that matter the tooth, or horn or 
claw) is scarcely to be distinguished from a straight cone or cylinder; 
and this remains pretty much the case for a considerable increase of 
angle, say from 0c to 20° or more; (2) for a considerably greater 
increase of the constant angle, say to 50° or more, the shell would 
still only have the appearance of a gentle curve; (3) the charac
teristic close coils of the Nautilus or Ammonite would be typically 
represented only when the constant angle lies within a few degrees 
on either side of about 80°. The coiled up spiral of a Nautilus, 
with a constant angle of about 80°, is about six times the length 
of its radius vector, or rather more than three times its own 
diameter; while that of an Ammonite, with a constant angle of, say, 
from 85° to 88°, is from about six to fifteen times as long as its own 
diameter. And (4) as we approach an angle of 90° (at which point 
the spiral vanishes in a circle), the length of the coil increases with 
enormous rapidity. Our spiral would soon assume the appearance 
of the close coils of a Nummulite, and the successive increments 
of breadth in the successive whorls would become inappreciable to 
the eye.

The geometrical form of the shell involves many other beautiful 
properties, of great interest to the mathematician but which it is 
not possible to reduce to such simple expressions as we have been 
content to use. For instance, we may obtain an equation which 
shall express completely the surface of any shell, in terms of polar 
or of rectangular coordinates (as has been done by Moseley and 
by Blake), or in Hamiltonian vector notation*.  It is likewise pos
sible (though of little interest to the naturalist) to determine the 
area of a conchoidal surface or the volume of a conchoidal solid, 
and to find the centre of gravity of either surface or solidf. And , 
Blake has further shewn, with considerable elaboration, how we may 
deal with the symmetrical distortion due to pressure which fossil 
shells are often found to have undergone, and how we may re
constitute by calculation their original undistorted form- a problem 
which, were the available methods only a little easier, would be

* Cf. H. W. L. Hime’s Outlines of Quaternions, 1894, pp. 171-173.
f See Moseley, op. cit. p. 361 seq. Also, for more complete and elaborate treat

ment, Haton de la Goupilliere, op. cit. 1908, pp. 5-46, 69-204.
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very helpful to the palaeontologist; for, as Blake himself has shewn, 
it is easy to mistake a symmetrically distorted specimen of (for 
instance) an Ammonite for a new and distinct species of the same 
genus. But it is evident that to deal fully with the mathematical 
problems contained in, or suggested by, the spiral shell, would require 
a whole treatise, rather than a single chapter of this elementary book. 
Let us then, leaving mathematics aside, attempt to summarise, and 
perhaps to extend, what has been said about the general possibilities 
of form in this class of organisms.

The univalve shell: a summary

The surface of any shell, whether discoid or turbinate, may be 
imagined to be generated by the revolution about a fixed axis of 
a closed curve, which, remaining always geometrically similar to 
itself, increases its dimensions continually: and, since the scale of 
the figure increases in geometrical progression while the angle 
of rotation increases in arithmetical, and the centre of similitude 
remains fixed, the curve traced in space by corresponding points 
in the generating curve is, in all such cases, an equiangular spiral. In 
discoid shells, the generating figure revolves in a plane perpendicular 
to the axis, as in the Nautilus, the Argonaut and the Ammonite. In 
turbinate shells, it follows a skew path with respect to the axis of 
revolution, and the curve in space generated by any given point makes 
a constant angle to the axis of the enveloping cone, and partakes, 
therefore, of the character of a helix, as well as of a logarithmic spiral; 
it may be strictly entitled a helico-spiral. Such turbinate or helico- 
spiral shells include the snail, the periwinkle and all the common 
typical Gastropods.

When the envelope of the shell is a right cone—and it is seldom far from 
being so—then our helico-spiral is a loxodromic curve, and is obviously 
identical with a projection, peralbi with the axis, of the logarithmic spiral 
of the base. Ats this spiral cuts all radii at a constant angle, so its orthogonal 
projection on the surface intersects all generatrices, and consequently all 
parallel circles, under a constant angle: this being the definition of a loxodromic 
curve on a surface of revolution. Guido Grandi describes this curve for the 
first time in a letter to Ceva, printed at the end of his Demonstratio theorematum 
Hugenianorum circa...logarithmicam lineam, 1701*.

* See R. C. Archibald, op. cit. 1918. Olivier discussed it again (Rev. de geom. 
descriptive, 1843) calling it a “conical equiangular” or “conical logarithmic”
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The generating figure may be taken as any section of the shell, 
whether parallel, normal, or otherwise inclined to the axis. It is very 
commonly assumed to be identical with the mouth of the shell; in 
which case it is sometimes a plane curve of simple form; in other and 
more numerous cases, it becomes complicated in form and its boun
daries do not lie in one plane: but in such cases as these we may 
replace it by its “trace,” on a plane at some 
definite angle to the direction of growth, for 
instance by its form as it appears in a section 
through the axis of the helicoid shell. The 
generating curve is of very various shapes. 
It is circular in Scalaria or Cyclostoma, and 
in Spirula; it may be considered as a segment 
of a circle in Natica or in Planorbis. It is 
triangular in Conus or Thatcheria, and 
rhomboidal in Solarium or Potamides. It 
is very commonly more or less elliptical: the 
long axis of the ellipse being parallel to the 
axis of the shell in Oliva and Cypraea\ all 
but perpendicular to it in many Trochi; and 
oblique to it in many well-marked cases, such 
as Stomatella, Lamellaria, S^garetus halio- 
toides (Fig. 396) and Haliotis. In Nautilus 
pompilius it is approximately a semi-ellipse, Fig- 395. Section of a spiral 
and in N. umbilicatus rather more than a Trit™ corrugatus

Lam. brom Woodward.
semi-ellipse, the long axis lying in both cases 
perpendicular to the axis of the shell*. Its form is seldom open to 
easy mathematical expression, save when it is an actual circle or

spiral. Paul Serret (Th. nouv.. .des lignes a double courbure, 1860. p. 101) called 
it "hdice cylindroconique"; Haton de la Goupilliere calls it a “cfmhdice." It has 
also been studied by (int. al.) Tissot, Nouv. ann. de mathem. 1852; G Pirondini, 
Malhesis, xix, pp. 153-8, 1899; etc.

* In Nautilus, the “hood” has somewhat different dimensions in the two 
sexes, and these differences are impressed upon the shell, that is to say upon its 
“generating curve.” The latter constitutes a somewhat broader ellipse in the 
male than in the female. But this difference is not to be detected in the young; 
in other words, the form of the generating curve perceptibly alters with advancing 
age. Somewhat similar differences in the shells of Ammonites were long ago 
suspected, by d’Orbigny, to be due to sexual differences. (Cf. Willey, Natural 
Science, vi, p. 411, 1895; Zoological Results, 1902, p. 742.) 
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ellipse; but an exception to this rule may be found in certain 
Ammonites, forming the group “ Cordati,” where (as Blake points out) 
the curve is very nearly represented by a cardioid, whose equation 
is r — a (1 + cos 6).

When the generating curves of successive whorls cut one another, 
the line of intersection forms the conspicuous helico-spiral or 
loxodromic curve called the suture by conchologists.

The generating curve may grow slowly or quickly; its growth
factor is very slow in Dentalium or Turritella, very rapid in Nerita, 
or Pileopsis, or Haliotis or the Limpet. It may contain the axis 
in its plane, as in Nautilus; it may be parallel to the axis, as in the 
majority of Gastropods; or it may be inclined to the axis, as it is in 
a very marked degree in Haliotis. In fact, in Haliotis the generating 

Fig. 396. A, Lamellaria perspicua; B, Sigaretus haliotoides.
After Woodward.

curve is so oblique to the axis of the shell that the latter appears 
to grow by additions to one margin only (cf. Fig. 362), as in the 
case of the opercula of Turbo and Nerila referred to on p. 775; 
and this is what Moseley supposed it to do.

The general appearance of the entire shell is determined (apart 
from the form of its generating curve) by the magnitude of three 
angles; and these in turn are determined, as has been sufficiently 
explained, by the ratios of certain velocities of growth. These 
angles are (1) the constant angle of the equiangular spiral (a); (2) in 
turbinate shells, the enveloping angle of the cone, or (taking half 
that angle) the angle (fl) which a tangent to the whorls makes with 
the axis of the shell; and (3) an angle called the “angle of retarda
tion” (y), which expresses the retardation in growth of the inner 
as compared with the outer part of each whorl, and therefore 
measures the extent to which one whorl overlaps, or the extent to 
which it is separated from, another.
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The spiral angle (a) is very small in a limpet, where it is usually 
taken as =0°; but it is evidently of a significant amount, 
though obscured by the shortness of the tubular shell. In 
Dentalium it is still small, but sufficient to give the appearance 
of a regular curve; it amounts here probably to about 30° to 
40°. In Haliotis it is from about 70c to 75°; in Nautilus about 
80°; and it lies between 80° and 85° or even more, in the majority 
of Gastropods*.

* What is sometimes called, as by Leslie, the angle of deflection is the complement 
of what we have called the spiral angle (a), or obliquity of the spiral. When the 
angle of deflection is 6° 17' 41", or the spiral angle 83° 42' 19", the radiants, or 
breadths of successive whorls, are doubled at each entire circuit.

The case of Fissurella is curious. Here we have, apparently, 
a conical shell with no trace of spiral curvature, or (in other words) 
with a spiral angle which approximates to 0°; but in the minute 
embryonic shell (as in that of the limpet) a spiral convolution is 
distinctly to be seen. It would seem, then, that what we have to 
do with here is an unusually large growth-factor in the generating 
curve, causing the shell to dilate into a cone of very wide angle, 
the apical portion of which has become lost or absorbed, and the 
remaining part of which is too short to show clearly its intrinsic 
curvature. In the closely allied Emarginula, there is likewise a 
well-marked spiral in the embryo, which however is still manifested 
in the curvature of the adult, nearly conical, shell. In both cases 
we have to do with a very wide-angled, cone, and with a high 
retardation-factor for its inner, or posterior, border. The series is 
continued, from the apparently simple cone to the complete spiral, 
through such forms as Calyptraea.

The angle a, as we have seen, is not always, nor rigorously, 
a constant angle. In some Ammonites it may increase with age, 
the whorls becoming closer and closer; in others it may decrease 
rapidly and even fall to zero, the coiled shell then straightening 
out, as in Lituites and similar forms. It diminishes somewhat, also, 
in many Orthocerata, which are slightly curved in youth but straight 
in age. It tends to increase notably in some common land-shells, 
the Pupae and Bulimi; and it decreases in Succinea.

Directly related to the angle a is the ratio which subsists between 
the breadths of successive whorls. The following table gives a few 
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illustrations of this ratio in particular cases, in addition to those 
which we have already studied.

Ratio of breadth of consecutive whorls

Obtuse Turbinates and DiscoidsPointed Turbinates
Telescopium fuscum 114 Conus virgo... 1-25
Terebra subulata 116 \Clymenia laevigata... 1-33

★Turritella terebellata 118 Conus litteratus 1-40
★Turritella imbricata... 1-20 Conus 'betulinus 1-43
Cerithium palustre ... 1-22 XClymenia arietina ... 1-50
Turritclla duplicata... 1-23 ^.Goniatites bifer 1-50
Melanopsis terebralis 1-23 ★Helix nemoralis 1-50
Cerithium nodulosum 1-24 ★Solarium perspectivum 1-50

*Turritclla carinata ... 1-25 Solarium trochleare 1-62
Terebra crenulata 1-25 Solarium magnificum 1-75
Terebra maculata (Fig. 397) 1-25 ★Natica aperta 2-00

★Cerithium lignitarum 1-26 Euomphalus pentangulatus 2-00
Terebra dimidiata ... 1-28 Planorbis corneus ... 2-00
Cerithium sulcatum... 1-32 Solaropsis pellis-serpentis ... 2-00
Fusus longissimus ... 1-34 Dolium zonatum 210

★Pleurotomaria conoidea 1-34 ^Goniatites carinatus 2-50
Trochus niloticus (Fig. 398) 1-41 ★Natica glaucina 3-00
Mitra episcopalis 1-43 Nautilus pompilius 300
Fusus antiquus 1-50^ Haliotis excavatus ... 4-20
Scalaria pretiosa 1-56 Haliotis parvus 6-00
Fusus colosseus 1-71 Delphinula atrata ... 6-00
Phasianella australis 1-80 Haliotis rugoso-plicata 9-30
Helicostyla polychroa 2-00 Haliotis viridis 1000

Those marked * from Naumann; J from Muller; the rest from Macalisterf.

In the case of turbinate shells, we must take into account the 
angle f, in order to determine the spiral angle a from the ratio 
of the breadths of consecutive whorls;, for the short table given 
on p. 791 is only applicable to discoid shells, in which the angle /3 
is an angle of 90°. Our formula, as mentioned on p. 771, now 
becomes

_ e27TSin^cota

For this formula I have worked out the following table.

f Alex. Macalister, Observations on the mode of growth of discoid and turbinated 
shells. Proc. R.S. xvrn, pp. 529—532, 1870; Ann. Mag. N.H. (6), rv, p 160, 1870. 
Cf. also his Law of Symmetry as exemplified in animal form, Journ. R. Dublin Soc. 
1869, p. 327.
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From this table, by interpolation, we may easily till in the 
approximate values of a, as soon as we have determined the apical 
angle fl and measured the ratio R; as follows:

R 0 a
Turritella sp. 112 T 81‘
Cerithium nodulosum 1-24 15 82
Conus virgo 1-25 70 88
Mitra episcopalis... 1-43 16 78
Scalaria pretiosa ... 1-56 26 81
Phasianella australis 1-80 26 80
Solarium perspectivum ... 1-50 53 85
Natica aperta 2-00 70 83
Planorbis corneus 2-00 90 84
Euomphalus pentangulatus 2-00 90 84

We see from this that shells so different in appearance as Cerithium, 
Solarium, Natica and Planorbis differ very little indeed in the 

magnitude of the spiral angle a, that is 
to say in the relative velocities of radial 
and tangential growth. It is upon the 
angle fl that the difference in their form 
mainly depends.

The angle, or rather semi-angle (fl), of 
the tangent cone may be taken as 90° 
in the discoid shells, such as Nautilus 
and Planorbis. It is still a large angle, 
of 70° or 75°, in Conus or in Cymba, 
somewhat less in Cassis, Harpa, Dolium 
or Natica; it is about 50° to 553 in the 
various species of Solarium, about 35° 
in the typical Trochi, such as T. niloticus 
or T. zizyphinus, and about 25° or 26° in 
Scalaria pretiosa and Phasianella bul- 
loides; it becomes a very acute angle,

Fig. 397. of Qr

Turritella or Cerithium. The British species of ‘ Fusus ’ form a series 
in which the apical angle ranges from about 28° in F. antiquus, 
through F. Norvegicus, F. berniciensis, F. Turtoni, F. Islandicus, 
to about 17° in F. gracilis. It Varies much among the Cones; and 
the costly Conus gloria-maris, one of the great treasures of the 
conchologist, differs from its congeners in no important particular 
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save in the somewhat “produced” spire, that is to say in the com
paratively low value of the angle fl.

X variation with advancing age of fl is common, but (as Blake 
points out) it is often not to be distinguished or -disentangled from 
an alteration of a. Whether alone, or combined with a change in a, 
we find it in all those many gastropods whose whorls cannot all be 
touched by the same enveloping cone, and whose spire is accordingly 
described as cancave or convex. The former condition, as we have

Fig. 398. Trochus nilotic is L.

it in Cerithium, and in the cusp-like spire of Cassis, Dolium and 
some Cones, is much the commoner of the two *.

In the vast majority of spiral univalves the shell winds to the 
right, or turns clockwise, as we look along it in the direction in which 
the animal crawls and puts out its head. The thread of a carpenter’s 
screw (except in China) runs the same way, and we call it a “right- 
handed screw.” Save that it takes a right-handed movement to

* Many measurements of the linear dimensions of univalve shells have been 
made of late years, and studied by statistical methods in order to detect local races 
and other instances of variation and variability. But conchological statisticians 
seem to be content with some arbitrary linear ratio as a measure of “squatness” 
or the reverse; and the measurements chosen give little or no help towards the 
determination either of the apical or of the spiral angle. Cf. (e.g.) A. E. Boycott, 
Conchometry, Proc. Malacol. Soc. xvn, p. 8, 1928; C. Price-Jones, ibid, xix, 
p. 146, 1930; etc. See also G. Duncker, Methode der Variations-Statistik, Arch, 
f. Entw. Meeh, vni, pp. 112-183, 1899.

52-2
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drive in a “right-handed” screw, the terms right-handed and left
handed are purely conventional; and the mathematicians and the 
naturalists, unfortunately, use them in opposite ways. Thus the 
mathematicians call the snail-shell or the joiner’s screw leiotropic; 
and Listing for one has much to say about lack of precision or even 
confusion on the part of the conchologists and the botanists, from 
Linnaeus downwards, in their attempts to deal with right-handed 
and left-handed spirals or screws*. The convolvulus twines to the 
right, the hop to the left; vine-tendrils are said to be mostly right- 
handed. At any rate, Clerk Maxwell spoke of hop-spirals and vine
spirals, trying to avoid the confusion or ambiguity of left and right. 
Some climbing plants are one and some the other; and the architect" 
shews little preference, but builds his spiral staircases or twisted 
columns either way. But in all these, shells and all, the spiral runs 
one way; it is isotropic, while the fir-cone shews spirals running both 
ways at once, and we call them heterotropic, or diadromic.

When we find a “reversed shell,” a whelk or a snail winding the 
wrong way, we describe it mathematically by the simple statement 
that the apical angle (fl) has changed sign. Such left-handed shells 
occur as a well-known but rare abnormality; and the men who 
handle snails in the Paris market or whelks in Billingsgate keep 
a sharp look-out for them. In rare instances they become common. 
While left-handed whelks (Buccinum or Neptunea) are very rare 
nowadays, it was otherwise in the epoch of the Red Crag; for 
Neptunea was then extremely common, but right-handed specimens 
were as rare as left-handed are today. In the beautiful genus 
Ampu'laria, or apple-snails, which inhabit tropical and sub-tropical 
rivers, there is unusual diversity; for the spire turns to the right 
in some species, and to the left in others, and again some are flat 
or “discoid,” with no spire at all; and there are plenty of half-way 
stages, with right and left-handed spires of varying steepness or 
acuteness f; in short, within the limits of this singular genus the 
apical angle (fl) may vary from about ± 35J to ±125°. But we 
need not imagine that the direction of growth actually changes 
over from right-handed to left-handed; it is enough to suppose

* See Listing’s Topologie, p. 36; and cf. Clerk Maxwell’s Electricity and 
Magnetism, I, p. 24.

f See figures in Arnold Lang’s Comparative Anatomy (English translation), 
ii, p. 161, 1902.
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that the skew movement along the axis has changed its direction. 
For if I take a roll of tape and push the core out to one side or to 
the other, or if I keep the centre of the roll fixed and push the rim 
to the one side or to the other, I thereby convert the flat roll into a 
hollow cone, or (in other words) a plane into a gauche spiral. W hether 
we push one way or other, whether the spiral coil be plane or gauche, 
positively or negatively deformed, it remains right-handed or left
handed as the case may be; but it does change its direction as soon 
as we turn it upside down, or as soon as the animal does so in assuming 
its natural attitude. The linear spirals within and without the cone 
may change places but must remain congruent with one another; 
for they are merely the two edges of the ribbon, and as such are 
inseparable and identical twins. But of the shell itself we may 
reasonably say that a right-handed has given place to a left-handed 
spiral. Of these, the one is a mirror-image of the other; and the 
passing from one to the other through the plane of symmetry 
(which has no “handedness”) is an operation which Listing called 
perversion. The flat or discoid apple-snails are like our roll of tape, 
which can be converted into a conical spire and perverted in one 
direction or the other; and in this genus, by a rare exception, it 
seems wellnigh as easy to depart one way as the other from the 
plane of symmetry. But why, in the general run of shells, all the 
world over, in the past and in the ptesent, one direction of twist is 
so overwhelmingly commoner than the other, no man knows.

The phenomenon of reversal, or “sinistrality,” has an interest of 
its own from the side of development and heredity. For careful 
study of certain pond-snails has shewn that dextral and sinistral 
varieties appear, not one by one, but by whole broods of the one 
sort or the other; a discovery which goes some way to account 
for the predominant left-handedness of Fusus ambiguus in the 
Red Crag. The right-handed, or ordinary form, is found to be 
“dominant” to the other; but the Mendelian heredity is of a curious 
and complicated kind. For the direction of the twist appears to 
be predetermined in the germ even prior to its fertilisation; and 
a left-handed pond-snail will produce a brood of left-handed young 
even when fertilised by a normal, or right-handed, individual *.

* See A. E. Boycott and others. Abnormal forms of Limnaea peregra.. .and their 
inheritance, Phil. Trans. (B), ccxxix, p. 51, 1930; and other papers.
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The angle of retardation (y) is very small in Dentalium and 
Patella; it is very large in Haliotis; it becomes infinite in Argonauta 
and in Cypraea. Connected with the angle of retardation are the 
various possibilities of contact or separation, in various degrees, 
between adjacent whorls in the discoid shell, and between both 
adjacent and opposite whorls in the turbinate. But with these 
phenomena we have already dealt sufficiently.

The beautiful shell of the paper-nautilus (Argonauta ar go L.) differs- 
in sundry ways both from the Nautilus and from ordinary univalves. 
Only the female Argonaut possesses it; it is not attached to its 
owner, but is (so to speak) worn loose; it is rather a temporary 
cradle for the young than a true shell or bodily covering; and it 
is not secreted in the usual way, but is plastered on from the outside 
by two of the eight arms of the little Octopus to which it belongs. 
The shell shews a single whorl, or but little more; and the spiral 
is hard to measure, for this reason. It has been supposed by some 
to obey a law other than the logarithmic spiral. For my part I have 
made no special study of it, nor has any one else, to my knowledge, 
of recent years; but the simple fact that it conserves its shape as it 
grows, or that each increment is a gnomon to the rest, is enough to 
shew that this delicate and beautiful shell is mathematically, though 
not morphologically, homologous with all the others.

Of bivalve shells

Hitherto we have dealt only with univalve shells, and it is in 
these that all the mathematical problems connected with the spiral, 
or helico-spiral, configuration are best illustrated. But the case of 
the bivalve shell, whether of the lamellibranch or the brachiopod, 
presents no essential difference, save only that we have here to do 
with two conjugate spirals, whose two axes have a definite relation 
to one another, and some independent freedom of rotatory movement 
relatively to one another.

The bivalve or lamellibranch mollusca are very different creatures 
from the rest. The univalves or gastropods, like their cousins the 
cephalopods, go about their business and get their living in an 
ordinary way: but the bivalves are unintelligent, “acephalous” 
animals, and imbibe the invisible plankton-food which ciliary 
currents bring automatically to their mouths. There is something
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to be said for withdrawing them, as brachiopods and others have 
been withdrawn, from Cuvier’s great class of the Mollusca. But 
whether bivalves and univalves be near relations or no is not the 
question. Both of them secrete a shell, and in both the shell 
grows by the successive addition of similar parts, gnomon after 
gnomon; so that in both the equiangular spiral makes, and is 
bound to make, its appearance. There is a mathematical analogy 
between the two; but it has no more bearing on zoological classi
fication than has the still closer likeness between Nautilus and the 
nautiloid Foraminifera.

The generating curve is particularly well seen in the bivalve, 
where it simply constitutes what we call “the outline of the shell.” 
It is for the most part a plane curve, but not always; for there are 
forms such as Hippopus, Tridacna and many Cockles, or Rhyncbonella 
and Spirifer among the Brachiopods, in which the edges of the two 
valves interlock, and others, such as Pholas, Mya, etc., where they 
gape asunder. In such cases as these the generating curves, though 
not plane, are still conjugate, having a similar relation, but of 
opposite sign, to a median plane of reference or of projection. There 
are a few exceptional cases, e.g. Area (Paralleleptpedon) tortuosa, where 
there is no median plane of symmetry, but the generating curve, 
and therefore the outline of the shell itself, is a tortuous curve in 
three dimensions.

A great variety of form is exhibited among the bivalves by these 
generating curves. In many cases the curve or outline is all but 
circular, as in Anomia, Sphaerium, Artemis, Isocardia; it is nearly 
semicircular in Argiope; it is approximately elliptical in Anodon, 
Lutraria, Orthis; it may be called semi-elliptical in Spirifer; it is 
a nearly rectilinear triangle in Lithocardium, and a curvilinear 
triangle in Mactra. Many apparently diverse but more or less 
related forms may be shewn to be deformations of a common type, 
by a simple application of the mathematical theory of “trans
formations,” which we shall have to study in a later chapter. In 
such a series as is furnished, for instance, by Gervillea, Perna, 
Avicula, Modiola, Mytilus, etc., a “simple shear” accounts for most, 
if not all, of the apparent differences.

Upon the surface of the bivalve shell we usually see with great 
clearness the “lines of growth” which represent the successive 
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margins of the shell, or in other words the successive positions 
assumed during growth by the growing generating curve; and we 
have a good illustration, accordingly, of how it is characteristic of 
the generating curve that it should constantly increase, while never 
altering its geometric similarity.

Underlying these lines of growth, which are so characteristic 
of a molluscan shell (and of not a few other organic formations), 
there is, then, a law of growth which we may attempt to enquire 
into and which may be illustrated in various ways. The simplest 
cases are those in which we can study the lines of growth on a more 
or less flattened shell, such as the one valve of an oyster, a Pecten 
or a Te Ilina, or some such bivalve mollusc. Here around an origin, 
the so-called “ umbo ” of the shell, we have a series of curves, some
times nearly circular, sometimes elliptical, often asymmetrical; and 
such curves are obviously not “concentric,” though we are often apt 
to call them so, but have a common centre of similitude. This 
arrangement may be illustrated by various analogies. We might 
for instance compare it to a series of waves, radiating outwards 
from a point, through a medium which offered a resistance increasing, 
with the angle of divergence, according to some simple law. We 
may find another and perhaps a simpler illustration as follows:

In a simple and beautiful theorem, Galileo shewed.that, if we 
imagine a number of inclined planes, or gutters, sloping downwards 
(in a vertical plane) at various angles 
from a common starting-point, and if 
we imagine a number of balls rolling 
each down its own gutter under the 
influence of gravity (and without 
hindrance from friction), then, at any 
given instant, the locus of all these 
moving bodies is a circle passing 
through the point of origin. For the 
acceleration along any one of the 
sloping paths, for instance AB (Fig.
400), is such that

AB = ^g cos 6. t2
= ig.ABIAC.t2.

Therefore t2 = 2]g. AC.
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That is to say, all the balls reach the circumference of the 
circle at the same moment as the ball which drops vertically from 
A to C.

Where, then, as often happens, the generating curve of the shell 
is approximately a circle passing through the point of origin, we 
may consider the acceleration of growth along various radiants to 
be governed by a simple mathematical law, closely akin to that 
simple law of acceleration which governs the movements of a falling 
body. And, mutatis mutandis, a similar definite law underlies the 
cases where the generating curve is continually elliptical, or where 
it assumes some more complex, but still regular and constant 
form.

It is easy to extend the proposition to the particular case where 
the lines of growth may be considered elliptical. In such a case 
we have x2/a2 4- y2/b2 = 1, where a and b are the major and minor 
axes of the ellipse.

Or, changing the origin to the vertex of the figure,

x2 2x u2 . > (x — a)2 u2~2------+ fc = 0’ §lvlng -—+a2 a b2 | a2 b2

Then, transferring to polar coordinates, where r. cos 0 = x, 
r. sin 0 = y, we have

r.cos2# 2 cos 0 r.sin20 ------------ ---------4- ^0,. 
a1 a b2

which is equivalent to
2ab2cos 0 

b2 cos2 0 4- a2 sin2 0 ’

or, simplifying by eliminating the sine-function,

2ab2cos 0 
(b2 — a2) cos2 0 1 a2

Obviously, in the case when a = b, this gives us the circular 
system which we have already considered. For other values, or 
ratios, of a and b, and for all values of 0, we can easily construct 
a table, of which the following is a sample:
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Chords of an ellipse, whose major and minor axes (a, b) 
are in certain given ratios

e alb = 1/3 1/2 2/3 1/1 3/2 2/1 3/1
u° 10 1-0 1-0 1-0 1-0 1-0 1-0

10 1-01 1-01 1-002 0-985 0-948 0-902 0-793
20 105 1-03 1-005 0-940 0-820 0-695 0-485
30 1115 1-065 1-005 0-866 0-666 0-495 0-289
40 1-21 1-11 0-995 0-766 0-505 0-342 0-178
50 1-34 1145 0-952 0-643 0-372 0-232 0-113
60 1-50 1-142 0-857 0-500 0-258 0-152 0-071
70 1-59 1-015 0-670 0-342 0-163 0-092 0-042
80 1-235 0-635 0-375 0-174 0-078 0-045 0-020
90 0-0 0-0 0-0 0-0 0-0 0-0 0-0

The ellipses which we then draw, from the values given in the 
table, are such as are shewn in Fig. 401 for the ratio a/b = f, and 
in Fig. 402 for the ratio a/b = |; these are 
fair approximations to the actual outlines, and 
to the actual arrangement of the lines of growth, 
in such forms as Solecurtus or Cultellus, and in 
Tellina or Psammobia. It is not difficult to in
troduce a constant into our equation to meet the 
case of a shell which is somewhat unsymmetrical 
on either side of the median axis. It is a some
what more ftoublesome matter, however, to 
bring these configurations into relation with a 
“law of growth,” as was so easily done in the 
case of the circular figure: in other words, to 
formulate a law of acceleration according to which 
points starting from the origin 0, and moving along radial lines, 
would all lie, at any future epoch, on an ellipse passing through 0; 
and this calculation we need not enter into.

All that we are immediately concerned with is the simple fact 
that where a velocity, such as our rate of growth, varies with its 
direction- varies that is to say as a function of the angular divergence 
from a certain axis—then, in a certain simple case, we get lines of 
growth laid down as a system of coaxial circles, and, in some
what less simple cases, we obtain a system of ellipses or of 
other more complicated coaxial figures, which may or may not 
be symmetrical on either side of the axis. Among our bivalve 
mollusca we shall find the lines of growth to be approximately circular 
in, for instance. Anomia; in Lima (e.g. L. subauriculata) we have 
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a system of nearly symmetrical ellipses with the vertical axis about 
twice the transverse; in Solen pellucidus, we have again a system 
of lines of growth which are not far from being symmetrical ellipses,

Fig. 402.

in which however the transverse is between three and four times 
as great as the vertical axis. In the great majority of cases, we 
have a similar phenomenon with the further complication of slight, 
but occasionally very considerable, lateral asymmetry

In the above account of the mathematical form of the bivalve shell, we 
have supposed, for simplicity’s sake, that the pole or origin of the system is 
at a point where all the successive curves touch one another. But such an 
arrangement is neither theoretically probable, nor is it actually the case; 
for it would mean that in a certain direction growth fell, not merely to a 
minimum, but to zero. As a matter of fact, the centre of the system (the 
“umbo” of the conchologists) lies not at the edge of the system, but very 
near to it; in other words, there is a certain amount of growth all round. 
But to take account of this condition would involve more troublesome mathe
matics, and it is obvious that the foregoing illustrations are a sufficiently near 
approximation to the actual case.

In certain little Crustacea (of the genus Estheria) the carapace 
takes the form of a bivalve shell, closely simulating that of a 
lamellibranchiate mollusc, and bearing lines of growth in all respects 
analogous to or even identical with those of the latter. The explana
tion is very curious and interesting. In ordinary Crustacea the 
carapace, lite the rest of the chitinised and calcified integument, is 
shed off in successive moults, and is restored again as a whole. 
But in Estheria (and one or two other small Crustacea) the mvult is
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incomplete: the old carapace is retained, and the new, growing up 
underneath it, adheres to it like a lining, and projects beyond its 
edge: so that in course of time the margins of successive old 
carapaces appear as “lines of growth” upon the surface of the shell. 
In this mode of formation, then (but not in the usual one), we obtain 
a structure which “is partly old and partly new,” and whose suc
cessive increments are all similar, similarly situated, and enlarged 

Fig. 403. Hemicardium inver
sum Lam. From Chenu.

Fig. 404. Caprinella adversa.
After Woodward.

Fig. 405. Section of Productus 
(Strophonema) sp. From 
Woods.

in a continued progression. We have, in short, all the conditions 
appropriate and necessary for the development of a logarithmic 
spiral; and this logarithmic spiral (though it is one of small angle) 
gives its own character to the structure, and causes the little carapace 
to partake of the characteristic conformation of the molluscan shell.

Among the bivalves the spiral angle (a) is very small in the 
flattened shells, such as Orthis, Lingula or Anomia. It is larger, 
as a rule, in the Lamellibranchs than in the Brachiopods, but in 
the latter it is of considerable magnitude among the Pentameri.
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Among the Lamellibranchs it is largest in such forms as Isocardia 
and Diceras, and in the very curious genus Caprinella; in all of 
these last-named genera its magnitude leads to the production of 
a spiral shell of several whorls, precisely as in the univalves. The 
angle is usually equal, but of opposite sign, in the two valves of 
the Lamellibranch, and usually of opposite sign but unequal in 
the two valves of the Brachiopod. It is very unequal in many 
Ostreidae, and especially in such forms as Gryphaea, or in Caprinella, 
which is a kind of exaggerated Gryphaea; in the cretaceous genus 
Requienia, the two valves of the shell closely resemble a turbinate 
gastropod with its flat calcified operculum. Occasionally it is of the 
same sign in both valves (that is to say, both valves curve the same 
way) as we see sometimes in Anomia, and better in Prodactus or 
Strophonema.

It will be observed, and it may not be difficult to explain, that 
the more the bivalve shell curves in the one direction the more it 
curves in the other; each valve tends to be spheroidal, or ellipsoidal, 
rather than cylindroidal. The cylindroidal form occurs, excep
tionally, in Solen. But Pecten, Gryphaea, Terebratula are all cases 
of bivalve shells where one valve is flat and the other curved from 
side to side; and the flat valve tends to remain flat in the longitudinal 
direction also, while the curved valve grows into its logarithmic 
spiral.

In the genus Gryphaea, an oyster-like bivalve from the Jurassic, 
the creature lay on its side with its left valve downward, as oysters 
and scallops also do; and this valve adhered to the ground while 
the animal was young. The upper valve stays flat, and looks hke 
a mere operculum; but the lower or deep valve grows into a more 
or less pronounced spiral. So is it also in the neighbouring genus 
Pecten, where P. Jacobaeus has its under-valve much deeper and 
more curved than, say, P. opercularis; but Gryphaea incurva is 
more spirally curved than any of these, and G. arcuata has a spiral 
angle very near to^hat of Nautilus itself. In both the spiral is a 
typical equiangular one, built up of a succession of gnom* >nic incre
ments, which in turn depend on a constant ratio between the 
expansion of a generating figure and its rotation about a centre 
of similitude. Rate of growth is at the root of the whole matter. 
Now Gryphaea, like some Ammonites of which we spoke before, is 
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one of those cases in which not onlv does the form of the shell 
vary, but geologists recognise, now and then, a trend, or progressive 
sequence of variation, from one stratum or one “horizon” to 
another. In short, as time goes on, we seem to see the shell growing 
thicker or wider, or more and more spirally curved, before our 
eyes. What meaning shall we give, what importance should we 
assign, to these changes, and what sort or grade of evolution do 
they imply? Some hold that these palaeontological features are 
“strictly comparable with those on which the geneticist bases his 
factorial studies”; and that as such they may shew “linkage of 
characters,” as when “in the evolution of Gryphaea the area of 
attachment retrogresses as the arching progresses”*. These are 
debatable matters. But in so far as the changes depend on mere 
gradations of magnitude, they lead indeed to variety but fall short 
of the full concept of evolution. For to quote Aristotle once again 
(though we need not go to Aristotle to learn it): “some things shew 
increase but suffer no alteration; because increase is one thing and 
alteration is another.”

Fig. 406. Skeletal loop of Tere- 
bratula. From Woods.

The so-called “spiral arms” of Spirifer and many other Brachio-- 
pods are not difficult to explain. They begin as a single structure, 
in the form of a loop of shelly substance, 
attached to the dorsal valve of the shell, 
in the neighbourhood of the hinge, and 
forming a skeletal support for two ciliate 
and tentaculate arms. These grow to a 
considerable length, coiling up within the 
shell that they may do so. In Terebratula 
the loop remains short and simple, and is 
merely flattened and distorted somewhat 
by the restraining pressure of the ventral 
valve; but in Spirifer, Airypa, Athyris and 
many more it forms a watchspring coil on 
either side, corresponding to the close- 
coiled arms of which it was the support and skeleton. In these 
curious and characteristic structures we see no sign of progressive

* H. H. Swinnerton, Unit characters in fossils, Biol. Reviews, vn, pp. 321-335, 
1932; cf. A. E. Truman, Geol. Mag. ux, p. 258, lxi, p. 358, 1922-24. 
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growth, no successional increments, no “gnomons,” no self
similarity in the figure. In short it has nothing to do with a 
logarithmic or equiangular spiral, but is a mere twist, or tapering 
helix, and it points now one way, now another. The cases in 
which the helicoid spires point towards, or point away from, the 
middle line are ascribed, in zoological classification, to particular 
“families” of Brachiopods, the former condition defining (or 
helping to define) the Atrypidae and the latter the Spiriferidae

Fig. 408. Inwardly directed 
spiral arms of A try pa.

and Athyridae. It is obvious that the incipient curvature of the 
arms, and consequently the form and direction of the spirals, will 
be influenced by the surrounding pressures, and these in turn by 
the general shape of the shell. We shall expect, accordingly, to 
find the long outwardly directed spirals associated with shells which 
are transversely elongated, as Spirifer is; whde the more rounded 
Atrypa will tend to the opposite condition. In a few cases, as in 
Cyrtina or Reticularia, where the shell is comparatively narrow but 
long, and where the uncoiled basal support of the arms is long also, 
the coils into which the latter grow are turned backwards, in the 
direction where there is most room for them. And in the few cases 
where the shell is very considerably flatteiled, the spirals (if they 
find room to grow at all) will be constrained to do so in a discoid 
or nearly discoid fashion, and this is actually the case in such 
flattened forms as Koninckina or Thecidium.

The shells of Pteropods
While mathematically speaking we are entitled to look upon 

the bivalve shell of the Lamellibranch as consisting of two distinct 
elements, each comparable to the entire shell of the univalve, we
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have no biological grounds for such a statement; for t he shell arises 
from a single embryonic origin, and afterwards becomes split into 
portions which constitute the two separate valves. \\ e can perhaps 
throw some indirect light upon this phenomenon, and upon several 
other phenomena connected with shell-growth, by a consideration 
of the simple conical or tubular shells of the Pteropods. The shells 
of the latter are in few cases suitable for simple mathematical 
investigation, but nevertheless they are of very considerable interest 
in connection with our general problem. The morphology of the 
Pteropods is by no means well understood, and in speaking of them

Fig. 409. Pteropod shells:
(1) Cuvier ina columnella;
(2) Cleodora chierchiae;
(3) C. pygmaea. After Boas.

Fig. 410. Diagrammatic transverse sections, or 
outlines of the mouth, in certain Pteropod shells: 
A, B, Cleodora australis; C, C. pyramidalis; 
D, C. balantium; E, C. cuspidata. After Boas.

I will assume that there are still grounds for believing (in spite of 
Boas’ and Pelseneer’s arguments) that they are directly related to, 
or may at least be directly compared with', the Cephalopoda*.

The simplest shells among the Pteropods have the form of a tube, 
more or less cylindrical (Cuvierina), more often conical (Creseis, 
Clio); and this tubular shell (as we have already had occasion to 
remark, on p. 416), frequently tends, when it is very small and 
delicate, to assume the character of an unduloid. (In such a case 
it is more than likely that the tiny shell, or that portion of it which

* We need not assume a close relationship, nor indeed any more than such a 
one as permits us to compare the shell of a Nautilus with that of a Gastropod.

TG F 53
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constitutes the unduloid, has not grown by successive increments 
or “rings of growth,” but has developed as a whole.) A thickened 
“rib” is often, perhaps generally, present on the dorsal side of the 
little conical shell. In a few cases (Limadna, Peradis) the tube 
becomes spirally coiled, in a normal equiangular spiral or helico- 
spiral.

In certain cases (e.g. Cleodora. Il guinea) the tube or cone is curiously 
modified. In the first place, its cross-section, originally circular 
or nearly so, becomes flattened or compressed dorso ventrally; and

Fig. 411. Shells of thecosome Pteropods (after Boas). (1) (Hodora cuspidata;
(2) Hyalaea trispinosa; (3) II. globulosa; (4) II. uncit'ula; (5) 11. inflexa.

the angle, or rather edge, where dorsal and ventral walls meet, 
becomes more and more drawn out into a ridge or keel, \long the 
free margin, both of the dorsal and the ventral portion of the shell, 
growth proceeds with a regularly varying velocity, so that these 
margins, or lips, of the shell become regularly curved or markedly 
sinuous. At the same time, growth in a transverse direction pro
ceeds writh an acceleration which manifests itself in a curvature of 
the sides, replacing the straight borders of the original cone. In 
other words, the cross-section of the cone, or what we have been 
calling the generating curve, increases its dimensions more rapidly 
than its distance from the pole.
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In the above figures, for instance in that of Cleodora cuspidata, 
the markings of the shell which represent the successive edges of 
the lip at former stages of growth furnish us at once with a “graph”

of the varying velocities of growth as measured, radially, from the 
apex. We can reveal more clearly the nature of these variations 
in the following way, which is simply tantamount to converting our 
radial into rectangular coordinates. Neglecting curvature (if any)

'ig. 413 Curves obtained by transforming radial ordinates, as in Fig. 412, into 
vertical equidistant ordinates. 1, Hyalaea trispinosa; 2, Cleodora cuspidata.

of the sides and treating the shell (for simplicity’s sake) as a right 
cone, we lay off equal angles from the apex 0. along the radii Oa, 
Ob, etc. If we then plot, as veitical equidistant ordinates, the 
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magnitudes Oa, Ob ... OY, and again on to Ou', we.obtain a diagram 
such as follows in Fig. 413: by help of which we not only see 
more clearly the way in which the growth-rate varies from point 
to point, but we also recognise better than before the nature of the 
law which governs this variation in the different species. *

Furthermore, the young shell having become differentiated into 
a dorsal and a ventral part, marked off from one another by a lateral 
edge or keel, and the inequality of growth being such as to cause 
each portion to increase most rapidly in the median line, it follows 
that the entire shell will appear to have been split into a dorsal 
and a ventral plate, both connected with, and projecting from, 
what remains of the original undivided cone. Putting the same 
thing in other words, we may say that the generating figure, which

Fig. 414. Development of the shell of Hyalaea (Cavolinia) tridentata Forskal: 
the earlier stages being the “Pleurapus longifilis” of Troschel. After Tesch.

lay at first in a plane perpendicular to the axis of the cone, has 
now, by unequal growth, been sharply bent or folded, so as to lie 
approximately in two planes, parallel to the anterior and posterior 
faces of the cone. W e have only to imagine the apical connecting 
portion to be further reduced, and finally to disappear or rupture, 
and we should have a bivalve shell developed out of the original 
simple cone.

In its outer and growing portion, the shell of our Pteropod now 
consists of two parts which, though still connected together at the 
apex, may be treated as growing practically independently. The 
shell is no longer a simple tube, or simple cone, in which regular 
inequalities of growth will lead to the development of a spiral; and 
this for the simple reason that we have now two opposite maxima 
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of growth, instead of a maximum on the one side and a minimum 
on the other side of our tubular shell. As a matter of fact, the 
dorsal and the ventral plate tend to curve in opposite directions, 
towards the middle line, the dorsal curving ventrally and the ventral 
curving towards the dorsal side.

In the case of the Lamellibranch or the Brachiopod, it is quite 
possible for b< >th valves to grow into more or less pronounced spirals, 
for the simple reason that they are hinged upon one another; and 
each growing edge, instead of being brought to a standstill by the 
growth of its opposite neighbour, is free to move out of the way, 
by the rotation about the hinge of the plane in which it lies.

But where there is no such hinge, as in the Pteropod, the dorsal 
and ventral halves of the shell (or dorsal and ventral valves, if we

Fig. 415. Pteropod shells, from the side; (1) (leodora cuspidata; (2) Hyalaea 
lonyirostris; (3) If. trispinosa. After Boas.

may call them so) would soon interfere with one anot her’s progress 
if they curved towards one another (as they do in a cockle), 
and the development of a pair of conjugate spirals would become 
impossible. Nevertheless, there is obviously, in both dorsal and 
ventral valve, a tendency to the development of a spiral curve, that 
of the ventral valve being more marked than that of the larger and 
overlapping dorsal one, exactly as in the two unequal valves of 
Terebratula. In many cases (e.g. Cleodora cuspidata), the dorsal 
valve or plate, strengthened and stiffened by its midrib, is nearly 
straight, while the curvature of the other is well displayed. But 
the case will be materially altered and simplified if growth be arrested 
or retarded in either half of the shell. Suppose for instance that 
the dorsal valve grew so slowly that after a while, in comparison 
with the other, we might speak of it as being absent altogether: 
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or suppose that it merely became so reduced in relative size as to 
form no impediment to the continued growth of the ventral one; 
the latter would continue to grow in the direction of its natural 
curvature, and would end by forming a complete and coiled 
logarithmic spiral. It would be precisely analogous to the spiral 
shell of Nautilus, and, in regard to its ventral position, concave 
towards the dorsal side, it would even deserve to be called directly 
homologous with it. Suppose, on the other hand, that the ventral 
Valve were to be greatly reduced, and even to disappear, the dorsal 
valve would then pursue its unopposed growth; and, were it to be 
markedly curved, it would come to form a logarithmic spiral, concave 
towards the ventral side, as is the case in the shell of Spirula*.  
Were the dorsal valve to be destitute of any marked curvature (or 
in other words, to have but a low spiral angle), it would form a 
simple plate, as in the shells of Sepia or Loligo. Indeed, in the 
shells of these latter, and especially in that of Sepia, we seem to 
recognise a manifest resemblance to the dorsal plate of the Pteropod 
shell, as we have it (e.g.) in Cleodora or Hyalaea; the little “ rostrum ” 
of Sepia is but the apex of the primitive cone, and the rounded 
anterior extremity has grown according to a law precisely such as 
that which has produced the curved margin of the dorsal valve in 
the Pteropod. The ventral portion of the original cone is nearly, 
but not wholly, wanting; it is represented by the so-called posterior 
wall of the “siphuncular space.” In many decapod cuttle-fishes 
also (e.g. Todarodes, Illex, etc.) we still see at the posterior end of 
the “pen” a vestige of the primitive cone, whose dorsal margin 
only has continued to grow; and the same phenomenon, on an 
exaggerated scale, is represented in the Belemnites.

* Cf. Owen. “These shells [Nautilus and Ammonites] are revolutely spiral or 
coiled over the back of the animal, not involute like Spirula": Palaeontology, 
1861. p. 97; cf. Memoir on the Pearly Nautilus, 1832; also P.Z.S. 1878, p. 955.

It is not at all impossible that we may explain on the same lines 
the development of the curious “operculum” of the Ammonites. 
This consists of a single horny plate (Anaptyehus), or of a thicker, 
more calcified plate divided into two symmetrical halves (Aptyehi), 
often found inside the terminal chamber of the Ammonite, and 
occasionally to be seen lying in situ, as an operculum which partially 
closes the mouth of the shell; this structure is known to exist even
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in connection with the early embryonic shell. In form the Anap- 
tychus, or the pair of conjoined Aptychi, shew an upper and a lower 
border, the latter strongly convex, the former sometimes slightly 
concave, sometimes slightly convex, and usually shewing a median 
projection or slightly developed rostrum. From this rostral 
border the curves of growth start, and course round parallel to, 
finally constituting, the convex border. It is this convex border 
which fits into the free margin of the mouth of the Ammonite’s 
shell, while the other is applied to and overlaps the preceding whorl 
of the spire. Now this relationship is precisely what we should 
expect, were we to imagine as our starting-point a shell similar to 
that of Hyalaea: in which however the dorsal part of the split cone 
had become separate from the ventral half, had remained flat, and 
had grown comparatively slowly, while at the same time it kept 
slipping forward over the growing and coiling spire into which the 
ventral half of the original shell develops*.  In short, I think there 
is reason to believe, or at least to suspect, that we have in the shell 
and Aptychus of the Ammonites, two portions of a once united 
structure; of which other Cephalopods retain not both parts but 
only one or other, one as the ventrally situated shell of Nautilus. 
the other as the dorsally placed shell for example of Sepm or of 
Spirula.

* The case of Terebratula or of Gryphaea would be closely analogous, if the smaller 
valve were less closely connected and co-articulated with the larger.

In the case of the bivalve shells of the Lamellibranchs or of the 
Brachiopods, we have to deal with a phenomenon precisely analogous 
to the split and flattened cone of our Pteropods, save only that the 
primitive cone has been split into two portions, not incompletely, 
as in the Pteropod (Hyalaea), but completely, so as to form two 
separate valves. Though somewhat greater freedom is given to 
growth now that the two valves are separate and hinged, yet still 
the two valves oppose and hamper one another, so that in the 
longitudinal direction each is capable of only a moderate curvature. 
This curvature, as we have seen, is recognisable as an equiangular 
spiral, but only now and then does the growt h of the spiral continue 
so far as to develop successive coils: as it does in a few symmetrical 
forms such as Isocardia cor; and as it does still more conspicuously 
in a few others, such as Gtyphaea and Caprinella, where one of the 
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two valves is stunted, and the growth of the other is (relatively 
speaking) unopposed.

Of septa

Before we leave the subject of the molluscan shell, we have still 
another problem to deal w ith, in regard to the form and arrangement 
of the septa which divide up the tubular shell into chambers, in 
the Nautilus, the Ammonite and their allies. \

The existence of septa in a nautiloid shell may probably be 
accounted for as follows. V e have seen that it is a property of 
a cone that, while growing by increments at one end only, it con
serves its original shape: therefore the animal within, which (though 
growing by a different law) also conserves its shape, will continue 
to fill the shell if it actually fills it to begin with: as does a snail 
or other Gastropod. But suppose that our mollusc fills a part only 
of a conical shell (as it does in the case of Nautilus); then, unless 
it alter its shape, it must move upward as it grows in the growing 
cone, until it comes to occupy a space similar in form to that which 
it occupied before: just, indeed, as a little ball drops far down into 
the cone, but a big one must stay farther up. Then, when the 
animal after a period of growth has moved farther up in the shell, the 
mantle-surface continues or resumes its secretory activity, and that 
portion which had been in contact with the former septum secretes 
a septum anew. In short, at any given epoch, the creature is not 
secreting a tube and a septum by separate operations, but is secreting 
a shelly case about its rounded body, of which case one part appears 
as the continuation of the tube, and the other part, merging with it 
by indistinguishable boundaries, appears as the septum*.

* “It has been suggested, and I think in some quarters adopted as a dogma, 
that the formation of successive septa [in Nautilus] is correlated with the recurrence 
of reproductive periods. This is not the case, since, according to my obserx ations, 
propagation only takes place after the last septum is formed”; Willey, Zoological 
Results, 1902, p. 746.

f Cf. Henry Woodward, On the structure of camerated shells, Pop. Sci. Rev. 
xi. pp. 113-120, 1872.

The various forms assumed by the septa in spiral shells f present 
us with a number of problems of great beauty, simple in their 
essence, but w hose full investigation w ould soon lead us into difficult 
mathematics.
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We do not know how these septa are laid down in an Ammonite, 

but in the Nautilus the essential facts are clear*. The septum begins 
as a very thin cuticular membrane (composed of a substance called 
conchyolin), which is secreted by the skin, or mantle-surface, of the 
animal; and upon this membrane nacreous matter is gradually laid 
down on the mantle-side (that is to say between the animal’s body 
and the cuticular membrane which has been thrown off from it), 
so that the membrane remains as a thin pellicle over the hinder 
surface of the septum, and so tltat, to begin with, the membranous 
septum is moulded on the flexible and elastic surface of the animal, 
within which the fluids of the body must exercise a uniform, or 
nearly uniform pressure.

Let us think, then, of the septa as they would appear in their 
uncalcified condition, formed of, or least superposed upon, an 
elastic membrane. They must follow the general law’, applicable 
to all elastic membranes under uniform pressure, that the tension 
varies inversely as the radius of curvature; and we come back once 
more to our old equation of Laplace and Plateau, that

p=z+ *y
' \r r /

Moreover, since the cavity below the septum is practically closed, 
and is filled either w’ith air or wflth w’ater. P will be constant over 
the whole area of the septum. And further, we must assume, at 
least to begin w’ith, that the membrane constituting the incipient 
septum is homogeneous or isotropic.

Let us take first the case of a straight cone, of circular section, 
more or less like an Orthoceras; and let us suppose that the septum 
is attached to the shell in a plane perpendicular to its axis. The 
septum itself must then obviously be spherical. Moreover the extent 
of the spherical surface is constant, and easily determined. For 
obviously, in Fig. 417. the angle LCL' equals the supplement of 
the angle (LOL ) of the cone: that is to say. the circle of contact 
subtends an angle at the centre of the spherical surface, which is 
constant, and which is equal to tt — 2fl. The case is not excluded 
w’here, owing to an asymmetry of tensions, the septum meets the

* See Willey, op. cit., p. 749. Cf. also Bather. Shell-growth in Cephalopoda, 
Ann. Mag. N.H. (6), i, pp. 298-310. 1888; ibid. pp. 421—427, and other papers by 
Blake, Riefstahl, etc. quoted therein.
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side walls of the cone at other than a right angle, as in Fig. 416; and 
here, while the septa still remain portions of spheres, the geometrical 
construction for the position of their centres is equally easy.

If, on the other hand, the attachment of the septum to the inner 
walls of the cone be in a plane oblique to the axis, then the outline of 
t he septum will be an ellipse, but its surface will still be spheroidal. If

the attachment of the septum be not in one plane, but forms a sinuous 
line of contact w’th the cone, then the septum will be a saddle-shaped 
surface, of great complexity and beauty. In all cases, provided only 
that the membrane be isotropic, the form assumed will be precisely 
that of a soap-bubble under similar conditions of attachment: that 
is to say, it will be (with the usual limitations or conditions) a surface 
of minimal area, and of constant mean curvature.

If our cone be no longer straight, but curved, then the septa will 
by symmetrically deformed in consequence. A beautiful and in
teresting case is afforded us by Nautilus itself. Here the outline 
of the septum, referred to a plane, is approximately bounded by 
two elliptic curves, similar and similarly situated, whose areas are 
to one another in a definite ratio, namely as

A = fit _
A, r,f 2

and a similar ratio exists in Ammonites and all other close-whorled 
spirals, in which however we cannot always make the simple 
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assumption of elliptical form. In a median section of Nautilus, we 
see each septum forming a tangent to the inner and to the outer 
wall, just as it did in a section of the straight Orthoceras; but the

Fig. 418. Section of Nautilus, shewing the contour of the septa 
in the median plane.

curvatures in the neighbourhood of these two points of contact are 
not identical, for they now vary inversely as the radii, drawn from 
the pole of the spiral shell. The contour of the septum in this 
median plane is a spiral curve the conformal spiral transformation 
of the spherical septum of the rectilinear Orthoceratite.
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But while the outline of the septum in median section is simple 
and easy to determine, the curved surface of the septum in its 
entirety is a very complicated matter, even in Nautilus which is 
one of the simplest of actual cases. For, in the first place, since 
the form of the septuni, as seen in median section, is that of a 
logarithmic spiral, and as therefore its curvature is constantly

Fig. 419. Cast of the interior of Nautilus: to shew the contours of 
the septa at their junction with the shell-wall.

altering, it follows that, in successive transverse sections, the curva
ture is also constantly altering. But in the case of Nautilus, there 
are other aspects of the phenomenon, which we can illustrate, but 
only in part, in the following simple manner. Let us imagine a pack 
of cards, in which we have cut out of each card a similar concave 
arc of a logarithmic spiral, such as we actually see in the median 
section of the septum of a Nautilus. Then, while we hold the cards 
together, foursquare, in the ordinary position of the pack, we have 
a simple “ruled” surface, which in any longitudinal section has the 
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form of a logarithmic spiral but in any transverse section is a straight 
horizontal line. If we shear or slide the cards upon one another, 
thrusting the middle cards of the pack forward in advance of the 
others, till the one end of the pack is a convex, and the other a 
concave, ellipse, the cut edges which combine to represent our 
septum will now form a curved surface of much greater complexity; 
and this is part, but not by any means all, of the deformation 
produced as a direct consequence of the form in Nautilus of the 
section of the tube within which the septum has to lie. The 
complex curvature of the surface will be manifested in a sinuous 
outline of the edge, or line of attachment of the septum to the tube, 
and will vary according to the configuration of the latter. In the 
case of Nautilus, it is easy to shew empirically (though not perhaps 
easy to demonstrate mathematically), that the sinuous or saddle- 
shaped contour of the “ suture ” (or line of attachment of the septum 
to the tube) is such as can be precisely accounted for in this manner; 
and we may find other forms, such as Ceratites, where the septal 
outline is only a little more sinuous, and still precisely analogous 
to that of Nautilus. It is also easy to see that, when the section of 
the tube (or “generating curve”) is more complicated in form, when 
it is flattened, grooved, or otherwise ornamented, the curvature of the 
septum and the outline of its sutural attachment will become very 
complicated indeed*;  but it will Imacomparatively simple in the case 
of the first few sutures of the young shell, laid down before any over
lapping of whorls has taken place, and this comparative simplicity of 
the first-formed sutures is a marked feature among Ammonites f.

* The “lobes” and “saddles” which arise in this manner, and on whose arrange
ment the modern classification of the nautiloid and ammonitoid shells largely 
depends, were first recognised and named by Leopold von Buch, Ann. Sci. Nat. 
xxvii, xxvni, 1829.

f Blake has remarked upon the fact (op. cil. p. 248) that in some Cyrtocerata 
we may have a curved shell in which the ornaments approximately run at a constant 
angular distance from the pole, while the septa approximate to a radial direction; 
and that “thus one law of growth is illustrated by the inside, and another by the 
outside.’’ In this there is nothing at which we need wonder. It is merely a case 
where the generating curve is set very obliquely to the axis of the shell; but where 
the septa, which have no necessary relation to the mouth of the shell, take their 
places, as usual, at a certain definite angle to the walls of the tube. This relation 
of the septa to the walls of the tube arises after the tube itself is fully formed, 
and the obliquity of growth of the open end of the tube has no relation to the 
matter.
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We have other sources of complication, besides those which are 

at once introduced by the sectional form of the tube. For instance, 
the siphuncle, or little inner tube which perforates the septa, exercises 
a certain amount of tension, sometimes evidently considerable, upon 
the latter: which tension is made manifest in Spirula (and slightly 
so even in Nautilus) by a dip in the septal floor where it meets the 
siphuncle. We can no longer, then, consider each septum as an 
isotropic surface under uniform pressure; and there may be other 
structural modifications, or inequalities, in that portion of the

Fig 420. Ammonites Sowerbyi. From Zittcl.

animal’s body with which the septum is in contact, and by which 
it is conformed. It is hardly likely, for all these reasons, that we 
shall ever attain to a full and particular explanation of the septal 
surfaces and their sutural outlines throughout the whole range of 
Cephalopod shells; but in general terms, the problem is probably 
not beyond the reach of mathematical analysis. The problem might 
be approached experimentally, after the manner of Plateau’s experi
ments, by bending a w ire into the complicated form of the suture-line, 
and studying the form of the liquid film which constitutes the 
corresponding surface mimtnae areae.

In certain Ammonites the septal outline is further complicated 
in another way. Superposed upon the usual sinuous outline, with 
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its “lobes” and “saddles,” we have here a minutely ramified, or 
arborescent outline, in which all the branches terminate in wavy, 
more or less circular arcs looking just like the "landscape marble” 
from the Bristol Rhaetic. We have no difficulty in recognising in 
this a surface-tension phenomenon. The figures are precisely such 
as we can imitate (for instance) by pouring a few drops of milk 
upon a greasy plate, or of oil upon an alkaline solution*; they are 
what Charles Tomlinson called "cohesion figures.”

Fig. 421. Suture-line oi a Triassic Ammonite (Pinacoceras). From Zittel.

Me must not forget that while the nautilus and the ammonite 
resemble one another, and are mathematically identical in their 
spiral curves, they are really very different things. The one is an 
external, the other an internal shell. The nautilus occupies the 
large terminal chamber of the many-chambered shell, and “Still 
as the spiral grew, He left the past year's dwelling for the new.” 
But even the largest ammonites never contained the body of the 
animal, but lay hidden, as Splrula does, deep within the substance 
of the mantle. How the complicated septa and septal outlines of 
the ammonites are produced 1 do not knowf.

We have very far from exhausted, we have perhaps little more 
than begun, the study of the logarithmic spiral and the associated 
curves which find exemplification in the multitudinous diversities 
of molluscan shells. But, with a closing word or two, we must 
now bring this chapter to an end.

* “The Fimbriae, or Edges, appeared on the surface like the Outlines of some 
curious Foliage. This, upon Examination of them, I found to proceed from the 
Fulness of the Edges of the Diaphragms, whereby the Edges were waved or plaited 
somewhat in the manner of a Ruff” (R. Hooke, op. cit.).

f In certain rare cases the complicated sutural pattern of an ammonite is found 
upside, down, but unhanged otherwise. Cf. ()tt<> Haas, A case of inversion of 
suture lines in H ysteroceras, Amer. JI. of Sci. ccxxxix, p. GG1, 1941.
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In the spiral shell we have a problem, or a phenomenon, of growth, 
immensely simplified by the fact that each successive increment is 
no sooner formed than it is fixed irrevocably, instead of remaining 
in a state of flux and sharing in the further changes which the 
organism undergoes. In such a structure, then, we have certain 
primary phenomena of growth manifested in their original simplicity, 
undisturbed by secondary and conflicting phenomena. What actually 
grows is merely the lip of an orifice, where there is produced a ring 
of solid material, w’hose form we have discussed under the name of 
the generating curve; and this generating curve grows in magnitude 
without alterat ion of its form. Besides its increase in areal magnitude, 
the growing curve has certain strictly limited degrees of freedom, 
which define its motions in space. And, though we may know nothing 
whatsoever about the actual velocities of any of these motions, we 
do know that they are so correlated together that their relative 
velocities remain constant, and accordingly the form and symmetry 
of the wThole system remain in general unchanged.

But there is a vast range of possibilities in regard to every one 
of these factors: the generating curve may be of various forms, and 
even when of simple form, such as an ellipse, its axes may be set 
at various angles to the system; the plane also in which it lies 
may vary, almost indefinitely, in its angle relatively to that of any 
plane of reference in the system; and in the several velocities of 
growth, of rotation and of translation, and therefore in the ratios 
between all these, we have again a vast range of possibilities. We 
have then a certain definite type, or group of forms, mathematically 
isomorphous, but presenting infinite diversities of outward appear
ance: which diversities, as Swammerdam said, ex sola nascuntur 
diversitate gyrationum; and w'hich accordingly are seen to have their 
origin in differences of rate, or of magnitude, and so to be, essentially, 
neither more nor less than differences of degree.

In nature, we find these forms presenting themselves with but little 
relation to the character of the creature by which they are produced. 
Spiral forms of certain particular kinds are common to Gastropods and 
to Cephalopods, and to diverse families of each; while outside the class 
of molluscs altogether, among the Foraminifera and among the worms 
(as in Spirorbis, Spirograph is, and in the Dental ium-hke shell of 
Ditrvpa), we again meet with similar and corresponding spirals.
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Again, we find the same forms, or forms which (save for external 
ornament) are mathematically identical, repeating themselves in all 
periods of the world’s geological history; and we see them mixed 
up. one with another, irrespective of climate or local conditions, in 
the depths and on the shores of every sea. It is hard indeed (to 
my mind) to see in such a case as this where Natural Selection 
necessarily enters in, or to admit that it has had any share what
soever in the production of these varied conformations. Unless 
indeed we use the term Natural Selection in a sense so wide as to 
deprive it of any purely biological significance; and so recognise 
as a sort of natural selection whatsoever nexus of causes suffices 
to differentiate between the likely and the unlikely, the scarce and 
the frequent, the easy and the hard: and leads accordingly, under 
the peculiar conditions, limitations and restraints which we call 
“ordinary circumstances,” one type of crystal, one form of cloud, 
one chemical compound, to be of frequent occurrence and another 
to be rare*.

* Cf. Bacon, Advancement of Learning, Bk. n (p. 254): “ Doth any give the reason, 
why some things in nature are so common and in so great mass, and others so rare 
and in so small quantity?”

T G F 54
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CHAPTER XII ‘

THE SPIRAL SHELLS OF THE FORAMINIFERA

W e have already dealt in a few simple cases with the shells of the 
Foraminifera*; and we have seen that wherever the shell is but a 
single unit or single chamber, its form may be explained in general 
by the laws of surface-tension: the argument (or assumption) being 
that the little mass of protoplasm which makes the simple shell 
behaves as a fluid drop, the form of which is perpetuated when the 
protoplasm acquires its solid covering. Thus the spherical Orbulinae 
and the flask-shaped Lagenae represent drops in equilibrium, under 
various conditions of freedom or constraint; while the irregular, 
amoeboid body of Astrorhiza is a manifestation not of equilibrium, 
but of a varying and fluctuating distribution of surface energy. 
When the foraminiferal shell becomes multilocular, the same general 
principles continue to hold; the growing protoplasm increases drop 
by drop, and each successive drop has its particular phenomena of 
surface energy, manifested at its fluid surface, and tending to confer 
upon it a certain place in the system and a certain shape of its own.

It is characteristic and even diagnostic of this particular group 
of Protozoa (1) that development proceeds by a well-marked alterna
tion of rest and of activity- -of activity during which the protoplasm 
increases, and of rest during which the shell is formed; (2) that the 
shell is formed at the outer surface of the protoplasmic organism, 
and tends to constitute a continuous or all but continuous covering; 
and it follows (3) from these two factors taken together that each 
successive increment is added on outside of and distinct from its 
predecessors, that the successive parts or chambers of the shell are 
of different and successive ages, so that one part of the shell is always 
relatively new, and the rest old in various grades of seniority.

The forms which we set together in the sister-group of Radiolaria 
are very differently characterised. Here the cells or vesicles of 
which each little composite organism is made up are but little 

* Cf. pp. 420, 702, etc.
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separated, and in no way walled off, from one another; the hard 
skeletal matter tends to be deposited in the form of isolated spicules 
or of little connected rods or plates, at the angles, the edges or the 
interfaces of the vesicles; the cells or vesicles form a coordinated 
and cotemporaneous rather than a successive series. In a word, 
the whole quasi-fluid protoplasmic body may be likened to a little 
mass of froth or foam: that is to say, to an aggregation of simul
taneously formed drops or bubbles, whose physical properties and 
geometrical relations are very different from those of a system of 

Fig. 422. Hastigerina sp.; to shew the “mouth.”

drops or bubbles which are formed one after another, each solidifying 
before the next is formed.

With the actual origin or mode of development of the foraminiferal 
shell we are now but little concerned. The main factor is the 
adsorption, and subsequent precipitation at the surface of the 
organism, of calcium carbonate - the shell so formed being interrupted 
by pores or by some larger interspace or "mouth" (Fig. 422), which 
interruptions we may doubtless interpret as being due to unequal 
distributions of surface energy. In many cases the fluid protoplasm 
“picks up” sand-grains and other foreign particles, after a fashion 
which we have already described (p. 702); and it cements these 
together with more or less of calcareous material. The calcareous 
shell is a crystalline structure, and the micro-crystals of calcium 
carbonate are so set that their little prisms radiate outwards in each 
chamber through the thickness of the wall—which symmetry is

5-1-2



852 THE SPIRAL SHELLS [ch.

subject to corresponding modification when the spherical chambers 
are more or less symmetrically deformed*.

* In a few cases, according to Awerinzew and Rhumbler, where the chambers are 
added on in concentric series, as in Orbitolites, we have the crystalline structure 
arranged radially in the radial walls but tangentially in the concentric ones: 
whereby we tend to obtain, on a minute scale, a system of orthogonal trajectories, 
comparable to that which we shall presently study in connection with the structure 
of bone. Cf. S. Awerinzew, Kalksehale der Rhizopoden, Z. f. w. Z. lxxiv, 
pp. 478-490, 1903.

f L. Rhumbler, Die Doppelschalen von Orbitolites und anderer Foraminiferen, 
etc.. Arch. f. Protistenkunde, I, pp. 193-296, 1902; and other papers. Also Die 
Foraminiferen der Planktonexpedition, i, pp. 50-56, 1911.

In various ways the rounded, drop-like shells of the Foraminifera, 
both simple and compound, have been artificially imitated. Thus, 
if small globules of mercury be immersed in water in which a little 
chromic acid is allowed to dissolve, as the little beads of quicksilver 
become slowly covered with a crystalline coat of mercuric chromate 
they assume various forms reminiscent of the monothalamic Fora
minifera. The mercuric chromate has a higher atomic volume than 
the mercury which it replaces, and therefore the fluid contents of 
the drop are under pressure, which increases with the thickness 
of the pellicle; hence at some weak spot in the latter the contents 
will presently burst forth, so forming a mouth to the little shell. 
Sometimes a long thread is formed, just as in Rhabdammina linearis; 
and sometimes unduloid swellings make their appearance on such 
a thread, just as in R. discreta. And again, by appropriate modi
fications of the experimental conditions, it is possible (as Rhumbler 
has shewn) to build up a chambered shell f.

In a few forms, such as Globigerina and its close allies, the shell 
is beset during life with excessively long and delicate calcareous 
spines or needles. It is only in oceanic forms that these are present, 
because only when poised in water can such delicate structures 
endure; in dead shells, such as we are much more familiar with, 
every trace of them is broken and rubbed away. The growth of 
these long needles may be partly explained (as we have already said 
on p. 675) by the phenomenon which Lehmann calls orientirte 
Adsorption- -the tendency for a crystalline structure to grow by 
accretion, not necessarily in the outward form of a “crystal,” but 
continuing in any direction or orientation which has once been 
impressed upon it: in this case the spicular growth is in direct 
continuation of the radial symmetry of the micro-crystalline 



xnj OF THE FORAMINIFERA 853

elements of the shell-wall. But the calcareous needles are secreted 
in, or by, no less long and delicate pseudopodia or “filopodia,” 
and much has been learned since this book was written of the 
molecular, or micellar, orientation of the protoplasm in such 
filamentous structures; it is known that the long pseudopodia of 
the Foraminifera are doubly refractive, and it follows that their 
molecules are anisotropically arranged*. Whether the slender form 
and asymmetrical structure of calcareous rod and protoplasmic 
thread be independent phenomena, or merely two aspects of one 
and the same phenomenon, is a hard question, and not one for us 
to discuss. Nor can we profitably discuss (much as we should like 
to know) how far these patterns of molecular structure in threads, 
films and surface-pellicles affect the “fluidity” of the substance, 
and conflict with the capillary forces which influence its outward 
form. But we may safely say that the effects of surface-tension 
on cell-form have been so plainly seen all through this book that 
any counter-effects due to protoplasmic asymmetry must be 
phenomena of a second order, and inconspicuous on the whole. 
Over the whole surface of the shell of Globigerina the radiating 
spicules tend to occur in a hexagonal pattern, symmetrically 
grouped around the pores which perforate the shell. Rhumbler 
has suggested that this arrangement is due to diffusion-currents, 
forming little eddies about the base of the pseudopodia issuing from 
the pores: the idea being borrowed from Benard, to whom is due 
the discovery of this type or order of vortices f. In one of Benard’s 
experiments a thin layer of paraffin is strewn with particles of 
graphite, then warmed to melting, whereupon each little solid granule 
becomes the centre of a vortex; by the interaction of these vortices 
the particles tend to be repelled to equal distances from one another, 
and in tfle end they are found to be arranged in a hexagonal pattern J.

♦ Cf. W. J. Schmidt, Die Bausteine des Tierkorpers in polarisiertem Lichte, 
Bonn, 1924; Ueber den Feinbau der Filopodien; insb. ihre Doppelbrechung bei 
Miliola, Protoplasma, xxvn, p. 587, 1937; also I). L. Mackinnon, Optical pro
perties of contractile organs in Heliozoa, JI. Physiol, xxxvm, p. 254, 1909; 
R. O. Herzog, Lineare u. laminare Feinstrukturen, Kolloidzschr. lxi, p. 280, 1932. 
See, for discussion and bibliography, L. E. Picken, op. cit.

f H. Benard, Les tourbillons cellulaires, Ann. de Chimie (8), xxiv, 1901. Cf. 
also the pattern of cilia on an Infusorian, as figured by Biitschli in Bronn’s 
Protozoa, in, p. 1281, 1887.

J A similar hexagonal pattern is obtained by the mutual repulsion of floating 
magnets in Mr R. W. Wood’s experiments, Phil. Mag. xlvi, pp. 162-164, 1898- 
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The analogy is plain between this experiment and those diffusion 
experiments by which Leduc produces his beautiful hexagonal 
systems of artificial cells, with which we have dealt in a previous 
chapter.

But let us come back to the shell itself, and consider particularly 
its spiral form. That the shell in the Foraminifera should tend 
towards a spiral form need not surprise us; for we have learned that 
one of the fundamental conditions of the production of a concrete 
spiral is just precisely what we have here, namely the develop
ment of a structure by means of successive graded increments 
superadded to its exterior, which then form part, successively, of 
a permanent and rigid structure. This condition is obviously forth
coming in the foraminifera!, but not at all in the radiolarian, shell. 
Our second fundamental condition of the production of a logarithmic 
spiral is that each successive increment shall be so posited and so 
conformed that its addition to the system leaves the form of the 
whole system unchanged. We have now to enquire into this latter 
condition; and to determine whether the successive increments, or 
successive chambers, of the foraminiferal shell actually constitute 
gnomons to the entire structure.

It is obvious enough that the spiral shells of the Foraminifera 
closely resemble true logarithmic spirals. Indeed so precisely do 
the minute shells of many Foraminifera repeat or simulate the spiral 
shells of Nautilus and its allies that to the naturalists of the early 
nineteenth century they were known as the Cephalopodes micro- 
scopiques*, until Dujardin shewed that their little bodies comprised 
no complex anatomy of organs, but consisted merely of that slime-like 
organic matter which he taught us to call “sarcode,” and which 
we learned afterwards from Schwann to speak of as “protoplasm.”

One striking difference, however, is apparent between the shell 
of Nautilus and the little nautiloid or rotaline shells of the Fora
minifera: namely that the septa in these latter, and in all other 
chambered Foraminifera, are convex outwards (Fig. 423), whereas 
they are concave outwards in Nautilus (Fig. 347) and in the rest 
of the chambered molluscan shells. The reason is perfectly simple.

* Cf. Ale. d’Orbigny, Tableau methodique de la classe des Cephalopodes, Ann. 
des Sci. Nat. (1), vn, pp. 245-315, 1826; Felix Dujardin, Observations nouvelles 
sur les pretendus Cephalopodes microscopiques, ibid. (2), in, pp. 108, 109, 312-315, 
1835; Recherches sur les organismes inferieurs, ibid, iv, pp. 343—377, 1835; etc. 
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In both cases the curvature of the septum was determined before 
it became rigid, and at a time when it had the properties of 
a fluid film or an elastic membrane. In both cases the actual 
curvature is determined by the tensions of the membrane and the 
pressures to which it was exposed. Now it is obvious that the 
extrinsic pressure which the tension of the membrane has to with
stand is on opposite sides in the two cases. In Nautilus, the pressure 
to be resisted is that produced by the growing body of the animal, 
lying to the outer side of the septum, in the outer, wider portion of 
the tubular shell. In the Foraminifer the septum at the time of its 
formation was no septum at all; it was but a portion of the convex

Fig. 423. N ummulina antiquior R. and V. After V. von Moller.

surface of a drop that portion namely which afterwards became 
overlapped and enclosed by the succeeding drop; and the curvature 
of the septum is concave towards the pressure to be resisted, which 
latter is inside the septum, being simply the hydrostatic pressure 
of the fluid contents of the drop. The one septum is, speaking 
generally, the reverse of the other; the organism, so to speak, is 
outside the one and inside the other; and in both cases alike, the 
septum tends to assume the form of a surface of minimal area, as 
permitted, or as defined, by all the circumstances of the case.

The logarithmic spiral is easily recognisable in typical cases* (and
* It is obvious that the actual outline of a forarniniferal, just as of a molluscan 

shell, may depart widely from a logarithmic spiral. When we say here, for short, 
that the shell is a logarithmic spiral, we merely mean that it is essentially related 
to one: that it can be inscribed in such a spiral, or that corresponding points 
(such, for instance, as the centres of gravity of successive chambers, or the 
extremities of successive septa) will be found to lie upon such a spiral. 
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especially where the spire makes more than one visible revolution 
about the pole), by its fundamental property of continued similarity: 
that is to say, by reason of the fact that the big many-chambered 
shell is of just the same shape as the smaller and younger shell-- 
which phenomenon is as apparent and even obvious in the nautiloid 
Foraminifera, as in Nautilus itself: but nevertheless the nature of 
the curve must be verified by careful measurement, just as Moseley 
determined or verified it in his original study of Nautilus (cf. p. 770). 
This has accordingly been done, by various writers: and in the first 
instance by Valerian von Moller, in an elaborate study of Fusulina— 
a palaeozoic genus whose little shells have built up vast tracts of 
carboniferous limestone in European Russia*.

In this genus a growing surface of protoplasm may be conceived 
as wrapping round and round a small initial chamber, in such a way 
as to produce a fusiform or ellipsoidal shell- -a transverse section 
of which reveals the close-wound spiral coil. The following are 
measurements of the successive whorls in a couple of species of 
this genus:—

F. cylindrica Fischer F. Bocki v. Moller
Breadth (in millimetres)

Whorl Observed Calculated Observed Calculated
T 0-132 — 0-079 —

11 0-195 0-198 0-120 0-119
III 0-300 0-297 0-180 0-179
IV 0-449 0-445 0-264 0-267
V — — 0-396 0-401

In both cases the successive whorls are very nearly in the ratio 
of 1 : 1-5; and on this ratio the calculated values are based.

Here is another of von Moller’s series of measurements of F.
cylindrica, the measurements being those of opposite whorls—that 
is to say of whorls 180° apart:
Breadth (mm.) 
Log. of do. 
Diff, of logs.

0096 0 117
0-982 0-068

0086

0-144 0-176
0-158 0-246
0-090 0-088

0-216 0-264
0-334 0 422
0-08& 0-088

0-323 0-395
0-509 0-597
0-087 0-088

The mean logarithmic difference is here 0-088, = log 1-225; or the 
mean difference of alternate logs (corresponding to a vector angle 
of 2tt, i.e. to consecutive measurements along the same radius) is 
0-176, = log 1-5, the same value as before. And this ratio of 1-5 
between the breadths of successive whorls corresponds (as we see

* V. von Moller, Die spiral-gewundenen Foraminifera des russischen Kohlen- 
kalks, Mem. de l'Acad. Imp. Sci., St Peter sbourg (7). xxv, 1878. 
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by our table dfi p. 791) to a constant angle of about 86’, or just 
such a spiral as we commonly meet with in the Ammonites (cf. 
p. 796).

In Fusulina, and in some few other Foraminifera (cf. Fig. 424, A), 
the spire seems to wind evenly on, w’ith little or no external sign 
of the successive periods of growth, or successive chambers of the 
shell. The septa which mark off the chambers, and correspond to 
retardations or cessations in the periodicity of growth, are still to be 
found in sections of the shell of Fusulina, but they are somewhat 
irregular and comparatively inconspicuous; the measurements we 
have just spoken of are taken without reference to the segments or 
chambers, but only with reference to the whorls, or in other words 
with direct reference to the vectorial angle.

A B
Fig. 424. A. Cornuspira foliacea Phil.; B, Operculina annplanata Defr.

The linear dimensions of successive chambers have been measured 
in a number of cases. Van Iterson*  has done so in various 
Miliolinidae, with such results as the following:

* G. van Iterson, Mathem. u. mikrosk.-anat. Studien uber Blattstellungen, nebst 
Betrachtungen uber den Schalenbau der Miliolinen, 331 pp., Jena. 1907.

No. of chamber ...
Breadth of chamber in 
Breadth of chamber m p, 
calculated

’'riloculina rotunda d Orb.
2 3 4 5 6

- 34 45 61 84 114

- 34 45 60 79 105

7 8 9 10
142 182 246 319

140 187 243 319
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Here the mean ratio of breadth of consecutive chambers may be 
taken as 1-323 (that is to say, thex eighth root of 319/34); and the 
calculated values, as given above, are based on this determination. 
Again, Rhumbler has measured the linear dimensions of a number 
of rotaline forms, for instance Pulvinulina menardi (Fig. 363): in 
which common species he finds the mean linear ratio of consecutive 
chambers to be about 1-187. In both cases, and especially in the 
latter, the ratio is not strictly constant from chamber to chamber, 
but is subject to a small secondary fluctuation*.

* Hans Przibram asserts that the linear ratio of successive chaintiers tends in 
many Foraminifera to approximate to 1-26, which = ^ 2; in other words, that 
the volumes of successive chambers tend to double. This Przibram would bring 
into relation with another law, viz. that insects and ot^er^arthropods tend to 
moult, or to metamorphose, just when they double their weights, or increase their 
linear dimensions in the ratio of 1: V 2. (Die Kammerprogression der Foraminiferen 
als Parallele zur Hautungsprogression der Mantiden, Arch. f. Entw. Meeh, xxxiv, 
p. 680, 1813.) Neither rule seems to me to be well grounded (see above, p. 165).

When the linear dimensions of successive chambers are in con
tinued proportion, then, in order that the whole shell may constitute 
a logarithmic spiral, it is necessary that the several chambers should 
subtend equal angles of revolution at the pole. In the case of the 
Miliolidae this is obviously the case (Fig. 425); for in this family 
the chambers lie in two rows (Biloculina), or three rows (Triloculina), 
or in some other small number of series: so that the angles subtended 
by them are large, simple fractions of the circular arc, such as 
180° or 120°. In many of the nautiloid forms, such as Cyclammina 
(Fig. 426), the angles subtended, though of less magnitude, are still 
remarkably constant, as we may see by Fig. 427; where the angle 
subtended by each chamber is made equal to 20°, and this diagram
matic figure is not perceptibly different from the other. In some 
cases the subtended angle is less constant; and in these it would 
be necessary to equate the several linear dimensions with the 
corresponding vector angles, according to our equation r = ebc^a. 
It is probable that, by so taking account of variations of 0, such 
variations of r as (according to Rhumbier’s measurements) Pul
vinulina and other genera appear to shew, would be found to 
diminish or even to disappear.

The law of increase by which each chamber bears a constant 
ratio of magnitude to the next may be looked upon as a simple
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Fig. 425. 1, 2, Miholina pulchella d’Orb.; 3-5, M. linnaeana d’Orb.
After Brady.

Fig. 426. Cyclammina cancellata Brady.



860 THE SPIRAL SHELLS [ch. 

consequence of the structural uniformity or homogeneity of the 
organism; we have merely to suppose (as this uniformity would 
naturally lead us to do) that the rate of increase is at each instant 
proportional to the whole existing mass. For if Fo, F15 etc. be

Fig. 427. Cyclammina sp. ("Diagrammatic.)

the volumes of the successive chambers, let F( bear a. constant 
proportion to Fo, so Ihat lq = ^Fq, and let V2 bear the same 
proportion to the whole pre-existing volume: then
V2 = q (Fo + FJ = q (Fo + '/K) = ^Fo (i + q) and V2^\ = 1 + q.

This ratio of 1/(1 4- q) is easily shewn to be the constant ratio 
running through the whole series, from chamber to chamber; and 
if this ratio of volumes be constant, so also are the ratios of corre
sponding surfaces, and of corresponding linear dimensions, provided 
always that the successive increments, or successive chambers, are 
similar in form.

\\ e have still to discuss the similarity of form and the symmetry 
of position which characterise the successive chambers, and which, 
together with the law of continued proportionality of size, are the 
distinctive characters and the indispensable conditions of a series 
of “gnomons.”

The minute size of ihe foraminiferal shell or at least of .each 
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successive increment thereof, taken in connection with the fluid or 
semi-fluid nature of the protoplasmic substance, is enough to suggest 
that the molecular forces, and especially the force of surface-tension, 
must exercise a controlling influence over the form of the whole 
structure; and this suggestion, or belief, is already implied in our 
statement that each successive increment of growing protoplasm 
constitutes a separate drop These “drops,” partially concealed by 
their successors, but still shewing in part their rounded outlines, 
are easily recognisable in the various foraminiferal shells which are 
illustrated in this chapter.

Fig. 428. Orhitlina universa d'Orb.

The accompanying figure represents, to begin with, the spherical 
shell characteristic of the common, floating, oceanic Orbulina. In 
the specimen illustrated, a second chamber, superadded to the first, 
has arisen as a drop of protoplasm which exuded through the pores 
of the first chamber, accumulated on its surface, and spread over 
the latter till it came to rest in a position of equilibrium. We may 
take it that this position of equilibrium is determined, at least in 
the first instance, by the “ law of the constant angle. " which, holds, 
or tends to hold, in all cases where the free surface of a given liquid 
is in contact with a given solid, in presence of another liquid or a gas. 
The corresponding equations are precisely the same as those which 
we have used in discussing the form of a drop (on p. 466); though 
some slight modification must be made in our definitions, inasmuch 
as the consideration of surface-tension is no longer appropriate at 
the solid surfaces, and the concept of surface-encr^i/ must take its 
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place. Be that as it may, it is enough for us to observe that, in 
such a case as ours, when a given fluid (namely protoplasm) is in 
surface contact with a solid (viz. a calcareous shell), in presence of 
another fluid (sea-water), then the angle of contact, or angle by 
which the common surface (or interface) of the two liquids abuts 
against the solid wall, tends to be constant: and that being so, the 
drop will have a certain definite form, depending (inter alia) on the 
form of the surface with which it is in contact. After a period of 
rest, during which the surface of our second drop becomes rigid by 
calcification, a new period of growth will recur and a new drop of 
protoplasm be accumulated. Circumstances remaining the same, 
this new drop will meet the solid surface of the shell at the same angle 
as did the former one; and, the other forces at work on the system 
remaining the same, the form of the whole drop, or chamber, will 
be the same as before.

According to Rhumbler, this “law of the constant angle" is 
the fundamental principle in the mechanical conformation of the 
foraminiferal shell, and provides for the symmetry of form as well 
as of position in each succeeding drop of protoplasm: which form 
and position, once acquired, become rigid and fixed with the onset 
of calcification. But Rhumbler’s explanation brings with it its own 
difficulties. It is by no means easy of verification, for on the very 
complicated curved surfaces of the shell it seems to me extraordinarily 
difficult to measure, or even to recognise, the actual angle of contact: 
of which angle of contact, by the way, but little is known, save only 
in the particular case where one of the three bodies is air, as when 
a surface of water is exposed to air and in contact with glass. It 
is easy moreover to see that in many of our Foraminifera the angle 
of contact, though it may be constant in homologous positions from 
chamber to chamber, is by no means constant at all points along the 
boundary of each chamber. In Cristellaria, for instance (Fig. 429), 
it would seem to be (and Rhumbler asserts that it actually is) 
about 90° on the outer side and only about 50' on the inner side 
of each septal .partition; in Pulvinulina (Fig. 363), according to 
Rhumbler, the angles adjacent to the mouth are of 90°, and the 
opposite angles are of 60°, in each chamber. For these and other 
similar discrepancies Rhumbler would account by simply invoking 
the heterogeneity of the protoplasmic drop: that is to say, by 
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assuming that the protoplasm has a different composition and 
different properties (including a very different distribution of 
surface-energy), at points near to and remote from the mouth of 
the shell. Whether the differences in angle of contact be as great 
as Rhumbler takes them to be, whether marked heterogeneities of 
the protoplasm occur, and whether these be enough to account for 
the differences of angle, I cannot tell. But it seems to me that 
we had better rest content with a general statement, and that 
Rhumbler has taken too precise and narrow a view.-

Fig. 429. Cristellaria reniformis d'Orb

In the molecular growth of a crystal, although we must of 
necessity assume that each molecule settles down in a position of 
minimum potential energy, we find it very hard indeed to explain 
precisely, even in simple cases and after all the labours of modern 
crystallographers, why this or that position is actually a place of 
minimum potential. In the case of our little Foraminifer (just as 
in the case of the crystal), let us then be content to assert that each 
drop or bead of protoplasm takes up a position of minimum potential 
energy, in relation to all the circumstances of the case; and let us 
not attempt, in the present state of our knowledge, to define that 
position of minimum potential by reference to angle of contact or 
any other particular condition of equilibrium. In most cases the 
whole exposed surface, on some portion of which the drop must 
come to rest, is an extremely complicated one, and the forces in
volved constitute a system which, in its entirety, is more complicated 
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still; but from the symmetry of the case and the continuity of the 
whole phenomenon, we are entitled to believe that the conditions 
are just the same, or very nearly the same, time after time, from one 
chamber to another: as the one chamber is conformed so will the next 
tend to be, and as the one is situated relatively to the system so will 
its successor tend t o be situated in turn. The physical law of minimum 
potential (including also the law of minimal area) is all that we need 
in order to explain, in general terms, the continued similarity of one 
chamber to another; and the physiological law of growth, by which 
a continued proportionality of size tends to run through the series 
of successive chambers, impresses the form of a logarithmic spiral 
upon this series of similar increments.

In each particular case the nature of the logarithmic spiral, as 
defined by its constant angle, will be chiefly determined by the rate 
of growth; that is to say by the particular ratio in which each new 
chamber exceeds its predecessor in magnitude. But shells having 
the same constant angle (a) may still differ from one another in many 
ways--in the general form and relative position of the chambers, 
in their extent of overlap, and hence in the actual contour and 
appearance of the shell; and these variations must correspond to par
ticular distributions of energy within the system, which is governed 
as a whole by the law of minimum potential.

Our problem, then, becomes reduced to that of investigating the 
possible configurations which may be derived from the successive 
symmetrical apposition of similar bodies whose magnitudes are in 
continued proportion; and it is obvious, mathematically speaking, 
that the various possible arrangements all come under the head of 
the logarithmic spiral, together with the limiting cases which it 
includes. Since the difference between one such form and another 
depends upon the numerical value of certain coefficients of mag
nitude, it is plain that any one must tend to pass into any other 
by small and continuous gradations; in other words, that a classi
fication of these forms must (like any classification whatsoever of 
logarithmic spirals or of any other mathematical curves) be theoretic 
or “artificial.” But we may easily make such an artificial classi
fication, and shall probably find it to agree, more or less, with the 
usual methods of classification recognised by biological students of 
the Foraminifera.
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Firstly we have the typically spiral shells, which occur in great 
variety, and w hich (for our present purpose) we need hardly describe 
further. M e may merely notice how in certain cases, for instance 
Globigerina, the individual chambers are little removed from spheres;
in other words, the area of contact 
between the adjacent chambers is 
small. I n such forms as Cycla hi hl ina 
and Pulvinulina, on the other hand, 
each chamber is greatly overlapped 
by its successor, and the spherical 
form of each is lost in a marked 
asymmetry. Furthermore, in Glo
bigerina and some others we have 
a tendency to the development of 
a gauche spiral in space, as in so 
many of our univalve molluscan 
shells. The mathematical problem 
of how a shell should grow, under 
the assumptions which we have 
made, would probably find its most 
general statement in such a case as 
that of Globigerina, where the whole 
organism lives and grows freely 
poised in a medium whose density 
is little different from its own.

The majority of spiral forms, 
on the other hand, are plane or 
discoid spirals, and wre may take it 
that in these cases some force has 
exercised a controlling influence, so 
as to keep all the chambers in a 
plane. This is especially the case in 
forms like Rotalia or Discorbina 
(Fig. 430), w here the organism lives 
attached to a rock or a frond of sea-1 

Fig. 430. Discorbina bertheloti d’Orb.

eed; for here (j ust as in the case
of the coiled tubes which little worms such as Ser pula and Spirorbis 
make, under similar conditions) the spiral disc is itself asymmetrical, 
its whorls being markedly flattened on their attached surfaces.

T G F 55
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We may also conceive, among other conditions, the very curious 
case in which the protoplasm may entirely overspread the surface 
of the shell without reaching a position of equilibrium; in which 
case a new shell will be formed enclosing the old one, whether 
the old one be in the form of a single, solitary chamber, or have 
already attained to the form of a chambered or spiral shell. This 
is precisely what often happens in the case of Orbulina, when within 
the spherical shell we find a small, but perfectly formed, spiral 
“Globigerina* ”

The various Miliolidae (Fig. 425) only differ from the typical 
spiral, or rotaline forms, in the large angle subtended by each 
chamber, and the consequent abruptness of their inclination to each 
other. In these cases the outward appearance of a spiral tends to 
be lost; and it behoves us to recollect, all the more, that our spiral 
curve is not necessarily identical with the outline of the shell, but 
is always a line drawn through corresponding points in the successive 
chambers of the latter.

We reach a limiting case of the logarithmic spiral when the 
chambers are arranged in a straight line; and the eye will tend to 
associate with this limiting case the much more numerous forms in 
which the spiral angle is small, and the shell only exhibits a gentle 
curve with no succession of enveloping whorls. This constitutes 
the Nodosarian type (Fig. 134, p. 421); and here again, we must 
postulate some force which has tended to keep the chambers in 
a rectilinear series: such for instance as gravity, acting on a system 
of “hanging drops.”

In Textularia and its allies (Fig. 431) we have a precise parallel 
to the helicoid cyme of the botanists (cf. p. 767): that is to say we 
have a sciew translation, perpendicular to the plane of the underlying 
logarithmic spiral. In other words, in tracing a genetic spiral 
through the whole succession of chambers, we do so by a continuous 
vector rotation through successive angles of 180" (or 120° in some 
cases), while the pole moves along an axis perpendicular to the 
original plane of the spiral.

Another type is furnished by the “cyclic” shells of the Orbi- 
tolitidae, where small and numerous chambers tend to be added

* Cf. G. Schacko, Ueber Globigerina-EinscMuss bei Orbulina, Wiegmann's 
Archiv, xlix, p. 428, 1883; Brady, Chall. Rep. 1884, p. 607.
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on round and round the system, so building up a circular flattened 
disc. This again we perceive to be, mathematically, a limiting case 
of the logarithmic spiral; the spiral has become wellnigh a circle and 
the constant angle is wellnigh 90°.

Lastly there are a certain number of Foraminifera in which, 
without more ado, we may simply say that the arrangement of the 
chambers is irregular, neither the law of constant ratio of magnitude 
nor that of constant form being obeyed. The chambers are heaped 
pell-mell upon one another, and such forms are known to naturalists 
as the Acervularidae.

Fig. 431. A, Textularia trochus d'Orb. B, T. concava Karret.

While in these last we have an extreme lack of regularity, we 
must not exaggerate the regularity or constancy which the more 
ordinary forms display. We may think it hard to believe that the 
simple causes, or simple laws, which we have described should operate, 
and operate again and again, in millions of individuals to produce 
the same delicate and complex conformations. But we are taking 
a good deal for granted if we assert that they do so, and in particular 
we are assuming, with very little proof, the “constancy of species” 
in this group of animals. Just as Verworn has shewn that the 
typical Amoeba proteus, when a trace of alkali is added to the water 
in which it lives, tends, by alteration of surface tensions, to protrude 
the more delicate pseudopodia characteristic of A. radiosa—and 
again when the water is rendered a little more alkaline, to turn 
apparently into the so-called A. Umax -so it is evident that a very 
slight modification in the surface-energies concerned might tend 

55-2
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to turn one so-called species into another among the Foraminifera. 
To what extent this process actually occurs, we do not know.

But that this, or something of the kind, does actually occur we 
can scarcely doubt. For example in the genus Peneroplis, the first 
portion of the shell consists of a series of chambers arranged in 
a spiral or nautiloid series; but as age advances the spiral is apt to 
be modified in various ways*.  Sometimes the successive chambers 
grow rapidly broader, the whole shell becoming fan-shaped. Some
times the chambers become narrower, till they no longer enfold the 
earlier chambers but only come in contact each with its immediate 
predecessor: the result being that the shell straightens out, and 
(taking into account the earlier spiral portion) may be described as 
crozier-shaped. Between these extremes of shape, and in regard to 
other variations of thickness or thinness, roughness or smoothness, 
and so on, there are innumerable gradations passing one into another 
and intermixed without regard to geographical distribution:— 
“ wherever Peneroplides abound this wide variation exists, and nothing 
can be more easy than to pick out a number of striking specimens 
and give to each a distinctive name, but in no other way can they be 
divided into ‘species.’^” Some writers have wondered at the 
peculiar variability of this particular shell J; but for all we know 
of the life-history of the Foraminifera, it may well be that a great 
number of the other forms which we distinguish as separate species 
and even genera are no more than temporary manifestations of the 
same variability §.

* Cf. H. B. Brady, Challenger Rep., Foraminifera, 1884, p. 203, pl. xill.
f Brady, op. cit. p. 206; Batsch, one of the earliest writers on Foraminifera, 

had already noticed that this whole series of ear-shaped and crozier-shaped shells 
was filled in by gradational forms; Conchylien des Seesandes, 1791, p. 4, pl. vr, 
fig. 15 a-f. See also, in particular, Dreyer, Peneropbs; eine Studie zur biologischen 
Morphologie und zur Speciesfrage, Leipzig, 1898; also Eimer und Fickert. Artbildung 
und Verwandschaft bei den Foraminiferen, Tubinger zool. Arbeiten, in, p. 35, 
1899.

J Doflein, Protozoenkunde, 1911, p. 263: “Was diese Art veranlasst in dieser 
Weise gelegentlich zu variiren, ist vorlaufig noch ganz rathselhaft.”

§ In the case of Globigerina, some fourteen species (out of a very much larger 
number of described forms) were allowed by Brady (in 1884) to be distinct; and 
this list has been, I believe, rather added to than diminished. But these so-called 
species depend for the most part on slight differences of degree, differences in the 
angle of the spiral, in the ratio of magnitude of the segments, or in their area of 
contact one with another. Moreover with the exception of one or two “dwarf”
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Conclusion

If we can comprehend and interpret on some such lines as these 
the form and mode of growth of the foraminiferal shell we may also 
begin to understand two striking features of the group, on the one 
hand the large number of diverse types or families which exist 
and the large number of species and varieties within each, and 
on the other the persistence of forms which in many cases seem to 
have undergone little change or none at all from the Cretaceous or 
even from earlier periods to the present day. In few other groups, 
perhaps only among the Radiolaria, do we seem to possess so nearly 
complete a picture of all possible transitions between form and 
form, and of the whole branching system of the evolutionary tree: 
as though little or nothing of it had ever perished, and the whole 
web of life, past and present, were as complete as ever. It leads 
one to imagine that these shells have grown according to laws so 
simple, so much in harmony with their material, with their environ
ment, and with all the forces internal and external to which they 
are exposed, that none is better than another and none fitter or less 
fit to survive. It invites one also to contemplate the possibility of 
the lines of possible variation being here so narrow and determinate 
that identical forms may have come independently into being again 
and again.

While we can trace in the most complete and beautiful manner 
the passage of one form into another among these little shells, and 
ascribe them all at last (if we please) to a series which starts with the 
simple sphere of Orbulina or with the amoeboid body of A str or hi za, 
the question stares us in the face whether this be an “evolution” 
which we have any right to correlate with historic time. The 
mathematician can trace one conic section into another, and “ evolve ” 
for example, through innumerable graded ellipses, the circle from 
the straight line: which tracing of continuous steps is a true 
“evolution,” though time has no part therein. It was after this 
fashion that Hegel, and for that matter Aristotle himself, was an

forms, said to be limited to Arctic and Antarctic waters, there is no principle of 
geographical distribution to be discerned amongst them. A species found fossil 
in New Britain turns up in the North Atlantic; a species described from the West 
Indies'is rediscovered at the ice-barrier of the Antarctic. 
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evolutionist.—to whom evolution was a mental concept, involving 
order and continuity in thought but not an actual sequence of events 
in time. Such a conception of evolution is not easy for the modern 
biologist to grasp, and is harder still to appreciate. And so it is 
that even those w’ho, like Dreyer* and like Rhumbler, study the 
foraminiferal shell as a physical system, who recognise that its 
whole plan and mode of growth is closely akin to the phenomena 
exhibited by fluid drops under particular conditions, and who 
explain the conformation of the shell by help of the same physical 
principles and mathematical laws— yet all the while abate no jot 
or tittle of the ordinary postulates of modern biology, nor doubt 
the validity and universal applicability of the concepts of Darwinian 
evolution. For these writers the biogenetisches Grundgesetz remains 
impregnable. The Foraminifera remain for them a great family 
tree, whose actual pedigree is traceable to the remotest ages; in 
which historical evolution has coincided with progressive change; 
and in which structural fitness for a particular function (or functions) 
has exercised its selective action and ensured “the survival of the 
fittest.” By successive stages of historic evolution we are supposed 
to pass from the irregular Astrorhiza to a Rhabdamminu with its 
more concentrated disc; to the forms of the same genus which 
consist of but a single tube with central chamber; to those where 
this chamber is more and more distinctly segmented; so to the 
typical many-chambered Nodosariae; and from these, by another 
definite advance and later evolution to the spiral Trochamminae. 
After this fashion, thioughout the whole varied series of the Fora
minifera, Dreyer and Rhumbler (following Neumayr) recognise so 
many successions of related forms, one passing into another and 
standing towards it in a definite relationship of ancestry or descent. 
Each evolutipn of form, from simpler to more complex, is deemed 
to have been attended by an advantage to the organism, an 
enhancement of its chances of survival or perpetuation; hence the 
historically older forms are on the whole structurally the simpler; 
or conversely, the simpler forms, such as the simple sphere, were 
the first to come into being in primeval seas; and finally, the 
gradual development and increasing complication of the individual

* F. Dreyer. Prinzipien der Geriistbildung bei Rhizopoden, etc., Jen. Zeitschr. 
xxvi, pp. 204-468, 1892.
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within its own lifetime is held to be at least a partial recapitulation 
of the unknown history of its race and dynasty*.

* A difficulty arises in the case of forms (like Peneroplis) where the young shell 
appears to be more complex than the old, the first-formed portion being closely 
coiled while the later additions become straight and simple: “die biformen Arten 
verhalten sich, kurz gesagt, gerade umgekehrt als man nach dem biogenetischen 
Grundgesetz erwarten sollte.” Rhumbler, op. cit. p. 33, etc.

f “Das Festigkeitsprinzip als Movens der Weitcrentwicklung ist zu interessant 
und fur die Aufstellung meines Systems zu wichtig urn die Frage unerortert zu 
lassen, warum diese Bevorziigung der Festigkeit stattgefundcn hat. Reiner 
Ansicht nach lautet die Antwort auf diese Frage einfach, weil die Foraminiferen 
meistens unter Verhaltnissen leben. die ihre Schalen in hohem Grade der Gefahr 
des Zerbrechens aussetzen; es muss also eine fortwahrende Auslese des Festeren 
stattfinden,” Rhumbler, op. cit. p. 22.

J “Die Foraminiferen kiesige oder grobsandige Gebiete des Meeresbodens nicht 
lieben, u.s.w.”: where the last two words have no particular meaning, save only 
that (as M. Aurelius says) “of things that use to be, we say commonly that they 
love to be.”

We encounter many difficulties when we try to extend such 
concepts as these to the Foraminifera. We are led for instance to 
assert, as Rhumbler does, that the increasing complexity of the 
shell, and of the manner in which one chamber is fitted on another, 
makes for advantage; and the particular advantage on which 
Rhumbler rests his argument is strength. Increase of strength, die 
Festigkeitssteigerung, is according to him the guiding principle in 
foraminiferal evolution, and marks the historic stages of their 
development in geologic time. But in days gone by I used to see 
the beach of a little Connemara bay bestrewn with millions upon 
millions of foraminiferal shells, simple Lagenae, less simple Nodosariae, 
more complex Rotaliae: all drifted by wave and gentle current 
from their sea-cradle to their sandy grave: all lying bleached and 
dead: one more delicate than another, but all (or vast multitudes 
of them) perfect and unbroken. And so I am not inclined to believe 
that niceties of form affect the case very much: nor in general that 
foraminiferal life involves a struggle for existence wherein breakage 
is a danger to be averted, and strength an advantage to be 
ensured f.

In the course of the same argument Rhumbler remarks that 
Foraminifera are absent from the coarse sands and gravels {, as 
Williamson indeed had observed many years ago: so averting, or 
at least escaping, the dangers of concussion. But this is after all 
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a very simple matter of mechanical analysis. The coarseness or 
fineness of the sediment on the sea-bottom is a measure of the 
current: where the current is strong the larger stones are washed 
clean, where there is perfect stillness the finest mud settles down; 
and the light, fragile shells of the Foraminifera find their appropriate 
place, like every other graded sediment, in this spontaneous order 
of levigation.

The theorem of Organic Evolution is one thing; the problem of 
deciphering the lines of evolution, the order of phylogeny, the degrees 
of relationship and consanguinity, is quite another. Among the 
higher organisms we arrive at conclusions regarding these things 
by weighing much circumstantial evidence, by dealing with the 
resultant of many variations, and by considering the probability 
or improbability of many coincidences of cause and effect; but 
even then our conclusions are at best uncertain, our judgments are 
continually open to revision and subject to appeal, and all the proof 
and confirmation we can ever have is that which comes from the 
direct, but fragmentary evidence of palaeontology*.

But in so far as forms can be shewn to depend on the play of 
physical forces, and the variations of form to be directly due to 
simple quantitative variations in these, just so far are we thrown 
back on our guard before the biological conception of consanguinity, 
and compelled to revise the vague canons which connect classification 
with phylogeny.

The physicist explains in terms of the properties of matter, and 
classifies according to a mathematical analysis, all the drops and 
forms of drops and associations of drops, all the kinds of froth and 
foam, which he may discover among inanimate things; and his 
task ends there. But when such forms, such conformations and 
configurations, occur among living things, then at once the biologist 
introduces his concepts of heredity, of historical evolution, of suc
cession in time, of recapitulation of remote ancestry in individual 
growth, of common origin (unless contradicted by direct evidence) 
of similar forms remotely separated by geographic space or geologic 
time, of fitness for a function, of adaptation to an environment, of 
higher and lower, of “ better ” and “ worse.” This is the fundamental

* In regard to the Foraminifera, “die Palaeontologie lasst uns leider an Anfang 
der Stammesgeschichte fast ganzlich im Stiche,” Rhumbler, op. cit. p. 14. 
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difference between the “explanations” of the physicist and those 
of the biologist.

In the order of physical and mathematical complexity there is 
no question of the sequence of historic time. The forces that bring 
about the sphere, the cylinder or the ellipsoid are the same yesterday 
and to-morrow. A snow-crystal is the same to-day as when the first 
snows fell. The physical forces which mould the forms of Orbulina, 
of Astrorhiza, of Lagena or of Nod osar ia to-day were still the same, 
and for aught we have reason to believe the physical conditions 
under which they worked were not appreciably different, in that 
yesterday which we call the Cretaceous epoch; or, for aught we 
know, throughout all that duration of time which is marked, but 
not measured, by the geological record.

In a word, the minuteness of our organism brings its conformation 
as a whole within the range of the molecular forces; the laws of 
its growth and form appear to lie on simple lines; what Bergson 
calls*  the “ideal kinship” is plain and certain, but the “material 
affiliation ” is problematic and obscure; and, in the end and upshot, 
it seems to me by no means certain that the biologist’s usual mode 
of reasoning is appropriate to the case, or that the concept of con
tinuous historical evolution must necessarily, or may safely and 
legitimately, be employed.

* The evolutionist theory, as Bergson puts it, “consists above all in establishing 
relations of ideal kinship, and in maintaining that wherever there is this relation of, 
so to speak, logical affiliation between forms, there is also a relation of chronological 
succession between the species in which these forms are materialised" (Creative 
Evolution, 1911, p. 26). Cf. supra, p. 412.

That things not only alter but improve is an article of faith, and 
the boldest of evolutionary conceptions. How far it be true were 
very hard to say; but I for one imagine that a pterodactyl flew no 
less well than does an albatross, and that Old Red Sandstone fishes 
swam as well and easily as the fishes of our own seas.



CHAPTER XIII

THE SHAPES OF HORNS, AND OF TEETH OR TUSKS: 
WITH A NOTE ON TORSION

We have had so much to say on the subject of shell-spirals that we 
must deal briefly with the analogous problems which are presented by 
the horns of sheep, goats, antelopes and other horned quadrupeds; 
and all the more, because these horn-spirals are on the whole less 
symmetrical, less easy of measurement than those of the shell, and 
in other ways also are less easy of investigation. Let us dispense 
altogether in this case with mathematics; and be content with a 
very simple account of the configuration of a horn.

There are three types of horn which deserve separate consideration: 
firstly, the horn of the rhinoceros; secondly, the horns of the sheep, 
the goat, the ox or the antelope, that is to say, of the so-called 
hollow-horned ruminants; and thirdly, the solid bony horns, or 
“ antlers,” which are characteristic of the deer.

The horn of the rhinoceros presents no difficulty. It is physio
logically equivalent to a mass of consolidated hairs, and, like ordinary 
hair, it consists of non-living or “formed” material, continually 
added to by the living tissues at its base. In section the horn is 
elliptical, with the long axis fore-and-aft, or in some species nearly 
circular. Its longitudinal growth proceeds with a maximum velocity 
anteriorly, and a minimum posteriorly; and the ratio of these 
velocities being constant, the horn curves into the form of a loga
rithmic spiral in the manner that we have already studied. The 
spiral is of small angle, but in the longer-horned species, such as 
the great white rhinoceros (Ceratorhinus), the spiral curvature is 
distinctly recognised. As the horn occupies a'median position on 
the head- a position, that is to say, of symmet ry in respect to the 
field of force on either side—there is no tendency towards a lateral 
twist, and the horn accordingly develops as a plane logarithmic 
spiral. When two median horns coexist, the hinder one is much 
the smaller of the two: which is as much as to say that the force,
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or rate, of growth diminishes as we pass backwards, just as it does 
within the limits of the single horn. And accordingly, while both 
horns have essentially the same shape, the spiral curvature is less 
manifest in the second 01 ie, by the mere reason of its shortness.

The paired horns of the ordinary hollow-horned ruminants, such 
•as the sheep or the goat, grow under conditions which are in some 
respects similar, but which differ in other and important respects 
from the conditions under which the horn grows in the’rhinoceros. 
As regards its structure, the entire horn now consists of a bony core 
with a covering of skin; the inner, or dermal, layer of the latter is 
richly supplied with nutrient blood-vessels, while the outer layer, 
or epidermis, develops the fibrous or chitinous material, chemically 
and morphologically akin to a mass of cemented or consolidated 
hairs, which constitutes the “ sheath ” of the horn. A zone of active 
growth at the base of the horn keeps adding to this sheath, ring 
by ring, and the specific form of this annular zone may be taken 
as the “generating curve” of the horn*. Each horn no longer 
lies, as it does in the rhinoceros, in the plane of symmetry of the 
animal of which it forms a part; and the limited field of force con
cerned in the genesis and growth of the horn is bound, accordingly, 
to be more or less laterally asymmetrical. But the two horns are 
in symmetry one with another; they form “conjugate” spirals, one 
being the “mirror-image” of the other. Just as in the hairy coat 
of the animal each hair, on either side of the median “parting,” 
tends to have a certain definite direction of its own, inclined away 
from the median axial plane of the whole system, so is it both with 
the bony core of the horn and with the consolidated mass of hairs 
or hair-like substance which constitutes its sheath; the primary axis 
of the horn is more or less inclined to, and may even be nearly 
perpendicular to, the axial plane of the animal.

The growth of the horny sheath is not continuous, but more or 
less definitely periodic: sometimes, as in the sheep, this periodicity 
is particularly well-marked, and causes the horny sheath to be com-

* In this chapter we keep to Moseley’s way of regarding the equiangular spiral 
in space, of shell or horn, as generated by a certain figure which (a) grows, (b) revolves 
about an axis, and (c) is translated along or parallel to the said axis, all at certain 
appropriate and specific velocities. This method is simple, and even adequate, 
from the naturalist’s point of view; but not so, or much less so, from the mathe
matician's, as we have found in the last chapter (p. 782).
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posed of a series of all but separate rings, which are supposed to be 
formed year by year, and so to record the age of the animal*.

Just as Moseley sought for the true generating curve in the orifice, 
or “lip,” of the molluscan shell, so we begin by assuming that 
in the spiral horn the generating curve corresponds to the lip or 
margin of one of the horny rings or annuli. This annular margin, 
or boundary of the ring, is usually a sinuous curve, not lying in 
a plane, but such as would form the boundary of an anticlastic 
surface of great complexity: to the meaning and origin of which 
phenomenon we shall return presently. But, as we have already 
seen in the case of the molluscan shell, the complexities of the lip 
itself, or of the corresponding lines of growth upon the shell, need

Fig. 432. The Argali sheep; Ovis Ammon. From Cook’s 
Spirals in Nature and Art.

not concern us in our study of the development of the spiral: 
inasmuch as we may substitute for these actual boundary lines, 
their “trace,” or projection on a plane perpendicular to the axis—in 
other words the simple outline of a transverse section of the whorl. 
In the horn, this transverse section is often circular or nearly so, 
as in the oxen and many antelopes: it now and then becomes of

* Cf. R. S. Hindekoper, On the Age of the Domestic Animals, Philadelphia and 
London, 1891, p- 173. In the case of the ram’s horn, the assumption that the rings 
are annual is probably justified. In cattle they are much less conspicuous, but 
are sometimes well-marked in the cow; and in Sweden they are then called 
“calf-rings,” from a belief that they record the number of offspring. That is 
to say, the growth of the horn is supposed to be retarded during gestation, and to 
be accelerated after parturition, when superfluous nourishment seeks a new outlet. 
(Cf. Lonnberg, P.Z.S. 1900, p. 689.) 
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somewhat complicated polygonal outline, as in a highland ram; but 
in many antelopes, and in most of the sheep, the outline is that of 
an isosceles or sometimes nearly equilateral triangle, a form which 
is typically displayed, for instance, in Ovis Ammon. The horn in 
this latter case is a trihedral prism, whose three faces are (1) an 
upper, or frontal face, in continuation of the plane of the frontal 
bone; (2) an outer, or orbital, starting from the upper margin of 
the orbit; and (3) an inner, or nuchal, abutting on the parietal 
bone*. Along these three faces, and their corresponding angles or 
edges, we can trace in the fibrous substance of the horn a series of 
homologous spirals, such as we have called in a preceding chapter 
the “ensemble of generating spirals” which define or constitute the 
surface.

The case of the horn differs in ways of its own from that of 
the molluscan shell. For one thing, the horn is always tubular— 
its generating curve is actually, as well as theoretically, a closed 
curve; there is no such thing as “involution,” or the wrapping of 
one whorl within another, or successive intersection of the generating 
curve. Again, while the calcareous substance of the shell is laid 
down once for all, fixed and immovable, there is reason to believe 
that the young horn has, to begin with, a certain measure of flexi
bility, a certain freedom, even though it be slight, to bend or fold 
or wrinkle. And this being so, while it is no harder in the horn 
than in the shell to recognise the general field of force or general 
direction of growth, the actual conditions are somewhat more 
complex.

In some few cases, of which the male musk ox is one of the most 
notable, the horn is not developed in a continuous spiral curve. It 
changes its shape as growth proce6ds; and this, as we have seen, 
is enough to show that it does not constitute a logarithmic spiral. 
The reason is that the bony exostoses, or horn-cores, about which 
the horny sheath is shaped and moulded, neither grow continuously 
nor even remain of constant size after attaining their full growth. 
But as the horns grow heavy the bony core is bent downwards by 
their weight, and so guides the growth of the horn in a new direction. 
Moreover as age advances, the core is further weakened and to 
a great extent absorbed: and the horny sheath or horn proper,

* Cf. Sir V. Brooke, On the large sheep of the Thian Shan, P.Z.S. 1875, p. 511. 
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deprived of its support, continues to grow, but in a flattened curve 
very different from its original spiral*. The chamois is a somewhat 
analogous case. Here the terminal, or oldest, part of the horn is 
curved; it tends to assume a spiral form, though from its com
parative shortness it seems merely to be bent into a hook. But 
later on the bony core within, as it grows and strengthens, stiffens 
the horn and guides it into a straighter course or form. The same 
phenomenon of change of curvature, manifesting itself at the time 
when, or the place where, the horn is freed from the support of the 
internal core, is seen in a good many other antelopes (such as the

Fig. 433. Diagram of ram's horns, a, frontal; b, orbital; c, nuchal surface. 
After Sir Vincent Brooke, from P.Z.S

hartebeest) and in many buffaloes; and the cases where it is most 
manifest appear to be those where the bony core is relatively short, 
or relatively weak. All these illustrate the cardinal difference 
between the growth of the horn and that of the bone below: the 
one dead, the other alive; the one adding and retaining its successive 
increments, the other mobile, plastic, and in continual flux through
out.

But in the great majority of horns we have no difficulty in 
recognising a continuous logarithmic spiral, nor in correlating it 
with an unequal rate of growth (parallel to the axis) on two 
opposite sides of the horn, the inequality maintaining a constant 
ratio as long as growth proceeds. In certain antelopes, such as the 
gemsbok, the spiral angle is very small, or in other words the horn

* Cf. E. Lbnnberg, On the structure of the musk ox, P.Z.S. 1900, pp. 686-718. 
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is very nearly straight; in other species of the same genus Oryx, 
such as the Beisa antelope and the Leucoryx, a gentle curve (not 
unlike though generally less than that of a Dentalium shell) is 
evident; and the spiral angle, according to the few measurements 
I have made, is found to measure from about 20° to nearly 40°. 
In some of the large wild goats, such as the Scinde wild goat, we have

Fig. 434. Head of Arabian wild goat, Capra sinaitica.
After Sclater, from P.Z.S.

a beautiful logarithmic spiral, with a constant angle of rather less 
than 70°; and we may easily arrange a series of forms, such for 
example as the Siberian ibex, the moufflon, Ovis Ammon, etc., and 
ending with the long-horned Highland ram: in which, as we pass 
from one to another, we recognise precisely homologous spirals with 
an increasing angular constant, the spiral angle being, for instance, 
about 75° or rather less in Ovis Ammon, and in the Highland ram 
a very little more. We have already seen that in the neighbourhood 
of 70° or 80° a small change of angle makes a marked difference in
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the appearance of the spire; and we know also that the actual length 
of the horn makes a very striking difference, for the spiral becomes 
especially conspicuous to the eye when horn or shell is long enough 
to shew several whorls, or at least a considerable part of one entire 
convolution.

Even in the simplest cases, such as the wild goats, the spiral is 
never a plane but always a gauche spiral: in greater or less degree 
there is always superposed upon the plane logarithmic spiral a helical 
spiral in space. Sometimes the latter is scarcely apparent, for the 
horn (though long, as in the said wild goats) is not nearly long 
enough to shew a complete convolution: at other times, as in the 
ram, and still better in many antelopes such as the koodoo, the 
corkscrew curve of the horn becomes its most characteristic feature. 
So we may study, as in the molluscan shell, the helicoid component 
of the spire—in other words the variation in what we have called 
(on p. 816) the angle fl. This factor it is which, more than the 
constant angle of the logarithmic spiral, imparts a characteristic 
appearance to the various species of sheep, for instance to the various 
closely allied species of Asiatic wild sheep, or Argali. In all of these 
the constant angle of the logarithmic spiral is very much the same, 
but the enveloping angle of the cone differs greatly. Thus the long 
drawn out horns of Ovis Poli, four feet or more from tip to tip, 
differ conspicuously from those of Ovis Ammon or 0. hodgsoni, in 
which a very similar logarithmic spiral is wound (as it were) round 
a much blunter cone.

Let us continue to dispense with mathematics, for the mathe
matical treatment of a gauche spiral is never very simple, and let 
us deal with the matter by experiment. We have seen that the 
generating curve, or transverse section, of a typical ram’s horn is 
triangular in form. Measuring (along the curve of the horn) the 
length of the three edges of the trihedral structure in a specimen of 
Ovis Ammon, and calling them respectively the outer, inner, and 
hinder edges (from their position at the base of the horn, relatively 
to the skull), I find the outer edge to measure 80 cm., the inner 
74 cm., and the posterior 45 cm.; let us say that, roughly, they are 
in the ratio of 9:8:5. Then, if we make a number of little 
cardboard triangles, equip each with three little legs (I make them 
of cork), whose relative lengths are as 9:8:5, and pile them up 
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and stick them all together, we straightway build up a curve of 
double curvature precisely analogous to the ram’s horn: except 
only that, in this first approximation, we have not allowed for the 
gradual increment (or decrement) of the triangular surfaces, that is 
to say, for the tapering of the horn due to the magnification of the 
generating curve.

In this case then, and in most other trihedral or three-sided horns, 
one of the three components, or three unequal velocities of growth, 
is of relatively small magnitude, but the other two are nearly equal 
one to the other; it would involve but little change for these latter 
to become precisely equal; and again but little to turn the balance 
of inequality the other way. But the immediate consequence of 
this altered ratio of growth would be that the horn would appear to 
wind the other way, as it does in the antelopes, and also in certain 
goats, e.g. the markhor, Capra falconeri.

For these two opposite directions of twist Dr Wherry has suggested a 
convenient nomenclature. When the horn winds so that we follow it from 
base to apex in the direction of the hands of a watch, it is customary to call 
it a “left-handed” spiral. Such a spiral we have in the horn on the left-hand 
side of a ram’s head. Accordingly, Dr Wherry calls the condition homonymous, 
where, as in the sheep, a right-handed spiral is on the right side of the head, 
and a left-handed spiral on the left side; while he calls the opposite condition 
heteronymous, as we have it in the antelopes, where the right-handed twist 
is on the left side of the head, and the left-handed twist on the right-hand side. 
Among the goats, we may have either condition. Thus the domestic and 
most of the wild goats agree with the sheep; but in the markhor the twisted 
horns are heteronymous, as in the antelopes. The difference, as we have 
seen, is easily explained: and (very much as in the case of our opposite spirals 
in the apple-snail, referred to on p. 820) it has no very deep importance

Summarised then in a very few words, the argument by which 
we account for the spiral conformation of the horn is as follows: 
The horn elongates by dint of continual growth within a narrow 
zone, or annulus, at its base. If the rate of growth be identical on 
all sides of this zone, the horn will grow straight; if it be greater 
on one side than on the other, the horn will become curved; and 
it probably will be greater on one side than on the other, because 
each single horn occupies an unsymmetrical field with reference to 
the plane of symmetry of the animal. If the maximal and minimal 
velocities of growth be precisely at opposite sides of the zone of

TGF 56
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growth, the resultant spiral will be a plane spiral; but if they be not 
precisely or diametrically opposite, then the spiral will be a gauche 
spiral in space; and it is by no means likely that the maximum and 
minimum will occur at precisely opposite ends of a diameter, for no 
such plane of symmetry is manifested in the field of force to which 
the growing annulus corresponds or appertains.

Now we must carefully remember that the rates of growth of which 
we are here speaking are the net rates of longitudinal increment, in 
which increment the activity of the living cells in the zone of growth 
at the base of the horn is only one (though it is the fundamental) 
factor. In other words, if the horny sheath were continually being 
added to with equal rapidity all round its zone of active growth,

Fig. 435 .Marco Polo’s sheep: Ovis Poli. From Cook.

but at the same time had its elongation more retarded on one side 
than the other (prior to its complete solidification) by varying degrees 
of adhesion or membranous attachment to the bony core within, 
then the net result would be a spiral curve precisely such as would 
have arisen from initial inequalities in the rate of growth itself. It 
seems probable that this is an important factor, and sometimes even 
the chief factor in the case. The same phenomenon of attachment 
to the bony core, and the consequent friction or retardation with 
which the sheath slides over its surface, will lead to various subsidiary 
phenomena: among others to rhe presence of transverse folds or 
corrugations upon the horn, and to their unequal distribution upon its 
several faces or edges. tend while it is perfectly true that nearly all 
the characters of the horn can be accounted for by unequal velocities
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of longitudinal growth upon its different sides, it is also plain that the 
actual field of force is a very complicated one indeed. For example, 
we can easily see (at least in the great majority of cases) that the 
direction of growth of the horny fibres of the sheath is by no means 
parallel to the axis of the core within; accordingly these fibres will 
tend to wind in a system of helicoid curves around the core, and not 
only this helicoid twist but any other tendency to spiral curvature 
on the part of the sheath will tend to be opposed or modified by the 
resistance of the core within. On the other hand living bone is a 
very plastic structure, and yields easily though slowly to any forces 
tending to its deformation; and so, to a considerable extent, the 
bony core itself will tend to be modelled by the curvature which the

Fig. 436. Head of Ovis Ammon, shewing St Venant's curves.

growing sheath assumes, and the final result will be determined by 
an equilibrium between these two systems.

While it is not very safe, perhaps, to lay down any general rule 
as to what horns are more and what are less spirally curyed, I think 
it may be said that, on the whole, the thicker the horn the greater 
is its spiral curvature. It is the slender horns, of such forms as 
the Beisa antelope, which are gently curved, and it is the robust 
horns of goats or of sheep in which the curvature is more pronounced. 
Other things being the same, this is what we should expect to find; 
for it is where the transverse section of the horn is large that we may 
expect to find the more marked differences in the intensity of the 
field of force, whether of active growth or of retardation, on opposite 
sides or in different sectors thereof.

56-2
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But there is yet another and a very remarkable phenomenon 
which we may discern in the growth of a horn when it takes the 
form of a curve of double curvature, namely, an effect of torsional 
strain; and this it is which gives rise to the sinuous “ lines of growth,” 
or sinuous boundaries of the separate horny rings, of which v e have 
already spoken. It is not at first sight obvious that a mechanical 
strain of torsion is necessarily involved in the growth of the horn. 
In our experimental illustration (p. 880), we built up a twisted coil of 
separate elements, and no torsional strain attended the development 
of the system. So would it be if the horny sheath grew by successive 
annular increments, free save for their relation to one another and 
having no attachment to the solid core within. But as a matter 
of fact there is such an attachment, by subcutaneous connective 
tissue, to the bony core; and accordingly a torsional strain will be 
set up in the growing horny sheath, again provided that the forces 
of growth therein be directed more or less obliquely to the axis of 
the core; for a “couple” is thus introduced, giving rise to a strain 
which the shealh would not experience were it free (so to speak) 
to slip along, impelled only by the pressure of its owi>growth from 
below. And furthermore, the successive small increments of the 
growing horn (that is to say, of the horny sheath) are not instan
taneously converted from living to solid and rigid substance; but 
there is an intermediate stage, probably long-continued, during 
which the new-formed horny substance in the neighbourhood of the 
zone of active growth is still plastic and capable of deformation.

Now we know, from the celebrated experiments of St Venaut*, 
that in the torsion of an elastic body, other than a cylinder of 
circular section, a very remarkable state of strain is introduced. If 
the body be thus cylindrical (whether solid or hollow), then a twist 
leaves each circular section unchanged, in dimensions and in figure. 
But in all other cases, such as an elliptic rod or a prism of any 
particular sectional form, forces are introduced which act parallel 
to the axis of the structure, and which warp each section into a 
complex “anticlastic”, surface. Thus in the case of a triangular and

* St Venant, De la torsion des prismes, avec des considerations sur leur flexion, 
etc., Mem. des Savants Strangers, Paris, xiv, pp. 233-560, 1856. Karl Pearson 
dedicated part of his History of the Theory of Elasticity to the memory of this 
ingenious and original inan. For a modern account of the subject see Love’s 
Elasticity (2nd ed.), chap. xiv.
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equilateral prism, such as is shewn in section in Fig. 437 A, if the part 
of the rod represented in the section be twisted by a force acting 
in the direction of the arrow, then the originally plane section w’ill 
be warped as indicated in the diagram—where the full contour-lines 
represent elevation above, and the dotted lines represent depression 
below’, the original level. On the external surface of the prism, 
then, contour-lines which were originally parallel and horizontal 
will be found warped into sinuous curves, such that, on each of the 
three faces, the curve will be convex upwards on one half, and 
concave upwards on the other half of the face. The ram’s horn, 
and stdl better that of Oms Ammon. is comparable to such a prism,

save that in section it is not quite equilateral, and that its three 
faces are not plane. The warping is therefore not precisely identical 
on the three faces of the horn; but, in the general distribution of 
the curves, it is in complete accordance with theory*. Similar 
anticlastic curves are well seen’in many antelopes; but they are 
conspicuous by their absence in the cylindrical horns of oxen.

The better to illustrate this phenomenon, the nature of which is 
indeed obvious enough from a superficial examination of the horn, 
I made a plaster cast of one of the horny rings in a horn of Oms 
Ammon, so as to get an accurate pattern of its sinuous edge: and 
then, filling the mould up with wet clay, I modelled an anticlastic

* The case of a thin conical shell under torsion is more complicated than either 
that of the cylinder or of a prismatic rod; and the more tapering horns doubtless 
deserve further study from this point of view. Cf. R. V. Southwell. On the torsion 
of conical shells. Proc. R.S. (A), cLxm, pp. 337-355, 1937. 



886 THE SHAPES OF HORNS [ch.

surface, such as to correspond as nearly as possible with the sinuous 
outline*. Finally, after making a plaster cast of this sectional 
surface, I drew its contour-lines (as shewn in Fig. 437 B) with the 
help of a simple form of spherometer. It will be seen that in great 
part this diagram is precisely similar to St Venant’s diagram of the 
cross-section of a twisted triangular prism; and this is especially 
the case in the neighbourhood of the sharp angle of our prismatic 
section. That in parts the diagram is somewhat asymmetrical is 
not to be wondered at: and (apart from inaccuracies due to the 
somewhat rough means by which it was made) this asymmetry can 
be sufficiently accounted for by anisotropy of the material, by 
inequalities in thickness of different parts of the horny sheath, and 
especially (I think) by unequal distributions of rigidity due to the 
presence of the smaller corrugations of the horn. It is on account 
of these minor corrugations that in such horns as the Highland 
ram’s, where they are strongly marked, the main St Venant effect 
is not nearly so well shewn as in smoother horns, such as those of 
Ovis Ammon and its congenersf.

The distribution of forces which manifest themselves in the 
growth and configuration of a horn is no simple nor merely super-_ 
ficial matter. One thing is coordinated with another; the direction 
of the axis of the horn, the form of its sectional boundary, the 
specific rates of growth in the mean spiral and at various parts 
of its periphery—all these play their parts, controlled in turn by 
the supply of nutriment which the character of the adjacent tissues 
and the distribution of the blood-vessels combine to determine. 
To suppose that this or that size or shape of horn has been pro
duced or altered, acquired or lost, by Natural Selection, whensoever 
one type rather than another proved serviceable for defence or 
attack or any other purpose, is an hypothesis harder to define and 
to substantiate than some imagine it to be.

There are still one or two small matters to speak of before we leave 
these spiral horns. It is the way of sportsmen to keep record of big 
game by measuring the length along the curve of the horn and 
the span from tip to tip. Now if we study such measurements (as

* This is not difficult to do, with considerable accuracy, if the clay be kept 
well wetted or semi-fluid, and the smoothing be done with a large wet brush.

j The curves are well shewn in most of Sir V. Brooke’s figures of the various 
species of Argali, in the paper quoted above, on p. 877.
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they may be found in Mr Rowland Ward's book*), we shall soon 
see that the two measurements do not tally one with the other: 
but that a pair of horns, the longer when measured along the curve, 
may be the shorter from tip to tip, and vice versa. We might set 
this down to mere variability of form, but the true reason is simpler 
still. If the axes of the two horns stood straight out. at right angles 
to the median plane, then growth in length and in width of span 
would go on together. But if the two horns diverge at any lesser 
angle, then as the horns grow their spiral curvature will tend to 
bring their tips nearer and farther apart alternately.

There is one last, but not least curious property to be seen in 
a ram’s horns. However large and heavy the horns may be—-and 
in Ovis Poli 50 or 60 lb. is no unusual weight for the pair to grow to- - 
the ram carries them with grace and ease, and they neither endanger 
his poise nor encumber his movements. The reason is that head 
and horns are very perfectly balanced, in such a way that no bending 
moment tends to turn the head up or down about its fulcrum in 
the atlas vertebra; if one puts two fingers into the foramen magnum 
one may lift up the heavy skull, and find it hang in perfect equili
brium. Moreover, the horns go on growing, but this equipoise is 
never lost nor changed; for the centre of gravity of the logarithmic 
spiral remains constant. There are other cases where heavy horns, 
well balanced as they doubtless are, yet visibly affect the set and 
balance of the head. The stag carries his head higher than a horse, 
and an Indian buffalo tilts his muzzle higher than a cow.

A further note upon torsion

The phenomenon of torsion, to which we have been thus intro
duced, opens up many wide questions in connection with form. Some 
of the associated phenomena are’admirably illustrated in the case 
of climbing plants; but we can only deal with these still more briefly 
and parenthetically. The subject has been elaborately dealt with 
not only in Darwin’s books f, but also by a great number of 
earlier and later writers. In “twining” plants, which constitute 
the greater number of "climbers,” the essential phenomenon is a 
tendency of the growing shoot to revolve about a vertical axis—

* Records of Big Game, 9th edition, 1928.
f Climbing Plants, 1865 (2nd ed. 1875); Power of Movement in Plants, 1880. 
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a tendency long ago discussed by de Candolle and investigated by 
Palm, H. von Mohl and Dutrochet*. This tendency to revolution - 
circumvolution, as Darwin calls it, revolving nutation, as Sachs puts 
it—is very closely comparable to the process by which an antelope’s 
horn (such as the koodoo's) acquires its spiral twist, and is due, in like 
manner, to inequalities in the rate of growth of the growing stem: 
with this difference between the two, that in the antelope's horn 
the zone of active growth is confined to the base of the horn, while 
in the climbing stem the same phenomenon is at work throughout 
the whole length of the growing structure. This growth is in the 
main due to “turgescence,” that is to the extension, or elongation, 
of ready-formed cells through the imbibition of water; it is a phe
nomenon due to osmotic pressure. The particular stimulus to which 
these movements (that is to say, these inequalities of growth) have 
been ascribed can hardly be discussed here; but it was hotly 
debated fifty years ago and for many years thereafter, the point 
at issue being no other than whether direct physical causation, or 
the Darwinian concept of fitness or adaptation, should be invoked 
as an “explanation’’ of biological phenomena. The old Natur- 
philosoplie had been inclined to look for spirals everywhere, and to 
attribute them to very simple causes: “Man wird nicht gross irren” 
(said Okenf) “wenn man sagt, alie Pflanzen eptstehen ais Spirale, 
und zwar weil sie feststehen und ein End gegen die Sonne kehren, 
die taglich einen Spiralgang um sie macht, u.s.w.” When de 
Candolle saw a shoot curve under the influence of light (by helio
tropism, as we are told to call it), he was content to regard the 
curvature as the result of different rates of growth on one side 
or other of the shoot, and these in turn as the direct result of 
differences of illumination. But by the Darwins, father and son, 
and by Sachs and by the Wurzburg school, the curvature was 
ascribed to “irritability.” a “stimulus” on one side of the shoot 
being followed by a “motor-reaction” on the other. The curvature 
was thus taken to be a "response” to external stimuli (such as light 
and gravity); and stimulus and response were supposed to have

* Palm, Ueber das W inden der Pflanzen, 1827; H. von Mohl, Bau und Winden 
der Eanken, etc., 1827; R. H. J. Dutrochet, Sur la volubility des tiges de certains 
vegetaux, et sur la cause de ce phenom£ne, Ann. Sc. Nat. (Bot.), n, pp. 156-167, 
1844, and other papers.

f Isis, i, p. 222, 1817.
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eVplved together in the course of ages, to bring about something 
nu^e and more fitted for survival in the struggle for existence. 
The^ were, in short, of the nature of acquired habits, rather than 
physical phenomena. But there was no gainsaying the fact that the 
immediate cause of curvature was inequality of growth on opposite 
sides*.

A simple stem growing upright in the dark, or in uniformly diffused 
light, would be in a position of equilibrium to a field of force radially 
symmetrical about its vertical axis. But this complete radial sym
metry will not often occur; and the radial anomalies may be such 
as arise intrinsically from structural peculiarities in the stem itself, 
or externally to it by reason of unequal illumination or through 
various other localised forces. The essential fact, so far as we are 
concerned, is that in twining plants we have a very marked tendency 
to inequalities in longitudinal growth on different aspects of the 
stem—a tendency which is but an exaggerated manifestation of one 
which is more or less present, under certain conditions, in all plants 
whatsoever. Just as in the case of the ruminants’ horns so we find 
here that this inequality may be, so to speak, positive or negative, 
the maximum lying to the one side or the other of the twining stem; 
and so it comes to pass that some climbers twine to the one side 
and some to the other: the hop and the honeysuckle following the 
sun, and the field-convolvulus twining in the reverse direction; there 
are also some, like the woody nightshade (Solanum Dulcamara), which 
twine indifferently either way.

Together with this circumnutatory movement, there is very 
generally to be seen an actual torsion of the twining stem—a twist, 
that is to say, about its own axis; and Mohl made the curious 
observation, confirmed by Darwin, that when a stem twines around 
a smooth cylindrical stick the torsion does not take place, save 
“only in that degree which follows as a mechanical necessity from 
the spiral winding”: but that stems which had climbed around 
a rough stick were all more or less, and generally much, twisted. 
Here Darwin did not refrain from introducing that teleological argu
ment which pervades his whole train of reasoning: “The stem,” 
he says, “probably gains rigidity by being twisted (on the same

* On the whole controversy, see F. F. Blackman’s obituary notice of Francis 
Darwin in Proc. R.S. (B), ex, 1932.



890 THE SHAPES OF HORNS [cd.
principle that a much twisted rope is stiffer than a slackly twisoed 
one), and is thus indirectly benefited so as to be able to pass over 
inequalities in its spiral ascent, and to carry its own weight when 
allowed to revolve freely.” The mechanical explanation would 
appear to be very simple, and such as to render the teleological 
hypothesis unnecessary. In the case of the roughened support, 
there is a temporary adhesion or “clinging” between it and the 
growing stem which twines around it; and a system of forces is 
thus set up, producing a “couple,” just as it was in the case of the 
ram’s or antelope’s horn through direct adhesion of the bony core 
to the surrounding sheath. The twist is the direct result of this 
couple, and it disappears when the support is so smooth that no 
such force comes to be exerted.

Another important class of climbers includes the so-called “leaf
climbers.” In these, some portion of the leaf, generally the petiole, 
sometimes (as in the fumitory) the elongated midrib, curls round 
a support ; and a phenomenon of like nature occurs in many, though 
not all, of the so-called “tendril-bearers.” Except that a different 
part of the plant, leaf or tendril instead of stem, is concerned in the 
twining process, the phenomenon here is strictly analogous to our 
former case; but in the resulting helix there is, as a rule, this obvious 
difference, that, while the twining stem, for instance of the hop, 
makes a slow revolution about its support, the typical leaf-climber 
makes a close, firm coil: the axis of the latter is nearly perpendicular 
and parallel to the axis of its support, while in the twining stem the 
angle between the two axes is comparatively small. Mathematically 
speaking, the difference merely amounts to this, that the component 
in the direction of the vertical axis is large in the one case, and the 
corresponding component is small, if not absent, in the other; in 
other words, we have in the climbing stem a considerable vertical 
component, due to its own tendency to grow in height, while this 
longitudinal or vertical extension of the whole system is not apparent, 
or little apparent, in the other cases. But from the fact that the 
twining stem tends to run obliquely to its support, and the coiling 
petiole of the leaf-climber tends to run transversely to the axis of 
its support, there immediately follows this marked difference, that 
the phenomenon of torsion, so manifest in the former case, will be 
absent in the latter.
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''There is one other phenomenon which meets us in the twining 

and\ twisted stem, and which is doubtless illustrated also, though 
not to well, in the antelope’s horn; it is a phenomenon which forms 
the subject of a second chapter of St Venant’s researches on the 
effects, of torsional strain in elastic bodies. We have already seen 
how or^e effect of torsion, in for instance a prism, is to produce 
strains parallel to the axis, elevating parts and depressing other 
parts of each transverse section. But in addition to this, the same 
torsion has the effect of materially altering the form of the section 
itself, as we may easily see by twisting a square or oblong piece of 
india-rubber. If we start with a cylinder, such as a round piece 
of catapult india-rubber, and twist it on its own long axis, we have 
already seen that it suffers no other distortion; it still remains 
a cylinder, that is to say, it is still in section everywhere circular. 
But if it be of any other shape than cylindrical the case is different, 
for now the sectional shape tends to alter under the strain of torsion. 
Thus, if our rod be elliptical in section to begin with, it will, under 
torsion, become a more elongated ellipse; if it be square, its angles 
will become more prominent and its sides will curve inwards, till at 
length the square assumes the appearance of a four-pointed star 
with rounded angles. Furthermore, looking at the results of this 
process of modification, we find experimentally that the resultant 
figures are more easily twisted, less resistant to torsion, than were 
those from which we evolved them; and this is a very curious 
physical or mathematical fact. So a cylinder, which is especially 
resistant to torsion, is very easily bent or flexed; while projecting 
ribs or angles, such as an engineer makes in a bar or pillar of iron 
for the purpose of increasing its resistance to bending, actually make 
it much weaker than before (for the same amount of metal per unit 
length) in the way of resistance to torsion.

In the hop itself, and in a very considerable number of other 
twining and twisting stems, the ribbed or channelled form of the 
stem is a conspicuous feature. We may safely take it, (1) that such 
stems are especially susceptible of torsion; and (2) that the effect 
of torsion will be to intensify any such peculiarities of sectional 
outline which they may possess, though not to initiate them in an 
originally cylindrical structure. In the leaf-climbers the case does 
not present itself, for there, as we have seen, torsion itself is not, 
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or is very slightly, manifested. There are very distinct traces of 
the phenomenon in the horns of certain antelopes, but the reason 
why it is not a more conspicuous feature of the antelope’s ho;n or 
of the ram’s is apparently a very simple one: namely, that the 
presence of the bony core within tends to check that deformation 
which is perpendicular, while it permits that which is parallel, to 
the axis of the horn.

Of deer's antlers

But let us return to our subject of the shapes of horns, and con
sider briefly our last class of these structures, namely the bony 
antlers of the elk and deer*. The problems which these presept to 
us are very different from those wThich we have had to do with in 
the antelope or the sheep.

With regard to its structure, it is plain that the bony antler corre
sponds, upon the whole, to the bony core of the antelope's horn; 
while in place of the hard horny sheath of the latter, we have the 
soft “velvet?,” which every season covers the new growing antler, 
and protects the large nutrient blood-vessels by help of which the 
antler growsf. The main difference lies in the fact that in the 
one case the bony core, imprisoned within its sheath, is rendered 
incapable of branching and incapable also of lateral expansion, and 
the whole horn is only permitted to grow7 in length while retaining 
a sectional contour that is identical with (or but little altered from) 
that which it possesses at its growing base: but in the antler on the 
other hand no such restraint is imposed, .and the living, growing 
fabric of bone is free to expand into a broad flat plate over which 
the blood-vessels run. In the immediate neighbourhood of the main 
blood-vessels growth will be most active, in the interspaces between 
it may wholly fail: with the result that we may have great notches 
cut out of the flattened plate, or may at length find it reduced to the

* For an elaborate study of antlers, see A. Rorig, Arch. f. Entw. Meeh, x, 
pp. 525 -644, 1900; xi, pp. 65-148, 225-309, 1901; C. Hoffmann, Zur Morphologic 
der rezenten Hirsche, To pp., 23 pls., 1901; also Sir Victor Brooke, On the 
classification of the Cervidae, P.Z.S. 1878, pp. 883-928. For a discussion of the 
development of horns and antlers, see H. Gadow, P.Z.S. 1902, pp. 206-222, and 
works quoted therein.

f Cf. L. Rhumbler, Ueber die Abhangigkeit des Geweihwachstums der Hirsche, 
speziell des Edelhirsches, vom Verlauf der Blutgefasse im Kalbengeweih, Zeitschr. 
f. Forst, und Jagdwesen, 1911, pp. 295-314.
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form of a simple branching structure. The main point is that the 
“hon” is essentially an axial rod, while the “antler” is essentially 
an oitspread surface*.  In other words, the whole configuration 
of ai antler is more easily understood by conceiving it as a plate 
or a inrface, more and more notched and scolloped till but a slender 
skele on remains, than to look upon it the other way, namely as an 
axial stem (or beam) giving off branches (or tines), the interspaces 
between which latter may sometimes fill up to form a continuous 
surface.

* The fact that in one very small deer, the little South American Coassus, the 
antler is reduced to a simple short spike, does not preclude the general distinction 
which I have drawn. In Coassus we have the beginnings of an antler, which has 
not yet manifested its tendency to expand; and in the many allied species of the 
American genus Cariacus, we find the expansion manifested in various simple 
modes of ramification or bifurcation.

Fig. 438. Antlers of Swedish elk. After Lonnberg, from P.Z.S.

In a sense it matters very little whether we regard the broad 
plate-like antlers of the elk or the slender branching antlers of the 
stag as the more primitive type; for we are not concerned here 
with questions of hypothetical phylogeny, and even from the 
mathematical point of view it makes little or no d'fference-whether 
we describe the plate as constituted by the interconnection of 
branches, or the branches as derived by the notching or incision 
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of a plate. The important point for us is to recognise that 
(save for occasional slight irregularities) the branching system in 
the one conforms essentially to the curved plate or surface which we
see plainly in the other. In short the arrangement of the branches 
is more or less comparable to that of the veins in a leaf, or to that of 
the blood-vessels as they course over the curved surface of an organ. 
It is a process of ramification, not, like that of a tree, in various 
planes, but strictly limited to a single surface. And just as the 
veins within a leaf are not necessarily confined (as they happen to 

Fig. 439. Head and antlers of the Indian swamp-deer (Cervus Duvauceli). 
After Lydekker, from P.Z.S.

be in most ordinary leaves) to a plane surface, but, as in the petal 
of a tulip or the capsule of a poppy, may have to run their course 
within a curved surface, so does the analogy of the leaf lead us 
directly to the mode of branching which is characteristic of the antler. 
The surface to which the branches of the antler tend to be confined 
is a more or less spheroidal, or occasionally an ellipsoidal one; and 
furthermore, when we inspeit any well-developed pair of antlers, 
such as those of a red deer, a sambur or a wapiti, we have no difficulty 
in seeing that the two antlers make up between them a single surface,
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-and constitute a symmetrical figure, each half being the mirror-image 
of the other. It is what the ghillies call the “cup of the antler”.

To put the case in another way, a pair of antlers (apart from 
occasional slight irregularities) tends to constitute a figure such that 
we could conceive an elastic sheet stretched over or round the entire 
system, and to form one continuous and even surface; and not 
only would the surface curvature be on the whole smooth and even, 
but the boundary of the surface would also tend to be an even curve: 
that is to say the tips of all the tines would approximately have 
their locus in a continuous curve.

It follows from this that if we want to make a simple model of 
a set of antlers, we shall be very greatly helped by taking some 
appropriate spheroidal surface as our groundwork or scaffolding. 
The best form of surface is a matter for trial and investigation in 
each particular case; but even in a sphere, by selecting appropriate 
areas thereof, we can obtain sufficient varieties of surface to meet all 
ordinary cases. With merely a bit of sculptor’s clay or plasticine, 
we should be put hard to it to model the horns of a wapiti or a 
reindeer- but if we start with an orange (or a round florence flask) 
and lay our little tapered rolls of plasticine upon it, in simple natural 
curves, it is surprising to see how quickly and successfully we can 
imitate one type of antler after another. In either case, we shall be 
struck by t he fact that our model may vary in its mode of branching 
within very considerable limits, and yet look perfectly natural; for 
the same wide range of variation is characteristic of the natural 
antlers themselves. As Sir V. Brooke says (up cit. p. 892), “No 
two antlers are ever exactly alike; and the variation to which the 
antlers are subject is so great that in the absence of a large series 
they would be held to be indicative of several distinct species*.” 
But all these many variations lie within a limited range, for they are 
all subject to our general rule that the entire structure is essentially 
confined to a single curved surface. A sheet of stiff paper makes 
an even simpler model. Fold it in two; cut a deer’s head out of 
the double sheet, and leave a large oval where the antlers are to be; 
cut a few notches in this oval leaf, for the spaces between the tines 
(Fig. 440). The likeness to a pair of antlers seems remote to begin

* Cf. also the immense range of variation in elks’ horns, as described by 
Lonnberg, P.Z.S. n, pp. 352-360, 1902.
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with; but it is wonderfully improved as we separate the two antlers 
and give a twist to each, turning antler, tines and all, into the 
appropriate curved or twisted surface.

It is probable that in the curvatures both of the beam and of its 
tines, in the angles by which these latter meet the beam, and in 
the contours of the entire system, there are involved many elegant 
mathematical problems with which we cannot attempt to deal. 
Nor must we attempt meanwhile to enquire into the physical 
meaning or origin of these phenomena, for as yet the clue seems to 
be lacking and we should only heap one hypothesis upon another. 
That there is a complete contrast of mathematical properties be
tween the horn and the antler is the main lesson with which, in the 
meant ime, we must rest content.

Fig. 440. J Hagrams of antlers, before twisting into shape. 
A, Red-deer; B, Swamp-deer.

Of teeth, and of beak and claw

In a fashion similar to that manifested in the shell or the horn, 
we find the equiangular spiral to be implicit in a great many other 
organic structures where the phenomena of growth proceed in a 
similar way: that is to say, where about an axis there is some 
asymmetry leading to unequal rates of longitudinal growth, and 
where the structure is of such a kind that each new increment is 
added on as a permanent and unchanging part of the entire con-
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formation. Nail and claw, beak and tooth, all come under this 
category. The logarithmic spiral always tends to manifest itself in 
such structures as these, though it usually only attracts our attention 
in elongated structures, where (that is to say) the radius vector has 
described a considerable angle. When the canary-bird’s claws grow 
long from lack of use, or when the incisor tooth of a rabbit or a rat 
grows long by reason of disease or of injury of the opponent tooth 
against which it was wont to bite*, we know that the tooth or claw 
tends to grow into a spiral curve, and we speak of it as a mal- 
formationf. But there has been no fundamental change of form, 
only an abnormal increase in length; the elongated tooth or 
claw has the selfsame curvature which it had when it was short, 
but the spiral becomes more and more manifest the longer it grows. 
It is only natural, but nevertheless it is curious to see, how 
closely a rabbit’s abnormally overgrown teeth come to resemble 
the tusks of swine or elephants, of which the normal state is one 
of hypertrophy. A curiously analogous case is that of the New 
Zealand Huia bird, in which the beak of the male is comparatively 
short and straight, while that of the female is long and curved; 
it is easy to see that there is a slight but identical curve also in the 
beak of the male, and rhat the beak of the female shews nothing 
but an extension or prolongation of the same. In the case of the 
more curved beaks, such as those of an eagle or a parrot, we may, 
if we please, determine the constant angle of the logarithmic spiral, 
just as we have done in the case of the Nautilus shell; and here 
again, as the bird grows older or the beak longer, the spiral nature 
of the curve becomes more and more apparent, as in the hooked 
beak of an old «eagle, or in the great beak of a hyacinthine macaw.

Let us glance at one or two instances to illustrate the spiral 
curvature of teeth.

* Cf. John Hunter, Natural History of the. Human Teeth (3rd ed.), 1808, p. 110: 
“Where a tooth has lost its opposite, it will in time become really so much longer 
than the rest as the others grow shorter by abrasion”. Cf. James Murie, Notes 
on some diseased dental conditions in animals, Tr. Odontol. Soc. 1867-8, pp. 37—69, 
257-298. We now know that a Coenurus-cyst in a rabbit’s masseter muscle may 
twist the jaw sideways, so that the incisors fail to meet, and grow accordingly: 
H. A. Bajlis, Trans. R. Soc. Trop. Medicine, xxxin, p. 4, 1939.

f See Professor W. C. McIntosh’s paper on “Abnormal teeth in certain mammals, 
especially in the rabbit,” Trans. R.S.E. lvi, pp 333—407, for a large collection of 
instances admirably illustrated.

T G F 57
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A dentist knows that every tooth has a curvature of its own, 
and that in pulling the tooth he must follow the direction of the 
curve; but in an ordinary tooth this curvature is scarcely visible, 
and is least so when the diameter of the tooth is large compared 
with its length. In simple, more or less conical teeth, such as those 
of the dolphin, and in the more or less similarly shaped canines 
and incisors of mammals in general, the curvature of the tooth is 
particularly well seen. We see it in the little teeth of a hedgehog, 
and in the canines of a dog or a cat it is very obvious indeed. When 
the great canine of the carnivore becomes still further enlarged 
or elongated, as in Machairodus, it grows into the strongly curved 
sabre-tooth of that extinct tiger; and the boar’s canine grows into 
the spiral tusk of wart-hog or babirussa. In rodents, it is the incisors 
which undergo elongation; their rate of growth differs, though but 
slightly, on the two sides of the axis, and by summation of these 
slight differences in the rapid growth of the tooth an unmistakable 
logarithmic spiral is gradually built up; we see it admirably in 
the beaver, or in the great ground-rat Geomys. The elephant is a 
similar case, save that the tooth or tusk remains, owing to com
parative lack of wear, in a more perfect condition. In the rodent 
(save only in those abnormal cases mentioned on the last page) 
the tip, or first-formed part of the tooth wears away as fast as it is 
added to from behind; and in the grown animal, all those portions 
of the tooth near to the pole of the logarithmic spiral have long 
disappeared. In the elephant, on the other hand, we see, practically 
speaking, the whole unworn tooth, from point to root; and its 
actual tip nearly coincides with the pole of the spiral. If we 
assume (as with no great inaccuracy we may do) that the tip 
actually' coincides with the pole, then we may very easily con
struct the continuous spiral of which the existing tusk constitutes 
a part; and by so doing, we see the short, gently curved tusk 
of our ordinary elephant growing gradually into the spiral tusk 
of the mammoth. No doubt, just as in the case of our molluscan 
shells, we have a tendency to variation, both individual and specific, 
in the constant angle of the spiral; some elephants, and some species 
of elephant, undoubtedly have a higher spiral angle than others. 
But in most cases, the angle would seem to be such that a spiral 
configuration would become very manifest indeed if only the tusk 



XIII] OF DOLPHINS’ TEETH 899

pursued its steady growth, unchanged otherwise in form, till it 
attained the dimensions which we meet with in the mammoth. In a 
species such as Mastodon angustidens, or M. arvernensis, the specific 
angle is low and the tusk comparatively straight; but the American 
mastodons and the existing species of elephant have tusks which do 
not differ appreciably, except in size, from the great spiral tusks of 
the mammoth, though from their comparative shortness the spiral 
is little developed and only appears to the eye as a gentle curve. 
Wherever the tooth is very long indeed, as in the mammoth or the 
beaver, the effect of some slight and all but inevitable lateral 
asymmetry in the rate of growth begins to shew itself: in other 
words, the spiral is seen to lie not absolutely in a plane, but to be 
a gauche curve, like a twisted horn. We see this condition very 
well in the huge canine tusks of the babirussa; it is a conspicuous 
feature in the mammoth, and it is more or less perceptible in any 
large tusk of the ordinary elephants.

The simplest of mammalian teeth are, like those of reptiles, conical 
buds which spring by single roots from a common origin: much as 
the pinnules of a compound leaf spring from a common petiole. 
A dolphin’s teeth are typical of what Cope* called a haplodont 
dentition; a sloth’s (whether degenerate or no) are no further 
advanced; canines remain unaltered throughout the mammalia, and 
incisors vary little save for some flattening due to crowding in a 
foreshortened jaw. Like the leaf and its pinnules, the tooth-germ 
buds and branches in endless ways; and we have no criterion of 
comparison (nor any right to expect it) between the individual 
cusps of a dog’s, an elephant’s and a horse’s teeth, any more than 
between the several pinnules, cusps or leaflets of a rose, a maple 
and a horse-chestnut. The tooth-buds remain apart or coalesce in 
various numbers and degrees; and crowding, abrasion and mechanical 
pressure play a large part in the final arrangement and conformation!.

The dolphin’s teeth, used only for prehension, do not impinge 
on one another, and stay sharp accordingly; those of the carnivores

* E. D. Cope, On the homologies and origin of the types of molar teeth in mam
malian dentition, Pr. Ac. N. S. Philad. xxv, p. 371, 1873; Journ. Ac. N. S. Philad. 
(c), vni, pp. 71-89, 1874.

f Cf. J. A. Ryder, Mechanical genesis of tooth forms, Pr. Ac. N. S. Philad. 
1878, pp. 15-80.

57-2
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interlock, rather than meet and oppose* ; in herbivorous animals the 
molars grind one against another, and wear their crowns away. 
The teeth of ungulates have been studied with especial care by the 
palaeontologists on the basis of Cope’s well-known tritubercular 
theory, and one is greatly daring who ventures to deal with them 
in a different wayf. The case is neither plain nor easy. We are 
accustomed to speak of a “tooth” as a single unit, however com
plicated it may be; but we may err in doing so, and we encounter 
other difficulties in studying teeth whose crowns are worn away, 
and in interpreting the “patterns” which successive stages of wear 
and tear expose.

* This is precisely what Aristotle means when he describes the dog’s teeth as 
carcharodont, or sharklike, i.e. interlocking—xapyapoSopra yap eanv baa eTraWarret 
rds iSovras rds b&is, H.A., ii, 501 a 18.

f See E. D. Cope, loc. cit. ahd H F. Osborn, passim. .Cf. also W. K. Gregory, 
A half century of trituberculy, Proc. Am. Phil. Soc. lxxih, pp. 169-317, 1934, who 
says that “even the most complex molar patterns of the Ungulates are referable 
to the tritu berculate type, in strict accord with the steps postulated by Cope and 
Osborn.”

J A view held by Gaudry, Giebel, Kiikental and others, but stoutly opposed by 
Cope and Osborn, who see in the molar tooth a single unit, complicated by “dif
ferentiation”.

The elephant’s molar is manifestly composite. We see on its 
worn surface a long succession of “enamel ridges,” each marking 
a narrow ring or island, lying transversely, filled with dentine, sur
rounded by interstitial cement, and with a root or roots of its own. 
The molars develop one after another during the animal’s lifetime; 
and each consists, to begin with, of so many separate island-elements, 
not yet cemented together nor worn down, each with its own roots, 
its own covering of enamel and its own transversely cuspidate crown. 
These are true dental units, the primitive individual “teeth”, corre
sponding to the still simpler teeth of the dolphin; and they illustrate, 
and go far to confirm the view that the molar tooth is formed, both 
here and elsewhere, by “concrescence”]:. These rudimenta dentium, 
as old Patrick Blair called them, or denticules as Owen did, soon 
fuse together, and begin to wear down as soon as the great composite 
tooth rolls forward and emerges from the gum. As each denticule 
begins to wear away, it first appears as a transverse row of separate 
rings, the so-called columns, which represent the cusps of the original 
crown and vary in size, number and proportion with the species.
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These columns soon fuse and vanish as the cusps wear down; and 
each denticule now appears as a continuous ring of enamel, within

Fig. 441. Abnormal incisor teeth: a, b, of rabbit; c, of beaver. 
After McIntosh.

which the dentine is exposed and around which the cement accumu
lates*.  A single great molar is made up of nearly a dozen of these

* S^e Blair’s Osteographia elephantina, 1713, Tab. in, 19; also the figures in 
F. van Gavei’s Ltude de la tete d’un jeune Elephant d’Asie, Ann. Mus. Marseille, 
xx, 1925. Cf. also L. Bolk, Zur Ontogenie des Elefantengebisses, Odontologische 
Studien, in, Leipzig, 1919.

Fig. 442. A dental unit, or element of the composite molar tooth, of an Indian 
elephant. It consists of five “columns”, terminating in yet unworn “cusps”.
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elements in the African, and of twice as many (twice as much 
flattened or compressed) in the Indian elephant; in the mastodon 
they are much fewer and much larger, and their great tuberculated 
crowns never wholly wear away. In au old but admirable paper 
on the Indian elephant*,  Mr Johns Corse says: “The number of 
teeth of which a grinder is composed varies from four to twenty- 
three, according as the elephant advances in years; so that a 
grinder, or case of teeth, in full-grown elephants, is more than 
sufficient to fill one side of the mouth.... The same number of 
laminae generally fills the jaw of a young or of an old elephant; 
and from three till fifty years there are from ten to twelve teeth or 
laminae in use, in each side of either jaw, for the mastication of 
the food.”

* J. Corse, Observations on the different species of Asiatic elephant, and their 
mode of dentition, Phil. Trans. 1799, pp. 205-236; and cf. Owen’s Comp. Anat. 
in, p. 361.

t The elephant (in my opinion) shews its likeness or affinity to the rodents 
throughout its whole anatomy, the metacromial process of its scapula being one 
conspicuous indication. Hyrax and Elephas are two isolated forms lying near the 
common origin of ungulates and rodents; the one lying rather to the ungulate 
side, the other to the rodent side, of the vague and indefinable border-line. On 
the" relation of the rodent’s dentition to the elephant’s (a view strongly opposed 
by Dr W. K. Gregory), see M. Friant, Contribution & 1’etude.. .des dents jugales 
chez les Mammiferes, Bull. Mus. Hist. Nat. i, pp. 1-132, 1933.

The molar teeth of a mouse, a hare or a capybara are likewise 
composite structures; they shew, precisely after the fashion of the 
elephant, successive narrow annular islands of enamel, with dentine 
within and cement between, all in varying degrees of independence 
or coalescence f.

The molars of a hippopotamus are composite but to a less degree; 
his upper molars have each two pair of roots, the last molar one 
root more. A block of dentine lying transversely to the jaw, with 
a pair of roots below and a pair of enamel-covered cusps above, is the 
unit of dentition, and is analogous to the young toothlet of the 
elephant.

In the horse and its kind the teeth are long and deeply sunk in 
the jaw, very much as in a rabbit or hare. Their length is made 
up not of root but of elongated crown, in which the deep valleys 
between the once high cusps are filled or flooded with cement; and 
these long crowns are soon worn down to an all but level surface, 
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in which the enamel-layer which covered the hills and lined the 
valleys is seen in sectional contour. A horse’s incisor is the simplest 
case. On its worn surface we see an inner ring of enamel concentric 
with the enamel of the outer edge or surface of the tooth; cement 
fills up the inner ring, and dentine the space between. The tip of 
the tooth has sunk down, or been tucked in, till it forms a cement- 
filled lake on the top of the hill; the lake narrows in, and at last 
vanishes as the horse grows old and the tooth wears down; in the 
“aged” horse we see the “mark” no more. To recognise this lake 
or pit in the simple contours of the young incisor is an easy matter; 
but in the abraded molar the enamel-layer which once covered all 
its ups and downs forms a contour-line, or “curve of level,” of great 
complexity. This contour-line alters as the levels change, and varies 
from one tooth to the next and from one year to another, so long as 
wear and tear continue. The geographer reads the lie of the land, 
with all its ups and downs, from a many-contoured map*,  but the 
worn tooth shews us only one level and one contour at a time; we 
must eke out its scanty evidence by older and younger teeth in other 
phases or degrees of wear. The “ pattern ” of a horse’s molar tooth is 
indeed so closely akin to a map-maker’s contours that some of the 
terms he uses may be useful to us. He speaks, for instance, of ridge
lines and course-lines, lignes de faite and lignes de thalweg; of &gap, 
or lowland way between two hills, in contrast to a col or saddle at 
the summit of a mountain-pass; or of a gorge, which is a narrow 
steep-sided valley; or a scarp, which is a long steep-faced hillside. 
We must take care all the while to see which side of our contour-line 
is positive or negative—on which side the ground slopes up and on 
which down. In our tooth we find that every enamel-contour has 
dentine on the one side and more or less cement on the other; the 
dentine belongs to the closed interior of the tooth itself, and on the 
other side of the enamel-line are spaces open to the world.

* Contour-lines or horizontals, as some geographers prefer to call them, were 
invented by Buache, in 1752. These are discussed by Cayley, On contours ahd 
slope-lines, Phil. Mag. xvni, pp. 294-8, 1859; and by Clerk Maxwell, On hills and 
dales, ibid. XL, pp. 421-7, 1870.

In a horse’s molar we see the sinuous contours of two small lakes, 
remains of the two valleys which lay between the three transverse 
ridges of the compound tooth; and outside the enamel-edges of 
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these contoured lakes is the dentinal substance of the tooth, sur
rounded again by the outer covering of enamel. Thd space between 
the outer and the inner contours is narrowed in each case at a 
certain point, suggesting a “col”; while it broadens out at other 
places, suggesting the former sites of cusps or hills. In neigh
bouring sections (B, C) we rise» above the level of the cols, find a 
way open to the valleys, and see the separate transverse mountain
ranges (or lophs) of Which the tooth is composed. The general plan

Fig. 444. Upper molar teeth of elephants. A, E. meridionalis (Pliocene), largest 
of elephants. B, Indian, and C, African elephants.

of this tooth is characteristic of the Perissodactyles; but the varying 
steepness of the hills, the depth of the valleys, and the amount of 
abrasion or erosion, lead to an infinite variety of patterns, varying 
with the species, with the age of the animal, and with the order 
of succession of the particular tooth; and so rendering it (as Osborn 
says) "one of the most difficult objects to define and describe in 
the whole field of vertebrate palaeontology*. ”

* H. F. Osborn, Equidae oT the Oligocene, etc., Mem. Amer. Mus. of N.H. (n.s.) 
n, p. 3, 1918.

In Elasmotherium the hillsides are ridged and channelled, and 
their contours folded or sinuous accordingly. In Rhinoceros broad 
gaps replace the narrow cols, and certain jutting crags figure on 
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the contour-lines as the so-called crochet and anticrochet. In Anchi- 
therium, erosion goes no farther than the summits of the several 
cusps or hill-tops.

These, to my thinking, are the few and simple lines on which we 
may study the architecture of the Perissodactyle tooth. But to say 
how far we may rely on the innumerable minor differences of pattern

A
Fig. 445 A. Third upper molar of a horse, a, the ectdloph, with its three styles, 
separated by two indents (Owen); b, three transverse ridges, the protoloph, mesoloph 
and melaloph (Osborn); c, o', two lakes, valleys or fossettes; d, d', what Owen calls 
the entries of the valleys; x, x', cols, where a less worn tooth would shew open roads 
or passes; o, o, cusps or conules, the sites of worn-down hills oi hillocks.

Fig. 445 B and C. The same tooth, but younger and less worn 
down than A. Diagrammatic.

as evidence of blood-relationship and evolutionary descent is quite 
another story, and deserves much more anxious consideration*.

* In the vast literature of mammalian dentition the following are conspicuous: 
R. Owen, Odontography, 1845; L. Riitimeyer, Zur Kenntniss der fossilen Pferde, 
und zu einer vergl. Odontographie der Hufthiere, Verh. Naturf. Ges. Basel, in, 
1963; W. Leche, Zur Entwicklungsgeschichte des Zahnsystems der Saugetiere, 
Bibi. Zool. 1894-5, 160 pp.; E. D. Cope, On the trituberculate type of molar tooth 
in the Mammalia, P-oc Amer. Philos. Soc. xxi, pp. 324-326, 1885; W. K. Gregory, 
A half-century of trituberculy, ibid, lxxiii, pp. 161-317, 1934.
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The “horn” or tusk of the narwhal is a very remarkable and 
a very anomalous thing. It is the only tooth in the creature’s head» 
to come to maturity; it grows to an immense and apparently

Fig. 446. Enamel patterns (diagrammatic) of certain fossil Equidae. 
A, Protohippus; B, Hyohippus; C, Neohippus.

unwieldy size, say to eight or even nine feet long; it never curves 
nor bends, but grows as straight as straight can be- —a very singular 
and exceptional thing; it looks as though it were twisted, but really

Fig. 447. Enamel pattern /diagrammatic) of the upper molar teeth of Rhinoceros. 
The back-tooth (to the right-hand side) is the least worn, and its contour-line lies 
at the highest level.

carries on its straight axis a screw of several contiguous low-pitched 
threads; and (last and most anomalous thing of all) when, as 
happens now and then, two tusks are developed instead of one, one 
on either side, these two do not form a conjugate or symmetrical 
pair, they are not mirror-images of one another, but are identical 
screws, with both threads running the same way*.

* The male narwhal carries the horn, the female being tuskless; but the whalers 
say that the rare two-horned specimens are all females. A famous two-horned 
skull in the Hamburg Museum is known to have belonged to a pregnant female. 
It was brought home in 1684, and is one of the oldest museum specimens in the 
world; the tusks measure 242 and 236 cm. During my thirty years’ close 
acquaintance with the Dundee whalers, only four two-horned narwhals passed 
through my hands. Bateson (Problems of Genetics, 1913, p. 44) makes thq curious 
remark that “the Narwhal’s tusks, in being both twisted in the same direction, 
are highly anomalous, and are comparable with pairs of twins."
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All ordinary teeth, as we have seen, have their own natural 
•curvature, less or more, which becomes more manifest and con
spicuous the longer they grow. We cannot suppose that the field 
of force (internal and external) in which the narwhal’s tusk develops 
is so simple and uniform as to allow it to grow in perfect symmetry, 
year after year, without the least bias or intention toward either 
side; we must rather suppose that the resistances which the growing 
tusk encounters average out and cancel one another, and leave no 
one-sided resultant. The long, straight, tapering tooth is commonly 
said to have a “spiral twist,” but there is no twist at all; the ivory 
is straight-grained and uniform, through and through. The tusk, 
in short, is a straight, right-handed, low-pitched screw or helix, with 
several threads; which threads, in the form of alternate grooves 
and ridges, wind evenly and coni inuously from one end of the tusk 

‘ to the other, even extending to its root, deep-set in the socket or 
alveolus of the upper jaw.

How this composite spiral thread is formed is quite unknown. 
We have just seen that it is not due to any twisting of the dentinal 
axis of the tooth. That it is uniform and unbroken from end to 
end shews that the tooth somehow fashions it as a whole; a nd that 
it extends deep down within the alveolus is enough to shew that it 
is not impressed or graven on the tooth by any external agency. 
We note, as a minor feature, that the several grooves or ridges which 
constitute the composite thread have their individual or accidental 
differences; a broader or a narrower groove continues unchanged 
and recognisable from one end of the tooth to the other; in other 
words, whatever makes each ridge or groove goes on acting in the 
selfsame way, as long as growth goes on. A screw is made, in 
general, by compounding a translatory with a rotatory motion, and 
by bringing the latter into relation with the mould or matrix by 
which the thread is fashioned or imposed; and I cannot see how 
to avoid believing that the narwhal’s tooth must revolve in like 
manner, very slowly on its longitudinal axis, all the while it grows — 
however strange, anomalous and hard to imagine such a mode of 
growth may be. We know that the tooth grows throughout life in 
its longitudinal direction, the open root and “permanent pulp” 
accounting for this; and only by a simultaneous and equally con
tinuous rotation (so far as I can see) can we account for the perfect 
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straightness of the tusk, for the grooving or “ rifling ” of the surface 
accompanied by no internal twist, for the extension of that rifling 
to the alveolar portion of the tusk within the jaw, and for the fact 
that the several associate grooves and ridges preserve their individual 
character as they pass along and wind their way around. A very 
slow rotation is all we need demand—say four or five complete 
revolutions of the tusk in the whole course of a lifetime.

The progress of a whale or dolphin through the water may be 
explained as the reaction to a wave which is caused to run from 
head to tail, the creature moving through the water somewhat 
slower than the wave travels. The same is true, so far, of a fish; 
but the wave tends to be in one plane in the fish, the dorsal and 
ventral fins helping to keep it so; while in the dolphin it may be 
said to be “circularly polarised,” or resoluble into two oscillations in 
planes normal to one another, and caused by tail and tail-end swishing 
around in circular orbits which alter in phase from one transverse 
section to another. .Just as in the case of a screw-propeller, or as 
in a torpedo (where it is specially corrected or compensated), this 
mode of action entails a certain waste of energy; it comes of the 
development of a “harmful moment,” which tends to rotate the 
body about its axis, and to screw the animal along its course. A 
slight left-handed curvature of the dolphin’s tail goes some little 
way towards correcting this tendency. M. Shuleikin’s study of the 
kinematics of the dolphin*—a fine piece of work both on its experi
mental and its theoretical side—shows the dolphin to be a better 
swimmer than the fish, inasmuch as its speed of progression comes 
nearer to the velocity of the wave which is propagated along its 
body; the so-called “step,” or fraction of the body-length travelled 
in a single period, is found to be about 0-7 in the dolphin, against 
0-57 in a fast-swimming fish (tunny or mackerel).

Shuleikin makes the curious remark that the asymmetry of the 
skull (discernible in all Cetacea), which in the dolphin shews a screw
twist with a pitch about equal to the length of the body, acts as 
a compensatory check to the screw-component in the creature’s 
movement of progression, and that “the till now obscure purpose

* Wassilev Shuleikin, Kinematics of a dolphin (Russian), Bull. Acad. Sci. U.R.S.S. 
(Cl. sci. math, et phys.), 1935, pp. 651-671; also, Dynamics, external and internal, 
of a fish, ibid. 1934, pp. 1151-1186. On the latter subject see James Gray, 
Croonian Lecture, 1940, and other papers.
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of the skull’s asymmetry” is accordingly explained. I should put 
this differently, and suggest that this counter-spirality of the skull 
is the direct result of the spiral component in locomotion. It implies, 
I take it, a lagging and incomplete response in the fore-part of the 
body to the rotatory impulse of the parts behind: or, in the plain 
words of the engineer, a torque of inertia. .

This tendency, dimly seen in the dolphin’s skull, is clearly demon
strated in the narwhal’s “horn,” and gives a complete explanation 
of its many singularities. The narwhal and its horn are joined 
together, and move together as one piece—nearly, but not quite! 
Stiff, straight and heavy, the great tusk has its centre of inertia 
well ahead of the animal, and far from the driving impulse of its 
tail. At each powerful stroke of the tail the creature not only darts 
forward, but twists or slews all of a sudden to one side; and the 
heavy horn, held only by its root, responds (so to speak) with 
difficulty. For at its slender base the “couple”, by which it has 
to follow the twisting of the body, works at no. small disadvantage. 
A “torque of inertia” is bound to manifest itself. The horn does 
not twist round in perfect synchronism with the animal; but the 
animal (so to speak) goes, slowly, slowly, little by little, round its 
own horn! The play of motion, the lag, between head and horn 
is slight indeed; but it is repeated with every stroke of the tail. 
It is felt just at the growing root, the permanent pulp, of the tooth; 
and it puts a strain, or exercises a torque, at the1 very seat, and during 
the very process, of calcification.

Suppose that at every sweep of the tail there be a lag of no more 
than a fifth part of a second of arc* betweeh the rotation of the 
tusk and of the body, that small amount would amply suffice to 
account, on a rough estimate of the age and of the activity of the 
animal, for as many turns of the screw as a fair-sized tusk is found 
to exhibit.

According to this explanation, or hypothesis, the slow rotation 
of the tusk corrects all tendency to flexure or curvature in one 
direction or another; the grooves and ridges which constitute the 
“thread” of the screw are the result of irregularities or inequalities 
within the alveolus, which “rifle” the tusk as it grows; and the

* Or say a hundred-thousandth part of the angle subtended by a minute on the 
clock.
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identity of direction in the two horns of a pair is at once accounted 
for.

Beautiful as the spiral pattern of the tusk is, it obviously falls 
short, in regularity and elegance, of what we find, for instance, in 
a long tapering Terebra or Turritella, or any other spiral gasteropod 
shell. In the narwhal we have, as we suppose, only a general and 
never a precise agreement between rate of torsion and rate of growth; 
for these two velocities—of translation and rotation—are separate 
and independent, and their resultant keeps fairly steady but no 
more. In the snail-shell, on the other hand, actual tissue-growth 
is the common cause of both longitudinal and torsional displace
ments, and the resultant spiral is very perfect and regular.

Before we leave the teeth, let us note that their extreme tightness 
in their sockets is a remarkable thing. A thin “periodontal mem
brane,” less than 0-25 mm. thick, fills up the space between tooth and 
socket; and this membrane, elastic, homogeneous and incompressible, 
is analogous to the thin layer of viscous liquid dealt with in modern 
theories of lubrication. The equilibrium of the system, the tightness 
of the fit, the displacement of the tooth under given forces, and 
the conditions of stress and strain in the membrane, are all open to 
mathematical treatment; distributions of pressure caji be assigned 
to the tooth, a centre of rotation can be found, a critical load can 
be approximately determined, and the pressures calculated at various 
points. If the membrane thickens, the tooth loosens; its freedom 
of movement or range of displacement varies with the cube of the 
thickness of the membrane, and is at most exceedingly small *|

* J. L. Synge, The tightness of the teeth, etc., Phil. Trans. (A), ccxxxi, pp. 435- 
477, 1933.



CHAPTER XIV

ON LEAF-ARRANGEMENT, OR PHYLLOTAXIS

The beautiful configurations produced by the orderly arrangement 
of leaves or florets on a stem have long been an object of admiration 
and curiosity; and not the least curious feature of the case is the 
limited, even the small number of possible arrangements which we 
observe and recognise. Leonardo da Vinci would seem, as Sir Theodore 
Cook tells us, to have been the first to record his thoughts upon this 
subject; but the old Greek and Egyptian geometers are not likely 
to have left unstudied or unobserved the spiral traces of the leaves 
upon a palm-stem, or the spiral order of the petals of a lotus or the 
florets in a sunflower. For so, as old Nehemiah Grew says, “from 
the contemplation of Plants, men might first be invited to Mathe
matical Enquirys*. ”

* N Grew, The Anatomy of Plants, 1682, p. 152.

The spiral leaf-order has been regarded by many learned botanists 
as involving a fundamental law of growth, of the deepest and most 
far-reaching importance; while others, such as Sachs, have looked 
upon the whole doctrine of “phyllotaxis” as “a sort of geometrical 
or arithmetical playing with ideas,” and “the spiral theory as a 
mode of view gratuitously introduced into the plant.” Sachs even 
wen+ so far as to declare this doctrine to be “in direct opposition 
to scientific investigation, and based upon'the idealism of the 
Naturphilosophie”—the mystical biology of Oken and his school.

The essential facts of the case are not difficult to understand; 
but the theories built upon them are so varied, so conflicting, and 
sometimes so obscure, that we must not attempt to submit them 
to detailed analysis and criticism. There are said to be two chief 
ways by which we may approach the question, according to whether 
we regard as the more fundamental and typical, one or other of 
two chief modes in which the phenomenon presents itself. That is 
to say, we may hold that the phenomenon is displayed in its essential 
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simplicity by the corkscrew spirals, or helices, which mark the 
position of the leaves on a cylindrical stem or tapering fir-cone; or, on

Fig. 448. A giant sunflower, Helianthus maximus. From H. A. Naber, 
after M. Brocard.

the other hand, we may be more attracted by, and may regard as of 
greater importance, the spirals traced by the curving rows of florets 
in the discoidal inflorescence of a sunflower. Whether one way or

T G F 58
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the other be the better, or even whether one be not positively correct 
and the other radically wrong, has been vehemently debated; but as 
a matter of fact they are. both mathematically and biologically, 
inseparable and even identical phenomena. For the face of the 
sunflower is but a shortened stem, and the curves upon its 

Fig. 449. A cauliflower, its composite inflorescence shewing spiral patterns 
of the first and second order.

surfaces are but the projection on a plane of a more elongated 
inflorescence.

We speak, as botanists are wont to do, of these spirals of sunflower, 
cauliflower and the rest as logarithmic spirals, but not without 
hesitation. They doubtless resemble the logarithmic or equiangular 
spiral, but different spirals may look much alike; and these are 
ill-suited to the careful admeasurement and rigorous verification
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which Moseley gave to the spirals of his molluscan shells*. But in 
the sunflower, to judge by the eye, the spirals remain self-similar 
as they grow; each fresh increment forms, or seems to form, a 
gnomon to what went before; each new floret falls into line as part 
of a continuous and self-similar curve: and this goes a long way to 
justify our use of the familiar term logarithmic, or equiangular spiral. 
But the leaf-arrangement or the inflorescence are far less simple 
than the shell. The shell grew as one continuous and indivisible 
whole; its tip is the oldest part, it remains the smallest part, and 
the spiral tube expands continuously as it goes on. But each floret 
of the sunflower has its own separate and individual growth; the 
oldest is also the largest, and the youngest is the least; and as 
younger and younger florets are added on, the spiral advances in 
the direction of its own focus, or its own little end. And the con
ditions may be less simple still in other cases, as in the fir-cone 
itself.

The spiral tesselation of the fir-cone was carefully studied in the 
middle of the eighteenth century by the celebrated Bonnet, with the 
help of Calandrini the mathematician. Memoirs published about 1835, 
by Schimper and Braun, greatly amplified Bonnet’s investigations, 
and introduced a nomenclature which still holds its own in botanical 
textbooks. Naumann and the brothers Bravais are among those 
who continued the investigation in the years immediately following, 
and Hofmeister, in 1868, gave an admirable account and summary 
of the work of these and many other writers f.

* Thus Dr A. H. Church, in his Interpretation of Phyllotaxis Phenomena, 1920, 
p 3, begins by saying that “ angular measurements on actual plant-specimens... 
can never hope to come within a range of accuracy admitting of an error of less 
than half a degree, while precise mathematical theory soon begins to tabulate 
minutes and seconds.”

f Besides papers referred to below, and many others quoted in Sachs’s Botany 
and elsewhere, the following are important: Alex. Braun, Vergl. L'ntersuchung 
fiber die Ordnung der Schuppen an den Tanncnzapfen, etc., Nova Acta Acad. Car. 
Leop. xv, pp. 199-401, 1831; C. F. Schimper’s Vortrage fiber die Moglichkeit 
eines wissenschaftlichen Verstandnisses der Blattstellung, etc., Flora, xviii, 
pp. 145-191, 737-756, 1835; C. F. Schimper, Geometrische Anordnung der um 
eine Achse peripherischen Blattgebilde, Verhandl. Schweiz. Ges. 1836, pp. 113-117; 
L. and A. Bravais, Essai sur la disposition des feuilles curviseriees, Ann. Sci. Nat. 
(2), vn, pp. 42-110, 1837; Sur la disposition symetrique des inflorescences, 
ibid. pp. 193-221, 291-348, vin, pp. 11—42, 1838; Sur la disposition generale des 
feuilles rectiseriees, ibid, xn, pp. 5—41, 65-77, 1839; M emoire sur la disposition 
geom&rique des feuilles et des inflorescences, Paris, 1838; Zeising, Normalverhaltniss

58-2
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The surface of a pine-cone shews a crowded assemblage of woody 
scales, close-packed and pressed together in such a way that each 
has a quadrangular, rhomboidal form*. Each scale forms part of, 
and marks the intersection of, two linear series; these run upwards 
in a spiral course, one in one direction and one in the other, and 
are called accordingly diadromous spirals. In the little cones of the 
Scotch Fir (Pinus silvestris), the whose assemblage of scales may be 
looked on as forming five linear series, or spiral bands, running side 
by side the one way, or as eight such series running the other. But 
these two sets are far from being all the spirals which we can trace 
upon the cone. Sometimes the packing is closer still, especially if 
the cone be long and slender. Then each scale tends to come in 
contact with six others, and so to become roughly hexagonal; we 
recognise a third spiral sferies besides the other two, and this new 
series is found to consist of thirteen rows. But let us disregard for 
the moment this perplexing phenomenon of a cone composed of so 
many series of scales, five, eight or thirteen in number as we happen 
to look at them; and try to find a single series in which every scale 
takes part. We are in no way limited to the fir-cone, which is a 
somewhat special case; but may consider, in a very general way, 
the case of any leafy stem.

Starting from some given level and proceeding upwards, let us 
mark the position of some one leaf (xl) upon the cylindrical stem.

der chemischen und morphologischen Proportionen, Leipzig, 1856; C. F. Naumann, 
Ueber den Quincunx als Gesetz der Blattstellung bei Sigillaria, etc., Neues Jahrb. 
f. Miner. 1842, pp. 410-417; T. Lestiboudois, Phyllotaxie anaiomique, Paris, 1848; 
G. Henslow, Phyllotaxis, or the arrangement of leaves according to mathematical 
laws, JI. Victoria Inst, vi, pp. 129-140, 1873; On the origin of the prevailing 
systems of Phyllotaxis, Tr. Linn. Soc. (Bot.), i, pp. 37-45, 1880. J. Wiesner, 
Bemerkung* n liber rationale und irrationale Divergenzen, Flora, Lvni, pp. 113-115, 
139-143, 1875; H. Airy, On leaf arrangement, Proc. U.S. xxi, p. 176, 1873; 
S. Schwendener, Mechanische Theorie der Blattstcllungen, Leipzig, 1878; F. Delpino, 
Causa meccanica della Jilotasse quincunciaie, Genova, 1880; Teoria generale di 
Filotasse, ibid. 1883; S. Gunther, Das mathematische Grundgesetz im Bau des 
Pflanzenkorpers, Kosmos, iv, pp. 270-284, 1879; F. Ludwig, Wichtige Abschnitte 
aus der mathematischen Botanik, Zeitschr. f. mathem. u. nabwfw. Unterricht, jciv, 
p. 161, 1883; Weiteres liber Fibonacci-Kurven und die numerische Variation der 
gesammten Bllithenstande der Kompositen, Botan. Cblt. lxviii, p. 1, 1896; Alex. 
Dickson, Phyllotaxis of Lepidodendron and Knossia, JI. Bot. ix, p. 166, 1871. For 
a historical account of the earlier literature, see Casimir de Candolle’s Considerations 
generates sur V&ude de la phyllotaxie, Geneve, 1881.

* Cf. supra, p. 515.
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Another, and a younger leaf (B) will be found standing at a certain 
distance around the stem, and a certain distance along the stem, 
from the first. The former distance may be expressed as a fractional 
“divergence” (such as two-fifths of the circumference of the stem) 
as the botanists describe it, or by an “angle of azimuth” (such as 
</> = 144°) as the mathematician would be more likely to state it. 
The position of B relatively to A may be determined, not only by 
this angle in the horizontal plane, but also by an angle of slope (0), 
or merely by linear distance from its basal plane; for the height of 
B above the level of A, in comparison with the diameter of the 
cylinder, will obviously make a great difference in the appearance of 
the whole system. But this matter botanical students have not 
concerned themselves with; in other words, their studies have been 
limited (or mainly limited) to the relation of the leaves to one another 
in azimuth—in other words, to the angle and its multiples.

Whatever relation we have found between, A and B, let precisely 
the same relation subsist between B and C: and so on. Let the 
growth of the system, that is to say, be continuous and uniform; 
it is then evident that we have the elementary conditions for the 
development of a simple cylindrical helix; and this “primary helix” 
or “ genetic spiral ” we can now trace, winding round and round the 
stem, through A, B, C, etc. But if we can trace such a helix through 
A, B, C. it follows from the symmetry of the system, that we have 
only to join A to some other leaf to trace another spiral helix, such, 
for instance, as A, C, E, etc.; parallel to which will run another and 
similar one, namely in this case B, D, F, etc. And these spirals 
will run in the opposite direction to the spiral ABC*.

* For the spiral A('E to be different from ABC, the angle of divergence, or angle 
of azimuth for one step, must exceed 90°, so that the nearer way from A to C is 
backwards; otherwise the spiral ACE is ABC DE, or ABC over again.

In short, the existence of one helical arrangement of points im
plies and involves the existence of another and then another helical 
pattern, just as, in the pattern of a wall-paper, our eye travels from 
one linear series to another.

A modification of the helical system will be introduced when, 
instead of the leaves appearing, or standing, in singular succession, 
we get two or more appearing simultaneously upon the same level. 
If there be two such, then we shall have two generating spirals 



918 ON LEAF-ARRANGEMENT . [ch.
precisely equivalent to one another; and we may calf them A, B, C, 
etc., and A', B', C', and so on. These are the cases which we call 
“whorled” leaves: or in the simplest case, where the whorl consists 
of two opposite leaves only, we call them “ decussate.”

Among the phenomena of phyllotaxis, two points in particular 
have been found difficult of explanation, and have aroused dis
cussion. These are (1), the presence of the logarithmic spirals such 
as we have already spoken of in the sunflower; and (2) the fact 
that, as regards the number of the helical or spiral rows, certain 
numerical coincidences are apt to recur again and again, to the 
exclusion of others, and so to become characteristic features of the 
phenomenon.

As to the first of these, we have seen that the curves resemble, 
and sometimes closely resemble, the logarithmic spiral; but that 
they are, strictly speaking, logarithmic is neither proved nor capable 
of proof. That they appear as spiral curves (whether equable or 
logarithmic) is then a mere matter of mathematical “deformation.” 
The stem which we have begun to speak of as a cylinder is not 
strictly so, inasmuch as it tapers off towards its summit. The 
curve which winds evenly around this stem is, accordingly, not a 
true helix, for that term is confined to the curve which winds evenly 
around the cylinder: it is a curve in space which (like the spiral curve 
we have studied in our turbinate shells) partakes of the characters of 
a helix and of a spiral, and which is in fact a spiral with its pole 
drawn out of its original plane by a force acting in the direction of 
the axis. If we imagine a tapering cylinder, or cone, projected by 
vertical projection on a plane, it becomes a circular disc; and a 
helix described about the cone becomes in the disc a spiral described 
about a pole which corresponds to the apex of our cone. In like 
manner we may project an identical spiral in space upon such surfaces 
as (for instance) a portion of a sphere or of an ellipsoid; and in all 
these cases we preserve the spiral configuration, which is the more 
clearly brought into view the more we reduce the vertical component 
by which it was accompanied. The converse is equally true, and 
equally obvious, namely that any spiral traced upon a circular disc 
or spheroidal surface will be transformed into a corresponding spiral 
helix when the plane or spheroidal disc is extended into an elongated
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cone approximating to a cylinder. This mathematical conception is 
translated, in botany, into actual fact. The fir-cone may be looked 
upon as a cylindrical axis contracted at both ends, until it becomes 
approximately an ellipsoidal solid of revolution, generated about 
the long axis of the ellipse; and the semi-ellipsoidal capitulum of the 
teasel, the more or less hemispherical one of the thistle, and the 
flattened but still convex one of the sunflower, are all beautiful and 
successive deformations of what is typically a long, conical, and all 
but cylindrical stem. On the other hand, every stem as it grows 
out into its long cylindrical shape is but a deformation of the little 
spheroidal or ellipsoidal or conical surface which was its forerunner 
in the bud.

This identity of the helical spirals around the stem with spirals 
projected on a plane was clearly recognised by Hofmeister, who was 
accustomed to represent his diagrams of leaf-arrangement either in 
one way or the other, though not in a strictly geometrical projection*.

According to Mr A. H. Church f, who has dealt carefully and 
elaborately with the whole question of phyllotaxis, the spirals such 
as we see in the disc of the sunflower have a far greater importance 
and a far deeper meaning than this brief treatment of mine would 
accord to them: and Sir Theodore Cook, in his book on the Curves 
of Life, adopted and helped to expound and popularise Mr Church’s 
investigations.

Mr Church, regarding the problem as one of “uniform growth,” 
easily arrives at the conclusion that, if this growth can be conceived 
as taking place symmetrically about a central point or “pole,” the 
uniform growth would then manifest itself in logarithmic spirals, 
including of course the limiting cases of the circle and straight line. 
With this statement I have little fault to find; it is in essence 
identical with much that I have said in a previous chapter. But 
other statements of Mr Church’s, and many theories woven about 
them by Sir T. Cook and himself, I am less able to follow. Mr 
Church tells us that the essential phenomenon in the sunflower disc 
is a series of orthogonally intersecting logarithmic spirals. Unless 
I wholly misapprehend Mr Church’s meaning, I should say that this

* Allgemeine Morphologic der Gewachse, 1868, p. 442, etc.
f Relation of Phyllotaxis to Mechanical Laws, Oxford, 1901-1903; cf. Ann. Bot. 

xv, p. 481, 1901.

f
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is very far from essential. The spirals intersect isogonally, but 
orthogonal intersection would be only one particular case, and in all 
probability a very infrequent one, in the intersection of logarithmic 
spirals developed about a common pole. Again on the analogy of 
the hydrodynamic lines of force in certain vortex movements, and of 
similar lines of force in certain magnetic phenomena, Mr Church 
proceeds to argue that the energies of life follow lines comparable 
to those of electric energy, and that the logarithmic spirals of the 
sunflower are, so to speak, lines of equipotential*.  And Sir T. Cook 
remarks that this “theory, if correct, would be fundamental for all 
forms of growth, though it would be more easily observed in plant 
construction than in animals.” But the physical analogies are remote, 
and the deductions I am not able to follow.

* “ The proposition is that the genetic spiral is a logarithmic spiral, homologous 
with the line of current-flow in a spiral vortex; and that in such a system the 
action of orthogonal forces will be mapped out by other orthogonally intersecting 
logarithmic spirals—the ‘parastichies’”; Church, op. cit. I, p. 42.

f Mr Church’s whole theory, if it be not based upon, is interwoven with, Sachs’s 
theory of the orthogonal intersection of cell-walls, and the elaborate theories of 
the symmetry of a growing point or apical cell which are connected therewith. 
According to Mr Church, “the law of the orthogonal intersection of cell-walls at 
a growing apex may be taken as generally accepted” (p. 32); but I have taken 
a very different view of Sachs’s law, in the eighth chapter of the present book. 
With regard to his own and Sachs’s hypotheses. Mr Church makes the following 
curious remark (p. 42): “Nor are the hypotheses here put forward more imaginative 
than that of the paraboloid apex of Sachs which remains incapable of proof, or his 
construction for the apical cell of Pteris which does not satisfy the evidence of his 
own drawings.”

Mr Church sees in phyllotaxis an organic mystery, a something 
for which we are unable to suggest any precise cause: a phenomenon 
which is to be referred, somehow, to waves of growth emanating 
from a centre, but on the other hand not to be explained by the 
division of an apical cell, or any other histological factor. As Sir 
T. Cook puts it, “at the growing point of a plant where the new 
members are being formed, there is simply nothing to see"

But it is impossible to deal satisfactorily, in brief space, either 
with Mr Church’s theories, or my own objections to themf. Let 
it suffice to say that I, for my part, see no subtle mystery in the 
matter, other than what lies in the steady production of similar 
growing parts, similarly situated, at similar successive intervals of 
time. If such be the case, then we are bound to have in consequence 
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a series of symmetrical patterns, whose nature will depend upon the 
form of the entire surface. If the surface be that of a cylinder, we 
shall have a system, or systems, of spiral helices: if it be a plane 
with an infinitely distant focus, such as we obtain by “unwrapping” 
our cylindrical surface, we shall have straight lines; if it be a plane 
containing the focus within itself, or if it be any other symmetrical 
surface containing the focus, then we shall have a system of loga
rithmic spirals. The appearance of these spirals is sometimes spoken 
of as a “subjective” phenomenon, but the description is inaccurate: 
it is a purely mathematical phenomenon, an inseparable secondary 
result of other arrangements which we, for the time being, regard 
as primary. When the bricklayer builds a factory chimney, he lays 
his bricks in a certain steady, orderly way, with no thought of the 
spiral patterns to which this orderly sequence inevitably leads, and 
which spiral patterns are by no means “subjective.” The designer 
of a wall-paper not only has no intention of producing a pattern of 
criss-cross lines, but on the contrary he does his best to avoid them; 
nevertheless, so long as his design is a symmetrical one, the criss-cross 
intersections inevitably come. And as the train carries us past an 
orchard we see not one single symmetrical configuration, but a 
multiplicity of collineations among the trees.

Let us, however, leave this discussion, and return to the facts of 
the case.

Our second question, which relates to the numerical coincidences 
so familiar to all students of phyllotaxis, is not to be set and 
answered in a word.

Let us, for simplicity’s sake, avoid consideration of simultaneous 
or whorled leaf origins, and consider only the more frequent cases 
where a single' “ genetic spiral ” can be traced throughout the entire 
system.

It is seldom that this primary, genetic spiral catches the eye, for 
the leaves which immediately succeed one another in this genetic 
order are usually far apart on the circumference of the stem, and it 
is only in close-packed arrangements that the eye readily apprehends 
the continuous series. Accordingly in such a case as a fir-cone, for 
instance, it is certain of the secondary spirals or “ parastichies ” 
which catch the eye; and among fir-cones, we can easily count these, 
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and we find them to be on the whole very constant in number, 
according to the species.

Thus in many cones, such as those of the Norway spruce, we can 
trace five rows of scales winding steeply up the cone in one direction, 
and three rows winding less steeply the other way; in certain other 
species, such as the common larch, the normal number is eight rows 
in the one direction and five in the other; while in the American 
larch we have again three in the one direction and five in the other. 
It not seldom happens that two arrangements grade into one another 
on different parts of one and the same cone. Among other cases 
in which such spiral series are readily visible we have, for instance, 
the crowded leaves of the stone-crops and mesembryanthemums, and 
(as we have said) the crowded florets of the composites. Among 
these we may find plenty of examples in which the numbers of the 
serial rows ire similar to those of the fir-cones; but in some cases, 
as in the daisy and others of the smaller composites, we shall be 
able to trace thirteen rows in one direction and twenty-one in the 
other, or perhaps twenty-one and tbirty-four; while in a great big 
sunflower we may find (in one and the same species) thirty-four and 
fifty-five, fifty-five and eighty-nine, or even as many as eighty-nine 
and one hundred and forty-four. On the other hand, in an ordinary 
“ pentamerous ” flower, such as a ranunculus, we may be able to 
trace, in the arrangement of its sepals, petals and stamens, shorter 
spiral series, three in one direction and two in the other; and the 
scales on the little cone of a Cypress shew the same numerical 
simplicity. It will be at once observed that these arrangements 
manifest themselves in connection with very different things, in the 
orderly interspacing of single leaves and of entire florets, and among 
all kinds of leaf-like structures, foliage-leaves, bracts, cone-scales, 
and the various parts or members of the flower. Again we must 
be careful to note that, while the above numerical characters are 
by much the most common, so much so as to be deemed “normal,” 
many other combinations are known to occur.

The arrangement, as we have seen, is apt to vary when the entire 
structure varies greatly in size, as in the disc of the sunflower. It 
is also subject to less regular variation within one and the same 
species, as can always be discovered when we examine a sufficiently 
large sample of fir-cones. For instance, out of 505 cones of the 
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Norway spruce, Beal* found 92 per cent, in which the spirals were 
in five and eight rows; in 6 per cent, the rows were four and seven, 
and in 4 per cent, they were four and six. In each case they were 
nearly equally divided as regards direction; for instance, of the 467 
cones shewing the five-eight arrangement, the five-series ran in 
right-handed spirals in 224 cases, and in left-handed spirals in 243.

Omitting the “abnormal” cases, such as we have seen to occur 
in a small percentage of our cones of the spruce, the arrangements 
which we have just mentioned may be set forth as follows (the 
fractional number used being simply an abbreviated symbol for the 
number of associated helices or parastichies which we can count 
running in the opposite directions): 2/3, 3/5, 5/8, 8/13, 13/21, 21/34, 
34/55, 55/89, 89/144. Now these numbers form a very interesting 
series, which happens to have a number of curious mathematical 
propertiesf. see> for instance, that the denominator of each

* Amer. Naturalist, vn, p. 449, 1873.
1

t This celebrated series corresponds to the continued fraction 1+1 etc., 
1 +

and converges to 1-618..., the numerical equivalent of the sectio divina, or 
"Golden Mean.” The series of numbers, 1, 1, 2, 3, 5, 8, ..., of which each is the 
sum of the preceding two, was used by Leonardo of Pisa (c. 1170-1250), nil knamed 
Fi Bonacci, or filius bonassi, in his Liber Abbaci, a work dedicated to magister 
meus, summus philgsophus, Michael Scot (Scritti, i, pp. 283-284, 1857). This learned 
man was educated in Morocco, where his father was clerk or dragoman to Pisan 
merchants; and he is said to have been the first to bring the Arabic numerals, or 
“ novem figurae Indorum,” into Europe. The Fibonacci numbers were first so-called 
by Eduard Lucas, Bollettino di Bibliogr. e Storia dei Sci. Matem. e Fis. x, p. 129,1877. 
The general expression for the series

1 l/l+V5\" /1-V5\”I M”-V5l\ 2 / ( 2 /J’

was known to Euler and to Daniel Bernoulli (Comm. Acad. Sci. Imp. Petropol. 
1732, p. 90), and was rediscovered by Binet, C.P. xvin, p. 563, 1843; xix, p. 939, 
1844) and by Laine, ibid, xix, p. 867, after whom it is sometimes called Lame’s 
series. But the Greeks were familiar with the series 2, 3: 5, 7 : 12, 17, etc.; which 
converges to V2, as the other does to the Golden Mean; and so closely related are 
the two series, that it seems impossible that the Greeks could have known the one 
and remained ignorant of the other. (See a paper of mine, on “ Excess and Defect, 
etc.,” in Mind, xxxvrn. No. 149, 1928.)

The Fibonacci (or Lame) series was well known to Kepler, who, in his paper 
De nive sexangula (1611, cf. supra, p. 695), discussed it in connection with the form 
of the dodecahedron and icosahedron, and with the'ternary or quinary symmetry of 
the flower. (Cf. F. Ludwig, Kepler iiber das Vorkommen der Fibonaccireihe im 
Pflanzenreich, Bot. Centralbl. Lxvin, p. 7, 1896.) Professor William Allman, 
Professor of Botany in Dublin (father of the historian of Greek geometry), 
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fraction is the numerator of the next; and further, that each suc
cessive numerator, or denominator, is the sum of the preceding two. 
Our immediate problem, then, is to determine, if possible, how these 
numerical coincidences come about, and why these particular numbers 
should be so commonly met with as to be considered “normal” and 
characteristic features of the general phenomenon of phyllotaxis. The 
following account is based on a short paper by Professor P. G. Tait*.

Of the two following diagrams, Fig. 450 represents the general 
case, and Fig. 451 a particular one, for the sake of possibly greater 
simplicity. Both diagrams represent a portion of a branch, or fir
cone, regarded as cylindrical, and unwrapped to form a plane surface. 
A, a, at the two ends of the base-line, represent the same initial 
leaf or scale; 0 is a leaf which can be reached from A by m steps

in a right-hand spiral (developed into the straight line AO), and by 
n steps from a in a left-handed spiral aO. Now it is obvious in our 
fir-cone, that we can include all the scales upon the cone by taking 
so many spirals in the one direction, and again include them all by so 

speculating on the same facts, put forward the curious suggestion that the cellular 
tissue of the dicotyledons, or exogens, would be found to consist of dodecahedra, 
and that of the monocotyledons or endogens of icosahedra {On the. mathematical 
connection between the parts of vegetables-, abstract of a Memoir read before the 
Royal Society in the year 1811 (privately printed, n.d.). Cf. De Candolle, Organo
genic vdgetale, i, p. 534. See also C. E. Wasteels, Over de Fibonaccigetalen, 
3de Natuur. Congres, Antwerpen, 1899, pp. 25-37; R. C. Archibald, in Jay 
Hambidge’s Dynamic Symmetry, 1920, pp. 146-157; and, on the mftny mathematical 
properties of the series, L. E. Dickson, Theory of Numbers, i, pp. 393—411, 1919.

Of these famous and fascinating numbers a mathematical friend writes to me: 
“ All the romance of continued fractions, linear recurrence relations, surd approxi
mations to integers and the rest, lies in them, and they are a source of endless 
curiosity. How interesting it is to see them striving to attain the unattainable, 
the golden ratio, for instance; and this is only one of hundreds of such relations.”

* Proc. R.S.E. vn, p. 391, 1872.
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many in the other. Accordingly, in our diagrammatic construction, 
the spirals AO and aO must, and always can, be so taken that m 
spirals parallel to aO, and n spirals parallel to AO, shall separately 
include all the leaves upon the stem or cone.

If m and n have a common factor, I, it can easily be shewn that 
the arrangement is composite, and that there are I fundamental, 
or genetic spirals, and I leaves (including A) which are situated

exactly on the line Aa. That is to say, we have here a whorled 
arrangement, which we have agreed to leave unconsidered in favour 
of the simpler case. We restrict ourselves, accordingly, to the cases 
where there is but one genetic spiral, and when therefore m and n 
are prime to one another.

Our fundamental, or genetic, spiral, as we have seen, is that which 
passes from A (or a) to the leaf which is situated nearest to the 
base-hne Aa. The fundamental spiral will thus be right-handed 
(A, P, etc.) if P, which is nearer to A than to a, be this leaf—left
handed if it be p. That is to say, we make it a convention that we 
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shall always, for our fundamental spiral, run round the system, from 
one leaf to the next, by the shortest way.

Now it is obvious, from the symmetry of the figure (as further 
shewn in Fig. 451), that, besides the spirals running along AO and 
aO, we have a series running from the steps on aO to the steps on AO. 
In other words we can find a leaf (8) upon AO, which, like the leaf 0, 
is reached directly by a spiral series from A and from a, such that 
a8 includes n steps, and A8 (being part of the old spiral line AO) 
now includes m — n steps. And, since m and n are prime to one 
another (for otherwise the system would have been a composite or 
whorled one), it is evident that we can continue this process of 
convergence until we come down to a 1, 1 arrangement, that is to 
say to a leaf which is reached by a single step, in opposite directions 
from A and from a, which leaf is therefore the first leaf, next to A, 
of the fundamental or generating spiral.

If our original lines along AO and aO contain, for instance, 13 
and 8 steps respectively (i.e. m = 13, n = 8), then our next series, 
observable in the same cone, will be 8 and (13 - 8) or 5; the next 
5 and (8 — 5) or 3; the next 3, 2; and the next 2, 1; leading to the 
ultimate condition of 1, 1. These are the very series which we have 
found to be common, or normal; and so far as our investigation 
has yet gone, it has proved to us that, if one of these exists, it entails, 
ipso facto, the presence of the rest.

In following down our series, according to the above construction, 
we have seen that at every step we have changed direction, the 
longer and the shorter sides of our triangle changing places every 
time. Let us stop for a moment, when we come to the 1, 2 series, 
or AT, aT of Fig. 451. It is obvious that there is nothing to prevent 
us making a new 1, 3 series if we please, by continuing the generating 
spiral through three leaves, and connecting the leaf so reached 
directly with our initial one. But in the case represented in Fig. 451, 
it is obvious that these two series (A, 1, 2, 3, etc., and a, 3, 6, etc.) 
will be running in the same direction; i.e. they will both be right- 
handed, or both left-handed spirals. The simple meaning of this 
is that the third leaf of the generating spiral was distant from our 
initial leaf by more than the circumference of the cylindrical stem; 
in other words, that there were more than two, but less than three 
leaves in a single turn of the fundamental spiral.
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Less than two there can obviously never be. When there are 

exactly two, we have the simples't of all possible arrangements, 
namely that in which the leaves are placed alternately on opposite 
sides of the stem. When there are more than two, but less than 
three, we have the elementary condition for the production of the 
series which we have been considering, namely 1, 2; 2, 3; 3, 5, etc. 
To put the latter part of this argument in more precise language, 
let us say that: If, in our descending series, we come to steps 1 
and t, where t is determined by the condition that 1 and t + 1 would 
give spirals both right-handed, or both left-handed; it follows that 
there are less than t f- 1 leaves in a single turn of the fundamental 
spiral. And, determined in this manner, it is found in the great 
majority of cases, in fir-cones, and a host of other examples of 
phyllotaxis, that t = 2. In other words, in the great majority of 
cases, we have what corresponds to an arrangement next in order 
of simplicity to the simplest case of all: next, that is to say, to the 
arrangement which consists of opposite and alternate leaves.

“These simple considerations,” as Tait says, “explain completely 
the so-called mysterious appearance of terms of the recurring series 
1, 2, 3, 5, 8, 13, etc.* The other natural series, usually but mis
leadingly represented by convergents to an infinitely extended 
continuous fraction, are easily explained, as above, by taking t = 3, 
4, 5, etc., etc.” Many examples of these latter series have been 
recorded, as more or less rare abnormalities, by Dickson f and other 
writers.

We have now learned, among other elementary facts, that wherever 
any one system of spiral steps is present, certain others invariably 
and of necessity accompany itj and are definitely related to it. In 
any diagram, such as Fig. 451, in which we represent our leaf
arrangement by means of uniform and regularly interspaced dots, 
we can draw one series of spirals after another, and one as easily

* The necessary existence of these recurring spirals is also proved, in a somewhat 
different way, by Leslie Ellis, On the theory of vegetable spirals, in Mathematical 
and other Writings, 1863, pp. 358-372. Leslie Ellis, Whewell’s brother-in-law, was 
a man of great originality. He is best remembered, perhaps, for his views on the 
Theory of Probabilities (cf. J. AL Keynes, Treatise on Probabilities, 1921, p. 92), 
and for his association with Stebbing as editor of Bacon.

t Proc. R.S.E. vn, p. 397. 1872; Trans. R.S.E. xxvi, pp. 505-520, 1872.
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as another. In a fire-cone one particular series, or rather two 
conjugate series, are always conspicuous, but the related series may 
be sought and found with little difficulty. The spruce-fir is com
monly said to have a phyllotaxis of 8/13; but we may count still

steeper and nearly vertical rows of scales to the number of 13/21; 
and if we take pains to number all the scales consecutively, we may 
find the lower series, 5/8, 3/5, and even 1/2, with ease and certainty.

The phenomenon is illustrated by Fig. 452, ar-d. The ground-plan 
of all these diagrams is identically the same. The generating spiral 
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in each case represents a divergence of 3/8, or 135° of azimuth; and 
the points succeed one another at the same successional distances 
parallel to the axis. The rectangular outlines, which correspond to 
the exposed surface of the leaves or cone-scales, are of equal area, 
and of equal number. Nevertheless the appearances presented by 
these diagrams are very different; for in one the eye catches-a 5/8 
arrangement, in another a 3/5; and so on, down to an arrangement 
of 1/1. The mathematical side of this very curious phenomenon 
I have not attempted to investigate. But it is quite obvious that, 
in a system within which various spirals are implicitly contained, 
the conspicuousness of one set or another does not depend upon 
angular divergence. It depends on the relative proportions in length 
and breadth of the leaves themselves; or, more strictly speaking, 
on the ratio of the diagonals of the rhomboidal figure by which 
each leaf-area is circumscribed. When, as in the fir-cone, the scales 
by mutual compression conform to these rhomboidal outlines, their 
inclined edges at once guide the eye in the direction of some one 
particular spiral; and we shall not fail to notice that in such cases 
the usual result is to give us arrangements corresponding to the 
middle diagrams in Fig. 452, which are the configurations in which 
the quadrilateral outlines approach most nearly to a rectangular 
form, and give us accordingly the least possible ratio (under the 
given conditions) of sectional boundary-wall to surface area.

The manner in which one system of spirals may be caused to 
slide, so to speak, into another, has been ingeniously demonstrated 
by Schwendener on a mechanical model, consisting essentially of 
a framework which can be opened or closed to correspond with one 
another of the above series of diagrams*.

The same curious fact, that one Fibonacci series leads to, or 
involves the rest, is further shewn, in a very simple way, in the 
following diagrammatic Table (p. 930). It shews, in the first 
instance, the numerical order of the scales on a fir-cone, in so-called 
5/8 phyllotaxis; that is to say, it represents the cone unwrapped, 
with the two principal spirals lying along the axes of a rectangular 
system. Stai ting from 0, the abscissae increase by 5, the ordinates 
by 8; or, in other words, any given number m = 5x + 8?/; it is

* A common form of pail-shaped waste-paper basket, with wide rhomboidal 
meshes of cane, is well-nigh as good a model as is required.

TGF 59
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easy, then, to number the entire system. The generating spiral, 
0, 1, 2, 3,..., and the various secondary Fibonacci spirals, are then 
easily recognised.

A Fibonacci series, unwrapped from a cone or cylinder. m = 5x->r8y.
1 6 11 16 21 26 31 36
7 2 3 8 13 18 23 28

15 To ■5 0 5 10 15 20

23 18 13 8 3 2 7 12

31 26 21 16 IT 6 T 4

The place of the first scale in each series is then found to be as 
follows:

Series 1 2 3 5 8 13 21 34 55
x_-3 2-1101123
y~~2 -1 ~ 1 0 1 1 2 3 5

And this is the Fibonacci series over again. We also see how the 
several spirals, of which these are the beginnings, alternate to the 
right and left of an asymptotic line, where x/y = 0-618....

The Fibonacci numbers, so conspicuous in the fir-cone, make their 
appearance also in the flower. The commonest of floral numbers 
are 3 and 5; among the Composites we find 8 ray-florets in the 
single dahlia, 13 in the ragwort, 21 in the ox-eye daisy or the mari
gold. In the last two, heads with 34 ray-florets are apt to be 
produced at certain times or in certain places*; and in C. segetum 
these florets are said to vary in a bimodal curve of frequency, with a 
high maximum at 13 and a lower at 21f. The simplest explanation 
(though perhaps it does not go far) is to suppose that a ligulate 
floret terminates, or tends to terminate, each of the principal spiral 
series. But among the higher numbers these numerical relations 
are only approximate, and the whole matter rests, so far, on some
what scanty evidence.

The determination of the precise angle of divergence of two con
secutive leaves of the generating spiral does not enter into the above 
general investigation (though Tait gives, in the same paper, a method

* Cf. G. Henslow, On the origin of dimerous and trimerous whorls among the 
flowers of Dicotyledons, Trans. Linn. Soc. (Bot.) (2), vn, p. 161, 1908.

f Cf. A. Gravis, Elements de Physiologic vegetale, 1921, p. 122.
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by which it may be easily determined); and the very fact that it 
does not so enter shews it to be essentially unimportant. The 
dei ermination of so-called “orthostichies,” or precisely vertical suc
cessions of leaves, is also unimportant. We have no means, other 
than observation, of determining that one leaf is vertically above 
another, and spiral series such as we have been dealing with will 
appear, whether such orthostichies exist, whether they be near or 
remote, or whether the angle of divergence be such that no precise 
vertical superposition ever occurs. And lastly, the fact that the 
successional numbers, expressed as fractions, 1/2, 2/3, 3/5, represent 
a convergent series, whose final term is equal to 0-61803..., the sectio 
aurea or “golden mean” of unity, is seen to be a mathematical 
coincidence, devoid of biological significance; it is but a particular 
case of Lagrange’s theorem that the roots of every numerical equation 
of the second degree can be expressed by a periodic continued frac
tion. The same number has a multitude of curious arithmetical 
properties. It is the final term of all similar series to that with 
which we have been dealing, such for instance as 1/3, 3/4, 4/7, etc., 
or 1/4, 4/5, 5/9, etc. It is a number beloved of the circle-squarer, 
and of all those who seek to find, and then to penetrate, the secrets 
of the Great Pyramid. It is deep-set in the regular pentagon and 
dodecahedron, the triumphs of Pythagorean or Euclidean geometry. 
It enters (as the chord of an angle of 36c) into the thrice-isosceles 
triangle of which we have spoken on p. 762; it is a number which 
becomes (by the addition of unity) its own reciprocal- -its properties 
never end. To Kepler (as Naber tells us) it was a symbol of Creation, 
or Generation. Its recent application to biology and art-criticism 
by Sir Theodore Cook and others is not new. Naber’s book, already 
quoted, is full of it. Zeising*, in 1854, found in it the key to all

* A. Zeising, Neue Lehre von der Proportion des menschlichen Korpers aus einem 
bisher unerkannt gebliebenen die ganze Natur und Kunst durchdringenden morpho- 
logischen Grundgesetze entwickelt, Leipzig, 1854, 457 pp.; ibid. Deutsche Viertel- 
jahrsschrift, 1868, p. 261; also, posthumously, Der Goldene Schnitt, Leipzig, 1884, 
24 pp. Cf, S. Gunther, Adolph Zeising als Mathematiker, Ztschr. f. Math. u. 
Physik. (Hist. Ld. Abth.), xxi, pp. 157-165, 1876; also F. X. Pfeiffer, Die Propor- 
tionen des goldenen Schnittes an den Blattern u. Stengelen der Pflanzen, Ztschr. 
f. math. u. naturw. Unterricht, xv, pp. 325-338, 1885. For other references, see 
R. C. Archibald, op. cit. Among modern books on similar lines, the following 
are curious, interesting and beautiful (whether we agree with them or not): Jay 
Hambidge, Dynamic Symmetry, Yale, 1920; C. Arthur Coan, Nature’s Harmonic 
Unity, New York, 1912.

59-2
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morphology, and the same writer, later on, declared it to dominate 
both architecture and music. But indeed, to use Sir Thomas 
Browne’s words (though it was of another number that he spoke): 
“To enlarge this contemplation into all the mysteries and secrets 
accommodable unto this number, were inexcusable Pythagorisme.”

That this number has any serious claim at all to enter into the 
biological question of phyllotaxis seems to depend on the assertion, 
first made by Chauncey Wright*,  that, if the successive leaves 
of the fundamental spiral be placed at the particular azimuth which 
divides the circle in this “sectio aurea,’’ then no two leaves will 
ever be superposedf; and thus we are said to have “the most 
thorough and rapid distribution of the leaves round the stem, each 
new or higher leaf falling over the angular space between the two 
older ones which are nearest in direction, so as to divide it in the 
same ratio (K), in which the first two or any two successive ones 
divide the circumference. Now 5/8 and all successive fractions 
differ inappreciably from K” To this view there are many simple 
objections. In the first place, even 5/8, or 0-625, is but a moderately 
close approximation to the “golden mean”; and furthermore, 
the arrangements by which a better approximation is got, such as 
8/13, 13/21, and the very close approximations such as 34/55, 55/89, 
89/144, etc., are comparatively rare, while the much less close 
approximations of 3/5 or 2/3, or even 1/2, are extremely common. 
Again, the general type of argument such as that which asserts 
that the plant is “aiming at” something which we may call an 
“ideal angle” is one which cannot commend itself to a plain student 
of physical science: nor is the hypothesis rendered more acceptable 
when Sir T. Cook qualifies it by telling us that “all that a plant 
can do is to vary, to make blind shots at constructions, or to 
‘mutate’ as it is now termed: and the most suitable of these con
structions will in the long run be isolated by the action of Natural 
Selection.” Thirdly, we must not suppose the Fibonacci numbers 

* On the uses and origin of the arrangement of leaves in plants, Mem. Amer. 
Acad, ix, p. 380, 1871, Cambridge, Mass. Cf. J. Wiesner, Ueber die Beziehungen der 
Stellungsverhdltnisse der Laubblatter zur Beleuchtung, Wien, 1902.

f This is what Ruskin spoke of as “ the vacant space ”; Mod. Painters, v, chap, vi, 
p. 44, 1860. Leonardo had in like manner explained the leaf-arrangement as 
serving to let air pass between the leaves, keep one from overshadowing another, 
and let rain-drops fall from the one leaf to the one below.
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to have any exclusive relation to the Golden Mean; for arithmetic 
teaches us that, beginning with any two numbers whatsoever, we are 
led by successive summations toward one out of innumerable series 
of numbers whose ratios one to another converge to the Golden 
Mean*. Fourthly, the supposed isolation of the leaves, or their most 
complete “ distribution to the action of the surrounding atmosphere” 
is manifestly very little affected by any conditions which are confined 
to the angle of azimuth. For if it be (so to speak) Nature’s object 
to set them farther apart than they actually are, to give them freer 
exposure to the air or to the sunlight than they actually have, then 
it is surely manifest that the simple way to do so is to elongate 
the axis, and to set the leaves farther apart, lengthways on the 
stem. This has at once a far more potent effect than any nice 
manipulation of the “angle of divergence.”

Lastly, and this seems the simplest, the most cogent and most 
unanswerable objection of them all, if it be indeed desirable that 
no leaf should be superimposed above another, the one condition 
necessary is that the common angle of azimuth should not be a 
rational multiple of a right angle -should not be equivalent to

— I I. One irrational angle is as good as another: there is no 
n
special merit in any one of them, not even in the ratio divina. We 
come then without more ado to the conclusion that while the 
Fibonacci series stares us in the face in the fir-cone, it does so for 
mathematical reasons; and its supposed usefulness, and the hypo
thesis of its introduction into plant-structure through natural 
selection, are matters which deserve no place in the plain study 
of botanical phenomena. As Sachs shrewdly recognised years ago, 
all such speculations as these hark back to a school of mystical 
idealism.

* Thus, instead of beginning with 1, 1, let us begin 1, 7. The summation-series 
is then 1, 7, 8, 15, 23, 38, 61, 99, 160, 259, .... etc.; and 99/160 =0-618... and 
259/160= 1-619...; and so on. But after all, the old Fibonacci numbers are not 
far away. For we may write the new series in the form:

7 (0, 1, 1, 2, 3, 5, 8, ...) 
+ 1 (1, 0, 1, 1, 2, 3, 5, ...).



CHAPTER XV

ON THE SHAPES OF EGGS, AND OF CERTAIN OTHER 
HOLLOW STRUCTURES

The eggs of birds and all other hard-shelled eggs, such as those of 
the tortoise and the crocodile, are simple solids of revolution; but 
they differ greatly in form, according to the configuration of the 
plane curve by the revolution of which the egg is, in a mathematical 
sense, generated. Some few eggs, such as those of the owl, the 
penguin, or the tortoise, are spherical or very nearly so; a few more, 
such as the grebe’s, the cormorant’s or the pelican’s, are approxi
mately ellipsoidal, with symmetrical or nearly symmetrical ends, 
and somewhat similar are the so-called “cylindrical” eggs of the 
megapodes and the sand-grouse; the great majority, like the hen’s 
egg, are “ ovoid,” a little blunter at one end than the other; and some, 
by an exaggeration of this lack of antero-posterior symmetry, are 
blunt at one end but characteristically pointed at the other, as is 
the case with the eggs of the guillemot and puffin, the sandpiper, 
plover and curlew. It is an obvious but by no means negligible fact 
that the egg, while often pointed, is never flattened or discoidal; 
it is a prolate, but never an oblate, spheroid. Its oval outline has 
one maximal and two minimal radii of curvature, one minimum being 
less than the other. The evolute to a curve often emphasises, even 
exaggerates, its features; and the evolutes to a series of eggs (i.e. 
to their generating curves) are more conspicuously different than 
the eggs themselves (Fig. 153)*.

The careful study and collection of birds’ eggs would seem to have 
begun with the Count de Marsiglif, the same celebrated naturalist

* Cf. A. Mallock, On the shapes of birds’ eggs. Nature, cxvi, p. 311, 1925. The 
evolute may be easily if somewhat roughly drawn by erecting perpendiculars on 
a sufficient number of tangents to the curve. The evolute then appears as an 
envelope, the perpendiculars all being tangents to it.

f De avibus circa aquas Danubii vagantibus et de ipsarum nidis (Vol. v of the 
Danubius Panonico-Mysicus), Hagae Com. 1726. Count Giuseppi Ginanni, or 
Zinanni, came soon afterwards with his book Delie uove e dei nidi degli uccelli, 
Venezia, 1737.
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who first studied the “flowers” of the coral, and who wrote the 
Histoire physique de la mer; and the specific form as well as the 
colour and other attributes of the egg have been again and again 
discussed, and not least by the many dilettanti naturalists of the 
eighteenth century who soon followed in Marsigli’s footsteps*.

We need do no more than mention Aristotle’s belief, doubtless 
old in his time, that the more pointed egg produces the male chicken, 
and the blunter egg the hen; though this theory survived into modern 
timesf and still lingers on (cf. p. 943). Several naturalists, such as 
Gunther (1772) and Biihle (1818), have taken the trouble to disprove 
it by experiment. A more modern and more generally accepted

Fig. 453. Typical forms of birds’ eggs: from A. Mallock.
The figures below are pinhole photographs of the eggs. The upper figures (drawn 

to a uniform scale) shew the generating curves and their evolutes.
a Green plover. c Crow. e Kingfisher.
b Humming-bird. d Pheasant. f Owl.

explanation has been that the form of the egg is in direct relation 
to that of the bird which has to be hatched within--a view that 
would seem to have been first set forth by Naumann and Biihle, 
in their great treatise on eggs J, and adopted by Des Murs§ and 
many other well-known writers.

In a treatise by de Lafresnaye||, an elaborate comparison is made
* But Sir Thomas Browne had a collection of eggs at Norwich in 1671, according 

to Evelyn.
f Cf. Lapierre, in Buffon’s Histoire NatureUe, ed. Sonnini, 1800.
t Eier der Vogel Deutschlands, 1818-28 (cit. Des Murs, p. 36).
§ Traite d'Oologie, 1860.
|| F. de Lafresnaye, Comparaison des oeufs des oiseaux avec leurs squelettes, 

comme seul moyen de reconnaitre la cause de leurs differentes formes, Rev. Zool. 
1845, pp. 180-187, 239-244.
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between the skeleton and the egg of various birds, to shew, for 
instance, how those birds with a deep-keeled sternum laid rounded 
eggs, which alone could accommodate the form of the young. 
According to this view, that “Nature had foreseen* ” the form 
adapted to and necessary for the growing embryo, it was easy to 
correlate the owl with its spherical egg, the diver with its elliptical 
one, and in like manner the round egg of the tortoise and the 
elongated one of the crocodile, with the shape of the creatures which 
had afterwards to be hatched therein. A few writers, such as 
Thienemannf, looked at the same facts the other way, and asserted 
that the form of the egg was determined by that of the bird by 
which it was laid and in whose body it had been conformed.

* Cf. De» Murs, p. 67: “ Elle devait encore penser au moment ou ce germe 
aurait besoin de I’espace necessaire a son accroissement, a ce moment ou... il devra 
remplir exactement 1’intervalle circonscrit par sa fragile prison, etc.”

f F. A. L. Thienemann, Syst. Darstellung der Fortpfianzung der Vogel Europas, 
Leipzig, 1825-38.

J Cf. Newton’s Dictionary of Birds, 1893, p. 191; Szielasko, Gestalt der Vogeleier, 
Journ. f. Ornith. Lni, pp. 273 297, 1905.

§ Jacob Steiner suggested a Cartesian oval, r + mr' = c, as a general formula 
for all eggs (cf. Fechner, Ber. sachs. Ges. 1849, p. 57); but this formula (which 
fails in such a case as the guillemot) is purely empirical, and has no mechanical 
foundation.

In more recent times, other theories, based upon the principles 
of Natural Selection, have been current and very generally accepted 
to account for these diversities of form. The pointed, conical egg 
of the gui|lemot is generally supposed to be an adaptation, advan
tageous to the species in the circumstances under which the egg 
is laid; the pointed egg is less apt than a spherical one to roll off 
the narrow ledge of rock on which this bird is said to lay its solitary 
egg, and the more pointed the egg, so much the fitter and likelier is 
it to survive. The fact that the plover or the sandpiper, breeding 
in very different situations, lay eggs that are also conical, elicits 
another explanation, to the effect that here the conical form permits 
the many large eggs to be packed closely under the mother bird j. 
Whatever truth there be in these apparent adaptations to existing 
circumstances, it is only by a very hasty logic that we can accept 
them as a vera causa, or adequate explanation of the facts; and it is 
obvious that in the bird’s egg we have an admirable case for direct 
investigation of the mechanical or physical significance of its form§.
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Of all the many naturalists of the eighteenth and nineteenth 
centuries who wrote on the subject of eggs, only two (so far as 
I am aware) ascribed the form of the egg to direct mechanical 
causes. Gunther*, in 1772, declared that the more or less rounded 
or pointed form of the egg is a mechanical consequence of the 
pressure of the oviduct at a time when the shell is yet unformed 
or unsolidified; and that accordingly, to explain the round egg of 
the owl or the kingfisher, we have only to admit that the oviduct 
of these birds is somewhat larger than that of most others, or 
less subject to violent contractions. This statement contains, in 
essence, the whole story of the mechanical conformation of the egg. 
A hundred and twenty years after, Dr J. Ryder of Philadelphia 
gave, as near as may be, the same explanation!.

Let us consider, very briefly, the conditions to which the egg is 
subject in its passage down the oviduct.

(1) The “egg,” as it enters the oviduct, consists of the yolk only, 
enclosed in its vitelline membrane. As it passes down the first 
portion of the oviduct the white is gradually superadded, and 
becomes in turn surrounded by the “shell-membrane.” About this 
latter the shell is secreted, rapidly and at a late period: the egg 
having meanwhile passed on into a wider portion of the oviducal 
tube, called (by loose analogy, as Owen says) the “uterus.” Here 
the egg assumes its permanent form, here it ultimately becomes 
rigid, and it is to this portion of the oviduct that our argument 
principally refers.

(2) Both the yolk and the entire egg tend to fill completely their 
respective membranes, and, whether this be due to growth or 
imbibition on the part of the contents or to contraction on the part 
of the surrounding membranes, the resulting tendency is for both 
yolk and egg to be, in the first instance, spherical, unless or until 
distorted by external pressure.

(3) The egg is subject to pressure within the oviduct, which is 
an elastic, ihuscular tube, along the walls of which pass peristaltic

* F. C. Gunther, Sammlung von Nestern und Eyern verschiedener Vogel, Niimb. 
1772. Cf. also Raymond Pearl, Morphogenetic activity of the oviduct, J Exp. Zool. 
vi, pp. 339-359, 1909.

t J. Ryder, The mechanical genesis of the form of the fowl’s egg, Proc. Amer. 
Philosoph. Soc. Philadelphia* xxxi, pp. 203-209, 1893; cf. A. S. Packard, 
Inheritance of acquired characters, Proc. Amer. Acad. 1894, p. 360. 
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waves of contraction. These muscular contractions may be de
scribed as the contraction of successive annuli of muscle, giving 
annular (or radial) pressure to successive portions of the egg; they 
drive the egg forward against the frictional resistance of the tube, 
while tending at the same time to distort its form. \\ hile nothing 
is known, so far as I am aware, of the muscular physiology of the 
oviduct, it is well known in the case of the intestine that the presence 
of an obstruction leads to the development of violent contractions 
in its rear, which waves of contraction die away, and are scarcely 
if at all propagated in advance of the obstruction; indeed in normal 
intestinal peristalsis a wave of relaxation travels close ahead of the 
wave of constriction.

(4) The egg is, to all intents and purposes, a solid of revolution; 
in other words, its transverse sections are all but perfect circles, 
so nearly perfect that, chucked in the lathe, an egg “runs true.” 
This may be taken to shew that the direct pressure of the oviduct, 
whether elastic or muscular, is large compared with the weight of 
the egg. Even in ostrich eggs, where if anywhere gravitational 
deformation should be found, the greatest and least equatorial 
diameters do not differ by 1 per cent., and sometimes by less than 
one part in a thousand *.

(5) It is known by observation that a hen’s egg is always laid 
blunt end foremost f.

(6) It can be shewn, at least as a very common rule, that those 
eggs which are most unsymmetrical, or most tapered off posteriorly, 
are also eggs of a large size relatively to the parent bird. The 
guillemot is a notable case in point, and so also are the curlews, 
sandpipers, phaleropes and terns. Me may accordingly presume 
that the more pointed eggs are those that are large relatively to 
the tube or oviduct through which they have to pass, or, in other 
words, are those which are subject to the greatest pressure while

* Cf. Mallock, op. cit.
t This was known to Albertus Magnus, though his explanation was wrong, 

“Ova autem habentia duos colores non sunt omnino penitus rotunda, sed ex una 
parte sunt acuta habentia angulum sphericum acutum, sicut sunt composita ex 
duobus semispheris, in una parte extensis ad angulum acutum et in alia parte 
sphericis non extensis in loco ubi est polus ovi.... Et in exitu ovi acutus angulus 
exit ultimo, eo quod ipse porrectus est ad interiora matricis versus parietem ubi 
ovum cum matrice continuatur in sui generatione” (De animalibus, lib. xvii, 
tract. 1, c. 3).
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being forced along. So general is this relation that we may go still 
further, and presume with great plausibility in the few exceptional 
cases (of which the apteryx is the' most conspicuous) where the egg 
is relatively large though not markedly unsymmetrical, that in these 
cases the oviduct itself is in all probability large (as Gunther had 
suggested) in proportion to the size of the bird. In the case of the 
common fowl we can trace a direct relation between the size and 
shape of the egg. for the first eggs laid by a young pullet are usually 
smaller, and at the same time are much more nearly spherical than the 
later ones; and, moreover, some breeds of fowls lay proportionately 
smaller eggs than others, and on the whole the former eggs tend to 
be rounder than the latter.*

* In so far as our explanation involves a shaping or moulding of the egg by 
the uterus or oviduct (an agency supplemented -by the proper tensions of the 
egg), it is curious to note that this is very much the same as that old view of 
Telesius regarding the formation of the embryo (De rerum natura, vi, cc. 4 and 10), 
which he had inherited from Galen, and of which Bacon speaks (Nov. Org. cap. 50; 
cf. Ellis’s note).. Bacon expressly remarks that " Telesius should have been able 
to shew the like formation in the shells of eggs.” This old theory of embryonic 
modelling survives in our usage of the term “matrix” for a “mould.”

We may now proceed to enquire more particularly how the form 
of the egg is controlled by the pressures to which it is subjected.

The egg, just prior to the formation of the shell, is, as we have 
seen, a fluid body, tending to a spherical shape and enclosed within 
a membrane.

Our problem, then, is: Given an incompressible fluid, contained 
in a deformable capsule, which is either (a) entirely inextensible, or 
(b) slightly extensible, and which is placed in a long elastic tube the 
walls of which are radially contractile, to determine the shape under 
some given distribution of pressure. We may assume, at least to 
begin with, that the shell-membrane is homogeneous and isotropic- 
uniform in all parts and in all directions.

If the capsule be spherical, inextensible, and completely filled 
with the fluid, absolutely no deformation can take place. The few 
eggs that are actually or approximately spherical, such as those of 
the tortoise or the owl, may thus be alternatively explained as cases 
where little or no deforming pressure has been applied prior to the 
solidification of the shell, or else as cases where the capsule was so
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little capable of extension and so completely filled as to preclude the 
possibility of deformation.

If the capsule be not spherical, but be inextensible, then only such 
deformation can take place as tends to make the shape more nearly 
spherical; and as the surface area is thereby decreased, the envelope 
must either shrink or pucker. In other words, an incompressible 
fluid contained in an inextensible envelope cannot be deformed 
without puckering of the envelope.

But let us next assume, as the condition by which this result 
may be avoided, that the envelope is to some extent extensible and 
that deformation is so far permitted. It is obvious that, on the 
presumption that the envelope is only moderately extensible, the 
whole structure can only be distorted to a moderate degree away 
from the spherical or spheroidal form.

At all points the shape is determined by the law of the distribution 
of radial pressure within the given region of the tube, surfai e friction 
helping to maintain the egg in position. If the egg be under 
pressure from the oviduct, but without any marked component 
either in a forward or backward direction, the egg will be compressed 
in the middle, and will tend more or less to the form of a cylinder 
with spherical ends. The eggs of the grebe, cormorant, or crocodile 
may be supposed to receive their shape in such circumstances.

When the egg is subject to the peristaltic contraction of the 
oviduct during its formation, then from the nature and direction of 
motion of the peristaltic wave the pressure will be greatest some
where behind the middle of the egg; in other words, the tube is 
converted for the time being into a more conical form, and the 
simple result follows that the anterior end of the egg becomes the 
broader and the posterior end the narrower.

The peristalsis of the oviduct thus plays a double part, in pros 
pelling the egg down the oviduct and in impressing on it its ovoid 
form; but the whole process is a very slow one, for the hen’s oviduct 
is only a few inches long, and the egg is some ten or twelve hours 
upon its way. We shall consider presently certain shells which 
may be regarded as so many drops or vesicles deformed by gravity; 
that is a statical problem. Compared with it the problem of the 
egg is a dynamical one; and yet it becomes a quasi-statical one, 
because the action is so very slow. It is an action without lag 



xv] AND OTHER HOLLOW STRUCTURES 941 

and without momentum; and the question, common in dynamical 
problems, of the relation between the period of the application of 
the force and the free period of response or adjustment to it need 
not concern us at all.

Again, the case of the egg is somewhat akin to a hydrodynamical 
problem; for as it lies in the oviduct we may look on it as a stationary 
body round which waves are flowing, with the same result as when 
a body moves through a fluid at rest. Thus we may treat it as a 
hydrodynamical problem, but a very simple one—simplified by the 
absence of all eddies and every form of turbulence; and we come 
to look on the egg as a streamlined structure, though its streamlines 
are of a very simple kind.

The mathematical statement of the case begins as follows: 
In our egg, consisting of an extensible membrane filled with an 
incompressible fluid and under external pressure, the equation of 
the envelope is pn + T (1/r + 1/r') = P, where pn is the normal 
component of external pressure at a point where r and r' are the 
radii of curvature, T is the tension of the envelope, and P the 
internal fluid pressure. This is simply the equation of an elastic 
surface where T represents the coefficient of elasticity; in other 
words, a flexible elastic shell has the same mathematical properties 
as our fluid, membrane-covered egg. And this is the identical 
equation which we have already had so frequent occasion to employ 
in our discussion of the forms of cells; save only that in these 
latter we had chiefly to study the tension T (i.e. the surface-tension 
of the semi-fluid cell) and had little or nothing to do with the factor 
of external pressure (pn), which in the case of the egg becomes of 
chief importance.

To enquire how an elastic sphere or spheroid will be deformed 
in passing down a peristaltic tube is an ill-defined and indeterminate 
problem; but we can study the effect produced in the shape of any 
particular egg, and so far infer the forces which have been in action. 
We need only study a single meridian of the egg, inasrjiuch as we 
have found it to be a solid of revolution. At successive points 
along this meridian, let us determine the amount of curvature, that 
is to say the principal radii of curvature, in latitude and longitude, 
in the Gaussian formula P= pn + T (IJr + 1/r'): or, as we may write 
it if we have any reason to doubt the uniformity or isotropy of the 
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membrane, Tjr-h T'lr'. The sum of these curvatures varies from point 
to point; the internal or hydrodynamical pressure, P, is constant; and 
therefore the external pressure, pn, varies from point to point with 
the curvature, and is a direct function of the shape of the egg.

Some few eggs, such as the owl’s and the kingfisher’s, are so nearly 
spherical that we are apt to speak of them as spheres; but they are 
all prolate more or less, and no egg is so nearly circular in meridional 
section as all eggs are in their circles of latitude. When the egg is 
all but spherical that shape may be due (as we have seen) to various 
causes: to a relatively small size of the egg, allowing it to descend 
the tube under a minimum of peristaltic pressure; perhaps to an 
unusually strong shell-membrane, resistant of deformation; in 
general terms, to a possible dim inution of pn, or a possible increase 
of T. But all eggs have approximately spherical ends, and the 
big anterior end of the large conical eggs of plover or curlew or 
guillemot is conspicuously so. Here the egg projects into the wide 
cavity of the uncontrai ted oviduct, external or peristaltic pressure 
does not exist, the shell-membrane has to resist internal pressure 
without further external support, and the resultant spherical cur
vature is an indication of the uniformity, or isotropy, of the mem
brane. The lesser of the two spherical ends, that is to say the 
posterior end, has by much the greater curvature, and the tension 
there is correspondingly great. It would seem that the membrane 
ought to be thicker or stronger at this pointed end than elsewhere, 
but it is not known to be so. In any case, it is just here, in this 
presumably weakest part, that we are most apt to find the irregulari
ties and deformities of misshapen eggs.

Within the egg lies the yolk, and the yolk is invariably spherical 
or very nearly so, whatever be the form of the entire egg. The 
reason is simple, and lies in the fact that the fluid yolk is itself 
enclosed within another membrane, between which and the shell
membrane lies the fluid albumin, which transmits a uniform hydro
static pressure to the yolk*. The lack of friction between the yolk
membrane and the white of the egg is indicated by the well-known 
fact that the “germinal spot” on the surface of the yolk is always

* In like manner, the cell-nucleus is “usually globular, except in certain 
specialised tissues, or when it degenerates” (Darlington). Whether it possesses 
a membrane is matter in dispute, but it at all events possesses a surface, with 
a phase-difference between it and the surrounding cytoplasm. Cf. above, p. 295. 
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found uppermost, however we may place and wherever we may open 
the egg; that is to say, the yolk easily rotates within the egg, bringing 
its lighter pole uppermost.

In its passage down, the oviduct the egg is not merely thrust but 
also screwed along; and its spiral course leaves traces on wellnigh 
all its structure save the shell. When we have broken the shell of 
a hard-boiled egg the shell-membrane below peels off in spiral strips, 
and even the white tends to flake off in layers, spirally. In the 
fresh unboiled egg two knotted cords- the treadles or chalazae—are 
connected with the yolk, and lie fore-and-aft of it, loose in the 
albumen. These represent the free ends of a yolk-membrane, which 
got caught in the constricted oviduct while the yolk between them 
was being screwed along: very much as we may wrap an apple in 
a handkerchief, hold the two ends fast, and twirl the apple round.

These, then, are the general principles involved in, and illustrated 
by, the configuration of an egg; and they take us as far as we can 
safely go without actual quantitative determination, in each par
ticular case, of the forces concerned *.

In certain cases among the invertebrates, we again find instances 
of hard-shelled eggs which have obviously been moulded by the 
oviduct, or so-called "ootype,” in which they have lain: and not 
merely in such a way as to shew the effects of peristaltic pressure 
upon a uniform elastic envelope, but so as to impress upon the 
egg the more or less irregular form of the cavity within which it 
had been for a time contained and compressed. After this fashion 
is explained the curious form of the egg in Bilharzia (Schistosoma) 
haematobium, a formidable parasitic worm to which is due a disease 
wide-spread in Africa and Arabia, and an especial scourge of the 
Mecca pilgrims. The egg in this worm is provided at one end with 
a little spine, which is explained as having been moulded within a 
little funnel-shaped expansion of the uterus, just where it communi
cates with the common duct leading from rhe ovary and yolk-gland. 
Owing to some anatomical difference in the uterus, the little

* It is a common but unfounded belief among poultry-men that shape and size 
are related to the sex of the egg, the longer eggs producing mostly male chicks. 
That there is no such correlation between sex on the one hand and weight, length 
or shape on the other, has been clearly demonstrated. Cf. M. A. Juli and J. P. 
Quinn, Journ. Agr. Research, xxix, pp. 195-201, 1924. 
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spine may be at the end or towards the side of the egg: and this 
visible difference has led to the recognition of a new species, N. 
mansoni*. In a third species, 8. joponicum, the egg is described 
as bulging into a so-called “calotte,” or bubble-like convexity at 
the end opposite to the spine. This, I think, may, with very little 
doubt, be ascribed to hardening of the egg-shell having taken place 
just at the time when partial relief from pressure was being 
experienced by the egg in the neighbourhood of the dilated orifice 
of the oviduct.

This case of Bilharzia is not, from our present point of view, a 
very important one, but nevertheless it is interesting. It ascribes 
to a mechanical cause a curious peculiarity of form; and it shews, by. 
reference to this mechanical principle, how two simple mechanical 
modifications of the same thing may not only seem very different 
to the systematic naturalist’s eye, but may actually lead to the 
recognition of a new species, with its own geographical distribution, 
and its own pathogenic characteristics.

On the form of sea-urchins
As a corollary to the problem of the bird’s egg, we may consider 

for a moment the forms assumed by the shells of the sea-urchins. 
These latter are commonly divided into two classes—the Regular 
and the Irregular Echinids. The regular sea-urchins, save in slight 
details which do not affect our problem, have a complete axial 
symmetry. The axis of the animal’s body is vertical, with mouth 
below and the intestinal outlet above; and around this axis the 
shell is built as a symmetrical system. It follows that in horizontal 
section the shell is everywhere circular, and we need only consider 
its form as seen in vertical section or projection. The irregular 
urchins (very inaccurately so-called) have the anal extremity of 
the body removed from its central, dorsal situation; and it follows 
that they have now a single plane of symmetry, about which the 
organism, shell and all, is bilaterally symmetrical. We need not 
concern ourselves in detail with the shapes of their shells, which 
may be very simply interpreted, by the help of radial coordinates, 
as deformations of the circular or “regular” type.

* L. W. Sariibon, Proc. Zool. Soc. 1907 (i), p. 283; also in Journ. Trop. Med. and 
Hygiene, Sept. 15, 1926.
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The sea-urchin shell consists of a membrane, stiffened into rigidity 

by calcareous deposits, which constitute a beautiful skeleton of 
separate, neatly fitting “ ossicles.” The rigidity of the shell is more 
apparent than real, for the entire structure is, in a sluggish way, 
plastic; inasmuch as each little ossicle is capable of growth, and bhe 
entire shell grows by increments to each and all of these multi
tudinous elements, whose individual growth involves a certain 
amount of freedom to move relatively to one another; in a few cases 
the ossicles are so little developed that the whole shell appear^ 
soft and flexible. The viscera of the animal occupy but a small 
part of the space within the shell, the cavity being mainly filled by 
a large quantity of watery fluid, whose density must be very near 
to that of the external sea-water.

Apart from the fact that th»- sea-urchin continues to grow, it 
is plain that we have here the same general conditions as in the 
egg-shell, and that the form of the sea-urchin is subject to a similar 
equilibrium of forces. But there is this important difference, that 
an external muscular pressure (such as the oviduct administers 
during the consolidation of the egg-shell) is now lacking. In its 
place we have the steady continuous influence of gravity, and there 
is yet another force which in all probability we require to take into 
consideration.

While the sea-urchin is alive, an imihense number of delicate 
“tube-feet,” with suckers at their tips, pass through minute pores 
in the shell, and, like so many long cables, moor the animal to the 
ground. They constitute a symmetrical system of forces, with one 
resultant downwards, in the direction of gravity, and another out
wards in a radial direction; and if we look upon the shell as originally 
spherical, both will tend to depress the sphere into a flattened cake. 
Me need not consider the radial component, but may treat the 
case as that of a spherical shell symmetrically depressed under the 
influence ‘of gravity. This is precisely the condition which we have 
to deal with in a drop of liquid lying on a plate; the form of which 
is determined by its own uniform surface-tension, plus gravity, 
acting against the internal hydrostatic pressure. Simple as this 
system is, the full mathematical investigation of the form of a drop 
is not easy, and we can scarcely hope that the systematic study 
of the Echinodermata will ever be conducted by methods based

TG F 6o
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on Laplace s differential equation*;  but we have little difficulty in 
seeing that the various forms represented in a series of sea-urchin 
shells are no other than those which wre may easily and perfectly 
imitate in drops.

* Cf. Bashforth and Adams, Theoretical Forms of Drops, etc., Cambridge, 1883.
t The drops must be spherical, or very nearly so, to produce a rainbow. But the 

bow is said to be always better defined near the top than down below; which seems 
to shew that the lower and larger raindrops are the less perfect spheres. (Cf. 
T. W. Backhouse, Symons’s M. Met. Mag. 1879, p. 25.) For the small round 
droplets in the cloud tend to cannon off one another, and remain small and spherical. 
But when there comes a difference of potential between cloud and cloud, or be
tween earth and sky, then the spherules become distorted, one droplet coalesces 
with another, and the big drops begin to fall.

J Cf. A. Ferguson, On the theoretical shape of large bubbles and drops, Phil. Mag. 
(6), xxv, pp. 507-520, 1913.

,In the case of the drop of water (or of any other particular liquid) 
the specific surface-tension is always constant, and the pressure 
varies inversely as the radius of curvature; therefore the smaller 
the drop the more nearly is it able to conserve the spherical form, 
and the larger the drop the more does it become flattened under 
gravityf. We can imitate this phenomenon by using india-rubber 
balls filled with water, of different sizes; the little ones will remain 
very nearly spherical, but the larger will fall down “of their own 
weight,” into the form of more and more flattened cakes; and we 
see the same thing when we let drops of heavy oil (such as the 
orthotoluidene spoken of on p. 370) fall through a tall column of 
water, the little ones remaining round, and the big ones getting 
more and more flattened as they sink. In the case of the sea-urchin, 
the same series of forms may be assumed to occur, irrespective of 
size, through variations in T, the specific tension, or “strength” 
of the enveloping shell. Accordingly we may study, entirely from 
this point of view, such a series as the following (Fig. 454). In 
a very few cases, such as the fossil Palaeechinus, we have an 
approximately spherical shell, that is to say a shell so strong that 
the influence of gravity becomes negligible as a cause of deformation, 
just as (to compare small things with great) the surface tension of 
mercury is so high that small drops of it seem perfectly spherical J. 
The ordinary species of Echinus begin to display a pronounced 
depression, and this reaches its maximum in such soft-shelled flexible 
forms as Phormosoma. On the general question I took the oppor-
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tunity of consulting Mr C. R. Darling, who is an acknowledged 
expert in drops, and he at once agreed with me that such forms as are 
represented in Fig. 454 are no other than diagrammatic illustrations 
of various kinds of drops, “most of which can easily be reproduced 
in outline by the aid of liquids of approximately equal density to 
water, although some of them are fugitive.” He found a difficulty 
in the case of the outline which represents Asthenosoma, but the 
reason for the anomaly is obvious; the flexible shell has flattened

Fig. 454. Diagrammatic vertical outlines of various sea-urchins: A, Palaeechinus;
B. Echinus acutus; C, Cidaris; D, D', Coelopleurus; E, E', Genicopatagus; 
F, Phormosoma luculenter; G, P. tenuis; H, Asthenosoma; I, Urechinus.

down until it has come in contact with the hard skeleton of the jaws, 
or “Aristotle’s lantern,” within, and the curvature of the outline 
is accordingly disturbed. The elevated, conical shells such as those 
of Urechinus and Coelopleurus evidently call for some further ex
planation; for there is here some cause at work to elevate, rather 
than to depress the shell. Mr Darling tells me that these forms 
“are nearly identical in shape with globules I have frequently 
obtained, in which, on standing, bubbles of gas rose to the summit 
and pressed the skin upwards, without being able to escape.” The 
same condition may be at work in the sea-urchin; but a similar 

60-2
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tendency would also be manifested by the presence in the upper 
part of the shell of any accumulation of substance lighter than water, 
such as is actually present in the masses of fatty, oily eggs.

On the form and branching of blood-vessels

Passing to what may seem a very different subject, we may 
investigate a number of interesting points in connection with the 
form and structure of the blood-vessels, and we shall find ourselves 
helped, at least in the outset, by the same equations as those we 
have used in studying the egg-shell.

We know that the fluid pressure (P) within the vessel is balanced 
by (1) the tension (T) of the wall, divided by the radius of curvature, 
and (2) the external pressure (pf), normal to the wall: according to 
our formula

P = p„ + 7(l/r+l/r').

If we neglect the external pressure, that is to say any support 
which may be given to the vessel by the surrounding tissues, and 
if we deal only with a cylindrical vein or artery, this formula 
becomes simplified to the form P= T/R. That is to say, under 
constant pressure, the tension varies as the radius. But the tension, 
per unit area of the vessel, depends upon the thickness of the wall, 
that is to say on the amount of membranous and especially of 
muscular tissue of which it is composed. Therefore, so long as the 
pressure is constant, the thickness of the wall should vary as the 
radius, or as the diameter, of the blood-vessel.

But it is not the case that the pressure is constant, for it 
gradually falls off, by loss through friction, as we pass from the 
large arteries to the small; and accordingly we find that while, for 
a time, the cross-sections of the larger and smaller vessels are 
symmetrical figures, with the wall-thickness proportional to the size 
of the tube, this proportion is gradually lost, and the walls of the 
small arteries, and still more of the capillaries, become exceedingly 
thin, and more so than in strict proportion to the narrowing of the 
tube.

In the case of the heart we have, within each of its cavities, a 
pressure which, at any given moment, is constant over the whole wall
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area, but the thickness of the wall varies very considerably. For 
instance, in the left ventricle the apex is by much the thinnest por
tion, as it is also that with the greatest curvature. We may assume, 
therefore (or at least suspect), that the formula, t (1/r + 1/r ) = C, 
holds good; that is to say, that the thickness (t) of the wall varies 
inversely as the mean curvature. This may be tested experimentally, 
by dilating a heart with alcohol under a known pressure, and then 
measuring the thickness of the walls in various parts after the whole 
organ has become hardened. By this rqeans it is found that, for 
each of the cavities, the law holds good with great accuracy*. 
Moreover, if we begin by dilating the right ventricle and then dilate 
the left in like manner, until the whole heart is equally and sym
metrically dilated, we find (1) that we have had to use a pressure 
in the left ventricle from six to seven times as great as in the right 
ventricle, and (2) that the thickness of the walls is just in the same 
proportionf.

Many problems of a hydrodynamical kind arise in connection 
with the flow of blood through the blood-vessels; and while these 
are of primary importance to the physiologist they interest the 
morphologist in so far as they bear on questions of structure and form. 
As an example of such mechanical problems we may take the con
ditions which go to determine the manner of branching of an artery, 
or the angle at which its branches are given off; for, as John Hunter 
said J, “To keep up a circulation sufficient for the part, and no more, 
Nature has varied the angle of the origin of the arteries accordingly.” 
This is a vastly important theme, and leads us a deal farther than 
does the problem, petty in comparison, of the shape of an egg. For 
the^theorem which John Hunter has set forth in these simple words 
is no other than that “principle of minimal work” which is funda
mental in physiology, and which some have deemed the very criterion

* R. H. Woods, On a physical theorem applied to tense membranes, Journ. 
of Anat, and Phys, xxvi, pp; 362-371, 1892. A similar investigation of the 
tensions in the uterine wall, and of the varying thickness of its muscles, was 
attempted by Haughton in his Animal Mechanics, 1873, pp. 151-158.

f This corresponds with a determination of the normal pressures (in systole) 
by Knohl, as being in the ratio of 1 : 6-8.

J Essays, edited by Owen, I, p. 134, 1861. The subject greatly interested Keats. 
See his Notebook, edited by M. B. Forman, 1932, p. 7; and cf. Keats as a Medical 
Student, by Sir Wm Hale-White, in Guy's Hospital Reports, lxxiii, pp. 249-262, 
1925.
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of “organisation*.” For the principle of Lagrange, the “principle 
of virtual work,” is the key to physiological equilibrium, and 
physiology itself has been called a problem in maxima and minima t.

This principle, overflowing into morphology, helps to bring the 
morphological and the physiological concepts together. We have 
dealt with problems of maxima and minima in many simple con
figurations, where form alone seemed to be in question; and we 
meet with the same principle again wherever work has to be done 
and mechanism is at haryl to do it. That this mechanism is the 
best possible under all the circumstances of the case, that its work 
is done with a maximum of efficiency and at a minimum of cost, 
may not always lie within our range of quantitative demonstration, 
but to believe it to be so is part of our common faith in the perfection 
of Nature’s handiwork. All the experience and the very instinct of 
the physiologist tells him it is true; he comes to use it as a postulate, 
or methodus inveniendi, and it does not lead him astray. The dis
covery of the circulation of the blood was implicit in, or followed 
quickly after, the recognition of the fact that the valves of heart 
and veins are adapted to a one-way circulation; and we may begin 
likewise by assuming a perfect fitness or adaptation in all the minor 
details of the circulation.

As part of our concept of organisation we assume that the cost 
of operating a physiological system is a minimum, what we mean 
by cost being measurable in calories and ergs, units whose dimensions 
are equivalent to those of v'ork. The circulation teems with illustra
tions of this great and cardinal principle. “ To keep up a circulation 
sufficient for the part and no more” Nature has not only varied the 
angle of branching of the blood-vessels to suit her purpose, she has 
regulated the dimensions of every branch and stem and twig and 
capillary; the normal operation of the heart is perfection itself, 
even the amount of oxygen which enters and leaves the capillaries 
is such thart the work involved in its exchange and transport is 
a minimum. In short, oxygen transport is the main object of the 
circulation, and it seems that through all the trials and errors of

* Cf. Cecil D. Murray, The physiological principle of minimal work, in the vascular 
system, and the cost of blood-volume. Proc. Acad. Nat. Sci. xn, pp. 207-214, 1926; 
The angle of branching of the arteries. Journ. Gen. Physiol, ix, pp. 835- 841, 1926; 
On the branching-angles of trees, ibid, x, p. 725, 1927.

f By Dr F. H. Pike, quoted by C. D. Murray.
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growth and evolution an efficient mode of transport has been attained. 
To prove that it is the very best of all possible modes of transport 
may be beyond our powers and beyond our needs; but to assume 
that it is perfectly economical is a sound working hypothesis*. And 
by this working hypothesis we seek to understand the form and 
dimensions of this structure or that, in terms of the work which it 
has to do.

The general principle, then, is that the form and arrangement 
of the blood-vessels is such that the circulation proceeds with a 
minimum of effort, and with a minimum of wall-surface, the latter 
condition leading to a minimum of friction and being therefore 
included in the first. What, then, should be the angle of branching, 
such that there shall be the least possible loss of energy in the course 
of the circulation? In order to solve this problem in any particular 
case we should obviously require to know (1) how the loss of energy 
depends upon the distance travelled, and (2) how the loss of energy 
varies with the diameter of the vessel. The 
loss of .energy is evidently greater in a 
narrow tube than in a wide one, and greater, 
obviously, in a long journey than a short. 
If the large artery, AB, gives off a com
paratively narrow branch leading to P 
(such as CP, or DP), the route ACP is 
evidently shorter than ADP, but on the 
other hand, by the latter path, the blood has 
tarried longer in the wide vessel AB, and has 
had a shorter course in the narrow branch.
The relative advantage of the two paths will depend on the loss 
of energy in the portion CD, as compared with that in the alternative 
portion CD', the one being short and narrow, the other long and 
wide. If we ask, then, which factor is the more important, length

* Cf. A. W. Volkmann, Die Haemodynamik nach Versuchen, Leipzig, 1850 
(a work of great originality); G. Schwalbe, Ueber.. .die Gestaltung des Arterjen- 
systems, Jen. Zeitschr. xn, p. 267, 1878; W. Hess, Eine mechanischbedingte Gesetz- 
massigkeit im Bau des Blutgefasssystems, A.f. Entw. Meeh, xvi, p. 632,1903; Ueber 
die peripherische Regulierung der Blutzirkulation, Pfluger's Archiv, clxviii, pp. 
439-490, 1917; R. Thoma, Die mittlere Durchflussmengen der Arterien des 
Menschen als Funktion des Gefassradius, ibid, clxxxix, pp. 282-310, cxcni, 
pp. 385^406, 1921-22; E. Blum, Querschnittsbeziehungen zwischen Stamm u. Asten 
im Arteriensystem, ibid, clxxv, pp. 1-19, 1919.
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or width, we may safely take it that the question is one of degree; 
and that the factor of width will become the more important of 
the two wherever artery and branch are markedly unequal in size. 
In other words, it would seem that for small branches a large angle 
of bifurcation, and for large branches a small one, is always the 
better. Roux has laid down certain rules in regard to the branching 
of arteries, which correspond with the general conclusions which we 
have just arrived at. The most important of these are as follows: 
(1) If an artery bifurcates into two equal branches, these branches 
come off at equal angles to the main stem. (2) If one of the two 
branches be smaller than the other, then the main branch, or 
continuation of the original artery, makes with the latter a smaller 
angle than does the smaller or “lateral” branch. And (3) all 
branches which are so small that they scarcely seem to weaken or 
diminish the main stem come off from it at a large angle, from 
about 70° to 90°.

We may follow Hess in a further investigation of the phenomenon. 
Let AB be an artery, from which a branch has to be given off so 

as to reach P, and let ACP, A DP, etc., 
be alternative courses which the branch 
may follow: CD, DE, etc., in the 
diagram, being equal distances (= I) 
along AB. Let us call the angles PCD, 
PDE, x^, x2, etc.: and the distances 
CD', DE', by which each branch exceeds 
the next in length, we shall call , l2, etc. 
Now it is evident that, of the courses 
shewn, ACP is the shortest which the 
blood can take, but it is also that by 
which its transit through the narrow 
branch is the longest. We may reduce 
its transit through the narrow branch 
more and more, till we come to CGP, or 
rather to a point where the branch comes 
off at right angles to the main stem; but 

in so doing we very considerably increase the whole distance 
travelled. We may take it that there will be some intermediate point 
which will strike the balance of advantage.
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Now it is easy to shew that if, in Fig. 456, the route ADP and 
AEP (two contiguous routes) be equally favourable, then any other 
route on either side of these, such as ACP or AFP, must be less 
favourable than either. Let ADP and AEP, then, be equally 
favourable; that is to say, let the loss of energy which the blood 
suffers in its passage along these two routes be equal. Then, if 
we make the distance DE very small, the angles x2 and x3 are nearly 
equal, and may be so treated. And again, if DE be very small, 
then DE'E becomes a right angle, and l2 (or DE') = I cos x2. But 
if L be the loss of energy per unit distance in the wide tube AB, 
and L' be the corresponding loss of energy in the narrow tube DP, 
etc., then IL = l2L', because, as we have assumed, the loss of energy 
on the route DP is equal to that on the whole route DEP. Therefore 
IL = IL' cos x2, and cos x2 = L/L'. That is to say, the most favour
able angle of branching will be such that the cosine of the angle is 
equal to the ratio of the loss of energy which the blood undergoes, 
per unit of length, in the main vessel, as compared with that which 
it undergoes in the branch. The path of a ray of light from one 
refractive medium to another is an analogous but much more famous 
problem; and the analogy becomes a close one when we look upon 
the branching artery as the special case of “grazing incidence.”

After thus dealing with the most suitable angle of branching, 
we have still to consider the appropriate cross-section of the branches 
compared with the main trunk, for instance in the special case where 
a main artery bifurcates into two. That the sectional area of the two 
branches may together equal the area of the parent trunk, it is (of 
course) only necessary that the diameters of trunk and branch should 
be as ^2 : 1, or (say) as 14 : 10, or (still more roughly) as 10:7; and 
in the great vessels, this simple ratio comes very nearly true. We 
have, for instance, the following measurements of the common iliac 
arteries, into which the abdominal aorta subdivides:

Internal diameter of abdominal arteries*
Aorta abdom. (mm.) 15-2 120 14-1 13-9
Iliaca comm. d. 10-8 8-8 10-4 8-6
Iliaca comm. s. 10-7 8-6 9-5 10-0
Mean of do. 10-8 8-7 10-0 9-3
Ratio 71 72 69 67 p.c.

Av. 70 p.c.
* From R. Thoma, op. cit. p. 388.



954 ON THE FORM AND BRANCHING [ch

But the increasing surface of the branches soon means increased 
friction, and a slower pace of the blood travelling through; and 
therefore the branches must be more capacious than at first appears. 
It becomes a question not of capacity but of resistance; and in 
general terms the answer is that the ratio of resistance to cross
section shall be equal in every part of the system, before and after 
bifurcation, as a condition of least possible resistance in the whole 
system; the total cross-section of the branches, therefore, must be 
greater than that of the trunk in proportion to the increased 
resistance.

An approximate result, familiar to students of hydrodynamics, is 
that the resistance is a minimum, and the condition an optimum, when 
the cross-section of the main stem is to the sum of the cross-sections 
of the branches as 1 : ^2, or 1 : 1-26. Accordingly, in the case of 
a blood-vessel bifurcating into two equal branches, the diameter 
of each should be to that of the main stem (approximately) as

/-1 ~6 : 1, or (say) 8 : 10.

While these statements are so far true, and while they undoubtedly 
cover a great number of observed facts, yet it is plain that, as in 
all such cases, we must regard them not as a complete explanation, 
but as factors in a complicated phenomenon: not forgetting that 
(as one of the most learned of all students of the heart and arteries, 
Dr Thomas Young, said in his Croonian lecture*)  all such questions 
as these, and all matters connected with the muscular and elastic 
powers of the blood-vessels, “ belong to the most refined departments 
of hydraulics”; and Euler himself had commented on the “in

* On the functions of the heart and arteries, Phil. Trans. 1809, pp. 1-31, 
cf. 1808, pp. 164-186; Collected Works, i, pp. 511-534, 1855. The same lesson is 
conveyed by all such work as that of Volkmann, E. H. Weber and Poiseuille. 
Cf. Stephen Hales’s Statical Essays, n, Introduction-. “Especially considering 
that they [i.e. animal Bodies] are in a manner framed of one continued Maze of 
innumerable Canals, in which Fluids are incessantly circulating, some with great 
Force and Rapidity, others with very different Degrees of rebated Velocity: 
Hence, etc.” Even Leonardo had brought his knowledge of hydrodynamics to 
bear on the valves of the heart and the vortex-like eddies of the blood. Cf. 
J. Playfair McMurrich, L. da Vinci, the Anatomist, 1930, p. 165; etc. How com
plicated the physiological aspect of the case becomes may be judged by Thoma’s 
papers quoted above.
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superable difficulties” of this sort of problem*. Some other 
explanation must be sought in order to account for a phenomenon 
which particularly impressed John Hunter’s mind, namely the 
gradually altering angle at which the successive intercostal arteries 
are given off from the thoracic aorta: the special interest of this 
case arising from the regularity and symmetry of the series, for 
“there is not another set of arteries in the body whose origins are 
so much the same, whose offices are so much the same, whose dis
tances from their origin to the place of use, and whose uses [? sizes] f 
are so much the same.”

The mechanical and hydrodynamical aspect of the circulation 
was as plain to John Hunter’s mind as it had been to William 
Harvey or to Stephen Hales, or as it was afterwards to Thomas 
Young; but it was not always plain to other men. When a turtle’s 
heart has been removed from its body, the blood may still be seen 
moving in the capillaries for some short while thereafter; and 
Haller, seeing this, “attributed it to some unknown power which 
he conceived to be exerted by the solid tissues on the blood and also 
by the globules of the blood on each other; to which power, until 
further investigation should elucidate its nature, he gave the name 
of attraction.” So said William Sharpey, the father of modern 
English physiology; and Sharpey went on to say that “many 
physiologists accordingly maintain the existence of a peculiar pro
pulsive power in the coats of the capillary vessels different from 
contractility, or that the globules of the blood are possessed of the 
power of spontaneous motion.” Alison, great physician and famous 
vitalist, “extended this view, in so far as he regards the motion 
of the blood in the capillaries as one of the effects produced by what 
he calls vital attraction and repulsion, powers which he conceives 
to be general attributes of living matter.” But Sharpey’s own 
clear insight so far overcame his faith in Alison that he found it 
“not impossible that a certain degree of agitation might be occa
sioned in the blood by the elastic resilience of the Vessels reacting 
on it, after the distending force of the heart has been withdrawn”; 
and, in short, that the evidence in the case did not “warrant the

* In a tract entitled Principia pro motu sanguinis per arterias determinando 
Op. posth. xi, pp. 814-823, 1862.

f “Sizes” is Owen’s editorial emendation, which seems amply justified. 
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assumption of a peculiar powe^ acting on the blood, of whose 
existence in the animal economy we have as yet no other evidence *.”• 

Sir Charles Bell, whose anatomical skill was great but his mathe
matical insight small, drew the conclusion, of no small historic 
interest, that “the laws of hydraulics, though illustrative, are not 
strictly applicable to the explanation of the circulation of the blood, 
nor to the actions of the living frame.” He goes on to say: 
“Although we perceive admirable mechanism in the heart, and in 
the adjustment of the tubes on hydraulic principles: and although 
the arteries and veins have form, calibre and curves suited to the 
conveyance of fluid, according to our knowledge of hydraulic engines: 
yet the laws of life, or of physiology, are essential to the explanation 
of the circulation of the blood. And this conclusion we draw, not 
only from the extent and minuteness of the vessels, but also from 
the peculiar nature of the blood itself. Life is in both, and a mutual 
influence prevails f.” This peculiar form of vitalism savours more 
of Bichat and the French school than of the teaching of John 
Hunter or Thomas Young. It is precisely that idea of “organic 
control” or “organic coordination,” which the physiologists are 
always reluctant to accept, always unwilling to abandon: which 
is said to be inherent in every process or operation of the body, and 
to differentiate biology from all the physical sciences: and of which 
in our own day Haldane has been the chief and great protagonist. 
But it is a subject with which this book is not concerned.

To conclude, we may now approach the question of economical 
size of the blood-vessels in a broader way. They must not be too 
small, or the work of driving blood through them will be too great;

* See Sharpey’s article on Cilia, in Todd’s Cyclopaedia, i, p. 637, 1836; also 
Allen Thomson’s admirable article on the Circulation, ibid. p. 672. Alison's views 
were based not only on Haller, but largely on Dr James Black’s Essay on the 
Capillary Circulation, London, 1825.

f Practical Essays, 1842, p. 88. When Sir Charles Bell declared that hydratdic 
principles were not enough, but that ‘the laws of life” were needed to explain the 
circulation of the blood, he was right from his point of view. He was slow to see, 
and unwilling to admit, that hydrodynamical principles suffice to explain a large, 
essential part of the problem; but as a physiologist he had every reason to know 
that that part was not the whole. He may have had many things in mind: the 
arrest of the circulation in inflammation, as we see it in a frog’s web; that a cut 
artery bleeds to death while a torn one does not bleed at all; that blood does not 
coagulate when stagnant within its own vessels—a fact which, as John Hunter said, 
“ has ever appeared to me the most interesting fact in physiology.” 
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they must not be too large, or they will hold more blood than is 
needed—and blood is a costly thing. We rely once more on 
Poiseuille’s Law*, which tells us the amount of work done in causing 
so much fluid to flow through a tube against resistance, the said 
resistance being measured by the viscosity of the fluid, the coefficient 
of friction and the dimensions of the tube; but we have also to 
account for the blood itself, whose maintenance requires a share 
of the bodily fuel, and whose cost per c.c. may (in theory at least) 
be expressed in calories, or in ergs per day. The total cost, then, 
of operating a given section of artery will be measured by (1) the 
work done in overcoming its resistance, and (2) the work done 
in providing blood to fill it; we have come again to a differential 
equation, leading to an equation of maximal efficiency. The general 
resultf is as follows: it can be made a quantitative one by intro
ducing known experimental values. Were blood a cheaper thing 
than it is we might expect all arteries to be uniformly larger than 
they are, for thereby the burden on the heart (the flow remaining 
equal) would be greatly reduced—thus if the blood-vessels were 
doubled in diameter, and their volume thereby quadrupled, the 
work of the heart would be reduced to one-sixteenth. On the other 
hand, were blood a scarcer and still costlier fluid, narrower .blood
vessels would hold the available supply; but a larger and stronger 
heart would be needed to overcome the increased resistance.

* Owing to faulty determination of the fall of pressure in the capillaries, 
Poiseuille’s equation used to be deemed inapplicable to them; but Krogh’s recent 
work removes, or tends to remove, the inconsistency (Anatomy and Physiology of 
the Capillaries, Yale University Press, 1922).

t Cf. C. D. Murray, op. cit. p. 211.



CHAPTER XVI

ON FORM AND MECHANICAL EFFICIENCY

There is a certain large class of morphological problems of which 
we have not yet spoken, and of which we shall be able to say but 
little. Nevertheless they are so important, so full of deep theoretical 
significance, and so bound up with the general question of form 
and its determination as a result of growth, that an essay on 
growth and form is bound to take account of them, however im
perfectly and briefly. The phenomena which I have in mind are 
just those many cases where adaptation in the strictest sense is 
obviously present, in the clearly demonstrable form of mechanical 
fitness for the exercise of some particular function or action which 
has become inseparable from the life and well being of the organism.

When we discuss certain so-called “adaptations” to outward 
circumstance, in the way of form, colour and so forth, we are often 
apt to use illustrations convincing enough to certain minds but 
unsatisfying to others—in other words, incapable of demonstration. 
With regard to coloration, for instance, it is by colours “cryptic,” 
“warning,” “signalling,” “mimetic,” and so on*, that we prosaically 
expound, and slavishly profess to justify, the vast Aristotelian 
synthesis that Nature makes all things with a purpose and “does 
nothing in vain.” Only for a moment let us glance at some few 
instances by which the modern teleologist accounts for this or that 
manifestation of colour, and is led on and on to beliefs and doctrines 
to which it becomes more and more difficult to subscribe.

Some dangerous and malignant animals are said (in sober earnest) 
to wear a perpetual war-paint, in order to “remind their enemies 
that they had better leave them alonef.” The wasp and the hornet,

* For a more elaborate classification, into colours cryptic^ procryptic, anti
cryptic, apatetic, epigamic, sematic, episematic, aposematic, etc., see Poulton’s 
Colours of Animals (Int. Scientific Spries, lxvui, 1890; cf. also R. Meldola, 
Variable protective colouring in insects, P.Z.S. 1873, pp. 153-162; etc. The subject 
is well and fully set forth by H. B. Cott, Adaption coloration in Animals, 1940.

f Dendy, Evolutionary Biology, 1912, p. 336.
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in gallant black and gold, are terrible as an army with banners; 
and the Gila Monster (the poison-lizard of the Arizona desert) is 
splashed with scarlet—its dread and black complexion stained with 
heraldry more dismal. But the wasp-like livery of the noisy, idle 
hover-flies and drone-flies is but stage armour, and in their tinsel 
suits the little counterfeit cowardly knaves mimic the fighting crew.

The jewelled splendour of the peacock and the humming-bird, 
and the less effulgent glory of the lyre-bird and the Argus pheasant, 
are ascribed to the unquestioned prevalence of vanity in the one sex 
and wantonness in the other*.

The zebra is striped that it may graze unnoticed on the plain, the 
tiger that it may lurk undiscovered in the jungle; the banded 
Chaetodont and Pomacentrid fishes are further bedizened to the 
hues of the coral-reefs in which they dwell f. The tawny lion is 
yellow as the desert sand; but the leopard wears its dappled hide 
to blend, as it crouches on the branch, with the sun-flecks peeping 
through the leaves.

The ptarmigan and the snowy owl, the arctic fox and the polar 
bear, are white among the snows; but go he north or go he south, 
the raven (like the jackdaw) is boldly and impudently black.

The rabbit has his white scut, and sundry antelopes their piebald 
flanks, that one timorous fugitive may hie after another, spying the 
warning signal. The primeval terrier or collie-dog had brown spots 
over his eyes that he might seem awake when he was sleeping!: 
so that an enemy might let the sleeping dog lie, for the singular 
reason that he imagined him to be awake. And a flock of flamingos,

* Delight in beauty is one of the pleasures of the imagination; there is no 
limit to its indulgence, and no end to the results which we may ascribe to its 
exercise. But as for the particular “standard of beauty” which the bird (for 
instance) admires and selects (as Darwin says in the Origin, p. 70, edit. 1884), 
we are very much in the dark, and we run the risk of arguing in a circle; for wellnigh 
all we can safely say is what Addison says (in the 412th Spectator)—that each different 
species “is most affected with the beauties of its own kind... .Hinc merula in nigro 
se oblectat nigra marito;.. .hinc noctua tetram Canitiem alarum et glaucos miratur 
ocellos.”

f Cf. T. W. Bridge, Cambridge Natural History (Fishes), vn, p. 173, 1904; also 
K. v. Frisch, Ueber farbige Anpassung bei Fische, Zool. Jahrb. (Abt. Allg. Zool.), 
xxxii, pp. 171-230, 1914. But Reighard, in what Raymond Pearl calls “one of 
the most beautiful experimental studies of natural selection which has ever been 
made,” found no relation between the colours of coral-reef fishes and their elimination 
by natural enemies (Carnegie Inst. Publication 103, pp. 257—325, 1908).

t Nature, L, p. 572; Li, pp. 33, 57, 533, 1894-95.
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wearing on rosy breast and crimson wings a garment of in
visibility, fades away into the sky at dawn or sunset like a cloud 
incarnadine*.

* They are “wonderfully fitted for ‘vanishment’ against the flushed, rich
coloured skies of early morning and evening... their chief feeding-times ”; and 
“look like a real sunset or dawn, repeated on the opposite side of the heavens— 
either east or west as the case may be” (Thayer, Concealing-coloration in the Animal 
Kingdom, New York, 1909, pp. 154-155). This hypothesis, like the rest, is not 
free from difficulty. Twilight is apt to be short in the homes of the flamingo; 
moreover, Mr Abel Chapman wat ched them on the Guadalquivir feeding by day, as 
I also have seen them at Walfisch Bay.

| Principal Galloway, Philosophy of Religion, 1914, p. 344.
| Professor D. M. S. Watson, addressing the British Association in 1929 on 

Adaptation, parted company with what I had called contemporary orthodoxy in 
1917. Speaking of such morphological differences as “have commonly been 
assumed to be of an adaptive nature,” he said: “That these structural differences 
are adaptive is for the most part pure assumption.... There is no branch of zoology 
in which assumption has played a greater part, or evidence a less part, than in 
the study of such presumed adaptations.” Hume, in his Dialogue concerning Natural 
Religion, shewed similar caution: “ Steps of a stair are plainly constructed that human 
legs may use them in mounting; and this inference is certain and infallible. Human 
legs are also contrived for walking and mounting; and this inference, I allow, is not 
altogether so certain.”

To buttress the theory of natural selection the same instances 
of “adaptation” (and many more) are used, as in an earlier but not 
distant age testified to the wisdom of the Creator and revealed to 
simple piety the immediate finger of God. In the words of a certain 
learned theologian f, “ The free use of final causes to explain what 
seems obscure was temptingly easy.... Hence the finalist was often 
the man who made a liberal use of the ignava ratio, or lazy argument: 
when you failed to explain a thing by the ordinary process of 
causality, you could ‘explain’ it by reference to some purpose of 
nature or of its Creator. This method lent itself with dangerous 
facility to the well-meant endeavours of the older theologians to 
expound and emphasise the beneficence of the divine purpose.” 
Mutatis mutandis, the passage carries its plain message to the 
naturalist.

The fate of such arguments or illustrations is always the same. 
They attract and captivate for awhile; they go to the building of 
a creed, which contemporary orthodoxy! defends under its severest 
penalties: but the time comes when they lose their fascination, 
they somehow cease to satisfy and to convince, their foundations
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are discovered to be insecure, and in the end no man troubles to 
controvert them*.

But of a very different order from all such “adaptations” as 
these are those very perfect adaptations of form which, for instance, 
fit a fish for swimming or a bird for flight. Here we are far above 
the region of mere hypothesis, for we have to deal with questions 
of mechanical efficiency where statical and dynamical considerations 
can be applied and established in detail. The naval architect learns 
a great part of his lesson from the stream-lining of a fishf; the 
yachtsman learns that his sails are nothing more than a great bird’s 
wing, causing the slender hull lofty along J; and the mathematical 
study of the stream-lines of a bird, and of the principles underlying 
the areas and curvatures of its wings and tail, has helped to lay the 
very foundations of the modern science of aeronautics.

We know, for example, how in strict accord with theorv (it was 
George Cayley who explained it first) the wing, whether of bird or 
insect, stands stiff along its “ leading edge,” like the mast before the 
sail; and how, conversely, it thins out exquisitely fine along its rear 
or “trailing edge,” where sharp discontinuity favours the formation 
of uplifting eddies. And we see how, alike in the flying wing, in 
the penguin’s swimming wing and in the whale’s flipper, the same 
design of stiff fore-edge and thin fine trailing edge, both curving away 
evenly to meet at the tip, is continually exemplified.

We learn how lifting power not only depends on area but has 
a linear factor besides, such that a long narrow wing is more stable 
and effective both for speedy and for soaring flight than a short 
and broad one of equal area; and how in this respect the hawkmoth 
differs from the butterfly, the swallow from the thrush. We are 
taught how every wing, and every kite or sail, must have a certain

* The influence of environment on coloration is one thing, and the hypothesis 
of protective colouring is quite another. That arctic animals are often white, 
and desert animals sandy-hued or isabelline, are simple and undisputed facts; 
but such field-naturalists as Theodore Roosevelt, Selous (in his African Nature 
Notes), Buxton (Animal Life in Deserts), and Abel Chapman (Savage Sudan, and 
Retrospect) reject with one accord the theory of colour-protection.

f No creature shews more perfect stream-lining than a fur-seal swimming. 
Every curve is a continuous curve, the very ears and eye-slits and whiskers falling 
into the scheme, and the flippers folding close against the body.

J Cf. Manfred Curry, Yacht Racing, and the Aerodynamics of Sails, London, 
1928.

T G F 6l 
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amount of arch* or “belly,” slight in the rapid fliers, deeper in the 
slow, flattened in the strong wind, bulging in the gentler breeze; 
and how advantageous is all possible stiffening of sail or wing, and 
why accordingly the yachtsman inserts “battens" and the Chinaman 
bamboos in his sail. We are shewn by Lilienthal himself how a 
powerful eddy, the so-called “ram,”1 forms under the fore-edge, and 
is sometimes caught in a pocket of the bird’s under wing-coverts 
and made use of as a forward drive.

We have lately learned how the gaps or slots between the primary 
wing-feathers of a crow, and a slight power of the wing-feathers 
to twist, like the slats of a Venetian blind, play their necessary

Fig. 457. Ligaments in a swan’s wing. 1, 2, 3, remiges; A. B, longitudinal 
ligaments, with their oblique branches; C, small subcutaneous ligaments. 
From Marey, after Pettigrew.

part under certain conditions in the perfect working of the machine. 
Nothing can be simpler than the mechanism by which all this is 
done. Delicate ligaments run along the base of the wing from 
feather to feather, and send a branch to every quill (Fig. 457); by 
these, as the wing extends, the quills are raised into their places, 
and kept at their due and even distances apart. Not only that, but 
every separate ligamentous strand curls a little way round its feather 
where it is inserted into it; and thereby the feather is not only 
elevated into its place, but is given the little twist which brings it 
to its proper and precise obliquity.

* On the curvat»ra veli, cf. J. Bernoulli, Acta Erudit. Lips. 1692, p. 202. .Studied 
also by Eiffel, Resistance de Pair et l'aviation, Paris, 1910.
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All this is part of the automatic mechanism of the wing, than which 
there is nothing prettier in all anatomy. The triceps muscle, massed 
on the shoulder, extends the elbow-joint in the usual way. Butanother 
muscle (a long flexor of the wrist) has its origin above the elbow and 
its insertion below the wrist. It passes over two joints; it is what 
German anatomists call a zweigelenkiger Muskel. It transmits to the 
one joint the movements of the other; and in birds of powerful flight 
it becomes less and less muscular, more and more tendinous, and so , 
more and more completely automatic. The wing itself is kept light; 
its chief muscle is far back on the shoulder; a contraction of that re
mote muscle throws the whole wing into gear. The little ligaments we 
have been speaking of are so linked up with the rest of the mechanism 
that we have only to hold a bird’s wing by the arm-bone and extend 
its elbow-joint, to see the whole wing spring into action, with every 
joint extended, and every feather tense and in its place*.

* The mole’s forelimb has a somewhat similar action, by which, as the arm and 
hand are pulled violently backward, the claws are powerfully and automatically 
flexed for digging. The “suspensory ligament ” of the horse, which is, or was, a short 
flexor of the digit, is an analogous mechanism. See a paper of mine On the nature and 
action of certain ligaments, Journ. of Anat, and Physiol, xvin, pp. 406-410, 1884.

61-2

Again on the fore-edge of the wing there lies a tiny mobile “ thumb,” 
whose little tuft of stiff, strong feathers forms the so-called “ bastard 
wing.” We used to look on it as a “vestigial organ,” a functionless 
rudiment, a something which from ancient times had “lagged 
superfluous on the stage”; until a man of genius saw that it was 
just the very thing required to break the leading vortices, keep the 
flow stream-lined at a larger angle of incidence than before, and 
thereby help the plane to land. So he invented, to his great profit 
and advantage, the “slotted wing.”

We learn many and many another interesting thing. How a 
stiff “comb” along the leading edge, a broad soft fringe along 
the trailing edge (the fringe acting as a damper and preventing 
“fluttering”), and a soft, downy upper surface of the wing, all help 
as silencers, and give the owl her noiseless flight. How the wing
loading of the owls is lower than in any other birds, lower even 
than in the eagles; and how owl and eagle have power to spare to 
carry easily their, prey of mouse or mountain-hare. How the deep 
terminal wing-slots aid the heavy rook or heron in their slow
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flapping flight; how the sea-gull does not need them, for his load is 
lighter and his wings move slowly. There is neVer a discovery 
made in the theory of aerodynamics but we find it adopted already 
by Nature, and exemplified in the construction of the wing*.

We may illustrate some few of the principles involved in the con
struction of the bird’s wing with a half-sheet of paper, whose laws, 
as it planes or glides downwards, Clerk Maxwell explained many 
years ago j.

To improve this first and roughest of models, we see that its 
leading edge had better be as long as possible, and that sharp

Fig. 458. A diagrammatic bird.

corners are bound to cause disturbance; let us get rid of the corners 
and turn the leading edge into a continuous curve (Fig. 458). The 
leading edge is now doing most of the work, and the area within 
and behind is doing little good. Vorticoid air-currents are beating 
down on either side on this inner area; moreover, air is “sliding 
out” below, and tending to curl round the tip and edges of the

* Note that the aeroplane copies the beetle rather than the bird, as Lilienthal 
himself points out, in Vom Gleitflug zu Segelflug, Berlin, 1923.

f On a particular case of the descent of a heavy body in a resisting medium, 
Camb, and Dublin Math. Journ. ix, pp. 145-148, 1854; Sci. Papers, I, pp. 115-118. 
This elegant and celebrated little paper was written by Clerk Maxwell while an 
undergraduate at Trinity College, Cambridge.
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wing, all with so much waste of energy*.  In short the bioad wing 
is less efficient than the narrow; and on either side of our sheet 
of paper we may cut out a portion which is useless and in the way: 
for the same reasons we may cut out the middle part of the tail, 
which also is doing more harm than goodf.

* This is why “slotting” so improves the broad wing of the crow. See on this 
and other matters. R. R. Graham's papers on Safety devices in the wings of 
birds, in British Birds, xxiv, 1930.

f Pettigrew shewed long ago (Tr. R.S.E. xxvi, p. 361, 1872) that the wing-area 
(in insects) “is usually greatly in excess of what is absolutely required for flight,” 
and that the posterior or trailing edge could be largely trimmed away without the 
power of flight being at all diminished. We see how in the swallow this trailing edge 
is “trimmed away” till a bare minimum is left, and how (at least for a certain kind 
of flight) the wing is thereby greatly improved.

J Cf. Enoch Farrer, The shape assumed by a deformable body immersed in 
a moving fluid, Journ. Franklin Inst. 1921. pp. 737-756; also Vaughan Cornish, 
on Waves of Sand and Snow.

Hard as the problem is, and harder as it becomes, we may venture 
on. In aeronautics, as in hydrodynamics, we try to determine the 
resistances encountered by bodies of various shapes, moving through 
various fluids at various speeds; and in so doing we learn the 
enormous, the paramount importance of “strcam-lining.” There 
would be no need for stream-lining in a “perfect fluid,” but in air or 
water it makes all the difference in the world. Stream-lining implies 
a shape round which the medium streams so smoothly that resistance 
is at last practically nil; there only remains the slight “skin- 
friction,” which can be reduced or minimised in various ways. But 
the least imperfection of the stream-lining leads to whirls and 
“pockets” of dead water or dead air. which mean large resistance 
and waste of energy. The converse and more general problem soon 
emerges, of how in natural objects stream-lining comes to be; and 
whether or no the more or less stream-lined shape tends to be 
impressed on a deformable or plastic body by its own steady motion 
through a fluid J. The principle of least action, the “loi de repos,” 
is enough to suggest that the stream will tend to impress its stream
lines on the plastic body, causing it to yield or "give,” until it ends 
by offering a minimum of resistance; and experiment goes some 
way to support the hypothesis. A Bubble of mercury, poised in 
a tube through which air is blown, assumes a stream-lined shape, 
in so far as the forces due to the moving current avail against the 
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other forces of restraint. We have seen how the egg is automatically 
stream-lined, after a simple fashion, by the muscular pressure which 
drives it on its way. The contours of a snowdrift, of a wind
swept sand-dune, even of the flame of a lamp, shew endless 
illustrations of stream-lines or eddy-curves which the stream itself 
imposes, and which are oftentimes of great elegance and complexity. 
Always the stream tends to mould the bodies it streams over, 
facilitating its own flow; and the same principle must somehow 
come into play, at least as a contributory factor, in the making of 
a fish or of a bird. But it is obvious in both of these that even 
though the stream-lining be perfected in the individual it is also 
an inheritance of the race: and the twofold problem of accumulated 
inheritance, and of perfect structural adaptation, confronts us once 
again and passes all our understanding*.

When, after attempting to comprehend the exquisite adaptation 
of the swallow or the albatross to the navigation of the air, we try 
to pass beyond the empirical study and contemplation of such per
fection of mechanical fitness, and to ask how such fitness came to 
be, then indeed we may be excused if we stand wrapt in wonderment, 
and if our minds be occupied and even satisfied with the conception 
of a final cause. And yet all the while, with no loss of wonderment 
nor lack of reverence, do we find ourselves constrained to believe 
that somehow or other, in dynamical principles and natural law, 
there lie hidden the steps and stages of physical causation by which 
the material structure was so shapen to its endsf. *

The problems associated with these phenomena are difficult at 
every stage, even long before we approach to the unsolved secrets 
of causation; and for my part I confess I lack the requisite know
ledge for even an elementary discussion of the form of a fish, or of 
an insect, or of a bird. But in the form of a bone we have a problem

* Alechanical perfection has often little to do with immunity from accident or 
with capacity to survive. Legs and wings of locust or mayfly are indescribably 
perfect for their brief spell of life and narrow sphere of toil; but they may be torn 
asunder in a moment, and whole populations perish in an hour. Careful of the 
type, but careless of the single life, Nature seems ruthless and indiscriminate 
in the sacrifice of these little lives.

t Cf. Professor Flint, in his Preface to Affleck’s translation of Janet’s Causes 
finales: “We are, no doubt, still a long way from a mechanical theory of organic 
growth, but it may be said to be the quaesitum of modern science, and no one 
can say that it is a chimaera.”
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of the same kind and order, so far simplified and particularised that 
we may to some extent deal with it, and may possibly even find, 
in our partial comprehension of it, a partial clue to the principles 
of causation underlying this whole class of phenomena.

Before we speak of the form of a bone, let us say a word about 
the mechanical properties of the material of which it is built*, in 
relation to the strength it has to manifest or the forces it has to 
resist: understanding always that we mean thereby the properties 
of fresh or living bone, with all its organic as well as inorganic 
constituents, for dead, dry bone is a very different thing. In all 
the structures raised by the engineer, in beams, pillars and girders
of every kind, provision has to be 
made, somehow or other, for strength 
of two kinds, strength to resist com
pression or crushing, and strength to 
resist tension or pulling asunder. The 
evenly loaded column is designed w ith 
a view to supporting a downward 
pressure, the wire-rope, like the tendon Fig. 459.

of a muscle, is adapted only to resist a tensile stress; but in many or 
most cases the two functions are very closely inter-related and com
bined. The case of a loaded beam is a familiar one; though, by the 
way, we are now told that it is by no means so simple as it looks, and 
indeed that “the stresses and strains in this log of timber are so 
complex that the problem has not yet been solved in a manner that 
reasonably accords with the known strength of the beam as found 
by actual experiment!.” However, be that as it may, we know, 
roughly, that when the beam is loaded in the middle and supported 
at both ends, it tends to be bent into an arc, in which condition 
its lower fibres are being stretched, or are undergoing a tensile

* Cf. Sir Donald Mac Alister, How a bone is built, Engl. III. Mag. 1884.
t Professor Claxton Fidler, On Bridge. Construction, p. 22 (4th ed.), 1909; cf. 

(int. al.) Love’s Elasticity, p. 20 (Historical Introduction), 2nd ed., 1906, where the 
bending of the beam, and the distortion or warping of its cross-section, are studied 
after the manner of St Venant , in his Memoir on Torsion (1855). How complex the 
question has become may be judged from such papers as Price, On the structure 
of wood in relation to its elastic properties, Phil. Trans. (A), ccvin, 1928; or 
D. B. Smith and R. V. Southwell, On the stresses induced by flexure in a deep 
rectangular beam, Proc. R.S. (A), cxliii, pp. 271-285. 1934.
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stress, while its upper fibres are undergoing compression. It follows 
that in some intermediate layer there is a “neutral zone,” where 
the fibres of the wood are subject to no stress of either kind.

The phenomenon of a compression-member side by side with a tension
member may be illustrated in many simple ways. Ruskin (in Deucalion) 
describes it in a glacier. He then bids us warm a stick of sealing-wax and 
bend it in a horseshoe: “you will then see, through a lens of moderate power, 
the most exquisite facsimile of glacier fissures produced by extension on its 
convex surface, and as faithful an image of glacier «surge produced by com
pression on its concave side.” A still more beautiful way of exhibiting the 
distribution of strain is to use gelatin, into which bubbles of gas have been 
introduced with the help of sodium bicarbonate. A bar of such gelatin, when 
bent into a hoop, shews on the one side the bubbles elongated by tension and 
on the other those shortened by compression*.

In like manner a vertical pillar, if unevenly loaded (as for in
stance the shaft of our thigh-bone normally is), will tend to bend, 
and so to endure compression on its concave, and tensile stress 
upon its convex side. In many cases it is the business of the 
engineer to separate out, as far as possible, the pressure-lines from 
the tension-lines, in order to use separate modes of construction, 
or even different materials for each. In a suspension-bridge, for 
instance, a great part of the fabric is subject to tensile strain only, 
and is built throughout of ropes or wires; but the massive piers 
at either end of the bridge carry the weight of the whole structure 
and of its load, and endure all the “compression-strains” which 
are inherent in the system. Very much the same is the case in 
that wonderful arrangement of struts and ties which constitute, or 
complete, the skeleton of an animal. The “skeleton,” as we see it 
in a Museum, is a poor and even a misleading picture of mechanical 
efficiency!. From the engineer’s point of view, it is a diagram 
shewing all the compression-lines, but by no means all the 
tension-lines of the construction; it shews all the struts, but few 
of the ties, and perhaps we might even say none of the principal

* Cf. Emil Hatschek, Gestalt und Orientirung von Gasblasen in Gelen, Kolloid- 
Ztschr. xv, pp. 226-234, 1914.

f In preparing or “macerating” a skeleton, the naturalist nowadays carries 
on the process till nothing is left but the whitened bones. But the old anatomists, 
whose object was not the study of “comparative morphology” but the wider 
theme of comparative physiology, were wont to macerate by easy stages; and in 
many of their most instructive preparations the ligaments were intentionally left 
in connection with the bones, and as part of the “skeleton.” 
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ones; it falls all to pieces unless we clamp it together, as best we 
can, in a more or less clumsy and immobilised way. But in life, 
that fabric of struts is surrounded and interwoven with a compli
cated system of ties—“its living mantles jointed strong, With 
glistering band and silvery thong*”: ligament and membrane, 
muscle and tendon, run between bone and bone; and the beauty 
and strength of the mechanical construction lie not in one part or 
in another, but in the harmonious concatenation which all the parts, 
soft and hard, rigid and flexible, tension-bearing and pressure-bearing, 
make up together f.

However much we may find a tendency, whether in Nature or 
art, to separate these two constituent factors of tension and com
pression, we cannot do so completely; and accordingly the engineer 
seeks for a material which shall, as nearly as possible, offer equal 
resistance to both kinds of strain]:.

From the engineer’s point of view, bone may seem weak indeed; 
but it has the great advantage that it is very nearly as good for a tie 
as for a strut, nearly as strong to withstand rupture, or tearing asunder, 
as to resist crushing. The strength of timber varies with the kind, 
but it always stands up better to tension than to compression, and 
wrought iron, with its greater strength, does much the same; but 
in cast-iron there is a still greater discrepancy the other way, for it 
makes a good strut but a very bad tie indeed. Mild steel, which has 
displaced the old-fashioned wrought iron in all engineering construc
tions, is not only a much stronger material, but it also possesses, 
like bone, the two kinds of strength in no very great relative dis
proportion §.

* See Oliver Wendell Holmes’ Anatomist's Hymn.
f In a few anatomical diagrams, for instance in some of the drawings in 

Schmaltz’s Atlas der Anatomic des Pferdes, we may see the system of “ties” 
diagraminatically inserted in the figure of the skeleton. Cf. W. K. Gregory, On the 
principles of quadrupedal locomotion, Ann. N. Y. Acad, of Sciences, xxn, p. 289, 
1912.

I The strength of materials is not easy to discuss, and is still harder to tabulate. 
The wide range of qualities in each material, in timber the wide differences according 
to the direction in which the block is cut, and in all cases the wide difference between 
yield-point and fracture-point, are some of the difficulties in the way of a succinct 
statement.

§ In the modem device of “reinforced concrete,” blocks of cement and, rods 
of steel are so combined together as to resist both compression and tension in 
due or equal measure.
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When the engineer constructs an iron or steel girder, to take 
the place of the primitive wooden beam, we know that he takes 
advantage of the elementary principle we have spoken of, and saves 
weight and economises material by leaving out as far as possible 
all the middle portion, all the parts in the neighbourhood of the 
“neutral zone”; and in so doing he reduces his girder to an upper 
and lower “flange," connected together by a “web,” the whole 
resembling, in cross-section, an I or an I .

But it is obvious that, if the strains in the two flanges are to 
be equal as well as opposite, and if the material be such as cast-iron 
or wrought-iron,*one  or other flange must be made much thicker 
than the other in order that they may be equally strong* ; and if at 
times the two flanges have, as it were, to change places, or play 
each other’s parts, then there must be introduced a margin of 
safety by making both flanges thick enough to meet that kind of 
stress in regard to which the material happens to be weakest. 
There is great economy, then, in any material which is, as nearly 
as possible, equally strong in both ways; and so we see that, from 
the engineer’s or contractor’s point of view, bone is a good and 
suitable material for purposes of construction.

* This principle was recognized as soon as iron came into common use as a 
structural material. The great suspension bridges only became possible, in Telford’s 
hands, when wrought iron became available.

The I or the H-girder or rail is designed to resist bending in one 
particular direction, but if, as in a tall pillar, it be necessary to 
resist bending in all directions alike, it is obvious that the tubular 
or cylindrical construction best meets the case; for it is plain that 
this hollow tubular pillar is but the I-girder turned round every 
way, in a “solid of revolution,” so that on any two opposite sides 
compression and tension are equally met and resisted, and there is 
now no need for any substance at all in the way of web or “filling” 
within the hollow core of the tube. And it is not only in the 
supporting pillar that such a construction is useful; it is appropriate 
in every case where stiffness is required, where bending has to be 
resisted. A sheet of paper becomes a stiff rod when you roll it up, 
and hollow tubes of thin bent wood withstand powerful thrusts in 
aeroplane construction. The long bone of a bird’s wing has little 
or no weight to carry, but it has to withstand powerful bending 
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moments; and in the arm-bone of a long-winged bird, such as 
an albatross, we see the tubular construction manifested in its 
perfection, the bony substance being reduced to a thin, perfectly 
cylindrical, and almost empty shell*. The quill of the bird’s 
feather, the hollow shaft of a reed, the thin tube of the wheat- 
straw bearing its heavy burden in the ear, are all illustrations which 
Galileo used in his account of this mechanical principle]"; and the 
working of his practical mind is exemplified by this catalogue of 
varied instances which one demonstration suffices to explain.

The same principle is beautifully shewn in the hollow body and 
tubular limbs of an insect or a crustacean; and these complicated 
and elaborately jointed structures have doubtless many constructional 
lessons to teach us. We know, for instance, that thin cylindrical 
tube, under bending stress, tends to flatten before it buckles, and 
also to become “lobed” on the compression side of the bend; and 
we often recognise both of these phenomena in the joints of a 
crab’s legf.

Two points, both of considerable importance, present themselves 
here, and we may deal with them before we go further on. In the 
first place, it is not difficult to >ee that in our bending beam the 
stress is greatest at its middle; if we press our walking-stick hard 
against the ground, it will tend to snap midway. Hence, if our 
cylindrical column be exposed to strong bending stresses, it will 
be prudent and economical to make its walls thickest in the middle 
and thinning off gradually towards the ends; and if we look at 
a longitudinal section of a thigh-bone, we shall see that this is just 
what Nature has done. The presence of a “danger-point” has been 
avoided, and the thickness of the walls becomes nothing less than

* Marsigli (op. cit.) was acquainted with the hollow wing-bones of the pelican; 
and Buffon deals with the whole subject in his Discours sur la nature des oiseaux.

f Galileo, Dialogues concerning Two New Sciences (1638), (Tew and Salvio’s 
translation, New York, 1914, p. 150; Opere, ed. Favaro, vin. p. 186. (According 
to R A. Millikan, "we owe our present day civilisation to Galileo.”) Cf. Borelli, 
De Motu Animalium, i, prop, clxxx, 1685. Cf. also I’. Camper, La structure des 
os dans les oiseaux, Opp. in, p. 459, ed. 1803; A. Rauber, Galileo iiber Knochen 
formen, Morphol. Jahrb. vn, pp. 327, 328, 1881; Paolo Enriques,. Della econoinia 
di sostanza nelle osse eave, Arch. f. Entw. Meeh, xx, pp. 427-465, 1906. Galileo’s 
views on the mechanism of the human body are also discussed by 0. Fischer, in his 
article on Physiologische Mechanik, in the Encycl. d. mathem. Wissenschaften, 1904.

J Cf. L. G. Brazier, On the flexure of thin cylindrical shells, etc., Proc. R.S. (A), 
cxvi, p. 104, 1927.
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a diagram, or "graph.” of the bending-moments from one point to 
another along the length of the bone.

The second point requires a little more explanation. If we 
imagine our loaded beam to be supported at one end only (for 
instance, by being built into a wall); so as to form what is called 

a “bracket” or “cantilever,” then we can 
see, without much difficulty, that the lines of 
stress in the beam run somewhat as in the 
accompanying diagram. Immediately under 
the load, the “ compression-liries ” tend to run 
vertically downward, but where the bracket is 
fastened to the wall there is pressure directed 

horizontally against the wall in the lower part of the surface of 
attachment; and the vertical beginning and the horizontal end of 
these pressure-lines must be continued into one another in the form 
of some even mathematical curve—which, as it happens, is part 
of a parabola The tension-lines are identical in form with the 
compression-lines, of which they constitute the “mirror-image”; 
and where the two system» intercross they do so at right angles, 
or “orthogonally” to one another. Such systems of stress-lines as 
these we shall deal with again; but let us take note here of the 
important though well-nigh obvious fact, that while in the beam 
they both unite to carry the load, yet it is often possible to weaken 
one set of lines at the expense of the other, and in some cases to do 
altogether away with one set or the other. For example, when we 
replace our end-supported beam by a curved bracket, bent upwards 
or downwards as the case may be, we have evidently cut away 
in the one case the greater part of the tension-lines, and in the 
other the greater part of the compression-lines. And if instead of 
bridging a stream with our beam of wood we bridge it with a rope, 
it is evident that this new construction contains all the tension-lines, 
but none of the compression-lines of the old. The biological interest 
connected with this principle lies chiefly in the mechanical construc
tion of the rush or the straw, or any other typically cylindrical 
stem. The material of which the stalk is constructed is very weak 
to withstand compression, but parts of it have a very great tensile 
strength. Schwendener, who was both botanist and engineer, has 
elaborately investigated the factor of strength in the cylindrical 
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stem, which Galileo was the first to call attention to. Schwendener* 
shewed that its strength was concentrated in the little bundles of 
“ bast-tissue,” but that these bast-fibres had a tensile strength per 
square mm. of section not less, up to the limit of elasticity, than 
that of steel-wire of such quality as was in use in his day.

For instance, we see in the following table the load which various 
fibres, and various wires, were found capable of sustaining, not 
up to the breaking-point but up to the “elastic limit,” or point 
beyond which complete recovery to the original length took place 
no longer after release of the load.

* This figure should be considerably higher for the best modern steel.

Stress, or load in Strain,
gms. per sq. mm., or amount

at Limit of Do., in tons of stretching,
Elasticity per sq. inch per mille

Secale cereale 15-20 9-4-12-5 4-4
Lilium auratum 19 11-8 7-6
Phormium tenax 20 12-5 130
Papyrus antiquorum 20 12-5 152
Molinia coerulea 13-8 11-0
Pincenectia recurvata 25 15-6 14-5
Copper wire 121 7-6 10
Brass „ 13-3 8-5 1-35
Iron ,, 21-9 13-7 10
Steel „ 24-6* 15-4 1-2

In other respects, it is true, the plant-fibres were inferior to the 
wires; for the former broke asunder very soon after the limit of 
elasticity was passed, while the iron-wire could statid, before snapping, 
about twice the load which was measured by its limit of elasticity: 
in the language of a modern engineer, the bast-fibres had a low 
“yield-point,” little above the elastic limit. Nature seems content, 
as Schwendener puts it, if the strength of the fibre be ensured up 
to the elastic limit; for the equilibrium of the structure is lost as 
soon as that limit is passed, and it then matters little how far off 
the actual breaking-point may bef. But nevertheless, within cer
tain limits, plant-fibre and wire were just as good and strong one

* S. Schwendener, Da* mechaniache Princip im anatomischen Bau der Monocotyleen, 
Leipzig, 1874; Zur Lehre von der Festigkeit der Gewachse, Sb. Berlin. Akad. 1884, 
pp. 1045-1070.

f The great extensibility of the plant-fibre is due to the spiral arrangement of 
the ultramicroscopic micellae of which the bast-fibre is built up: the spiral untwisting 
as the fibre stretches, in a right or left-hand spiral according to the species. Cf. 
C. Steinbruck, Die Micellartheorie auf botanischem Gebiete, Biol. Centralbl. 1925, 
p. 1.
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as the other. And then Schwendener proceeds to shew, in many 
beautiful diagrams, the various ways in which these strands of strong 
tensile tissue are arranged in various stems sometimes, in the simpler 
cases, forming numerous small bundles arranged in a peripheral 
ring, not quite at the periphery, for a certain amount of space has 
to be left for living and active tissue; sometimes in a sparser ring 
of larger and stronger bundles; sometimes with these bundles 
further strengthened by radial balks or ridges; sometimes with all 
the fibres set close together in a continuous hollow cylinder. In

Fig. 461.

the case figured in Fig. 461, Schwendener 
calculated that the resistance to bending 
was at least twenty-five times as great as 
it would have been had the six main 
bundles been brought close together in a 
solid core. In many cases the centre of 
the stem is altogether empty; in all other 
cases it is filled with soft tissue, suitable 
for various functions, but never such as 
to confer mechanical rigidity. In a tall 
conical stem, such as that of a palm-tree, 

we can see not only these principles in the construction of the 
cylindrical trunk, but we can observe, towards the apex, the bundles 
of fibre curving over and intercrossing orthogonally with one another, 
exactly after the fashion of our stress-lines in Fig. 460; but of 
course, in this case, we are still dealing with tensile members, the 
opposite bundles taking on in turn, as the tree sways, the alternate 
function of resisting tensile strain*.

* For further botanical illustrations, see (int. al.) R. Hegler, Einfluss der Zug- 
kraften auf die Festigkeit und die Ausbildung mechanischer Gewebe in Pflanzen, 
SB. sachs. Ges. d. Wiss. 1891, p. 638; Einfluss des mechanischen Zuges auf das 
Wachstum der Pflanze, Cohn's Beitrage, vi, pp. 383—432. 1893; O. M. Ball, Einfluss 
von Zug auf die Ausbildung der Festigkeitsgewebe, Jahrb. d. wiss. Bot. xxxix, 
pp. 305-341, 1903; L. Kny, Einfluss von Zug und Druck auf die Richtung der 
S< h**idewandc in sich teilenden Pflanzenzellen, Ber. d. bot. Gesellsch. xiv, pp. 378- 
391, 1896; Sachs, Mechanomorphose und Phylogenie, Flora, lxxviii, 1894; cf. also 
Pfliiger, Einwirkung der Schwerkraft, etc., iiber die Richtung der Zelltheilung, 
Archiv, xxxiv, 1884; G. Haberlandt’s Physiological Plant Anatomy, tr. by Montagu 
Drummond, 1914, pp. 150-213. On the engineering side of the case, see Angus R. 
Fulton, Experiments to show how failure under stress occurs in timber, etc., Trans.
R.S.E. xlviii, pp. 417-440, 1912; Fulton shews (int. of.) that “the initial cause of 
fracture in timbers lies in the medullary rays.”
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The Forth Bridge, from which the anatomist may learn many 

a lesson, is built of tubes, which correspond even in detail to the 
structure of a cylindrical branch or stem. The main diagonal struts 
are tubes twelve feet in diameter, and within the wall of each of 
these lie six T-shaped “stiffeners,” corresponding precisely to the 
fibro-vascular bundles of Fig. 461; in the same great tubular struts 
the tendency to “buckle” is resisted, just as in the jointed stem of 
a bamboo, by “stiffening rings,” or perforated diaphragms set 
twenty feet apart within the tube. W e may draw one more curious, 
albeit parenthetic, comparison. An engineering construction, no 
less than the skeleton of plant or animal, has to grow; but the 
living thing is in a sense complete during every phase of its existence, 
while the engineer is often hard put to it to ensure sufficiant strength 
in his unfinished and imperfect structure. The young twig stands 
more upright than the old, and between winter and summer the 
weight of leafage affects all the curving outlines of the tree. A 
slight upward curvature, a matter of a few inches, was deliberately 
given to the great diagonal tubes of the bridge during their piecemeal 
construction; and it was a triumph of engineering foresight to see 
how, like the twig, as length and weight increased, they at last came 
straight and true.

Let us now come, at last, to the mechanical structure of bone, 
of which we find a well-known and classical illustration in the 
various bones of the human leg. In the case of the tibia, the bone 
is somewhat widened out above, and its hollow shaft is capped by 
an almost flattened roof, on which the weight of the body directly 
rests. It is obvious that, under these circumstances, the engineer 
would find it necessary to devise means for supporting this fiat roof, 
and for distributing the vertical pressures which impinge upon it 
to the cylindrical walls of the shaft

In the long wing-bones of a bird the hollow of the bone is empty, 
save for a thin layer of living tissue lining the cylinder of bone; 
but in our own bones, and all weight-carrying bones in general, the 
hollow space is filled with marrow, blood-vessels and other tissues; 
and amidst these living tissues lies a fine lattice-work of little 
interlaced “trabeculae” of bone, forming the so-called “cancellous 
tissue.” The older anatomists were content to describe this can- 
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cellous tissue as a sort of spongy network or irregular honeycomb *;  
but at length its orderly construction began to be perceived, and 
attempts were made to find a meaning or “ purpose ” in the arrange
ment. Sir Charles Bell had a glimpse of the truth when he asserted f 
that “this minute lattice-work, or the cancelli which constitute 
the interior structure of bone, have still reference to the forces 
acting on the bone ”; but he did not succeed in shewing what these 
forces are, nor how the arrangement of the cancelli is related to them.

* Sir John Herschel described a bone as a “framework of the most curious 
carpentry: in which occurs not a single straight line nor any known geometrical 
curve, yet all evidently systematic, and constructed by rules which defy our 
research” (On the Study of Natural Philosophy, 1830, p. 203).

f In Animal Mechanics, or Proofs of Design in the Animal Frame, 1827.
J Animal mechanics: on the cancellated structure of some of the bones of the 

human body, Boston Soc. of Nat. Hist. 1849. Reprinted, together with Sir C. Bell’s 
work, by Morrill Wyman, Cambridge, Mass., 1902.

Jeffries Wyman, of Boston, came much nearer to the truth in 
a paper long neglected and forgotten J. He gives the gist of the 
whole matter in two short paragraphs: “1. The cancelli of such 
bones as assist in supporting the weight of the body are arranged 
either in the direction of that weight, or in such a manner as to 
support and brace those cancelli which are in that direction. In 
a mechanical point of view they may be regarded in nearly all these 
bones as a series of ‘studs’ and ‘braces.’ 2. The direction of these 
fibres in some of the bones of the human skeleton is characteristic 
and, it is believed, has a definite relation to the erect position which 
is naturally assumed by man alone.” A few years afterwards the 
story was told again, and this time with convincing accuracy. It 
was shewn by Hermann Meyer (and afterwards in greater detail by 
Julius Wolff and others) that the trabeculae, as seen in a longitudinal 
section of the femur, spread in beautiful curving lines from the head 
to the hollow shaft of the bone; and that these linear bundles are 
crossed by others, with so nice a regularity of arrangement that 
each intercrossing is as nearly as possible an orthogonal one: that 
is to say, the one set of fibres or cancelli cross the other everywhere 
at right angles. A great engineer, Professor Culmann of Zurich, 
to whom by the way we owe the whole modern method of “graphic 
statics,” happened (in the year 1866) to come into his colleague 
Meyer’s dissecting-room, where the anatomist was contemplating 
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the section of a bone*. The engineer, who had been busy designing 
a new and powerful crane, saw in a moment that the arrangement 
of the bony trabeculae was nothing more nor less than a diagram 
of the lines of stress, or directions of tension and compression, in 
the loaded structure: in short, that Nature was strengthening the 
bone in precisely the manner and direction in which strength was 
required; and he is said to have cried out, “That’s my crane!”

Fig. 462. Head of the human femur in section. After Schafer, from 
a photo by Professor A. Robinson.

In the accompanying diagram of Culmann’s crane-head, we recognise 
a simple modification, due entirely to the curved shape of the 
structure, of the still simpler lines of tension and compression which 
we have already seen in our end-supported beam, as represented 
in Fig. 460. In the shaft of the crane the concave or inner side,

* The first metatarsal, rather than the femur, is said to have been the bone 
which Meyer was demonstrating when Culmann first recognised the orthogonal 
intercrossing of the cancelli in tension and compression; cf. A. Kirchner, Architektur 
der Metatarsalien des Menschen, Arch. f. Entw. Meeh, xxiv, pp. 539-616, 1907.

T G F 02



978 ON FORM AND MECHANICAL EFFICIENCY |ch. 

overhung by the loaded head, is the “compression-member”; the 
outer side is the “tension-member”; the pressure-lines, starting 
from the loaded surface, gather themselves together, always in the 
direction of the resultant pressure, till they form a close bundle 
running down the compressed side of the shaft: while the tension
lines, running upwards along the opposite side of the shaft, spread 
out through the head, orthogonally to, and linking together, the 
system of compression-lines. The head of the femur (Fig. 462) is

a little more complicated in form and a little less symmetrical than 
Culmann’s diagrammatic crane, from which it chiefly differs in the 
fact that its load is divided into two parts, that namely which is 
borne by the head of the bone, and that smaller portion which 
rests upon the great trochanter; but this merely amounts to saying 
that a notch has been cut out of the curved upper surface of the 
structure, and we have no difficulty in seeing that the anatomical 
arrangement of the trabeculae follows precisely the mechanical 
distribution of compressive and tensile stress or, in other words, 
accords perfectly with the theoretical stress-diagram of the crane.
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The lines of stress are bundled close together along the sides of 
the shaft, and lost or concealed there in the substance of the solid 
wall of bone; but in and near the head of the bone, a peripheral 
shell of bone does not suffice to contain them, and they spread out 
through ihe central mass in the actual concrete form of bony 
trabeculae *.

Mutatis mutandis, the same phenomenon may be traced in any 
other bone which carries weight and is liable to flexure; and in 
the os adds and the tibia, and more or less in all the bones of the 
lower limb, the arrangement is found to be very simple and clear.

Thus, in the os calds, the weight resting on the head of the bone 
has to be transmitted partly through the backward-projecting heel 
tQ the ground, and partly forwards through its articulation with

* Among other works on the mechanical construction of bone see: Bourgery, 
Traits de l'anatomie (I. Osteologie), 1832 (with admirable illustrations of trabecular 
structure); L. Fick. Die Ursachen der Knochenformen, Gottingen, 1857; H. Meyer, 
Die Architektur der Spongiosa, Arch. f. Anat, und Physiol, xinu, pp. 615-628, 
1867; Statik u. Mechanikdesmenschlichen Knochengerustes, Leipzig, 1873; H. Wolfer- 
mann, Beitrag zur K. der Architektur der Knochen, Arch. f. Anat, und Physiol. 
1872, p. 312; J. Wolff, Die innere Architektur der Knochen, Arch. f. Anat, und 
Phys. L, 1870; Das Gesetz der Transformation bei Knochen. 1892; Y. Dwight, 
The significance of bone-architecture, Mem. Boston Soc. N.H. iv, p. 1, 1886; 
V. von Ebner, Der feinere Bau der Knochensubstanz, Wiener Bericht, lxxii, 1875; 
Anton Rauber, Elastizitdt und Festigkeit der Knochen, Leipzig, 1876; O. Meserer, 
Elast. u. Festigk. d. menschlichen Knochen, Stuttgart, 1880; Sir Donald MacAlister, 
How a bone is built, English Illustr. Mag. 1884, pp. 640-649; Rasuinowsky, 
Architektonik des Fussskelets, Int. Monatsschr. f. Anat. 1889, p. 197; Zschokke, 
Weitere Unters. uber das Verhaltnis der Knochenbildung zur Statik und Mechanik 
des V ertebratenskdets, Zurich, 1892; W.‘Roux, Ges. Abhandlungen uber Entwicklungs- 
mechanik der Organismen, Bd. I, Funktionelle Anpassung, Leipzig,* 1895; J. Wolff, 
Die Lehre von der funktionellen Knochengestalt, Virchow's Archiv, clv, 1899, 
R. Schmidt. Vergl. anat. Studien fiber den mechanischen Bau der Knochen und 
seine Vererbung, Z. f. w. Z. lxv, p. 65, 1899; B. Solger, Der gegenwartige Stand 
der Lehre von der Knochenarchitektur, in Moleschott’s Unters. z. Naturlehre des 
Menschen. xvt, p. 187, 1899; H. Triepel, Die Stossfestigkeit der Knochen, Arch, 
f. Anat, und Phys. 1900; Gebhardt, Funktionellwichtige Anordnungsweisen der 
feineren und groberen Bauelemente des Wirbelthierknochens, etc., Arch. f. Entw. 
Meeh. 1900-10; Revenstorf, Ueber die Transformation der Calcaneus-architektur, 
Arch, f Entw. Meeh, xxin, p. 379, 1907; H. Bernhardt, Vererbung der inneren 
Knochenarchitektur beim Menschen, und die Teleologie bei J. Wolff, Inaug. Diss., 
Miinchen, 1907; Herm. Triepel, Die trajectoriellen Structuren (in Einf. in die 
Physikalische Anatomic, 1908); A. F. Dixon, Architecture of the cancellous tissue 
forming the upper end of the femur, Journ. Anat, and Phys. (3), xliv, pp. 223-230, 
1910; A. Benninghoff, Ueber Leitsystem der Knochencompacta; Studien zur 
Architektur der Knochen, Beitr. z. Anat, funktioneller Systeme, I, 1930.
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the cuboid bone, to the arch of the foot. M e thus have, very much 
as in a triangular roof-tree, two compression-members sloping apart 
from one another; and these have to be bound together by a “tie” 
or tension-member, corresponding to the third, horizontal member 
of the t russ.

It is a simple corollary, confirmed by observation, that the 
trabeculae have a very different distribution in animals whose 
actions and attitudes are materially different, as in the aquatic 
mammals, such as the beaver and the seal*. And in much less 
extreme cases there are lessons to be learned from a study of the

Fig. 464. Diagram of stress-lines in the human foot. From 
Sir D. Mac Alister, after H. Meyer.

same bone in different animals, as the loads alter in direction and 
magnitude. The gorilla’s heelbone resembles man’s, but the load 

-on the heel is much less, for the erect pos ture is imperfectly achieved: 
in a common monkey the heel is carried high, and consequently 
the direction of the trabeculae is still more changed. The bear 
walks on the sole of his foot, though less perfectly than does man, 
and the lie of the trabeculae is plainly analogous in the two; but 
in the bear more powerful strands than in the os calcis of man 
transmit the load forward to the toes, and less of it through the 
heel to the ground. In the leopard we see the full effect of tip-toe, 
or digitigrade, progression. The long hind part (or tuberosity) of

* Cf. G. de M. Rudolf, Habit and the architec ture of the mammalian femur, 
Journ. Anatomy, lvi, pp. 139-146, 1922.
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the heel is now more a mere lever than a pillar of support; it is 
little more than a stiffened rod, with compression-members and 
tension-members in opposite bundles, inosculating orthogonally at 
the two ends*.

In the bird the small bones of the hand, dwarfed as they are in 
size, have still a deal to do in carrying the long primary flight
feathers. and in forming a rigid axis for the terminal part of the 
wing. The simple tubular construction, which answers well for 
the long, slender arm-bones, does not suffice where a still more 
efficient stiffening is required. In all the mechanical side of anatomy

Fig. 465. Metacarpal bone from a vulture’s wing; stiffened after the manner 
of a Warren’s truss. From O. Prochnow, Formenkunst der Natur.

nothing can be more beautiful than the construction of a vulture’s 
metacarpal bone, as figured here (Fig. 465). The engineer sees in 
it a perfect Warren’s truss, just such a one as is often used for a main 
rib in an aeroplane. Not only so, but the bone is better than the 
truss; for the engineer has to be content to set his V-shaped struts 
all in one plane, while in the bone they are put, with obvious but 
inimitable advantage, in a three-dimensional configuration.

So far, dealing wholly with the stresses and strains due to tension 
and compression, we have omitted to speak of a third very im
portant factor in the engineer’s calculations, namely what is known 
as “shearing stress.” A shearing force is one which produces

* Cf. Fr. Weidenreich, Ueber formbestimmende Ursachen am Skelett, und die 
Erblichkeit der Knochenform, Arch. f. Entw. Meeh. Li. pp. 438-481, 1922.
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“angular distortion” in a figure, or (what comes to the same thing) 
which tends to cause its particles to slide over one another. A 
shearing stress is a somewhat complicated thing, and we must try 
to illustrate it (however imperfectly) in the simplest possible way. 
If we build up a pillar, for instance, of flat, horizontal slates, or of 
a pack of cards, a vertical load placed upon it will produce com
pression, but will have no tendency to cause one card to slide, or 
shear, upon another; and in like manner, if we make up a cable 
of parallel wires and, letting it hang vertically, load it evenly wiQi

Fig. 466. Trabecular structure of the os calcis. From Mac Alister.

a weight, again the tensile stress produced has no tendency to cause 
one wire to slip or shear upon another. But the case would have 
been very different if we had built up our pillar of cards or slates 
lying obliquely to the lines of pressure, for then at once there would 
have been a tendency for the elements of the pile to slip and slide 
asunder, and to produce what the geologists call “a fault” in the 
structure.

Somewhat more generally, if AB be a bar, or pillar, of cross-section a 
under a direct load P, giving a direct and uniformly distributed stress per unit 
area =p, then the whole pressure P=pa. Let CD be an oblique section, 
inclined at an angle 8 to the cross-section; the pressure on CD will evidently 
be =pa cos 6. But at any po:nt O in CD, the pressure P may be resolved into 
the shearing force Q acting along CD, and the direct force N perpendicular to 
i t: where N = P cos 8=pa cos 8, and Q = P sin 6=pa sin 8. The shearing force 
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Q upon ( D — q.area of CD, which is =q.a/cos 0. Therefore qa/cos 0—pa sin 0, 
therefore q—p sin 0 cos 0—^p sin 20. Therefore when sin 20 = 1, that is, when 
0 = 45°, q is a maximum, and =p!2\ and when sin20 = 0, that is when 0 = 0° or 
90', then q vanishes altogether.

This is as much as to say, that under this form of loading there is 
lio shearing stress along or perpendicular to the lines of principal 
stress, or along the lines of maximum compression or tension; but 
shear has a definite value on all other planes, and a maximum value 
when it is inclined at 45° to the cross-section. This may be further 
illustrated in various simple ways. When 
we submit a cubical block of iron to 
compression in the testing machine, it 
does not tend to give way by crumbling 
all to pieces, but always disrupts by 
shearing, and along some plane approxi
mately at 45° to the axis of compression; 
this is known as Coulomb’s Theory of 
Fracture, and, while subject to many 
qualifications, it is still an important 
first approximation to the truth. Again, 
in the beam which we have already con
sidered under a bending moment, we 
know that if we substitute for it a pack of cards, they will be strongly 
sheared on one another; and the shearing stress is greatest in the 
“ neutral zone,” where neither tension nor compression is manifested: 
that is to say in the line which cuts at equal angles of 45° the 
orthogonally intersecting lines of pressure and tension.

In short we see that, while shearing stresses can by no means 
be got rid of, the danger of rupture or breaking-down under shearing 
stress is lessened the more we arrange the materials of our con
struction along the pressure-lines and tension-lines of the system ; 
for along these lines there is no shear*.

To apply these principles to the growth and development of 
our bone, we have only to imagine a little trabecula (or group of 
trabeculae) being secreted and laid down fortuitously in any direction 
within the substance of the bone. If it lie in the direction of one of 
the pressure-lines, for instance, it will be in a position of comparative

* It is also obvious that a free surface is always a region of zero-shear.
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equilibrium, or minimal disturbance; but if it be inclined obliquely 
to the pressure-lines, the shearing force will at once tend to act 
upon it and move it away. This is neither more nor less than what 
happens when we comb our hair, or card a lock of wool: filaments 
lying in the direction of the comb’s path remain where they were; 
but the others, under the influence of an oblique component of 
pressure, are sheared out of their places till they too come into 
coincidence with the lines of force. So straws show how the wind 
blows—or rather how it has been blowing. For every straw that 
lies askew to the wind’s path tends to be sheared into it; but as 
soon as it has come to lie the way of the wind it tends to be 
disturbed no more, save (of course) by a violence such as to hurl 
it bodily away.

In the biological aspect of the case, we must always remember 
that our bone is not only a living, but a highly plastic structure; 
the little trabeculae are constantly being formed and deformed, 
demolished and formed anew. Here, for once, it is safe to say that 
“heredity” need not and cannot be invoked to account for the 
configuration and arrangement of the trabeculae: for we can see 
them at any time of life in the making, under the direct action 
and control of the forces to which the system is exposed. If a bone 
be broken and so repaired that its parts lie somewhat out of their 
former place, so that the pressure- and tension-lines have now a new 
distribution, before many weeks are over the trabecular system will 
be found to have been entirely remodelled, so as to fall into line 
with the new system of forces. And as Wolff pointed out, this 
process of reconstruction extends a long way off from the seat of 
injury, and so cannot be looked upon as a mere accident of the 
physiological process of healing and repair; for instance, it may 
happen that, after a fracture of the shaft of a long bone, the 
trabecular meshwork is wholly altered and reconstructed within the 
distant extremities of the bone. Moreover, in cases of transplantation 
of bone, for example when a diseased metacarpal is repaired by 
means of a portion taken from the lower end of the ulna, with 
astonishing quickness the plastic capabilities of the bony tissue are 
so manifested that neither in outward form nor inward structure 
can the old portion be distinguished from the new.

Herein then lies, so far as we can discern it, a great part at least 
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of the p hysical causation of what at first sight strikes us as a purely 
functional adaptation: as a phenomenon, in othfer words, whose 
physical cause is as obscure as its final cause or end is apparently 
manifest.

Partly associated with the same phenomenon, and partly to be 
looked upon (meanwhile at least) as a fact apart, is the very im
portant physiological truth that a condition of strain, the result 
of a stress, is a direct stimulus to growth itself. This indeed is no 
less than one of the cardinal facts of theoretical ^biology. The soles 
of our boots wear thin, but the soles of our feet grow thick, the 
more we walk upon them: for it would seem that the living cells 
are “stimulated” by pressure, or by what we call “exercise,” to 
increase and multiply. The surgeon knows, when he bandages a 
broken limb, that his bandage is doing something more than merely 
keeping the parts together: and that the even, constant pressure 
which he skilfully applies is a direct encouragement of growth and 
an active agent in the process of repair. In the classical experiments 
of Sedillot*, the greater part of the shaft of the tibia was excised 
in some young puppies, leaving the whole weight of the body to 
rest upon the fibula. The latter bone is normally about one-fifth 
or sixth of the diameter of the tibia; but under the new conditions, 
and under the “stimulus” of the increased load, it grew till it was 
as thick or even thicker than the normal bulk of the‘larger bone. 
Among plant tissues this phenomenon is very apparent, and in 
a somewhat remarkable way; for a strain caused by a constant or 
increasing weight (such as, that in the stalk of a pear while the pear 
is growing and ripening) produces a very marked increase of strength 
without any necessary increase of bulk, but rather by some histo
logical, or molecular, alteration of the tissues. Hegler, Pfeffer, and 
others have investigated this subject, by loading the young shoot 
of a plant nearly to its breaking point, and then redetermining the 
breaking-strength after a few days. Some young shoots of the 
sunflower were found to break with a strain of 160 gm.; but when 
loaded with 150 gm., and retested after two days, they were able 
to support 250 gm.; and being again loaded with something short

* Sedillot, De 1’influence des fonctions sur la structure et la forme des organes, 
C.B. lix, p. 539, 1864; cf. lx, p. 97, 1865; Lxvm, p. 1444, 1869.
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of this, by next day they sustained 300 gm., and a few days later 
even 400 gm.* •

The kneading of dough is an analogous phenomenon. The 
viscosity and perhaps other properties of the stuff are affected by 
the strains to which we have submitted it, and may thus be said 
to depend not only on the nature of the substance but on its 
history f. It is a long way from this simple instance, but we stretch 
across it easily in imagination, to the experimental growth of a 
nerve-fibre within a mass of clotted lymph: where, when we draw 
out the clot in one*direction or another we lay down traction-lines, 
or tension-lines, and make of them a path for growth to follow J.

Such experiments have been amply confirmed, but so far as I am 
aware we do not know much more about the matter: we do not 
know, for instance, how far the change is accompanied by increase 
in number of the bast-fibres, through transformation of other tissues; 
or how far it is due to increase in size of these fibres; or whether 
it be not simply due to strengthening of the original fibres by some 
molecular change. But I should be much inclined to suspect that 
this last had a good deal to do with the phenomenon. We know 
nowadays that a railway axle, or any other piece of steel, is weakened 
by a constant succession of frequently interrupted strains; it is 
said to be “fatigued,” and its strength is restored by a period 
of rest. The converse effect of continued strain in a uniform direc
tion may be’ illustrated by a homely example. The confectioner 
takes a mass of boiled sugar or treacle (in a particular molecular 
condition determined by the temperature to which it has been 
raised), and draws the soft sticky mass out into a rope; and then, 
folding it up lengthways, he repeats the process again and again. 
At first the rope is pulled out of the ductile mass without difficulty; 
but as the work goes on it gets harder to do, until all the man’s 
force is used to stretch the rope. Here we have the phenomenon

* Op. cit. Hegler's results are criticised by O. M. Ball, Einfluss von Zug auf die 
Ausbildung der Festigungsgewebe, Jb. d. wise. Botanik, xxxix, pp. 305-341, 1903, 
and by H. Keller, Einfluss von Belastung.und Lage auf die Ausbildung des Gev ebes 
in Fruchtstielen, Inaua Diss. Kiel, 1904.

t Cf. R. K. Schofield and G. W. S. Blair, On dough, Proc. R.S. (A), cxxxvm, 
p. 707; cxxxix, p. 557, 1932-33; also Nadai and Wahl’s Plasticity, 1931. For 
analogous properties of hairs and fibres, see Shorter, Journ. Textile Inst, xv, 
1824; etc.

I Cf. Ross Harrison’s Croonian Lecture, 1933.
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of increasing strength, following mechanically on a rearrangement 
of molecules, as the original isotropic condition is transmuted more 
and more into molecular asymmetry or anisotropy ; and the rope 
apparently “adapts itself” to the increased strain which it is called 
on to bear, all after a fashion which at least suggests a parallel to 
the increasing strength of the stretched and weighted fibre in the 
plant. For increase of strength by rearrangement of the particles 
we have already a rough illustration in our lock of wool or hank 
of tow. The tow will carry but little weight while its fibres are 
tangled and awry: but as soon as we have carded or “hatchelled” 
it out, and brought all its long fibres parallel and side by side, we 
make of it a strong and useful cord*.

But the lessons which we learn from dough and treacle are 
nowadays plain enough in steel and iron, and become immensely 
more important in these. For here again plasticity is associated 
with a certain capacity for structural rearrangement, and increased 
strength again results therefrom. Elaborate proeessess of rolling, 
drawing, bending, hammering, and so on, are regularly employed to 
toughen and( strengthen the material. The “mechanical structure” 
of solids has become an important subject. And when the engineer 
talks of repeated loading, of elastic fatigue, of hysteresis, and other 
phenomena associated with plasticity and strain, the physiological 
analogues of these physical phenomena are perhaps not far away.

In some such ways as these, then, it would seem that we may 
coordinate, or hope to coordinate, the phenomenon of growth with 
certain of the beautiful structural phenomena which present them
selves to our eyes as “provisions,” or mechanical adaptations!, for 
the display of strength where strength is most required. That is 
to say the origin, or causation, of the phenomenon would seem to 
lie partly in the tendency of growth to be accelerated under strain: 
and partly in the automatic effect of shearing strain, by which it 
tends to displace parts which grow obliquely to the direct lines of 
tension and of pressure, while leaving those in place which happen 
to lie parallel or perpendicular to those lines: an automatic effect

* Cf. Sir Charles Ball's Animal Mechanics, chap, v, “Of the tendons compared 
with cordage.”

f So P. Enriques (op. cit. supra, p. 5), writing on the economy of material in the 
construction of a bone, admits that “una certa impronta di teleologismo qua e la 
e rimasta, inio malgrado, in questo scritto.”
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which we can probably trace as working on all scales of magnitude, 
and as accounting therefore for the rearrangement of minute particles 
in the metal or the fibre, as well as for the bringing into line of 
the fibres within the plant, or of the trabeculae within the bone.

But we may now’ attempt to pass from the study of the individual 
bone to the much wider and not less beautiful problems of mechanical 
construction which are presented to us by the skeleton as a whole. 
Certain problems of this class are by no means neglected by w riters 
on anatomy, and many have been handed down from Borelli, and 
even from older writers. For instance, it is an old tradition of 
anatomical teaching to point out in the human body examples of 
the three orders of levers*;  again, the principle that the limb-bones 
tend to be shortened in order to support the weight of a very heavy 
animal is well understood by comparative anatomists, in accordance 
with Euler’s law, that the weight which a column liable to flexure 
is capable of supporting varies inversely as the square of its length; 
and again, the statical equilibrium of the body, in relation for 
instance to the erect posture of man, has long been a favourite theme 
of the philosophical anatomist. But the general method, based 
upon that of graphic statics, to which we have been introduced in 
our study of a bone, has not, so far as I know, been applied to the 
general fabric of the skeleton. Yet it is plain that each bone plays 
a part in relation to the whole body, analogous to that which a little 
trabecula, or a little group of trabeculae, plays within the bone 
itself: that is to say, in the normal distribution of forces in the 
body the bones tend to follow' the lines of stress, and especially 
the pressure-lines. To demonstrate this in a comprehensive way 
would doubtless be difficult; for we should be dealing w'ith a frame
work of very great complexity, and should have to take account of 

* E.g. (1) the head, nodding backwards and forwards on a fulcrum, represented 
by the atlas vertebra, lying between the weight and the power; (2) the foot, raising 
on tip-toe the weight of the body against the fulcrum of the ground, where the 
weight is between the fulcrum and the power, the latter being represented by the 
tendo Achillis; (3) the arm, lifting a weight in the hand, with the power (i.e. the 
biceps muscle) between the fulcrum and the weight. (The second case, by the way, 
has been much disputed; cf. Haycraft in Schafer’s Textbook of Physiology, 1900, 
p. 251.) Cf. (int. al.) G. H. Meyer, Statik u. Mechanik der menschlichen Knochen- 
geriiste, 1873, pp. 13-25.
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a great variety of conditions*. This framework is complicated as 
we see it in the skeleton, where (as we have said) it is only, or chiefly, 
the struts of the whole fabric which are represented; but to under
stand the mechanical structure in detail, we should have to follow 
out the still more complex arrangement of the ties, as represented 
by the muscles and ligaments, and we should also require much 
detailed information as to the weights of the various parts and as 
to the other forces concerned. Without these latter data we can 
only treat the question in a preliminary and imperfect way. But, 
to take once again a small and simplified part of a big problem, 
let us think of a quadruped (for instance, a horse) in a standing 
posture, and see whether the methods and terminology of the 
engineer may not help us, as they did in regard to the minute 
structure of the single bone. And let us note in passing that the 
“standing posture,” whether on two legs or on four, is no very 
common thing; but is (so to speak), with all its correlated anatomy, 
a privilege of the few.

Standing four-square upon its fore-legs and hind-legs, with the 
weight of the body suspended between, the quadruped at once 
suggests to us the analogy of a bridge, carried by its two piers. 
And if it occurs to us, as naturalists, that we never look at a 
standing 'quadruped without contemplating a bridge, so, conversely, 
a similar idea has occurred to the engineer; for Professor Fidler, 
in this Treatise on Bridge-Construction, deals with the chief descrip
tive part of his subject under the heading of “The Comparative 
Anatomy of Bridgesf.” The designation is most just, for in 
studying the various types of bridges we are studying a series of 
well-planned skeletons'^.; and (at the cost of a little pedantry)

* Our problem is analogous to Thomas Young’s problem of the best disposition 
of the timbers in a wooden ship (Phil. Trans. 1814, p. 303). He was not long of 
finding that the forces which act upon the fabric are veiy numerous and very 
variable, and that the best mode of resisting them, or best structural arrangement 
for ultimate strength» becomes an immensely complicated problem.

t By a bolder metaphor Fontenelle said of Newton that he had “fait l’anatomie 
de la lumiere.”

I In like manner, Clerk Maxwell could not help employing the term “skeleton” 
in defining the mathematical conception of a “frame,” constituted by points and 
their interconnecting lines: in studying the equilibrium of which, we consider its 
different points as mutually acting on each other with forces whose directions are 
those of the lines joining each pair of points. Hence (says Maxwell), “in order to 
exhibit the mechanical action of the frame in the most elementary manner, we may 



990 ON FORM AND MECH ANICAL EFFICIENCY [ch. 

we might go even further, and study (after the fashion of the 
anatomist) the “osteology” and "desmology” of the structure, that 
is to say the bones which are represented bv “struts,” and the 
ligaments, etc., which are represented by “ties.” Furthermore 
after the methods of the comparative anatomist, we may classify 
the families, genera and species of bridges according to their dis
tinctive mechanical features, which correspond to certain definite 
conditions and functions.

Fig. 468. Skeleton of an American bison. (An unusually well-mbunted skeleton, 
of American workmanship, now in the Anatomical Museum of Edinburgh 
University.)

In more ways than one, the quadrupedal bridge is a remarkable 
one; and perhaps its most remarkable peculiarity is that it is a 
jointed and flexible bridge, remaining in equilibrium under con
siderable and sometimes great modifications of its curvature, such 
as we see, for instance, when a cat humps or flattens her back. 
The fact that flexibility is an essential feature in the quadrupedal 
draw it as a skeleton, in whi' h the different points are joined by straight lines, 
and we may indicate by numbers attached to these lines the tensions or com
pressions in the corresponding pieces of the frame” (Trans. R.S.E. xxvi, p. 1, 
1870).’ It follows that the diagram so constructed represents a “diagram of 
forces,” in this limited sense that it is geometrical as regards the position and 
direction of the forces, but arithmetical as regards their magnitude. It is to just 
such a diagram that the animal’s skeleton tends to approximate.
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bridge, while it is the last thing which an engineer desires and 
the first which he seeks to provide against, will impose certain 
important limiting conditions upon the design of the skeletal fabric. 
But let us begin by considering the quadruped at rest, when he 
stands upright and motionless upon his feet, and when his legs 
exercise no function save only to carry the weight of the whole 
body. So far as that function is concerned, we might now perhaps 
compare the horse’s legs with the tall and slender piers of some 
railway bridge; but it is obvious that these jointed legs are ill- 
adapted to receive the horizontal thrust of any arch that may be 
placed atop of them. Hence it follows that the curved backbone 
of the horse, which appears to cross like an arch the span between 
his shoulders and his flanks, cannot be regarded as an arch, in the

Fig. 469. a, tied arch; b, bowstring girder.

engineer’s sense of the word. It resembles an arch in form, but 
not in function, for it cannot act as an arch unless it be held back 
at each end (as every arch is held back) by abutments capable of 
resisting the horizontal thrust; and these necessary abutments are 
not present in the structure. But in various ways the engineer 
can modify his superstructure so as to supply the place of these 
external reactions, which in the simple arch are obviously indis
pensable. Thus, for example, we may begin by inserting a straight 
steel tie, AB (Fig. 469), uniting the ends of the curved rib AaB; 
and this tie will supply the place of the external reactions, converting 
the structure into a ‘tied arch,” such as we may see in the roofs 
of many railway stations. Or we may go on to fill in the space 
between arch and tie by a “web-system,” converting it into what 
the engineer describes as a “parabolic bowstring girder” (Fig. 4696). 
In either case, the structure becomes an independent “detached 



992 ON FORM AND MECHANICAL EFFICIENCY [ch. 

girder,” supported at each end but not otherwise fixed, and con
sisting essentially of an upper compression-member, AaB, and a 
lower tension-member, AB. But again, in the skeleton of the 
quadruped, the necessary tie, AB, of the simple bow-girder is not to 
be found; and it follows that these comparatively simple types of 
bridge do not correspond to, nor do they help us to understand, 
the type of bridge which Nature has designed in the skeleton of the 
quadruped. Nevertheless if we try to look, as an engineer would 
look, at the actual design of the animal skeleton and the actual 
distribution of its load, we find that the one is most admirably 
adapted to the other, according to the strict principles of engineering 
construction. The structure is not an arch, nor a tied arch, nor 
a bowstring girder: but it is strictly and beautifully comparable 
to the main girder of a double-armed cantilever bridge.

Fig. 470. A two-armed cantilever of the Forth Bridge. Thick lines, com
pression-members (bones); thin lines, tension-members (ligaments).

Obviously, in our quadrupedal bridge, the superstructure does 
not terminate (as it did in our former diagram) at the two points 
of support, but it extends beyond them, carrying the head at one 
end and sometimes a heavy tail at the other, upon projecting arms 
or “cantilevers.’’

In a typical cantilever bridge, such as the Forth Bridge (Fig. 470), 
a certain simplification is introduced. For each pier carries, in this 
case, its own double-armed cantilever, linked by a short connecting 
girder to the next, but so jointed to it that no weight is transmitted 
from one cantilever to another. The bridge in short is cut into 
separate sections, practically independent of one another; at the 
joints a certain amount of bending is not precluded, but shearing 
strain is evaded; and each pier carries only its own load. By 
this arrangement the engineer finds that design and construction 
are alike simplified and facilitated. In the horse or the ox, it is
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obvious that the two piers of the bridge, that is to say the fore-legs 
and the hind-legs, do not bear (as they do in the Forth Bridge) 
separate and independent loads, but the whole system forms a 
continuous structure. In this case, the calculation of the loads 
will be a little more difficult and the corresponding design of the 
structure a little more complicated. We shall accordingly simplify 
our ptoblem very considerably if, to begin with, we look upon the 
quadrupedal skeleton as constituted of two separate systems, that 
is to say of two balanced cantilevers, one supported on the fore-legs 
and the other on the hind; and we may deal afterwards with the 
fact that these two cantilevers are not independent, but are bound 
up in one common field of force and plan of construction.

In both horse and ox it is plain that the two cantilever systems 
into which we may thus analyse the quadrupedal bridge are unequal 
in magnitude and importance. The fore-part of the animal is much 
bulkier than its hind-quarters, and the fact that the fore-legs carry, 
as they so evidently do, a greater weight than the hind-legs has 
long been known and is easily proved; we have only to walk a horse 
on to a weigh-bridge, yeigh first his fore-legs and then his hind-legs, 
to discover that what we may call his front half weighs a good deal 
more than what is carried on his hind feet, say about three-fifths 
of the whole weight of the animal.

The great (or anterior) cantilever then, in the horse, is constituted 
by the heavy head and still heavier neck on one side of that pier 
which is represented by the fore-legs, and by the dorsal vertebrae 
carrying a large part of the weight of the trunk upon the other 
side; and this weight is so balanced over the fore-legs that the 
cantilever, while “anchored” to the other parts of the structure, 
transmits but little of its weight to the hind-legs, and the amount 
so transmitted will vary with the attitude of the head and with 
the position of any artificial load*. Under certain conditions, as 
when the head is thrust well forward, it is evident that the hind-legs 
will be actually relieved of a portion of the comparatively small 
load which is their normal share.

* M^en the jockey crouches over the neck of his race-horse, and when Tod 
Sloan introduced the “ American seat,” the avowed object in both cases is to relieve 
the hind-legs of weight, and so leave them free for the work of propulsion. On 
the share taken by the hind-limbs in this latter duty, and other matters, cf. 
Stillman, The Horse in Motion, 1882, p. 69.

T G F 6.3
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But here we pass from the statical problem to the dynamical, 
from the horse at rest to the horse in motion, from the observed 
fact that weight lies mainly over the fore-legs to the question of 
what advantage is gained by such a distribution of the load. Taking 
the hind-legs as the main propulsive agency, as we may now safely 
do, the moment of propulsion is about the hind-hooves; then (as we 
see in Fig. 471) we may take the weight, W = A sin a, and the

W H 
f " L’

propulsive force, f = A cos a, and WL = fH being the

balanced condition. From the statical point of view the load must 
balance over the fore-legs; from the dynamical point of view it 
might well lie even farther forward. And when the jockey crouches 

over the horse’s neck, and when Tod Sloan introduced the “American 
seat,” both shew a remarkable, though perhaps unconscious, insight 
into the dynamical proposition.

Our next problem is to discover, in a rough and approximate 
way, some of the structural details which the balanced load upon 
the double cantilever will impress upon the fabric.

Working by the methods of graphic statics, the engineer’s task is, 
in theory, one of great simplicity. He begins by drawing in outline 
the structure which he desires to erect; he calculates the stresses 
and bending-moments necessitated by the dimensions and load on 
the structure; he draws a new diagram representing these forces, 
and he designs and builds his fabric on the lines of this statical 
diagram. He does, in short, precisely what we have seen nature 
doing in the case of the bone. For if we had begun, as it were,
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by blocking out the femur roughly, and considering its position 
and dimensions, its means of support and the load which it has to 
bear, we could have proceeded at once to draw the system of 
stress-lines which must occupy that field of force: and to precisely

Fie. 472. A. Span of proposed bridge. B, Stress diagram, or diagram 
of bending-inoments*.

those stress-lines has Nature kept in the building of the bone, down 
to the minute arrangement of its trabeculae.

The essential function of a bridge is to stretch across a certain 
span, and carry a certain definite load; and this being so, the chief

Fig. 473. The bridge constructed, as a parabolic girder.

problem in the designing of a bridge is to provide due resistance 
to the “bending-moments” which result from the load. These 
bending-moments will vary from point to point along the girder,

* This and the following diagrams are borrowed and adapted from Professor 
Fidler s Bridge Construction. We may reflect with advantage on Clerk Maxwell’s 
saying that “ the use of diagrams is a particular instance of that method of symbols 
which is so powerful an aid in the advancement of science”; and on his explanation 
that “ a diagram differs from a picture in this respect that in a diagram no attempt 
is made to represent those factors of the actual material system which are not the 
special objects of our study.”

63-2
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and taking the simplest case of a uniform load, whether supported 
at one or both ends, they will be represented by points on a parabola. 
If the girder be of uniform depth and section, that is to say if its 
two flanges, respectively under tension and compression, be equal 
and parallel to one another, then the stress upon these flanges will 
vary as the bending-moments, and will accordingly be very severe 
in the middle and will dwindle towards the ends. But if we make 
the depth of the girder everywhere proportional to the bending
moments, that is to say if we copy in the girder the outlines of the 
bending-moment diagram, then our design will automatically meet 
the circumstances of the case, for the horizontal stress in each flange 
will now be uniform throughout the length of the girder. In short,

in Professor Fidler’s words, “ Every diagram of moments represents 
the outline of a framed structure which will carry the given load 
with a uniform horizontal stress in the principal members.”

In the above diagrams (Fig. 474, a, b) (which are taken from 
the original ones of Culmann), we see at once that the loaded beam 
or bracket (a) has a “danger-point” close to its fixed base, that is 
to say at the point remotest from its load. But in the parabolic 
bracket (6) there is no danger-point at all, for the dimensions of 
the structure are made to increase pari passu with the bending
moments: stress and resistance vary together. Again in Fig. 475, 
we have a simple span (A), with its stress diagram (B); and in 
(C) we have the corresponding parabolic girder, whose stresses 
are now uniform throughout. In fact we see that, by a process of 
conversion, the stress diagram in each case becomes the structural 
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diagram in the other*.  Now all this is but the modern rendering 
of one of Galileo’s most famous propositions. In the Dialogue which 
we have already quoted more than oncef, Sagredo says “It would 
be a fine thing if one could discover the proper shape to give a solid 
in order to make it equally resistant at every point, in which case 
a load placed at the middle would not produce fracture more easily

* The method of constructing reciprocal diagrams, of which one should represent 
the outlines of a frame and the other the system of forces necessary to keep it 
in equilibrium, was first indicated in Culmann’s Graphische Statik; it was greatly 
developed soon afterwards by Macquorn Rankine {Phil. Mag. Feb. 1864, and 
Applied Mechanics, passim), to whom the application of the principle to engineering 
practice is mainly due. See also Fleeming Jenkin, On the practical application 
of reciprocal figures to the calculation of strains in framework, Trans. R.S.E. 
xxv, pp. 441-448, 1869; and Clerk Maxwell, ibid, xxvi, p. 9, 1870, and Phil. Mag. 
April 1864.

f Dialogues concerning Two New Sciences (1638); Crew and Salvio’s translation 
p. 140 seq.

f As in the great case of the Eiffel Tower, supra, p. 29.

than if placed at any other point J.” And Galileo (in the person 
of Salviati) first puts the problem into its more general form; and 
then shews us how, by giving a parabolic outline to our beam, we 
have its simple and comprehensive solution. It was such teaching 
as this that led R. A Millikan to say that “ we owe our present-day 
civilisation to Galileo.”
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In the case of our cantilever bridge, we shew the primitive girder 
in Fig. 475, A, with its bending-moment diagram (B); and it is 
evident that, if we turn this diagram upside down, it will still be 
illustrative, just as before, of the bending-moments from point 
to point: for as yet it is merely a diagram, or graph, of relative 
magnitudes.

To either of these two stress diagrams, direct or inverted, we 
may fit the design of the construction, as in Figs. 475, C and 476.

Fig. 476.

Now in different animals the amount and distribution of the 
load differ so greatly that we can expect no single diagram, drawn 
from the comparative anatomy of bridges, to apply equally well to 
all the cases met with in the comparative anatomy of quadrupeds; 
but nevertheless we have already gained an insight into the general 
principles of “structural design” in the quadrupedal bridge.

In our last diagram the upper member of the cantilever is under 
tension; it is represented in the quadruped by the ligamentum nuchae 
on the one side of the cantilever, and by the supraspinous ligaments 
of the dorsal vertebrae on the other. The compression-member 
is similarly represented on both sides of the cantilever, by the 
vertebral column, or rather by the bodies of the vertebrae; while 
the web, or “filling,” of the girders, that is to say the upright or 
sloping members which extend from one flange to the other, is 
represented on the one hand by the spines of the vertebrae, and on 
the other hand by the oblique interspinous ligaments and muscles— 
that is to say, by compression-members and tension-members 
inclined in opposite directions to one another. The high spines over 
the quadruped's withers are no other than the high struts which 
rise over the supporting piers in the parabolic girder, and correspond 
to the position of the maximal bending-moments. The fact that 
these tall vertebrae of the withers usually slope backwards, some
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times steeply, in a quadruped, is easily and obviously explained*. 
For each vertebra tends to act as a “hinged lever,” and its spine, 
acted on by the tensions transmitted by the ligaments on either side, 
takes up its position as the diagonal of the parallelogram of forces 
to which it is exposed.

It happens that in these comparatively simple types of cantilever 
bridge the whole of the parabolic curvature is transferred to one 
or other of the principal members, either the tension-member or 
the compression-member as the case may be. But it is of course 
equally permissible to have both members curved, in opposite 
directions. This, though not exactly the case in the Forth Bridge, 
is approximately so; for here the main compression-member is 
curved or arched, and the main tension-member slopes downwards 
on either side from its maximal height above the piers. In short, 
the Forth Bridge (Fig. 470) is a nearer approach than either of 
the other bridges which we have illustrated to the plan of the 
quadrupedal skeleton; for the main compression-member almost 
exactly recalls the form of the backbone, while the main tension
member, though not so closely similar to the supraspinous and 
nuchal ligaments, corresponds to the plan of these in a somewhat 
simplified form.

We may now pass without difficulty from the two-armed canti
lever supported on a single pier, as it is in each separate section of the 
Forth Bridge, or as we have imagined it to be in the fore-quarters 
of a horse, to the condition which actually exists in a quadruped, 
when a two-armed cantilever has its load distributed over two 
separate piers. This is not precisely what an engineer calls a 
“continuous” girder, for that term is applied to a girder which, 
as a continuous structure, has three supports and crosses two or more 
spans, while here there is only. one. But nevertheless, this girder

* The form and direction of the vertebral spines have been frequently and 
elaborately described; cf. (e.g.) H. Gottlieb, Die Anticlinie der Wirbelsaule der 
Saugethiere, Morphol. Jahrb. lxix, pp. 179-220, 1915, and many works quoted 
therein. According to Morita, Ueber die Ursachen der Richtung und Gestalt der 
thoracalen Dornfortsatze der Saugethierwirbelsaule (ibi cit. p. 201), various changes 
take place in the direction or inclination of these processes in rabbits, after section 
of the interspinous ligaments and muscles. These changes seem to be very much 
what we should expect, on simple mechanical grounds. >See also 0. Fischer, 
Theoretische Grundlagen fur eine Mechanik der lebenden Korper, Leipzig, 1906, 
pp. x, 372.
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is effectively continuous from the head to the tip of the tail; and 
at each point of support (A and B) it is subjected to the negative 
bending-moment due to the overhanging load on each of the 
projecting cantilever arms AH and BT. The diagram of bending
moments will (according to the ordinary conventions) lie below the 
base line (because the moments are negative), and must take some 
such form as that shewn in the diagram: for the girder must suffer 
its greatest bending stress not at the centre, but at the two points 
of support A and B, where the moments are measured by the 
vertical ordinates. It is plain that this figure only differs from 
a representation of two independent two-armed cantilevers in the 
fact that there is no point midway in the span where the bending
moment vanishes, but only a region between the two piers in which 
it tends to diminish.

Fig. 477. Two-armed cant ilever and its stress diagram.

The diagram effects a graphic summation of the positive and 
negative moments, but its form may assume various modifications 
according to the method of graphic summation which we choose 
to adopt; and it is obvious also that the form of the diagram 
may assume many modifications of detail according to the actual 
distribution of the load. In all cases the essential points to be 
observed are these: firstly that the girder which is to resist the 
bending-moments induced by the load must possess its two principal 
members an upper tension-member or tie, represented by ligament 
(whose tension doubtless varies along its length), and a lower 
compression-member represented by bone: these members being 
united by a web represented by the vertebral spines with their 
interspinous ligaments, and being placed one above the other in 
the order named because the moments are negative; secondly we 
observe that the depth of the web, or distance apart of the principal 
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members—that is to say the height of the vertebral spines—must 
be proportional to the bending-moment at each point along the 
length of the girder.

In the case of an animal carrying most of his weight upon his 
fore-legs, as the horse or the ox do, the bending-moment diagram 
will be unsymmetrical, after the fashion of Fig. 478, the precise form 
depending on the distribution of weights and distances.

Fig. 478. Stress-diagram of horse’s backbone.

On the other hand the Dinosaur, with his light head and enormous 
tail would give us a moment-diagram with the opposite kind of 
asymmetry, the greatest bending stress being now found over the 
haunches, at B (Fig. 479). A glance at the skeleton of Diplodocus 
will shew us the high vertebral spines over the loins, in precise 
correspondence with the requirements of this diagram: just as in 
the horse, under the opposite conditions of load, the highest vertebral 
spines are those of the withers, that is to say those of the posterior 
cervical and anterior dorsal vertebrae.

M e have now not only dealt with the general resemblance, both 
in structure and in function, of the quadrupedal backbone with its 
associated ligaments to a double-armed cantilever girder, but we 
have begun to see how the characters of the vertebral system must 
differ in different quadrupeds, according to the conditions imposed 
by the varying distribution of the load: and in particular how the 
height of the vertebral spines which constitute the web will be 
in a definite relation, as regards magnitude and position, to the 
bending-moments induced thereby. We should require much de
tailed information as to the actual weights of the several parts of 
the body before we could follow out quantitatively the mechanical 
efficiency of each type of skeleton; but in an approximate way 
what we have already learnt will enable us to trace many interesting 
correspondences between structure and function in this particular 
part of comparative anatomy. M e must, however, be careful to 
note that the great cantilever system is not of necessity constituted 
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by the vertebral column and its ligaments alone, but that the pelvis, 
firmly united as it is to the sacral vertebrae, and stretching back
wards far beyond the acetabulum, becomes an intrinsic part of the 
system; and helping (as it does) to carry the load of the abdominal 
viscera, it constitutes a great portion of the posterior cantilever arm, 
or even its chief portion in cases where the size and weight of the 
tail are insignificant, as is the case in the majority of terrestrial 
mammals.

W e may also note here, that just as a bridge is often a “ combined ” 
or composite structure, exhibiting a combination of principles in 
its construction, so in the quadruped we have, as it were, another 
girder supported by the same piers to carry the viscera; and con
sisting of an inverted parabolic girder, whose compression-member 
is again constituted by the backbone, its tension-member by the 
line of the sternum and the abdominal muscles, while the ribs and 
intercostal muscles play the part of the web or filling.

A very few instances must suffice to illustrate the chief variations 
in the load, and therefore in the bending-moment diagram, and 
therefore also in the plan of construction, of various quadrupeds. 
But let us begin by setting forth, in a few cases, the actual weights 
which are borne by the fore-limbs and the hind-limbs, in our 
quadrupedal bridge*.

dale)

Gross weig*ht
On 

fore-feet 
cwt.

On 
hind-feet 

cwt.

% on 
fore-feet

% on 
hind-feet

ton cwt.
Camel (Bactrian) — 14-25 9-25 4-5 67-3 32-7
[Jama — 2-75 1-75 0-875 66-7 33-3
Elephant (Indian) 1 15-75 20-5 14-75 58-2 41-8
Horse — 8-25 4-75 3-5 57-6 42-4
Horse (large Clydes- — 15-5 8-5 7-0 54-8 45-2

* I owe the first four of these determinations to the kindness of Sir P. Chalmers 
Mitchell, who had them made for me at the Zoological Society’s Gardens; while 
the great Clydesdale carthorse was weighed for me by a friend in Dundee.
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It will be observed that in all these animals the load upon the 
fore-feet preponderates considerably over that upon the hind, the 
preponderance being rather greater in the elephant than in the horse, 
and markedly greater in the camel and the llama than in the other 
two. But while these weights are helpful and suggestive, it is 
obvious that they do not go nearly far enough to give us a full 
insight into the constructional diagram to which the animals are 
conformed. For such a purpose we should require to weigh the 
total load, not in two portions but in many; and we should also 
have to take close account of the general form of the animal, of 
the relation between that form and the distribution of the load, 
and of the actual directions of each bone and ligament , by which 
the forces of compression and tension were transmitted. All this 
lies beyond us for the present; but nevertheless we may consider,

Fig. 480. Stress-diagram of Titanotherium.

very briefly, the principal cases involved in our enquiry, of which 
the above animals form a partial and preliminary illustration.

(1) Wherever we have a heavily loaded anterior cantilever arm, 
that is to say whenever the head and neck represent a considerable 
fraction of the whole weight of the body, we tend to have large 
bending-moments over the fore-legs, and correspondingly high spines 
over the vertebrae of the withers. This is the case in the great 
majority of four-footed terrestrial animals, the chief exceptions 
being found in animals with comparatively small heads but large 
and heavy tails, such as the anteaters or the Dinosaurian reptiles, 
and also (very naturally) in animals such as the crocodile, where 
the “ bridge” can scarcely be said to be developed, for the long heavy 
body sags down to rest upon the ground. The case is sufficiently 
exemplified by the horse, and still more notably by the stag, the ox, 
or the pig. It is illustrated in the skeleton of a bison (Fig. 468), or
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in the accompanying diagram of the conditions in the great extinct 
Titanotherium.

(2) In the elephant and the camel we have similar conditions, 
but slightly modified. In both cases, and especially in the latter, 
the weight on the fore-quarters is relatively large; and in both cases 
the bending-moments are all the larger, by reason of the length 
and forward extension of the camel’s neck and the forward position 
of the heavy tusks of the elephant. In both cases the dorsal spines 
are large, but they do not strike us as exceptionally so; but in 
both cases, and especially in the elephant, they slope backwards 
in a marked degree. Each spine, as already explained, must in all 
cases assume the position of the diagonal in the parallelogram of 
forces defined by the tensions acting on it at its extremity; for it 
constitutes a “hinged lever,” by which the bending-moments on 
either side are automatically balanced; and it is plain that the more 
the spine slopes backwards the more it indicates a relatively large 
strain thrown upon the great ligament of the neck, and a relief 
of strain upon the more directly acting, but weaker, ligaments of 
the back and loins. In both cases, the bending-moments would 
seem to be more evenly distributed over the region of the back than, 
for instance, in the stag, with its light hind-quarters and heavy load 
of antlers: and in both cases the high “girder” is considerably 
prolonged, by an extension of the tall spines backwards in the 
direction of the loins. When we come to such a case as the mam
moth, with its immensely heavy and immensely elongated tusks, 
we perceive at once that the bending-moments over the fore-legs 
are now very severe; and we see also that the dorsal spines in this 
region are much more conspicuously elevated than in the ordinary 
elephant.

‘(3 ) In the case of the giraffe we have, without doubt, a very 
heavy load upon the fore-legs, though no weighings are at hand 
to define the ratio; but as far as possible this disproportionate 
load would seem to be relieved by help of a downward as well as 
backward thrust, through the sloping back to the unusually low 
hind-quarters. The dorsal spines of the vertebrae are very high 
and strong, and the whole girder-system very perfectly formed. The 
elevated rather than protruding position of the head lessens the 
anterior bending-moment as far as possible, but it leads to a strong 
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compressional stress transmitted almost directly downwards through 
the neck: in correlation with which we observe that the bodies of 
the cervical vertebrae are exceptionally large and strong, and steadily 
increase in size and strength from the head downwards.

(4) In the kangaroo, the fore-limbs are entirely relieved of their 
load, and accordingly the tall spines over the withers, which were so 
conspicuous in all heavy-headed quadrupeds, have now completely 
vanished. The creature has become bipedal, and body and tail 
form the extremities of a single balanced cantilever, whose maximal 
bending-moments are marked by strong, high lumbar and sacral 
vertebrae, and by iliac bones of peculiar form, of exceptio nab strength 
and nearly upright position.

Precisely the same condition is illustrated in the Iguanodon, and 
better still by reason of the great bulk of the creature and of the 
heavy load which falls to be supported by the great cantilever and 
by the hind-legs which form its piers. The long heavy body and 
neck require a balance-weight (as in the kangaroo) in the form of 
a long heavy tail; and the double-armed cantilever, so constituted, 
shews a beautiful parabolic curvature in the graded heights of the 
whole series of vertebral spines, which rise to a maximum over the 
haunches and die away slowly towards the neck and towards the 
tip of the tail.

(5) In the case of some of the great American fossil reptiles such 
as Diplodocus, it has always been a more or less disputed question 
whether or not they assumed, like Iguanodon, an erect, bipedal 
attitude. In all of them we see an elongated pelvis, and, in still 
more marked degree, we see elevated spinous processes of the 
vertebrae over the hind-limbs; in all of them we have a long heavy 
tail, and in most of them we have a marked reduction in size and 
weight both of the fore-limb and of the head itself. The great size 
of these animals is not of itself a proof against the erect attitude; 
because it might well have been accompanied by an aquatic or 
partially submerged habitat, and the crushing stress of the creature’s 
huge bulk proportionately relieved. But we must consider each 
such case in the whole light of its own evidence; and it is easy to 
see that, just as the quadrupedal mammal may carry the greater 
part but not all of its weight upon its fore-limbs, so a heavy-tailed 
reptile may carry the greater part upon its hind-limbs, without 
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this process going so far as to relieve its fore-limbs of all weight 
whatsoever. This would seem to be the case in such a form as 
Diplodocus, and also in Stegosaurus, whose restoration by Marsh 
is doubtless substantially correct*. The fore-limbs, though com
paratively small, are obviously fashioned for support, but the weight 
which they have to carry is far less than that which the hind-limbs 
bear. The head is small and the neck short, while on the other hand 
the hind-quarters and the tail are big and massive. The backbone 
bends into a great double-armed cantilever, culminating over the 
pelvis and the hind-limbs, and here furnished with its highest and 
strongest spines to separate the tension-member from 1he com-

Fig. 481. Diagram of Stegosaurus.

pression-member of the girder. The fore-legs form a secondary 
supporting pier to this great continuous cantilever, the greater part 
of whose weight is poised upon the hind-limbs alone.

(6) In the slender body of a weasel, neither head nor tail is such 
as to form an efficient cantilever; and though the lithe body is 
arched in active exercise, our parallel of the bridge no longer works 
well. What else to compare it with is far from clear; but the 
mechanism has some resemblance (perhaps) to an elastic spring. 
Animals of this habit of body are all small; their bodily weight 
is a fight burden, and gravity becomes an ineffectual force.

* This pose of Diplodocus, and of other Sauropodous reptiles, has been much 
discussed. Cf. (int. al.) O. Abel, Abh. k. k. zool. bot. Ges. Wien, v, 1909-10 (60 pp.); 
Tornier, SB. Ges. Naturf. Fr. Berlin, 1909, pp. 193-209; O. P. Hay, Amer. Nat. 
Oct. 1908; Tr^Wash. Acad. Sci. xlii, pp. 1-25, 1910; Holland, Amer. Nat. May 
1910, pp. 259-283; Matthew, ibid. pp. 547-560; C. W. Gilmore (Restoration of 
Stegosaurus), Pr. U.S. Nat. Museum, 1915.
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(7) An abnormal and very curious case is that of the sloth, which 

hangs by hooked hands and feet, head downwards, from high 
branches in the Brazilian forest. The vertebrae are unusually 
numerous, they are all much alike one to another, and (as we might 
well suppose) the whole pensile chain of vertebrae hangs in what 
closely approximates to a catenary curve*.

(8) We find a highly important corollary in the case of aquatic 
animals. For here the effect of gravity is neutralised; we have 
neither piers nor cantilevers; and we find accordingly in all aquatic 
mammals of whatsoever group whales, seals or sea-cows—that 
the high arched vertebral spines over the withers, or corresponding 
structures over the hind-limbs, have both entirely disappeared.

But in the whale or dolphin (and not less so in the aquatic bird), 
stiffness must be ensured in order to enable the muscles to act against 
the resistance of the water in the act of swimming; and accordingly 
Nature must provide against bending-moments irrespective of 
gravity. In the dolphin, at any rate as regards its tail-end, the 
conditions will be not very different from those of a column or 
beam with fixed ends, in which, under deflection, there will be two 
points of contrary flexure, as at C, D, in Fig. 482.

Here, between C and D we have a varying bending-moment, 
represented by a continuous curve with its maximal elevation mid
way between the points of inflection.
And correspondingly, in our dolphin, 
we have a continuous series of high 
dorsal spines, rising to a maximum 
about the middle of the animal’s 
body, and falling to nil at some distance from the end of the tail. It 
is their business (as usual) to keep the tension-member, represented by 
the strong supraspinous ligaments, wide apart from the compression
member, which is as usual represented by the backbone itself. But 
in our diagram we see that on the farther side of C and D we have a 
negative curve of bending-moments, or bending-moments in a contrary 
direction. Without enquiring how these stresses are precisely met

* A heavy cord, or a cord carrying equal weights for equal distances along its 
line, hangs in a catenary: imagine it frozen and inverted, and we have an arch, 
carrying the same sort of load, and under compression only. On the other hand, 
a flexible cable (itself of negligible weight), carrying a uniform load along the line 
of its horizontal projection, hangs in the form of a parabola.
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towards the dolphin’s head (where the coalesced cervical vertebrae 
suggest themselves as a partial explanation), we see at once that 
towards the tail they are met by the strong series of chevron-bones, 
which in the caudal region, where tall dorsal spines are no longer 
needed, take their place below the vertebrae, in precise correspondence 
with the bending-moment diagram. In many cases other than these 
aquatic ones, when we have to deal with animals with long and 
heavy tails (like the Iguanodon and the kangaroo of which we have 
already spoken), we are apt to meet with similar, though usually 
shorter chevron-bones; and in all these cases we may see without 
difficulty that a negative bending-moment in the vertical direction 
has to be resisted or controlled.

In the dolphin we may find an illustration of the fact that not 
only is it necessary to provide for rigidity in the vertical direction 
but often also in the horizontal, where a tendency to bending must be 
resisted on either side. This function is effected in part by the ribs 
with their associated muscles, but they extend but a little way and 

Fig. 483. a, dorsal and b, caudal 
vertebrae of haddock.

the backbone is stiffened by the i

their efficacy for this purpose can 
be but small. We have, however, 
behind the region of the ribs and 
on either side of the backbone 
a strong series of elongated and 
flattened transverse processes, 
forming a web for the support 
of a tension-member in the usual 
form of ligament, and so playing 
a part precisely analogous to that 
performed by the dorsal spines in 
the same animal. In an ordinary 
fish, such as a cod or a haddock, 
we see precisely the same thing: 

[dispensable help of its three series 
of ligament-connected processes, the dorsal and the two transverse 
series; but there are no such stiffeners in the eel. M hen we come to 
the region of the tail, where rigidity gives place to lateral flexibility, 
the three stiffeners give place to two—the dorsal and haemal spines 
of the caudal vertebrae. And here we see that the three series of 
processes, or struts, tend (when all three are present) to be arranged 
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well-nigh at equal angles, of 120°, with one another, giving the 
greatest and most uniform strength of which such a system is 
capable. On the other hand, in a flat fish, such as a plaice, where 
from the natural mode of progression it is necessary that the back
bone should be flexible in one direction while stiffened in another, 
we find the whole outline of the fish comparable to that of a double 
bowstring girder, the compression-member being (as usual) the 
backbone itself, the tension-member on either side being constituted 
by the interspinous ligaments and muscles, while the web or filling 
is very beautifully represented by the long and evenly graded neural 
and haemal spines, which spring symmetrically up and down from 
each individual vertebra.

In the skeleton of the flat fishes, the web of the otherwise perfect 
parabolic girder has to be cut away and encroached on to make room 
for the viscera. When the body is long and the vertebrae many, 
as in the sole, the space required is small compared with the length 
of the girder, and the strength of the latter is not much impaired. 
In the shorter, rounder kinds with fewer vertebrae, like the turbot, 
the visceral cavity is large compared with the length of the fish, 
and its presence would seem to weaken the girder very seriously. 
But Nature repairs the breach by framing in the hinder part of the 
space with a strong curved bracket or angle-iron, which takes the 
place very efficiently of the bony struts which have been cut aw’ay.

The main result at which we have now arrived, in regard to the 
construction of the vertebral column and its associated parts, is 
that we may look upon it as a certain type of girder, whose depth 
is everywhere very nearly proportional to the height of the corre
sponding ordinate in the diagram of moments: just as it is in a girder 
designed by a modern engineer. In short, after the nineteenth or 
twentieth century engineer has done his best in framing the design 
of a big cantilever, he may find that some of his best ideas had, so 
to speak, been anticipated ages ago in the fabric of the great saurians 
and the larger mammals.

But it is possible that the modern engineer might be disposed to 
criticise the skeleton girder at two or three points; and in particular 
he might think the girder, as we see it for instance in Diplodocus or 
Stegosaurus, not deep enough for carrying the animal’s enormous

TG F 64
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weight of some twenty, tons. If we adopt a much greater depth 
(or ratio of depth to length) as in the modern cantilever, we shall 
greatly increase the strength of the structure; but at the same time 
we should greatly increase its rigidity, and this is precisely what, in 
the circumstances of the case, it would seem that Nature is bound 
to avoid. We need not suppose that the great saurian was by any 
means active and limber; but a certain amount of activity and 
flexibility he was bound to have, and in a thousand ways he would 
find the need of a backbone that should Inflexible as well as strong. 
Now this opens up a new aspect of the matter and is the beginning 
of a long, long story, for in every direction this double requirement 
of strength and flexibility imposes new conditions upon the design. 
To represent all the correlated quantities we should have to construct 
not only a diagram of moments but also a diagram of elastic 
deflection and its so-called “curvature”; and the engineer would 
want to know something more about the material of the ligamentous 
tension-member- its flexibility, its modulus of elasticity in direct 
tension, its elastic limit, and its safe working stress.

In various ways our structural problem is beset by “limiting 
conditions.” Not only must rigidity be associated with flexibility, 
but also stability must be ensured in various positions and attitudes; 
and the primary function of support or weight-carrying must be 
combined with the provision of points d'uppui for the muscles con
cerned in locomotion. We cannot hope to arrive at a numerical 
or quantitative solution of this complicate problem, but we have 
found it possible to trace it out in part towards a qualitative solution. 
And speaking broadly we may certainly say that in each case the 
problem has been solved by Nature herself, very much as she solves 
the difficult problems of minimal areas in a system of soap-bubbles; 
so that each animal is fitted with a backbone adapted to his own 
individual needs, or (in other words) corresponding to the mean 
resultant of the many stresses to which as a mechanical system it 
is exposed.

The mechanical construction of a bird is a more elaborate affair 
than a quadruped’s, inasmuch as it has a double part to play, the 
bird’s whole weight being borne now by its legs and now by its wings. 
As it stands on the ground our bird is a balanced cantilever, carried
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on two legs as on a pier, the cantilever being constituted by the 
pelvic bones, drawn out fore and aft and firmly welded to a long 
stretch of vertebral column. The centre of gravity is kept in a line 
passing through the acetabulum, and the long toes help to preserve 
an unstable but well-adjusted equilibrium. One arm of the cantilever 
carries head, neck and wings, the other, the shorter arm, carries the 
abdomen; but the whole weight of the viscera hangs in the abdomen 
as in a bag, and on the other hand head and neck are kept small and 
light, and their purchase on the fulcrum is under constant modifica
tion and control. A stork or a heron is continually balancing itself;

Fig. 484. Pelvis of Apteryx. The line AB is vertical, or nearly so, 
in the standing posture of the bird.

•
as the beak is thrust forward a leg stretches back, as the bird walks 
along its whole body sways in keeping. No less elegant is the 
perfect balance of the same birds at rest -the heron standing on 
one leg, even on 4 tree top, the flamingo also on pne long leg, 
with its neck close coiled and its head tucked amongst the 
feathers.

The approximately parabolic form of the great pelvic cantilever 
is best seen in the ostrich and other running birds, but more 
commonly the strength of the cantilever is got in other ways. 
Usually, as in the fowl, it consists of a thin shell of bone curved 
over like the bonnet of a motor car and stiffened, or “cambered,” by 
ridges converging on the acetabulum. A doubled sheet of paper, 
cut roughly to the shape of the pelvis and then pinched up into folds

64-2
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on either side, as in Fig. 485, will serve as a model of the skeletal 
cantilever and shew how its limp surface is stiffened by the 
folds.

Save in the ostrich, and a few other flightless birds, the breast-bone 
or sternum is a broad, flat bone, produced into a deep, descending 
ridge or “keel.” Very firmly fixed to the sternum on either side 
is a short strong bone, the coracoid; attached to it again, and 
bending backwards over the ribs, is the scapula; and at the junction 
of scapula and coracoid is the socket, or glenoid cavity, for the 
wing. The clavicles, fused into a “merry-thought,” run from near 
the glenoid cavity to the front end of the keel; in strong-flying 
birds they are stout and curved, and a continuous curve sweeps

Fig. 485. Rough paper model of a fowl’s pelvis.

round from scapula to sternal keel. The keel is commonly explained 
as necessary to give space enough for the attachment of the muscles 
of flight, but this explanation is inadequate, even untrue; for one 
thing, the great pectoral muscle springs from the edge, not from 
the broad surface of the keel. The keel is essentially a flange, and, 
as in a piece of T iron, adds immensely to the strength and stiffness 
of the construction*; that it tends to give the fibres of the muscle 
more stretch and play, and a straighter, pull on the arm-bone to 
which they run, is a secondary advantage. Strong as they are. these 
bones are exquisitely light and thin. A great frigate-bird, with a 7-foot 
span of wings, weighs a little over a couple of pounds, and all its 
bones weigh about four ounces. The bones weigh less than the 
feathers f. *

* T irons, if J am not mistaken, were among the many inventions of Robert 
Stephenson, in his construction of the Menai tubular bridge a hundred years ago.

f Cf. R. C. Murphy, Natural History, Oct. 1939.
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While the bird stands on the ground its backbone is, as in ourselves, 
its skeletal axis, and it, including the great cantilever associated with

Fig. 485. a, Sternum and shoulder-girdle of a skua gull, b, section of do., through 
the line AB. St. sternum; Ca, its carina or keel; Co, coracoid bone; Sc, 
scapula; F. merry-thought or furcula.

it, carries, and transmits to the legs, the whole weight of the body. 
But as soon as a bird spreads its wings and rests upon the air, legs,

Fig. 487. A Hying bird. Sternum, shoulder-girdle and wings combine to 
support the body; and all the rest lies as a dead weight thereon.

backbone, cantilever and all become merely so much weight to be 
carried; and the whole rests, as on a floor, on the strong, stiff 
platform made of sternum and shoulder-girdle, which the wings (so 
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to speak) take hold of and support, and which is now, mechanically 
speaking, the axis of the body. The bird has two points of suspension, 
which it uses alternately: the one through the two acetabula, the 
other through the glenoid cavities and the outstretched wings. 
Glenoid cavity and acetabulum are but a little way apart, and the 
bird swings its weight over from one to the ol her easily and smoothly. 
At first sight it seems a curious feature of the bird’s skeleton that 
breast-bone, shoulder-girdle, wings and all are but very slightly 
attached to the rest of the body, and to what we look on, usually, 
as its main axis of support; the only skeletal attachment is by the 
framework of the ribs, and these are slight and slender. The fact 
is that the two skeletal axes, the backbone and the breast-bone, have 
their separate and independent roles, and each is but loosely connected 
with the other.

The curvature of the bird’s neck is very beautiful: one curve 
leads on to another; and indeed the bird’s whole axial skeleton, 
from head to tail, is one even and continuous curve. Where a 
bridge crosses the gap between two piers, it sags as the load passes 
over; where successive girders cross successive gaps, each sags in 
its turn under the travelling load. But suppose one continuous 
girder to cross two gaps; it bends in a more complicated way, and 
one half tends to bend up while the other is sagging down. W e 
cannot analyse the whole field of force to which the bird is subject, 
but we realise that it is a continuous field, in which what the engineer 
calls a “continuous girder” has its great part to play. The 
continuous girder is apt to sag and bend and sway in an erratic 
fashion unless its ends be firm and secure, and the bird’s head must, 
of necessity, be under some analogous control; the semicircular 
canals are the potent factors in equilibrium, and the bird “keeps 
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a level head" by their help and guidance. Then, between the level 
of the skull and the level of the great pelvic cantilever a continuous 
field of force governs and defines the S-shaped curvature Man’s 
vertebral column shews, mutatis mutandis, the same phenomenon 
of continuous but alternating curvature. The dorsal region is, of 
necessity, concave towards the cavity of the chest, and as a simple 
consequence the cervical and lumbar regions curve the other way.

The typically aquatic birds, such as swim under water as 
penguins and divers do, have characteristic features and adaptations 
of their own. Just as the cantilever girder becomes obsolete in the 
aquatic mammal so does it tend to weaken and disappear in the 
aquatic bird. There is a marked contrast between the high-arched 
strongly built pelvis in the ostrich or the hen, and the long, thin, 
comparatively straight and apparently weakly bone which represents 
it in a diver, a grebe or a penguin. Wings large enough for air 
would be an obstruction under water, and small wings are enough; 
for they have to produce thrust only, not lift, and the former is 
but a small fraction of the latter load. The feet also are now mainly 
concerned with the same forward thrust, and we begin to see how 
the long narrow pelvis gives just the point d’appui which that 
thrust requires.

The woodcock, as ornithologists are awa re, shews us an osteological paradox, 
which is commonly described by saying that this bird’s ear is in front of its 
eye! If we hold a woodcock’s skull Jevel, beak and all, this indeed seems to 
be the case, but no woodcock does so. Standing or flying, the woodcock 
holds its beak pointing downwards, and its skull is then level, like that of 
other birds; in other words, its beak is not in a line with the basi-cranial axis, 
as a guillemot’s is, but bends sharply downwards. When the axis of the skull 
is horizontal, the beak points downwards at an angle of nearly 60°, and the 
auditory aperture is then as much behind the eye as in other birds.

There is a certain other principle much to the fore in the con
struction of the skeleton, well known to the designer of a hydroplane 
or “flying boat,” and not wholly neglected by the bridge-building 
engineer; it is the principle of non-rigid, flexible or elastic stability*. 
A homely comparison between a basket and a tin-can tells us in 
a moment what it means, and shews us some at least of its peculiar 
advantages. This method of construction helps to distribute the load,

* India-rubber has great elastic stability. It is not compressible, but is almost as 
incompressible as water itself, as J. D. Forbes discovered a century ago.
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bridges over points or areas where pressure might be unduly con
centrated or confined, adapts itself to a sudden impactor concentrated 
stress, helps to lessen or to guard against shock, and’ imparts to the 
whole structure a quality which we may call, for short, resiliency.

The engineer finds it easiest of attainment when his principal 
members are in tension; hence elastic movement and resilience are 
apt to be conspicuous in a suspension-bridge. One way and another, 
resilience shews to perfection in a bird. The S-shaped curve of the 
neck carrying the light weight of the head, the zig-zag flexures of 
the legs bearing the balanced burden of the body, the supple basket

Fig. 489. A woodcock’s skull, in (or nearly in) the natural attitude. A, B, the 
basis cranii; E, auditory ineatus; 0, orbit; Q, quadrate bone.

of the ribs, each rib in two halves one flexed on the other, all these 
are such as to make the whole framework act like an elastic spring, 
absorbing every shock as the bird lights on or rises from the ground. 
Bird, beast and man exhibit this resilience, each in its degree; 
a springy step is part of the joy of youth, and its loss is one of the 
first infirmities of age.

Nature’s engineering is marvellous in our eyes, and our finest 
work is narrow in scope and clumsy in execution compared to her 
construction and design. But following her example, wittingly or 
unwittingly, our own problems evolve and our ambitions enlarge 
towards the conception of an “organised structure.” • In such
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triumphs of modern mechanism as a torpedo, a racing aeroplane, 
a high-speed railway-train, the whole construction is knit together 
in a new way. It finds its streamlined outline in w’hat seems to 
he a simple and natural way; it is solid and robust, it is graceful 
as well as strong; it is no longer a bundle of parts, it has become 
an organic whole: its likeness, even its outward likeness, to a living 
organism has become patent and clear.

Throughout this short discussion of the principles of construction, 
we see the same general principles at work in the skeleton as a whole 
as we recognised in the plan and construction of an individual 
bone. That is to say, we see a tendency for material to be laid 
down just in the lines of stress, and so to evade thereby the 
distortions and disruptions due to shear. In these phenomena 
there lies a definite law of growth, whatever its ultimate expression 
or explanation may come to be. Let us not press either argument 
or hypothesis too far: but be content to see that skeletal form, as 
brought about by growth, is to a very large extent determined by 
mechanical considerations, and tends to manifest itself as a diagram, 
or reflected image, of mechanical stress. If we fail, owing to the 
immense complexity of the case, to unravel all the mathematical 
principles involved in the construction of the skeleton, we yet gain 
something, and not a little, by applying this method to the familiar 
objects of anatomical study: obvia conspicimus, nubem pellente 
mathesi *.

Before we leave this subject of mechanical adaptation, let us 
dwell once more for a moment upon the considerations which arise 
from our conception of a field of force, or field of stress, in which 
tension and compression (for instance) are inevitably combined, and 
are met by the materials naturally fitted to resist thorn. It has 
been remarked over and over again how harmoniously the whole 
organism hangs together, and how throughout its fabric one part 
is related and fitted to another in strictly functional correlation. 
But this conception, though never denied, is sometimes apt to be 
forgotten in the course of that process of more and more minute

* The motto was Macquorn Rankine’s, in 1857; cf. Trans. R.S.E. xxvi, p. 715, 
1872.
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analysis by which, for simplicity’s sake, we seek to unravel the 
intricacies of a complex organism.

As we analyse a thing into its parts or into its properties we tend 
to magnify these, to exaggerate their apparent independence, and 
to hide from ourselves (at least for a time) the essential integrity 
and individuality of the composite whole. We divide the body into 
its organs, the skeleton into its bones, as in very much the same 
fashion we make a subjective analysis of the mind, according to 
the teachings of psychology, into component factors: but we know 
very well that judgment and knowledge, courage or gentleness, 
love or fear, have no separate existence, but are somehow mere 
manifestations, or imaginary coefficients, of a most complex integral. 
And likewise, as biologists, we may go so far as to say that even 
the bones themselves are only in a limited and even a deceptive 
sense, separate and individual things. The skeleton begins as a 
continuum, and a continuum it remains all life long. The things 
that link bone with bone, cartilage, ligaments, membranes, are 
fashioned out of the same primordial tissue, and come into being 
pari passu with the bones themselves. The entire fabric has its 
soft parts and its hard, its rigid and its flexible parts; but until we 
disrupt and dismember its bony, gristly and fibrous parts one from 
another, it exists simply as a “skeleton,” as one integral and 
individual whole.

A bridge was once upon a time a loose heap of pillars and rods 
and rivets of steel. But the identity of these is lost, just as if they 
were fused into a solid mass, when once the bridge is built; their 
separate functions are only to be recognised and analysed in so far 
as we can analyse the stresses, the tensions and the pressures, which 
affect this part of the structure or that; and these forces are not 
themselves separate entities, but are the resultants of an analysis 
of the whole field of force. Moreover when the bridge is broken it 
is no longer a bridge, and all its strength is gone. So is it precisely 
with the skeleton. In it is reflected a field of force: and keeping 
pace, as it were, in act ion and interaction with this field of force, the 
whole skeleton and every part thereof, down to the minute intrinsic 
structure of the bones themselves, is related in form and in position 
to the lines of force, to the resistances it has to encounter; for by 
one of the mysteries of biology, resistance begets resistance, and
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where pressure falls there growth springs up in strength to meet it. k 
And, pursuing the same train of thought, we see that all this is true 
not of the skeleton alone but of the whole fabric of the body. Muscle 
and bone, for instance, are inseparably associated and connected; 
they are moulded one with another ; they come into being together, 
and act and react together*. We may study them apart, but it 
is as a concession to our weakness and to the narrow outlook of 
our minds. We see, dimly perhaps but yet with all the assurance 
of conviction, that between muscle and bone there can be no change 
in the one but it is correlated with changes in the other; that 
through and through they are linked in indissoluble association; 
that they are only separate entities in this limited and subordinate 
sense, that they are parts of a whole which, when it loses its com
posite integrity, ceases to exist.

The biologist, as well as the philosopher, learns to recognise that 
the whole is not merely the sum of its parts. It is this, and much 
more than this. For it is not a bundle of parts but an organisation 
of parts, of parts in their mutual arrangement, fitting one with 
another, in what Aristotle calls “a single and indivisible principle 
of unity”; and this is no merely metaphysical conception, but is in 
biology the fundamental truth which lies at the basis of Geoffroy’s 
(or Goethe’s) kw of "compensation,” or “balancement of growth.”

Nevertheless Darwin found no difficulty in believing that “natural 
selection will tend in the long run to reduce any part of the organisa
tion, as soon as, through changed habits, it becomes superfluous: 
without by any means causing some other part to be largely developed 
in a corresponding degree. And conversely, that natural selection 
may perfectly well succeed in largely developing an organ wilhout 
requiring as a necessary compensation the reduction of some ad
joining partf.” This view has been developed into a doctrine of 
the “independence of single characters” (not to be confused with 
the germinal “unit characters” of Mendelism), especially by the 
palaeontologists. Thus Osborn asserts a*“principle of hereditary 
correlation,” combined with a “principle of hereditary separability,

* John Hunter was seldom wrong; but I cannot believe that he was right when 
he said (Scientific Works, ed. Owen, i, p. 371), “The bones, in a mechanical view, 
appear to be the first that are to be considered. We can study their shape, 
connections, number, uses, etc., without considering any other part of the body."

f Origin of Species, 6th ed. p. 118.
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whereby the body is a colony, a mosaic, of single individual and 
separable characters*.” I cannot think that there is more than 
a very small element of truth in this doctrine. As Kant said, “die 
Ursache der Art der Existenz bei jedem Theile eines lebenden 
Korpers ist im Ganzen enthalten.” And, according to the trend or 
aspect of our thought, we may look upon the coordinated parts, 
now as related and fitted to the end or junction of the whole, and now 
as related to or resulting from the physical causes inherent in the 
entire system of forces to which the whole has been exposed, and 
under whose influence it has come into being f.

In John Hunter’s day the anatomist studied every bone of the 
skeleton in its own place, in order to discover its useful purpose and 
understand its mechanical perfection. The morphologist of a hun
dred years later preferred to study an isolated bone from many 
animals, collar-bones or shoulder-blades by themselves, apart from 
the field of force in which their work was done, in the search for 
signs of blood-relationship and common ancestry. Truth lies both 
ways; immediate use and old inheritance are blended in Nature's 
handiwork as in our own. In the marble columns and architraves 
of a Greek temple we still trace the timbers of its wooden prototype, 
and see beyond these the tree-trunks of a primeval sacred grove; 
roof and eaves of a pagoda recall the sagging mats which roofed an

♦ Amer. Naturalist, April. 1915, p. 198. etc. Gf. infra, p. 1036.
f Driesch saw in “Entelechy” that something which differentiates the whole 

from the sum of its parts in the case of the organism: “The organism, we know, 
is a system the single constituents of which are inorganic in themselves; only the 
whole constituted by them in their typical order or arrangement owes its specificity 
to ’Entelechy’” (Gifford Lectures, 1908, p. 229): and I think it could be shewn 
that many other philosophers have said precisely the same thing. So far as the 
argument goes, I fail to see how this Entelechy is shewn to be peculiarly or 
specifically related to the living organism. The conception (at the bottom of 
General Smuts’s 'Holism') that the whole is always something very different from 
its parts is a very ancient doctrine. The reader will perhaps remember how, 
in another vein, the theme is treated by Martinus Scriblerus (Huxley quoted it 
once, for his own ends): “In.every Jack there is a meat-roasting Quality, which 
neither resides in the fly, nor in the weight, nor in any particular wheel of the Jack, 
but is the result of the whole composition; etc., etc.” Indeed it was at tha1 very 
time, in the early eighteenth century, that the terms organism and organisation were 
coming into use, to connote that harmonious combination of parts “qui conspirent 
toutes ensembles a produire cet effet general que nous nommons la vie” (Buffon). 
Cf. Ch. Robin, Recherches sur rorigineet le sens des termes organisme et organisation, 
JI. de PAnat. lx, pp. 1-55, 1880.
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earlier edifice; Anglo-Saxon land-tenure influences the planning of 
our streets, and the cliff-dwelling and the cave-dwelling linger on 
in the construction of our homes! So we see enduring traces of 
the past in the living organism--landmarks which have lasted on 
through altered functions and altered needs; and yet at every stage 
new needs are met and new functions effectively performed.

When we consider (for instance) the several bones in a fish’s 
shoulder-girdle- clavicle, supra-clavicle, post-clavicle, post-temporal 
and so on- -and recognise these in this fish or that under countless 
minor transformations, we have something which is not only wide-

Fig. 490. Skeleton of moonfi.sh, Vomer sp. From L. Agassiz.

spread but is rooted in antiquity, and whose full significance seems 
beyond our reach. But take the skeleton of some particular fish, a 
moonfish or a John Dory will do very well, and look at its shoulder
girdle from the mechanical point of view. It is a deal more than is 
needed for the support of the small, weak pectoral fin; but another 
function, and its perfect adaptation for that function, are not hard to 
see. The flattened body of the fish is built (as we have seen also in the 
plaice) on the plan of a parabolic girder; but out of this girder a 
great gap has had to be cut, to hold the viscera. The great shoulder
girdle serves to strengthen and complete the girder, to bind its 
upper and lower members together, and to compensate for the part
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which has been taken away. It fulfils this function by various 
means; by the way in which the two sides of the girdle are conjoined 
into a single arch; by its strong attachment to the head, and again 
to the pelvis, and through the latter to the chain of ossicles which 
bound or constitute the abdominal border of the fish; and a large 
part of the stress upon the shoulder-girdle proper is taken up, or 
relieved, by the strong post-clavicular bones, which form a supple
mentary arch running downwards from the clavicle (just where it 
begins to incline forward), straight to the ventral border, to be 
firmly attached there to the ventral ossicles. Similarly we notice 
at the hinder border of the abdominal cavity, a strong curved bone 
running from the anterior part of the ventral fin to a solid attach
ment with the vertebral column, stiffening the ventral part, and 
helping the shoulder-girdle to restore full strength to the girder 
after it had been reduced, so to speak, to the brink of inevitable 
collapse. The skull itself is not only streamlined with the rest of the 
body, but is an intrinsic part of the whole engineering construction. 
The lines of stress run simply and clearly through the skeleton, and 
a bone can no longer teach us its full and proper lesson after we have 
taken it apart. To look on the hereditary or evolutionary factor 
as the guiding principle in morphology is to give to that science 
a one-sided and fallacious simplicity*.

It would seem to me that the mechanical principles and phenomena 
which we have dealt with in this chapter are of no small importance 
to the morphologist, all the more when he is inclined to direct his 
study of the skeleton exclusively to the problem of phylogeny; and 
especially when, according to the methods of modern comparative 
morphology, he is apt to take the skeleton to pieces, and to draw 
from the comparison of a series of scapulae, humeri, or individual 
vertebrae, conclusions as to the descent and relationship of the 
animals to which they belong.

It would, I dare say, be an exaggeration to see in every bone 
nothing more than a resultant of immediate and direct physical or 
mechanical conditions; for to do so would be to deny the existence,

* The extreme evolutionary, or phylogenetic, aspect of morphology was being 
questioned even forty years ago. “Where we once thought we detected relation
ships we now know we were often being misled, and the old-time. supposition 
that mere community of structure is necessarily an index of community of origin 
has gone to the wall” (G. B. Howes, in Nature, Jan. 10, 1901).
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in this connection, of a principle of heredity. And though I have 
tried throughout this book to lay emphasis on the direct action of 
causes other than heredity, in short to circumscribe the employment 
of the latter as a working hypothesis in morphology, there can still 
be no question whatsoever but that heredity is a vastly important 
as well as a mysterious thing; it is one of the great factors in biology, 
however we may attempt to figure to ourselves, or howsoever we 
may fail even to imagine, its underlying physical explanation. But 
I maintain that it is no less an exaggeration if we tend to neglect 
these direct physical and mechanical modes of causation altogether, 
and to see in the characters of a bone merely the results of variation 
and of heredity, and to trust, in consequence, to those characters 
as a sure and certain and unquestioned guide to affinity and phylo
geny. Comparative anatomy has its physiological side, which filled 
men’s minds in John Hunter’s day, and in Owen’s day; it has its 
classificatory and phylogenetic aspect, which all but filled men’s 
minds in the early days of Darwinism; and we can lose sight of 
neither aspect without risk of error and misconception.

It is certain that the question of phylogeny, always difficult, 
becomes especially so in cases where a great change of physical or 
mechanical conditions has come about, and where accordingly the 
former physical and physiological constraints are altered or removed. 
The great depths of the sea differ from other habitations of the 
living, not least in their eternal quietude. The fishes which dwell 
therein are quaint and strange; their huge heads, prodigious jaws, 
and long tails and tentacles are, as it were, gross exaggerations of 
the common and conventional forms. We look in vain for any 
purposeful cause or physiological explanation of these enormities; 
and are left under a vague impression that life has been going on 
in the security of all but perfect equilibrium, and that the resulting 
forms, liberated from many ordinary constraints, have grown with 
unusual freedom*.

To discuss these questions at length would be to enter on a 
discussion of Lamarck’s philosophy of biology, and of many other 
things besides. But let us take one single illustration. The affinities 
of the whales constitute, as will be readily admitted, a very hard 
problem in phylogenetic classification. \\ e know now that the

* Cf. supra, /p. 423.
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extinct Zeuglodons are related to the old Creodont carnivores, and 
thereby (though distantly) to the seals*;  and it is supposed, but it 
is by no means so certain, that in turn they are to be considered 
as representing, or as allied to, the ancestors of the modern toothed 
whales f. The proof of any such a contention becomes, to my 
mind, extraordinarily difficult and complicated; and the arguments 
commonly used in such cases may be said (in Bacon’s phrase) to 
allure, rather than to extort assent. Though the Zeuglodons were 
aquatic animals, we‘do not know, and we have no right to suppose 
or to assume, that they swam after the fashion of a whale (any 
more than the seal does), that they dived like a whale, or leaped 
like a whale. But the fact that the whale does these things, and 
the way in which he does them, is reflected in many parts of his 
skeleton- perhaps more or less in all: so much so that the lines 
of stress which these actions impose are the very plan and working
diagram of great part of his structure. That the Zeuglodon has 
a scapula like that of a whale is to my mind no necessary argument 
that he is akin by blood-relationship to a whale: that his dorsal 
vertebrae are very different from a whale’s is no conclusive argument 
that such blood-relationship is lacking. The former fact goes a long 
way to prove that he used his flippers very much as a whale does; 
the latter goes still farther to prove that his general movements 
and equilibrium in the water were totally different. The whale 
may be descended from the Carnivora, or might for that matter, 
as an older school of naturalists believed, be descended from the 
Ungulates; but whether or no, we need not expect to find in him 
the scapula, the pelvis or the vertebral column of the lion or of the 
cow, for it would be physically impossible that he could live the life 
he does with any one of them. In short, when we hope to find the 
missing links between a whale and his terrestrial ancestors, it must 
be not by means of conclusions drawn from a scapula, an axis, or

* See (ini. al.) my paper On the affinities of Zeuglodon in Studies from the Museum 
of University College, Dundee, 1889.

f “There can be no doubt that Fraas is correct in regarding this type (Procetus) 
as an annectant form between the Zeuglodonts and the Creodonta, but. although 
the origin of the Zeuglodonts is thus made clear, it still seems to be by no means 
so certain as that author believes, that they may not themselves be the ancestral 
forms of the Odontoceti” (Andrews, Tertiary Vertebrata of the Faymn, 1906, 
p. 235).
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even from a tooth, but by the discovery of forms so intermediate 
in their general structure as to indicate an organisation and, ipso 
facto, a mode of life, intermediate between the terrestrial and the 
Cetacean form. There is no valid syllogism to the effect that A 
has a flat curved scapula like a seal’s, and B has a flat curved 
scapula like a seal’s: and therefore A and B are related to the seals 
and to each other; it is merely a flagrant ca>e of an “undistributed 
middle.” But there is validity in an argument that B shews in 
its general structure, extending over this bone and that bone, 
resemblances both to A and to the seals: and that therefore he may 
be presumed to be related to both, in his hereditary habits of life 
and in actual kinship by blood. It is cognate to this argument that 
(as every palaeontologist knows) we find clues to affinity more 
easily, that is to say with less confusion and perplexity, in certain 
structures than in others. The deep-seated rhythms of growth 
which, as I venture to think, are the chief basis of morphological 
heredity, bring about similarities of form which endure in the 
absence of conflicting forces; but a new system of forces, introduced 
by altered environment and habits, impinging on those particular 
parts of the fabric which lie within this particular field of force, will 
assuredly not be long of manifesting itself in notable and inevitable 
modifications of form. And if this be really so, it will further 
imply that modifications of form will tend to manifest themselves, 
not so much in small and isolated phenomena, in this part of the 
fabric or in that, in a scapula for instance or a humerus: but rather 
in some slow, general, and more or less uniform or graded modifica
tion, spread over a number of correlated parts, and at times 
extending over the whole, or over great portions, of the body. 
Whether any such general tendency to widespread and correlated 
transformation exists, we shall attempt to discuss in the following 
chapter.

TGF 65



CHAPTER XVII

ON THE THEORY OF TRANSFORMATIONS, OR THE 
COMPARISON OF RELATED FORMS

I n the foregoing chapters of this book we have attempted to study 
the inter-relations of growth and form, and the part which the 
physical forces play in this complex interaction; and, as part of 
the same enquiry, we have tried in comparatively simple cases 
to use mathematical methods and mathematical terminology to 
describe and define the forms of organisms. We have learned in so 
doing that our own study of organic form, which we call by Goethe’s 
name of Morphology, is but a portion of that wider Science of Form 
which deals with the forms assumed by matter under all aspects 
and conditions, and, in a still wider sense, with forms which are 
theoretically imaginable.

The study of form may be descriptive merely, or it may become 
analytical. M e begin by describing the shape of an object in the 
simple words of common speech: we end by defining it in the precise 
language of mathematics; and the one method tends to follow the 
other in strict scientific order and historical continuity. Thus, for 
instance, the form of the earth, of a raindrop or a rainbow, the 
shape of the hanging chain, or the path of a stone thrown up into 
the air, may all be described, however inadequately, in common 
words; but when we have learned to comprehend and to define the 
sphere, the catenary, or the parabola, we have made a wonderful 
and perhaps a manifold advance. The mathematical definition of 
a "form” has a quality of precision which was quite lacking in our 
earlier stage of mere description; it is expressed in few words or 
in still briefer symbols, and these words or symbols are so pregnant 
with meaning that thought itself is economised; we are brought 
by means of ii in touch with Galileo’s aphorism (as old as Plato, as 
old as Pythagoras, as old perhaps as the wisdom of the Egyptians), 
that “the Book of Nature is written in characters of Geometry*.”

* Cf. Plutarch, Symp. viii, 2, on the meaning of Plato’s aphorism (“if it actually 
was Plato’s”): irw llXarwy t\eye rbv Oebv dei yewperpem.
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We are apt to think of mathematical definitions as too strict and 
rigid for common use, but their rigour is combined with all but 
endless freedom. The precise definition of an ellipse introduces us 
to all the ellipses in the world; the definition of a “conic section” 
enlarges our concept, and a “curve of higher order” all the more 
extends our range of freedom*.  By means of these large limitations, 
by this controlled and regulated freedom, we reach through mathe
matical analysis to mathematical synthesis. We discover homologies 
or identities which were not obvious before, and which our descrip
tions obscured rather than revealed: as for instance, when we learn 
that, however we hold our chain, or however we fire our bullet, the 
contour of the one or the path of the other is always mathematically 
homologous.

* So said Gustav Theodor Fechner, the author of Fechner’s Law, a hundred 
years ago. (Ueber die mathematische Behandlung organischer Gestalten und 
Processe, Berichte d. k. sachs. Gesellsch., Math.-phys. Cl., Leipzig, 1849, pp. 50-64.) 
Fechner’s treatment is more purely mathematical and less physical in its scope and 
bearing than ours, and his paper is but a short one, but the conclusions to which 
he is led differ little from our own. Let me quote a single sentence which, together 
with its context, runs precisely on the lines which we have followed in this book: 
“So ist also die mathematische Bestimmbarkeit im Gebiete des Organischen ganz 
eben so gut vorhanden als in dem des Unorganischen, und in letzterem eben solchen 
oder aquivalenten Beschrankungen unterworfen als in ersterem; und nur sofern die 
unorganischen Formen und das unorganische Geschehen sich einer einfacheren 
Gesetzlichkeit mehr nahern als die organischen, kann die Approximation im 
unorganischen Gebiet leichter und weiter getrieben werden als im organischen. 
Dies ware der ganze, sonach rein relative, Unterschied.” Here, in a nutshell, is 
the gist of the whole matter.

f “We can move matter, that is all we can do to it” (Oliver Lodge).

Once more, and this is the greatest gain of all, we pass quickly and 
easily from the mathematical concept of form in its statical aspect to 
form in its dynamical relations: we rise from the conception of 
form to an understanding of the forces which gave rise to it; and 
in the representation of form and in .the comparison of kindred 
forms, we see in the one case a diagram of forces in equilibrium, 
and in the other case we discern the magnitude and the direction 
of the forces which have sufficed to convert the one form into the 
other. Here, since a change of material form is only effected -by 
the movement of matter f, we have once again the support of the 
schoolman’s and the philosopher’s axiom, Ignorato motu, ignoratur 
Natura.”

65-2
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There is yet another way—we learn it of Henri Poincar A -to regard 
the function of mathematics, and to realise why its law's and its 
methods are bound to underlie all parts of physical science. Every 
natural phenomenon, however simple, is really composite, and every 
visible action and effect is a summation of countless subordinate 
actions. Here mathematics shews her peculiar power, to combine 
and to generalise. The concept of an average, the equation to 
a curve, the description of a froth or cellular tissue, all come within 
the scope of mathematics for no other reason than that they are 
summations of more elementary principles or phenomena. Growth 
and Form are throughout of this composite nature; therefore the 
laws of mathematics are bound to underlie them, and her methods 
to be peculiarly fitted to interpret them.

In the morphology of living things the use of mathematical 
methods and symbols has made slow progress; and there are various 
reasons for this failure to employ a method whose advantages are 
so obvious in the investigation of other physical forms. To begin 
with, there would seem to be a psychological reason, lying in the 
fact that the student of living things is by nature and training an 
observer of concrete objects and phenomena and the habit of mind 
which he possesses and cultivates is alien to that of the theoretical 
mathematician. But this is by no means the only reason; for in 
the kindred subject of mineralogy, for instance, crystals were still 
treated in the days of Linnaeus as wholly within the province of 
the naturalist, and were described by him after the simple methods 
in use for animals and plants: but as soon as Haiiy shewed the 
application of mathematics to the description and classification of 
crystals, his methods were immediately adopted and a new science 
came into being.

A large part of the neglect and suspicion of mathematical methods 
in organic morphology is due (as we have partly seen in our opening 
chapter) to an ingrained and deep-seated belief that even when we 
seem to discern a regular mathematical figure in an organism, the 
sphere, the hexagon, or the spiral which we so recognise merely 
resembles, but is never entirely explained by, its mathematical 
analogue; in short, that the details in which the figure differs from 
its mathematical prototype arepnore important and more interesting
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than the features in which it agrees; and even that the peculiar 
aesthetic pleasure with which we regard a living thing is somehow 
bound up with the departure from mathematical regularity which 
it manifests as a peculiar attribute of life. This view seems to me 
to involve a misapprehension. There is no such essential difference 
between these phenomena of organic form and those which are 
manifested in portions of inanimate matter*. The mathematician 
knows better than we do the value of an approximate resultf. The 
child’s skipping-rope is but an approximation to Huygens’s catenary 
curve—but in the catenary curve lies the whole gist of the matter. 
We may be dismayed too easily by contingencies which are nothing 
short of irrelevant compared to the main issue; there is a principle 
of negligibility. Someone has said that if Tycho Brahe’s instruments 
had been ten times as exact there would have been no Kepler, no 
Newton, and no astronomy.

If no chain hangs in a perfect catenary and no raindrop is a perfect 
sphere, this is for the reason that forces and resistances other than 
the main one are inevitably at work. The same is true of organic 
form, but it is for the mathematician to unravel the conflicting 
forces which are at work together. And this process of investigation 
may lead us on step by step to new phenomena, as it has done 
in physics, where sometimes a knowledge of form leads us to the 
interpretation of forces, and at other times a knowledge of the forces 
at work guides us towards a better insight into form. After the 
fundamental advance had been made which taught us that the world

* M. Bergson repudiates, with peculiar confidence, the application of mathe
matics to biology; cf. Creative Evolution, p. 21, “Calculation touches, at most, 
certain phenomena of organic destruction. Organic creation, on the contrary, 
the evolutionary phenomena which properly constitute life, we cannot in any way 
subject to a mathematical treatment.” Bergson thus follows Bichat: “C’est 
peu connaitre les fonctions animale^ que de vouloir les soumettre au moindre 
calcul, parceque leur instability est extreme. Les phenomenes restent toujours 
les memes, et c’est ce qui nous importe; mais leurs variations, en plus ou en moins, 
sont sans nombre” (La Vie et la Mort, p. 257).

t When we make a ‘first approximation’ to the solution of a physical problem, 
we usually mean that we are solving one part while neglecting others. Geometry 
deals with pure forms (such as a straight line), defined by a single law; but these 
are few compared with the mixed forms, like the surface of a polyhedron, or a 
segment of a sphere, or any ordinary mechanical construction or any ordinary 
physical phenomenon. It is only in a purely mathematical treatment of physics 
that the “single law” can be dealt with alone, and the approximate solution 
dispensed with accordingly.
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was round, Newton shewed that the forces at work upon it must 
lead to its being imperfectly spherical, and in the course of time its 
oblate spheroidal shape was actually verified. But now, in turn, 
it has been shewn that its form is still more complicated, and the 
next step is to seek for the forces that have deformed the oblate 
spheroid. As Newton somewhere says, “Nature delights in trans
formations.”

The organic forms which we can define more or less precisely 
in mathematical terms, and afterwards proceed to explain and to 
account for in terms of force, are of many kinds, as we have seen; 
but nevertheless they are few in number compared with Nature’s 
all but infinite variety. The reason for this is not far to seek. 
The living organism represents, or occupies, a field of force which 
is never simple, and which as a rule is of immense complexity. Ai id 
just as in the very simplest of actual cases we meet with a departure 
from such symmetry as could only exist under conditions of ideal 
simplicity, so do we pass quickly to cases where the interference of 
numerous, though still perhaps very simple, causes leads to a resultant 
complexity far beyond our powers of analysis. Nor must we forget 
that the biologist is much more exacting in his requirements, as 
regards form, than the physicist; for the latter is usually content 
with either an ideal or a general description of form, while the 
student of living things must needs be specific. Material things, 
be they living or dead, shew us but a shadow of mathematical 
perfection*.  The physicist or mathematician can give us perfectly 
satisfying expressions for the form of a wave, or even of a heap 
of sand; but we never ask him to define the form of any particular 
wave of the sea, nor the actual form of any mountain-peak or hill.

* Cf. Haton de la Goupilliere, op. cit.: “On a souvent 1’occasion de saisi? dans 
la nature un reflet des formes rigoureuses qu’etudie la geometric.”

In this there lies a certain justification for a saying of Minot’s, of the 
greater part of which, nevertheless, I am heartily inclined to disapprove. 
“We biologists,” he says, “cannot deplore too frequently or too empha'ically 
the great mathematical delusion by which men often of great if limited ability 
have been misled into becoming advocates of' an erroneous conception of 
accuracy. The delusion is that no science is accurate until its results tan be 
expressed mathematically. The error comes from the assumption that 
mathematics can express complex relations. - Unfortunately mathematics 
have a very limited scope, and are based upon a few extremely rudimentary 
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experiences, which we make as very little children and of which no adult has 
any recollection. The fact that from this basis men of genius have evolved 
wonderful methods of dealing with numerical relations should not blind us 
to another fact, namely, that the observational basis. of mathematics is, 
psychologically speaking, very minute compared with the observational basis 
of even a single minor branch of biology.... While therefore here and there 
the mathematical methods may aid us, we need a kind and degree of accuracy 
of which mathematics is absolutely incapable... .With human minds constituted 
as they actually are, we cannot anticipate that there will ever be a mathe
matical expression for any organ or even a single cell, although formulae will 
continue to be useful for dealing now and then with isolated details...” 
(op. cit. p. 19, 1911). It were easy to discuss and criticise these sweeping 
assertions, which perhaps had their origin and parentage in an obiter dictum 
of Huxley’s, to the effect that "Mathematics is that study which knows nothing 
of observation, nothing of experiment, nothing of induction, nothing of 
causation” (cit. Cajori, Hist, of Elem. Mathematics, p. 283). But Gauss, 
.“rex mathematicorum,” called mathematics “a science of the eye”; and 
Sylvester assures us that “most, if not all, of the great ideas, of modern 
mathematics have had their origin in observation” (Brit. Ass. Address, 1869, 
and Laws of Verse, p. 120, 1870.

Reaumur said the same thing two hundred years ago (Mem. I, p. 49, 1734). 
Maupertuis, he said, was both naturalist and mathematician; and all his 
mathematics “n’ont en rien affaibli son gout pour les insectes, personne 
peut-etre n’a plus d’amopr pour eux.” He goes on to say: “L’esprit 
d’observation qu’on regarde comme le caractere d’esprit essentiel aux 
naturalistes, est egalement necessaire pour faire des progres en quelque science 
que ce soit. C’est 1’esprit d’observation qui fait appercevoir ce qui a 
echappe aux autres, qui fait saisir des rapports qui sont entre des choses 
qui semblent differentes, ou qui fait trouver les differences qui sont entre 
celles qui paroissent semblables. On ne resoud les problemes les plus epineux 
de Geometric qu’apres avoir S9U observer des rapports qui ne se decouvrent 
qu’a un esprit penetrant, et extremement attentif. Ce sont des observations 
qui mettent en etat de resoudre les problemes de physique comme ceux 
d’histoire naturelie, car I’histoire naturelie a ses problemes a resoudre, et 
elle n’en a meme que trop qui ne sont pas resolus.” It is in a deeper sense 
than this, however, that the modern physicist looks on mathematics as an 
“empirical” science, and no longer a matter of pure intuition, or “reine 
Anschauung.” Cf. Max Born, on Some philosophical aspects of modem 
physics. Proc. R.S.E. lvii, pp. 1-18, 1936. 

♦
For one reason or another there are very many organic forms which 

we cannot describe, still less define, in mathematical terms: just as 
there are problems even in-physical science beyond the mathematics 
of our age. We never even seek for a formula to define this fish or 
that, or this or that vertebrate skull. But we may already use 
mathematical la uguage to describe, even to define in general terms, 
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the shape of a snail-shell, the twist of a horn, the outline of a leaf, 
the texture of a bone, the fabric of a skeleton, the stream-lines of 
fish or bird, the fairy lace-work of an insect’s wing. Even to do 
this we must learn from the mathematician to eliminate and to 
discard; to keep the type in mind and leave the single case, with 
all its accidents, alone; and to find in this sacrifice of what matters 
little and conservation of what matters much one of the peculiar 
excellences of the method of mathematics*.

* Cf. ‘W. H. Young, The mathematical method and its limitations, Congresso 
dei Matematici, Bologna, 1928.

t The mathematical Theory of Transformations is part of the Theory of Groups, 
of great importance in modern mathematics. A distinction is drawn between 
Substitution-groups and Transformation-groups, the former being discontinuous, 
the latter continuous—in such a way that within one and the same group each 
transformation is infinitely little different from another. The distinction among 
biologists between a mutation and a variation is curiously analogous.

In a very large part of morphology, our essential task lies in the 
comparison of related forms rather than in the precise definition 
of each; and the deformation of a complicated figure may be a 
phenomenon easy of comprehension, though the figure itself have 
to be left unanalysed and undefined. This process of comparison, 
of recognising in one form a definite permutation or deformation of 
another, apart altogether from a precise and adequate understanding 
of the original “type” or standard of comparison, lies within the 
immediate province of mathematics, and finds its solution in the 
elementary use of a certain method of the mathematician. This 
method is the Method of Coordinates, on which is based the Theory 
of Transformations!.

I imagine that when Descartes conceived the method of co
ordinates, as a generalisation from the proportional diagrams of the 
artist and the architect, and long before the immense possibilities 
of this analysis could be foreseen, he had in mind a very simple 
purpose; it was perhaps no more than to find a way of translating 
the form of a curve (as well as the position of a point) into numbers 
and into words. This is precisely what we do, by the method of 
coordinates, every time we study a statistical curve; and conversely, 
we translate numbers into form whenever we “plot a curve,” to 
illustrate a table of mortality, a rate of growth, or the daily varial ion 
of temperature or barometric pressure. In precisely the same way 
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it is possible to inscribe in a net of rectangular coordinates the 
outline, for instance, of a fish, and so to translate it into a table of 
numbers, from which again we may at pleasure reconstruct the 
curve.

But it is the next step in the employment of coordinates which 
is of special interest and use to the morphologist; and this step 
consists in the alteration, or deformation, of our system of coordinates, 
and in the study of the coriesponding transformation of the curve 
or figure inscribed in the coordinate network.

Let us inscribe in a system of Cartesian coordinates the outline 
of an organism, however complicated, or a part thereof: such as 
a fish, a crab, or a mammalian skull. We may now treat this 
complicated figure, in general terms, as a function of x, y. If we 
submit our rectangular system to deformation on simple and 
recognised lines, altering, for instance, the direction of the axes, 
the ratio of x[y, or substituting for x and y some more complicated 
expressions, then we obtain a new system of coordinates, whose 
deformation from the original type the inscribed figure will precisely 
follow. In other words, we obtain a new figure which represents 
the old figure under a more or less homogeneous strain, and is 
a function of the new coordinates in precisely the same way as the 
old figure was of the original coordinates x and y.

The problem is closely akin to that of the cartographer who 
transfers identical data to one projection or another*; and whose 
object is to sfecure (if it be possible) a complete correspondence, 
in each small unit of area, between the one representation and the 
other. The morphologist will not seek to draw his organic forms 
in a new and artificial projection; but, in the converse aspect of 
the problem, he will enquire whether two different but more or less 
obviously related forms can be so analysed and interpreted that 
each may be shewn to be a transformed representation of the other. 
This once demonstrated, it will be a comparatively easy task (in all 
probability) to postulate the direction and magnitude of the force 
capable of effecting the required transformation. Again, if such 
a simple alteration of the system of forces can be proved adequate 
to meet the case, we may find ourselves able to dispense with many

* Cf. (e.g.) Tissot, Memoire sur la representation des surfaces, et les projections 
des cartes gtographiques, Paris, 1881.
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widely current and more complicated hypotheses of biological 
causation. For it is a maxim in physics that an effect ought not 
to be ascribed to the joint operation of many causes if few are 
adequate to the production of it: Frustra fit per plura, quod fieri 
potest per pauciora.

We might suppose that by the combined action of appropriate 
forces any material fcfrm could be transformed into any other: just 
as out of a “shapeless” mass of clay the potter or the sculptor 
models his artistic product; or just as we attribute to Nature herself 
the power to effect the gradual and successive transformation of 
the simple germ into the complex organism. But we need not 
let these considerations deter us from our method of comparison 
of related forms. We shall strictly limit ourselves to cases where 
the transformation necessary to effect a comparison shall be of 
a simple kind, and where the transformed, as well as the original, 
coordinates shall constitute an harmonious and more or less sym
metrical system. M e should fall into deserved and inevitable 
confusion if, whether by the mathematical or any other method, 
we attempted to compare organisms separated far apart in Nature 
and in zoological classification. We are limited, both by our method 
and by the whole nature of the case, to the comparison of organisms 
such as are manifestly related to one another and belong to the same 
zoological class. For it is a grave sophism, in natural history as in 
logic, to make a transition into another kind*.

Our enquiry lies, in short, just within the limits which Aristotle 
himself laid down when, in defining a “genus,” he shewed that 
(apart from those superficial characters, such as colour, which he 
called “accidents’ ) the essential differences between one “species” 
and another are merely differences of proportion, of relative mag
nitude, or (as he phrased it) of “excess and defect.” '‘Save only 
for a difference in the way of excess or defect, the parts are identical 
in the case of such animals as are of one and the same genus; and 
by ‘genus’ I mean, for instance. Bird or Fish.” And again: “ Within 
the limits of the same genus, as a general rule, most of the parts 
exhibit differences.. .in the way of multitude or fewness, magnitude

* The saying heterogenea comparari non possunt is discussed by Coleridge in his 
A ids to Refle cion. * 
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or parvitude, in short, in the way of excess or defect. For ‘the 
more’ and ‘the less’ may be represented as ‘excess’ and ‘defect’*. ” 
It is precisely this difference of relative magnitudes, this Aristotelian 
‘ excess and defect” in the case of form, which our coordinate 
method is especially adapted to analyse, and to reveal and demon
strate as the main cause of what (again in the Aristotelian sense) 
we term “specific” differences.

* Historia Animalium i, 1.
■|f Aristotje’s argument is even more subtle and far-reaching; for the differences 

of which he speaks are not merely those between one bird and another, but between 
them all and the very type itself, or Platonic “idea” of a bird.

The applicability of our method to particular cases will depend 
upon, or be further limited by, certain practical considerations or 
qualifications. Of these the chief, and indeed the essential, con
dition is, that the form of the entire structure under investigation 
should be found to vary in a more or less uniform manner, after the 
fashion of an approximately homogeneous and isotropic body. But 
an imperfect isotropy, provided always that some “principle of 
continuity” run through its variations, will not seriously interfere 
with our method; it will only cause our transformed coordinates 
to be somewhat less regular and harmonious than are those, for 
instance, by which the physicist depicts the motions of a perfect 
fluid, or a theoretic field of force in a uniform medium.

Again, it is essential that our structure vary in its entirety, or 
at least that “ independent variants” should be relatively few. That 
independent variations occur, that localised centres of diminished 
or exaggerated growth will now and then be found, is not only 
probable but manifest: and they may even be so pronounced as to 
appear to constitute new formations altogether. Such independent 
variants as these Aristotle himself clearly recognised: “It happens 
further that some have parts which others have not; for instance, 
some [birds] have spurs and others not, some have crests, or combs, 
and others not; but, as a general rule, most parts and those that 
go to make up the bulk of the body are either identical with one 
another, or differ from one another in the way of contrast and of 
excess and defect. For ‘the more’ and ‘the less’ may be represented 
as ‘excess’ or ‘defect’f.”

If, in the evolution of a fish, for instance, it be the case that its
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several and constituent parts—head, body and tail, or this fin 
and that fin—represent so many independent variants, then our 
coordinate system will at once become too complex to be intelligible; 
we shall be making not one comparison but several separate com
parisons, and our general method will be found inapplicable. Now 
precisely this independent variability of parts and organs—here, 
there, and everywhere within the organism-—would appear to be 
implicit in our ordinary accepted notions regarding variation; and, 
unless I am greatly mistaken, it is precisely on such a conception of 
the easy, frequent, and normally independent variability of parts that 
our conception of the process of natural selection is fundamentally 
based. For the morphologist, when comparing one organism with 
another, describes the differences between them point by point, and 
“character” by “character*. ” If he is from time to time con
strained to admit the existence of “correlation” between characters 
(as a hundred years ago Cuvier first shewed the way), yet all the 
while he recognises this fact of correlation somewhat vaguely, as 
a phenomenon due to causes which, except in rare instances, he can 
hardly hope to trace; and he falls readily into the habit of thinking 
and talking of evolution as though it had proceeded on the lines of 
his own descriptions, point by point, and character by character f.

* Cf. supra, p. 1020.
f Cf. H. F. Osborn, On the origin of single characters, as observed in fossil 

and living animals and plants, Amer. Nat. xlix, pp. 193-239, 1915 (and other 
papers); ibid. p. 194, “ Each individual is composed of a vast number of somewhat 
similar new or old characters, each character has its independent and separate 
history, each character is in a certain stage of evolution, each character is correlated 
with the other characters of the individual.... The real problem has always been 
that of the origin and development of characters. Since the Origin of Species 
appeared, the terms variation and variability have always referred to single 
characters; if a species is said to be variable, we mean that a considerable 
number of the single characters or groups of characters of which it is composed are 
variable,” etc.

With the “characters” of Mendelian genetics there is no fault 
to be found; tall and short, rough and smooth, plain or coloured 
are opposite tendencies or contrasting qualities, in plain logical 
contradistinction. But when the morphologist compares one animal 
with another, point by point or character by character, these are 
too often the mere outcome of artificial dissection and analysis. 
Rather is the living body one integral and indivisible whole, in 
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which we cannot find, when we come to look for it, any strict 
dividing line even between the head and the body, the muscle and 
the tendon, the sinew and the bone. Characters which we have 
differentiated insist on integrating themselves again; and aspects 
of the organism are seen to be conjoined which only our mental 
analysis had put asunder. The coordinate diagram throws into 
relief the integral solidarity of the organism, and enables us to see 
how simple a certain kind of. correlation is which had been apt to 
seem a subtle and a complex thing.

But if, on the other hand, diverse and dissimilar fishes can be 
referred as a whole to identical functions of very different coordinate 
systems, this fact will of itself constitute a proof that variation has 
proceeded on definite and orderly fines, that a comprehensive “law 
of growth” has pervaded the whole structure in its integrity, and 
that some more or less simple and recognisable system of forces 
has been in control. It will not only shew how real and deep-seated 
is the phenomenon of “correlation,” in regard to form, but it will 
also demonstrate the fact that a correlation which had seemed too 
complex for analysis or comprehension is, in many cases, capable of 
very simple graphic expression. This, after many trials, I believe to 
be in general the case, bearing always in mind that the occurrence of 
independent or localised variations must sometimes be considered.

We are dealing in this chapter with the forms of related organisms, in order 
to shew that the differences between them are as a general rule simple and 
symmetrical, and just such as might have been brought about by a slight and 
sinlple change in the system of forces to which the living and growing organism 
was exposed. Mathematically speaking, the phenomenon is identical with one 
met with by the geologist, when he finds a bed of fossils squeezed flat or other
wise symmetrically deformed by the pressures to which they, and the strata 
which contain them, have been subjected. In the first step towards fossilisation, 
when the body of a fish or shellfish is silted over and buried, we may take it 
that the wet sand or mud exercises, approximately, a hydrostatic pressure— 
that is to say a pressure which is uniform in all directions, and by which the 
form of the buried object will not be appreciably changed. As the strata 
consolidate and accumulate, the fossil organisms which they contain will 
tend to be flattened by the vast superincumbent load, just as the stratum 
which contains them will also be compressed and will have its molecular 
arrangement more or less modified*.  But the deformation due to direct 
vertical pressure in a horizontal stratum is not nearly so striking as are the 
deformations produced by the oblique or shearing stresses to which inclined 

* Cf. Sorby, Quart. Journ. Geol. Soc. (Proc.), 1879, p. 88.
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and folded strata have been exposed, and by which their various “dislocations” 
have been brought about. And especially in mountain regions, where these 
dislocations are especially numerous and complicated, the contained fossils 
are apt to be so curiously and yet so symmetrically deformed (usually by a 
simple shear) that they may easily be interpreted as so many distinct and 
separate “species*. ” A great number of described species, and here and 
there a new genus (as the genus Ellipsolithes for an obliquely deformed 
Goniatite or Nautilus), are said to rest on no other foundation f.

* Cf. Ale. D’Orbigny, Cours eUm. de Paleontologie, etc., i, pp. 144-148, 1849; , 
see also Daniel Sharpe, On slaty cleavage, Q.J.G.S. m, p. 74, 1847.

f Thus Ammonites erugatys, when compressed, has been described as A. planorbis-. 
cf. J. F. Blake, Phil. Mag. (5), vi, p. 260, 1878. Wettstein has shewn that several 
species of the fish-genus Lepidopus have been based on specimens artificially 
deformed in various ways: Ueber die Fischfauna des Tertiaren Glarnerschiefers, 
Abh. Schw. Palaeont. Gesellsch. xm, 1886 (see especially pp. 23-38, pl. i). The 
whole subject, interesting as it is, has been little studied; both Blake and Wettstein 
deal with it mathematically.

If we begin by drawing a net of rectangular equidistant coordinates 
(about the axes x and y), we may alter or deform this network in 
various ways, several of which are very simple’ indeed. Thus (1) we 
may alter the dimensions of our system, extending it along one or 

other axis, and so converting each little square into a corresponding 
and proportionate oblong (Figs. 491, 492). It follows that any 
figure which we may have inscribed in the original net, and which 
we transfer to the new, will thereby be deformed in strict proportion 
to the deformation of the entire configuration, being still defined 
by corresponding points in the network and being throughout in 
conformity with the original figure. For instance, a circle inscribed 
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in the original “Cartesian” net will now, after extension in the 
«/-direction, be found elongated into an ellipse. In elementary 
mathematical language, for the original x and y we have substituted 
Xl and cy1, and the equation to our original circle, x2 + y2 = a2, 
becomes that of the ellipse, x^ + c2y^ = a2.

If I draw the cannon-bone of an ox (Fig. 493, A), for instance, 
within a system of rectangular coordinates, and then transfer the 
same drawing, point for point, to a system in which for the x of 
the original diagram we substitute x' = 2^'3, we obtain a drawing 
(B) which is a very close approximation to the cannon-bone of the 
sheep. In other words, the main (and perhaps the only) difference

Fig. 493.

between the two bones is simply that that of the sheep is elongated 
along the vertical axis as compared with that of the ox, in the pro
portion of 3/2. And similarly, the long slender cannon-bone of the 
giraffe (C) is referable to the same identical type, subject to a reduction 
of breadth, or increase of length, corresponding to x" = z/3.

(2) The second type is that where extension is not equal or 
uniform at all distances from the origin: but grows greater or less, 
as, for instance, when we stretch a tapering elastic band. Tn such 
cases, as I have represented it in Fig. 494, the ordinate increases 
logarithmically, and for y we substitute ey. It is obvious that this 
logarithmic extension may involve both abscissae and ordinates, 
x becoming e® while y becomes €< The circle in our original figure 
is now deformed into some such shape as that of Fig. 495. This
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method of deformation is a common one, and will often be of use 
to us in our comparison of organic forms.

(3) Our third type is the “simple shear,” where the rectangular 
coordinates become “oblique,” their axes being inclined to one 
another at a certain angle co. Our original rectangle now becomes 
such a figure as that of Fig. 496. The system may now be described 
in terms of the oblique axes X, Y; or may be directly referred 
to new rectangular coordinates g by the simple transposition 
x - £ — 7] cot at, y = Tj cosec co.

Fig. 497.

(4) Yet another important class of deformations may be repre
sented by the use of radial coordinates, in which one set of lines are
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represented as radiating from a point or “focus,” while the other 
set are transformed into circular arcs cutting the radii orthogonally. 
These radial coordinates are especially applicable to cases where 
there exists (either within or without the figure) some part which 
is supposed to suffer no deformation; a simple illustration is afforded 
by the diagrams which illustrate the flexure of a beam (Fig. 497). 
In biology these coordinates will be especially applicable in cases 
where the growing structure includes a “node,” or point where 
growth is absent or at a minimum; and about which node the rate 
of growth may be assumed to increase symmetrically. Precisely

Fig. 498.

such a case is furnished us in a leaf of an ordinary dicotyledon. 
The leaf of a typical monocotyledon—such as a grass or a hyacinth, 
for instance- grows continuously from its base, and exhibits no 
node or “point of arrest.” Its sides taper off gradually from its 
broad base to its slender tip, according to some law of decrement 
specific to the plant; and any alteration in the relative velocities 
of longitudinal and transverse growth will merely make the leaf 
a little broader or narrower, and, will effect no other conspicuous 
alteration in its contour. But if there' once come into existence 
a node, or “locus of no growth,” about which we may assume 
growth—which in the hyacinth leaf was longitudinal and trans
verse—to take place radially and transversely to the radii, then we

TGF 66
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shall soon see the sloping sides of the hyacinth leaf give place to 
a more typical and “ leaf-like ” shape. If we alter the ratio between 
the radial and tangential velocities of growth - in other words, if we 
inc rease the angles between corresponding radii—we pass successively 
through the various configurations which the botanist describes as 
the lanceolate, the ovate, and the cordiform leaf. These successive 
changes may to some extent, and in appropriate cases, be traced as 
the individual leaf grows to maturity; but as a much more general 
rule, the balance of forces, the ratio between radial and tangential 
velocities of growth, remains so nicely and constantly balanced that 
the leaf increases in size without conspicuous modification of form. 
It is rather what we may call a long-period variation, a tendency for 
the relative velocities to alter from one generation to another, whose 
result is brought into view by this method of illustration.

There are various corollaries to this method of describing the form 
of a leaf which may be here alluded to. For instance, the so-called 

unsymmetrical leaf* of a begonia, 
in which one side of the leaf may be 
merely ovate while the other has a 
cordate outline, is seen to be really 
a case of unequal, and not truly 
asymmetrical, growth on either side 
of the midrib. There is nothing 
more mysterious in its conformation 
than, for instance, in that of a forked 
twig in which one limb of the fork 
has grown longer than the other. 
The case of the begonia leaf is of 
sufficient interest to deserve illus
tration, and in Fig. 499 I have 
outlined a leaf of the large Begonia 
daedalea. On the smaller left-hand

Fig. 499. Begonia daedalea. side Qf ]eaf j have taken at 
random three points a, b, c, and have measured the angles, AOa, etc.,

* Cf. Sir Thomas Browne, in The Garden of Cyrus: “But why ofttimes one 
side of the leaf is unequal! unto the other, as in Hazell and Oaks, why on either 
side the master vein the lesser and derivative channels stand not directly opposite, 
not at equal! angles, respectively unto the adverse side, but those of one side do 
often exceed the other, as the Wallnut and many more, deserves another enquiry.” 
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which the radii from the hilus of the leaf to these points make with 
the median axis. On the other side of the leaf I have marked the 
points a', b', c', such that the radii drawn to this margin of the leaf 
are equal to the former, Oa' to Oa, etc. Now if the two sides of the 
leaf are mathematically similar to one another, it is obvious that 
the respective angles should be in continued proportion, i.e. as AOa 
is to AOa', so should AOb be to AOb'. This proves to be very 
nearly the case. For I have measured the three angles on one side, 
and one on the other, and have then compared, as follows, the 
calculated with the observed values of the other two:

AOa AOb Ape AOa' AOb' AOc'
Observed values 12° •28-5° 88° — __ 157°
Calculated „ — ' — — 21-5° 511° —
Observed „ — — — 20 52 —

The agreement is very close, and what discrepancy there is may 
be amply accounted for, firstly, by the slight irregularity of the 
sinuous margin of the leaf; and secondly, by the fact that the true 
axis or midrib of the leaf is not straight but slightly curved, and 
therefore that it is curvilinear and not rectilinear triangles which 
we ought to have measured. When we understand these few points 
regarding the peripheral curvature of the leaf, it is easy to see that 
its principal veins approximate closely to a beautiful system of 
isogonal coordinates. It is also obvious that we can easily pass, 
by a process of shearing, from those cases where the principal veins 
start from the base of the leaf to those wherq they arise successively 
from the midrib, as they do in most dicotyledons.

It may sometimes happen that the node*, or “point of arrest,” 
is at the upper instead of the lower end of the leaf-blade; and 
occasionally there is a node at both ends. In the former case, 
as we have it in the daisy, the form of the leaf will be, as it were, 
inverted, the broad, more or less heart-shaped, outline appearing 
at the upper end, while below the leaf tapers gradually downwards 
to an ill-defined base. In the latter case, as in Dionaea, we obtain 
a leaf equally expanded, and similarly ovate or cordate, at both 
ends. M e may notice, lastly, that the shape of a solid fruit, such 
as an apple or a cherry, is a solid of revolution, developed from 
similar curves and to be explained on the same principle. In the

* “Node,” in the botanical, not the mathematical, sense.
66-2
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cherry we have a “point of arrest” at the base of the berry, where 
it joins its peduncle, and about this point the fruit (in imaginary 
section) swells out into a cordate outline; while in the apple we have 
two such well-marked points of arrest, above and below, and about 
both of them the same conformation tends to arise. The bean and 
the human kidney owe their “reniform” shape to precisely the 
same phenomenon, namely, to the existence of a node or “hilus,” 
about which the forces of growth are radially and symmetrically 
arranged. When the seed is small and the pod roomy, the seed 
may grow round, or nearly so, like a pea; but it is flattened and 
bean-shaped, or elliptical like a kidney-bean, when compressed 
within a narrow and elongated pod. If-the original seed have any 
simple pattern, of the nature for instance of meridians or parallels 
of latitude, it is easy to see how these will suffer a conformal trans
formation, corresponding to the deformation of the sphere*.

We might go farther, and farther than we have room for here, 
to illustrate the shapes of leaves by means of radial coordinates, 
and even to attempt to define them by polar equations. In a 
former chapter we learned to look upon the curve of sines as an 
easy, gradual and natural transition—perhaps the simplest and most 
natural of all—from minimum to corresponding maximum, and so 
on alternately and continuously; and we found the same curve 
going round like the hands of a clock, when plotted on radial co
ordinates and (so to speak) prevented from leaving its place. Either 
way it represents a “simple harmonic motion.” Now we have just 
seen an ordinary dicotyledonous leaf to have a “point of arrest.” 
or zero-growth in a certain direction, while in the opposite direction 
towards the tip it has grown with a maximum velocity. This 
progress from zero to maximum suggests one-half of the sine-curve; 
in other words, if we look on the outline of the leaf as a vector
diagram of its own growth, at rates varying from zero to zero in 
a complete circuit of 360°, this suggests, as a possible and very 
simple case, the plotting of r = sin 0/2. Doing so, we obtain a 
curve (Fig. 500) closely resembling what the botanists call a reniform 
(or kidney-shaped) leaf, that is to say, with a cordate outline at the 
base formed of two “auricles,” one on either side, and then rounded

* Vide supra, p. 624.
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off with no projecting apex*.  The ground-ivy and the dog-violet 
(Fig. 501) illustrate such a leaf; and sometimes, as in the violet, 
the veins of the leaf show similar curves congruent with the outer 
edge. Moreover the violet is a good example of how the reniform 
leaf may be drawn out more and more into an acute and ovate 
form.

* Fig. 500 illustrates the whole leaf, but only shows one-half of the sine-curve 
The rest is got by reflecting the moiety already drawn in the horizontal axis 
(0 = n!2).

f Dom. Guido Grandus, Flores geometrid ex rhodonearum et cloeliarum curvarum 
descriptione resultantes..., Florentiae, 1728. Cf. Alfred Lartigue, Biodynamique 
generale, Paris, 1930—a curious but eccentric book.

From sin 0/2 we may proceed to any other given fraction of 0, 
and plot, for instance, r = sin 50/3, as in Fig. 502; which now no 
longer represents a single leaf but has become a diagram of the 

Fig. 500. Curve resembling the out
line of a reniform leaf: r sin 0/2.

Fig. 501. Violet leaf.

five petals of a pentamerous flower. Abbot Guido Grandi, a Pisan 
mathematician of the early eighteenth century, drew such a curve 
and pointed out its botanical analogies; and we still call the curves 
of this family “ Grandi’s curvesf.”

The gamopetalous corolla is easily transferred to polar coordinates, 
in which the radius vector now consists of two parts, the one a 
constant, the other expressing the amplitude (or half-amplitude) of 
the sine-curve; we may write the formula r = a + b cos n0. In 
Fig. 503 n = 5; in this figure, if the radius of the outermost circle 
be taken as unity, the outer of the two sinuous curves has a:b as 
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9:1, and the inner curve as 3:1; while the five petals become separate 

when a — b, and the formula reduces to r = cos 2 '
In Fig. 504 we have what looks like a first approximation to a 

horse-chestnut leaf. It consists of so many separate leaflets, akin 
to the five petals in Fig. 503; but these are now inscribed in (or 
have a locus in) the cordate or reniform outline of Fig.’ 500. The 
new curve is, in short, a composite one; and its general formula is 
r = sin 6/2.sin nd. The small size of the two leaflets adjacent to 
the petiole is characteristic of the curve, and helps to explain the 
development of “stipules.”

Fig. 502. Grandi’s curves based on 
r — sin j fl, and illustrating the five 
petals of a simple flower.

Fig. 503. Diagram illustrating a corolla 
of five petals, or of five lobes, are 
based on the equation r = a + b cos fl.

In this last case we have combined one curve with another, and 
the doing so opens out a new range of possibilities. On the outline 
of the simple leaf, whether ovate, lanceolate or cordate, we may 
superpose secondary sine-curves of lesser period and varying ampli
tude, after the fashion of a Fourier series; and the results will vary 
from a mere crenate outline to the digitate lobes of an ivy-leaf, or 
to separate leaflets such as we have just studied in the horse-chestnut. 
Or again, we may inscribe the separate petals of Fig. 505 within a 
spiral curve, equable or equiangular as the case may be; and then, 
continuing the series on and on, we shall obtain a figure resembling 
the clustered leaves of a stonecrop, or the petals of a water-lily or 
other polypetalous flower.
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Most of the transformations which we have hitherto considered 
(other than that of the simple shear) are particular cases of a general 
transformation, obtainable by the method of conjugate functions 
and equivalent to the projection of the original figure on a new 
plane. Appropriate transformations, on these general lines, provide 
for the cases of a coaxial system where the Cartesian coordinates 
are replaced by coaxial circles, or a confocal system in which they 
are replaced by confocal ellipses and hyperbolas.

Fig. 504. Outline of a compound leaf, 
like a horse-chestnut, based on a 
composite sine-curve, of the form 
r = sin 0/2 . einn0.

Yet another curious and important Transformation, belonging to 
the same class, is that by which a system of straight lines becomes 
transformed into a conformal system of logarithmic spirals: the 
straight line Y — AX = c corresponding to the logarithmic spiral 
6 — A log r = c (Fig. 505). This beautiful and simple transforma
tion lets us at once convert, for instance, the straight conical shell 
of the Pteropod or the Orthoceras into the logarithmic spiral of the 
Nautiloid; it involves a mathematical symbolism which is but a 
slight extension of that which we have employed in our elementary 
treatment of the logarithmic spiral.

These various systems of coordinates, which we have now briefly 
considered, are sometimes called “isothermal coordinates,” from the 
fact that, when employed in this particular branch of physics, they 
perfectly represent the phenomena of the conduction of heat, the
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contour lines of equal temperature appearing, under appropriate 
conditions, as the orthogonal lines of the coordinate system. And 
it follows that the ‘Taw of growth” which our biological analyss 
by means of orthogonal coordinate systems presupposes, or at 
least foreshadows, is one according to which the organism grows or 
develops along stream-lines, which may be defined by a suitable 
mathematical transformation.

When the system becomes no longer orthogonal, as in many 
of the following illustrations--for instance, that of Orthagoriscus 
(Fig. 526)—then the transformation is no longer within the reach 
of comparatively simple mathematical analysis. Such departure 
from the typical symmetry of a “stream-line” system is, in the 
first instance, sufficiently accounted for by the simple fact that 
the developing organism is very far from being homogeneous and 
isotropic, or, in other words, does not behave like a perfect fluid. 
But though under such circumstances our coordinate systems may 
be no longer capable of strict mathematical analysis, they will still 
indicate graphically the relation of the new coordinate system to 
the old, and conversely will furnish us with some guidance as to 
the “law of growth,” or play of forces, by which the transformation 
has been effected.

Before we pass from this brief discussion of transformations in 
general, let us glance at one or two cases in which the forces applied 
are more or less intelligible, but the resulting transformations are, 
from the mathematical point of view, exceedingly complicated.

The “marbled papers” of the bookbinder are a beautiful illustra
tion of visible “stream-lines.” On a dishful of a sort of semi-liquid 
gum the workman dusts a few simple lines or patches of colouring 
matter; and then, by passing a comb through the liquid, he draws 
the colour-bands into the streaks, waves, and spirals which con
stitute the marbled pattern, and which he then transfers to sheets 
of paper laid down upon the gum. By some such system of shears, 
by the effect of unequal traction or unequal growth in various 
directions and superposed on an originally simple pattern, we may 
account for the not dissimilar marbled patterns which we recognise, 
for instance, on a large serpent’s skin. But it must be remarked, in 
the case of the marbled paper, that though the method of application 
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of the forces is simple, yet in the aggregate the system of forces 
set up by the many teeth of the comb is exceedingly complex, and 
its complexity is revealed in the complicated “diagram of forces” 
which constitutes the pattern.

To take another and still more instructive illustration. To turn 
one circle (or sphere) into two circles (or spheres) would be, from 
the point of view of the mathematician, an extraordinarily difficult 
transformation; but, physically speaking, its achievement may be 
extremely simple. The little round gourd grows naturally, by its 
symmetrical forces <rf expansive growth, into a big, round, or some
what oval pumpkin or melon *. But the Moorish husbandman ties a 
rag rouhd its middle, and the same forces of growth, unaltered save 
for the presence of this trammel, now expand the globular structure 
into two superposed and connected globes. And again, by varying 
the position of the encircling band, or by applying several such 
ligatures instead of one, a great variety of'artificial forms of “ gourd ” 
may be, and actually are, produced. It is clear, I think, that we 
may account for many ordinary biological processes of development 
or transformation of form by the existence of trammels or lines 
of constraint, which limit and determine the action of the expansive 
forces of growth that would otherwise be uniform and symmetrical. 
This case has a close parallel in the operations of the glass-blower, 
to which we have already, more than once, referred in passingf. 
The glass-blower starts his operations with & tube, which he first 
closes at one end so as to form a hollow vesicle, within which his 
blast of air exercises a uniform pressure on all sides; but the spherical 
conformation which this uniform expansive force would naturally 
tend to produce is modified into all kinds of forms by the trammels 
or resistances set up as the workman lets one part or another of 
his bubble be unequally heated or cooled. It wq,s Oliver Wendell

* Analogous structural differences, especially in the fibrovascular bundles, help 
to explain the differences between (e.g.) a smooth melon and a cantelupe, or between 
various elongate, flattened and globular varieties. These breed true to type, and 
obey, when crossed, the laws of Mendelian inheritance. Cf. E. W. Sinnett, Inherit
ance of fruit-shape in Cucurbita, Botan. Grazette, lxxiv, pp. 95-103, 1922, and other 
papers.

f Where gourds are common, the glass-blower is still apt to take them for 
a prototype, as the prehistoric potter also did. For instance, a tall, annulated 
Florence oil-flask is an exact but no longer a conscious imitation of a gourd which 
has been converted into a bottle in the manner described.
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Holmes who first shewed this curious parallel between the operations 
of the glass-blower and those of Nature, when she starts, as she so 
often does, with a simple tube*.  The alimentary canal, the arterial 
system including the heart, the central nervous system of the 
vertebrate, including the brain itself, all begin as simple tubular 
structures. And with them Nature does just what the glass-blower 
does, and, we might even say, no more than he. For she can expand 
the tube here and narrow it there; thicken its walls or thin them; 
blow off a lateral offshoot or caecal diverticulum; bend the tube, 
or twist and coil it; and infold or crimp its w'alls as, so to speak, 
she pleases. Such a form as that of the human stomach is easily 
explained when it is regarded from this point of view; it is*  simply 
an ill-blown bubble, a bubble that has been rendered lopsided 
by a trammel or restraint along one side, such as to prevent its 
symmetrical expansion—such a trammel as is produced if the glass- 
blower lets one side of his*  bubble get cold, and such as is actually 
present in the stomach itself in the form of a muscular band.

* Cf. Elsie Venner, chap. n.
t See T. P. Anderson Stuart, How the form of the thorax is partly determined 

by gravitation, Proc. U.S. xlix, p.143, 1891.

The Florence flask, or any other handiwork of the glass-blower, 
is always beautiful, because its graded contours are, as in its living 
analogues, a picture of the graded forces by which it was conformed. 
It is an example of mathematical beauty, of which the machine-made, 
moulded bottle has no trace at all. An alabaster bottle is different 
again. It is no longer an unduloid figure of equilibrium. Turned 
on a lathe, it is a solid pf revolution, and not without beauty; but 
it is not near so beautiful as the blown flask or bubble.

The gravitational field is part of the complex field of force by 
which the form of the organism is influenced and determined. Its 
share is seldom easy to define, but there is a resultant due to gravity 
in hanging breasts and tired eyelids and all the sagging wrinkles 
of the old. Now and then we see gravity at work in the normal 
construction of the body, and can describe its effect on form in 
a general, or qualitative, way. Each pair of ribs in man forms 
a hoop which droops of its own weight in front, so flattening the 
chest, and at the same time twisting the rib on either hand near its 
point of suspensionf. But in the dog each costal hoop is dragged 
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straight downwards, into a vertical instead of a transverse ellipse, 
and is even narrowed to a point at the sternal border.

We may now proceed to consider and illustrate a few permutations 
or transformations of organic form, out of the vast multitude which 
are equally open to this method of enquiry.

We have already compared in a preliminary fashion the metacarpal 
or cannon-bone of the ox, the sheep, and the giraffe (Fig. 493); and 
we have seen that the essential difference in form between these 
three bones is a matter of relative length and breadth, such that, 
if we reduce the figures to an identical standard of length (or identical 
values of y), the breadth (or value of x) will be approximately 
two-thirds that of the ox in the case of the sheep and one-third 
that of the ox in the case of the giraffe. We may easily, for the 
sake of closer comparison, determine these ratios more accurately, 
for instance, if it be our purpose to compare the different racial 
varieties within the limits of a single species. And in such cases, 
by the way, as when we compare with one another various breeds 
or races of cattle or of horses, the ratios of length and breadth in 
this particular bone are extremely significant*.

* This significance is particularly remarkable in connection with the develop
ment of speed, for the metacarpal region is the seat of very important leverage 
in the propulsion of the body. In a certain Scottish Museum there stand side by 
side the skeleton of an immense carthorse (celebrated for having drawn all the 
stones of the Bell Rock Lighthouse to the shore), and a beautiful skeleton of 
a racehorse, long supposed to be the actual skeleton of Eclipse. When I was 
a boy my grandfather used to point out to me that the cannon-bone of the little 
racer is not only relatively, but actually, longer than that of the great Clydesdale.

If, instead of limiting ourselves to the cannon-bone, we inscribe 
the entire foot of our several Ungulates in a coordinate system, the 
same ratios of x that served us for the cannon-bones still give us 
a first approximation to the required comparison; but even in the 
case of such closely allied forms as the ox and the sheep there is 
evidently something wanting in the comparison. The reason is that 
the relative elongation of the several parts, or individual bones, has 
not proceeded equally or proportionately in all cases; in other words, 
that the equations for x will not suffice without some simultaneous 
modification of the values of y (Fig. 506). In such a case it may be 
found possible to satisfy the varying values of y by some logarithmic 
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or other formula; but, even if that be possible, it will probably be 
somewhat difficult of discovery or verification in such a case as the 
present, owing to the fact that we have too few well-marked points 
of correspondence between the one object and the other, and that 
especially along the shaft of such long bones as the cannon-bone 
of the ox, the deer, the llama, or the giraffe there is a complete lack 
of easily recognisable corresponding points. In such a case a brief 
tabular statement of apparently corresponding values of y, or of 
those obviously corresponding values which coincide with the 
boundaries of the several bones of the foot, will, as in the following 
example, enable us to dispense with a fresh equation.

a b c d
y (Ox) .:. 0 18 27 42 100
y’ (Sheep) 0 10 19 36 100
y" (Giraffe) ... 0 5 10 24 100

This summary of values of y', coupled with the equations for the 
value of x, will enable us, from any drawing of the ox’s foot, to con
struct a figure of that of the sheep or of the giraffe with remarkable 
accuracy.

That underlying the varying amounts of extension to which the 
parts or segments of the limb have been subject there is a law, 
or principle of continuity, may be discerned from such a diagram 
as the above (Fig. 507), where the values of y in the case of the ox 
are plotted as a straight line, and the corresponding values for the 
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sheep (extracted from the above table) are seen to form a more or 
less regular and even curve. This simple graphic result implies 
the existence of a comparatively simple equation between y 
and y'.

An elementary application of the principle of coordinates to the 
study of proportion, as we have here used it to illustrate the varying 
proportions of a bone, was in common use in the sixteenth and 
seventeenth centuries by artists in their study of the human form. 
The method is probably much more ancient, and may even be 
classical *;  it is fully described and put in practice by Albert Diirer 
in his Geometry, and especially in his Treatise on Proportion^. In 
this latter work, the manner in which the human figure, features, 
and facial expression are all transformed and modified by slight 
variations in the relative magnitude of the parts is admirably and 
copiously illustrated (Fig. 508).

* Of. Vitruvius, m, 1.
f Les quatres livres d'Albert Diirer de la proportion des parties et pourtraicts des 

corp>s humains, Arnheim, 1613, folio (and earlier editions). Cf. also Lavater, 
Essaiys on Physiognomy, in, p. 271, 1799; also H. Meige, La geometric des visages 
d’ap>res Albert Diirer, La Nature, Dec. 1927. On Diirer as mathematician, cf. 
Canttor, n, p. 459; S. Giinther, Die geometrische Naherungsconstructione Albrecht 
Diirters, Ansbach, 1866; H. Staigmuller, Diirer als Mathematiker, Stiittgart, 1891.

Fig. 508. (After Albert Diirer.)

Ina tapir’s foot there is a striking difference, and yet at the same 
time there is an obvious underlying resemblance, between the middle 
toe and either of its unsymmetrical lateral neighbours. Let us 
take the median terminal phalanx and inscribe its outline in a net 
of rectangular equidistant coordinates (Fig. 509, a). Let us then 
make a similar network about axes which are no longer at right 
angles, but inclined to one another at an angle of about 50° (b).
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If into this new network we fill in, point for point, an outline 
precisely corresponding to our original drawing of the middle toe, 
we shall find that we have already represented the main features 
of the adjacent lateral one. We shall, however, perceive that our 
new diagram looks a little too bulky on one side, the inner side, of 
the lateral toe. If now we substitute for our equidistant ordinates,

Fig. 509.

ordinates which get gradually closer and closer together as we pass 
towards the median side of the toe, then we shall obtain a diagram 
which differs in no essential respect from an actual outline copy 
of the lateral toe (c). In short, the difference between the outline 
of the middle toe of the tapir and the next lateral toe may be almost 
completely expressed by saying that if the one be represented by 
rectangular equidistant coordinates, the other will be represented 
by oblique coordinates, whose axes make an angle of 50°, and in

Fig. 510. (After Albert Durer.)

which the abscissal interspaces decrease in a certain logarithmic 
ratio. We treated our original complex curve or projection of the 
tapir’s toe as a function of the form F (x, y) = 0. The figure of 
the tapir’s lateral toe is a precisely identical function of the form 
F (e®, yj) = 0, where x1, yx are oblique coordinate axes inclined to 
one another at an angle of 50°.
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Diirer was acquainted with these oblique coordinates also, and I 
have copied two illustrative figures from his book*.

In Fig. 511 I have sketched the common Copepod Oithona nana, 
and have inscribed it in a rectangular net, with abscissae three-fifths 
the length of the ordinates. Side by side (Fig. 512) is drawn a very 
different Copepod, of the genus Sapphirina; and about it is drawn 
a network such that each coordinate passes (as nearly as possible) 
through points corresponding to those of the former figure. It will 
be seen that two differences are apparent. (1) The values of y 
in Fig. 512 are large in the upper part of the figure, and diminish 

rapidly towards its base. (2) The values of x are very large in the 
neighbourhood of the origin, but diminish rapidly as we pass towards 
either side, away from the median vertical axis; and it is probable 
that they do so according to a definite, but somewhat complicated,

* It was these very drawings of Durer’s that gave to Peter Camper his notion 
of the “facial angle.” Camper’s method of comparison was the very same as ours, 
save that he only drew the axes, without filling in the network, of his coordinate 
system; he saw clearly the essential fact, that the skull varies as a whole, and that 
the “facial angle” is the index to a general deformation. “The greet object was to 
shew that natural differences might be reduced to rules, of which the direction of 
the facial line forms the norma or canon; and that these directions and inclinations 
are always accompanied by correspondent form, size and position of the other 
parts of the cranium,” etc.; from Dr T. Cogan’s preface to Camper’s work On the 
Connexion between the Science of Anatomy and the Arts of Drawing, Painting and 
Sculpture (1768?), quoted in Dr R. Hamilton’s Memoir of Camper, in Lives of 
Eminent Naturalists (Nat. Libr.), Edinburgh, 1840. See also P. Camper, Dissertation 
sur les differences reelles que presentent les Traits du Visage chez les hommes de 
diff^rents pays et de differents dges, Paris, 1791 (op. posth.); cf. P. Topinard, Etudes 
sur Pierre Camper, et sur 1’angle facial dit de Camper, Rev. d'Anthropol. n. 1874.
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ratio. If, instead of seeking for an actual equation, we simply 
tabulate our values of x and y in the second figure as compared with 
the first (just as we did in comparing the feet of the Ungulates), 
we get the dimensions of a net in which, by simply projecting the 
figure of Oithona, we obtain that of Sapphirina without further 
trouble, e.g.:

x (Oithona) 0 3 6 9 12 15
x' (Sapphirina) 0 8 10 12 13 14

y (Oithona) 0 5 10 15 20 25 30
y' (Sapphirina) 0 2 7 3 23-32 40

In this manner, with a single model or type to copy from, we 
may record in very brief space the data requisite for the production 
of approximate outlines of a great number of forms. For instance, 
the difference, at first sight immense, between the attenuated body 
of a Caprella and the thick-set body of a Cyamus is obviously little, 
and is probably nothing more than a difference of relative mag
nitudes, capable of tabulation by numbers and of complete expression 
by means of rectilinear coordinates.

The Crustacea afford innumerable instances of more complex 
deformations. Thus we may compare various higher Crustacea 
with one another, even in the case of such dissimilar forms as 
a lobster and a crab. It is obvious that the whole body of the 
former is elongated as compared with the latter, and that the crab 
is relatively broad in the region of the carapace, while it tapers off 
rapidly towards its attenuated and abbreviated'tail. In a general 
way, the elongated rectangular system of coordinates in which we 
may inscribe the outline of the lobster becomes a shortened triangle 
in the case of the crab. In a little more detail we may compare 
the outline of the carapace in various crabs one with another: and 
the comparison will be found easy and significant, even, in many 
cases, down to minute details, such as the number and situation 
of the marginal spines, though these are in other cases subject to 
independent variability.

If we choose, to begin with, such a crab as Geryon (Fig. 513, 1) 
and inscribe it in our equidistant rectangular coordinates, we shall 
see that we pass easily to forms more elongated in a transverse 
direction, such as Matuta or Lupa (5), and conversely, by transverse 
compression, to such a form as Corystes (2). In certain other cases
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the carapace conforms to a triangular diagram, more or less curvi- 
lirear, as in Fig. 513, 4, which represents the genus Paralomis. Hore 
wt can easily see that the posterior border is transversely elongated 
as compared with that of Geryon, while at the same time the anterior

Fig. 513. Carapaces of various crabs. 1, Geryon; 2, Corysfys; 3, Scyramathia; 
4, Paralomis; 5, Lupa; 6, Chorinus.

part is longitudinally extended as compared with the posterior. 
A system of slightly curved and converging ordinates, with ortho
gonal and logarithmically interspaced abscissal lines, as shewn in 
the figure, appears to satisfy the conditions.

In an interesting series of cases, such as the genus Chorinus, or 
Scyramathia, and in the spider-crabs generally, we appear to have

IGF 67
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just the converse of this. While the carapace of these crabs presents 
a somewhat triangular form, which seems at first sight more or less 
similar to those just described, we soon see that the actual posterior 
border is now narrow instead of broad, the broadest part of the 
carapace corresponding precisely, not to that which is broadest in 
Paralomis, but to that which was broadest in Geryon; while the 
most striking difference from the latter lies in an antero-posterior 
lengthening of the forepart of the carapace, culminating in a great 
elongation of the frontal region, with its two spines or “horns.” 
The curved ordinates here converge posteriorly and diverge widely 
in front (Fig. 513, 3 and 6), while the decremental interspacing of 
the abscissae is very marked indeed.

We put our method to a severer test when we attempt to sketch 
an entire and complicated animal than when we simply compare 
corresponding parts such as the carapace's of various Malacostraca, 
or related bones as in the case of the tapir’s toes. Nevertheless, up 
to a certain point, the method stands the test very well. In other 
words, one particular mode and direction of variation is often (or 
even usually) so prominent and so paramount throughout the entire 
organism, that one comprehensive system of coordinates suffices to 
give a fair picture of the actual phenomenon. To take another 
illustration from the Crustacea, I have drawn roughly in Fig. 514, 1 
a little amphipod of the family Phoxocephalidae (Harpinia sp.). 
Deforming the coordinates of the figure into the curved orthogonal* 
system in Fig. 514, 2, we at once obtain a very fair representation of 
an allied genus, belonging to a different family of amphipods, namely 
Stegocephalus. As we proceed further from our type our coordinates 
will require greater deformation, and the resultant figure will usually 
be somewhat less accurate. In Fig. 514, 3 I shew a network, to 
which, if we transfer our diagram of Harpinia or of Stegocephalus, 
we shall obtain a tolerable representation of the aberrant genus 
Hyperiaj, with its narrow abdomen, its reduced pleural lappets, its 
great eyes, and its inflated head.

•
* Similar coordinates are treated of by Lame, Lemons sur les coordonnees curvilignes, 

Paris, 1859.
t For an analogous, but more detailed comparison, see H. Mogk, Versuch einer 

Formanalyse bei Hyperiden, Int. Rev. d. ges. Hydrobiol., etc., xiv, pp. 276-311, 
1923; xvn, pp. 1-98, 1926.
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The hydroid zoophytes constitute a “polymorphic’’ group, within 
which a vast number of species have already been distinguished; 
and the labours of the systematic naturalist are constantly adding 
to the number. The specific distinctions are for the most part 
based, not upon characters directly presented by the living animal, 
but upon the form, size and arrangement of the little cups, or 
“calycles,” secreted and inhabited by the little individual polyps

Fig. 514. 1, Harpinia plumosa Kr.; 2, Stegocephalus inflatus Kr.;
3, Hyperia galba.

which compose the compound organism. The variations, which are 
apparently infinite, of these conformal ions are easily seen to be 
a question of relative magnitudes, and are capable of complete 
expression, sometimes by very simple, sometimes by somewhat more 
complex, coordinate networks.

For instance, the varying shapes of the simple wineglass-shaped 
cups of the Campanularidae are at once sufficiently represented and 
compared by means of simple Cartesian coordinates (Fig. 515). In 
the two allied families of Plumulariidae and Aglaopheniidae the

67-2
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calycles are set unilaterally upon a jointed stem, and small cup-like 
structures (holding rudimentary polyps) are associated with the 
large calycles in definite number and position. These small calyculi

Fig. 515. a, Campanularia macroscyphus Alim.; b, Gonothyraea hyalina 
Hincks; c, Clytia Johnstoni Alder.

are variable in number, but in the great majority of cases they 
accompany the large calycle in groups of three--two standing by 
its upper border, and one, which is especially variable in form and 
magnitude, lying at its base. The stem is liable to flexure and,

Fig. 516. a, Cladocarpus crenatus F.; b, Aglaophenia pluma L.; 
c, A. rhynchocarpa A.; d, A. cornuta K.; e, A. ramulosa K.

in a high degree, to extension or compression; and these variations 
extend, often on an exaggerated scale, to the related calycles. As 
a result we find that we can draw various systems of curved or 
sinuous coordinates, which express, all but completely, the con
figuration of the various hydroids which we inscribe therein (Fig. 516).
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The comparative smoothness of denticulation of the margin of the 
calycle, and the number of its denticles, constitutes an independent 
variation, and requires separate description; we have already seen 
(p. 391) that this denticulation is in all probability due to a par
ticular physical cause.

Among countless other invertebrate animals which we might 
illustrate, did space and time permit, we should find the bivalve 
molluscs shewing certain things extremely well. If we start with 
a more or less oblong shell, such as Anodon or Mya or Psammobia, 
we can see how easily it may be transformed into a more circular 
or orbicular, but still closely related form; while on the other hand 
a simple shear is well-nigh all that is needed to transform the 
oblong Anodon into the triangular, pointed Mytilus, Avicula or 
Pinna. Now suppose we draw the shell of Anodon in the usual 
rectangular coordinates, and deform this network into the corre
sponding oblique coordinates of Mytilus, we may then proceed to 
draw’ within the same two nets the anatomy of the same two molluscs. 
Then of the two adductor muscles, coequal in Anodon, one becomes 
small, the other large, when transferred to the oblique network of 
Mytilus; at the same time the foot becomes stunted and the siphonal 
aperture enlarged. In short, having “transformed” one shell into 
the other we may perform an identical transformation on their 
contained anatomy: and so (provided the two are not too distantly 
related) deduce the bodily structure of the one from our knowledge 
of the other, to a first but by no means negligible approximation.

Among the fishes we discover a great variety of deformations, 
some of them of a very simple kind, while others are more striking 
and more unexpected. A comparatively simple case, involving a 
simple shear, is illustrated by Figs. 517 and 518. The one represents, 
within Cartesian coordinates, a certain little oceanic fish known as 
Argyropelecus Olfersi. The other represents precisely the same out
line, transferred to a system of oblique coordinates whose axes are 
inclined at an angle of 70°; but this is now (as far as can be seen on 
the scale of the drawing) a very good figure of an allied fish, assigned 
to a different genus, under the name of Sternoptyx diaphana. The 
deformation illustrated by this case of Argyropelecus is precisely 
analogous to the simplest and commonest kind of deformation to 
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which fossils are subject (as we have seen on p. 811) as the result 
of shearing-stresses in the solid rock.

Fig. 519 is an outline diagram of a typical Scaroid fish. Let us 
deform its rectilinear coordinates into a system of (approximately) 
coaxial circles, as in Fig. 520, and then filling into the new system,

space by space and point by point, our former diagram of Scarus, 
we obtain a very good outline of an allied fish, belonging to a neigh
bouring family, of -the genus Pomacanthus. This case is all the more 
interesting, because upon the body of our Pomacanthus there are 
striking colour bands, which correspond in direction very closely 

Fig. 519. Scarus sp. Fig. 520. Pomacanthus.

to the lines of our new curved ordinates. In like manner, the still 
more bizarre outlines of other fishes of the same family of Chaetodonts 
will be found to correspond to very slight modifications of similar 
coordinates; in other words, to small variations in the values of 
the constants of the coaxial curves.

In Figs. 521-524 I have represented another series of Acantho- 
pterygian fishes, not very distantly related to the foregoing. If we
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start this series with the figure of Poly prion, in Fig. 521, we see that 
the outlines of Pseudopriacanthus (Fig. 522) and of Sebastes or 
Scorpaena (Fig. 523) are easily derived by substituting a system

Fig. 521. Polyprion. Fig. 522. Pseudopriacanthus altus.

of triangular, or radial, coordinates for the rectangular ones in which 
we had inscribed Polyprion. The very curious fish Antigonia capros, 
an oceanic relative of our own boar-fish, conforms closely to the 
peculiar deformation represented in Fig. 524.

Fig. 523. Scorpaena sp. Fig. 524. Antigonia capros.

Fig. 525 is a common, typical Diodon or porcupine-fish, and in 
Fig. 526 I have deformed its vertical coordinates into a system of 
concentric circles, and its horizontal coordinates into a system of 
curves which, approximately and provisionally, are made to resemble 
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a system of hyperbolas *. The old outline, transferred in its integrity 
to the new network, appears as a manifest representation of the 
closely allied, but very different looking, sunfish, Orthagoriscus mold. 
This is a particularly instructive caSe of deformation or transforma
tion. It is true that, in a mathematical sense, it is not a perfectly 
satisfactory or perfectly regular deformation, for the system is no

longer isogonal; but nevertheless, it is symmetrical to the eye, and 
obviously approaches to an isogonal system under certain conditions 
of friction or constraint. And as such it accounts, by one single 
integral transformation, for all the apparently separate and distinct 
external differences between the two fishes. It leaves the parts

* The coordinate system of Fig. 526 is somewhat different from that which 
I first drew and published. It is not unlikely that further investigation will 
further simplify the comparison, and shew it to involve a still more symmetrical 
system.
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near to the origin of the system, the whole region of the head, the 
opercular orifice and the pectoral fin, practically unchanged in form, 
size and position; and it shews a greater and greater apparent 
modification of size and form as we pass from the origin towards 
the periphery of the system.

In a , word, it is sufficient to account for the new and striking 
contour in all its essential details, of rounded body, exaggerated 
dorsal and ventral fins, and truncated tail. In like manner, and 
using precisely the same coordinate networks, it appears to me 
possible to shew the relations, almost bone for bone, of the skeletons 
of the two fishes; in other words, to reconstruct the skeleton of 
the one from our knowledge of the skeleton of the other, under 
the guidance of the same correspondence as is indicated in their 
external configuration.

The family of the crocodiles has had a special interest for the 
evolutionist ever since Huxley pointed out that, in a degree only 
second to the horse and its ancestors, it furnishes us with a close 
and almost unbroken series of transitional forms, running down 
in continuous succession from one geological formation to another. 
I should be inclined to transpose this general statement into other 
terms, and to say that the Crocodilia constitute a case in which, 
with unusually little complication from the presence of independent 
variants, the trend of one particular mode of transformation is 
visibly manifested. If we exclude meanwhile from our comparison 
a few of the oldest of the crocodiles, such as Belodon, which differ 
more fundamentally from the rest, we shall find a long series of 
genera in which we can refer not only the changing contours of the 
skull, but even the shape and size of the many constituent bones 
and their intervening spaces or “.vacuities,” to one and the same 
simple system of transformed coordinates. The manner in which 
the skulls of various Crocodilians differ from one another may be 
sufficiently illustrated by three or four examples.

Let us take one of the typical modern crocodiles as our standard 
of form, e.g. C. porosus, and inscribe it, as in Fig. 527, a, in the 
usual Cartesian coordinates. By deforming the rectangular network 
into a triangular system, with the apex of the triangle a little way 
in front of thesnout, as in b, we pass to such a form as C. americanus.
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By an exaggeration of the same process we at once get an approxima
tion to the form of one of the sharp-snoul ed, or longirostrine, 
crocodiles, such as the genus Tomistoma; and, in the species figureu. 
the oblique position of the orbits, the arched contour of the occipital 
border, and certain other characters suggest a certain amount < f 
curvature, such as I have represented in the diagram (Fig. 527, by 
on the part of the horizontal coordinates. In the still more elongated 
skull of such a form as the Indian Gavial, the whole skull has under
gone a great longitudinal extension, or, in other words, the ratio 
of xju is greatly diminished; and this extension is not uniform, but 
is at a maximum in the region of the nasal and maxillary bones.

Fig. 527. a, Crocodilus porosus; b, C. americanus; c, Notosuchus terrestris.

This especially elongated region is at the same time narrowed in an 
exceptional degree, and its excessive narrowing is represented by 
a curvature, convex towards the median axis, on the part of the 
vertical ordinates. Let us take as a last illustration one of the 
Mesozoic crocodiles, the little Notosuchus. from the Cretaceous for
mation. This little crocodile is very different from our type in the 
proportions of its skull. The region of the snout, in front of and 
including the frontal bones, is greatly shortened; from constituting 
fully two-thirds of the whole length of the skull in Crocodilus, it 
now constitutes less than half, or, say, three-sevenths of the whole; 
and the whole skull, and especially its posterior part, is curiously 
compact, broad, and squat. The orbit is unusually large. If in
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the diagram of this skull we select a number of points obviously 
corresponding to points where our rectangular coordinates intersect 
particular bones or other recognisable features in our typical 
crocodile, we shall easily discover that the lines joining these points 
in Notosuchus fall into such a coordinate network as that which 
is represented in Fig. 527, c. To all intents and purposes, then, this 
not very complex system, representing one harmonious “deforma
tion,” accounts for all the differences between the two .figures, and is 
sufficient to enable one at any time to reconstruct a detailed drawing, 
bone for bone, of the skull of Notosuchus from the model furnished 
by the common crocodile.

Fig. 528. Pelvis of (A) Stegosaurus; (B) Camptosaurus.

The many diverse forms of Dinosaurian reptiles, all of which 
manifest a strong family likeness underlying much superficial 
diversity, furnish us with plentiful material for comparison by the 
method of transformations. As an instance, I have figured the 
pelvic bones of Stegosaurus and of Camptosaurus (Fig. 528, a, b) to 
shew that, when the former is taken as our Cartesian type, a slight 
curvature and an approximately logarithmic extension of the r-axis 
brings us easily to the configuration of the other. In the original 
specimen of Camptosaurus described by Marsh*, the anterior portion 
of the iliac bone is missing; and in Marsh’s restoration this part 
of the bone is drawn as though it came somewhat abruptly to 
a sharp point. In my figure I have completed this missing part

* Dinosaurs of North America, pl. lxxxi, etc., 1896.
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of the bone in harmony with the general coordinate network which 
is suggested by our comparison of -the two entire pelves; and I 
venture to think that the result is more natural in appearance, and 
more likely to be correct than was Marsh’s conjectural restoration. 
It would seem, in fact, that there is an obvious field for the employ
ment of the method of coordinates in this task of reproducing missing

portions of a structure to the proper scale and in harmony with 
related types To this subject we shall presently return.

In Fig. 529, a, b, I have drawn the shoulder-girdle of Cryptocleidus, 
a Plesiosaurian reptile, half-grown in the one case and full-grown 
in the other. The change of form during growth in this region of 
the body is very considerable, and its nature is well brought out

Fig. 530. Shoulder-girdle of Ichthyosaurus.

by the two coordinate systems. In Fig. 530 I have drawn the 
shoulder-girdle of an Ichthyosaur, referring it to Cryptocleidus as 
a standard of comparison. The interclavicle, which is present in 
Ichthyosaurus, is minute and hidden in Cryptocleidus; but the 
numerous other differences between the two forms, chief among 
which is the great elongation in Ichthyosaurus of the two clavicles, 
are all seen by our diagrams to be part and parcel of one general 
and systematic deformation.
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Before we leave the group of reptiles we may glance at the very 
strangely modified skull of Pteranodon, one of the extinct flying 
reptiles, or Pterosauria. In this very curious skull the region of 
the jaws, or beak, is greatly elongated and pointed; the occipital 
bone is drawn out into an enormous backwardly directed crest; the 
posterior part of the lower jaw is similarly produced backwards; 
the orbit is small; and the quadrate bone is strongly inclined down
wards and forwards. The whole skull has a configuration which 
stands, apparently, in the strongest possible contrast to that of 
a more normal Ornithosaurian such as Dimorphodon. But if we 
inscribe the latter in Cartesian coordinates (Fig. 531, a), and refer

Fig. 531. a, skull of Dimorphodon; b, skull of Pteranodon.

our Pteranodon to a system of oblique coordinates (&), in which the 
two coordinate systems of parallel lines become each a pencil of 
diverging rays, we make manifest a correspondence which extends 
uniformly throughout all parts of these very different-looking skulls.

We have dealt so far, and for the most part we shall continue 
to deal, with our coordinate method as a means of comparing one 
known structure with another. But it is obvious, as I have said, 
that it may also be employed for drawing hypothetical structures, 
on the assumption that they have varied from a known form in 
some definite way. And this process may be especially useful, and 
will be most obviously legitimate, when we apply it to the particular 
case of representing intermediate stages between two forms which
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are actually known to exist, in other words, of reconstructing the 
transitional stages through which the course of evolution must have 
successively travelled if it has brought about the change from some 
ancestral type to its presumed descendant. Some years ago 
I sent my friend, Mr Gerhard Heilmann of Copenhagen, a few of

Fig..532. Pelvis of An haeopteryx.

my own rough coordinate diagrams, including some in which the 
pelves of certain ancient and primitive birds were compared one 
with another. Mr Heilmann, who is both a skilled draughtsman 
and an able morphologist, returned me a set of diagrams which are

Fig. 533. Pelvis of Apat ornis.

a vast improvement on my own, and which are reproduced in 
Figs. 532-537. Here we have, as extreme cases, the pelvis of 
Arehat opteryx, the most ancient of known birds, and that of Apa- 
tornis, one of the fossil “toothed” birds from the North American 
Cretaceous formations—a bird shewing some resemblance to the 
modern terns. The pelvis of Archaeopteryx is taken as our type 
and referred accordingly to Cartesian coordinates (Fig. 532); while 
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the corresponding coordinates of the very different pelvis of Apatornis 
are represented in Fig. 533. In Fig. 534 the outlines of these two

Fig. 534. The coordinate systems of Figs. 532 and 533, with three 
intermediate systems interpolated.

coordinate systems are superposed upon one another, and those 
of three intermediate and equidistant coordinate systems are 
interpolated between them. From each of these latter systems,

Fig. 535. The first intermediate coordinate network, with its 
corresponding inscribed pelvis.

so determined by direct interpolation, a complete coordinate diagram 
is drawn, and the corresponding outline of a pelvis is found from 
each of these systems of coordinates, as in Figs. 535, 536. Finally,
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in Fig. 537 the complete series is represented, beginning with tie 
known pelvis of Archaeopteryx, and leading up by our three inter
mediate hypothetical types to the known pelvis of Apatornis.

Among mammalian skulls I will take two illustrations only, ore 
drawn from a comparison of the human skull with that of the 
higher apes, and another from the group of Perissodactyle Ungulates, 
the group which includes the rhinoceros, the tapir, and the horse.

Fig. 536. The second and third intermediate coordinate networks, 
with their corresponding inscribed pelves.

Let us begin by choosing as our type the skull of Hyrachyus 
agrarius Cope, from the Middle Eocene of North America, as figured 
by Osborn in his Monograph of the Extinct Rhinoceroses* (Fig. 538).

The many other forms of primitive rhinoceros described in 
the monograph differ from Hyrachyus in various details—in the 
characters of the teeth, sometimes in the number of the toes, and 
so forth; and they also differ very considerably in the general 
appearance of the skull. But these differences in the conformation

* Mem. Amer. Mus. of Nat. Hist, i, in, 1898.
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of the skull, conspicuous as they are at first sight, will be found 
easy to bring under the conception of a simple and homogeneous 
transformation, such as would result from the application of some not 
very complicated stress. For instance, the corresponding coordinates 
of Aceratherium tridactylum, as shewn in Fig 539, indicate that the

Fig. 537. The pelvis of Archaeopteryx and of Apatornis, with three 
transitional types interpolated between them.

essential difference between this skull and the former one may be 
summed up by saying that the long axis of the skull of Aceratherium 
has undergone a slight double curvature while the upper parts of 
the skull have at the same time been subject to a vertical expansion, 
or to growth in somewhat greater proportion than the lower parts. 
Precisely the same changes, on a somewhat greater scale, give us 
the skull of an existing rhinoceros.

TG F 68
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Among the species of Aceratherium, the posterior, or occipitii, 
view of the skull presents specific differences which are perhaps 
more conspicuous than those furnished by the side view; and these

Fig. 538. Skull of Hyrachyus agrarius. After Osborn.

differences are very strikingly brought out by the series of conformal 
transformations which I have represented in Fig. 540. In this case 
it will perhaps be noticed that the correspondence is not always 
quite accurate in small details. It could easily have been made

Fig. 539. Skull of Aceratherium tridactylum. After Osborn.

much more accurate by giving a slightly sinuous curvature to certain 
of the coordinates. But as they stand, the correspondence indicated 
is very close, and the simplicity of the figures illustrates all the 
better the general character of the transformation.
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By similar and not more violent changes we pass easily to such 
allied forms as the Titanotheres (Fig. 541); and the well-known 
series of species of Tilanotherium, by which Professor Osborn has

Fig. 540. Occipital view of the skulls of various extinct rhinoceroses 
(Aceratherium spp.). After Osborn.

illustrated the evolution of this genus, constitutes a simple and 
suitable case for the application of our method.

But our method enables us to pass over greater gaps than these, 
and to discern the general, and to a very large extent even the

Fig. 541. Titanotherium robustum. Fig. 542. Tapir’s skull.

detailed, resemblances between the skull of the rhinoceros and those 
of the tapir or the horse. From the Cartesian coordinates in which 
we have begun by inscribing the skull of a primitive rhinoceros, 
we pass to the tapir’s skull (Fig. 542), firstly, by converting the

68-2 
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rectangular into a triangular network, by which we represent the 
depression of the anterior and the progressively increasing elevation 
of the posterior part of the skull; and secondly, by giving tc 
the vertical ordinates a curvature such as to bring about a certain 
longitudinal compression, or condensation, in the forepart of the 
skull, especially in the nasal and orbital regions.

The conformation of the horse’s skull departs from that of our 
primitive Perissodactyle (that is to say our early type of rhinoceros, 
Hyrachyus) in a direction that is nearly the opposite of that taker 
by Titanotherium and by the recent species of rhinoceros. For we 
perceive, by Fig. 543, that the horizontal coordinates, which in these 
latter cases become transformed into curves with the concavity

Fig. 543. Horse’s skull.

upwards, are curved, in the case of the horse, in the opposite direc
tion. And the vertical ordinates, which are also curved, somew hat 
in the same fashion as in the tapir, are very nearly equidistant, 
instead of being, as in that animal, crowded together anteriorly. 
Ordinates and abscissae form an oblique system, as is shewn in the 
figure. In this case I have attempted to produce the network 
beyond the region which is actually required to include the diagram 
of the horse’s skull, in order to shew better the form of the general 
transformation, with a part only of which we have actually to deal.

It is at first sight not a little surprising to find that we can pass, by 
a cognate and even simpler transformation, from our Perissodactyle 
skulls to that of the rabbit; but the fact that we can easily do so is 
a simple illustration of the undoubted affinity which exists between 
the Rodentia, especially the family of the Leporidae, and the more 
primitive Ungulates. For my part, I would go further; for I think 
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there is strong reason to believe that the Perissodactyles are more 
closely related to the Leporidae than the former are to the other 
Ungulates, or than the Leporidae are to the rest of the Rodentia. 
Be that as it may, it is obvious from Fig. 544 that the rabbit’s skull

Fig. 544. Rabbit’s skull.

conforms to a system of coordinates corresponding to the Cartesian 
coordinates in which we have inscribed the skull of Hyrachyus, with 
the difference, firstly, that the horizontal ordinates of the latter are

Fig. 545. A, outline diagram of the Cartesian coordinates of the skull of Hyra- 
cotherium or Eohippus, as shewn in Fig. 546, A. H, outline of the corresponding 
projection of the horse’s skull. B-G, intermediate, or interpolated, outlines.

transformed into equidistant curved lines, approximately arcs of 
circles, with their concavity directed downwards; and secondly, that 
the vertical ordinates are transformed into a pencil of rays approxi-
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Fig. 546. A, skull of Hyracotherium, from the Eocene, after W. B. Scott; H, skull 
of horse, represented as a coordinate transformation of that of Hyracotherium,
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and to the same scale of magnitude; B-G, various artificial or imaginary 
types, reconstructed as intermediate stages between A and H; M, skull of 
Mesohippus, from the Oligocene, after Scott, for comparison with C; P, skull 
of Protohippus, from the Miocene, after Cope, for comparison with E; Pp, 
lower jaw of Protohippus placidus (after Matthew and Gidley), for comparison 
with F; Mi, Miohippus (after Osborn), Pa, Parahippus (after Peterson), 
shewing resemblance, but less perfect agreement, with C and D.
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mately orthogonal to the circular arcs. In short, the configuration 
of the rabbit’s skull is derived from that of our primitive rhinoceros 
by the unexpectedly simple process of submitting the latter to a 
strong and uniform flexure in the downward direction (cf. Fig. 538, 
p. 1074). In the case of the rabbit the configuration of the individual 
bones does not conform quite so well to the general transformation 
as it does when we are comparing the several Perissodactyles one 
with another; and the chief departures from conformity will be 
found in the size of the orbit and in the outline of the immediately 
surrounding bones. The simple fact is that the relatively enormous 
eye of the rabbit constitutes an independent variation, which cannot 
be brought into the general and fundamental transformation, but 
must be dealt with separately. The enlargement of the eye, like 
the modification in form and number of the teeth, is a separate 
phenomenon, which supplements but in no way contradicts our 
general comparison of the skulls taken in their entirety.

Before we leave the Perissodactyla and their allies, let us look 
a little more closely into the case of the horse and its immediate 
relations or ancestors, doing so jvith the help of a set of diagrams 
which I again owe to Mr Gerard Heilmann*. Here we start afresh, 
with the skull (Fig. 546, A) of H yracotherium (or Eohippus), inscribed 
in a simple Cartesian network. At the other end of the series (H) 
is a skull of Equus, in its own corresponding network; and the 
intermediate stages (B-G) are all drawn by direct and simple inter
polation, as in Mr Heilmann’s former series of drawings of Archaeop
teryx and Apatornis. In this present case, the relative magnitudes 
are shewn, as well as the forms, of the several skulls. Alongside 
of these reconstructed diagrams are set figures of certain extinct 
“horses” (Equidae or Palaeotheriidae), and in two cases, viz Meso
hippus and Protohippus (M, P), it will be seen that the actual 
fossil skull coincides in the most perfect fashion with one of the 
hypothetical forms or stages which our method shews to be implicitly 
involved in the transition from Hyracotherium to Equus"\. In a third 
case, that of Parahippus (Pa), the correspondence (as Mr Heilmann

* These and also other coordinate diagrams will be found in Mr G. Heilmann’s 
beautiful and original book Fuglenes Afstamning, 398 pp., Copenhagen, 1916; see 
especially pp. 368-380.

f Cf. Zittel, Grundzlige d. Palaeontologie, 1911, p. 463.
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points out) is by no means exact. The outline of this skull comes 
nearest to that of the hypothetical transition stage D, but the “fit” 
is now a bad one; for the skull of Parahippus is evidently a longer, 
straighter and narrower skull, and differs in other minor characters 
besides. In short, though some writers have placed Parahippus in 
the direct line of descent between Equus and Eohippus, we see at 
once that there is no place for it there, and that it must, accordingly, 
represent a somewhat divergent branch or offshoot of the Equidae*. 
It may be noticed, especially in the case of Protohippus (P), that 
the configuration of the angle of the jaw does not tally quite so 
accurately with that of our hypothetical diagrams as do other parts 
of the skull. As a matter of fact, this region is somewhat variable, 
in different species of a genus, and even in different individuals of 
the same species; in the small figure (Pp) of Protohippus placidus 
the correspondence is more exact.

In considering this series of figures we cannot but be struck, 
not only with the regularity of the succession of “transformations,” 
but also with the slight and inconsiderable differences which separate 
each recorded stage from the next, and even the two extremes of 
the whole series from one another. These differences are no greater 
(save in regard to actual magnitude) than those between one human 
skull and another, at least if we take into account the older or 
remoter races; and they are again no greater, but if anything less, 
than the range of variation, racial and individual, in certain other 
human bones, for instance the scapula f.

The variability of this latter bone is great, but it is neither sur
prising nor peculiar; for it is linked with all the considerations of

* Cf. W. B. Scott (Amer. Journ. of Science, xlviii, pp. 335-374, 1894), “We 
find that any mammalian series at all complete, such as that of the horses, is 
remarkably continuous, and that the progress of discovery is steadily filling up 
what few gaps remain. So closely do successive stages follow upon one another 
that it is sometimes extremely difficult to arrange them all in order, and to 
distinguish clearly those members which belong in the main line of descent, and 
those which represent incipient branches. Some phylogenies actually suffer from 
an embarrassment of riches.”

t Cf. T. Dwight, The range of variation of the human scapula, Amer. Nat. 
xxi, pp. 627-638, 1887. Cf. also Turner, Challenger Rep. xlvii, on Human Skele
tons, p. 86, 1886: “I gather both from my own measurements, and those of other 
observers, that the range of variation in the relative length and breadth of the 
scapula is very considerable in the same race, so that it needs a large number of 
bones to enable one to obtain an accurate idea of the mean of the race.”
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mechanical efficiency and functional modification which we dealt 
with in our last chapter. The scapula occupies, as it were, a focus 
in a very important field of force; and the lines of force converging 
on it will be very greatly modified by the varying development of

Fig. 547. Human scapulae (after Dwight). A, Caucasian; B, Negro; 
C, North American Indian (from Kentucky Mountains).

the muscles over a large area of the body and of the uses to which 
they are habitually put.

Let us now inscribe in our Cartesian coordinates the outline of 
a human skull (Fig. 548), for the purpose of comparing it with the 
skulls of some of the higher apes. We know beforehand that the 
main differences between the human and the simian types depend

upon the enlargement or expansion of the brain and braincase im 
man, and the relative diminution or enfeeblement of his jaws.. 
Together with these changes, the “facial angle” increases from am 
oblique angle to nearly a right angle in man, and the configurationi 
of every constituent bone of the face and skull undergoes an altera-
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ticn. We do not know to begin with, and we aie not shewn by the 
ordinary methods of comparison, how far these various changes 
form part of one harmonious and congruent transformation, or 
whether we are to look, for instance, upon the changes undergone 
by the frontal, the occipital, the maxillary, and the mandibular

Fig. 549. Coordinates of chimpanzee’s skull, as a projection of 
the Cartesian coordinates of Fig. 548.

regions as a congeries of separate modifications or independent 
variants. But as soon as we have marked out a number of points 
in the gorilla’s or chimpanzee’s skull, corresponding with those which 
our coordinate network intersected in the human skull, we find that 
these corresponding points may be at once linked up by smoothly 
curved lines of intersection, which form a new system of coordinates 

Fig. 550. Skull of chimpanzee. Fig. 551. Skull of baboon.

and constitute a simple “projection” of our human skull. The 
network represented in Fig. 549 constitutes such a projection of 
the human skull on what we may call, figuratively speaking, the 
“plane” of the chimpanzee; and the full diagram in Fig. 550 
demonstrates the correspondence. In Fig. 551 I have shewn the 
similar deformation in the case of a baboon, and it is obvious that 
the transformation is of precisely the same order, and differs only 
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in an increased intensity or degree of deformation* . These anthropoid 
skulls, then, which we can transform one into another by a “con
tinuous transformation,” are admirable examples of what Listing 
called “topological similitude.”

* The empirical coordinates which I have sketched in for the chimpanzee as a 
conformal transformation of the Cartesian coordinates of the human skull look as 
if they might find their place in an equipotential elliptic field. They are indeed 
closely analogous to some already figured by JIM. Y. Ikada and M. Kuwaori, 
Some conformal representations by means of the elliptic integrals, Sci. Papers 
Inst. Phys. Research, Tokyo, xxvi, pp. 208-215, 1936: e.g. pl. xxxife.

f Speaking of “diagrams in pairs,” and doubtless thinking of his own “reciprocal 
diagrams,” Clerk Maxwell says (in his article Diagrams in the Encyclopaedia Britam- 
nica): “The method in which we simultaneously contemplate two figures, anid 
recognise a correspondence between certain points in the one figure and certain 
points in the other, is one of the most powerful and fertile methods hitherto known 
in science.. . .It is sometimes spoken of as the method or principle of duality.”

In both dimensions, as we pass from above downwards and from 
behind forwards, the corresponding areas of the network are seen 
to increase in a gradual and approximately logarithmic order in the 
lower as compared with the higher type of skull; and, in short, 
it becomes at once manifest that the modifications of jaws, brain-case, 
and the regions between are all portions of one continuous and 
integral process. It is of course easy to draw the inverse diagrams, 
by which the Cartesian coordinates of the ape are transformed into 
curvilinear and non-equidistant coordinates in manf.

From this comparison of the gorilla’s or chimpanzee’s with the 
human skull we realise that an inherent weakness underlies the 
anthropologist’s method of comparing skulls by reference to a small 
number of axes. The most important of these are the “facial” and 
“basicranial” axes, which include between them the “facial angle.” 
But it is, in the first place, evident that these axes are merely the 
principal axes of a system of coordinates, and that their restricted 
and isolated use neglects all that can be learned from the filling in 
of the rest of the coordinate network. And, in the second place, the 
“facial axis,” for instance, as ordinarily used in the anthropological 
comparison of one human skull with another, or of the human skull 
with the gorilla’s, is in all cases treated as a straight line; but our 
investigation has shewn that rectilinear axes only meet the case in 
the simplest and most closely related transformations; and that, for 
instance, in the anthropoid skull no rectilinear axis is homologous 
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with a rectilinear axis in a man’s skull, but what is a straight line 
in the one has become a certain definite curve in the other.

Mr Heilmann tells me that he has tried, but without success, 
to obtain a transitional series between the human skull and some 
prehuman, anthropoid type, which series (as in the case of the 
Equidae) should be found to contain other known types in direct 
linear sequence. It appears impossible, however, to obtain such a 
series, or to pass by successive and continuous gradations through 
such forms as Mesopithecus, Pithecanthropus, Homo neanderthalensis, 
and the lower or higher races of modern man. The failure is not 
the fault of our method. It merely indicates that no one straight 
line of descent, or of consecutive transformation, exists; but on 
the contrary, that among human and anthropoid types, recent and 
extinct, we have to do with a complex problem of divergent, rather 
than of continuous, variation. And in like manner, easy as it is to 
correlate the baboon’s and chimpanzee’s skulls severally with that 
of man, and easy as it is to see that the chimpanzee’s skull is much 
nearer to the human type than is the baboon’s, it is also not difficult 
to perceive that the series is not, strictly speaking, continuous, and 
that neither of our two apes lies precisely on the same direct line 
or sequence of deformation by which we may hypothetically connect 
the other with man.

After easily transforming our coordinate diagram of the human 
skull into a corresponding diagram of ape or of baboon, we may 
effect a further transformation of man or monkey into dog no less 
easily; and we are thereby encouraged to believe that any two 
mammalian skulls may be compared with, or transformed into, one 
another by this method. There is something, an essential and 
indispensable something, which is common to them all, something 
which is the subject of all our transformations, and remains invariant 
(as the mathematicians say) under them all. In these transforma
tions of ours every point may change its place, every line its 
curvature, every area its magnitude; but on the other hand every 
point and every line continues to exist, and keeps its relative order 
and position throughout all distortions and transformations. A series 
of points, a, b, c, along a certain line persist as corresponding points 
a', b', c', however the line connecting them may lengthen or bend; 
and as with points, so with lines, and so also with areas. Ear, 
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eye and nostril, and all the other great landmarks of cranial anatom/, 
not only continue to exist but retain their relative order and podtkn 
throughout all our transformations.

We can discover a certain invariance, somewhat more restricted 
than before, between the mammalian skull and that of fowl, fng 
or even herring. We have still something common to them all; 
and using another mathematical term (somewhat loosely perhaps) 
we may speak of the discriminant characters which persist unchanged, 
and continue to form the subject of our transformation. But tie 
method, far as it goes, has its limitations. We cannot fit both 
beetle and cuttlefish into the same framework, however we disto t 
it; nor by any coordinate transformation can we turn either of 
them into one another or into the vertebrate type. They aie

Fig. 552. Skull of dog, compared with the human skull of Fig. 548.

essentially different; there is nothing about them which can be 
legitimately compared. Eyes they all have, and mouth and jaws; 
but what we call by these names are no longer in the same order 
or relative position; they are no longer the same thing, there is no 
invariant basis for transformation. The cuttlefish eye seems as 
perfect, optically, as our own; but the lack of an invariant relation 
of position between them, or lack of true homology between them 
(as we naturalists say), is enough to shew that they are unrelated 
things, and have come into existence independently of one another.

As a final illustration I have drawn the outline of a dog’s skull 
(Fig. 552), and inscribed it in a network comparable with the Car
tesian network of the human skull in Fig. 548. Here we attempt to 
bridge over a wider gulf than we have crossed in any of our former 
comparisons. But, nevertheless, it is obvious that our method still 
holds good, in spite of the fact that there are various specific 
differences, such as the open or closed orbit, etc., which have to be
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separately described and accounted for. We see that the chief 
essential differences in plan between the dog’s skull and the man’s 
lie in the fact that, relatively speaking, the former tapers away in 
front, a triangular taking the place of a rectangular conformation; 
secondly, that, coincident with the tapering off, there is a progressive 
elongation, or pulling out, of the whole forepart of the skull; and 
lastly, as a minor difference, that the straight vertical ordinates of 
the human skull become curved, with their convexity directed for
wards, in the dog. While the net result is that in the dog, just as 
in the chimpanzee, the brain-pan is smaller and the jaws are larger 
than in man, it is now conspicuously evident that the coordinate 
network of the ape is by no means intermediate between those which 
fit the other two. The mode of deformation is on different lines; 
and, while it may be correct to say that the chimpanzee and the 
baboon are more brute-like, it would be by no means accurate to 
assert that they are more dog-like, than man.

In this brief account of coordinate transformations and of their 
morphological utility I have dealt with plane coordinates only, and 
have made no mention of the less elementary subject of coordinates 
in three-dimensional space. In theory there is no difficulty what
soever in such an extension of our method; it is just as easy to refer 
the form of our fish or of our skull to the rectangular coordinates 
x, y, z, or to the polar coordinates f, y, as it is to refer their plane 
projections to the two axes to which our investigation has been 
confined. And that it would be advantageous to do so goes without 
saying, for it is the shape of the solid object, not that of the mere 
drawing of the object, that we want to understand; and already 
we have found some of our easy problems in solid geometry leading 
us (as in the case of the form of the bivalve and even of the univalve 
shell) quickly in the direction of coordinate analysis and the theory 
of conformal transformations. But this extended theme I have not 
attempted to pursue, and it must be left to other times, and to other 
hands. Nevertheless, let us glance for a moment at the sort of simple 
cases, the simplest possible cases, with which such an investigation 
might begin; and we have found our plane coordinate systems so 
easily and effectively applicable to certain fishes that we may seek 
among them for our first and tentative introduction to the three- 
dimensional field.
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It is obvious enough that the same method of description and 
analysis which we have applied to one plane, we may apply to 
another: drawing by observation, and by a process of trial and 
error, our various cross-sections and the coordinate systems whicl 
seem best to correspond. But the new and important problem 
which now emerges is to correlate the deformation or transformation 
w’hich we discover in one plane with that which we have observed in 
another: and at length, perhaps, after grasping the general prin
ciples of such correlation, to forecast approximately what is likely 
to take place in the third dimension when we are acquainted with 
two, that is to say, to determine the values along one axis in terms 
of the other two.

Let us imagine a common “round” fish, and a common “flat ’ 
fish, such as a haddock and a plaice. These two fishes are not as 
nicely adapted for comparison by means of plane coordinates as 
some which we have studied, owing to the presence of essentially 
unimportant, but yet conspicuous differences in the position of the 
eyes, or in the number of the fins—that is to say in the manner in 
which the continuous dorsal fin of the plaice appears in the haddock 
to be cut or scolloped into a number of separate fins. But speaking 
broadly, and apart from such minor differences as these, it is manifest 
that the chief factor in the case (so far as we at present see) is simply 
the broadening out of the plaice’s body, as compared with the 
haddock’s, in the dorso-ventral direction, that is to say, along the 
y axis; in other words, the ratio x y is much less (and indeed little 
more than half as great) in the haddock than in the plaice. But 
we also recognise at once that while the plaice (as compared with 
the haddock) is expanded in one direction, it is also flattened, or 
thinned out, in the other: y increases, but z diminishes, relatively 
to x. And furthermore, we soon see that this is a common or even 
a general phenomenon. The high, expanded body in our Antigonia 
or in our sun-fish or in a John Dory is at the same time flattened 
or compressed from side to side, in comparison with the related 
fishes which we have chosen as standards of reference or comparison; 
and conversely, such a fish as the skate, while it is expanded from 
side to side in comparison with a shark or dogfish, is at the same 
time flattened or depressed in its vertical section. We hasten to 
enquire whether there be any simple relation of magnitude dis-
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cernible between these twin factors of expansion and compression; 
and the very fact that the two dimensions of breadth and depth 
tend to vary inversely assures us that, in the general process 
of deformation, the volume and the area of cross-section are less 
affected than are those two linear dimensions. Some years ago, 
when I was studying the weight-length coefficient in fishes (of which 
we have already spoken in chapter m), that is to say the coefficient 
k in the formula W = kL3, I was not a little surprised to find that k 
(let us call it in this case k{) was all but identical in two such different 
looking fishes as the haddock and the plaice: thus indicating that 
these two fishes have approximately the same volume when they 
are equal in length; or, in other words, that the extent to which the 
plaice has broadened is just about compensated for by the extent 
to which it has also got flattened or thinned. In short, if we' might 
conceive of a haddock being transformed directly into a plaice, 
a very large part of the change would be accounted for by supposing 
the round fish to be “rolled out” into the flat one, as a baker rolls 
a piece of dough. This is, as it were, an extreme case of the balance- 
ment des organes, or “compensation of parts.”

We must nit forget, while we consider the “deformation” of 
a fish, that the fish, like the bird, is subject to certain strict limita
tions of form. What we happen to have found in a particular 
case was observed fifty years ago, and brought under a general rule, 
by a naval engineer studying fishes from the shipbuilder’s point of 
view. Mr Parsons* compared the contours and the sectional areas 
of a number of fishes and of several whales; and he found the sec
tional areas to be always very much the same at the same proportional 
distances from the front end of the bodyf. Increase in depth was 
balanced (as we also have found) by diminution of breadth; and 
the magnitude of the “entering angle” presented to the water by 
the advancing fish was fairly constant. Moreover, according to 
Parsons, the position of the greatest cross-section is fixed for all 
species, being situated at 36 per cent, of the length behind the

* H. de B. Parsons, Displacements and area-curves of fish, Trans. Amer. Soc. 
of Meehan. Engineers, ix, pp. 679-695, 1888.

f That is to say, if the areas of cross-section be plotted against their distances 
from the front end of the body, the results are very much alike for all the species 
examined. See also Selig Hecht, Form and growth in fishes, Journ. Morph. 
xxvn, pp. 379-400, 1916.
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snout. We need not stop to consider such extreme cases as the eel 
or the globefish (Diodon), whose ways of propulsion and locomoticn 
are materially modified. But it is certainly curious that no sooner 
do we try to correlate deformation in one direction with deformation 
in another, than we are led towards a broad generalisation, touching 
on hydrodynamical conditions and the limitations of form and 
structure which are imposed thereby.

Our simple, or simplified, illustrations carry us but a little way, 
and only half prepare us for much harder things. But interesting 
as the whole subject is we must meanwhile leave it alone; recognising, 
however, that if the difficulties of description and representation 
could be overcome, it is by means of such coordinates in space that 
we should at last obtain an adequate and satisfying picture of the 
processes of deformation and the directions of growth.

A Note on Pattern
We have had so much to do with the study of Form that pattern 

has been wellnigh left out of the account, although it is part of 
the same story. Like any other aspect of form, pattern is correlated 
with growth, and even determined by it. A feather, for example, 
which is equally and equidistantly striped to begin with, may have 
this simple striping transformed into a more complex pattern by 
the unequal but graded elongation of the feather. We need not go 
farther than the zebra for a characteristic pattern of stripes, nor 
need we seek a better illustration of how a common pattern may 
vary in related species.

A zebra’s stripes may be broad or narrow, uniform or alternately 
dark and pale—these are minor or secondary diversities; but the 
pattern of the stripes shews more conspicuous differences than these, 
though the differences remain of a simple kind. A zebra’s stripes 
fall into several series. One set covers the neck, including the mane, 
and extends backwards over the body and forwards on to the face; 
and these “body-stripes” are all that the extinct Quagga possessed. 
On the head they are interrupted by the ears and eyes, and end at a 
definite vertex on the forehead: from which, however, they run 
down the face in pairs, of which the first pair of all may or may not 
coalesce into a single median stripe (Fig. 553). A second series 
runs up the foreleg, and where it meets the body we have the
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problem of how best to fit the horizontal leg-stripes and the vertical 
body-stripes together. There is only one way. A pair of body
stripes diverge apart and the upper leg-stripes fit in between, 
becoming at the same time chevron-shaped so as to adapt them
selves to the space they have come to occupy. The stripes of the 
forelegs, and their manner of fitting on to the body-stripes, vary 
very little in the several species or varieties.

A third series of stripes ascends the hindlegs, in a fashion iden
tical to begin with for all, but open to modification where these 
leg-stripes spread over the haunches; for here there may be great 

Fig. 553. Zebra’s head, to shew how the body-stripes 
extend to the face. From A. Rzasnicki.

differences in the extent to which the leg-stripes compete with and 
interfere with, or (so to speak) encroach upon, the stripes of the 
body. The typical Equus zebra is easily recognised by the so-called 
“gridiron” on its rump; this is a dorsal continuation of the body
stripes, extending to the tail, but sharply cut off on either side by 
the stripes ascending from the leg (Fig. 554, C). In Burchell’s zebra 
the hindleg-stripes encroach still farther on the body, and even 
reach up to the rump, so that the gridiron is entirely cut away*.

* Ward’s zebra and Grant’s zebra are varieties of Equus zebra, the former with 
a very strong “gridiron,” the latter with a mere vestige of the same: which is as 
much as to say that the leg-stripes encroach little in the one, and much in the 
other, on the hindmost body-stripes. Chapman’s zebra is a form of E. BurcheUi, 
with well-striped legs and faint intermediate striping. Cf. W. Ridgeway, on The 
differentiation of the three species of Zebra, P.Z.S. 1909, pp. 547-563; also (int. al.) 
Adolf Rzasnicki, Zebry, Warsaw, 1931.
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In the Abyssinian Equus Grevyi, all the stripes are very numerous, 
narrow and close-set. The body-stripes refuse, as it were, to be 
encroached on or obliterated by those of the hindlegs; which latter 
are merely intercalated between them, chevron fashion, wedging

Fig. 554. Zebra patterns. A, B, Equus Burchelli; C, E. zebra; D, E. Grevyi. 

in between the body-stripes as the foreleg-stripes are wont to do. 
It follows that in the middle of the haunch, over the region of the; 
hip-joint, there is in this species a characteristic “focus,” where the 
leg-stripes fit in between the lumbar and the caudal sections of the; 
body-stripes. We may now add, as a fourth and last series, commom 
to all kinds, the few stripes which surround the lips on either side,, 
and wedge in between the stripes upon the face.

Conclusion
There is one last lesson which coordinate geometry helps us to> 

learn; it is simple and easy, but very important indeed. In the? 
study of evolution, and in all attempts to trace the descent of the; 
animal kingdom, fourscore years’ study of the Origin of Species^ 
has had an unlooked-for and disappointing result. It was hoped!
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to begin with, and within my own recollection it was confidently 
believed, that the broad lines of descent, the relation of the main 
branches to one another and to the trunk of the tree, would soon 
be settled, and the lesser ramifications would be unravelled bit 
by bit and later on. But things have turned out otherwise. We 
have long known, in more or less satisfactory detail, the pedigree of 
horses, elephants, turtles, crocodiles and some few more; and our 
conclusions tally as to these, again more or less to our satisfaction, 
with the direct evidence of palaeontological succession. But the 
larger and at first sight simpler questions remain unanswered; for 
eighty years’ study of Darwinian evolution has not taught us how 
birds descend from reptiles, mammals from earlier quadrupeds, 
quadrupeds from fishes, nor vertebrates from the invertebrate stock. 
The invertebrates themselves involve the selfsame difficulties, so 
that we do not know the origin of the echinoderms, of the molluscs, 
of the coelenterates, nor of one group of protozoa from another. 
The difficulty is not always quite the same. We may fail to find 
the actual links between the vertebrate groups, but yet their re
semblance and their relationship, real though indefinable, are plain 
to see; there are gaps between the groups, but we can see, so to 
speak, across the gap. On the other hand, the breach between 
vertebrate and invertebrate, worm and coelenterate, coelenterate 
and protozoon, is in each case of another order, and is so wide that 
we cannot see across the intervening gap at all.

This failure to solve the cardinal problem of evolutionary biology 
is a very curious thing; and we may well wonder why the long 
pedigree is subject to such breaches of continuity. We used to be 
told, and were content to believe, that the old record was of necessity 
imperfect—we could not expect it to be otherwise; the story was 
hard to read because every here and there a page had been lost or 
torn away, like some hiatus valde deflendus in an ancient manuscript. 
But there is a deeper reason. When we begin to draw comparisons 
between our algebraic curves and attempt to transform one into 
another, we find ourselves limited by the very nature of the case 
to curves having some tangible degree of relation to one another; 
and these “degrees of relationship” imply a classification of mathe
matical forms, analogous to the classification of plants or animals 
in another part of the Systema Naturae.
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An algebraic curve has its fundamental formula, which defines 
the family to which it belongs; and its parameters, whose quantita
tive variation admits of infinite variety within the limits which 
the formula prescribes. With some extension of the meaning of 
parameters, we may say the same of the families, or genera, or other 
classificatory groups of plants and animals. We cross a boundary 
every time we pass from family to family, or group to group. The 
passage is easy at first, and we are led, along definite lines, to more 
and more subtle and elegant comparisons. But we come in time 
to forms which, though both may still be simple, yet stand so far 
apart that direct comparison is no longer legitimate. We never 
think of “ transforming ” a helicoid into an ellipsoid, or a circle into 
a frequency-curve. So it is with the forms of animals. We cannot 
transform an invertebrate into a vertebrate, nor a coelenterate into 
a worm, by any simple and legitimate deformation, nor by anything 
short of reduction to elementary principles.

A “principle of discontinuity,” then, is inherent in all our classifi
cations, whether mathematical, physical or biological; and the 
infinitude of possible forms, always limited, may be further reduced 
and discontinuity further revealed by imposing conditions—as, for 
example, that our parameters must be whole numbers, or proceed 
by quanta, as the physicists say. The lines of the spectrum, the six 
families of crystals, Dalton’s atomic law, the chemical elements 
themselves, all illustrate this principle of discontinuity. In short, 
nature proceeds from one type to another among organic as well as 
inorganic forms; and these types vary according to their own 
parameters, and are defined by physico-mathematical conditions of 
possibility. In natural history Cuvier’s “types” may not be per
fectly chosen nor numerous enough, but types they are; and to seek 
for stepping stones across the gaps between is to seek in vain, for 
ever.

This is no argument against the theory of evolutionary descent. 
It merely states that formal resemblance, which we depend on as; 
our trusty guide to the affinities of animals within certain bounds or 
grades of kinship and propinquity, ceases in certain other cases to 
serve us, because under certain circumstances it ceases to exist. Our 
geometrical analogies weigh heavily against Darwin’s conception of 
endless small continuous variations; they help to show that dis-
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continuous variations are a natural thing, that “mutations”—or 
sudden changes, greater or less—are bound to have taken place, and 
new “ types ” to have arisen, now and then. Our argument indicates, 
if it does not prove, that such mutations, occurring on a com
paratively few definite lines, or plain alternatives, of physico- 
mathematical possibility, are likely to repeat themselves: that the 
“higher” protozoa, for instance, may have sprung not from or 
through one another, but severally from the simpler forms; or that 
the worm-type, to take another example, may have come into being 
again and again.



EPILOGUE

•In the beginning of this book I said that its scope and treatment 
were of so prefatory a kind that of other preface it had no need; 
and now, for the same reason, with no formal and elaborate con
clusion do I bring it to a close. The fact that I set little store by 

* certain postulates (often deemed to be fundamental) of our present
day biology the reader will have discovered and I have not 
endeavoured to conceal. But it is not for the sake of polemical 
argument that I have written, and the doctrines which I do not 
subscribe to I have only spoken of by the way. My task is finished 
if I have been able to shew that a certain mathematical aspect of 
morphology, to which as yet the morphologist gives little heed, is 
interwoven with his problems, complementary to his descriptive 
task, and helpful, nay essential, to his proper study and com
prehension of Growth and Form. Hic artem remumque repono.

And while I have sought to shew the naturalist how a few mathe
matical concepts and dynamical principles may help and guide him, 
I have tried to shew the mathematician a field for his labour—a field 
which few have entered and no man has explored. Here may be 
found homely problems, such as often tax the highest skill of the 
mathematician, and reward his ingenuity all the more for their 
trivial associations and outward semblance of simplicity. Haze utinam 
excolant, utinam exhauriant, utinam aperiant nobis Viri mathematice 
docti*.

That I am no skilled mathematician I have had little need to 
confess. I am “advanced in these enquiries no farther than the 
threshold”; but something of the use and beauty of mathematics 
I think I am able to understand. I know that in the study of 
material things, number, order and position are the threefold clue 
to exact knowledge; that these three, in the mathemal ician’s hands, 
furnish the “first outlines for a sketch of the Universe”; that by 
square and circle we are helped, like Emile Verhaeren’s carpenter, 
to conceive “Les lois indubitables et fecondes Qui sont la regie et 
la clarte du monde.”

For the harmony of the world is made manifest in Form and 
* So Boerhaave, in his Oratio de Usu Ratiocinii Mechanici in Medicina (1703).
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Number, and the heart and soul and all the poetry of Natural 
Philosophy are embodied in the concept of mathematical beauty. 
A greater than Verhaeren had this in mind when he told of “the 
golden compasses prepared In God’s eternal store.” A greater than 
Mil ton had magnified the theme and glorified Him “that sitteth 
upon the circle of the earth,” saying: He hath measured the waters 
in the hollow of his hand, and meted out heaven with the span, 
and comprehended the dust of the earth in a measure.

Moreover, the perfection of mathematical beauty is such (as Colin 
Maclaurin learned of the bee), that whatsoever is most beautiful 
and regular is also found to be most useful and excellent.

Not only the movements of the heavenly host must be 
determined by observation and elucidated by mathematics, but 
whatsoever else can be expressed by number and defined by 
natural law. This is the teaching of Plato and Pythagoras, and 
the message of Greek wisdom to mankind. So the living and 
the dead, things animate and inanimate, we dwellers in the world 
and this world wherein we dwell—Trdvra ya p,dv rd ytyvajaKogeva— 
are bound alike by physical and mathematical law. “Conterminous 
with space and coeval with time is the kingdom of Mathematics; 
within this range her dominion is supreme; otherwise than according 
to her order nothing can exist, and nothing takes place in contradiction 
to her laws.” So said, some sixty years ago, a certain mathe
matician* ; and Philolaus the Pythagorean had said much the same.

But with no less love and insight has the science of Form and 
Number been appraised in our own day and generation by a very 
great Naturalist indeedf—by that old man eloquent, that wise 
student and pupil of the ant and the bee, who died while this book 
was being written; who in his all but saecular life had tasted of the 
firstfruits of immortality; who curiously conjoined the wisdom 
of antiquity with the learning of today; whose Provencal verse 
seems set to Dorian music; in whose plainest words is a sound 
as of bees’ industrious murmur; and who, being of the same 
blood and marrow with Plato and Pythagoras, saw in Number le 
comment et le pourquoi des choses, and found in it la clef de voute de 
I’Univers.

* William Spottiswoode, in his presidential address to the British Association at 
Dublin in 1878. f Henri Fabre.



INDEX

Abbe, Ernst 304
Abonyi, A. 251, 254
Acanthocystis 675, 700
Acanthometridae 701, 730
Aceratherium 1074
Achlya 404
Acineta 461
Acromegaly 264
Actinomma 708
Actinophrys 342, 426, 470
Actinosphaerium 470, 707
Adam, N. K. 72, 359, 450
Adams, T. W. 95
Adamson, Martin 607
Adaptation 961
Addison, Joseph 5, 959
Adiantum, embryo of 642
Adsorption 355, 444, etc.
Aethalium 361
Aethusa 267
Agassiz, Louis 176
Agates 661
Age-composition 159
Aglaophenia 1060
Airy, G. B. 123; H. 916
Albertus Magnus 938
Albinus 532
Alexeieff, A. 287, 295
Alison, W. P. 955
Allen, Bennet M. 265
Aflman, William 923
Allocapsa 614
Alpheus, claws of 279
Amans, P. 45
Amelung, Erich 60
Ammonites 796, 846, 1038
Amoeba 16, 357, 363, 425, 458, 704, 746
Amphioxus 490
Ampullaria 777
Anabaena 477
Anaxagoras 809
Anderson, A. P. 260
Andrews, C. W. 1024; G. F. 294;

Mrs 336
Anikin, W. P. 254
Ankylostoma 488
Annandale, Nelson 244
Anodon 1061
Anomia 827
Anthogorgia, spicules of 647
Antigonia 1063, 1088

Antlers 892
Antony, R. 56, 117
Ants, trail-running 220
Apatornis 1070
Apocynum, pollen of 631
Approximation 1029
Apteryx 1011
Aptychus 670, 838
Arachnophyllum 513
Aragonite 670
Arcella 510
Arcestes 797
Archaeopteryx 50, 1070
Archibald, R. T. 755, 812, 924
Archimedean bodies 552, 735
Archimedes 22, 68, 734, 762, 767
Argali 850
Argonauta 800, 823
Argus pheasant 664
Argyropelecus 1062
Aristotle 3, 4, 6, 12, 14, 20, 81, 176, 180, 

248, 286, 357, 759, 830, 900, 935. 
1019, 1034

Arnold, A. 184
Arrhenius, Svant 221, 232, 302, 450
Artemia 251, 338
Ascaris 638
Aschemonella 414
Ascidia 483
Ashby, Eric 129
Ashworth, J. H. 244
Asparagus 553
Assheton, R. 561
Astbury, W. T. 403, 670, 743
Asterias 559
Asterolepis 517
Asters 299
Asthenosoma 947
Astrolampra 618
Astrorhiza 703
Astrosclera 672
Atkins, D. 71
Atrypa 832
Auerbach, F. 14
Aulacantha 699
Aulastrum 711
Aulonia 708, 737
Aurelia 205
Ausonius 527
Autocatalysis 256
Auxin 262, 281



INDEX 1099
Avicula 1061
Awerinzew, S. 852
Axolotl 265
Azolla 67

Babak, E. 56, 265
Baboon, skull of 1083
Bacillus 64
Backhouse, T. W. 353, 946
Backman, Gustav 98, 108, 115, 157
Bacon, Francis 1, 58, 79, 81, 255, 341, 

376, 384, 849, 939: Roger 1, 8
Baer, K. E. von 3, 11, 83, 86, 286
Baillanger, J. 189
Balfour, F. M. 85, 568
Ball, O. M. 974, 986
Balls, W. L. 746
Baltzer, Fr. 514, 753
Bambeke, C. van 17
Bamboo, growth of 29, 159, 217
Bantam fowl 117
Barclay, John 544
Barcroft, Joseph 249
Barfurth, E. 168
Barlow, W. 348
Barr, A, 26
Barratt, J, O. W. 495
Barrow, S. 487
Barry, Martin 341
Bartholinus, E. 527, 541, 695
Basalt 520
Basil, St 527
Bast-fibres, strength of 973
Baster, Job 271
Bateson, William 208, 212, 340, 907
Bather, F. A. 941
Batsch, A. J. G. C. 868
Baudrimont, A. 243
Baurmann, M. 304
Baylis, H. A. 897
Bayliss, W M. 264, 328
Beam, loaded 967
Bean, growth of 191
Beaumont, Elie de 785
Becher, A. 210: S. 687
Bechhold, H. 665
Beebe, W. 424
Bee’s cell 525, etc.
Begonia, leaf of 1042; raphides in 646
Beijer, J. J. 480
Beilby layer 493
Belar, K. 307
Belcher, Sir E. 411
Belehradek, J. 221, 232
Belemnites 858
Bell, Sir Charles 51, 956, 976, 987
Bellerophon 809
Belodon 1065
Benard, H. 418, 500, 853
Benedict, Fr. G. 205, 241

Bennett, A. 115,161; G. T. 121,385, 
536, 610, 763, 783

Benninghoff, A 979
Bentley, W. A., and W. J. Humphreys

411, 696
Benton, J. R. 387
Berezowsky, A. 62
Berg, W. F. 304, 333, 661
Berger, C. A. 243
Bergmann, H. von 34, 35
Bergson, Henri 9, 193, 412, 873, 1029;

Joseph 131
Berkeley, George 24
Bermuda life-plant 275
Bernal, J. D. 303, 488
Bernard, Claude 2, 4, 5, 249, 256
Bernhardt, H. 979
Bernoulli, Daniel 923; James 89, 118, 

755, 767, 961; John 37, 82
Bernstein, Julius, 361
Berthelot, M. 464
Berthold, G. 12, 475, 482, 567, 571, 

578, 593, 758
Bertholf, L. M. 54
Berzelius, J. J. 255
Bethe, A. 441
Beudant, F. S. 661
Bezold, W. 393
Bialaszewicz, K., 226, 229, 245
Bichat, Xavier 11, 97, 249, 956, 1029
Bidder, George 507
Biedermann, W. 664
Bilharzia, egg of 943
Biloculina, 858
Biometrics 119
Birds, flight of 41; skeleton of 1011; 

toothed 1070
Bishop, John 40
Bison, 990
Bivalve shells 822
Bjerknes, V. 46, 59, 325
Black, James 956
Blackman, F. F. 217, 224, 289; V. H.

153, 154, 220
Blackwall J. 387
Blair, G. W. S. 986; Patrick 900
Blake, J. F. 789, 793, 845, 1038
Bliss, G. A. 382
Blochmann, Fr. 653
Blood-corpuscles, form of 435; size of

60, 69
Blood-vessels 948
Blowfly,* speed of 162
Blum, E. 951
Boas, Fr. 125, 130, 416
Bodo 383, 432
Boerhaave, Hermann 2, 604, 1096
Boggild, O. B. 656
Bogorrow, B. G. 219
Bohn, C. 245



1100 INDEX
Bohr, Nils 54
Boltzmann, Ludwig 19, 356
Bolk, L. 901
Bonanni, F. 499, 544
Bonaventure, St 19
Bone, structure of 975 seq.
Bonneson, T. 382, 566
Bonnet, Charles 271, 275, 382, 543, 915
Borelli, J. A. 11, 12, 36, 48, 82, 356,

970, 988
Born, Max 1031
Boscovich, Father R. J. 13, 93, 286,

346, 531
Bose, J. C. 171
Bothriolepis 517
Bottazzi, F. 243
Bottomley, W. B. 262
Boundary layer 449
Bourgery, J. M. 979
Bourrelet, Plateau’s 475, 710
Boveri, Th. 63, 275, 300
Bowditch, H. P. 63, 125, 275, 299, 3u6
Bower, F. O. 640
Bowman, J. H. 662
Boycott, A. E. 64, 819, 822
Boyer, Carl B. 346
Boyle, Robert 7, 370
Brachiopods, 831
Bradford, S. C. 302
Brady, H. B. 700, 868
Bragg, Sir W. E. 348
Brahe, Tycho 11
Brain, growth of 186-189; weight of 180
Branchipus 559
Brandt, A. 188
Brauer, A. 314
Braun, A. 915
Bravais, L. and A. 237, 767, 915
Brazier, L. G. 970
Bredig, G. 311
Breeder, G. M. 50
Breton, E. le 60, 162
Brewster, Sir David 358, 549, 569, 656
Bridge, T. W. 959
Bridge-construction 989
Bridgeman, P. W. 26
Briggs, C. E. 158
Brinckmann, R. 457
Brindley, H. H. 208, 212
Brine-shrimps 253
Brobdignag 24
Brody, S. 141
Broglie, Louis de 74
Brooke, Sir Vincent 877, 892, 895
Brougham, Lord 537, 544
Brown, A. W. 113; H. T. 627; Robert

73, 75, 341; Samuel 255
Browne, Sir Thomas 495, 725, 932, 935
Brownian movement 75
Brownlee, John 76, 144

Brucke, C. 290, 344
Bruckner, Max 598
Brunswick, 459
Bryan, G. H. 44
Bryophyllum, regeneration of 275
Bubbles 350 seq., 468
Buch, Leopold von 785, 845
Buddenbroek, W. 756
Buffon 100, 536, 543, 970, 1020
Bulimus 808
Bull, A. J. 565
Bullen, A. H. R. 72
Bullfrog, growth of 264
Bunting, Martha 559
Burnet, John 759
Burr, Malcolm 216
Burton, E. F. 460
Butler, Samuel 6
Biitschli, C. 300, 330, 359, 361, 665

667, 853
Biittel-Reepen, H. von 540
Buxton, P. A. 961
Byk, A. 652

Cajori, Florian 135, 1031 .
Calandrini, G. L. 915
Calanus 219
Calcospherites 655
Calkins, L. A. 108, 184
Callimitra 712
Callithamnion, spores of 631
Caiman, W. T. 278
Calvert, P. P. 165, 214
Calymene 707
Calyptraea 802, 815
Cambium 480, 503
Camel 1002
Camerer, W. 108
Campanularia 391, 422, 634, 1060
Campbell, D. H. 593
Camphor 361
Camptosaurus 1067
Campyjodiscus 434
Cannon, H. Graham 293, 316, 325
Cannon-bone 1039
Cantilever 972, etc.
Cantor, Moritz 1053
Capillarity 465, etc.
Caprella 1056
Caprinella 829
Carcinus 463
Carey, E. J. 744
Cariacus 893
Carlier, E. W. 360
Carlson, T. 153
Carnot, Sadi 9, 464, 507, 752
Carnoy, J. B. 707
Carp, growth of 180
Carpenter, W. B. 73, 704; E. 654
Carradini, G. 361



INDEX 1101
Carruccio, E. 544
Caryocinesis 299, 3' ‘4
Cassini, Dominic 528, 695
Castagna 579
C'astillon 530
Catalan, E. C. 735
Catalytic action 255
Catenoid 369
Cauliflower 914
Cayley, Arthur 318, C09, Sir George

49, 612, 961
Celestite 699
Cell-size, fixed 60
Cell-theory 287, 341
Cells, collared 429; stellate 547
Cenosphaera 710
Centres of force 286
Centrosome 299, 306
Cephalopods, eggs of 602
Ceratites 845
Ceratophyllum, growth of 193
Cerebratulus, egg of 323
Cerithium 787
Cesaro, G. 526, 544
Chabry, L. 37, 483, 648
Chaetopeltis 593
Chaetopterus, egg of 338
Chambers, Robert 302, 306, 326, 335,

363, 388, 434
Chancourtois, A. E. B. 565
Chandra, Krishna 504
Chank shell 805
Chapman, Abel 45, 960
Chara 479
Characters, biological 1019, 1036
Chelyosoma 517
Chermak, P. 393
Child, C. M. 282
Chilomonas 225
Chimpanzee, skull of 1083
Chladni, E. F. F. 472, 719
Chlamydomyxa 700
Chodat, R. 115, 256
Chondriosomes 455
Chorinus 1057
Chossat, Ch. 189
Christison, Sir R. 235
Chromatin 296, 305
Chromosomes 338
Chromulina 422
Chrysaora 248
Church, A. H. 915, 919
Chydorus 214
Chytridia 462
Cicada 613
Cicero 92
Cicinnus 767
Cilia 406
Ciliate infusoria 425
Circoporus 726

Cladocarpus 1060
Cladocera 165, 306
Cladonema 397
Clapar&de, E. R. 656
Clathrulina 710
Claus, F. 506
Clausilia 758, 808
Clausius, R. 11, 358
Cleland, John 5
Cleodora 833
Clusters, globular star 68
Clytia 1060
Coan, C. A. 765, 931
Coassus 893
Codonella 408
Codosiga 429
Coe, W. B. 324
Cogan, Dr T. 1055
Cohen, Ernst 266
Cohesion figures 723, 847
Cole, William 744
Coleridge, S. T. 1034
Collar-cells 429
Collosphaera 697
Colman, S. 765
Colpodium 257
Comoseris 514
Compositae 930
Conchospiral 788
Conidiophore 479
Conklin, E. G. 5, 60, 293, 483, 487, 557,

601
Contour lines 904
Contractile vacuole 426
Conus 813, 922
Cooke, Sir T. A. 749, 912, 919, 931
Coordinates 1032, etc.
Cope, E. D. 517, 899, 906
Copernicus 11
Coplans, Myer 151
Corals 512-514, 621-624
Cordylophora 397
Cornea of insect 511
Comevin, Charles 201
Cornish, Vaughan 965
Comuspira 857
Corpora Arantii 472
Correns, C. 743
Corse, John 903
Corystes 1057
Cotes, Roger 755
Cotton, A. 651
Coulomb, C. A. 983
Cowell, J. W. 100
Creodonta 1024
Crepidula 60, 487, 557
Creseis 833
Crew, F. E. A. 108
Cristellaria 766, 792, 863
Crocodile 1065
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Crocus, growth of 171
Crookes, Sir Win. 51
Crozier, W. J. 198, 221
Crum Brown, Alexander 1
Cryptocleidus 1068
Ctenophora 624
Cube, partition of a 567
Cuboctahedron 734
Cucurbita 1049
Culmann, Prof. C. 976, 997
Curry, Manfred, 961
Curves, of distribution 135; of error 

131; of frequency 119; of growth 
95; logistic 147; multimodal 135

Cushman, J. A. 510
Cuvier, G. 1036, 1094
Cuvierina 416, 833
Cyamus 1056
Cyathophyllum 512
Cycas 516
Cyclammina 859
Cyclol 737
Cyclommatus 209
Cyclostoma 813
Cylinder 369
Cymose inflorescence 767
Cynthia 601
Cypraea 802, 805
Cystolithmus 647
Cytoplasm 347

Daday de Dees, E. von 253
Daffner, Fr. 233
Dakin, W. J. 336
Dalcq, A. 303
D’Alembert, Jean le R. 89
Dalyell, Sir John G. 274
D’Ancona, Umberto 159, 196, 274
Dandolo, Count Vincentzio 163
Danilewsky, B. 262
Dannevig, Alf. 180
Daphnia 253, 506
Darboux, G. 382
Darling, C. R. 370, 416
Darlington, C. D. 305, 310, 347, 947
D’Arsonval, A. 449
Darwin, Charles 5, 86, 537-541, 664, 

704, 887-889, 959, 1019, 1094
Dastre, A. 268
Davenport, C. V. 83, 243, 245, 360
Davies, G. R. 156; R. A. 35
Dawes, Ben 253
Dawson, J. A. 434
De Bary, A. 345
De Candolle, A. 546; A. P. 29; Casimir 

916
Deep-sea fishes 423
De Heen, P. 502
Dehler, Adolf 438
Dehmel, G. 83

Delage, Yves 270
Delaunay, C. E. 368
Delisle, M. 40
Dellinger, 0. P. 361
Delpino, F. 916
Democritus 6
De Morgan, Augustus 9, 24, 733
Dendy, Arthur 269, 658, 671, 690, 693
Dentalium 792, 805
Dentine 657
Deropyxis 422
Descartes, Rene 4, 7, 321, 733, 754, 809
Desch, C. H. 554
Desmids 579
Des Murs, 0. 935
Devaux, H. 69, 72, 464
Deviation, standard 119
De Vries, H. 217
Dexippus 164
Diagrams 136; reciprocal 997
Diakonow, D. M. 212
Diatoms 510 •
Dickson, A. 916; H 241; L. E. 924
Dicquemare, J. F. 271
Dictyocha 717
Dictyota 479
Dietz, J. F. G. 98
Difflugia 422, 702, 705
Diffraction plates 510
Dimensions 23
Dimorphism 212
Dimorphodon 1069
Dinenympha 433
Dinobryon 408
Dinosaurs 1002, 1067
Diodon 1064, 1090
Dionaea 1043
Diplodocus 1001, 1005, 1009
Disc, segmentation of a 594
Discontinuity, principle of 1094
Discorbina 865
Distephanus 718
Ditrupa 848
Dixon, A. F. 979; H. H. 65, 238;

K. R. 438
Dobell, Clifford 339, 341, 433, 456
Dodecahedron 526, 545
Doflein, F. J. 75, 410, 429, 868, 899
Dog, skull of 211, 1087; weight of 187
Dolium 780, 787
Dolphin* skeleton of 1007
Donaldson, H. H. 188
Doncaster, L. 316, 344
Donnan equilibrium 438 463
Dowding, E. S. 462
Dorataspis 727, 738
D'Orbigny, Alcide 786, 854, 1038
Douglas, Jesse 382
Douglass, A. E. 235, 239
Dragonfly 476, 611
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Draper, J. W. 422; R. L. 115
Dreyer, Fr. 671, 682, 707, 868, 870
Driesch, Hans 5, 60, 287, 483, 490, 602
Dromia 441
Drops 59, 467, 850, 946
Drosophila 155, 231
Drzwina, Anna 245
Duarte, A. J. 164
Du Bois Reymond, Emil 1, 189, 352,

444
Duckweed 263
Duclaux, J. 254
Dudich, E. 209
Duerden, J. E. 654, 749
Dujardin, F. 17, 18, 415, 854
Duke-Elder, Sir W. S. 304
Du Monceau, Duhamel 325
Dumortier, B. 312
Dunan, Charles 9
Duncan, P. Martin 621
Duncker, G. 199, 819
Duprds, Athanase 446
Durbin, Marion L. 271
Diirer, Albrecht 83, 89, 190, 372, 1053
Duthie, E. S. 546
Dutrochet, R. J. H. 361, 888
Dwight, T. 979, 1081
Dyar, H. J. 164
Dye, W. D. 510

Earwig, dimorphism in 212
Ebner, V. von 679, 979
Echinoderm larvae 626
Echinus 229, 602, 946
Ectoplasm 359
Edgerton, H. E. 390
Edgeworth, F. H. 76
Eel, growth of 169, 170
Efficiency, index of 153
Eggs of birds 934
Eidmann, W. 264
Eiffel tower 29, 961, 997
Eimer, Th. 868
Einstein, Albert 74, 76
Elasmotherium 905
Elastic curve 374
Elderton, Sir W. Palin 90, 98
Elephant 203, 900, 905, 1004
Eleutheria 619
Elk, antlers of 892
Ellipsolithes 1038
Ellis, M. M. 276; R. Leslie 5, 123,

532, 927
Elodea 509
Elsasser, Th. 55
Emarginula 815
Emmel, V. E. 275
Empedocles 12
Enchelys 257
Enestrom, G. 566

Engelmann, T. W. 368
Enriques, Paolo 4, 61, 93, 970, 987
Entelechy 5, 1020
Entosolenia 682
Entrophy 11
Enzyme 264
Eohippus 1077
Epeira 386
Ephyra 205
Epicurus 6, 76
Epidermis 493
Epilobium, pollen of 631
Epithelium 507
Equiangular spiral 748, etc.
Equisetum 460, 742
Erica 631
Eriocheir 250
Errera, Leo 53, 64, 222, 363, 482, 568
Erythrotrichia 580, 623
Estheria 828
Ethmosphaera 708, 710
Euastrum 364
Eucharis 624
Euclid 759
Eugly pha 316
Eulalia 664
Euler, Leonard 4, 27, 250, 356, 529,

609, 732
Eunicea, spicules of 657
Euphorbia 554
Euplectella 698
Euryale 61
Euryhaline 423
Eurypterus 517
Eustomias 423
Evelyn, John 935
Ewart, A. J. 29, 449
Excess and defect 1035
Exner, Sigmund 74

Fabre, J. H. 93, 1097
Facial angle 1055
Fairy-flies 47
Faraday, Michael 286, 292, 297, 510,

661, 719
Farr, Wm. 155
Farrea 689
Farrer, Enoch 965
Faure-Fremiet, E. 108, 232
Favaro, A. 774
Favosites 512
Fechner, G. T. 936, 1027
Fedorow, E. S. von 348, 552, 662, 734
Fehling, H. 246
Ferguson, A. 946
Fermat Pierre de 4, 356
Fessard and Laufer 90, 98
Festuca 507
Fezzan worms 251
Fibonacci 923
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Fick, L. 979
Fickert, C. 868
Fiddler crabs 206, 210
Fidler, T. Claxton 967, 990
Filter-passers 65
Final cause 4
Fischel, Alfred 184
Fischer, Emil 651; Hugo 631; M. H.

327; Otto 970, 999
Fishes, age of 176; eggs of 135; form 

of 1061
Fissurella 815
FitzGerald, G. F. 288, 449,510,675, 719
Fixed cell-size 103 ,
Flagellum 407, 506
Flamingo 23, 960
Fleming, R. M. 107, 125
Flemming, W. 296, 300, 304, 306, 314
Flight 41
Flint, Prof. R. 966
Florideae 639
Flower, Stanley F. 172
Flugel, G. 72
Fluid crystals 437
Fokker, A. P. 669
Fol, Hermann 299, 303, 335, 337
Folliculina 409
Fontenelle, B. le B. de 530, 989
Foot-and-mouth disease 65
Foraminifera 850
Ford, E. 191
Fordham, M. G. C. 336
Forficula 212
Forth Bridge 975, 992
Foster, Michael 321
Fourier, J. B. G. 8
Fox, Munro 242
Fraas, E. 1024
Fraenkel, G. 35
Frankenberger, W. 256
Fraser, J. H. 167
Frazee, 0. E. 282
Fredericq, Leon 255
Frequency, curve of 119
Frey-Wissling, A. 302, 347
Friant, M. 903
Frog, egg of 584, 603, 606; growth of

226
Froth or foam 432, 454, 482
Froude, W. 31, 33
Fucus 576
Fujiyama 121
Fulton, Angus R. 974
Fundulus 245, 323
Furchgott, R. F. 438
Fusulina 856
Fusus 818

Galathea 439
Galen 4, 704, 939

Galiani, Abbe 19
Galileo 9, 11, 12, 20, 27, 36, 152, 346, 

650, 825, 970, 997, 1026
Gallardo, A. 293
Galloway, Principal G. 960
Galls 265
Galton, Fr. 119, 120, 135, 158
Gamble, F. A. 695
Ganglion-cells, size of 61
Gans, R. 75
Garreau, Dr 929
Gaertner, R. 201
Gastrula 560
Gaudry, Albert 900
Gause, K. S. 121, 132, 354, 609, 1031
Gaver, F. von 901
Gavial 1065
Gebhart, W. 664, 979
Generation-time 153
Geodesics 741, etc.
Geoffroy St Hilaire, E. de 1019
Gerdy, P. N. 491, 745
Geryon, 299, 1057
Gestaltungskraft 731
Ghetto, A. 539
Giard, Alfred 286
Giardina, Andrea 330
Gibbs, Willard 356, 362, 471, 714, 719, 

733
Gila monster 959
Gilmore, C. W. 1008
Gilson, E. 19
Giraffe 1004, 1051

.Girders 991, etc.; continuous 1014;
parabolic 1009

Glaisher, James 411; J. W. L. 531,536
Glaser, Otto 246
Glassblower 744, 1049
Gley, E. 264, 268
Globigerina 365, 387, 675, 700, 750,

853 -
Glock, W. S. 235
Gnomon 759-766
Goblet cells 546
Goebel, K. von 58, 546, 643
Goethe 2, 29, 62, 344, 1019, 1026
Goetsch, W. 155
Golden mean 923, 932
Goldfish 198
Goldschmidt, R. 187, 466
Goldstein, W. C. 516
Golgi bodies 727
Golightly, W. H. 219
Gompertz, Benjamin 156
Goniatites 809
Goniodoma 738
Gonium 614
Gonothyraea 1060
Goodsir, John 286, 341, 456, 697, 751,

767
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Goringe, C. 202
Gortner, R. A. 248
Gott, J. P. 391
Gottlieb, H. 999
Gough, A. 436
Goupilliere, Haton de la 750, 778, 1030
Gourd, form of 1049
Gow, H. Z. 295
Grabau, A. H. 788, 796
Gradients, 193
Graham, A. 505; Michael 179, 183, 

346, 666; Thomas 292
Grandi, Guido 812, 1045
Grant, Kerr 418
Graphic statics 976
Grassi, G. B. 170
Graunt, John 98
Gravis, A. 930
Gray, Asa 223; James 156, 221, 228, 

243, 246, 306, 323, 335, 344, 407, 
450, 462, 587. 909

Greenhill, Sir A. G. 26, 28, 44
Greenwood, Major 132
Gregory, J. W. 219; R. P. 63; W. K.

900, 966, 969
Greville, R. K. 617
Grew, Nehemiah 341, 482, 545, 912
Gromia, 387, 415, 700
Gryphaea 802, 830
Gudernatsch, J. S. 264
Guillemot, egg of 936
Guineapig 115
Gulliver, G. 61
Gulliver’s Travels 22
Gunther, F. 0. 937; S. 916, 931, 1053
Gurney, R. 165
Gurwitsch, A. 328, 455

Haberlandt, O. 262
Habermehl, K. 483
Hacker, V. 695, 698
Haddock 1008, 1088
Haeckel, Ernst 690
Haeusler, Rudolf 419
Haldane, J. B. S. 158; J. S. 956
Hale White, Sir William 949
Hales, Stephen, 88, 191, 955
Halibut 180
Haliotis. 765, 802, 804, 813, 815, 822
Hall, C. E. 236*
Haller, A. von 2, 82, 88, 93, 97, 184, 

271, 279, 532, 956
Halley, E. 755
Halobates 67
Halosphaera 406
Hamai, Ikuso 167, 177
Hambidge, Jay 755, 924, 931
Hamburger, H. J. 437
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Hamilton, R. 1055; Sir \\ Rowan 356
Hammett, D. W. 206
Hankin, E. H. 46, 50
Hanstein, Johannes 494, 593
Hardesty, Irving 61
Hardy, Sir W. B. 73, 303, 304, 322
Hargenvilliers, M. 100
Harmozome 264
Harpa 780
Harper, R. A. 615
Harpinia 1059
Harrie, J. 2v3
Harrison, Ross 986
Harting, P. 653
Hartog, M. 293, 514
Hartridge, H. 436
Harvey, E. N. and H. W. 322; W 12,

955
Hasikura 411
Hastigerina 675, 851
Hatai, S. 256, 262
Hatano, T. 241
Hatchett, Charles 6 >3
Hatsehek, Emil 395, 437, 562, 681
Haughton, Samuel 544, 949
Haushbfer, M. 147
Hauy, R. J. 526, 1028
Hawkins, H. L. 505
Hay, O. P. 1008
Hay craft, J. B. 360, 988
Headley, F. W. 44
Heart, growth of 186; muscles of 743
Heath, Sir T. L. 762
Heaviside, O. 24
Hecht, Selig 199, 206, 1089
Hedges, E. S. 661
Heel bone 982
Hegel, G. W. S. 5
Hegler, R. 974, 985
Heidenhain, M. 85, 361
Heilbronn, L. V. 232, 328, 350
Heilmann, Gerard 1080
Hele-Shaw, H. S. 774
Helianthus 913
Helicina 777
Helicometer 786
Heliolites 513
Heliozoa 465
Hellmann, G. 411
Helmholtz, H. von 2, 10, 12, 42, 393
Hemicardium 829
Hemmingsen, Axel M. 133
Henderson, L. H. 254; L. J. 27; W. P.

510
Henle, F. G. J. 73
Hennessy, H. 532
Henslow, G. 916, 930
Heredity 284, etc.
Hero of Alexandria 527, 759, 761
Heron-Allen, E. 649, 704, 786
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Herpetomonas 431
Herrera, A. L. 649
Herring, growth of 181, 183
Herschel, Sir John 2, 24, 137, 266, 

976
Hertwig, C. 306; G. and P. 221; O. 85,

226, 344, 605; R. 60, 229, 456
Hertzog, R. O. 858
Hesse, W. 952
Heterogony 205, 209, 279
Heterophyllia 621
Hexactinellids 662, 688
Heymons, R. 254
Heyn, A. M. J. 243
Hexagonal symmetry 496, 499, 507, etc.
Hickson, S. J. 657
Hilbert, David 382
Hill, A. V. 248, 438, 449; F. J. 72;

John 545
Hime, H. W L. 811
Hindekoper, R. S. 876
Hippopus 219, 824
Hirata, M. 525
His, W. 83, 84, 85, 111
Hobbes, Thomas 290
Hober, R. 250, 304
Hofbauer, C. 180
Hoffmann, C. 892; H. 21, 217
Hofmeister, F. 171, 344, 358, 387, 481, 

915, 919
Hogben, Lancelot 98, 147
Hogue, Mary J. 363
Holism 1020
Holland, R. H. 260; W. J. 1006
Holmes, Eric 265; O. W. 969, 1050
Holothurians 677, 718
Hooke, Robert 341, 348, 351, 358, 482,

512, 545, 805
Hooker, R. H. 217
Hookham’s crystals 659
Hop, growth of 238, spirals of 820, 

891
Hormones 263
Homs 874
Horse, skull of 1076; teeth of 904-6
Horse-chestnut, leaf of 1047
Houssay, F. 774
Howes, G. B. 1022
Hubbs, L. 170
Huia bird 897
Hukusina, H. 523
Hull, C. H. 98
Hultmann, F. W. 544
Humboldt, A. von 73, 251
Hume, David 49, 123, 143, 960
Hunter, John 266, 544, 897, 949, 955, 

1020
Huntingdon, E. 240
Huxley, Julian S. 206; T. H. 17, 1020, 

1031, 1065

Huygens, Chr. 609, 1029
Hyacinth 628
Hyalaea 833
Hyalonema 677
Hyatt, Alfred 806
Hyde, Ida H 243, 293, 323, 332
Hydra 282, 294, 382
Hydractinia 559
Hyperia 1069
Hypodermis 506
Hyrachyus 1072, 1074
Hyracotherium 1080
Hyrax 903

Ichthyosaurus 1068
Icosahedron 724, 735
Iguanodon 1005
Ikada, Y. 1084
Imbert, A. 449
Inachus, sperm-cells of 440
Index, ponderal 195
Indol-acetic acid 263
Infusoria, ciliate 296, 743
Insect-eye 510, 512
Insulin 264
Intussusception 347
Inulin 665
Ionic regulation 463
Irvine, Robert 648, 669
Isely, L. 768
Ishikawa, C. 339
Isocardia 839
Isoperimetrical problems 566

Jackson, C. H. 110, 184
Jacob, Captain 544
Jaeger, F. M. 357
Jamin, J. C. 651
Janet, Paul 6
Janisch, E. 221
Japp, F. R. 651
Jeffreys, Harold 505
Jenkin, C. F. 679, 997
Jenkinson, J. W. 191, 746
Jennings, H F. 361, 746; Vaughan 656
Jensen, Boyson 263, 360
Johansen, A. C. 229
Johnson, E. N. 649; Dr Samuel 2, 90,

92, 184
Johnstone, J. 189
Joly, John 14, 92, 238
Jonqui^res, Alfred de ' 733
Jorgensen, E. 617
Jost, L. 222, 483
Juncus, pith of 546
J ungermannia 638
Juhn, Mary 267
Juli, M. A. 943
Jurine, Louis 11
Just, E. 335
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Kagi, Nobumasa 165
Kahlenberg, Louis 457
Kangaroo 1005
Kant, Immanuel 1, 4, 21, 1020
Kappers, J. Ariens 186, 264
Kapteyn, J. C. 133
Keats, John 949
Keill, James 11
Keller, H. 986
Kellicott, W. E. 187
Kellner, G. W. 21
Kelvin 2, 14, 19, 26, 35, 137, 348, 548, 

551, 690
Kent, W, Saville 406, 408, 433
Kepler, J. 9, 284, 526, 528, 695, 724, 

731, 923, 931
Kerr, Sir J. Graham 806
Keynes, J. M. 89, 121, 784, 927
Kidney-beans 524
Kielmeyer, C. F. von 79
Kienitz-Gerloff, F. 481, 595, 639
Kieser, D. C. 532, 545
Kirby and Spence 36
Kircher, Athanasius 45, 977
Kirchhoff, G. 393
Kirkman, T. P. 597
Kirkpatrick, R. 671
Kitching, J. A. 295
Klatt, B 189
Klebs, G. 482
Klein, Felix 2
Klem, Alfred 153
Klugel, G. S. 531, 538, 544
Knoll, Philipp 949
Koch, G. von 218
Koehler, R. 687
Koenig, Samuel 529
Kofoid, C. A. 431
Kogi and Koster mans 263
Koller, Wilding 59
Kolli (or Colley), R. A. 64
Kblliker, A. von 647
Kollmann, M. 300
Koltzoff, N K. 81, 428, 701
Konungsberger, W. J. 170
K oppen, Vladimir 217, 222
Korotneff, A. 602
Kostitzin, V. H. 146, 159
Kraus, W. 72
Kreusler, G. A. von 154
Krizensky, J. 265, 273
Krogh, A. 221, 229, 246, 956
Kuenen, D. J. 251
Kuhl, Willi 216
Kuhn, A. 54
Kiihne, W. 346, 388
Kukenthal, Willy 900
K iister, E. 663
Kuwada, Y. 305
Kuwana, Z. 163

Kuwaori, M. 1084

Lafay, A. 502
Lafresnaye, F. de 985
Lagena 414, 564
Lagrange, J, L. 27, 356, 931, 950
Lalanne, L. 544
Lamarck, J. B. de 808, 1023
Lamarle, E. 486, 497, 559, 595, 714
Lamb, A. B. 293, 324
Lame, Gabriel 923, 1058
Lamellaria 813
Lammel, R. 196
Lamy’s theorem 468
Lanchester, F. W. 26, 31, 41, 44, 45
Langmuir, Irving 72, 449, 464
Lankester, Sir E. Ray 5, 412, 704
Lapierre 935
Laplace, P. S. de 1, 70, 89, 121, 354, 

368
Larmor, Sir Joseph 14, 347, 380, 418 
Lartigues, Alfred de 751, 1045
Latrunculia 690
Laue effect 670
Lavater, J. C. 1053
Lavoisier, A. L. 11, 348
Law, Burelli’s 36, 37; Brandt’s 727;

Bergmann's 35; Brooks’s 165;
Errera’s 482; Euler’s 733; Froude’s 
31, 33; Gibbs-Thomson 451; Hert- 
wig’s 306, 328; Kielmeyer’s 79; 
Lamarle’s 487; Liebig’s 153; 
Maupertuis’s 356; Muller’s 725; 
Stokes’s 71; Van’t Hoff’s 221; 
Verhulst-Pearl 141; Weber’s 133; 
Wolff’s 3, 79, 285

Lea, Einar 182; Rosa M. 183
Leaves, forms of 1041
Leblond, E. 328
Le Breton, E. 34, 60, 162
Le Chatelier, Louis 445
Leche, W. 906
Ledingham, J. C. G. 248, 360
Leduc, Stephane 283, 297, 324, 501, 

649
Leeuwenhoek, A. van 60, 180, 358, 512
Leger, L. 653
Le Hello, P. 37
Lehmann, 0. 437, 563, 675, 788, 852
Leibniz, G. W. von 4, 6, 290, 356, 

609
Leidenfrost, J. G. 446
Leidy, J. 433, 707
Ijeinemann, K. 512
Leitch, I. 223
Leitgeb, H. 481
Lemna 67, 263
Lendenfeld, R. 46
Lengerich, Hans 619
Length-weight coefficient 194, 1089
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Leonardo da Vinci 1, 912, 932, 954
Leonardo of Pisa 923
Lepides thes 505
Lepidopue 1038
Leptocephalus 169
Lesage, G. L. 26
Lesbia 267
Leslie, Sir John 294, 751, 770, 815
Leequeureusia 706
Lestiboudois, T. 916
Levers, orders of 988
Levi, G. 2, 60, 62
Lewis, C. M. 447; F. T. 58, 357, 517,

551, 774
L’Heritier, P L. 162
Lhuiller, S. A. J. 530, 536
Liebig, G. W. 2, 153
Liesegang’s rings 659
Light, pressure of 337
Lilienthal Otto 41, 43, 961, 964
Lillie, F. R. 5, 268, 275, 337, 558;

R. S. 288, 314, 322, 331, 649
Lilliput 22
Lima 827
Limnaea 312
Limpet 177
Lines of force 294; of growth 825
Lingelsheim, A. 667
Lingula 412
Linnaeus 144, 735, 804, 964, 1028
Linsser, C. 217
Lippmann, Gabriel 121, 464
Lister, J. J. 671
Listing, J. G. 609, 820
Lith 488
Lithocardium 824
Lithocubus 715
Lithostrotion 512, 513
Lituites 802, 809
Livi, R. 194
Lloyd, LI. 219
Lobatschevsky, N. 11
Lobster 162, 278
Locust 164
Loddigesia 267
Lodge, Oliver 288, 1027
Loeb, J. 230, 245, 250, 256, 266, 276,

287, 330, 335, 626
Loewy, A. 450
Logarithmic spiral 1047, etc.
Logistic curve 145
Lo Monaco, Domenico 163
Lonnberg, E. 876, 878, 893, 895
Loria, Gino 368, 755
Lotka, A. .1. 11, 19, 76, 143, 158,

255
Lotze, R. H. 83
Lucanus 208
Lucas, Eduard 609, 923; F. A. 271
Luciani, Luigi 163

Lucretius 6, 76, 163, 183, 270, 290, 740
Ludwig, Carl G. 341; F. 916; W.

747
Lumbriculus 275
Lunar influence 242
Lund, E. J. 280
Lupa 1057
Lupine, growth of 159, 223
Luyten, W. J. 121
Lychnocanna 721
Lyon, C. J. 240
Lyons, C. G. 72

Macalister, Alexander 816; Sir Donald 
967, 979

Macallum, A. B. 447, 458, 629; J. B.
745

McClement, W. D. 65
McCoy, Frederick 621
Macdonald, J. 29
McDougal, D. T. 235, 237, 241
MacDowall, E. C. 162
Mach, Ernst 4, 9, 357
Machairodus, teeth of 898
McIntosh, W. C. 897
McKendrick, J. G. 151, 341
Mackinnon, D. L. 431, 853
Mackintosh, N. 176
Macky, W. A. 435
Maclagan, D. Stewart 155
Maclaurin, Colin 25, 530, 1096
McMurrich, J. Playfair 239, 954
Macrocheira '52
Macroscaphites 809
Mactra 125, 177
Magnan, A. 45
Maier, H. N. 434
Maize, growth of 224, 247, 471
Malaria equations 146
Mall, F. P. 745
Mallock, A. 235, 238, 934
Malpighi, Marcello 341
Maltaux, Mlle 225
Malthus, T. R. 143
Maraldi, J. P. 528, 695; angle of 498,

682, 712, 720
Marbled papers 1048
Marriott, R. H. 350
Marsh, O. C. 1067
Marshall, E. K. 248
Marsigli, Comte L. F. de 934, 971
Martin, C. H. 431; L. 525
Mason, C., W. 55
Massart, J. 225
Mast, S. O. 359
Mastodon 899
Matthew, A. 1006
Matthews, A. P. 280, 444, 455
Maupertuis, P. L. M. de 4, 6, 7, 356, 

1031
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Maxwell, J. Clerk 12, 14, 26, 64, 71, 75, 

136, 291, 354, 368, 374, 378, 465, 
467, 609, 794, 820, 964, 989, 997, 
1084

Mayer, A. 356
Mean sea level 137
Medawar, P. B. 156
Medusochloris 397
Medusoid 120, 396, 619
Medvedewa, Mme 251
Meek, A. 169, 198
Megusar, F. 165
Meige, H. 1053
Melanchthon, Philip 5
Meldola, R. 958
Melipona 525, 539
Mellanby, Kenneth 220
Melo 779
Melobesia 646
Melssens, L. H. F. 451, 482
Mensbrugghe, G. van der 361, 475, 579
Meredith, H. V. 113
Merke, E. 678
Merrill, Margaret 101
Mersenne, Marin 754, 809
Mesocarpus 460
Mesohippus 1079
Metzger, E. B. 553
Meves, F. 293, 438, 455
Meyer, Arthur 665; G. H. 12, 988;

Hermann 976, 979
Micellae 347, 747
Michaelis, L. 449
Miescher, J. 339
Miliolina 859
Mill, J. S. 9
Millikan, R. A. 74, 970, 997
Miller, W. J. 32
Milner, R. S. 447
Milton, John 1097
Mimicry 958
Minchin, E. A. 430, 679
Miner, J. R. 158
Minimum, Law of 153
Minkowski, Hermann 566
Minnow 117, 133
Minot, C. S. 61, 110, 141, 1030
Miohippus 1079
Mitchell, Sir P. Chalmers 1002
Mitochondria 296, 455
Mitosis 300
Mitra 143
Mobius, K. 684; M. 341
Mogk, H. 1058
Mohl, H. von 888
M< ina 231
Mole, forelimb of 963
Mole-cricket, chromosomes of 315
Moller, V. von 856
Monad 435; monadology 7

Monnier, A. 115, 256. Denis 649
Monolayers 352, 464
Montbeliard, P. G. de 100
Moonfisji 1021
Moore, A. R. 347
Morey, S. 422
Morgan, T. H. 262, 271, 275, 279, 340
Morita 999
Morosow, A. W. 666
Morse, Max 265
Mortality, curve of 178
Moseley, H. 12, 661, 770, 784, 811,

876; H. G. J. 784; H. N. 784
Moss, gemma of 595, 638
Mouillard, L. P. 46, 205
Mouse, growth of 161
Moving average 239
Mrazek, A. 327
Mucor, sporangium of 479
Mud, cracks in 516
Mullenhof, K. von 42, 540
Muller, Fritz 3; Johannes 73, 697, 725
Mullet 179
Mummery, J. H. 657
Munro, H. 512
Murie, James 897
Murex 180, 781
Mun ay, C. D. 950, 957; H. A. 243
Musk ox, horns of 877
Mutations 1095
Myers, J. E. 661
Mymaridae 47
Myonemes 701
Mytilus 1061
Myxomycetes 346

Naber, H. A. 762
Nageli, C. 242, 289, 347, 359, 387, 403,

631, 747
Nakaya, U. 411
Napier, James R. 32; of Merchiston

68
Narwhal 907
Nassellaria 712
Natica 613
Naumann, C. F. 788, 796, 916
Nautilus 749, 765, 813, 840 843, 855,

1047
Necturus 265
Needham, Joseph 79, 98, 108, 141, 268
Negligibility, principle of 1029
Neottia, pollen of 488, 631
Nereis, egg of 558, 633
Neumayr, M. 870
Newell, H. F. 395
Newton, Sir Isaac 1, 6, 9, 11, 20, 55,

284, 288, 755, 989
Nicholson, H. A. 621; J. W. 690
Niclas, P. 755
Nielson, N. 263
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Nino, el 220
Noboru Abe 167
Nodoid 369, 425
Nodosaria 421
Noll, Fritz 154
Norman, A. M. 704
Norris, Richard 437
Northrop, J. H. 230
Nostoc 477, 493
Notosuchus 1065
Nuclear spindle 299
Nummulite 811, 855
Nussbaum, M. 343

Oak, an ancient 240
Odontoceti 1024
Odquist, G. 328
Oedogonium 487
Ogilvie-Gordon, M. M. 654
Oithona 1055
Okada, Y. K. 61
Oken, L. 5, 546, 751 888, 912, 1023
Okuso Hamai 167
Olivier, Theodore 812
Oljhovikov, M. A. 241
Onslow, H. 55
Onthophagus 214
Operculina 857
Operculum of gastropods 774
Ophiurid larvae 626
Oppel, A. 184
Orbitolites 360, 852
Orbulina 88, 376, 861
Ord, W. M. 653
Ornithosaurians 1069
Orthagoriscus 1048, 1064
Orthoceras 765, 809, 841, 1047
Orthogenesis 807
Orthotoluidene 370
Orton, J. H. 165, 177
Osborne, H. F. 147, 900, 905, 1019,

1036, 1072
Oscillatoria 477
Osmosis 18, 243, etc.
Osmunda 631, 640
Ostracoda 165
Ostraea 165, 219
Ostrich 47, 264, 1011
Ostwald, Wilhelm 74, 171, 256, 658;

Wolfgang 162, 253, 327, 450
Otoliths 666
Ottestad, Per 153, 154
Overbeck, A. 393, 423
Ovis Ammon, Poli etc. 882
Owen, Sir R. 29, 290, 806, 838, 900, 906,

949, 955
Ox, growth of 201
Oxyotes 662

Pacioli, Luca 89

Packard, A. S. 937
Pai, Kesava 151
Palaeechinus 946
Palm 888
Paludina 777
Pander, C. H. 83
Pangenesis 788
Pantin, C. J. 359; F. A. 254
Paphia 177
Papilio 664
Papillon, Fernand 14
Parabolic girder 995
Paralomis 1057
Paramoecium 425
Parker, A. S. 260; G. H. 172; S. L.

155
Parr, Old 132
Parsons, H. de B. 1089
Partitions, theory of 609
Pascal, Blaise 2, 11
Pascher, A. 398, 632
Passiflora, pollen of 631
Pasteur, L. 650
Patella 167, 805
Pattern, 1090
Pauli, W. 360, 656, 669
Paulian, Ren£ 215
Pearl, Raymond 118, 149, 155, 158,

186, 193, 937, 959
Pearsall, W. H. 223
Pearse, H. L. 263
Pearson, G. A. 236; Karl 60, 119, 125,

166, 190, 884
Peas, growth of 223
Pecten 830
Peddie, William 318, 561
Pellew, Ann 502
Pellia, spores of 478
Pelseneer, Paul 833
Pendulum 39
Peneroplis 868
Penguin 1015
Penicillium 244
Penrose, M. 449
Periblem 494
Peridinium 487, 615, 738
Periploca, pollen of 631
Permeability, magnetic 311
Perrin, J. 9, 74
Peter, Karl 221, 229
Peters, R. A. 257
Petersen, Chr. 758, 796, 808; C. J. G.

177
Petsch, T. 29
Pettersson, Otto 240
Pettigrew, J. B. 744, 995
Petty, Sir William ri), 98
Pfeffer, W. 159, 222, 335, 336, 440, 627,

985
Pfeiffer, F. X. 931; N. 241



INDEX mi
Pfliiger, E. 974
Phagocytosis 360
Phascum 642
Pha se- beauty 194
Phasiauella 772, 816
Phatnaspis 728
Philip, H. F. 48
Philipsastraea 514
Philolaus, 1097
Phormosoma 947
Phractaspis 730
Phyllophorus 718
Phyllotaxis 912
Phylogeny 340, 413, etc.
Picken, L. E. R. 404
Pike, F. H. 950
Pileopsis 814
Pinacoceras 817
Pine-cone 515, 916
Pinna 1061
Pirondini, G. 813
Pisum 223
Pith of rush 547
Pithecanthropus 108-‘>
Pituitary body 264
Placuna 166
Plaice 195, 213, 229, 1088
Planaria 282
Planck, Max 21
Planorbis, 803, 813, 816
Plateau, Felix 38, 385; Joseph 71, 

332, 351, 368, 373, 398, 465, 475, 
496, 549, 563, 596, 712, 710

Plato 2, 152, 695, 724, 1026, 1097
Platonic bodies 724, 734
Plerome 464
Pleurocarpus 460
Pleurotomaria 777
Pliny 527, 749
Plutarch 1026
Pluteus larva 648
Podocoryne 559
Podocyrtis 718, 721
Poincare, Henri 21, 108, 284, 1028
Poiseuille, J. L. M. 956
Poisson, S. D. 89, 118
Polar furrow, 487
Polarity, morphological 280
Polistes 488, 526
Political arithmetic 90
Pollen 67, 630
Polyhalite 667
Polyhedra 550, 732, etc.
Poly prion 1063
Polyspermy 335
Poly trichum 576
Pomacanthus 1062
Ponder, Eric 436, 438
Ponderal index 194
Pony, Shetland 268

Popoff, M. 60, 456
Poppy seed 564
Population 142
Porcelain, crackles in 523
Porchet, M. S. 256
Portier, Paul 248
Potamides 813
Potassium 459
Potter’s wheel 392
Pottery, Roman 415
Potts, R. 246
Pouchet, G. 648
Poulton, Sir E. B. 958; E. P. 95
Powell, B. 544
Prenant, A. 293, 299, 323, 456, 459;

Marcel 670
Preston, F. W. 521; R. D. 403, 743
Price, A. T. 967
Price-Jones, C. 819
«Priestley, J. M. 223, 471, 480, 495
Pringsheim, N. 601
Prismatium 718
Probability, theory of 20, 118, 136
Procetus 1024
Productus 829
Protococcus 80. 406, 477
Protohippus 1080
Przibram, Hans 165, 194, 216, 275,

278, 360. 858; Karl 75, 76
Psammobia 1061
Pseudopriacanthus 1063
Pteranodon 1069
Pteridophora 267
Pteris, antheridia of 643
Pteropods 832
Pucraria 159
Puget, M. 512
Pulvinulina 750, 766, 858, 863
Pupa 808
Purkinje, J. E. 290
Putter, A. 56, 222, 360, 747
Pyrosoma, egg of 602
Pythagoras 2, 759, 1026, 1097

Quadrant, bisection of 580
Quadrula 702
Quagga 1090
Quastel, J. H. 449
Quekett, J. T. 654
Quetelet, A. 89, 95, 136
Quincke, H. H. 322, 331, 359, 418, 447,

502, 579, 659
Quirang, D. P. 203

Rabbit, growth of 117, 187; skull of
1077

Rabelais 5
Rabi, K. 60, 487
Radau. M. 38
Radiolaria 694
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Rado, Tibor 382
Rainey, George 10, 653
Ram, horns of 878
Raman, Sir C. V. 656
Rameau and Sarrus 33
Rammer, AV. 165
Ramsden, W. 451
Ramulina 413
Ranella 781
Rankine, W. J. Mat quorn 355, 755, 

997, 1017
Ransom’s waves 294
Ranzio, Silvio 242
Raphides 646
Rashevsky, N. 70, 333
Rasumowsky, V. I. 979
Rauber, A. 490, 604, 633, 970, 979
Ray, John 4
Rayleigh, Lord 26, 55, 69, 72, 304, 

380, 398, 418, 449, 469, 502, 510,* 
659

Read, L. J. 149
Reaumur, R. A. de 12, 162, 271, 528, 

684, 781, 1031
Redwood, growth of 237
Reed, H. S. 260
Re^an, C. Tate 423
Regeneration 271
Reichenbach, Hans 123
Reichert, C. B. 290
Reid, E. Waymouth 437
Reighart, J. E. 959
Reindeer beetle 209
Reinecke, J. C. M. 785
Reinke, J. 481, 576
Relay crystals 663
Remak, Robert 341, 456
Reusch, B. 55
Revenstorf 979
Reymond, Du Bois 73
Rhabdammina 870
Rheophax 422
Rhinoceros 807, 874, 905
Rhode, von 194
Rhumbler, L. 293, 301, 419, 506, 704, 

807, 852, 863, 871, 892
Riccia 593, 677
Rice, J. 400
Richards, O. W. 153
Richardson, G. M. 650
Richet, Charles 34
Richtmeyer, F. K. 54
Rideal, E. K. 72, 437
Ridgeway, Sir W. 1091
Riemann, B. 609
Ripples 510
Rissoa 565
Rivularia 477
Robb, R. C. 187
Robert, A. 483, 556, 568, 601

Robertson, Muriel 43; R. 162; T. B..
113, 130, 257, 331

Robin, Ch. 1020
Robinson, Wilfred 746
Roederer, J. B. 98
Rohrig, A. 437, 892
Rollefson, Gunner 179
Rolleston, G. 206
Roosevelt, Th. 961
Rorqual, Sibbald’s 69, 173
Rose, Gustav 654
Ross, Ronald 146, 158
Rotalia 365, 792, 865
Rouleaux of blood-corpuscles 439
Roulettes 368
Roux, W. 12, 84, 287, 337, 584, 607„

952
Rudolf, G. de M. 980
Runge, F. F. 659
Runnstrom, J. 438
Rusconi, M. 487
Ruskin, John 661, 932
Russell, E. S. 167
Russow, 110
Rutherford, Lord 286
Riitimeyer, L. 906
Ryder, J. A. 330, 360, 899, 937
Rzasnicki, Adolf 1091

Sachs, J. 60, 63, 115, 222, 344, 933, 974z
Sachs’s rule 450, 475, 567, 601
Sagrina 422
St Ange, G. J. Martin 243
St Loup, R. 162
St Venant, Barre de 884, 891, 967
Salisbury, E. J. 217
Salpingoeca 408
Salvia, hairs of 488
Salvinia 601
Bambon, L. W. 944
Sarnec, M. 656, 669
Samter, M. and Heymons 254
Sandberger, G. 796
Saponin 446
Sapphirina 1055
Sarcode 18
Sasaki, Kichiro 198, 301
Saunders, A. M. Carr 148
Savart, F. 380, 771
Sayer, A. B. 68
Scalaria 780, 804, 813
Scale, effect of 23, 673
Scammon, R. E. 100, 108
Scaphites 809
Scapholeberis 506
Scapula, human- 1082
Scarus 1062
Schacko, G. 866
Schaeffer, G. 60, 162
Schafer, E. A. Sharpey 264
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Schaper, A. 168
Schaudinn, F. 75, 456
Scheel, K. 363
Schellbach, K. H. 325, 544
Schewiakoff, W. 316, 701
Schimper, C. F. 915
Schistosoma 943
Schleiden, Matthias 341, 546
Schmaltz, A. 969
Schmankewitz, W. 251, 254
Schmidt, Johannes 169, 191, 238, 656;

R. 979; W. J. 312, 647, 835
Schofield, R. K. 986
Schoneboom, C. G. 467
Schonfliess, A. 348
Schultze, F. Eilhard 692; Max 17,510
Schutte, D. J. 234
Schutz, Fr. 445
Schwalbe, G. 951
Schwan, Albrecht 688
Schwann, Theodor 12, 17, 341, 508,

603, 854
Schwendener, S. 359, 481, 973
Scoresby, William 411
Scorpaena 1063
Scorpioid cyme 767
Scot, Michael 923
Scott, W. B. 1081
Scyromathia 1057
Sea-anemones 184, 244
Searle, H. 745
Seasonal growth 232
Bea-urchins 625, 944; eggs of 353, 602;

growth of 229
Sectio aurea, s. divina 923
Sedgwick, Adam 79, 342, 344
Sedillot, C. E. 985
Sedum 628
Segner, J. A. von 351
Selaginella 638
Selection, natural 770, 840, 936
Seienka, L. 653, 689
Seligmann, G. 500
Selous, F. C. 961
Semi-permeable membranes 437
Semon, R. 653, 687
Seneca 2
Senility 132
Sepia 838
Septa 840; of corals 621
Sequoia 237, 240
Serbetis, 0. D. 179
Serpula 865
Serret, Paul 813
Shad, growth of 196
Shapley, Harlow 68, 221
Sharpe, D. 728; Sam 544
Sharpey, William 955
Shearing stress 981, 1017, 1040
Sheep 876

Shinryo, M. 265
Ship, speed of 31
Shrinkage 563
Shuleikin, W. 909
Siegwart, J. E. 544
Sigaretus 814
Silicoflagellata 717
Silkworm, growth of ln3
Similitude, principle of 25, 27
Simmonds, Katherine 98, 107
Sinclair, Mary E. 363
Sinnett, E. W. 1049
Siphonogorgia 647
Sitter, W. de 384
Slack, H. J. 510
Slator, A. 153
Slipper limpet 166
Sloan, Tod 993
Sloth 899, 1007
Smeaton, John 29
Smellie, W. 543
Smilodon 271
Smith, Adam 143; D. B. 967; Homer

248; Kenneth 65
Smoke 504
Smoluchowski, M. von 74;, 439, 450
Smuts, J. C. 1020
Snow-crystals 411, 599, 695
Soap-bubbles 600
Socrates 695
Soding, H. 281
Sohncke, L A. 348
Solanum Dulcamara 889
Solarium 804, 813
Solecurtus 827
Solen 828
Solger, B. 979
Sollas, W. J. 675, 692
Sorby, H. C. 646, 1037
Sosman, R. B. 521
Southwell, R. V. 502, 885, 967
Spallanzani, L. 271
Span of arms 189
Spandel, Erich 419
Spangenberg, Fr. 559
Spath, L. F. 806
Spatial complexes 610
Spek, J. 295, 330
Spencer, Herbert 26, 143, 194, 255
Spermatozoon, path of 434
Sperm-cells 441
Sphacelaria 571
Sphaerechinus 229, 275
Sphagnum 634, 641
Spherocrystals 665
Spherulites 655
Sphodromantis 165
Spicules 547; of sponges 679; holo

thurians 687; radiolaria 697
Spider’s web 386
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Spindle, nuclear 308
Spira mirabilis 758
Spiral, of Archimedes 752; logarithmic

748
Spireme 312
Spirifer 829, 831
Spirillum 433
Spirochaetes 383, 410, 432
Spirographis 848
Spirogyra 16, 171, 371, 378, 401, 578,

677
Spirorbis 848, 865
Spirula 805, 815
Splashes 389, 393
Sponge-spicules 675
Spottiswoode, W. 1097
Squilla 164
Srinavasam, P. S. 656
Stability, elastic 1015
Stag-beetle 208
Staigmuller, H. 1053
Standard deviation 124
Starch 665
Stark, J. 263
Starling, E. H. 264
Starvation 189, 265
Staudinger, H. 303
Stay, Benedict 531
Stefanowska, Mlle 115, 116
Stegocephalus 1059
Stegosaurus 1006, 1009, 1067
Steinbach, C. 973
Steiner, Jacob 357, 376, 734, 936
Steinmann, G. 665
Stellate cells 547
Stenohaline 250
Stentor 275, 424
Stephenson, John 341; Robert 1012
Stereochemistry 651
Sternoptyx 1062
Sternum of bird 1013
Stevenson, R. L. 20
Stillman, J. D. 993
Stokes, Sir G. G. 71
Stomach, muscles of 743
Stomata 627
Stomatella 813
Strangeways, T. S. 305
Strasburger, E. 642
Straub, J. 440
Straus-Durckheim, H. E. 38
Stream-lines 941, 965, 1048
Strehlke, F. 385
Strength of materials 973
Strontium 697
Stuart, Norman 667, T. P. A. 1050
Studer, T. 647, 657 '
Succinea 815
Suffert, F. 55
Sun-animalcule 427

Sunflower 258, 913
Surface energy 354
Surirella 134
Sutures of cephalopods 840
Suzuki, Kuro 241
Svedberg, T. 65
Swammerdam, Jan 12, 164, 512, 528,

531, 538, 604, 785
Swamy, S. R. 656
Swezy, Olive 431
Swinnerton, H. H. 831
Sydney, G. J. 77
Sylvester, J. J. 2, 1031
Symmetry, meaning of 357
Synapta, egg of 689: spicules of 688
Synge, J. L. 911
Synhelia 514
Szava-Kovatz, J. 217
Szent-Gyorgyi, A. von 457
Szielasko, A. 936

Tabaka, T. 231
Tadpole, growth of 168, 271, 282 -
Tait, P. G. 2, 59, 354, 459, 609, 924
Takahasi, K. 500
Taonia 476
Tapetum 641
Tate, John 10
Tate Regan, C. 423
Taylor, G. I. 398, 416; Jeremy 526
Teeth 846; of dolphin 899; elephant

901, horse 908
Teissier, George 248
Teixiera, F. G. de 318, 755
Temperature coefficient 16, 221
Tenebrio 272
Teodoresco, E. C. 241
Terao, A. 231
Terebra 772, 787, 911
Temi, L. 60
Terquem, Olry 378, 544
Tesch, J. J. 199
Tetracitula 487
Tetractinellida 586
Tetrahedron 497
Tetrakaidekahedron 734
Tetraspores 632
Textularia 867
Thamnastraea 514
Thatcheria 805, 813
Thayer, J. E. 960
Thecosmilia 512
Theel, H. 678
Theocyrtis 716
Thevenot, Jean 538
Thienemann, F. A. L. 936
Thigh-bone 977
Thigmotaxis 360
Thimann, K. V. 263
Thoma, R. 951
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Thompson, W. R. 146
Thomson, Allen 956; James 26, 355, 

418, 502, 521; J. Arthur 704; 
J. J. 395,447; S. H. 156; Warren 
S. 147; C. Wyville 705; William, 
see Kelvin

Thornton, H. G. 151
Threads 380
Thyone 717
Thyroid gland 186, 265
Tiegs, O. W. 359
Tilesius, B. 939
Time-element 79
Tintenpilze 393
Tintinnus 408
Tischler, G. 339
Tissot, A. 813, 1033
Titanotherium 1003, 1075
Todd, T. Wingate 98
Tomistoma 1065
Tomkins, R. G. 217, 244
Tomlinson, C. 418, 579, 661, 723
Tomotika, S. 398
Topinard, P. 1055
Topology 609 •
Tornier, G. 1006
Torpedo 449
Torque of inertia 910
Torre, Father G. M Della 358
Torsion 887
Tortoise 172, 517
Townsend, C. H. 172
Trachelophyllum 410
Tradescantia 388
Transformations, theory of 1032 
Traube, M. 457, 649
Trees, growth of 235; height of 29
Trembley, Abraham 27, 274
Treutlein, P. 760
Trianaea, hairs of 387
Triangular numbers 512, 760
Triceratium 511
Trichodina 381
Trichomonas 430
Tridacna 219, 824
Triepel, H. 979
Triolampas 716
Tripocyrtis 721
Triton 813
Tritu berculy 900
Trochus 556, 601, 820; egg of 601, 602
Trophon 780
Trout, growth of 176, 191, 229, 288, 294
Truman, A. E. 831
Trypanosomes 430
Tubular structures 971
Tabularia 245, 275
Tur, Jan 83
Turbinella 805
Turbo 771, 775

Turgor 243, 245
Turner, Sir William 1081
Turritella 742, 771, 814
Turtle 519
Tutton, A. E. H. 38, 696, 731
Tylor, E. 380
Tyndall, J. 504, 661; Tyndall’s blue 55
Types, Cuvierian 1094
Typha 631

Uca 206
Uhlenhuth, E. 264
Ultra-violet light 241
L’nduloid 369
Lnio 558
Univalves 812
Urosalpinx 167
Uvarow, B. P. 219

Vacuole, contractile 295
Vaginicola 409
Valin, H. 649
Vallisneri, Antonio 271
Vallisneria 161
Valonia 403, 743
Van Bambeke, Charles 17, 345
Van Beneden, Eduard 300
Van Bischoff, Th. 189
Van der Horst, J. 54, 264
Vandermonde, N. 609
Van Heurck, Henri 434
Van Iterson, G. 553, 743, 857
Van Rees 550, 595
Van’t Hoff, J. H. 1, 220, 255
Variability 118
Variot, G. 100, 110
Varnish, cracks in 517
Varves 667
va~eheria 376
Vejdovsky, F. 327
Verhaeren, Emile 1097
Verhulst, P. F. 145
Vermetus 777
Verworn, Max 360, 706 867
Vesque, Julien 646
Vibrations 509
Vicq d’Azyr, Felix 9
Vierordt, Hermann 108
Vincent, J. H. 510
Vine-spirals 820
Violet, leaf of 1045
Virchow, R. 341, 380, 456
Virgil 527
Vis revulsionis 279
Viscose 264
Vies, Fred 70
Vogt, Carl 649; H. 538
Voice 53
Volkamer, A. W. 251
Voltaire 5, 274
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Volterra, Vito 143, 159
Volvox 48, 406, 613
Vom Rath, O 315
Von Baer, K. E. 3, 11, 83, 86, 286
Von Buch, Leopold 785, 845
Von Mohl, H. 290, 341
Vorsteher, H. 187
Vortex motion 393; rings 437
Vorti cella 462
Voss, H. 63
Vries, H. de 217

Wager, H. W. T. 418
Walker, C, E. 457; Gilbert 49, 505;

G. T. 418
Wall, W. S. 30
Wallace, A. Russell 544; Robert 143
Wallis, J. 785
Walton, W. 27, 769
Walton and Hammond 269
Warburg, O. 291
Warnecke, P. 189
Warren, Ernst 506
Warren’s truss 981
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