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SUPERPOSITION OF VARIOUS NUCLEATION MECHANISMS
AND THE MORPHOLOGY OF POLYMER CRYSTALLIZATION

INTRODUCTION

Many attempts have been made to explain the sources of

various morphological forms in crystalline polymers. The thermo-
Tyt

dynamic theories include an implicit assumption that the

o

olymer exists in thermodynamic equilibrium, what is far from
reality. The kinetic theories of chain folding:, or bundle-like
cryscallizaticn4 based on specific morphological assumptions
describe structures which have been assumed a priori, and there-
fore do not provide independent predictions. Nevertheless, the
kinetic approach, combining thermodynamic driving rorce and

rate effects related to molecular mobility, seems to be the
right source of information about the resulting structures. Un-
fortunately, as shown in our earligr papers5 there is no conti-
nuous transition from one morphology to another (say, from
regular chain folding, to bundle-like crystallization) and one
cannot write (and so%ve) various nucleation and growth processes
leading to different morphologies using a single equation with

morphology-dependent parameters.
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The best way of solving morphological problems seems to be
provided by the theory of superposed, or multicomponent nuclea-
tion. Fundamentals of the theory of multicomponent growth have
been laid by Prices, Lauritzen, DiMarzio and Passaglia7,
DiMarzio8 and othersg; this theory has been used for the
discussion of several problems relatedﬁ?he structure of
chain-folded crystalss’g’10. The main idea of the multicomponert
growth theory in general, and many-mcde crystallization in
particular, is that crystals are not formed in a "pure" way,i.e.
with all elementary units added in exactly the same way, but
a superposition of differently arranged units is possible. The
appropriate thermodynamic and kinetic factors control the rates
with which individual units are attached to a growing cluster
(crystal) and, consequently, determine the composition of a
mixed crystal. The distribution of different units in such a
crystal provides the morphological information required (say,
fractions of segments regularly chain-folded, added in a bundle-
-like fashion, or folded with switchboard reentry). Looking
from a theoretical point of view, there is hardly any general
reason why the resulting crystal structure (and crystal morpho-
logy) should ve "pure" rather than "mixed". If, in some special
cases such reasons for "pure" morphology do exist - they should
be revealed by kinetic considerations.

The application of superposition of various morphologies
proposed by the author two years agos’11 will be discussed here
and illustrated with a numerical calculation of a simple model

involving only three modes of crystal growth: regular chain

folding, "switchboard" chain folding and bundle-like addition.
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The example shows wide perspectives of the superposition scheme
in analyzing systems with competitive ways of crystallization.
To obtain numerically significant solutions of crystallization
problems, one.has to accumulate first information ahout the
thermodynamic (éFéj) and kinetic parameters (Hij) appearing in
the superposition scheme. Also, more exact, than used in this

paper, kinetic equations will be developed for this purpose.

NUCLEATION EQUATIONS AND RATE CONTROLLING PARAMETERS

Consider a cluster composed of g-1 elements, the last
element being of the i-th type, tc which a j-type element is to
be attached. The reversible reaction between the cluster aé~1

and a single element ai

—
~r

can be discussed in terms of molar fractions Plv, NY, M 0

-

H
U <
us

clusters of size g ending, respectively, with a pair ij
single segment j, or any terminal strucuure.

Unlike in our earlier papers on nucleation KlneticsE. we
‘sall not continualize the variables g, Ng’ Ng, Sg’ etc. and
retain the original discrete structure of all kinetic equations.
This formalism suits bester the zim. of the present paper, though
equivalence of the discrete system of recurrence equations for
Ng to a single differential eguation for continualized distribu-
tion, f(g) used in our earlier papers can be easily shown.

The discrete distribution functions (fractions) M_, N;,
g

http://rcin.org.pl
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Péj, are related to each other by the normalization conditions

Ng =T Péj (2a)
2§
M = TN (2v)
Eal i=E

When desired, higher order distribution functions, Qé"'

can be introduced. If the rate of addition of a unit "j" to a

.2

cluster ending with an "i" unit does not depend on the structue

of the remaining portion of the mixed cluster, then the nef

rate of reaction, or the flux, SEJ. can be written in the form

i R T L
g %1 N Be” Fe 43
And the total Tlux, §. = rgtd
Bl e
s = st [ piddiil v gt pid (4)
& i g_1 .'J g=i ij (=4 g

Equations (3) - (4) can be solved for special cases to yield

the fraction of "ij" pairs, le

or i-type segments, p1
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which characterize the morphology of the resulting crystals.
General methods of solving such eguations have been discussed
by Lauritzen, DiMarzio and Passaglia7'8.

The impoftant parameters which should be specified before
any solution to multicomponent nucleation is sought are a;j
and ﬁ;j, i.e. the frequencies of attachment and dissociation
(or reaction rate constants in both directions). The kinetic
theory of nucleation as formulated by Turnbull and Fisher 2

and used in earlier papers by the present author5 yields:
aéi1 = 4 0 5 exp(- 2 6723/kn) (7)

séj = 4 expl(z-1) BFéj/kT] (8)

where Cj is the fraction of the j-th type of single elements
attached to the growing cluster, A is a frequency of molecular
motions, independent of cluster size, g, or the type of the
reacting elements (i,]); Hij denotes dimensionless reorienta-
tion factor, defined as the ratio of the average attachment
time, téj,to the total time of entrapment including reorienta-

tion time attd (cf.13)

113 4 agtd

HiJ plays an importaﬁt role in polymer crystallization, leading

to the very high sensitivity of crystallization to mole-
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cular orientation in the system.

6F;3 = AFéG - ;Fé_1 (10)
is the increment of the free energy of the syst- n the
sttachment of one element "j" to a g-1 cluster ending with an
clement "i". z is a numerical partition factor (z € 0,1).

In the conditions of thermodynamic equilibrium, all fluxes
Séj vanish. For Séj = 0, eg.(3) yields the equilibrium distribu-
tion

(Zm el st (11)

The ratio o/p serves thus as equilibrium constant. Subc-itution

of ‘7t znd (8) inta (11): yields
Cj i Pij = ij ij 5
Nooo/Fg (1/89) exp(8F,°/kT) (12)

which looks like standard formula for chemical equilibrium with
bFéj as free energy of the reaction eg.(1) but for the reorien-
tation factor Hij. One should realize however, that for

equilibrium conditions (SZj = Q) the average time of attachment,

téa is infinite, and conseguently,

= (1%

and the standard expression for thermodynamic equilibrium is

recovered



(¢d Né_1/Péj)eq = exp(BFéj/kT) ' (14)

After simple rearrangements the equilibrium distributions

result in the form:

kg Shs - 5ptd fem
g = Fg_q Y exp(- 6F,7/kT) (15)
-ig i i
¥l =ct B zod exp(- sPEI/M) (16)
k=2 j ' -
i § i i
M_=ZIZc I Zodexp(- 6P /kT) (17)

&b Ly, k=2 j

The above (equilibrium) distributions do not characterize
the actual morphology resulting in a kinetic process. They are
controlled by thermodynamic factors alone (concentrations, Ci,
and free energy of attachment, éFéj) and do not include the
reorientation factor Hij.

The solution of the original kinetic equations (3) - (4)
along the lines suggested by Lauritzen, DiMarzio and
1f

Passaglia' will be attempted in future papers. For the present,
qualitative analysis we will consider a more primitive model.
Pirst, it will be assumed that the free energy of attach-
ment a j-type unit to a cluster ending with an i-th unit does
not depend on the nature of the element "i". Consequently, a;j

and'B;LJ reduce to aé and ﬁg, respectively, and the flux to be

discussed is Sg, rather than Séj
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3 ="al
Sg T Mg_1

T
Pz My (18)
Purthermore, the second (reverse) term in the flux will be

assumed small compared to the first (production) one, and

neglectead

J
& gzlang=1

The latter assumption is justified when undercooling is large.
and the system is far from thermodynamic eguilibrium. Now the
fluxes, and the resulting cluster structure depend only on the
frequency of production, cé, not on the rate of dissoclation,ﬁg.
The fraction of clusters of size g, ending with a segment "j"
will_be

o’ (20)

3y B T
L S S g-1

4

~
o 4

This ratio is a functiorn of g, i.e. changes with the size of
the cluster. The average fraction of j-type elements within a

cluster of size g is thus
4 4 ;
AR S J T ol (g=1)
pg kA’=-!2 (CI / J a'k_‘})/\g 1/ (21)

This simple formula will be used in the numerical example

discussed at the end of this paper.
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THE EFFECTS OF CRYSTALLIZATION MORPHOLOGY ON THE KINETIC
PARAMETERS

The three material characteristics, Cj, Hij, and 6Féj
appearing in the kinetic parameters uij and B;j can assure
different values for various morphologies thus preferring some
" morphological forms and discriminating others. We shall discuss
these characteristics separately.

The effective concentration of single elements, cd depends,
first of all,on whether crystallization is intramolecular,
cooperative, or intermolecular. If many kinetically independent
molecules participate in cluster growth, and the distribution
of segments 0 be attached to the clusters (crystals) is uni-
form in space, Cj reduces tc the volume fraction of polymer

segments in the system, v,
di =
C Vs (22)

This happens when aggregation of rigid molecules, or liquid-
-crystal type materials is considered (also viruses, some pro-
teins, etc. Fig.la). Another example is provided by lateral
growth of bundle-like crystals; the longitudinal growth of
such crystals (chain extension) behaves differently (fig.1b).
Wnen, on the other hand, a cooperative, intramolecular process
is considered, the effective concentration is always equal to

unity

cd =1 (23)




Fig.2.

ing w
board

a. regular chain fold-
egular folding (switch-
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independently of the average volume fraction of the material in
the system. This effect has been discussed earlier5 and in the
polymer field can be w2ll illustrated by regular chain folding
(fig.1c), or coil-helix transition (fig.1d). Also longitudinal
growth of bundle-like crystals (fig.1b) is cooperative. In a
non-cooperative process (egq.22) the probability of addition of
each new element to the growing cluster is proportional to the
probability of finding a new single element in the surroundingse
of the clustver, i.e. the volume fraction v,. A characteristic
feature of a cooperative process is that the elements to be
added to the cluster (consecutive segments in the long chain)
are provided automatically by the chain, and the prcbability C
is identically equal tc unity.

The differentiation between cooperative and non-coopera-
tive polymer crystallization made explicit in our thecryE can
be observed in several specific nucleation theories concerned
with different morphologies. Volume fraction of the polymer, Vo
appears in the theories of Flory and Mandelkern (Cf-!A) who
treat always intermolecular, bundle-like crystallization. On
the other hand, v, does not appear (and it should not) in the
theoriez assuming regular chain folding3'9’10. Polymer concen=
tration does not appear explicitly in the theory of extended
chain {(bundle-like) crystallization of Calvert and Uhlmann4,
but it is due,apparently, to the fact that the authors discuss
crystallization of melts (v2=1) rather than solutions.Otherwise,
eq.(22) should apply.

In the field of'polymer crystallization one can distin-

guish a third possibility, different from both eg.(22) and

http://rcin.org.pl
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eq.(23). It is an intramolecular, but non-cooperative process,
when different segments, all coming from one polymer coil are
attached irregularly to the growing cluster. The resulting
structure, discussed by many polymer morphologists is known as
"chain folding with non-adjacent reentry", or "switchboard"
structure. Fig.2. illustrates the difference between the regular
chain folding (cooperative) and non-cooperative, "switchtoard"
structure. The process ie controlled by the effective concentra-

tion of segments within a single polymer coil, C¥
cd = c* (24)

C* is not equal to the average concentration of polymer ir the
system, vz,and in first approximation is independent of it. On
the other hand, C* is sensitive to the molecular weight of the
polymer, chain stiffness (length of the Kunhn segment, a), and
polymer-solvent interactions leading to the shrinkage, or swell-
ing of the polymer coil. Using Gaussian approximation for the

density dietribution around the center of gravity of & polymer

codl
o(r) = N (3/2 2<8%)3/2 exp(- 3r2/2<r%>) (25)
and the relation for the radius of gyration, <32>
<R%> = a2<h2>/6 = a2N32/6 (26)

where a is swelling ratio, <n?> unperturbed (theta) sguare end-

-to-end distance, N - number of statistical chain segments in
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the chain; and a - length of the chain segment. Integrating
eq.(25) one arrives at the average volume fraction of polymer
segmenés in the coil, C*

o = (3v /an<e®>)?/2 :

o(r) 4mrdr = Nvo(3/2ﬂ<R2>)3/2 X

O+

x V778 ert (/372) - exp(-3/2)] = 0.440221 Nv0(3/21t<ﬁ>)3/2
(27)

Substituting eqg.(26) for <R2> one obtains
C* = 2.134566 vO/N*HPa3 _ (28)

v, 18 volume of a single chain segment, and erf(x) is integral
error function. The local concentration within a polymer coil
decreases with the number of chain segments (molecular weight)
faster than N-t because the swelling ratio a increases with N.
In gcod solvents (strong swelling, high a) the local concentra-
tion will be more reduced.

The significance of the local concentration within macro-
molecular coil, C*, for crystallization of polymers from
dilute solutions was recognized by Kéwai15’16. Kawai suggested
that the average volume fraction of polymer, vé, appearing in
the Flory-Mandelkern theory (for bundle-like morphology) should
be replaced by the local concentration, C¥,which is independent
of .v,, but sensitive to (decreasing) moleculer weight. Kawai
suggested that this can explain the observed independence of
fold length in chain-folded crystals on polymer concentration

Vo, and reduction of the X-ray long identity period with in-
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creasing molecular weight of polymer16. This interpretation
does not seem to be’correct. though. C* is relevant only for
irregular chain folding (switchboard structure) which does not
seem to dominate in solution-grown crystals. For regular
(cooperative) chain folding'cj should be always unity, also
independently of Voo The molecular weight dependence can be
explained by an other kinetic factor, Hij, to be discussed
below.

The reorientation factor, H, (cf.eq.9) has been introduced
to the theory of nucleation a few years agos'13’17. Since H
characterizes molecular motions required for effective attach-
ment of a single element to the growing cluster, it is very
sensitive to the size, deformability and shape of singls cle-
ments.

For spherical, or small,nearly spherical single elements
molecular rotation ceases to be a necessary step of attachment

and, consequently, H becomes a unity
st 50 =5 8 oy (29)

This is also the case for very slow nucleation processes, close
to thermodynamic equliﬁrium, when tgj — o, For rigid, rodlike
particles, like viruses, liquid crystals etc.(fig.1a), HfLj

is controlled by rotational diffusion constant %?which decreases
with increasing volume of the particle, ¥ and strongly de-
creases with increasing asymmetry (aspect ratio) of the

particl=, p

g3 = g9 [p_(v,,p)] - 1{50)
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Much more complicated relations are encountered in deform
able, long-chain macromolecules which consist oginumber of
attachable single elements (chain segments) connected by flex-
ible joints. Tywo features of the behaviour of such chains
should be emphasized.

i. there is a significant difference in the aymmetry'of
efficient rotation bringing the element to the orientation
consistent with that of the cluster, between non-cooperative
and cooperative processes. When isolated single elements
(fig.1a), or randomly chosen chain segments (bundle-like growﬁh-
fig.1b, or switchboard chain-folding, fig.2b) approach the
cluster, they exhibit a two-fold axis symmetry; they can be
reoriented by rotation in either of two opposite directions as
illustrated in fig.3g. On the other hand, cooperative chain
folding (fig.1c), or cooperative helix formation (fig.1d),
admit only one-way rotation, the other way leading to inefec-
tive orientations (fig.3b). Speaking in terms of the disorienta-
tion angle, #, i.e. angle between the cluster axis, and axis of
the single element, in non-cooperative systems the admissible
orientation is # = 0 or & = m, while for cooperative growth
only 8 = 0 is admitted. Consequently, the reorientation time
sttd ror non-cooperative systems is smaller, and gl generally

larger than for cooperative addition.
/et = a/atia) > 0) + i/mtie, o (31)
for cooperative systeﬁaf and

/83 = 1/84H (s, > 0) (32)
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Fig.3. The symmetry of rotation in a: growth from isclated
elements, and b: regular chain folding.

Pig.4. Effects of far segmemts on the rotation of a single
element to be attached to a cluster.
scheme, b:

a: molecular
a rheological model



for non-cooperative, and

H;gn-cp > Hig (33)

ii. the other aspect of recrientation of segments in long
chains is complex dynamics of cooperative motions and molecular
weight dependence. Rotation of one segment, part of a chain
composed of N unite is associated not only with the hydrody-
namic (viscous) drag of the rotation of the segment itself, but
2lso with the viscoelastic response of the. two hanging long-
-chein "tails" with molecular weights N,, and (N-N.-1) times
lgrger than the segment itself. As noted in ref.r5 rotation in
such a system (fig.4 a) can be solved using spring-dashpot
models (fig.4 b) and well-known methods of macromolecular hydro-
dynamics. Two small beads on the ends of the rigid dumbbell
(fig.4b) represent viscous drag of the rotvating segment, de-
pendent on the size and shape of the segment. Larger beads
correspond to (generally different) friction coefficients of
the "tails" with molecular weights proportional to N1 and
(N-N1-1), respectively. Consequently, rotation of the segment
depends on the total number of segments in the long chain (N)
and on the position of the segment within the chain (N1/N). For
random, non-cooperative attachment one can integrate the rota-
tion velocity (and gtd factors) over the position of the se-
gment along the chain,i.e. from ¥.=1 to N,=N-1 to obtain
average characteristics as functicns of the melecular weight
(number of statisticai chain segments) N. Two asymptotic cases

can be mentioned. If the chain is rigid, rotation of the se-
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gment to be attached leads to the translation of terminal fric-
tion centers. With increasing N (N1,N2) the radii
h1, h2 increase as N%, N%, and -the overall friction forcesras
N?/E, Ng/z. Consequently, the average rotation factor <Hij>
decreases with increasing molecular weight of the polymer and

disappears for very high N

3 <Eld>/aN ¢ 0; 1im <HM> = 0 (34)
Ne—e

and thus crystallization of smaller (rigid) macromolecules is
preferred. Since the resistance to rotation offered by each
part of the hanging "tail" increases with N faster than linear-
ly, the minimum resistance (and maximum Hij) corresponds to
segments located centrally in the chein (N1 = WL
(¥, ) o = /2 (35)

On the other hand, when chains are soft and flexible, but
translation of.chain ends is prohibited by very high viscosity
or by crosslinking and stress applied to the system, the
resistance experienced by a rotating segment ie a combina-
tion of the viscous drag ﬁf the segment itself, and elastic
response of the hanging "tails". The elastic forces being in-
versely proportional to N1, (N~N1—1) we obtain the average rota-
tion factor <miis which monotonically decreases with increas-
ing N. The limiting wvalue at N-e, HO, is determined by the

viscous drag of the segment itself

http://rcin.org.pl
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Neeen

Here again, tﬁe optimum position in the chain (maximum Hij)
corresponds to the centre, as shown in eq.(35) but longer (flex-
ible) chains are evidently preferred in crystallization to
short ones.

The same considerations apply formally to cooperative
attachment, but the freedom of choice of the position of the
segment in the chain, NT’ exists only for the first element of
the cluster. All other segments, by definion of the cooperative
process are aetermined as N1+1, N1+2, eaey cup GO the end of the
cooperative sequence. Consequently, differentiation of gt
factors for segments with various positions, N.,, zlong the
chain %nd maximur at N.I = N/2 determines the resulting distribu-
vion of segments in a non-cooperatively grown cluster, out onl

a systematic variation of growth rates

@

addition gf predstermined consecutiv
tive case.

In real systems, the behaviour of the rctation factors gtd
can be expected to be intermediate between the two asymptotic
cases discussed above, as controlled by viscoelastic deforma-
tior of polymer chains. With wvariation of crystvallization con-
ditions and materials a wide spectrum of Hij, and a wide range
of resulting morphologies can be obtained. The solution of the
15

dynamic problem formulated in is required for prediction of

such variation.

http://rcin.org.pl
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A THREE-COMPONENT EXAMPLE

To illustrate the kind of problems which can be solved
using the approach discussed. above, we will discuss a simple
system allowing for three different morphological modes of
growth: regular chain folding (i=1), irregular chain folding
(switchboard structure, i=2), and intermolecular bundle-like
addition (i=3). Having no detailed information about the respec~
tive free energies 5Fz, we will assume that they are all equal
SF; = 6F§‘= SF;. If crystal lattice structure does not change
from one morphology to another, the bulk free energy components
of éFé should be all equal. The surface component can be expect~
ed to be gensitive to morphology, but its determination would
require separate studies. With equal BF;, applying eq.21 we
obtain the distribution function pi, indepenient of the cluster

size g

Pg = CiHi/ii:—, ctet (37)

We will assume further that the rotation factors 32 and g8 for
both non-cooperative processes are equal to each other and
smaller than H' for regular chain folding. The effective con-
centrations for the three processes will be different, viz.

c! = 1 for the cooperative chain folding

02 = C* = const. for non-cooperative, intramolecular addi-

tion

03 =V, for intermclecular bundle-like growth

where v, is volume fraction of polymer in the system, and C* is

the average volume fraction within a single macromolecular coil.
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The resulting distribution pl, i.e. the fractions of se-

gments in the cluster attached according to various modes

read :
g bt 1 :
P = Ponain folding: ~ /[ + (/8 )(C'+v2)] (382)
2= = ] Ll SR 1
P = Pgwitchboard ~ (m/ahes/ + (ﬂelH )(C‘+v2),
(38v)
3 g ] / 2
D’ = Pyungre-1ike = (E/H)vy/L1 + (B/H1)(C%+v,)]
(38c

It can be observed that the content of intramoleculer
segments (both cooperative, i=1 and irregular, i=2) is maximum
at v, = O and monotonically decreases with increasing polymer
concentration, vz. The fraction cf bundle-like segmentis, ps,
sterting from zero at Vo 0O increases with v, To some finite

‘value at v, = 1. The other factor which controls the distribu-
<ion is the ratio HO/H'. With increasing §°/8' increase frac-
tione of both non-cooperative segments (i=2 and i=3), while the
regularly folded, cooperative segments (i=1) become less fre-
quent.

The equilibrium distributions for the above case yield:

(p2) = (¥) /) = ¢ exp(-8F /k1)/ T ¢t exp(-5FL/km)
€’ eq €'eq” " & eqg € i g
(39)

which, with the assumption of equal free energies reduces to

the ratio of concentrations, Cl, independent of cluster size, g

(). =c¢i/ T et (39a)
eq i
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In addition to the fractions pé of various segments within
the cluster (egs.38 and 39), two average characteristics can be
derived from the above model. The average rate of growth is
characterize&ﬁ%he rate constant ot = clgt exp(—z&Fé/kT). In the
process of cluster growth these factors are superposed multi-
plicatively, so the averaging must be performed on logarithms.
With the assumption of equal free energies 6Pg we will calcu-

late the average preexponential factor defined as
<cB> = expl T cinl 1n(cinl)/ T cind) (40)
s i

The other average characteristic related to nucleation is
the critical nucleation temperature for the combined, three-

5

-component process. As shown in earlier papers” this tempera-

ture for a dilute system can be found from the relation

. O] 1» =
T /T = A/(A - 1n C) (41)
where T; is the critical temperature for an undiluted system
7 * o
(C=1) and 4 = An v /kT .
With eguilibrium distribution of segments (pl)ec from

eq.(3%9a) the average critical temperature <Tm> can be approxi-

mated by:
A/(4 - <1n C>) (42)

o
<Tm>/’1‘m
where

<In C> = T 0 1n ¢/ T ¢t (43)
ak
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NUMERICAL CALCULATIONS. RESULTS AND DISCUSSION

The fractions pi of segments attached according to regular
chain fblding-mechanism (i=1), irregular (switchboard-type)
folding, i=2, and bundle-like mode, i=3 were calculated from
eqs.(38a-c) for various polymer concentrations, vy, and coil
densities C*¥ = 0.1, 0.01, and 0. The assumed rotation factors
for non-cooperative and cooperative processes were H2=H3= 2H1
C*¥ = 0.1 seems to be greatly overestimated cocil density as
corresponding to N = 20-50 chain segments in a macromolecule.
Figure 5. presents the results. Similar calculations performed
for the equilibrium distributions (pé)eq from eq.(%92) are
presented in figure 6.

As evident in figure 5. the fraction of regularly folded
segments,pi,decreases with increasing polymer concentration and
that of bundle-like segments, p3, behaves in an opposite way.
No bundle-like segments exist at zero concentration, VQ:O- With

increasing coil density, C*, both p1 and p3

are reduced.However,
even at unrealistically high C* = 0.1, the fraction of switch-
board segments never exceeds 17 % and the switchboard strucsure
does not seem to play any major role. Naturally, in the absence
o = 0 purely chain-folded
crystals are formed, as actually observed in very dilute poly-

of switchboard segments (C* = 0), at v

mer solutions. With increasing concentration, increasing
amounts of bundle-like segments are formed, reaching at v, = 1
(undiluted polyﬁer) ca 60 $. Unlike at infinite dilution how-
ever, in an undiluted system does not result any pure morpho-
logy, but always a combination of intra- and intermolecular

‘segments in proportions dependent on the ratio HE/H1 and coil
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Fig.5. Practions p1 of chain segments attached according to
% §rent growth modes. Kinetic model (eqs.38).
coil densities, C¥*, indicated.
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Pig.6. Equilibrium fractions, p~, of chain segments attached
according to different growth modes, as calculated
from eq.3%a. Coil densities, C*%, indicated.
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density C*¥.

The equilibrium distributions (figure 6) are similar in
shape to the kinetic ones. Being controlled by concentrations
alone, the equilibrium fraction of regularly chain-folded se-
gments is g=nerally higher than concentration of bundle-like

segments, reaching equal values in the undiluted conditions:

L a(7p=1) = Pl (v,=1) b

Peq )

Like in the kinetic case, switchboard structures do not play
any important role.

Pigure 7. presents the average pre-exponential factor
<CH> calculated from eq.(40) for H1 = Q5 H2:H3:1, various
values of Vo and C* = 0.1, 0.01, and 0. The broken horizontal
line corresponds to a pure chain-folded mechanism, CH = 0.5. It
can be obgserved that in all cases there appears a minimum of
<CH> in the range of low polymer concentrations (v2 = 0.1-0.2).
The minimum is very broad and is slightly shifted towards
lower Vo with increasing C*; the depth of the minimum increases
with increasing C*. The <CH>vs.v2 curves are ealso shifted to-
wards lower <CH> values with increasing coil densities C¥. This
means that introduction of the possibility of switchboard con-
nection reduces the avérage growth rate <CH>. Growth rates
above the minimum are controlled by the bundle-like mechanism
and increase with the polymer concentration V2 (and the frac-
tion of bundle-like segments). The average growth rates at
higheT concentrations'are higher than those for pure chain-

folding mechanism because of the rotation factor H>H ',
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ties, C*, indicated.
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The critical nucleation temperatures <Tm> are less sensi-
tive to polymer concentration and morphology than growth rates.
As evident in figure 8. the ratio <Tm>/T; also exhibits a mini-
mum in the rahge of small concentrations, the position of which
is shifted towards smaller concentrations and whose depth in-
cresses with increasing coil density C*. The minima of <Tm> vE.
vz,and <CH> vs.v, do not disappear, however,zt C* = 0. So, the
existence of switchboard segments is not the only source of
depression of the critical temperature and of the growth rate.
For the examples discussed, critical temperature for mixed
crystals in the whole range of polymer concentrations,vz.is
lower than that for pure chain-folded crystals. Only at C* = 0
(no switchboard segments) can Tm reach the limiting value Tg,
viz. when v2 = 0 (pure chain-folded crystals), DRV 1 (un-

diluted .system).

CONCLUDING REMARKS

The theory presented in this paper is not complete and so
are the numerical examples discussed herein. The simple model
discussed above illustrates, however, possibilities offered by
the superposed nucleation theory in elucidation of many pro-
blems related to structure formation. In spite of many approxi-
mations and assumptions used in this paper to compensate for
the lack of more reliable information, the main conclusions
drawn from the analysis of the three-component model seem to be
physically reascnable’and qualitatively correct: the secondary

importance of switchboard structure, depression of the average
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rate of growth and of the critical nucleation temperature in
the range of small polymer con;entrations, pure chain-folded
morphology at infinite dilution (v2 -+ 0) and high molecular
weights (C* = 0). Quantitatively these predictions may appear
to be incorrect whe'. very strong thermodynamic effects exist
(very different free energies 6Fé), or very different reorien-
tation factors Hi apply to various morphologies.

Further research in this field must be concentrated on a
more complete solution of the kinetic equations of nucleation
(egs.3-6) and on the derivation of the absolute values of the
rsorientation factors gt and free energies éFéj for various

morphologies.
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