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TRANSFER MATRIX FOR THE NONSPECULAR DIFFRACTION OF GAUSSIAN BEAMS

ABSTRACT

Nonspecular deformations of a Gaussian beam interacting with a
multilayered, planar dielectric structure are described in termg of the
complex ray formalism. A 3-D ray transfer matrix of the structure is built
and relations between the transfer matrix elements and real beam
distortions are derived.

1. BASIC RELATIONS

Let us consider a two-dimensional field generated in a homogeneous
medium by an y-directed stationary electric (or magnetic) line source of

strength b. The harmonic field with the wavenumber k obeys the Helmholz

equation (the time dependence exp(-iwt) is assumed and suppressed)
(82+82+K2)V(x, z)=-b8(z-12F)8(x), (1)
the solution of which, that is the Green's function with an amplitude b,

V(x,2z)=bG(x,z-izg )=(ib/4)B§ (kr), r2=x2+(z-izf)? (2)

is the zero-order Hankel function of the first kind H§!', dependent on the

complex distance r between the complex source point (xg,zg5)=(0,1izf) and the
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real observation point (x,z). For observation points placed in the far
field (x2+2z%>>z%) and, simultaneously, paraxial (x?<<z2+zf) region the
solution to (1)

Vix,z)=ibk 1271 (2n) "1 Yexp(kzp ) ¥ (x,2), (3)
resolves into the normalized in power Gaussian beam ¥,

Yo (x,2)=(2/m) 4v(2) " twy? Pexpl-(x/v(z))2+1kz], v2(z)=w(1+iz/2p), (4)

with the half-width wy=(2z¢/k)!“2 at the spot. In the specified region the

field V equals the Gaussian beam ¥, provided
b=-2ik(2m) 1 *w~ 1 2exp(-kzr). (5)

Consequently, the spectrum of the plane wave representation of the field
+ 00

v(x,z)=1bt4u3'if k31 expliyzp) explilk,z+k,x)] dk, (8)
-

with the imposed paraxial approximation

k; (z-izp)=k(z-izp)+i(kevr2)2, (7)

takes the Gaussian shape as well
+ 0

V(x,z)=¥(x,2z)=1b(4nk) lexplik(z-izf)] J expl-(kyv/2)2lexplikyx) dky. (8)
-0

It appears that the field representations in the wavenumber space (Egs.(6)
and (8)) and in the complex space (Egs.(2) and (4)) give an appropriate
basis of the analysis of the beam-interface interaction in terms of changes
of the field spectrum on the one hand, and of the nonspecular deformations

of the beam on the other hand.
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2. NONSPECULAR DIFFRACTION EFFECTS - REDERIVATION.

A Gaussian beam is incldent at an angle 6; on the plane interface
Vbétueen two linear dielectric media, characterized by their refractive
indices n;, and ny,, and wave impedances Z;, and Z,,. (for TM polarization)
or admittances (for TE polarization). The coordinate frame (x,z) is bond to
the planar structure with z axis along the interface. In the following, the
interface can be as well understood as an arbitrary multilayered structure,
which divides the two different dielectric media. The incident beam has the
form (B) in the frame (x,;,z;) which is rotated with respect to (x,z) frame
by 6; and whose origin is in the middle of the beam waist. As a result of
the beam-interface interaction each spectral component of the incident
field in (6) is multiplied by an appropriate interaction function R
(reflection or transmission coefficient), what leads to the integral field

representation in the paraxial approximation

+ 0
Vr(xg,zq)=1b(4nk)"exp(k2p)exp(ikzg}J Rikyg)expl=(kyqvg/2)2+ikyegxg)] dkyg.
-

(9)

Here (x4,24) stands for the frame of coordinates tied to the beam reflected
(or transmitted) at the interface according to geometrical-optics (g-o)
predictions. The ky, and k,; are the wavevector components in this frame
and vg=wo(1+1zq/zp)1/2 denotes the complex width of the beam. Under the
assumption that the beam incidence angle 6, is far from any singularity of
the spectrum, R(kyq) can be approximated by two first terms of its Taylor

series ([1])
R(kyg) =Ry expl 1n(Rlkyg ) /Ry ) J=Ry expl-iky gL+ 1k, 2F/(2k) ], (10)

The complex lateral (L) and focal (F) shifts are related to the first and
second derivatives of R with respect to kg,

L=1(R’/R) , F=-1k[R“/R-(R’/R)2] , (11)
evaluated at the direction of the beam propagation k,g=0. Incorporation of

(10) into (8) leads to the field representatlbn in terms of a Gaussian beam

displaced by the complex shifts L and F along transverse and propagation
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directions:
Ve (%g,2g)=Ryexp(ikF)¥p (xg-L, zg-F), (12)

which, in the paraxial region, can be described also as the Green's

function
Vr (Xg,29)=bRy exp(1KF)G(xq-L,zg-F-izf) (13)

with the shifted source location (xg,2zg)=(L,F+izf). As it was predicted by
Tamir [1] and confirmed by Nasalski, Tamir, Lin [2] and Nasalski [3], the
deformation of the Gaussian beam by the complex shifts L and F is
equivalent to the composite displacement of the beam by two real space
translations 8,, 8, of the beam waist center, followed by a rotation of the

beam axis by an angle 69 and a beam waist magnification by a factor
V=uWgp /Wg, (14)

where wy, is the reflected beam half-width. It is worth noting that the
previous analyses ([1], [2], [3]) used some add&tlonall assumptions or
approximations to prove this geometrical interpretation of the bean
distortion. However, an explicit form of the real deformations 5,,6,,69 and
v can be derived in the paraxial region without any further approximations,
that is from the field representation (12). To this end, let us presume
that, in general, the actual reflected beam has a new walst width wg,
different from wp, and a new reference frame (X.,z.), translated and
rotated with respect to the g-o reflected frame (xg,z4)

xr=(xg~6,Jcosae-(zq-6,)slna z,=(x°-6,)sin66+(zq-sz)cosse, (18)

9
and the x- and z- wavevector components in this frame are
er=kx900568-k,gsin58, kzr=kxqsln59+kzgcosﬁe . (18)

Therefore, the field representation (13) should have the equivalent form in

the new frame:



V. (X, 2y )=bR.P.G(x,, Z~10%2F), (17)

with R.P. denoting corrected reflection coefficient [3]). Comparison of
plane wave spectral representations (6) of the fields (14) and (17),
together with the equality k;§ dkyg = kz! dky., ylelds

explikyg (xg-L)+ik,q(zg-F-izp)) = explikyep %, +iky, (2, -1022p)] . (18)

The equality of the real and imaginary components of the exponent terms in
(18) gives the following form of the real deformations

8.=Lg, 5,=Fg. (19)
u2=(1*F1/zF)/cosée. sin6e=L,/(sz2). (20)

where Lz, Ly, Fp and F; denote real and imaginary parts of complex shifts L
and F, respectively. Comparison of terms standing in front of the spectral
integrals leads to

R P.=R,v~1/2exp(-kzpv2+iks, ). (21)

The real shifts in (19) are the same as obtalned by Tamir [1], in spite of
slight changes in v? and 8y, which are of order of 682 and disappear for
small 59. However, the results (19-21) follow exact solution of the
Helmholz equation (1) and are obtained without additional approximations
necessary in the previous approach. The fleld expressions (17, 18, 20) seenm
to be numerically less accurate than those obtained in [3] and [4], where
the complex shifts were evaltated around the angle of the actual, instead
of geometrical, beam axis, and by accounting for higher order terms in the
Taylor expansion (10). On the other hand, the method presented here has the
advantage of giving much simpler analytical expressions. Nevertheless,
within the range of the assumed approximations the two methods give
equivalent results with slightly different definitions of complex shifts.
It is also worth stressing that the spectral approach presented here as
well as in [4) and [5) presumes weak interaction of the beam with lateral
or evanescent waves sustained by the structure. In the opposite cases a

direct field evaluation in the physical space is more appropriate [2], [3].



3. TRANSFER MATRIX FOR THE NONSPECULAR DIFFRACTION.

According to the theory of the nonspecular beam-interface interaction
described above the beam waist is nonspecularly shifted in longitudinal and
transverse directions by the focal &, and lateral &, displacements,
respectively, the direction of the beam propagation is rotated by the
angular shift 68' and the beam-walst width 1s expanded by the factor v.
Besides the expansion factor v, the deformation parameters &,, &, and 68
provide direct geometrical interpretation of the beam distortions within
he frame of the regular geometrical optics valid in the plane wave limit
(kwp-@). The position (x;) and normalized slope (xy’=n-dx;/dzg, n -
refractive index at the observation plane) coordinates of the ray before
(j=1) and after (J=2) nonspecular interaction are described by the

relations:

observation
plane

Fig.1. Input-output ray geometry.

xz=x,+6,+(z°—6z)-68~6zx1’ (22a)
x2’=x,’+60-n i (22b)

in which zo is the distance between the waist of the incident beam and the
interface (see Fig. 1), and nj;,=nyut=n, the refraction coefficient in the
observation plane. Up to the terms linear in §,, &, and 69 the above
equations lead to the matrix formulation of the nonspecular deformation of
the beam



n2=Tm (23a)
in which
Xy
ny=| x|, J=1,2 (23b)
1
and
A B a 1, (-8, +i(1-v2)zpl/m 208+«
T=|C D ¢ | =10, 1 N ae-n (23c)
0 0 1 0, 0 ;1

is an augmented ABCD ray transfer matrix. In (23c) the term i(1-v2)zp
indicates a complex change of the position of the source point of the
outgoing field (measured at z=z3) and accounts for the nonspecular change
of the beam waist. In order to check the correctness of the equations (23)
the pure formal canonical approach is the most appropriate to apply. At
this point, instead of the real, the discussion must concern the complex
rays, complex sloﬁes and complex transfer matrices. The ray coordinates
(x,, Xy‘) are then in general complex canonical coordinates of the ray
which satisfy the Hamilton equations ([B]). The evolution of these
coordinates is described by the eikonal

p(xy, %p)=(2B) "1 [ Ax, 2+Dx,% 2%, o +2ax, +2(cB-Da)x,], (24)
which determines all the elements of the transfer matrix T, and, this time

takes into account a beam waist expansion factor v as well. The

Huygens-Fresnel integral 5

+0
Vz(x2)=-1k0/(2nB)“2J Vi) explikop(xy,x2)) dxy, (25)
-

in which kg is a vacuum wavenumber, transforms the input Gaussian field,

which is a beam diffracted according to the geometrical optics and ignoring
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dependence of the reflection (or transmission) coefficient on the angie of

incidence,

Vy(xq)=Ry - (2/m)1 % vy " Twg ! 2exp(-(xy /vy )2+1kzq) (28)
into the Gaussian output field

Vo (xg)=dy (2/1) 1 %vy twp 1 2exp(-(xa+cqp/n-a)2/vp24ikzy) (27)

characterized by the complex width v, and the constant d, (independent on

Xy, Xp'):
dz=R; * (Cqy /n+D) "1/ 2expl (-1ky/2) (c?qp/n+a®D/B-2ac). (28)

The explicit form of g, and v, 1is given by the well known ABCD

transformation of the input beam parameter v,
qz/n=[Aq; /n+B]/[Cq, /n+D] , qJ=—ikoan2/2 . J=1,2, (29)

what confirms correctness of the eq. (23).

4. CONCLUSIONS

We have applied a 3x3 ray transfer matrix formalism for the
description of nonspecular diffraction effects. Starting from the Green's
function approach, we have shown how transfer matrix elements depend on

beam deformation parameters.
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