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Jerzy Rudowski

Samodzielna Pracownia Dynamiki Stosowanej

STEADY STATES IN THE TWIN-WELL POTENTIAL OSCILLATOR:

COMPUTER SIMULATIONS AND APPROXIMATE ANALYTICAL STUDIES

ABSTRACT

The paper is focused on the phenomena of various steady state
oscillations exhibited by the twin-well potential system.
Regions of existence of different attractors in the system
parameter domain are examined and a picture book of different
steady states for fixed damping and forcing is presented: 20
different combinations of single or coexisting, Small Orbit or
Large Orbit, periodic and chaotic attractors are displayed.

Computer simulations are followed by an approximate
analytical analysis: a study of various forms of instability of
periodic solutions gives close form approximate criteria for
occurrence of T-periodic Small Oorbit and Large Orbit
oscillations, and for cross-well chaos.

1. INTRODUCTION

The sinusoidally driven twin-well oscillator governed by
equation in the form:

(1) X + hx = ax + Bis = F cos wt ,

R0, x>0, BS 0, T = %E

has become a classic central model for analysis of inherently
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nonlinear phenomena, the phenomena in which enormously complex
chaotic motion and highly regular periodic behavior can coexist
or to neighbor upon each other in the system parameter domain.

The equation was originally studied by Holmes and Moon since
1979 and was derived as mathematical model of a buckled beam or
of plasma oscillations (Mahaffey [1],Moon [2], Moon and Li [3]).

The simplest experimental device for egs(l) is that depicted
in Fig. 1: a particle placed in a twin-well potential with the
base vibrating with periodic motion. When the amplitude of
excitation is large enough the particle escapes from one of the
potential well and can jump from one well to the other in
random-like, irregular manner.
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Fig. 1. A physical model of twin-well potential oscillator.

The equation is also a classic model for the study of various
complex bifurcation phenomena, fractal basins boundaries between
competing coexisting attractors and the related problem of
sensitivity to initial conditions, homoclinic tangling of the
invariant manifolds of saddle point and the Melnikov criterion,

fractal dimensions of strange attractors and Lapunov exponents
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(Arecci and Califano [4], Grebogi, ott and Yorke
[5],Guckenheimer and Holmes [6], Holmes [7], Holmes and Moon
[8], McDonald, Grebogi, Ott and Yorke [9], Moon and Li [3,10],
Pezeshki and Dowell [11,12), Szemplinska, Joos and Moon [13],
Szemplinska [14], Szempliriska, Plaut and Hsieh [15), Tang and
Dowell [16], Ueda, Yoshida, Stewart and Thompson [17]). The
problem of criteria for chaos received also a great deal of
attention and was examined by numerical, experimental and
analytical methods (Moon [2], Guckenheimer and Holmes [6],
Dowell and Pezeshki[18], Dowell [19], Szempliriska [14,20],
Szemplirnska, Plaut and Hsieh [15], Szemplinska and Rudowski
[21]). Some attempts toward constructing the analytical
approximate criteria is also due to Moon ([22], Takimoto and
Yamashida [23], Virgin [24].

The aim of this paper is two-fold: first we want to present a
picture book of various, unique or coexisting steady states
exhibited in the system (1) at fixed damping and within the
range driving frequency, which covers the principal and 2-nd
order superharmonic resonance, 0.25 =w = 1.1. Second, we show
that the approximate theory of nonlinear oscillations, and in
particular, stability analysis of an approximate periodic
solution, makes it possible to estimate the system parameter
domains, where certain types of steady state occur, and to
predict boundaries of the region, where the system exhibits
cross-well chaotic motion. The approximate study involves the
T-periodic second approximate solution of eqgs. (1) obtained by a
perturbation method, and the analysis of various forms of
instability of the solution by considering approximate solutions
of Hill’s type variational equation. This enables us to
calculate domains of existence of stable symmetric T-periodic
Large Orbit solution (trajectory, which encircles all
equilibria) and the domain, where the T-periodic Small Orbit
attractor does not exist. The latter provides us with the
approximate criterion for the system parameters critical values,
for which the system exhibits cross-well chaotic motion.

Good coincidence of computer simulations and the approximate
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theoretical results throws new 1light on some traditional
concepts and views: the results seem to blur the distinction
between weak and strong nonlinearity, and to explain why the
apparently close neighborhood of regular nearly harmonic
response and the complex, continuous spectrum chaotic solution,
makes the approximate methods applicable in detecting strange
phenomena domains. The results help us also to find out a close
relationship between the classic nonlinear phenomena, such as
principal, super- or subharmonic resonances and the
bifurcations, which lead to the strict loss of stability of a
periodic attractor and to the escape from a potential well.

2.. STEADY STATES IN THE NEIGHBORHOOD OF PRINCIPAL AND
SUPERHARMONIC RESONANCE.

First we notice, that the three equilibrium positions of the
system (1) are defined by:

(2a) -ax + BxJ =0,
x> = # g , - stable equilibria
x® =0 unstable equilibria (saddle point)

3

and that the oscillations around the stable rest point are
governed by equation:

(2b) X + h¥X + 2ax 3 af x° + Bx3 = F cos wt ,
where

X =XxF7

5

Setting a = B =% gives us a normalized system, in which the
linear natural frequency and the positions of stable equilibria
are given as:
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0 =2a =1,
0

(s) i
i =% 1 ;
1,2

Therefore we consider the system (1) reduced to the form:

(3) X + hx - %ﬁ - %ﬁs = F cos wt ,

and that for the deflection from the stable rest point, egs.
(2b) as:

e .

(4) X+hx +x ¥ %x? + %xa = F cos ut.;

From the theory of nonlinear oscillations we have learned
that the system can exhibit two types of periodic motion: Small
Orbit i.e. oscillations around cne of the two stable equilibria
and Large Orbit motion, i.e. large amplitude oscillations which
encircle all three rest points (Fig. 2).

43
S.0.
W | i
Fig. 2. Two types of periodic motion: S.0. - Small Orbit, L.O.

- Large Orbit.
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Equation (4), for the Small Orbit motion, is a classic,

dissipative, driven oscillator with guadratic and qubic
nonlinearity. When we observe the Small Orbit motion in the
neighborhood of the principal resonance, i.e. at w= 1, we
notice that the resonance curve X xn“(m) is bent to the
left, i.e. that it has softening restoring force characteristic.
At sufficiently low values of the forcing term F the response is
close to a harmonic function of time, with the driving frequency
w, and it shows classic jump phenomena and hysteresis behavior
(see Fig. 3a). When F exceeds certain critical value denoted as
F1’ F1< F < Fz, the T-periodic nearly harmonic response
bifurcates into 2T-periodic solution at the top of the resonant
branch of the resonance curve, but still "jumps" down to the
nonresonant branch and the hysteresis behavior still occurs
(Fig. 3b). on further increase of the parameter F, F > Fz, the
classic Feigenbaum Period Doubling cascade (Feigenbaum [25])
occurs and the system escapes from the potential well x = 0 and
falls into the other well. Because properties of the two Small
Orbits are identical (one is the mirror image of the other) the
cross-well chaotic motion develops (Fig. 3c¢).
Sometimes Small Orbit chaos can be also detected within a very
narrow frequency band, just before the escape, but the
phenomenon seems to be negligible and is not considered in this
paper.

Therefore the higher frequency boundary of the cross-well
chaos, the boundary which is related to the resonant branch of
the resonance curve, is preceded by the universal period
doubling cascade, All the enormously complex bifurcations occur,
however, within a very narrow frequency zone, denoted as Aw in
Fig. 3c. The lower frequency boundary corresponds to saddle-node
bifurcation (cyclic fold, Thompson and Stewart [26), Thompson
[27,28]). Here a sudden change to/from T-periodic Small Orbit
from/to chaotic attractor occurs and the two different steady
states are separated by transient motion only. This is often
referred to as crisis phenomena, or crisis type transition
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Fig. 3. Resonance curves and bifurcation in the principal
resonance region: (a) Small Orbit, F < Fi. (b) Small
Orbit, E. 2. F< Pz. (c) E. <P < F; - Small Orbit and

coexisting Large Orbit motion. (d,e) Interaction of
Small and Large Orbit motion, F > F .
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to/from chaotic attractor (Grebogi, Ott and Yorke [5]). Fig. 3c
depicts also a resonance curve of Large Orbit motion. Here the
Large Orbit T-periodic response coexists with cross-well chaos,
or with nonresonant T-periodic Small Orbit. Depending on initial
conditions the system exhibits one or the other steady state.

Higher values of the forcing term brings an appearance of a
new phenomena: if the experiment is performed with decreasing
frequency, cross-well chaos changes suddenly to Large Orbit
Attractor (Fig. 3d). Fig. e depicts the system behavior for
decreasing w: here nonrescnant Small Orbit response Jjumps into
Large Orbit attractor, so that cross-well motion is not
observed. In both cases (Fig. 3d-e) there is a frequency zone,
where Large Orbit is a unique steady state of the system.

X max

= L.0. sym

PDB

-t —— -

SO

WppB

ey

|
|
|
|
|
0.4 T 0.5 0.6
w

SBB

Fig. 4. Resonace curves, bifurcation and interaction of L.O.

and 5.0. at the superharmonic resonance region.
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Next Fig. 4 depicts the mechanism of transition to steady
state cross-well chaos, which occurs in the neighborhood of the
2-nd order superharmonic resonance, i.e. close to w = 0.5. Here
both types of regular responses - Small and Large Orbit lose
their stability and disappear of a sequence of complex
bifurcations, giving rise to unique chaotic attractor. If the
numerical experiment begins at w > 0.5 with the initial
conditions, which generate Small Orbit motion, and is performed
on decreasing w, the classic period doubling cascade is
observed. Yet, instead of changing into cross-well chaos, the
response "jumps" up to Large Orbit. On further decrease of the
driving frequency T-periodic symmetric Large Orbit attractor
bifurcates into an unsymmetric one (a pair of two unsymmetric
attractors) and this is followed again by the cascade of period
doublings.This period doubling cascade results in transition to
cross-well chaos.

The lower frequency band of chaotic region is related to the
saddle-node bifurcation of the nonresonant Small Orbit solution
(cycle fold bifurcation) and is related to a sudden, crisis type
change to/from chaotic attractor.

The computer based results, within the freguency zone
0.25 < w < 1.1 at fixed damping are displayed in Fig. 5-8.

Fig. 5 depicts the system parameter region (F,w), where Small
Orbit, symmetric Large Orbit, unsymmetric Large Orbit and
cross-well chaotic or regular stable attractors exist. The Small
Orbit motion occurs within the whole F-w plane except two
V-shaped regions: one with the cusp at w = 0.8 and F = F2 at the
principal resonance region (see Fig. 3a-e), and the other cusp
at w = 0.4 and F =~ 0.14 i.e. at the superharmonic resonance
zone. Inside the two V-shaped regions the system can exhibit
cross-well chaotic (or regular) motion. We see also that in some
regions two different attractors coexist, while in the others
single steady state motion can be observed. In the 1latter case
we can say, that the attractors are globally stable. In the case
of two coexisting steady states we deal with the question of
their domains of attractions, but the problem is not studied in
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this paper.

F2

0,05

Fi

1 |
04

Fig. 5. Regions of different steady states exhibited by the
twin-well potential oscillator. h = 0.1.

L.O. symmetric, m L.0. unsymmetric,

cross-well chaotic motion,

‘?%?{ S.0. occur outside V-shaped regions.

The various single and coexisting steady states denoted in Fig.
5as 1, 2 e 20 are then shown in Fig. 6: regular
attractors are illustrated by their phase-portraits and chaotic
attractors - by Poincare maps.
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Fig. 6. Various types of steady state attractors: h = 0.1
@ F=0.06, w=0.74; F = 0.17: @ 0= 1.1;

w=1.0; w=0.982; W= 0.93; w- 0.85.
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Fig. 6 continued: F =0.17: @u = 0.79; w=0.75;
W r

c.;= 0.70; w=0.60; @ F=0.11, w=0,75;

F=0.17, w=0.48
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Fig. 6 continued: F =0.17: = 0.45; W= 0.44;

(5) w=0.41; w = 0.4045; @ w = 0.40;
@ w = 0.3845; w=0.38; @ w=0.30.
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First point 1 shows periodic response close to the
principal resonance at low values of F (F < Fz): the system can
exhibit resonant, large amplitude, or nonresonant, low amplitude
Small Orbit motion (see Fig. 3b). Note that only Right Small
orbit attractor is depicted in Fig. 6, although we realize, that
the Left one, a mirror image of it, always coexists.

Then, points 2 = 10 cover the principal resonance region
at large values of forcing parameter F =0.17 > F, at decreasing
driving frequency. We observe here the sequence of two period
doubling bifurcations of Small Orbit T-periodic response (points
2 - 4), cross-well periodic motion ("periodic window") - p. 5 ,
cross=well chaotic attractor coexisting with symmetric Large
Orbit (p. 6 ), 3T periodic cross-well motion coexisting with
L.O. attractors (p. 8 ). Point 9 lies in the region, where
symmetric L.O. is an unique attractor, and p. 10 show again
coexistence of L.0. and S.0.

Point 11 illustrates the case, where cross-well chaotic
motion is an unique attractor.

The consequtive points 12 - 20 cover the zone of the
superharmonic resonance. Point 12 shows again the L.O. and
S.0. coexistence, but the complex trajectory of S.0. indicates
multi-frequency response. Next the T-periodic Small Oorbit
bifurcates into 2T (further period doubliny not detected) and
disappears, leaving us with the symmetric Large Orbit as an
unique attractor (see also Fig. 4). This is followed by Symmetry
Breaking bifurcation, and period doubling bifurcation of Large
Orbit attractor (points 15 and 16 ) and finally by chaotic
(point 17 ) and regular (point 18 ) cross well motion. Point
19 shows also regular cross-well motion. coexisting with
T-periodic Small Orbit attractor, the phenomena, which was
detected within a very narrow frequency zone. The last point 20
illustrates the superharmonic resonance of Large Orbit solution:
this is strongly unsymmetric Large Orbit T-periodic motion, in
which constant term and second harmonic are of the same order as
the fundamental harmonic.

Fig. 7a-g give more details about some of the steady-state
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motions: from Fig. 7a, we learn that the T-periodic Small Orbit
at p. 2 inveolves large fundamental harmonic, and small second
harmonic and constant term; Fig. 7b tells us, that the first
period doubling bifurcation manifests itself by an appearance of
harmonic component with frequency %w and %w.

Fig. 7c depicts cross-well chaos characteristics at w = 0.97,
i.e. very close to the boundary of chaotic region. In this
strange attractor the difference in image density is observed
(Ueda [29,30]). .

Next Figs. 7d,e show time histories, phase portraits,
frequency spectrum and Poincare map of the two "periodic window"
attractors (points 5 and 7 ). The four characteristics of
cross-well chaotic attractor in point 6 are depicted in Fig.
7f.

Results presented in Fig. 79 lead to surprising conclusions:
the large amplitude Large Orbit appears to be highly regular and
very close to harmonic function of time, with frequency w.

Fig. 8a,b are aimed to illustrate the phenomenon of 2-nd
order superharmonic resonance of Large Orbit solution: the
response is strongly unsymmetric, the constant term and second
harmonic component are of the same order as the fundamental
frequency component. Fig. 8b shows the corresponding resonance
curves and illustrates the loss of stability of the solution at
w ® 0.325, thus explaining the disappearance of the unsymmet;ic

Large Orbit at higher values of the driving frequency (see Fig.
5).
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1
3. LARGE ORBIT T-PERIODIC SOLUTION: APPROXIMATE THEORETICAL
ANALYSIS.

In previous section we noticed, that Large Orbit T-periodic
motion within a wide range of driving frequency is close to
harmonic function of time, with the frequency w. This makes us
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believe, that the first approximate solution and analysis of
stability of the solution might give good estimation of the
system parameter domain, in which Large Orbit occurs.

With this aim in mind we seek T-periodic solution of egs. (3)
by a perturbation method, the solution which is close to
harmonic function of time as:

§(m= Alcos (wt + ) ;

We have, therefore, to transform egs. (1, 3) into the form:

(5) %+ 0% + uf(x,x,0t) =0 ;-

To make the transformation possible, we first examine natural
oscillation of the system and notice, that the (natural
frequency, which is imaginary for linearized system, i.e. at
B = 0, becomes real, when the amplitude becomes sufficiently

large. Therefore we set F = h = 0 and assume harmonic solution
as

(6) X = Alcos Qt ;

Applying one of approximate techniques, such as: harmonic
balance method or equivalent linearization method, we obtain

2 1
(7) *(a) = -5 + A

Ll

@ jw

The natural frequency QZ(A ) is positive if
q 1

A2>§-;
Now we can write

() 2%+ ¥ - P = owd

and consequently we rewrite egs (5) into:

. = e o :
(9) X + 0% + wihx + %o - nz(Ai)x = % ij - Fcos wt) = 0

http://rcin.org.pl
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uh =h ; ucr=02(Al)—w.ua=_%,u§= L pF =R o

N =

From numerous perturbation techniques, which are available in
the literature on the subject (Bogoliubov and Mitropolski ([31],
Nayfeh [32], Nayfed and Mook (33], Hayashi [34], Szemplirska
[35]) the most popular is that called multiple-scale method. It
applies a transformation of variables by introducing different

time scales:

2
T°=t, T=ut,T2=ut,...,

and assumes the solution in the power series of u as:

(10) ROE ) = FATGDGT u ) BT D) + B

where the slow scales Tn, n = 2 characterize the modulation in
the amplitude and phase caused by nonlinearity, damping and
excitation. In terms of the new variable the time derivative

are:
. R 2
(11) B Do + uD1 + D2 v iy
dz gk o 2 2
=—— =D + u 2DD. + u“(2DD. + D°) + ... ,
2 0 01 o1
dt
where D = i
n aTn 2

For the sake of clarity we apply an equivalent perturbation
technique, the technique which represents the modulation of the
amplitude and phase explicitly, not introducing any changes of
variables. Therefore we assume the approximate solution of eq.

(9) in the following power series of pu,

http://rcin.org.pl



_.29_

(12a) X(u,t) = Acos (wt + ¢) + u:-(l(A1,p,t) Foli® o
dA‘l 2

(12b) Fo = MD(A,¢) + MDD (A,Q) + ...,

(12¢) P -uE L0 + WEBL + ...,

where, in the sought steady state solution, we put:

]

8 8
]
g
]
o

(13)

In fact this is the asymptotic method developed first by
Bogoliubov and Mitropolski [31] (see also Szempliriska [35]).

Differentiating egs.12a-c, substituting into egqg. (9) and
equating coefficients of like power of u, we obtain

(14) x+ w'%x = (2D + hwA + F sin ¢)sin @ + (2EAw - oA +

+ F cos ¢) cos 6 - %EA:cos 3e ;

8 =wt +¢ ;

Elimination of secular terms in ix(ﬁ) i.e. equating

coefficients of cos & and sin 6 to zero, yields:

(15) 2D w + hwAir + F sin ¢ = 0 ,

A(2w-0) +Fcos p=0;

The steady-state condition (13) is now reduced to the
condition

D,=E =0,
and eq (15) give us the desired amplitude and phase as:

F ~hw
(16) K = A B
v (0°(a) - 01 + n%’ S@) ~w
where
2 = =l 2 =
Q (A1) = =g kA1 ‘ k = s’

http://rcin.org.pl
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Next we solve eg (14), (15) to obtain the correction function
X, (t):

(17) ux (t) = Acos 3(ut + ¢) ,
uga’ A3
A = 1 = 1 H
3 2 g !
32w 64w

Finally, the refined first approximate solution, which
describes Large Orbit motion is:

(18) x(t) = Acos (Wt + ) + Acos 3(wt + ¢) = X(t +T) ,

ghere Al, Q, ah are defined by eq. (16), (17).

To examine stability of the solution we first 1look at the
form of instability, which manifests itself by an exponential
growth with time of the harmonic components, which are involved
in X(t). We do this by adding small disturbances to amplitudes
and phases i.e. by considering the disturbed solution as:

(19) X(t) = (A, + 8A) cos(ut + ¢ + &p) +
+ (A3 + 8A3) cos 3(wt + p +3¢p) ,

61\3 = Sha(BAI) 7

and by making use of egs. (12b,c), which in the first
approximation considered are reduced to:

dAl & de _
(20a) gz = uD (A ,p) , at = HE (A.e)

where Dl' Az are given by eqgs. (15). Adding small disturbances
to the steady-state solution (16-18), expanding the right hand
side of egs. (20) into Taylor series and rejecting higher powers
of aal, 3y, we obtain linear variational equations with constant
coefficients:
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dsa, aD, ap,
(20Db) _dT=u[@5A1+E¢T‘S‘P];
dE 3E
dép _ — s |
ae- = k| g oAt gy A

For a particular solution of egs. (20b):
A = Cleh, 5 = cae’“,

the characteristic equation for A is
A +br+cCc=0,

where b > 0 in the dissipative system (h > 0) and

(21) C=u

aA‘ ap a3 61\1

From Routh-Hurwitz criterion we learn, that the real values
of the roots AI, A2 are positive, i.e. the solution is unstable
if

e<0, Re(A|)>0.
The stability limit is defined by ¢ = 0 and the condition is
satisfied at those points of the resonance curve Ax(w) , p(w),

which have vertical tangent

dep dAl
(22a) cC =20, ™ a2
Re(As) =0, i=1o0r 2

Moreover we know, that unstable branches of the resonance

curve are those, for which :—% and w - Q(Al) have the same sign:
(22b) €C<0,Re(d) >0, i=1o0r?2

dAl

T > Oandw—Q(Al) >0 or

dAl

dT<0andu—Q(Al) <0
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The stability limit parameters can be easily derived by
differentiating egs. (16) with the result

(22¢) w': - 2Bw

where

=a'a) + Zk:fQZ(A‘) :
and w=w, - the stability 1limit on the resonant branch of
Al(w)l
w=o - the stability limit on the nonresonant branch (see
Figs. 3, 9-12). ;
The unstable regions examined by egqgs. (19-22c) are referred

B=1+2kal -2,
el

to as the first order instabilities and an analysis of this type
is commonly used in the approximate theory of nonlinear
oscillations (e.g. Bogoliubov and Mitropolski [31], Hayashi
[34], Nayfeh and Mook [33], Szemplinska ([35]). It is worth
notﬁcing, that the first order instability occurs in the region
of the system parameters where more than one solution for
A]E Ax(“) exists. Therefore the criterion (22b) eliminates some
branches of the resonance curves, leaving us with other
branches, which seem to be "stable".

To examine other forms of possible instabilities of the
periodic solution (18) we should consider other functions for
the disturbance éx, the function, which are not confined to that
imposed by egs. (19). We do this by adding a small disturbance
dx to x(t):

(23) X(t) = X(t) + 8% ,
and considering the variational equation for &x(t). For small
disturbance, terms of order (ax)", n z 2 are rejected, and the

linear variational equation yields:

(24) 8% + héx + =—|_
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Inserting egs. (18) and expanding the term gg into
x(t)

Fourier series, we obtain:

(25) 8% + hdx +8x [A + 2:1 cos nwt] = 0 ,
n=2, 4,
e - L g Fe o a2
Ay = 2+4A1+4A3'
- 1 [
A=k T R
= 3
A4_'2}‘11,‘3'
= 252
A6_4A3’

(26a) dx =me

enables us to reduce egs. (25) to the Hill’s type eguation:

hZ
- — 4 A cos nwt] = 0 ;
4 n
n=2,4,6

(26b) n+ (A

We note, that period of the time dependent coefficient

A cos nwt is
n
n=2,4,6

(26c) T =

Therefore, by virtue of the Floquet theoren, particular
solutions of egs. (25) can be sought as:

£ 1 £t
(27) n(t) =e " ¢(t) , dx(t) = e o(t) , g =g =

where € is real and positive in unstable regions and ¢(t) is

periodic function of time, with the period 2T‘, or T :
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(28a) ¢, (t) = ¢, (t +2T) =4 (Lt +T) ;
L e
(et DL S8 2 e I e ey (S it

Functions ¢I, ¢“(t) can be expanded in the Fourier series as
(Bolotin [36], Hayashi [34]):

u

(29a)  ¢,(t) = Z bcos n(wt +8) , w
a=L, i35 e

(29b) ¢, (t) = z bcos (nut +38) , = , k=2,4,...
=0,2,4...

1 3

2/,

% 0, where
k is an odd integer, (eqgs. 28a, 29a), or k is an even integer

The unstable regions emanate from the w-axis at w =

(egqs. 28b, 29b). They are referred to as odd and even order
instabilities, respectively.

Egs. (28a,b 29a,b) tell us, that none of the instabilities
brings a growth of period 2T harmonic components, so that Period
Doubling bifurcation does not occur. Type II instability brings,
however, another interesting phenomena: it results in a build-up
of even order harmonics. This we call Symmetry Breaking
instability, the form of instability which is a strong indicator
of Symmetry Breaking Bifurcation. Note, that the conclusion
which is now drawn from the approximate analysis is in full
agreement with general results based on qualitative, topological
methods and computer based studies (Hubermann and Crutchfield
[37], Raty, von Boem and Isomdki [38], Swift and Wiesenfeld
[39], Nayfeh and Sanchez [40]).

To examine the symmetry breaking instability of the symmetric

solution (18), we assume two-term solution in egs. (27, 29b) as:

248
A, 1 3 .
(30) n(t) e (bO + b21 cos 2wt + b&sln 2wt) ;

Then we insert it into egs. (25) .and apply harmonic balance
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method, i.e. we equate constant term, coefficients of cos 2wt
and of sin 2wt separately to =zero. This gives us a set of
linear, algebraic, homogeneous equations for bo, bm, bzz.
Equating to zero the characteristic determinant, we obtain:

2 A
2 h 2
(831 |3 &g 7 ‘ ¥
2 A
2, _ A _h 2,4 o
A(cl)— 12 P 17 2 ;\o T +cl~l—2 ¥ Qun:: =0,
2 A
2 h 2 4
0 v -4.&»:1 =4+ Ao- i e

2
At the stability limit, where cf- %— = 0, the above determinant
is reduced to:

A
2
A, s o . 0
(32a) A = | a , ~40% 2 + 24, 4wh =0,
2 o 2
2 A
o , -4wh TR
This result is a quadratic polynomial for w’s
4 2 - = .
(32b) w_ - 2Bw +C=0, B = B(A) , c=c() ;

and gives us the desired relationship between ®w and the
amplitude A to be satisfied at the Symmetry Breaking
instability limit:

(32¢) Wep = usa(A1) i

To make sure, which region in Ai— w plane corresponds to

unstable solution, we expand the determinant (31) into power
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2

series in the neighborhood of sf— %— = 0. For small values of
2

cf— . we reject higher power terms and obtain:

4
2 2 aA 2 h®
(33)  a(eD) =am’) + 2 (e3-) =0 ;
ol B 18
e
Noticing that 955 >0 in the whole range of amplitudes
ae
1

considered, we conclude that in the unstable region:

2

2 h
(34) Cl- b > 00
A(m®) <o .

We conclude, therefore, that the resonant branch ” of
A1= Al(m), which seems to be stable in the sense of criterion
(22b), is unstable in the sense of Symmetry Breaking instability
criterion (34) at w < W (see Fig. 9). To determine the
Symmetry Breaking stability 1limit in the F - w plane, we
calculate the forcing parameter F by the aid of eq. (16)

(35) F, = v (@°(a) - w2)? + n’%f

Fig. 10 depicts both stability limits in the F - w plane: the
first order stability limit, which coincides with p. B in Fig. 9
and the Symmetry Breaking stability limit defined by egs. 32b.
The computer simulations results presented alresdy in Fig. 5 are
shown again, for comparison. We see, that the theoretical wB(F)
values are very close to the true boundary of existence of Large
Oorbit motion. We notice also that the theoretical Symmetry
Breaking stability limit Wep overestimates the values of driving
frequency, for which symmetry breaking instability really
occurs. This 1is, however, due not only to low order
approximation used in the theoretical solution, but also to the
fact, that in the computer based studies we determine the values
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Fig. 9. Resonance curves and unstable regions in L.O.
approximate solution:

Symmetry Breaking instability
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of driving frequency, for which the even order harmonics are
that large that can be detected.

It is obvious, that the theoretical analysis can not give
reasonable results in the region of F, w parameters, where the
two stability limits approach each other.
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Fig. 10. Regions of L.O. attractor: computer simulation and
theoretical stability limits: h= 0.1.
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Computer simulations, presented in section 2, revealed, that
the Small Orbit motion in the neighborhood of the principal
resonance is very close to harmonic function of time with the
frequency w, even at high values of the forcing parameter, at
F>F,. This is true for the values of the driving frequency
which are outside the zone defined by w, and w,p (see Fig. 3e),
when w, is the cycle fold bifurcation point, and C Il denotes
the first period doubling bifurcation.

Therefore, we consider T-periodic solution of eg. (4), the
solution which is close to:

(36) xm)(t) = a cos (wt + ) ,

and we seek an answer to the guestion, whether approximate
analysis of various forms of instability of the solution can be
useful in predicting the true w, and 0 values, and thus
whether it enables us to construct approximate criteria for
steady-state cross-well chaotic motion.

To apply perturbation methods we transform egs. (4) into the
form:

(37) %+ o ¢ u&zxz + uz[ﬁx o7 Eaxa + ox - F cos wt] = 0 ,
where
e | s e 2 _ 2
Ha, =35, Wa, =735 sh="n ; gUT = L = 5,
u2§ =F , pu - small parameter.

Note, that we put the gquadratic term to be of order u', with
all other terms to be proportional to uz, and that the
assumption is not related to the magnitudes of respective
coefficients. The relation between x° and x° terms comes from a
rescaling properties. Setting damping, detuning parameter and
forcing term of order that of x° is motivated by the fact, that
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perturbation methods need higher approximation to capture
effects of quadratic term. The assumed form of eqg. (32) gives
us, therefore, good opportunity to account properly for the
quadratic term and to obtain the second approximate solution in
as simple form as possible.

Next we apply the perturbation technique,which was used in
section 3, and assume solution of eqg. (37) in the form:

(38a) x(t) = aicos(wt + @) + uxl(a’,w,t) + uz...
da: 2 3
(38D)  Fp = WD (a,,9) + WD, (a,p) + u...

d
(38c) G = uE (a,9) + WE,(a,p) + K...
The terms of order u' give us:

2 = s N L R T &
(39) X, + W X, ZDJJ sin 8 + 2Elw a cos <] 2%a; 5%,a cos 28

~

6 = wt +p .
Elimination of secular terms yields:
(40) D =E =0,

and the correction function x‘(t) is
uxi(t) =a, * a cos 20 ,
8y T %M P 82 T %M 7
Terms of order p° and eqg. (40) yield:

.. 2 - - " N 3_ 3
+ = e
(41) X, WX, (2wD2 = ha‘w + F sin ¢)sin 6 + [Zﬂzalw 2%2,
- — 1_ 3
— + - - = -
ga, F cos ¢p]cos 6 2a2alxl(t) cos 6 2%,a,c0s 38 ;

Elimination of secular terms and the steady-state condition
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da1 5
(42) T = .uD1 + D2 =0,
. dp _ B o
3E = uE1 + E2 0 4

results in the amplitude and phase solution as:

(43) a = = 5 e ML
V(@ (a) - v)? + h%® ity =
where
2 o a o S BRI o I B N o
Q (al) =1 ka1 7 k gHa LT 2 7

Finally the second approximate solution for Small Orbit
motion close to the principal resonance, w = 1 is

(44) x(t) = acos(wt + ¢) + a + acos 2(wt: + .p) 7

e

2
5 a_=<a

= 2
3, = 45 12 471

(]

- N

and a, ¢ are given by egs. (43).
The natural frequency Q(al) is decreasing with the amplitude,
and consequently the resonance curves a = a (w) are bent to the

left (see Fig. 11). They preserve the classic shape and possess
da

the peak amplitude with the point B for which EZ; = @ unless

F>F. The theoretical limit value of the forcing parameter for

point B to exist, at low damping, is:

(45) F =

For F > Fl the resonance curve as= al(m) look 1like those for
undamped system.

Therefore the first order stability 1limits, defined by
criterion (22c) exist on the nonresonant branch only (point A),
and the whole resonant branch seems to be "stable" in the sense

of criterion (22b). To examine other forms of instability of the
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T-periodic solution (44) we turn to Hill’s type variational
eguation (24), which yields:
a;
Z
@
20 w

Fig. 11. Resonance curves and two types of unstable regions of
S.0. solution: - first order instability @ =

Period Doubling instability.

(46) 5% + hdx + SX[A, + i A cos nwt] =0 ,
n=1
lo=1—%ai+%a:,
A, = 3a - 22,
A2 i %af B %Ea: i
X3 = %a: !
A e
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Note, that period of time-dependent ternm T1 equals to the
period of x(t):

(47) T =T ;

Therefore, the two types of instability defined by eqgs.
(28 a,b, 29 a,b) now are:

(g - E)t
sx(t) =e ' % ¢(t)
(48a) ¢ (t) = ¢ (t + 2T) = z b cos (g—”t + 8. ;
mel, 3,8, <.
2/ A,
wE—, B Y 85 8l coe

(48b) ¢, (t) = ¢ (t +T) =) bcos (’2‘—“’1: +8) ,
n=0,2,4...

We notice immediately that the odd type instability givén by
egs. (48a) brings a growth with time of the harmonic components,
which have period 2T. This is, therefore, Period Doubling
instability, which leads to Period Doubling Bifurcations.

To examine the instability, we assume two term solution for
éx(t) as:

h
(e- 3t
_ 12 nw . nw
(49) sx(t) = e ..—Z gbgccos >t + b _sin =—t)
and we follow the procedure, which was outlined in sec. 3.

Finally we arrive at the fourth order determinant and the fourth
order polynomial for the desired Wt

(50) AA(al, w, h) =0
wa +bu6 + buw +bm2 +b =0 ;
PD 6 PD 4 PD 2 PD o
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If we neglect damping in the variational equation (46) we can
set b =0, h=1,2. in the solution (49) and thus to reduce
eqgs. ?EO) to the quadratic equation for W The simplification
appears to give surprisingly good results even at damping
coefficient that high as 0.2 (see Szempliniska, Plaut and Hsieh
[(15]) . This can be explained by the fact that boundaries of
unstable regions are strongly affected by damping at low values
of parametric excitation term (A, Aj.-. in egs. 46). We are,
however, exploring regions of high magnitudes of the amplitude
a, and so of the coefficient An, the region where the effect of
damping is negligible (Hayashi ([34]).

Setting h = 0 in egs. (50), we obtain:
= R 2 .
(51) Az—mpn 2BwPD+C 0 5
where:
- 20 i
Bi=ig Yo ™A * gl s
A A
= 16 _t 3 _1 2
=32 (A, + ) +5) =g +2a)7,

and Al= AL(al) are given by egs. (46).
In the unstable region the determinant is negative:
2 _n’
4

(52) b, <0 if e =~

> D

The resonance curves as= alUJ) and the two types of unstable
regions: the first order instability defined by egs. (22b) and
the Period Doubling unstable regions given by egs. (51, 52) are
depicted in Fig. 11. The two-term solution (49) gives us two
Period Doubling unstable regions: one which emanates from the
w-axis at w = 2, and the other - at w = % . At low amplitudes
they correspond to the 1/2 subharmonic resonance and 3/2
supersubharmonic resonance, respectively. We see, however, that
the Period Doubling instability wvisits also the principal
resonance region and the stability boundary crosses the resonant

branch of a= al(w), if the forcing parameter F exceeds certain
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critical value, the value denoted as Fz. For F > F2 the resonant
branch of ai(w) loses stability by Period Doubling at w = )
while the nonresonant branch has lost its stability at the point
with vertical tangent - at W, - We may conclude, therefore, that

within the range

W< <L,

the T=-periodic solution is unstable, and that "strange
phenomena" can be expected.

We could continue to examine stability of the resonant branch
by considering 2T pericdic solution and again studying a
corresponding variational equation. This would have 1led us to
the second bifurcation, and further to the cascade of Period
Doublings. The computer based studies, which revealed that the
cascade of bifurcations occurs in a very narrow frequency band
Aw (see Fig.3c, 5) allow us to confine our theoretical analysis
to the first bifurcation.
The theoretical stability boundary defined by the frequency w,
and w,, are plotted in F - w plane and compared to the computer
simulation results (Fig. 12). We see, that the crude
approximation analysis, which provides us with simple, close
form algebraic formulae for the two stability limits, gives
surprisingly good estimation of the system parameter critical
values, the values for which cross-well chaos really occurs.

5. CONCLUDING REMARKS

The computer based studies show, that the twin-well potential
oscillator exhibits a great of variety of different steady state
motions. Highly regular periodic and complex chaotic attractors
are very close to each other in the system parameter domain, and
alternate with a change of one parameter. The survey of steady
states at fixed damping and fixed forcing allow us to notice,
that large amplitude motion can be highly regular, or even close
to harmonic function of time, while a smaller amplitude motion
appears to be very complex, chaotic. The observation seems to

blur a distinction between weak and strong nonlinearity effects.
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Computer simulations bring an observation, that the lower
frequency boundary of cross-well chaotic motion is related to
jump phenomenon, and that upper boundary is separated from
T-periodic regular Small Orbit by a very narrow frequency band .

F 4

B15 -

010 —

0.05

£y

0.5

Fig. 12. Regions of S5.0. attractor: computer simulations and
theoretical stability limit,
P CTIT

- cross-well chaos.
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This brings us to the result, that the crude theoretical
analysis, the analysis which has its roots in the «classic
approximate theory of nonlinear oscillations, can give us
simple, close form approximate criteria for cross-well chaos.

Also, high regularity of Large Orbit motion enables us to use
a low order approximate solution and to obtain good estimation
of the system parameter values, where this type of steady state
occurs.
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