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Summary

Principal objective of this study is to fumnish a tool for a unified formulation and
numerical analysis of all the history-independent classes of response of elastic-
perfectly plastic space skeletal structures. We aim at determination of load domains
corresponding to elastic, shakedown and collapse behaviour for structures in initial
and deformed configurations.

Numerical program SDLAS for post-yield and inadaptation (non-shakedown) analysis
of elastic-plastic space skeletal structures has been prepared. It accounts for
biaxial bending, torsion and axial forces contributing to yielding of beam elements.
The program permits to determine a safe domain for either proportional or variable
repeated loads.

The proposed method accounts for nonlinear geometrical effects. In the post-yield
analysis the conditions for plastic flow are considered at subsequent deformed
configurations. For the inadaptation analysis the similar procedure n applied.
Automatic generation of all possible plastic deformation modes allows 10 select the
mos! dangerous mechanisms and to determine a critical plastic deformation puth

Finally, the post-vield or inadaptation curve is obtained showing the dependence
of load (load domain) multiplier on the plasuc deformation.

These problems are formulated as a sequence of linear programing tusks and are
solved by a step by step procedure.

The proposed method allows to determine the hmit muluplier and the shakedown
(adaptation) multiplier accounting for geometric effects.

* This report is the Ph.D. thesis presented to the Scientific Council of the
Institute of Fundamental Technological Research of the Polish Academy of Sciences on
December 16, 1993.
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CHAPTER 1

INTRODUCTION

1.1 Inelastic behaviour of structures and technological motivation of the thesis

Accounting for inelastic properties of materials permits the structural analysis to
simulate better the structure behaviour. It leads to a more realistic assessment of
the safety of the structure designed and, therefore, permits to reduce the safely
margins needed with respect to design limit states. The above is obvious and
generally acknowledged, especially when besides service loads the structure may
undergo excessive (catastrophic) overloading.

To make our further analysis clear, let us recall some main phases of the
structure response under increasing load intensity. Then are visualized symbolically
in the Fig. 1.1. The following is restricted to problems where the time may be
considered as a parameter determining only the order of events, without any
particular physical meaning. The types of the structure response may be specified as
follows:

1. Elastic response - terminating at an Elastic Limir load;
2. Elastic-plastic behaviour (constrained plastic flow) with:
either (2a) elastic response under repeated loading:
# for one-parameter loading - occurs always (in the absence of
plastic deformation at unloading),
+ for multi-parameter loading - in a restricted domain limited
by the Shakedown Load,
or (2b) repeated plastic deformation (inadaptation), i.e.:
= alternating plasticity, leading to Low-Cycle Fatigue,
+ raicheting, leading to Incremental Collapse
3. Unconstrained plastic flow (immediate plastic collapse) appearing for perfectly
plastic material under Limit Load (Collapse Load)
4. Post-Yield behaviour of perfectly plastic structures in the presence of
geometrical hardening, terminating at Ultimate Load (unstable behaviour or
rupture).
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Fig. 1.1 Types of behaviour of elastic-plastic structures

Analysis of the last type of the structure behaviour requires taking into
account geometrical non linearities, first of all considering equilibrium of  the
structure in the deformed configuration. The geometrically non linear analysis may
be needed, of course, even for purely elastic slender structures.

Accounting for physical and/or geometrical non linearities results in serious
complication of the analysis that made 1it, in the past, of little utility for real
complex structures. However, computation facilities (hardware, FE techniques,
incremental  procedures) available nowadays permit an analysis of large-scale
engineering systems involving even very sophisticated  constitutive laws, large
deformations and complex boundary conditions.

However, all the procedures aiming io solve non linear problems have an important
weak point: their history dependence. In many practical cases and probably in
majority cases of civil engineering structures the loading history is unknown and
only the domain for an arbitrary variation of loads may be specified. This fact makes
very difficult and expensive, or frequently impossible, a direct analysis needed for

a realistic design.
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However, in addition to the classical domain of linear elastic response, two
classes of inelastic behaviour of mechanical systems are independent of the loading
history. These are unconstrained plastic flow and adaptation of the structures. It
means that problems of the limit analysis and shakedown theory may be solved without
knowledge of the loading path. Hence, results of these theories may be relatively
easily implemented in the engineering practice.

The simplest and effective approach is, in these conditions, limit analysis.
However, it gives incomplete information concerning deformation. Therefore, using it
in the design practice raises serious objections of engineers because of a supposed
danger of excessive deflections and/or of the material degradation due to the low-
cycle fatigue. That i1s why such an easy tool may be accepted only if the safety
margin against an immediate collapse under monotonic load is looked for. To complete
the limit analysis results the incremental elastic-plastic analysis is needed.
Unfortunately, it is history-dependent; it is neither always feasible nor reliable,
since all the possible loading paths should be considered. In these conditions the
shakedown theory appears advantageous. It permits to determine the safe domain that
the structure will adapt to. An arbitrary load variation within this domain induces a
purely elastic response, due to residual stresses generated in the initial elastic-
plastic process. It means that the shakedown-based design insures elastic behaviour
of the structure under loads exceeding its elastic-limit values.

If the load exceeds the safe (shakedown) domain, inadaptation appears. It means
that the structure will collapse or became unserviceable because of the accumulation
of plastic deformation leading to local rupture (low cycle fatigue) or to infinitely
increasing displacements of the structure (incremental collapse). This process may be
delayed or :stopped by a sufficient strain-hardening of the material. On the other
hand, geometry changes due to deformations may induce either a geometrical hardening
or softening of the structure. That will result in expanding or shrinking of the safe
(shakedown) or prior-to-collapse domains of loads variation. Therefore, the structure
may fail by inadaptation or immediate collapse before the respective limit loads were
attained. On the other ‘hand, the (hardening) structure may sometimes withstand loads
largely exceeding the limit values determined using geometrically linear approach.
The above is shown in Fig. 1.2 symbolically, for the case of one-parameter loading of
a perfectly plastic structure.
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Fig. 1.2 Proportional loading-unloading of an elastic-perfectly plastic structure

Therefore, an information on the post-yield and inadaptation behaviour is needed,
if our design is to be safe and realistic. The engineers’ interest in this problem is
exemplified in the so called P-A effect in portal frames (flexure increase due to
horizontal displacements of their upper nodes), exiensively studied in elastic and
elastic-plastic domains. Unfortunately, each type of the behaviour is hist.ory-
dependent when the geometrical non linearities are not negligible. That is why
effective results concemning arbitrarily varying loads are until now rare and more

extensive study of this problem seems necessary.

1.2 Limit analysis and post-yield behaviour

Limit analysis theory assumes initial undeformed geometry of the structure. The limit
state, i.e., the limit load and the corresponding stress and velocity fields, appears
then independent of the loading history and from elastic properties of the material
(see, e.g., Sawczuk, [107]); therefore, its model may be assumed rigid-perfectly
plastic. Such an interpretation contributes to mathematical cleamess of the theory
(Hill, [47]) but raises ijections of engineers. Another interpretation of the
collapse state considers it as a limit of elastic-plastic process (Prager, Hodge,
[97]). However, this state of “unconstrained plastic flow" may be attained at
considerable (sometimes infinite) displacements. That raises doubts on the soundness

of the assumption of geometrical linearity of the problem.
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That is why numerous attempts at extending the limit analysis to the domain of finite
displacements were undertaken from its very beginnings. The so called Post-Yield
Behaviour (PYB) approach was applied first probably by Onat [88]. In this approach
the classical limit analysis is applied to a deformed configuration of the structure.
This configuration corresponds to continuation of the incipient collapse mode at
* finite  deflections. At each stage of the deformation process collapse load is
determined corresponding to an instantaneous plastic flow of the structure. Thus, the
geometrically non linear problem is replaced by a sequence of linear problems. In
this way the load corresponding to a steady (inaccelerated) plastic flow of the
structure may be plotted against its characteristic displacement Fig. 1.3.

3 1 @
3 NG W
= oS 65’0
£ g0
: =
| — ez
Qi
Plges;
aSstin Ung "
Glasﬁc_p /&sgc
0 -

3
Fig. 1.3 PYB: Load intensity versus deflection §.

Increasing curve indicates the so called geometrical hardc.ning (by analogy to
strain-hardening) and is well seen in the behaviour of plastic plates (see, e.g.,
[103]). The rigid-plastic increasing curve has small initial slope and relatively
well approximates the real behaviour. Destabilizing effects may be more important and
the decreasing curve (geometrical softening) has frequently a very steep slope (see,
e.g., [54]). The peak load (ultimate load A in Fig. 1.3) may be considerably lower
than the initial collapse load and than the current rigid-plastic collapse load
corresponding to A.

This approach was extensively developed for arches [82], [89], plates [107], [54]
and frames [30], [51], [52] and some extensions of.the limit analysis theorems were
proposed.
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Based on the Hill’s stability criterion [48] the condition for stability of
initial  plastic collapse process was derived [29] that permits analytical
determination of the initial sensitivity of the limit load to displacements for
simple structures. The latter problem was recently reconsidered by Gao [34] who seems
to be unaware of Duszek’s contributions [29], [31]. For more complex structures the
stability should be studied by a sequential step-by-step analysis at specified
deflections.

Taking into account changes in the collapse mode at increasing displacements was
possible analytically only for simple structures [42], [55] but development of
numerical techniques and, first of all, application of the mathematical programming
permits a continuous modification of the modes (see, e.g., [19]). Moreover, because
of the duality of the linear programming problem and its direct relation to the limit
analysis theorems (sece, e.g., Maier [75]) we obtain the exact mechanism at each
deformation stage. Therefore, following [29] the theorems may be considered to hold
also at finite displacements.

1.3 Shakedown analysis

Shakedown (adaptation) of the structure means that the plastic strain energy
dissipated during the whole process is bounded, ie., after a certain elastic-plastic
process plastic increments must vanish. This physical effect prevents occurrence of
two different phenomena shown in Fig. 1.1: unlimited progressive growth of the
structure  displacements (incremental collapse) and local cyclic plastic straining
(alternating plasticity).

To illustrate the phenomenon of adaptation and its limit by incremental collapse,
let us recall experimental results for a portal frame made of a mild steel [3]
subjected to repeated load cycles consisting of four stages as in Fig. 1.4.

The vertical deflection 8 of the beam is drawn against the number of cycles for
various load intensities P. One can see that at loads less than the critical value
the deflection & stabilizes after each cycle of increased intensity. At P=430 N the
deflection stabilizes but very small change of the load intensity results in a
dramatic change of the structural response: the deflection does not stabilize any

more.
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Fig. 1.4 Test of a portal frame:

Adaptation/inadaptation to load cycles of increasing intensity

The phenomenon of appearance of residual stresses in beams undergoing elastic-
plastic bending was known to engineers from the very beginning of studies in plastic
behaviour. These stresses insure elastic behaviour of the cross-section at reloading
up to the maximal moment attained previously, if the range of moment variation does
not exceed the double of the elastic limit moment. In 1932 Bleich_ [5] has taken into
account this phenomena together with residual moments generated by plastic
deformations of hyperstatic beams and formulated a criterion for adaptation of these
structures. In 1938 Melan [79] formulated this criterion in general terms for an
arbitrary elastic-plastic body. His theorem became a basis for the shakedown theory

and is the fundamental tool for the analysis of the structure under variable loads.

The Melan’s theorem (theorem on adaptation) states: .
The structure will adapt to any loading path in a prescribed domain of load
variation, if there exists such a time-independent residual stress field Py(x) that

the yield condition (p(clj):k is never violated under these stresses acting together

with the stresses of i(x,l) determined in the structure considered perfectly elastic.
That reads:

¢ [s (0 (x p”(x))] <k (1.1)
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The kinematic approach was first proposed by Neal [83] in 1950 for frames and in
1956 Koiter [59] formulated a general kinematic theorem (theorem on inadaptation). It
states:

The structure will not adapt to a certain loading program if there exists such a
cycle of plastic strain rates € (x,) resulting in compatible strain increments that
i

plastic dissipation over this cycle is inferior to the work of siresses G (x,1)
i

(calculated for the elastic structure) on these strains.

It reads:
5} L
I J S0 £ (xn) dvdt > J ID(é ) dvdt (1.2)
1 1 i)
Lv L

where D(£) means energy dissipation rate of the plastic strain rates working on
ij

their associated (by the flow rule) stresses. The inverse form of this theorem states
that the structure will adapt if for any loading path and for any deformation cycle
the inverse inequality in (1.2) is satisfied.

It is easy to see that the above theorems are analogous to the well-known
fundamental theorems of limit analysis (see, e.g., [60]). The limit state of
immediate collapse may be considered as a particular case of the shakedown under the
domain of load variation reduced to one point in the space of load parameters.

The inverse form of the Koiter’s theorem (1.2) used for the particular case of
alternating  plasticity (plastic strain increments disappearing after each cycle)
permitted Konig (see, [66]) to give a corresponding lower bound theorem:

¢ [s (@ (x0+ \"uij(x))] sk (13)

It differs from the Melan’s theorem (1.1) by the term ﬁljj(xﬂ which is an arbitrary

(not necessarily residual, “i.e., self-equilibrated) constant in the time stress
field.

Whereas the Melan's theorem is easily and directly applicable (e.g., [66], [98]),
the Koiter’s theorem was for long very difficult in use. Only when it was shown by
Gokhfeld [36] and Sawczuk [104] (see also [66]) that when incremental collapse is
concerned the inequality (1.2) may be, under some restrictions, integrated over the

time in a general way - direct applications became possible.
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Reformulation of the fundamental theorems using generalized variables (in our
case cross-seclional stress resultants s, and deformation of the beam axis q) is not
so direct and obvious as in the case of the limit analysis (e.g., [50]). However,
under some insignificant restrictions (see [101], [108]) it can be done for
incremental collapse.

In the case of alternaung plasticity the Koénig criterion (1.3) cannot be
directly rewritten in generalized variables. Besides the residual self-equilibrated
generalized stresses s®, pseudo-residual stresses are present in plastically deformed
cross-sections. Being self-equilibrated in the cross-section, they correspond 1o null
stress-resultants and cannot be reprcsénled by generalized stresses. However, as it
was shown by Pycko and Mréz [101] the alternating collapse does depend upon the
constant part of the loads. Therefore, if the load vanation domains are regular the
alternating  plasticity criterion can be reduced to the criterion of purely elastic
behaviour under an appropriately reduced variable load. The latter occurs in the
absence of residual (and pseudo-residual) stresses and may be, therefore, described
in generalized variables. Details will be presented in Chapter 2.

Further important step in the development of the shakedown theory was linear
programming formulation of the theorems in generalized variables for finite-element
discretization (Maier [70]). The analogy between the fundamental theorems and linear
programming duality, which is obvious in limit analysis (see, e.g., [19], [75]), may
hold, under certain restrictions, in the above approach for shakedown. This
formulation is used in our study and, therefore, it will be described in details in
the next Chapter.

The shakedown problem is sometimes solved: using an incremental analysis for
selected loading paths (e.g., [11], [57])), especially since it can be shown [66] that
if the structure adapts 1o cyclic loading processes covering all the vertices of a
linear-shaped domain of loads, it will adapt to any load path in this domain. The
same approach is used in the case of imperfect boundary conditions (like for
slackened structures [35]) where no theorems exist until now.

The theorems of shakedown were generalized to more complex loading conditions as
temperature changes (see, e.g., [37], [62], [66]), imposed displacements [100] and
dynamic effect (e.g., [16], [20]). Contrary to the limit analysis, the shakedown
theory may concemn also strain-hardening materials. This case was already dealt by
the Melan’s theorem [79]. Many contributions concern generalization of the shakedown
theorems and their applications to different types. of hardening (e.g., [61], [78],
[90], [96]), and the linear programming formulation [70], [71] is easily extended
into the hardening range [72], [76].
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Numerous bounding theorems and methods for displacements prior to the shakedown
theory (e.g., [4], [12]), [13]. [27]. [95]. [117]), have been formulated, also with
extensions 1o workhardening and/or dynamic cases (eg., [l14], [15], [21], [53]).
However, these approaches either need an information on the loading history or are
effective only for simple structures. Unul now, up to the author’s knowledge, no
practical applications for complex structures are known. '

Shakedown problems including creep phenomena were also studied (e.g., [92],
[94].

Extensions of the shakedown theory to the case of finite displacements will be
discussed 1n the next section.

Detailed discussion concerning the above topics may be found in monographs and
synthetic state-of-the-art articles by Gohkfeld and Chemnivasky [37], Konig [66],
Konig and Maier [68], Maier [73], Polizztto [91].

Applications of the shakedown theory to frame analysis started already with
Neal’s studies [84] and are numerous up to now (e.g., [23], [43], [44], [51], [63],
[80]). They entered into popular books on plastic design [45], [52], [85] and into
commercial computer codes for general structural analysis of plane frames
(e.g., CEPAO [86)).

However, all these studies and programs concemed plane frames with yielding
influenced by bending moment only. Practical analysis including axial force became
possible when linear programming formulation [70] was implemented [18], [109], [111]
and entered into plasticity-oriented commercial codes (e.g., STRUPL [19]). No
problems taking into account more than two generalized stresses were until now

treated.

1.4 Inadaptation

When the structure does not adapt to the load program applied, plastic strains
continue to reappear and develop, leading either to the alrernating plasticity or to
the incremental collapse. Although some results concern bounding of the post-
shakedown deformation (the method of "fictitious holonomic solution” [22]), the
analysis of these phenomena should be performed until now following the given loading
programs. It concems first of all the so-called limit cycle approach, namely looking
for the cycle intensity insuring stationary stresses and constant deformation
increment in the cycle. In this way incremental collapse behaviour became analogous
to the alternating plasticity. The notion of limit cycle introduced by Armstrong [33]
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was developed by Mroz [81], Polizzotto [93], and Pycko and Konig [99]: the last paper
also takes into account the geometrically nonlinear effects.

These nonlinear effects may appear important also in the prior-to-shakedown
behaviour. Large displacements developed in this process, if taken into account, make
the problem geometrically non linear. First proposition concerning extension of
shakedown theorems to large deformations appeared already 20 years ago. Maier proved
their validity for the “second order theory" in a discretized piecewise linear (PWL)
description [72]. It consisted of  updating the elastic stiffness matrix by terms
(a priori known or estimated), responsible for linear displacement-dependent terms 1
the equilibrium equations. A criterion for the stability of the adaptation process,
analogous to the Duszek's criterion [29] for the post-yield behaviour, 1s directly
derived from the above formulation. The original version accounted for linear
hardening. The approach was then extended [76] to an arbitrary hardening in the
framework of nonlinear programming. The above approach corresponds to applying small
perturbation 10 a pre-existing stress state and had until now no application to
practical cases of complex structures.

A more fundamental and general approach concems considering the problem at large
elastic and plastic strains in Lagrangean description. In this domain ambitious
contributions were recently presented concerning extension of the theorems, both
assuming additivity of elastic agd plastic strains by Weichert and Gross-Weege [40],
[116], [118], [119] and by criticizing this decomposition by Stumpf [102], [115].
All these contributions concern large deformations under constant loads and small
deformations generated by variable cyclic loads and until now they seem to be of
interest rather for qualitative studies. >

The most practical approach consists of application of the posi-yield behaviour
methods (see Section 1.2) 1o the case of variable loads. It means that the
geometrical configuration changes are due to plastic deformations in fully plastic
cross-sections only. The first studies of the shakedown of frames including
deformations are due to Davies [23], [24]). Konig [64], [65] determined stability of
frames by comparing the shakedown load intensity for the undeformed structure and for
its configuration deformed following the corresponding incremental collapse mode.
Namely, two modes valid for the same shakedown load are compared; the real mode to
occur will be that corresponding to the most unstable behaviour.

This approach was developed by Siemaszko and Konig in [111], and extended into a
sequential step-by-step linearized procedure with a program SSDH [69], [109]

permitting to determine the shakedown response of sirongly deformed structures and
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taking into account material hardening. The approach appeared to work even in the
case of material softening due to damage [110] and was applied to optimization of

plane frames [112], [113].

1.5 Aim, Scope and Main Assumptions.

Principal objective of this swdy is to furnish a tool for a unified formulatnon and
numerical analysis of all the history-independent classes of response of elastic-
perfectly plastic space skeletal structures. We aim at determination of load domains
corresponding o elastic, shakedown and collapse behaviour for structures in initial
and deformed configurations.

If the loading process may be represented by a finite number of independently
varying in time scalar parameters f,, i1=l...m (what 1s true for nearly all
conservative loads), the loading history presents a path in the m-dimensional space
of these parameters. In this case domains of plastic ), shakedown (), and purely
elastic € response are enclosed inside the convex surfaces: 82 (surface of limit
loads), 8Qgp (shakedown surface) and 8 (elastic-limit surface), respectively. This
is shown in Fig. 1.5. Limit-loads (8()) and elastic-limit (8{)z) surfaces are unique,
whereas the shakedown surface (8{kp) is determined following an arbitrary choice of
the domain shape. It means that a reference surface (9{2z) should be chosen and the
shakedown surface (8Qp=Es,8Qg) is its homothetic increase by a multiplier Egp,.

limit load surface B a reference
(unique) domain (§=1)

elastic surface
(unique)

&

Fig. 1.5 Load domains in the space of load parameters
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Determining the shakedown load means, thus, determining an intensity factor &g for a
given domain configuration. Therefore, to permit determination of the corresponding
multiplier for elastic limit & and for the limit (collapse) load & the maximum
domains homothetic 1o the shakedown (and reference) domain are inscribed into the
elastic-limit surface and surface of limit load, respectively.

The shakedown theory deals with arbitrary polyhedral load domains. However,
because of the reasons discussed in the next Chapter, we shall restrict our
considerations 1o "rectangular” (rectangular-hyperpolyhedral) domains.

Linear programming formulation of the shakedown problem in generalized variables
by Maier [70] is used in its classical form (see, [19]) described in Chapter 2.
Finite element discretization in lun'iped-complia.nce bar elements [10], [19], and
solutions using the standard simplex procedure (e.g., [10]), are also classical ones.
All actually successful programs (e.g., STIRUPL [19], SSDH [109]) are based on this
kind of approach.

Description and the procedures adopted above correspond to geometrically linear
formulation, the shakedown or limit-load multipliers concern the undeformed
structure. To take into account effects of geometry changes occurring in the
deformation process, it is assumed that the structure displacements are due mainly to
the inadaptation or post-yield process. It means that displacements are deduced from
the actual incremental-collapse mechanism. The mechanism is determined by duality
together with calculation of the multiplier. The mechanism gives the displacement
mode up to an undefined multiplier; therefore, the value of this multiplier is chosen
to give a predetermined value for the maximum displacement. Such a displacement field
is introduced to modify the configuration at the next step of the analysis. In this
way the geometrically non linear problem is replaced by a sequence of step-by-step
linearized problems. This approach, classical in limit analysis (post-yield
behaviour), was proposed for shakedown in [64] and showed its applicability to plane
frames [109]. The deformation mode modifying the current shakedown configuration
concerns incremental collapse, therefore, if the alternating plasticity appears, the
procedure stops, since the configuration in no more modified.

Using the plastic mode for updating the configuration means that the deformed
shape is composed” of undeformed bars undergoing rotations/extensions at plastic
hinges. It is clear that such assumption may be considered justified only for
structures  not-too-deformable elastically, for which the overall elastic instability
is not the principal danger. It should be noted, however, that even if elastic
deformations are large, replacing the deformed shape by its secant piecewise linear

approximation is frequently justified.
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General theorems concemning large deformations mentioned in the preceding section
do not furnish, until now, a tool for solving in one step the geometrically linear
shakedown or limit-analysis problems. Using our approach seems to be the most
reasonable since it permits o maintain at ecach step the essential feature of the
collapse and shakedown behaviour, 1e., their history-independence. Moreover, the
formulation used is already well discussed and verified, and classical procedures of
linear programming may be applied.

The LP solution of the shakedown problem consists of multiple application of
elastic analysis permitting local distortions. In the case of complex structures
(like space frames) the efficiency of sub-routines for elastic analysis is essential.
Therefore, using a professional commercial soltware 1s preferable. We used the SAP
program, namely its updated Polish version POL(SAP) (see, e.g., [58].

Straight spatial beam element is used, of lumped-type compliance, with plastic
distortion-like plastic strains concentrated at the end section (like in Borkowski
approach [10]). Loads are applied at nodes. The influence of transverse forces is
neglected both in elastic deformation and in yielding of cross-sections. Therefore,
four active stress-resultants (generalizes variables) are present: axial force,
torque, and two bending moments. Criteria for an entirely plastic ("Yield Surface")
and entirely elastic ("Elastic Surface”) cross-sections depend on these variables.
Forms of the criteria are assumed to be known (from case studies or commercial
catalogue data) and we proceed with an appropriate piecewise linearization of them.
Studies are restricted to doubly symmetrical cross-sections, to avoid being concerned
with problems of the cross-sectional elastic-plastic behaviour (shear centre in
plasticity). Bernoulli assumption about flexure and St. Venant’s about torsion are
accepted, like in all classical approaches. Therefore, application of our approach to
cold-rolled elements of thin-walled cross-section is rather disputable.

Taking into account strain-hardening should not pose serious problems at least
from the conceptual point of view (see, [72], [76]), the more if a step-by-step
updating of the yield criteria is applied [109]. However, hardening laws are still in
the centre of discussion. Therefore, because of practical orientation of our work,
this effect is excluded from considerations. For mild-steels the plasticity platform

is considered sufficiently extended to justify this exclusion.
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et us resume principal assumptions described above:

. Maternal 1s considered elastic-perfectly plastic and symmetric (the same response

al compression and tension).

t2

Classical SD theory is used in a linear programming formulation based on

undeformed geometry on each step of the analysis.

2a. The above assumes loading process described by a finite number of scalar time-
dependent parameters, with a given (rectangular) shape of the load domain.

3. Classical theory of beams (Navier-Bernoulli and unconstrained torsion) is applied
in elastic analysis.

3a. Active generalized variables are: axial force, torque and two bending moments,
The influence of transversal shear forces is neglected both in elastic analysis
and at yielding.

4. Double symmetric cross-sections are considered and limit surfaces for full
plasticity and first plasticity of cross-sections are assumed piecewise linear.

5. Finite element discretization is performed using straight lumped-compliance beam
elements.

6. Geometry changes due to deformation are accounted for by a sequential linearized
analysis for consecutive deformed configurations.

7. Configuration changes are due to plastic deformations.

7a. Plastic deformations are derived from the actual collapse mode with a selected
step of the maximum displacement.

Some secondary assumptions, needing a detailed reference to formulae or procedures

will be discussed later.

In Chapter 2 fundamentals and details for the determination of load intensity
multipliers as a linear programming problem are described. As special cases the
descriptions  concerns  limit  analysis, shakedown and purely elastic analysis.
Subsequent steps for deformed configurations are determined.

In Chapter 3 generalized variables for spatial beam elements are specified and
the corresponding criteria for yielding and first plasticity are discussed. Different
piecewise linear approximations of the corresponding surfaces in the 4-dimensional
space of generalized stresses are compared.

In Chapter 4 a finite element program SDLAS for solving the problem formulated in
Chapter 2 is described.
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In Chapter 5 results for case studies are given. Because of the number of
parameters  influencing  elastic-plastic  response  of  spatial  frames (elastic
rigidities, elastic and plastic strength characteristics of the cross-sections, shape
of load domains, etc.), possibly simple cases should be studied. With the exception
of some more complex examples for testing efficiency of the program, all other
studies concern one-span one-storey frames. Load multiplier versus control
displacement curves were plotted. The first series concermed different PWL
approximations of the yield surface and elastic surface, the next an influence of the
frame height. The following series concemed, first of all, 2-dimensional sway modes
being of importance in earthquake engineering. Finally, eccentrically braced plane
frames were studied. They have a particular importance in aseismic design as they
exhibit a significant phase of plastic response ("overall ductility”) for energy
absorption at exceptional situations. For such structures the shakedown analysis
under service loads is essential.

In Chapter 6 a simplified two-step version of the procedure is used to determine
the sensitivity of the limit and shakedown loads to displacements, for a given
control displacement value. The (sensitivity diagrams) permit the modification of
standard safety factors needed, depending upon the collapse mode.

Finally, Chapter 7 contains an overview and discussion of the results,
conclusions, and some suggestions concerning possible course of future research.



CHAPTER 2
FUNDAMENTALS AND BASIC RELATIONS
2.1 Material model
For the sake of self-sufficiency of the presentation, basic notions and relations of
the classical plastic flow theory (e.g., [106]) are recalled here. Elementary notions

are visualized in the uniaxial-plasticity diagram: nominal stress ¢ versus linear
strain € in Fig. 2.1.

plastic platform

E PP
€ £ Ep €

m

Fig. 2.1 Umaual plastic behaviour

Assumptions of additive strain decomposition (e=€g+€,) and of pure elastic
unloading are included in the classical theory. For perfectly plastic isotropic
metal-like  materials the plasucity condition 1s a scalar homogencous symmetric

funcuion of stress components:
¢=flg)-k=0 2.1

In the case of skeletal structures, under Bemnoulli assumption only three non-
vanishing stress components remain. They are, in local Cartesian coordinates (with x
axis tangent to the beam axis): o©,,. 0, 0, and the plasticity function is reduced

to an "ad hoc" expression (e.g., [121]):

http://rcin.org.pl



18 Chapter 2. Fundamentals and Basic Relations

f=(c*+c)” (2.2)
with normal ©,, — O, and shear stresses 0:). + 03, = v due to bending and axial
force, and 1o torsion and transversal forces, respectively. The formula (2.2)
covers, e.g., the Huber-Mises (c=3) and the Tersca (c=4) plasticity condition.

Since the expression (2.1) may be given by several analytical functions it is

convenient to formulate it in vector notation as:
P =0 =0 (23)
The above takes the following matrix form in a piecewise linear (PWL) approximation:

®=Nog-k=0 (2.4)

In the above formula N denotes matrix of the yield surface gradients defined,
according to this formula, as:

(69, 50, 99y

80, 80, a0,
: aQ, 8¢, 8o,

m
N = ¢ = |l — — i —
Oewm” |50, 50, 4, :

3¢, 3¢, 89y,

4o, 80, 80,

1553
n

The column matrix k contains the so-called plastic moduli. These are the functions of
the yield stress o, and they define the distances at which the planes ¢, are located
relative to the origin ¢ = 0.

Using the above notation, PWL classical models of strain hardening  (e.g..

isotropic or kinematical) may be described [72] by:
®=No-HL-K=0 (2.6)

with H depending upon the type of hardening rule and on material data; the vector of

plastic multipliers 4 determines the intensity of plastic deformation.
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P

The plasticity function being identified with the potential for strain rates, the

strain rates are expressed by the "associated flow law":

. Py .

g; = (Ej) ou + A 3G, (2.7)
with non-vanishing multipliers A > 0if (2.1) is satisfied, ie., with:

Ao = 0, o =0, (2.8)

the latter excluding plastic deformations at unloading. The dot () denotes the time-
derivative, the ume being considered as parameter determining the order of events in
the deformation process ("kinematical time").

For the PWL plasticity conditions (2.6) the above relations assume the following

vector form [10]:

€ =€ + € (2.9a)
¢, = E'0, (2.9b)
€ =NA& (2.9¢)
A=0 (2.9d)
D =0 (2.9¢)
Ao =0, (2.9
b, =<0 (2.9g)
A, = 0. (2.5h)

a

with @, concemning currently active planes of the plasticity surface.
Formulation in generalized variables deduced from the above relations is given in

Section 2.3.



20 Chapter 2. Fundamentals and Basic Relations
2.2 Description of load variation

When formulating the problem of safety of elastic-plastic structures under variable
repeated loads one should take into account not only the maximum load magnitudes or
their extreme combinations but, also, theoretically the whdle history of load
vanations. However, as 1t was noted in Section 1.1 the collapse load (limit load) is
history independent, similarly to the elastic behaviour. On the other hand, the
shakedown limit, being also history independent, depends upon the domain that loads
are permitted to vary arbitrarily within. Description of loads was shortly discussed
in Section 1.5. Here we repeat this description in more details.

In limit analysis and in shakedown theory it should be assumed that loads may be
described by a finite number of scalar parameters f(1), (i=l,...m) varying
independently in time, and by a spatial distribution (configurations) of "unit" body
forces b(x) and surface tractions t(x) comesponding to these parameters. The

distribution of loads in an instant of time is therefore:

m m

boxt) = ) Boby(x), txn) = ) Bt(x) (2.10)

i=1 i=1

Some parameters B; may concem both these types of loads, other only one. Nearly all
loads happening in engineering practice can be described in this way or, at least,
reasonably approximated.

The loading history describes now a path in the m-dimensional space of load
parameters, as shown in Fig. 2.2a. This path should vary inside a certain domain,

1B 4B

(@) ®)

>

L/\OJ B
' Bl © B,

BB,

Fig. 2.2 Load domains in the space of load parameters

http://rcin.org.pl
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if the structure is looked to shakedown. The shape of this domain needs to be chosen,
since the shakedown domain is not unique.

Corollaries 10 the fundamental shakedown theorems (see [66], [67]), permitling
practical calculations, concern any polyhedral (PWL) load domains, see Fig. 2.2a.
However. 1t seems that for practical analysis the domains may be restricted by each

load paremeter 3, being independently bounded by constant extreme values:

B = B(v = B, (2.11)

It means considering only the case of rectangular (rectangular-polyhedral) domains,
Fig. 2.2b. It covers nearly all practical cases if load parameters were appropriately
chosen, and 1t permits simpler LP solution (see [72], [109]) of the problem.
Moreover, this permits a simple decomposition of loads into a "permanent” part

determined by median coordinates:

Bl = %[B + B, ] (2.12)

and the part symmetrically oscillating around this new center of coordinate axes,
Fig. 2.3, with an amplitude:

1
Bi=;

B, - B; ] (2.13)

B = B+ B B s By s +B; 2.14)
B APy
B B
"
~ re 1-
~ P e B;
. 7N N ﬂ: B|I
) Py N ~ Bl

Fig. 2.3 Load decomposition

http://rcin.org.pl
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Only the oscillating part of the load influences the alternating-plasticity shakedown
limit [101].

Solving the shakedown problem means determination of the common load factor g,
which transforms, by a proportional expansion, a given reference domain Qg (see

Fig. 1.5) with prescribed dimensions:

¥, = Ba() = v (2.15)

into the shakedown domain (g, with:

Ep Vi = BiD = &sp ¥i (2.16)

Following the decomposition {2.12-14) the reference domain (2.15) may be also
described as:

VRRPE WO @150
with:

1 Il
K=+ N=50-9 (2.15b)

When the alternating plasticity is concerned, the dimensions of the reference domain
should be reduced by putting in (2.15a) ] = 0.

The history independence of the limit analysis problem and of elastic analysis
induces uniqueness (see, e.g., [77]) of limit load and elastic limit surfaces (802
and 8 in Fig. 1.5, respectively). Looking for load multipliers transforming the

reference domain into the one insuring safety against immediate collapse:

ELvios B =& Y: (2.17)

or against occurrence of first plasticity:

& v, s B = &g v} (2.18)

means looking for the largest domains inscribed in the surfaces () and aQ,
respectively, homothetic (with respect to the coordinate origin) to the reference

domain.
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It should be noted that all the load limits (2.11) are considered to increase
proportionally. Therefore, the case of fixed loads; not supposed to vary or to
increase cannot be directly treated in this manner. That does not pose practical
problems in determination of elastic &; and collapse & multipliers, but the
shakedown multiplier &, depends upon the shape of the domain, whereas this shape

changes when one of the parameters maintains the constant value of its himit:

+

Eo 1y = B = &sp Yir B. =7 =" (2.19)

The easiest (computationally) way of treating this case 1s an iterative
modification of the reference domain in the way that its initial shape corresponds to

Y.= Y. /& and, therefore, the surface expanded by Cee has the nceded fixed

coordinate v, in the direction of the axis f_.

2.3 Basic Relations

Basic relations for perfect plasticity given in Section 2.1, when formally rewritten
using generalized variables (cross-sectional stress resultants s and corresponding
axis deformations q) and assembled for all the elements of the structure, lqke the
form given below. The manner of presentation and notation follow these form [111].
This description proposed by Maier [70] concerns discretization by finite elements
and PWL form of yield criteria (criteria for fully plastic element cross-section).
Loads are considered applied at nodes only. .

Under assumptions of linear geometry, equilibrium and geometrical relations take

the classical form, respectively:

where C represents the compatibility matrix for the whole structure; s and q are
supervectors that collect all the generalized stresses and strains, respectively, of
all the elements; p and u denote the respective supervectors of loads and generalized

displacements at nodes.
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Elements are approximated by a lumped-compliance model [10] with plastic
deformation concentrated at end sections of the element. The latter assumption
justifies decomposition of generalized strain  into  elastic and plasuc  part,
equivalent to (2.9a) but not so obvious as in standard variables:

q=q +qP (2.22)
The elastic part q¢ is related to the stress wvector, through the structural

elasticity matrix E:
s=E(q-4q") (2.23)

The yield conditions are assumed for all elements to be piecewise-linear and can

be expressed in the PWL form:

f=Ns-k=0, (2.24)

where N is a rectangular hyperdiagonal matrix of the gradients of polyhedron faces,
for all elements. The vector k represents the corresponding plastic moduli, with
geometrical interpretation being the distances of the respective faces to the origin.

The associated flow rule (2.7) may be directly extended to generalized variables
(e.g., [106]). So, the plastic part of generalized strain rates and the active

process condition are as follows:
q®=N24, A=0 (2.25)

Components of the vector ;_\. are intensities of plastic flow in the corresponding flow
modes. Plastic flow may occur only if at least one row of Eq. (2.24) becomes

equality. That induces:

At=0 (2.26)
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The vectors of stresses and displacements can be decomposed into elastic and residual

parts:
u =u +u (2.27)
s = s+ s (2.28)

The elastic terms are determined using the elastic stiffness matrix:

K = C'EC (2.29)
s" = ECK'p, (2.30)
o = K'p (2.31)

The residual terms depend linearly upon the plastic deformation:
v =K' CEd¢ (2.32)
Ss=[ECK'C'E-E]¢ (2.33)

The latter, in force of Eq. (2.31), must be self-equilibrated, i.e., C's" =0
Variations of the load vector p are described by means of a finite number of load

paramelers B](l),.....Bk(l). following Section 2.2, In vector form we can write:

py=Q B (2.34)

where Q is a constant matrix collecting the vectors t; of unit load configurations.
The limits of variation of each of the load schemes are defined by limits between
which the corresponding load factor is allowed to vary (see (2.11)). The domain Q of
admissible load variations, defined by Eq. (2.11), is given to a certain common

factor & by the reference domain € (2.15).



26 Chapter 2. Fundamentals and Basic Relations

If a practical application of the Melan's theorem (1.1) is intended for
arbitrary varying loads, the elastic stress variable in time should be replaced by
its appropriately construcied envelope. In the case of a PWL criterion (2.24) the
most convenient way to do so is determining an envelope for projections of the
stress vector s¢ on the directions of gradients of all the faces of the yield
polyhedrons (index j). That forms a reduced elastic envelope for a reference load

domain. In the index-summation notation, used for clanty, it 1s:

d=m : Nhs;([) (2.35)

In other words the elastic stress envelope vector d is:
d = max {NT ECK' pi| p)e O } (2.36)

Practical computations are done using matrices collecting the vectors of elastic
stress due to each unit independent load and their projections on the normal to the
j-th face of the yield surface, respectively:

T=ECK'Q, L =N'T (2.37)
Eq. (2.36) may be rewritten as follows:
d; = Ly o (2.38)

where o determines the extreme values of the i-th loading scheme inside the

reference domain y] or Y, when the components L; are positive or negalive,

respectively. Using notation from (2.15b) the above may be written as:

d =LY, + lL,,l % (239
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2.4 Linear programming formulation

Let us comsider at first the shakedown problem, because limit analysis and elastic
limit problems may be considered as particular cases of the shakedown.

Using Maier's description [70] given in the preceding section, the shakedown
problem may be formulated as a dual pair of classical linear programming problems.

The LP formulation of the Melan's theorem (1.1) gives:

Esp = max {{; | 8d + N's" < k, C's=0 } (2.40)

Where s* 1s a looked-for tme-independent self-equilibrated state of generalized
stresses and d represents an appropriately reduced envelope (2.36) of these variables
for the reference load domain Qp (2.15). Multipliers & satisfying the inequality in
(2.40) de‘lermi.ne admissible load domains proportional to the reference domain . The
maximum admissible domain (§=Eg,) is the shakedown domain that is looked for.

By a formal construction of the dual problem to (2.40) (see, e.g., [10]), it is
obtained:

=min {kA | d'A =1, Cu=NA A=0} (2.41)
D fhe = h iy

which represents the Koiter's theorem integrated over a compatible plastic
deformation cycle, the integration enabled by PWL form of the yield criterion. If a

normalizing constraint is imposed on the term dT} representing the left-hand side of

the Koiter's theorem (1.2) the term szt (plastic dissipation) is equal to the
multiplier &. This multiplier determines inadmissible load domains proportional to
the reference domain. The minimum domain and its multiplier &g correspond to the
shakedown solution.

It should be noted that the duality holds if in both formulations the yield
criterion (2.24) for unconstrained plastic flow of the cross-section was used instead
of the local plasticity condition (2.4). It is known that such a substitution is
exact neither in the case of Koiter’s theorem (see [81]) nor in the Melan’s one
(see [66]). In the former case this substitution means assuming the “ratcheting
surface” [81] identical to the yield surface. In reality, they are very close
together (see [108]) and at least the incremental collapse may be correctly dealt

with using the yield surface.
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On the other hand, the criterion (1.1) is influenced by “pseudoresidual” stresses
(self-equilibrated within the cross-section [66]) and cannot be correctly expressed
by cross-sectional stress resultants. Fortunately, when applying the criterion (1.3),
it can be shown [101] that alternating plasticity is independent from the "permanent”
load B (2.12). Therefore, the problem can be solved, in the absence of residual
stress s7, as the elastic prdblem (using the elastic-limit criterion) for the
reference load domain (2.15a) appropriately reduced (y; = 0).

The elastic problem is, as mentioned above, a trivial subproblem of (2.40), in
the absence of residual stresses. ‘

The limit analysis problem represents a shakedown case under the reference load
domain reduced to points at its vertices. It means that the problem (2.40) is
uncoupled for each vertex and residual stresses s* may be different for d at each
vertex of the Q. '

In practical calculations it is frequently more convenient to use a direct LP
formulation of limit analysis theorems (see, e.g., [19], Chapter 5), being
mathematically equivalent to the description above:

E = maX{ g | C's = &p, N's = k } (2.42)
B = miﬂ{k*@'\ [Pla=1, Cu=Ni A= 0}» (2.43)

This formulation was used in all the known papers concerning limit analysis of space
frames [25], [26], [39].
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2.5 Inadaptation and post-yield analysis

The formulaton given 1 Sections 2.3 and 2.4 concerns a geometrically linear
description. To be rigorous, it should be admitted that the history-independence of
shakedown and limit analysis solutions (load multipliers and corresponding collapse
modes) is  stnctly  valid  only in geometrically linear cases. This history-
independence 1s essential for making feasible plastic analysis under arbitrarily
varying loads. Therefore, 1t seems that the only practical way that permits
accounting for geometry changes due to deformations is the post-yield approach (see
Section 1.2). It consists of sequennal solutions of geometrically linear problems
done for consecutively modified configuration of the structure. The problem is, thus,
linearized step-by-step.

This approach assumes geometry changes due to plastic deformations only. Since
the non-compatible plastic deformations are generally small when compared with
kinematically admissible ones the displacements may be attributed to the collapse
(immediate or incremental) mechanism only. In the lumped-compliance beam model
plastic deformations are assumed to be concentrated at nodal cross-sections
(generalized plastic hinges). Therefore, the deformed configuration of the structure
will consist of rigid-body displacements of straight elements between the hinges.
Such a mode of subsequent deformations is shown in Fig. 2.4.

@ initial
v configuration
g | /
s _
N
N A XI

deformed
— configurations

Fig. 2.4 Structure deformed following a collapse
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Initial data for the inadaptation or post-yield sequential procedures are
furnished by the solution of the problem at undeformed geometry (2.40, 2.41) or
(2.42, 2.43), respectively. Vectors of plastic multipliers 3 and of nodal
displacements u are derived from the kinematical formulation or by the formal
dualization of the primal problem. However, they are determined up to an arbitrary
common factor. To obtain the modified configuration of the structure a step A for
these modifications has to be chosen. Then, the factor p° should be determined,
normalizing a certain characteristic displacement into the step value A.  The most
reasonable and simple procedure for choosing A was proposed by Konig and Siemaszko
[109], [111], who were the first to apply the post-yield approach to the shakedown.
It consists of normalizing into A the maximum modulus of local displacement. The
factor pe, and factors ;,15 (for subsequent configurations) should be determined from

the normalizing relation

A 8

a8 =0, 1,2, ... (2.44)
maxluﬁl

ud =

For the given collapse mode, with max |u‘[ = A, we can modify the vector x°

describing nodal coordinates of the undeformed structures into the vector x' and so

on:
x0+1 = x8 4 p.s ud §=0,1,2, ... (2.45)

Then, we can pass to the solution of the next step, etc. At each step the procedure
is repeated with the formulation remaining as given in Section 2.4. Of course, the
step A should be sufficiently small.

The dual formulations for the shakedown and for the limit analysis problems are now,

respectively:

Esp(xB) = max { E ] Ed(xD) + N's' = k, Cc'&xd) ¢= o } (2.46)

Esp(x®) = min {kT}5| d"(xO8 = 1, cxBud = N8, a8 =0 } (2.47)
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E(x8) = max {&_, | C(xd)s = &p, Ns = k } (2.48)
\ o
€.(x® = min tﬂﬁ Pt = 1, cad=nNiS i8=0 } (2.49)

The above approach is applicable for sufficiently suff structures, because
deformations in the pre-shakedown or (pre-yield) phase are neglected. It may concern,
therefore, rather the inadaptation and the post-yielding processes than the preceding
phases. In other words, such procedure gives information on the sensitivity of the
shakedown and the limit analysis solution to shape distortions induced by collapse-
mode deformations or by initial imperfections of the structure.

When regarding Fig. 1.3, it is clear that in situations of geometrical hardening
(increasing curve) such a ‘“rigid-plastic” approach has rather  different physical
sense. Al geometrical softening (decreasing curve) no precise information on the
maximum admissible "peak-load” may be obtained. However, we can determine the
shakedown (or limit) load for the structure assuming a given control (admissible)
displacement. This displacement may, e.g., be derived from an incremental analysis of
selected processes or fixed following some code requirements, or possibly chosen
depending upon the level of exactness of the erection process. At any case such an
approach permits at least to determine if the shakedown (or yielding) process is
stable or unstable. This topic will be discussed in Chapter 6.



CHAPTER 3

GENERALIZED VARIABLES AND YIELD CRITERIA

3.1 Description of beam element in space

Let us recall general linear static and geometric relations for a straight beam
element, the hypotheses of plane cross-section and of unconstrained lorsion assumed.
The two-node element is loaded at its ends (nodes) only. The local coordinate system
is introduced, with x-axis tangent to the element axis and y, z following principal
axes of the bi-symmetric cross-section. The element has 12 degree of freedom, six at
each nodal point. In the general model the vector of cross-sectional stress

resultants s has 12 components (see Fig. 3.1):

9= {almlm{ ml o
m;
n,
MY \/
. m,
N, T : /\
v 4!\':? \?' el
X = Tjr ///

Fig. 3.1 Equilibrium of bar space element
32
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n normal force,
torsional moment,
.. m, bending moments in oxz & oxy and

L, L shearing forces in oxy & oxz
y b 8 y

for each left () and right () node, respectively. The load vector plet of
corresponding components of external forces applied at left and nght nodes, has also
12 components (see Fig. 3.2):

T
I r
PO = {Nx M, My M, T, T, N, M{ Mj M; T} T;} 3.2)

with the same notation as before.

P

®

Fig. 3.2 Space beam element: Fig. 3.3 Space beam element:
external loads generalized displacements



34 Chapter 3. Generalized Variables and Yield Criteria

The vector of stress resultants s must be 1 equilibnum with the vector of
external loads p® (Fig. 3.1). This condition gives 12 equilibrium equations, which

may be written in a matrix form as:
ple = Cgte) (3.3)

12 2 Je) - :
where 5@ e R"”, pe e R™ and C* is a 12x12 compatibility matrix.

Introducing dual vanables, we get a vector of deformations of the element axis:

a9 = {el ol o) ol el el el ol 4] o ¢l G
and a vector of generalized displacements (Fig. 3.3):
T
() ={p! 1 1 I ol ol of 0 i f I of of 4
ute -{E, ®, O, P, E, E, E; @ ¢ P, E| E] } (3.5)
Geometrical relations are:

q® = C' u@ (3.6)

In this way we obtained the most general relations (statical and geometrical) for a
bar in space frames Figs. 3.2, 3.3. However, the number of variables in these
relations can be reduced. Because the loads are assumed acting only at nodes, axial
force, shear forces, and torsional moment have to be constant along the element.
Following the Bernoulli assumption, shear deformations are disregarded and,
therefore, shearing forces are no more active variables (generalized stress). They
may be expressed by bending moments. Consequently, the influence of shearing forces
on yielding of cross-sections has to be disregarded.

Then, putting ml:mlzm: and nx=n;=n:. we have finally a 6-component vector of

generalized stresses, as shown below:

© = 1 1 r o |7
s = qn, my my m, my m, (3.7)
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The above reduction of generalized stress state induces reduction in dual variables.
. 5 1 ‘ R 1 .
Using total elongation e =e-e; and total torsion rotation @ =¢ -¢:, the generalized

strains are:
Lo k
q© = {c‘ D0y PPy @ } (3.8)

. e s . (e)T . s
Finally, the equilibrium equation p© = C?s@  and the geomelrical relations

(e)

q'©) = Cu© are, for this case, shown on Fig. 3.4

Ny [Ty [Ty My My M| NDTE T ML M| M
n, | -1 1
m, -1 1
: L 1 L
’ L L
X 1 1
m, -— 1

L L

. 1 1 i
Ty L L
. 1 1 i
e T L

Fig. 34 Equilibrium equations for the used bar
model in local coordinates

As it was assumed in Section 2.3 the plastic deformations are concentrated at

nodes, so the elastic law is applied for the whole element:

(e)
s© = E q@©, 3.9

where the elasticity matrix (see Fig. 3.5) depends on the geometry of the element
(L - length, A - cross-sectional area and I, J - moments of inertia) and on material

proprieties.
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el o |l o | o | @ | e
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my o T

r 2Elz 4ElLz
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Fig. 35 Elasticity matrix for the used bar model in local coordinates

Before assembling the structure, ie., before writing global equations for the

whole frame starting from equations for an element, we have to fix a global

coordinate system and to transform the relations derived befor; in the local system
into the global one OXYZ (Fig. 3.6).

Z

>
Y

Fig. 3.6 Local and global coordinates
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In the general case of vectors s, q@©, p©, u® describing the state of the
structure, only the vector of external loads p'®© and the vector of generalized
displacement u'®) may be transformed.

All the above operations are done in subroutines (ctmat.for) and (emat.for) which
were introduced in the POL(SAP) main program for the elasuc solution (see Section
4.3).

The relation between both coordinate systems (rotation matrix) is determined from
global coordinates of both ends of the element and an external point on one of
principal planes (see point K in Fig. 3.6), where this point is any point that lies
on the local x-y plane (outside the x-axis).

http://rcin.org.pl
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3.2 Yield criteria

When describing the limit analysis or shakedown problems, the plasticity condition
entering into the fundamental theorems (1.1, 1.2) should be formulated in the same
way as the whole problem, ie., in our case - in generalized stresses. This is called
the yield criterion (YC), and is represented as a function of cross-sectional active
stress-resultants (generalized stress) s¢ by several analytical expressions (as 1n

Eq. (2.3)):

f](sc) <K, (3.10)
with
s°={nmxrnyml} (3.11)

Construction of the yield criteion was for long a central point of plastic
analysis, especially for shells (e.g., [106], [121]). Since yielding of cross-
sections at different end nodes is independent, constructing the correspon&ing yield
criteria and collecting them in a supervector for the whole structure is trivial and
it will be presented for PWL yield criteria later.

Satisfying a yield criterion for a cross-section means that an unconstrained
plastic flow may occur at the cross-sectional plane. Following the assumptions of the
classical beam theory which determines the set of generalized stresses (3.11) and

using the local coordinate system (see Section 3.1}, yielding means that some of the

strain rates €, €., €, are non-vanishing. It corresponds 1o non-vanishing
curvatures changes, twist and extension of the beam axis, and if the lumped model is
adopted, with plasuc deformauons concentrated in the plastic hinges at nodes, the

vector of generalized strain 1s:
e L o
4 = {e P 9y @, } (3.12)

The cross-section may be considered as a structure under the set of exiernal
loads (3.11). To be more clear, we can 1magine, e.g.,, a cantilever beam loaded at the
end by the set (3.11). Generalized stresses in this beam are constant along ils axis
and equal to the loads (3.11). We should solve the limit analysis problem for such a
structure and the limit load surface in Fig. 1.5 becomes the yield surface (YS)

representing the yield criterion for the cross-section.
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It 1s convenient to present the respective yield surfaces in nondimensional

coordinates

ﬁ:_, ﬁ]x: ) [ny:A_ m, = (313)

where the plastic moduli n,, m,, m,, and m, are the yield values under separate

ox? oy
action of one varable only. These moduli may be easily obtained (excluding torsion)
from commercial catalogues of steel profiles.

Following the beam assumption, the plasticity condition should be used in the
form (2.2). It should be noted, that the linear form of the condition (e.g., in the
absence of torsion) does not imply the linearity of the yield criterion.

Plastic flow of the cross-section needs all its surface to be plastified, with
eventual exception of the neutral axis. Therefore, in the absence of torsion (only
normal stresses remain) the problem becomes elementary. It is reduced to calculation
of the resultants for two uniformly stressed (0,, = O, and O,, = -0,) parts of the
cross-section separated by a straight neutral axis. Expressions for all stress
resultants (n, m,, m,) present a parametric form of the yield criterion, the
parameters describing the position of the neutral axis in the plane (y,z). The
corresponding procedure and numerous results may be found, e.g., in [17].

In this way, the well known parabola for rectangular cross-section and the
rhombus for ideal sandwich may be easily obtained (Fig. 3.7). In the case of lumped-
area models of cross-sections, considering the surface area to be concentrated in
points or layers (sandwich, "multipoint” cross-sections in [121]), these criteria are
PWL.

0.1) (0.1)
(-1.0) (1.0) (-1,0) (1.0)
0 - 0 5

©.-1 (0.-1)
(a) Rectangular cross-section (b) Sandwich cross-section

Fig. 3.7 Yield surface for moment-force interaction
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Determining the yield criterion in the presence of torsion is a more difficult
task. Exact analytical solutions are available only in particular cases and bounding
limit analysis techniques have to be used. Numerous old case studies are available
[49], [121] and the problem is studied up to now. Finite element linear programming
approach (2.42) is now commonly applied [19], [39] and quasi-automatic procedures
were proposed [28].

Determination of the yield criteria 1s essential for the analysis of space
frames. However, this topic is outside the scope of our study. Following the
description above, we may consider that for a given cross-section the YC is known. In
reality, data for practically used steel profiles are rare or lacking, but preparing
an appropriate catalogue of this type should be an object of a commercially oriented
study.

3.3 Elastic Criteria

When the load multiplier & conceming the elastic-limit load (Fig. 1.5) is looked
for or when we determine the shakedown multiplier Eg, concerning appearance of the
alternating plasticity (see Section 2.4), the elastic criterion (EC) for the cross-
section is needed. Similarly to the yield criterion, we can write it in the same

variables as (3.11):

E . E
f,(s) = k; (3.14)

E . .
with k; being elasic moduli (elastic-limit value) under a separate action of each
stress resultant. Equal sign in (3.14) means appearance of first plastcity in the

cross-section. It means that the criterion (2.2):

[=(@+c)? =0 (3.15)

1s satisfied at some point of the cross-section. Following the classical beam  theory

adopted here, stresses are linear functions of the variables §° Thus. the normal

stress 1s:
n nm,; m,y

0= —% + 7=+ = - (3.16)
A 1 T,

with A, I, I, being the area and moments of inertia of the cross-section and vy, 7

being coordinates of the extreme points of the contour.
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For shear stress induced by torsion, let us recall only the simplest formula

concerning any open cross-section approximated by a system of thin rectangles:

om,
1= (3.17)

with 1 being the thickness of the cross-section, J the sum of polar moments for sub-
elements, and o a correction factor derived from a more sophisticated analysis. In
calculation of 1T, also stresses due to shearing forces (. should be, in
principle, taken into consideration, since this analysis needs not to be compatible
with the kinematical assumptions. However, these assumptions are valid when the
stresses from shearing forces are small. Therefore, they are neglected here to make
the approach more consistent.

Verifying equalities (3.14) with the use of the above formulae all over the
cross-section means determining equations of the EC corresponding to selected points
of the cross-section. The points are extreme comers and centers of the longer sides
of rectangular components. If a more refined approach is used, concave angles of the
cross-section should be also considered. This procedure is a standard task of
structural dimensioning; only its presentation (construction of the elastic-limit
surface ES) is adapted to our needs. Some commercial computer codes give subroutines
for performing that. However, until recently they covered only the case with absence
of torsion. Their recent versions (e.g., ABAQUS version 5.2, WDKM [87]) include
subroutines for the general case, even for complex thin-walled cross-sections. Using
this subroutines for different configurations of stress variables, the ES may be
easily derived.

The elastic moduli kj in (3.14) are simply:

A, = Oo Iy Oo Iz m Co J (318)

ng = n, =g mg, = =
E Ez > Mgy
max|y| {3 max t

o

o

The last expression corresponds to the Huber-Mises plasticity condition (c=3 in
Eq. 3.14). To represent the EC in the space of generalized stress s¢ as a convex
elastic-limit surface (ES) the nondimensional coordinates are used as in Section 3.2
(Eq. 3.13). The coordinates of the ES at the axes will be:

_ Mg, - Mg, - Mg,
ng = | Mg, = — mg, = —2=, Mg, = (3.19)
E L] E E: Ez

* M, ' d moy) oz
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Alternative nondimensional coordinates for the ES only may be

n'=1, m, = . m (3.19a)

which gives normalized values on the axis mg= *1.

3.4 Piecewise Linear Criteria

The linear programming formulation of the limit analysis and shakedown problem needs
a PWL yield criterion (2.24). Its segment for a given cross-section is:

F=NTs-K=0 (3.20)

with the matrix N composed by column vectors representing gradients of plane faces of
the yield surface. The equation (3.20) in the space of four generalized stresses
(3.11) may be presented symbolically as in Fig. 3.8(a) or, using nondimensional
coordinates (3.13), in Fig. 3.8(b). Such presentation will be useful in assembling
the criteria. '

n'fmyimgimy At |mi|m {my
Nl x| Y| z| © |K N| x| Y| z|® |1
(a) (b)

Fig. 3.8 Yield criterion for a cross-section

This linearization may be done either considering a lumped-surface model of the
cross-section  (sandwich  approximation  “multipoint”  cross-sections [121]), with
appropriately linearized plasticity criteria  (3.15) or by approximating the non-
linear exact YS by a system of hyperplanes as close to it as possible. Such
approximations were proposed from the beginning of limit analysis, because they

permitted analytical solution. For bounding techniques it is reasonable to use PWL
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surfaces inscribed in and circumscribed on the exact YS. Because of the convexity
condition, the lower and upper bounds for the YS are "generalized sandwich" and

"limited interaction” approximations. They are represented by a hyper-pyramid and a

hypercube, respectively. {see their shapes in n-m, space Fig. 3.9(a), {d)). Columns

z

of the corresponding matrices N' (Fig. 3.8) for the lower and upper-bound

approximations are given in Eqs. 3.21 and 3.22, respecuvely.

+1 +lW +1T +11
+1 +1 +1 -1
+1 +1 -1 +1
+1 +1 -1 -1
+1 -1 +1 +1
+1 -1 +1 -1
+1 -1 -1 +1
B +1 : -1 o 1 - -1
N = 1 X = +l Y = +1 Z= 1 (3.21)
-1 +1 +1 -1
-1 +1 -1 +1
-1 +1 -1 -1
-1 -1 +1 +1
-1 -1 +1 -1
-1 -1 -1 +1
-1 -1 -1 -1
+1 0 0 0
0 +1 0 0
0 0 +1 0
B 0 v 0 v 0 - 1
N = 0 X = 0 Y = 0 Z = 1 (3.22)
0 0 -1 0
0 -1 0 0
-1 0 0 0

It should be remarked that these PWL approximations have no physical meaning (no
corresponding cross-section model), with exception of the sandwich cross-section for

the moment-force interaction.
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The size of the shakedown problem and the computation time grow rapidly with the
increase of number of inequality constraints in (2.40). Therefore, choosing a PWL
approximation of the YS that is simple but sufficiently close to the exact one is
very important. We discussed above two extreme PWL forms: the lower bound and the
upper bound approximations. They are rarely acceptable, especially the latter. Errors
thus introduced may concern not only under - or overestimation of the load
multiplier, but also may lead to modeling of the collapse mechanism fairly different
than in reality. This fact is well known in the classical limit analysis. As our
interest is in the post-yield and inadaptation behaviour, with the configuration
changes following the collapse mechanisms, such errors should be avoided.

In order of simplicity, the following approximation, frequently accepted as
satisfactory, is the “octant-point” approximation. It consists in determining the YS
polyhedron with two vertices on each axis and one in each octant (hyperoctant) of the
space. The nondimensional coordinates of the vertices are

A(+1,0,0,0), ....; D(+da,+dx,+dy,+dz) (3.23)

with permutation of a non-vanishing coordinate in A and with all the sign

combinations in D. The number of vertices will be:

2n + 2" (3.24)

n being the dimension of the stress space. The lower and upper-bound approximations

are particular case of this type, with some vertices disappearing.

mA M m 1 m 4
‘ (-0.15. 1) | (0.15, 1) (0.1) (-1.1) [ (nn

(-d.d) |

1.0,/ (1.0) (-1.0) (10) (-1.0)
n /0 n
7

| (0.9 |

1(07"-1 (-0.15, -1) | (0.15, -1) (0,-1) (-1.-1) ‘ (1,-1)
(a)d=05 (b)d";édm (c)d=2/3 (dyd=1

Fig. 3.9 PWL approximation of the moment-axial force interaction
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The PWL approximations discussed above are shown in the 2-dimensional case
(interaction of bending moment and axial force) in Fig. 3.9. Fig. 3.9(a) shows the
lower bound (sandwich) type and the Fig. 3.9(b) illustrates an octant-point
approximation, proposed in codes for I-shaped commercial profiles. Fig. 3.9(c) shows
a PWL approximation of the curve for rectangular cross-section. It belongs also to
the octant-point type but with its particular form: the PWL surface is inscribed into
the exact one and the point D is lying on the bisector d=d; (hyper-bisector) of the
hyperoctant. This approximation is called, following [39] "d-approximation” and,
since it is accepted in the major part of our computations, it will be discussed in
detail in the next Section. '

When one or several generalized stresses appear to be small in comparison o
their moduli, the YS may be assumed to be a parallelepiped with generatrices parallel
to its axis. Limited interaction (3.22) is assumed between this variable and the
others. We have now a "partial-limited interaction”, which may be represented in
symbolic form, following Fig. 3.8(b), as below:

n, |m, |m, |m, | () n, |m, |m, |m, (

o|x|vl|z |*]|! Nlo|viz | |

1lololo ol1]olo

alofofo| ( ol1]o]o J
(a) (b)

Fig. 3.10 Yield criterion for slender structures and structures with small torsional
rigidities

The cases in Fig. 3.10 correspond to slender structures (a) and to structures
with small torsional rigidities (b). Both cases are very frequent in the engineering
practice.
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When a yield criterion for an element is to be derived, we should compose two
criteria for both end cross-sections of the element. Taking into account that n and
m, are equal in both cross-sections, the generalized stress space becomes
6-dimensional (3.7). However, yielding of both cross-sections is independent and it
means that the limited-interaction appears between the two sub-surfaces. It is the
situation like that presented in Fig. 3.10. We can represent now the YC for an

element with an extended matrix N, like in Fig. 3.11.

ne m¢ mf mi mt mf

IA

Fig. 3.11 Yield criterion for an element

Assembling the yield criterion for the whole structure means constructing a
hyperdiagonal matrix N' with the maU'Iices N7 (Fig. 3.11) for all the elements.

All the considerations in this Section may concern also elastic criteria.
Linearization is eased in this case, because in the absence of torsion the exact
surfaces are PWL, at least for PWL shapes of the cross-sections. It should be noted,
that if nondimensional coordinates (3.13) are used, coordinates of the vertices of

the ES on axes are now as in (3.19) and not (1 0 0 0, ..; etc.).
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3.5 "D-approximation" of the yield criterion

We shall consider here in more detail the most convenient for implementation form of
the "octant-point” approximation (3.23). It copcemns the polyhedral surface inscribed
into the exact YS and with vertices on axes (A-point) and on hyperbisectors (D-
points). In (3.23) we should put:

1
l§

d,=d,=d, =d, =d (3.25)

This approximation was proposed in [39] And successfully applied to the limit
analysis of space frames [25], [26], [39]. No other applications to the plastic
analysis of frames accounting for all the four generalized stresses are known.

Data collected in [39] from case studies for. cross-sections of different shapes and
under different sets of generalized stresses give idea on the values of d appearing
in practice. They are recalled in Tab. 3.1. Some d-values for PWL approximations of

some theoretical surfaces are given in Tab. 3.2.

No. |Active Internal Forces| Square | Hollow box | Wide Flange
1 [n, +m, 0.618 | 0.588 0.545
2 |n, +m, 0618 | 0.565 0.678
3 |, +m, 0.677 | 0.664 0.646
5 |ng+m, +m, 0.518 | 0.500 0.518
6 |m, +m, 0.721 | 0.717 0.766
7 |m, + m, 0.721 0.719 0.770
8 |m, + m, + m, 0.571 0.571 0.605
9 In +m +m +m, | 0471 0.461 0.504

Tab. 3.1 Coordinates of d-vertex in positive "octant” of R2, R3 and

R4 spaces for different shapes of the cross-sections

Following (3.24) the number of vertices 1s 24 and the corresponding matrix V of their

coordinates is:

1.1 000000dddddsd-d-d ddd-d-d d d-d

v= 00 1-1 000 0ddddddddddddddd-d o

0000 1-1 00dddddddddd-ddd-d d-df 320
000000 1-1dddd-ddd-dd-ddd-d-d d-d
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Selecting square submatrices of (3.26) means selecting hyperplanes determined by such
sets of four vertices (hyper-tetragonal faces). Excluding meaningless submatrices
(singular or corresponding to planes interior to any vertex), we arrive at 48 sets
describing 48 faces of the polyhedron. Details of the corresponding permutation
procedure may be found, e.g., in [25].

Equations of the corresponding hyperplanes are obtained, in a standard way, by
putting zero as a value ot the extended determinant of the submatrix considered, as
below:

=
=0

det =0 (3.27)

sub V7

——
|

The above describes the j® row in the matrix N. It may be easily shown that
because of the symmetries of the YS only one configuration of the submatrices may
appear for the whole yield polyhedron. '

These possible configurations are, following the notation from (3.23):

I: (A,D.D.D), II: (A,A,D,D), II: (A,A,A,D) (3.28)

Let us consider the configuration (ADDD). To select the submatrices m
determinant of Eg. (3.27) we should associate with each vector A three of four
neighbouring vectors D, e.g.:

A0, 0, 0, 1), Dui(d, d, d, d), Dad, -d. d, d), Ds(d, d, -d, d) (3.28)

Calculating the determinant (3.27) with the coordinates of the above points we obtain

the corresponding equation of the hyperplane:
(1-dyn+dm,=4d (3.29)

Other hyperplanes will correspond to meaningful combinations of three points D from
the eight neighbouring each point A (six combinations) and the above should be
repeated for all eight A-vertices. That finally gives 6x8=48 planes. The columns of
the matrix N7 Fig. 3.8(a) are given in (3.32), in the dimensional form used in

practical calculations.
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Notations used in (3.32) are:

d=da, e, = (1-d)ai, 1=mn, X, 2 with (3.30)
m,, my, mg, my,
o =— o =— 0= =1, a,=— (3.31)
MNox Mg m,, mg,
0 €x d)- 0 ] Moy
0 €x Ad) 0 Moy
0 -Cx dy 0 Moy
0 ex »dy 0 Moy
0 dx €y 0 Moy
O -dx -Cy O Moy
0 dx -y 0 Moy
0 -dx ey 0 Moy
0 €x 0 dz Moy
0 -€x 0 dz Moy
0 -€x 0 dz Moy
0 €x 0 -dz Moy
0 dx 0 €z Moy
0 -dx 0 -€z Moy
0 dx 0 -z Moy
0 -dx 0 ez Moy
dan €x 0 0 Moy
-dn -ex 0 0 Moy
dn -&x 0 0 Moy
-dn ex 0 0 Moy
€n dx 0 0 Moy
-€n -dx 0 0 Moy
en dx 0 [\ Moy
-€n - -dx _ 0 _ 0 _ Moy
N=14 X = 0 Y = & Z = 0 K_d°mq (3.32)
-dn 0 -y 0 Moy
da 0 -ey 0 Moy
-d, 0 ey 0 Moy
en 0 dy 0 Moy
-en 0 -dy 0 Moy
en 0 dy 0 Moy
-en 0 -dy 0 Moy
dn 0 0 €z Moy
-dn 0 0 -€z Moy
dn 0 0 -€z Moy
“dn 0 0 ez Moy
en 0 0 dz Moy
- 0 0 4 Moy
—en 0 0 dz Moy
s 0 0 de Moy
0 0 ey dz Moy
0 0 -Cy -dz Moy
0 0 -Cy dz Moy
0 0 ey -dz Moy
0 0 dy ez Moy
0 0 -dy -ez Moy
0 0 dy -€z Moy
0 0 L-dy ez Moy
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It is easy to verify that the configuration (ADDD) considered in details above gi
ves a convex surface if d = 0.5. As it can be seen from Tab. 3.1, this is nearly
always the case. Some values of d may be slightly less than 0.5. However, as
numerical data in Section 5.2 prove, fesulls are only slightly sensitive to small
changes in d around d=0.5. Therefore, our main interest will devoted to " this
configuration. Other cases will be discussed in the 3-dimensional space below.

Although the problem of space frames should be considered in the 4-dimensional
stress space, in many practically important cases this space may be reduced to R3. As
it was already mentioned, torsional elastic rigidity of open thin-walled cross-
sections is small in comparison with flexural rigidity. Therefore, torsional moments
are small (m, << 1) and can be frequently neglected. Another case that may be
considered in R3 is that with axial forces (n << 1) neglected. It is possible when
horizonial loads are important and vertical loads applied directly to columns are not
of primary importance. We have in these two cases s° = (n, my, m,) or §° = (m,, m,,
m,). To cover both cases we should present the R® problem in s¢ = (s, s,, S3).

In the 3-dimensional case, we shall have, following (3.28), two configurations
possible:

I: (A, D, D), II: (A, A, D) (3.33)

The first of these cases of the YS (considered above) gives a convex polyhedron for

1 1 1
- =d = 1, the second for KN =d = = They are shown in Fig. 3.12, together with

their extreme case for upper and lower bounds.
Numbers of vertices and hyperplanes are given in Tab. 3.2 for different number of

space dimensions.

Type of presentation |R" Approx. | d-Approx. Approx.3
lower bound d= 0.5 Upper bound
No of vertices V* }Rz 4 8 4
|R3[6 | 2xn 14| 2n+2" |8 | 2"
[R48 d=1 |4 16 d=1
NO of Hyperplanes |R2 4 8 4
N' Rilg | 2" 24|4an(n-1) |6 | 2.n
RY|16 48 8

Tab. 3.2 Number of vertices and number of hyperplanes
for different yield criteria
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(1.-1.-1) (1.1,-1)

1
1
1
! -
(11,1 , (1.1.1)
1
1
1
1
!

S, T 73‘,
]
/11-1.4 1 1101
S, 7
Vs L’
(-1,-1,1) (-1.1.1)
d=1/3 d=1
S,
@ 100 949
(0.4 Ga
(0,1,0)
S,
10,0,1) (-d.d.-0)
S,
(-d:4.d) (-I,0,0)( (d.d.9)
1/83<d <05 05<d<1
. Fig. 3.12 d-polyhedron in R3

It should be mentioned that the PWL yield criteria may be used in linear
programming in a form altenative to the hyperplane description applied here. It is a
so-called "vertex description” [120], using directly the vertex matrix (3.26) and
proceeding to convex combination of the vertices. Details of such a procedure may be
found in [25]. Some time ago this approach was considered as highly promising [25],
[75], but these hopes seem now to be exaggerated.



CHAPTER 4

NUMERICAL PROGRAM SDLAS

4.1 Assumptions and methods

The program SDLAS concerns shakedown analysis of space frames and its extreme case of
limit analysis. Loads are determined by a finite number of parameters ;. They may
vary arbitrarily inside a hyperrectangular domain in the space of the parameters. The
shape of this domain is given up to a load multiplier £ by the reference domain Qp
(Fig. 1.5, Eq. (2.16)). The output of the program is the load multplier for the
limit load &, for the shakedown load &g, and for the elastic limit load &g. It is
accompanied with the corresponding immediate collapse and incremental “collapse
mechanisms. Using a FE discretization in straight beam elements, the problem was
formulated (in general variables, see Section 2.4) as a linear programming problem.
The classical Bemoulli-St. Venant theory of space beams is used, so that
contribution of four generalized stresses: axial force n, torsion moment m, and
biaxial bending m,, m, is accounted for, both for elastic deformation and for
yielding. Two-node beam elements are used, the loads are considered to be applied in
nodes only and at shear centers of the cross-sections.

The formulation is based on geometrically linear relations. Taking into account
geometry changes due to deformation is assumed by a step-by-step linearized
procedure, i.e., by sequential solutions of the linear problem for the structure with
a modified configuration. Configuration change is generated by the actual mechanism
of incremental collapse (in shakedown) or of immediate collapse (in limit analysis).
Details and supplementary assumptions of this approach are given in the next Section.

Yield criteria YC and elastic criteria EC corresponding to full plasticity and 1o
first plasticity of the cross-section, respectively, are represented by PWL
approximations. Any approximation can be used, but numerical results are given for a
48-face  polyhedral yield surface (or elastic surface), the so called "d-
approximation” (see Section 3.5). For comparison an upper-boundr PWL approximation
(8 faces) and a lower bound PWL approximation (16 faces) are used (Egs. (3.22) and
(3.21), respectively).

52
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The duality of the formulation (Egs. (2.40), (2.41)) needs the use of the same
yield criterion both is statical and kinematical approach. Such approach describes
correctly the incremental collapse. The incremental collapse is of main interest for
us, because it can contribute to the geometry changes at the inadaptation process.
Therefore, the principal module of the program concerns this behaviour; the
multiplier &g, determines the load domain for which the incremental collapse does not
appear. If not specially indicated, “shakedown" means, in the following, shakedown
concerning incremental collapse.

The alternating plasticity analysis needs taking into account pseudoresidual
stresses self-equilibrated into the cross-section. Following the discussion given in

Section 2.4, it may be done by introducing a module of elastic analysis under an

appropriately reduced reference load domain (¥}-0 in Eq. (2.15a)).

The linear programming problem is solved using the classical Simplex procedure
(see [10]) as used also by the author for optimization problem in frames [6]. The
shakedown problem is represented by the Simplex table in Fig. 4.1, obtained directly
from the formulation (2.40) and/or (2.41). The limit analysis problem may be treated
in the same way with the envelope vector d reduced to the vertices of the reference
domain €y and with residual stresses s* looked for separately for each vertex.
However, the form of the formulation (2.40, 2.41) was conceived specially for the
shakedown. Therefore, it appears more convenient to treat the limit analysis using

the formulation (2.42, 2.43). The corresponding Simplex table is given in Fig. 4.2

§° £ objective function max. §
(u) CT 0(0 | equality constraints
C'st =0
(A) NT d|k | inequality constraints
N'sr +&d = k
0 10

Fig. 4.1 Simplex table for shakedown problem
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s° g objective function max. §
(u) C p|0 equa |1ty constraints
C'st = Ep
T k ) : .
n) N inequality constraints
N'sr = k
o |10

Fig. 4.2 Simplex table for limit analysis problem

Determination of elastic stress distributions s® from unit loads T (Eq. (2.37))
for each loading scheme is done using the POL(SAP) program. Elastic analysis
resulting in  determination of elastic-limit load multiplier &g represents a
subproblem of the shakedown analysis, obtained by puuing s* = 0 in the Simplex table
in Fig. 4.1.

Alternating  plasticity  analysis (determination of the corresponding load
multiplier &gp,) is performed using the module for the elastic subproblem of the
shakedown problem, with the reference domain appropriately reduced to Q,;(t YD,

following Eq. (2.15a) with ¥}=0. It means that &g, may be determined as:

Esoa (Y0¥ = & (7)) “.n

The program concemns elastic-perfectly plastic material. However, its extension
1o piecewise linear hardening, following [72] and taking into account an experience

with plane frames [109], should not present serious difficulties.
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4.2 Analysis of deformed structures

Following the formulation in Section 2.5, geometry changes induced by plastic
deformations are accounted for in a step-by-step linearized manner. It consists of
the application of the program to subsequent configurations x® of the structure. Next
x+1 configuration is derived from the preceding one by updating nodal coordinates

with the values u® corresponding to the actual collapse mechanism of the structure:
X8+t = x8 4 b yd : (4.2)

all starting from the solution for the initial configuration x°. Actually the most
stringent mechanism ud is used. It is obtained directly as an element of the output
from the program on the preceding step. As the collapse mechanisms are determined up
to an arbitrary factor, the values ud have to be normalized with respect to the

modulus of the maximum deflection:

w= 8 @3)

max |u8|

The value A is the chosen step for configuration changes. It has to be selected
sufficiently small to model the smooth changes appearing in the continuous
deformation process. Subsequent configurations differ by a constant value of the step
A, (Figs. 2.4, 4.3) sometimes corresponding to displacements in different points of
the structure. Therefore plotting the curves of the load multiplier &g (or &)
against the displacement should be done using a control displacement component in a

characteristic point (u¢ in Fig. 4.3).

control ¢

displacement Y
v/
—,

N ~_ 1 deformed
initial configuration
1
configuration )
1

Fig. 4.3 A deformed configuration and control displacement
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The existence of a determined collapse mechanism is needed for the program to be
able to proceed at consecutive steps. Therefore, this analysis concerns practically
incremental collapse and limit analysis. When the alternating plasticity mode
(neglecting pseudoresidual stresses) appears, no collapse mechanism is determind and
the program stops. However, it may happen that during the deformation process the
collapse mechanism changes in such a way that there are no increments of the control
displacement at subsequent steps. It will be represented in the load-displacement
curve as a final point, similarly as if the alternating plasticity appeared. To
distinguish the cases it may be convenient to display the step numbers. Plotiing
curves for different control displacements in parallel 1s useful, as it permits the
change of the control varable, if needed. Difficulties in the appropriate choice of
the control variable appear frequently in nonlinear analysis, when no strictly
monotonically increasing variable exists.

The elastic-limit multiplier &g, when calculated for deformed structures, has no
physical meaning, since no corresponding mechanism exists. To modify the
configuration the shakedown collapse mechanism is used here. This is a subproblem of
the shakedown problem and has only an auxiliary character. It may fumnish an
information of the sensitivity of the elastic-limit load to certain initial
imperfections that may be considered to be the most unfavorable.

Moreover, the elastic subproblem with a reduced reference domain (see Eq. (4.1))
constitutes the module for the analysis of alternating plasticity. This module may be
used 1o check at each step of the incremental mode if the alternating plasticity mode

15 not more restrictive.
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4.3 Description of the program SDLAS

The program concerns analysis of elastic-plastic skeletal structures under loads
varying arbitrarily in a prescribed domain.  All the history-independent types of
structural  response are considered, 1.e., limit analysis, shakedown and elastic
limit. Geometry changes due to inadaptation or post-yielding are accounted for with a
step-by-step lineanized procedure for conseculively modified structure
configurations.

For a given shape of the load domain (ratios of extreme values of independently
varying loads) the shakedown, the limit-load and the elastic-limit multipliers are
obtained and the corresponding collapse mechanisms are determined. The above results
are obtamed by a sequential procedure for structures deformed in the inadaptation or
post-yielding process.

A finite element discretization in two-node spatial beam elements is adopted,
loads are also discretized at nodal points. A linear programming formulation 1s used,
with an appropriately piecewise linearized yield criterion. Contribution of axial
forces, torsion and biaxial bending to yielding of the cross-section is taken into
account. The present version of the program does not account for strain hardening of

the material.

Principal components of the program are described below. Its assumptions and

methods are discussed in Sections 4.1 and 4.2.

The program consists of the following blocks:

A. The INI PROGRAM containing basic information about the structure and loads which
prepares initial data for the main program SDLAS-MAIN for the first step only.

B. The (POL)SAP PROGRAM for elastic analysis. The elastic stress field s¢ is
determined (for each of independent unit load systems) for a current structure
configuration.

C. The SDLAS-MAIN PROGRAM for limit and shakedown analysis. It determines the
envelope vector of generalized elastic stresses d; then, the linear programming
problem of Egs. (2.40), (2.41) or (2.42), (243) is solved by means of the
classical simplex method. In this way the shakedown factor E&gp, limit analysis
factor §, and the corresponding most stringent mechanism of collapse are
determined.

D. SIMPLEX PROCEDURE using linear programming (LP) for shakedown and limit analysis.

E. The POST-PROCESSING determines the current structure configuration after the last

step altained and prepares data for the next step.



58 Chapter 4. Numerical Program SDLAS

The input data and data formats, listing of the program INI- listing of the program
SDLAS-MAIN, and listing of modified and new subroutines in POL(SAP) are given

together with the output results in the Appendices.

PROGRAM SDLAS:

Y
INI program
_— [

|
Y

POL(SAP) program

!
SDLAS-MAIN program

v
SIMPLEX procedure

'
POST-PROCESSING

Loop N times
(N - number of steps)

FINAL RESULTS
i

Fig. 4.4 Flow chart of the program SDLAS

http://rcin.org.pl
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A. PROGRAM NI

The following subroutines prepare input data for the main program SDLAS-MAIN.

where

ol

The most important files:
Input data (FRAME.DAT)
Print the initial data (SSSS.DAT)

L.

A

S B
1. INI2

D

|

e
2. GENK

T

3. INDATA

—
Y

4. INI3

STOP )

Fig. 4.5 Flow chart of the program INI

Subroutine INI2 reads the input data.
Subroutine GENK generates the vector of yield modulus.
Subroutine INDATA writes the initial data.
Subroutine INI3 interfaces INI program with SDLAS-MAIN program.

3. Data for SDLAS-MAIN program (SDOWN.DAT)
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B. PROGRAM POL(SAP):

This program is needed to solve the linear-elastic problems for space frame

structure.

START
INPUTJ
ELTYPE = %
l 7z T,
INL new
l - subroutine
| ADDSTF
CALBAN HSLAVE ] l
SOLEQ = seso. |<—{ PANTED |
I

8]
STRESS
( STOP
Fig. 4.6 Flow chart of the POL(SAP) program for beams

The most important files:

I. Input data (EL.D)

2. Output results (OEL.D)

" Matrix (CTMAT.DAT)
E Matnx (EMAT.DAT)

. Stress vector (STVECT.DAT)

v W
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C. PROGRAM SDLAS-MAIN:

1. INI4
2. GENCT

(LA) <0 /IUS\ >0 (SD)
=0
AP)

oo
5. GEND 5. GEND
7. GENS1 8. GENS2 6. GENS
T

9. MDRUK

Fig. 4.7 Flow chart of the SDLAS-MAIN program

http://rcin.org.pl
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The functions of these subroutines are as follows:

. Subroutine INI4 for reading data from INI program (sdwon.dat).

2. Subroutine GENCT for preparing T from POL(SAP) program.

3. Subroutine GENN for generation of element gradient matrix.
Subroutine GENG1 for generation of the gradients.

Subroutine GEND for elastic stresses envelope vector

4

5

6. Subroutine GENS for composing Simplex matrix for SD analysis.

7. Subroutine GENS1 for composing Simplex matnix for LA analysis.

8. Subroutine GENS2 for composing Simplex matrix for EL analysis.

9. Subroutine MDRUK for printing the simplex matrix.

10. Subroutine PUT for putting array in the simplex matrx.

11. Subroutine PUTM for putting matrix C in the simplex matrix.

12. Subroutine SIMPLEX consists of many subroutines (simplex procedure).

13. Subroutine INDATA for printing the initial data.

14. Subroutine INIR3 for wrniung the results.

15. Subroutine MECH for calculation of mechanism information.

16. Subroutine INFACE for interfacing between SDLAS-MAIN program and
POL(SAP) program

17. Subroutine INI3 for writing data for the next step in SDLAS-MAIN program.

The important files:

1. (SSS.DAT) : output results.

2. (STRVECT.DAT) . elastic stress vector from POL(SAP) program.

3. (SDOWN.DAT) :input data for SDLAS-MAIN for the first step only.
4. (SIMP.DAT) © print simplex matrix.

5. (EL.D) : data file for the next step of POL(SAP) program.
6. (PLOT.DAT) : for plotting diagrams of output results.

7. (CTMAT.DAT) - compatibility matrix from POL(SAP) program.



CHAPTER 5
CASE STUDIES

3.1 Selection of examples

Examples considered were selected in order 1o test the program at different practical
situations, 10 give indications for acceptable approximations of the yield criteria
and to fumish an introductory information on some [eatures of spatial response of
simple systems. All these aspects were considered both at initial geometry and in the
process of growing deformation.

Taking into account the multitude of the parameters influencing response of
spatial  elastic-plastic  frames (geometry, load configuration and domain, elastic
ngidities, elastic and plastic  strength parameters), even qualitative conclusions
need very extensive parametric studies. Therefore, the simplest possible geometries
were selected. That concerns a 4-column one-span one-storey rectangular clamped frame
("basic example”, Fig. 5.1).

More complex structures were selected in order to test the program and to compare
results for limit loads with those obtained by other authors. Unfortunately, only
some limit-analysis results for undeformed space frames are known until now [25],
[26], [39].

Loading process is described by no more than three independently varying
parameters, and load configurations were chosen 10 permit discretization of the basic
structure with no more than 15 elements, and to produce probable sway-type spatial
collapse mechanisms. These mechanisms are of special interest if large displacements
are considered ("P-A effect”). Because of that loads are supposed to vary within such
domains that mcremental-collapse nadaptation mode 1s supposed 10 be the most
dangerous. It the alternating plasticity were decisive, no large-displacement  study
would be of interest.

Experience on the admissible PWL approximations of the yield criterion concerns
comparison of results for the d-approximation (Section 3.5) and the upper and lower
bounds for the criterion.

Study of the strength parameters concerned comparison of the same  structure
("basic  example”)  torsionally  comphant  (large-flange  [-shaped  cross-section) in

Section 3 2 and torsionally very stft (box cross-section) in Section 5.3,

63
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Geometric parameters were studied with increasing the height of the structure
(Section 5.4) and for spatial interaction of two plane frames (Section 5.6).

Finally a parametric study of eccentrically braced frames (EBF) was presented.
These structures are of increasing interest, especially in aseismic engineering,
displaying a significant phase of plastic response ("overall ductility") permitting
for energy absorption in the case of catastrophic loads.

Studies concerning initial stability of the plastic behaviour and the sensitivity

of this process to deformation are gathered in the next Chapter.
5.2 Basic Example |

The space frame in Fig. 5.1 is described in NEL=9 beam-column elements having end
sections corresponding lo exlerior supports, interior joints and at load points along
span. The frame has NDF = 30 degrees-of-freedom referenced to the global X-Y-Z axis
system indicated in Fig. 5.1, ie., three displacements and three rotations at each
of five free nodes.

All elements have in common an idealized wide-flange cross-section shown in
Fig. 5.2. The form of the PWL yield condition for each element end-section is
specified as type (1, 2, 3); which corresponds to (nondimensional) PWL yield loci
(see Section 3.5): the lower-bound, d=0.504 approximation, and upper-bound,
respectively. The value for d was selected following [39], see Tab. 3.1.

Three independently varying sets of loads are applied: vertical P, and 1wo
horizontal P,, P,. Two loading programs are considered with vertical loads oriented
either downward or upward. For the undeformed structure results are, of course,
identical for both programs. The results for classical limit load multiplier & ..
shakedown multiplier &g, and elastic limit multiplier & for different vyield

conditions are shown in Tab. 5.1.

No. Yield Criterion LLE, | SDE&p | EL Eg
(No. of hyperplanes) .
1 |Lower bound approx  (16hp)| 12462 | 0.11427 | 0.06024
2 |"D-approx" d=0.504 (48hp) | 0.13274 | 0.12406 | 0.06621

3 |Upper bound approx. (8 hp) | 0.17433 | 0.15886 | 0.09984

Tab. 5.1 The values of limit, shakedown and elastic multipliers

Sfor different vield conditions (undeformed structure)
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R, P
; |
s B g - ) Loading programs
. © B a)p,. p, p,e (0. 1)
Lo [ b) Py, Pz Py € (-1.0)
P P P /6
PR I e 7
{ Paf= O /1(5) @) T
R P P : P a
1 [ Lia=12
N 1] B B
: ®
|
| 4 v . () - node
y ML, 1® [] - element

Fig. 5.1 Basic example |

Properties of cross-section

| 2,=0188a"

Z,=0051a
7. =0007a"
My, = O, = MMy,
~ m,, = 6,2, = 0271m,,

m,, = g,Z, = 0.037m
N, = GA, = 1.459m,, /a

Fig. 5.2 Basic example | (cross-section)

http://rcin.org.pl
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For the deformed structure results will be different for different load programs.

To plot the load multiplier-to-displacement curves we choose, following Section 4.2,

the step Azlum“|= I em = (1/600 L) and the control displacement u,,. The curves are

plotted in Figs. 5.3(a), (b). (c), for the three yield criterion approximations,

respectively. Points on curves correspond 1o consecutive steps.
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It may be noted that the upper bound approximation (d=1, Fig. 5.3 (c)) differs
importantly  from  the d=0.504 ("correct”) approximation, whereas the lower bound
(d=0.25) gives results relatively closer to 1. The same concems the overall
character of the curves and the collapse modes. It mav be <cen from the irregular

distibution  of step points on the curves n Fig. 53 (¢) that in this

case the
shakedown mode 15 quite different than for other approximations

As 1t was expected, nearly all types of response are unsteble at downward loads
and stable at upward loads

As 1t follows from the formulation of the problan (Secuon 2.4). curves for
shakedown concern  the incremental-collapse  mode. To venfy 1f the alternating
plasucity is not more restrictive a modified elastic analysis should be  applied,
tollowing Egs. (4.1) and (2.15b). As 1t can be seen from Fig. 5.4, for all the YC
approximations considered, the alternating plasticity 15 not  decisive.  In  other
examples this verification 1s not visualized. More discussion of these results will

be given with the next example.
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§ 0.08 3 ~eeee Flastic limit i -
@ 3 \/
i |
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e ]
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3 i
go.m E
£
0.02 I e e

000 002 004 006 008 010 0.12 0.14 0.16 0.18 0.20
Displacemnent in Y(38) direction U ms

Fig. 54 (a) Incremental and alternating mode multipliers

for dowmward load program (d=025)
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hntt multipliers
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Fig 54 (b) Incremental and alternating mode multipliers

for downward load program (d=1.0)
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70 Chapter 5. Case Studies

5.3 Basic example 11

The structure considered in Section 5.2 was very comphant to torsion, as it is
always in the case of thin-walled open cross-sections. Now, the same structure as
given in Fig. 5.1 1s considered but in a torsionally stuff version. Namely, square
hollow-box cross-section is used. The plasuc moduli for such a section are as below:
mg=m,,,  m, =0.75m. n=45m,/L=3m, /a (5.1)
where L is the span, a is the square size and L/a=15. As can be seen when comparing
the above with the data from Fig. 5.1, the closed box cross-section has torsional
strength 20 times higher than the [-shaped (at the same maximum bending strength).
Calculations were performed, as before, for two loading programs, with downward
and upward vertical forces, respectively. For the undeformed structure both programs
give, of course, the same load multipliers. They are listed for different d-
approximations in Tab. 52. The results confirm observation from the preceding
example that the lower-bound approximation (d=0.25) gives results no more than 10%

less than the "exact values" (following Tab. 3.1, d=0.5)

No. Yield Criterion LL &7, S.D Egp
(No. of hyperplanes)

“[Lower bound approximation (16hp)| 0.19591 [ 0.19115

2 |"D-point"approxim. (48hp) d=0.50 0.21493 0.20457
2a |"D-point"approxim. (48hp) d=0.75 0.2909%0 0.28444

Upp e r bound approximation ( 8hp)| 0.35555 | 0.35540
(ltmited interaction)

Tab. 5.2 The values of limit and shakedown muldtipliers for different yield

conditions (undeformed structure)

We see that the sensitivity of multipliers to changes of d, when d = 0.5, 1s
small. Therefore, even if the "exact” value for the hollow square cross-section is
slightly less than 1o d=0.5 (Tab. 3.1), the latter value may be considered correct.

On the other hand, the upper-bound approximation appears totally inadmissible.

http://rcin.org.pl



Chapter 5 Case Studies 71

The above conclusion is confirmed also for the deformed structure (Figs. 3.5,
5.6, 5.7). Inaccuracies produced by the upper-bound approximation are additionally
increased by appearance of collapse mechanisms sometimes quite distant from reality.
That produces supplementary errors in large-displacement results. For example, the
stepped  limit-load curve in Fig. 5.7 indicates changes of the sway-collapse mode
alternanively in Y and Z directions. These changes are not observed in other cases.

Load mulupliers are plotted against horizontal displacement of the upper node in
(Figs. 5.5, 5.6, 5.7). Computations were continued up to the displacement of about
20% of the span (span=height). The results confirm and strengthen the effect observed
already in the preceding example: limit load 1s more sensitive to displacements than
the shakedown load. Therefore, at stable situations (upward loads), Figs. 5.6, 5.7,
the two values are divergent, whereas at unstable situation Figs. 5.5, 5.6, they are
convergent. This convergence is so quick that at the displacement of about 0.05L the
muluplers coincide. Therefore, 1f the initial multpliers are the same (Fig. 5.7),

this identity is maintained at all unstable configurations. That interesting feature

will be discussed later.
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5.4 The height dependence
The Basic Example [ (Section 5.2) is used, with the same cross-sectional properties

and the same load configuration, but with a vaniable height equal to AL (Fig. 58).

Only downward loading program is considered

Loading program
a)p,. P Py e (0 1)

rnw = moy
m,, = 0271m,,
\ m,, = 0.037m,,

n, = 1.459m,, /2

fu

Fig. 5.8 Height-to-span case study

Results for limit load, shakedown load and elastic limit multipliers are listed
in Tab. 53 and shown in Fig. 59 at undeformed geometry for a large range of
height-to-span ratios A. Once more different YC approximations are considered.

Y.C=2
(d=1.0)

Y.C =1 Y.C=3
(d=0.25) (d=0.504)

AL S E: L2 S2 25 L3 S3 Es

0.5]0.15698 0.145780.09034|0.18066]0.16887[0.11015[0.15940|0.14802 |0.09896
1.0/0.12462|0.11427]0.06024(0.17433[0.15886|0.09984 |0.13274 |0.12406 |0.0662 |
1.5(0.09285 0.08549(0.04750(0.13105|0.11912 |0.06970|0.09805 [0.09167 [0.04997
2.0[0.0728 [0.06641(0.03858|0.10072|[0.08905 |0.04566 |0.07614|0.07089 [0.04023
2.5/0.05907|0.05419|0.03165(0.08057[0.071070.03310|0.061460.05776[0.03193

Tab. 5.3 The values of limit, shakedown and elastic limit multipliers for
different yield conditions with changing height-to-span ratio A

(undeformed structure)

http://rcin.org.pl



74

Chapter 5. Case Studies

‘.D':
1 mna
g ] L
= L limit load
w S shakedoun
%012 4 E elastic limit
3
)
=
IS
3 ]
£0.08 4
8 ]
3 ]
= ]
3 e
2
= 0.04 1
g B
3
0o U —
0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50

Hieght-to—span ratio

Fig 5.9 Decreasing load parameters with the (AL) height increase (d=0.504)

In Tab. 5.4 some synthetic comparisons are given. As observed before, the lower
bound 1s well close to the d=0.504 case, whereas the upper bound is more distant. The

ratio &g/ 4 is nearly independent from the frame height and is, for the “exact"
value d=0.504 about 93%.

Ratios | A=05 | A=10 | A=15 | A=20 | A=25

SULi% | 928% | 917% | 92.1% | 912% | 91.7%

SUEI% | 161 % | 189 % | 179 % | 172 % | 171 %
LV/E% | 174 % | 207 % | 195 % | 189 % | 187 %
LSt | 0.01119] 0.00999 | 0.00736| 0.00638| 0.00488
S-Er | 0.05237| 0.05402 | 0.03798| 0.02783| 0.02254
Sl | 213 % | 184 % | 193 % [ 229 % | 216 %

Tab. 5.4 (a) The ratios between limit, shakedown and elastic limit
mulupliers for lower bound (YC=1) yield condition
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Ratios A=0.5 A=1.0 1.5 A=2.0 A=

B 5
Sy/la% | 93.5% | 91.1% {ww %84% | 88
|
|
1

to| 9

G

Sa/Ex% | 153 % | 159 %
La/Ex% | 164 % | 175 %

171 % 195 % | 215 %
[I88 b 220 % | 243 %
| |
[2-52 0.01179] 0.01547 | 0.01193] 0.01167| 0.00950

S:-Ea 0.05872 0.05902; 0.04942 1 0.04339] 0.03797

S | 200 % | 262 % | 241 % | 269 % | 25.0 %

L

Tab. 54 (b) The ratios between limit, shakedown und elastic limit

multipliers for upper bound (YC=2) vield condition

Ratios A=0.5 A=1.0 A=1.5 A=2.0 A=2.5
Syla% | 92.9% | 93.5% | 93.5% | 93.1% | 93.9%

S3/Es% | 150 % | 187 % | 183 % | 176 % | 181 %
L3/Es% | 161 % | 200 % | 196 % | 189 % | 192 %
L3-S3 0.01138| 0.00866| 0.00635| 0.00525| 0.00370
S3-Es 0.04906| 0.05785| 0.04170| 0.03066| 0.02583

L5 | 233 % | 149% | 1529 | 170 % | 143 %

Tab. 54 (c) The rarios berween limit, shakedown and elastic limit
multipliers for D-approx. (YC=3) yield condition

Dependence of the limit load and shakedown multipliers upon the deformation
(horizontal displacement at an upper node) 1s given 1n Figs. 5.10 and 5.11,
respectively, for different values of the height-to-span ratio A. As we see the
curves are slightly descending. The destabilizing P-A  effect decreases with the
height increasing. [t may be easily explained by the fact that with the height
increasing, the importance of horizontal forces to yielding increases, whereas only
the vertical forces are responsible for the destabilizing effects.
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Only for a very low frame (A=0.5) some geometncal hardening appears. That is due
to the fact that for a low-nse long-span structure the beam-type collapse modes
prevail, whereas deformed beams are strengthened by deflections. It 1s evident that
in this case the control point chosen does not correspond to maximum displacement.
That 1s clearly shown by an irregular distribution of the siep points on the curve
(they correspond to the constant step A=2 cm). These curves are shown in more detall
m Fig. 5120 Tt 1s clearly seen that at  post-yield behaviour at least four
disunctly different 1mmediate collapse mechanisms appear during the deformation
process. Similar situation happens at incremental collapse. It may be interesting 10
observe agan that the sensiivity to displacement 1s stronger in limit analysis than

in shakedown (see Section 5.3), even in so complicated a situation, as shown n

Fig. 5.12.
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0.165
i [immit anal
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Fig. 5.12 Changing mode at collapse of a low-rise frame
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5.5 Multistorey frames

Two examples of multistorey frames were considered, with the loading conditions
similar to those for the Basic Example [ and with cross-sectional properties
identical as in Sections 5.2 and 5.4. In Fig. 513, a 2-storey frame is shown. loaded
by three sets of independent forces P,, P,, P, acting in X, Y and Z directions,
respectively. The structure 1s discretized 1nto 18 elements with 60 degrees of
freedom. Two loading programs with upward and downward vertical forces are

considered.
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Fig. 513 2-storey space frame

Results for different YC approximations in the case of the undeformed structure are
given 1in Tab. 5.5.

No. Yield Criterion LL &, | S.D &g
(No. of hyperplanes)

| |lower bound approx  (16hp) | 4.5923E-2| 4 41952
2 |"D-approx” d=0.504  (48hp)| 5.0273E-2| 4.7733E-2
3 |Upper bound approx. (8 hp)| 6.3233E-2| 6.0380E-2

Tab. 5.5 The values of limit, shakedown and elastic multipliers

for different yield conditions (2-storey undeformed structure)
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The post-yield and inadaptation curves are plotted n Fig. 5.14 agamst a control
displacement at the frame top. Results are given for the downward and upward vertical

forces. The lower-bound approximation was-used.
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Fig. 5.14 Post-yield and incremental collapse of a 2-storey frame

A S-storey frame, Fig. 5.15, is loaded at each floor as in the preceding case.
Discretization into 45 elements with 174 degrees of freedom was applied. The case was
selected for testing the program and compare results with the limit analysis results

obtained elsewhere [25]). The results for the undeformed frame are given in
Tab. 5.6.

No. Yield Criterion LLE,[SD &,

(No. of hyperplanes)

1 |lower bound approx  (16hp) |037500(0.13375
Upper bound approx. (8 hp)[0.32484 |0.10638

o

Tab. 5.6 The values of limit and shakedown multipliers for different

yield conditions (5-storey undeformed structure)
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5.6 Spatial interaction of plane frames

Decomposition of complex structures into simpler components is especially important
in the analysis of surface skeletal structures, permitting simple but effective
analysis. These structures are attractive because of their service merits (free space
inside), but may reveal unexpected behaviour aspects, especially at extreme loading
situation (e.g, earthquake). Unfortunately, experience concerning spatial interaction
of plane inela:tic frames 1s scarce. Here we perform only a very introductory study
of one aspec: of such an interaction. The frame like in Basic Example [ 1is
considered, Fiz. 5.16, with a varying width-to-length ratio . It can be seen that

above a certair width ratio (22), this parameter does not influence the results.

R ® ) Loading program:
E a)p, P, pye (0.1)
R, P, P, 6
g B %
3 N
1 P, ¢ P © P =
A o
u ‘
1 2y (O -node
2 @‘é_"z u@ [ - element
000 BL
k» al

Fig 516 Space frame with a variable width

Such a frame inder two independent horizontal load sets may undergo either horizontal
translations ol the top face or more complex motions: diagonal flattening or
torsional rotaton of the top face. Under loads as in Fig. 5.16 rather the former
case occurs. Fesults given in Tab. 5.7, obtained for the undeformed structure for a
wide range o the frame width BL, are plotted in Fig. 5.17. Because of the
introductory claracter of the study the lower bound approximation of the YC is used.
It needs less .omputing time, whereas, as discussed in Section 5.3, it gives quite

satisfactory reslts, at least for nondeformed configurations.
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a=1

Sia

Sso

Se

B =02
=03,
B =04
=05
B =06
B =07
B =08
B =09
B =10
B =15
B =20
B =2.5

0.14490
0.14024
0.13642
0.13357
0.13120
0.12920
0.12747
0.12596
0.12462
0.11953
0.11619
0.11391

B =50

0.10866

0.12648
0.12526
0.12354
0.12181
0.12011
0.11855
0.11711
0.11569
0.11427
0.10839
0.10494
0.10307
0.10067

0.07490
0.07798
0.07867
0.07432
0.07145
0.06852
0.06600
0.06386
0.06247
0.05644
0.05396
0.05273
0.05100

Tab. 5.7 Limit, shakedown and elastic limit-load multipliers

for changing width-to-span ratio B
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5.7 Eccentrically Braced Frames

(5.7.1) Motivation

Plane eccentrically braced frames are chosen as an example of practical engineering
application of our procedures. They possess good properties in dynamic, repeated and
cyclic loading environments.

Eccentrically braced frames are among those systems which recently proved to
possess inherently higher overall ductility over their braced frames counterparts. In
fact, a high energy dissipation rate occurs during the successive formation of
plastic hinges due to flexural stresses, (in addition to shear stresses in the

portion of the webs of some members, commonly referred to as links, see Fig. 5.18.

(a) w = 10kN AJm
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w=23% 6L 6L 6L 6L 6L 61 6L 6K 6A 3A

H=6NAJ BB EIELEL DL ELEELE ]
@ @606 e 0 ® N
IPE = 270 E::m
8 ot “la
g E
QL 4o
—*1 e |je— 60m I Loading programs
l "1 vertical load € (0, w = 10kN A/m)
horizontal load e (0, H = BkNX)
(b) w = 10kN A/m

EXTEEEETEEEEEEEEEEREEREN
w=23% 6L BA 6\ BA BA 6L BL 6L 6L 3A

Fig. 5.18 Eccentrically braced frames: a) Beam link, b) Column-link
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Because of eccentricities which have the above mentioned favourable effect under
exceptional loads, the elastic-limit service load frequently decreases. The collapse
load being less sensitive to eccentricities, the difference between lhimit load and
the elastic-limit load becomes more considerable when eccentricity 1s introduced. In
this situation the shakedown analysis is of increased importance. On the other hand,
the length of the plastic deformation process (resulting in increasing the “"overall
ductility” needed) makes more important the post-yield and inadaptation analyses.
That 1s why the EBF appear to be a good practical example for application of the
method and the procedure worked out in this thesis.

The presentation of this Section differs somewhat from the preceding case
studies. It follows from a more practical orientation of this study. Also the form of
figures presented follows requirements of the CSCE, as an extended version of this
study has been presented at the CSCE conference [1].

(5.7.2) Structural details

The model used in this study is limited to single-bay, one-storey plane braced frames
(Fig. 5.18). Column’s section is IPE 300 and height 3.00 m; beam’s section is IPE 270
and span 6.00 m. As a special case concentrically braced frames are also analyzed.
Position of the IPE 220 brace element 1s expressed in terms of symmetrically disposed
eccentricities. This representation allows for the examination of some limiling cases
of frames’ geometnies such as: double-bay one-storey and single bay (wo-storey
braced or unbraced frame configurations. The boundary between braced or unbraced is
herein defined in accordance with the Eurocode 3, stating that: A structure is
classified as being braced 1f iU's lateral in-plane ngidity s properly  secured
by a system of bracing capable enough to give side-sway movement 0, not lo exceed
one-fifth of &, computed for unbraced systems (8§, 8/5)

[t should be noticed that choosing between these two structural systems (namely,
CBF 4nd EBF) would depend on particular desired building arrangements. In practical
situations the eccentricities are intentionally introduced 1o be of small magnitude.
Thus, eccentric brace members rarely mmpair either function of the building or 1's
equipment. Moreover, unavoidable eccentricities are often tolerated by designers

either for fabrication requirements or for the purpose of details simplification.

(5.7.3) Results of a parametric study
The curves presented in Figs. 5.19 10 522 show the hmit and shakedown mulupliers
for undeformed structures, versus the eccentricily e* expressed in dimensionless form

defined as follows:



Chapter 5. Cuse Studies

Lead multipliers (X) All loads are expressed in kN [
20” —
E VS o
I . Yield eritarta - sallt 3
1 }f re=0l F‘ t:
| & - z
15 T — ey 2800 ;m ‘?.
I S ,.
‘ E / Shakedown QE:
\ Col. sec. = L.P.E, 300 @
= Beam sec. = LP.E 270 >
10k 8 Brace sec. = LP.E. =2
s N
:§ Limit Analysls ;
5 <
< 3
5‘ ki L '] A 5
0 0.1 0.2 . 0.3 0.4 0.6
e = a/ld
Fig. 5.19 Shakedown and limit-load mulgipliers for beam links, r=0.1
(assuming geometric linearity)
Load multipliers (A)
2 L
E All loads are expressed in kN |
Limit Analysls ;
—r 1
516 E 100/m" |
i
'I? 1
<
5.1 Lyzs !

5.06 Col. sec. = LP.E. 300
Beam sec. = LP.E. 270 hakedown
Brace sec. = 1.P.E. 220

Unbraced single bay, 2 story frame

5 1 1 S 1

0 0.1 0.2 0.3 0.4 0.6
e = ¢/h

Fig. 5.20 Shakedown and limit-load mulnipliers for column links, r=0.1

(assuming geometric linearity)

85



86 Chapter 5. Case Studies
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"Link” beems s e =efly (Fig. 5.18a)

"Link” columns et =eh  (Fig. 5.18b)
where Lo is the beam’s span and h is the column’s height. Two levels of loading are
investigated, namely for r=0.6 and r=0.1, consisting of horizontal load H and
vertical load W varying arbitrarily and independently from zero to their maximum
values. Proportions of these extreme values are determined by the ratio =H/W, where
W denotes the total vertical load. The applied loading program is intended to
simulate  loading  schemes at service limit  state  conditions.  Vertical uniformly
distributed load 1s discretized into 11 forces at nodes.

The yield criteria depending upon two generalized stresses: bending moment and
axial force are taken in the "octant” PWL approximation, Fig. 3.9 (b), as required by
the Eurocode 3. However, in a future study the influence of shearing forces should be
also accounted for and a 3-dimensional generalized-stress space should be considered.
Namely, these forces are of considerable magnitude in the "link" elements, as it
occurs frequently in truss-like structures with overlapping joints.

Limit load and inadaptation states correspond to the most unfavorable collapse
modes. It is known that for a simple one-bay portal frame, these modes may be: beam,
sway or a combination of them. In the particular case of EBF, the sitvation is
somewhal more complicated, but generally the modes may be classified in the same way.

The results presented in Fig. 5.19, with the load parameter =0.1, indicate
limit and shakedown multipliers increasing with the increase of the eccentricity e*.
The lowest multipliers for both cases are obtained for the structural configuration
with e*=0 referred to as CBF. The highest multipliers are obtained for the unbraced
double-bay, one-storey frame. In the case of r=0.6, Fig. 5.21, the maximum limit and
shakedown multipliers are obtained for eccentricities e*=0.1 and 0.5, while the
lowest values are obtained for e*=0.35.

The situation is different for the link-columns Fig. 5.18 (b). At r=0.1 the limit
load multiplier &, is constant Fig. 5.20, for all eccentricities e for r=0.6,
Fig. 522, it is constant only for e<03, while the shakedown multipliers &gy

decrease with the increase of the eccentnicities.

(5.7.4) Post-yield and inadaptation

Non-linear geometric effects are reflected in Figs. 523 to 525 for the beam-link
type of the structure shown in Fig. 5.18 (a), with e*=0.1. For r=0.1 the structure
collapses in a  beam-like mode and the vertical midspan deflection 1s chosen in
Fig. 523 as a control displacement. For r=0.5 a mixed-type sway/beam mechanism

appears and either vertical midspan deflection or the horizontal components may be

nttp://rcin.org.pl
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Fig. 5.23 Limit and shakedown multipliers versus vertical displacement, r=0.1
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Fig. 5.25 Limit and shakedown multipliers versus side-sway displacement
(stable and unstable behaviour)

chosen as a control varable. In Fig. 5.24 the load multipliers are plotted
separately against these two variables. The above illustrates the case, discussed in
Section 4.2, when using of two or more control variables is recommended.

All the above curves are decreasing with the displacements (geometrical
softening). However, in some cases, especially when vertical loads are insignificant,
geometrical hardening may appear. Fig. 5.25 illustrates this phenomenon. Vertical
load is absent and the frame is loaded with a horizontal force H applied at the left
comner of the structure. The horizontal load H is oriented either rightward (case A)
or leftward (case B) and is allowed to vary between zero and H. As in the majority
of cases of one-parameter non-reversible loading, limit and shakedown loads are
identical. The load multipliers for the non-deformed structure are almost the same
for both load orientations. However, response of deformed structure is different in
the two cases. It means that changing the orientations of braces, (braces in
compression instead of lension) will obviously alter substantially the structure

behaviour; even a change from unstable to stable situation may be obtained.
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It is to be mentioned that in many practical applications, structures may suffer
from lessened strength aliributed to such changes in geometry as: initial
imperfections, deviation, inclination, lack of straightness of  columns or beams,
often occurring and tolerable in steel works. The above may furnish information on
the influence of these imperfections on the structure behaviour. Moreover, some
general practical conclusions may be derived from the above study.

Namely, recommendations concerning optimal structural configurations derived from
the classical limit analysis seem 1o hold also when a large-deformation or/and
shakedown design is considered; in the latter case, it is limited to non-reversible
loading programs.

Destabilizing geometrical effects prevail, but column-link structures are more
sensitive to deformations than the beam-link ones. In the latter case, Fig. 5.20, an

optimal eccentricity level and maximum non-danger level may be discerned.



CHAPTER 6

SENSITIVITY TO GEOMETRICAL EFFECTS
AS A DESIGN FACTOR

6.1 Two-level problem

Since our approach to the analysis of the post-yielding and inadaptation consists of
a step-by-step linearization of the nonlinear problem, procedures concerning the
first two steps correspond, in some manner, to the formulation inherent to the
classical sensitivity theory. In this interpretation a measure of the structure

response (£, Egp) is studied as a function of another measure of the structure
response max|u|; the latter 1s treated as an imperfection of the ideal

(1.e., itial) configuration. To include this reasoning into the framework of the
sensitivity theory, let us recall some notions of the latter.

Generally, formulations for sensitivity analysis can be divided into three
groups. The simplest technique is the finite difference method (FDM) for calculation
of sensitivities based on successive perturbations of the design variables followed
by re-analysis of the system (Green and Haftka [38]). This may be ineffective since
the accuracy problems often arise; in such a case aﬁalytical methods turn out to be
more appropriate. The direct differentiation method (DDM) is based on differentiation
of system equations with respect to design variables 1o obiain sensitivity equations.
The adjoint system method (ASM) defines an adjoint system whose solution permits
evaluation of sensitivities (Adelman and Haftka [2]). As an extension of the general
sensitivity theory (see, e.g., Frank [32]), Haftka and Mréz [41] presented a
variational approach based on the initial load *method of 1Ist- and 2nd-order
sensitivities of linear and nonlinear systems. Using the fuzzy set theory Kleiber
[56] estimated nonlinear structural response sensitivity to imperfections. A
comprehensive discussion of the finite element formulation and computational aspects
for structural sensitivity problems in statics and dynamics was presented by Hien and
Kleiber [46]. The sensitivity of optimal plastic design with respect to geometric
imperfections and post-critical deformations was presented by Siemaszko and Mroz
[114]. It was shown there that the concept of opuimal plastic design should be
modified in order to provide a proper safety factor against collapse for a specified
range of imperfections and configuration changes. A similar idea is used here:
modification of the safety factors required by codes is proposed as a function of an
acceptable imperfection level. The imperfections are either present at the beginning
or induced by deformations.

91
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To evaluate the sensitivity of the shakedown &gy or of the limit load mulupliers

2. 1o non-linear geometrical effects by the FDM approach, the shakedown multipliers
. gl . o iy 1 .

;;D and S, or limit-analysis — muluphers é;‘ and EJ[ for two structural
s s : " 5

configurations: the initial undeformed x° and an admissibly deformed x!,
respectively, have to be determined and compared.

The corresponding procedure follows the sequenuial formulation | as i Section
2.5, limited to a two-level analysis. The lower-level problem concerns the undetformed
structure  configuration x° and is described by Egs. (2.40), (2.41) or by (2.42),
(2.43) for shukedown or limit analysis, respectively. The upper-level problem
(2.45-48), 1s referred to an admissible deformed configuration x'. This cont'igtir;uion
is defined by the superposition of the most stringent plastic increments u® given by
the lower-level solution onto the initial configuration x°. To obtain the upper-level
configuration x', a scaling factor u should be determined in such @ way that the

maximal displacements do not exceed some prescribed admissible displacements:

max’ {y. uo} < {u_dm}' (6.1)

Components of the vector u,, may be defined using admissible characteristic
displacements of the structure, e.g., a fraction of the span or of .the structure
(storey) height. It may be also determined by an incremental analysis of selected
prior-to-collapse loading histories or even by an engineering experience. It should
be remarked that the formula (6.1) leaves a broad range of liberty in selecting
constraints for an appropriate determination of the scaling factor. The asterisk (7)
in (6.1) means that in special cases the maximized vector may contain only some
components being of special interest. Any representative displacement can be chosen

as a control parameter u. The simplest way is to adopt for it the generic parameter
of the program max'u[.

The non-linear geometrical effects stabilize the inadaptation or post-yield

process if for the corresponding load multipliers we have gsln > @;’D or v‘;:_ > E_{

In the opposile case the process is destabilized. Therefore (see Fig. 1.3 and
discussion at the end of Section 2.5), in both cases the rules of selecting
admissible values will be somewhat different. At geometrical hardening the intended
increase of load multipliers corresponds simply 1o the maximum tolerable deformation.
At softening a possible decrease of multipliers will depend on the deformations prior

to the limit state and/or on possible mitial imperfections of the structure.
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6.2 Sensitivity to geometrical effects and safety factors

If the sensitivity is defined as a rate of changes of shakedown or limit load

multiphers with increasing control displacement measure u, we gel:

dE S E(u+Au) - E(u) N
du 1””,&1: o Au "“m;\u w o SL; S (6.2)
Since £ 15 an imphcit function of u, a finite difference scheme has to be used:
gﬁ‘ = A\i =V, if Au is very small, (6.3)

where Vv 15 the shakedown (limit-load) sensitivity factor. It represents a "tangent”
sensitivity and may be referred to the imual contiguration (u=0), as mn Fig. 6.1,

or to any deformed one. If the Au is not required to be small, we have a "secant”

sensitivity:
g gl
v &-8 (6.4)
u - ol
where &' means the multiplier calculated at the configuration x' = x"' + pu''.

Rigorously, u' should be a total vector of all u6u8 (Eq. 2.45) small steps. However,
if we want to apply a simplified 2-step procedure we have to put u'=u°u' as used in
(6.1). To have a initial-secant sensitivity v, in (6.4) it should be put &'=£° and
utl=(0.

A structure is always designed with some margin of safety; the working loads are
less than the collapse loads. The safety factor for the structure design § must be
equal or greater than one (§ = 1). If we design the structure to satisfy the safety
factor S required by codes with respect to the collapse load for the undeformed
structure, the real safety level will be different, depending upon the phenomena of
geometrical hardening or softening. To maintain the real security on the level
required by the code we can either apply the code factor to the collapse load
determined for the structure deformed up to a level determined by a certain control

value or to perform the analysis for undeformed structure but using a modified safety

factor S. The new safety factor can be decreased or increased depending on

geometrical effects as follows

S=5(-pfv (6.5)
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Fig. 6.1 "Secant” and "tangent” sensitiviry

where v is the sensitivity and B is a scalar weighting ratio. We can say that Bv is a
normalized sensitivity:
- all
Bv = él—zﬂ u a (6.6)

Up - Uy \r;oo

where o is a “penalty” factor amplifying or attenuating the influence of the
geometrical effect on the safety factor. It may depend, e.g., upon the uncertainty
level, but will be taken as a=1 in the sequel.

In the simplest situations, when u!= v | uo=0, we have:

o

- 1
s=5(1__§-€_;‘ta ) 6.7

It should be noted that it is tacitly assumed that the collapse mode is the same in

the whole range 0 = u < ul.

Finally:
If v>0 (geometrical hardening) the needed safety factor S decreases
v<O0 (geometrical softening) the needed safety factor S increases

(insensitive) S=3S5

1l
o

\%
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6.3 Examples

The above modification of the code safety factor S into the really needed S s
illustrated using the structure frame under loads as in Fig. 6.2, for two loading

programs (upward and downward vertical forces).

Loading programs:
a)p,. P, Py (0. 1)
b) Py P2 Py € ('1 O)

My, = Mg,
mg, = 0.75m,,
) N = 45mg, /L |
P-a
P=
L/a=15

Fig. 6.2 Space frame example

The relationship between the horizontal-displacement at point 3 at upper node of
the frame and load multipliers at shakedown or immediate collapse in shown in
Fig. 6.3.
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Fig. 6.3 Stable and unstable behaviour
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Assuming the allowable displacement at node 3, ug,= L/150, and introducing the

corresponding values £, £/, ES;. &4y from Fig. 6.3 into Eq. (6.7) we obuain:

= at geometrical hardening (upward loads):

S.= 0930 S, S¢p = 0.983°§
for the limit and shakedown, respectively:

+ al geometrical softening (downward loads):

S,= 1.062 S, Ssp = 1.045 S

Modification in the safety factor required is, thus, between +6.2% and -7.0% for
limit load and +4.50% to -1.7% for the shakedown load.

Using the safety factor reduced from § into S and applying it 1o linear analysis
is more advantageous than a direct analysis of the deformed structure (with unaltered
value of §) when a class of different load configurations is encountered. In this
case representation using shakedown (limit) loads envelopes 1s convenient. The
envelopes are derived from the analysis of undeformed structures and the level of
sensitivity 1o geometrical effects 1s indicated. The latter needs, of course, the
above second-step analysis but may be done in separate, more general studies and may
be introduced as recommended correction for the use of linear analysis. Such a
representation by envelopes was used, e.g.. in [31] to indicale stability of the
collapse modes.

In Fig. 64 are given results for hmit-load and shakedown muluphers of the
frame (as in Section 5.3), loaded only by in-plane forces. Envelopes concern all the

domains €2, (Secton 2.2), ie:

Y, =Y me 0 = Y, = Yymas
0 = y: = Y man, Y= yma (0.8)
yl‘_— /’ =0

Besides the sides of the envelope polygons the corresponding immediate collupse and

incremental collapse mechanisms are shown. Corrections of the code-required safety

factor § into S derived from the above discussed 2-step analysis (following Eq
(6.7)) are proportional 1o the ordinates of the diagrams traced along the sides of

the envelopes.
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CHAPTER 7

FINAL REMARKS

7.1 Overview of the results

* A numerical finite element program SDLAS (ShakeDown and Limit Analysis of Space

skeletal structures) has been worked out, permitting for a unified analysis of all
the history-independent classes of elastic-perfectly plastic response ol space
skeletal structures. When dealing with these classes incremental historical
elastic-plastic analysis may be avoided. Therefore, the analysis is feasible even
if the loading history is unknown (which is the most common case) and when loads
may vary in an unspecified way within a given range.
Loads are described by a finite number of parameters [3, arbitrarily and
independently varying in time, with a given reference load domain. The "shape" of
the domain 1s determined by ratios of the extreme values of the load parameters.
Load mulupliers corresponding to limit states of immediate collapse (/nmit
analysis), incremental collapse or alternating plasticity (shakedown analvsis) as
well as of first plastic deformation (elastic-limit  load) are automatically
calculated and the reference domain expanded by these multipliers describes
domains safe against the above limit states (see Fig. 1.5)

¢ The linear programming formulation due 10 Maier [70] was used in 11s classical
version, with assumptions of perfect plasticity and liear geometry, together with
a lumped-complhiance beam FE discretization. This is the most commonly accepted
approach and is applied intentionally, 1o avoid more sophisticated and challenging
but disputable proposals. That is why in the present version, e.g.. the materal
hardening 1s not taken into account.

Following the above formulation, analysis of all the classes may be performed
using directly elastic solutions (with appropriately chosen distortions at nodes).
furnished by any commercial code whose source version 1s available. The POL(SAP)
program has been used as a tool, but in the hmit analysis a generic procedure
appeared more effective. Loads are discretized in concentrated forces at nodes and

are considered applied. as in (POL)SAP, at shear centres of the cross-sections
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The problem s formulated in generalized variables. Following the classical beam
theory, four cross-sectional  stress  resultants  (avial — force,  torque and  two
bending moments) are generalized stresses contributing 1o both elastic deformation
and 1o yielding ol cross-sections.  Therefore, vield criteria (YC. for fuliv
plastic  cross-sections)  and  elasnic  criteria (EC,  for  first  plasticity)  are
expressed i these variables. Determination of particular forms of the criterna 1s
outside the scope of this study. It may be done by standard methods of limit
analysis and the clastic beam theory, and here we use results taken from known
case studies. Only the "moduli” (limit values under separate action of one stress-
resultant) should be detcrmined

Any PWL approximation of the above criteria may be used, but practical calculation
were performed using the so-called "d-approximation” (see, Section 3.5) described
by a 48-faces polyhedron in a d-dimensional stress space. The above concemns the
case of materials with the same response to tension and compression. Therefore
criteria are symmeltrical with respect to each axis. Since the computational time
is strongly dependent upon the number of faces, comparison studies were performed
with a lower-bound (16 faces) and an upper-bound (8 faces) approximations. The
former gives results close to the d-approximation in majority of the cases, the
latter 1s rather inacceplable.

The formulation used 1s geometrically linear. As mentioned above, it was
intentionally chosen, because nonlinear formulations do not insure rigorously the
history-independence of the response, which 1s essential here. Therefore, 1o
account for geometry changes appearing in the plastic deformation process the so-
called post-yield approach was adopted. This approach when applied to the
shakedown may be reported as Konig-Siemaszko formulation [64], [111], and consists
of a slep-by-step lneanzation of the problem. The Maier [70] problem is solved
for consecutively modified configurations of the structure. The modifications are
determined by the collapse mechanism of the preceding step (see, Section 2.5). The
collapse mechanism 15 automatically determmed by duahity of the LP formulation.
On the output, a dependence of the limit load and shakedown load multipliers upon
a control displacement are established. The shakedown procedure concerns first of
all incremental  collapse. I alternating  plasticity  becomes more  restrictive,
there 1s no more collapse mechanism and the program stops. Therefore, loading
programs studied i the examples were chosen to correspond presumably to the
mncremental  collapse, with  checking 1f the alternating  plasticity 15 nol  more

restrictive. Both geometrical hardening and softening situations were studied.
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L]

Because of multitude of parameters involved, majority of the examples concerned
only a one-storey one-span space frame (Fig. 5.1) under three sets of
independently varying loads. Calculation of examples was conducted at increasing
deformation, up to 10%-20% of the smallest dimension of the structure. Case
studies considered were intended to fumish information on possible approximations
of the yield criteria and on the influence of some strength/geometry parameters.
The former aspect has been already discussed above; it may be only added that
conclusions derived for undeformed structures are generally valid also at
increasing deformation.

In the studies of cross-sectional properties, torsionally very compliant and very
stiff  structures are compared (open and closed thin-walled cross-section,
respectively). Study of the influence of geometric parameters concerned variation
of the height-to-length and width-to-length ratios. As a practical engineering
example a study of eccentrically braced frames made of IPE commercial profiles was
presented. A more extended version of this study was presented by the author at
the CSCE conference [1].

Data concerning the dependence of limit (or shakedown) load upon the deformation
furnished a basis for a proposal concerning modification of safety factors
required by codes as a function of sensitivity to the deformation of load
multipliers. A simplified (two-step) analysis determines the sensitivity and if
the yielding (or inadaptation) process 1s stable (geometrical hardening) the
required safety factor applicable to the results of geometrically linear analysis
may be appropriately reduced. In unsiable situations (geometrical softening) this
factor should be increased. Examples of such modifications of the safety factors
either at  fixed load configuraton or for variable configurations that need
construction of the load envelopes are given. This approach was presented by the

author 1in more details at the Euromech 298 colloquium [7].

Partial results and aspects of the above study were presented at the conferences:

= Inelastic Behaviour of Structures under Variable Repeated Loads, Euromech 29%
Colloquium, Warsaw September 1992 [7].

*  XI Polish Conference on Computational Mechanics, Cedzyna, May 1993 [8].

*  Annual Conference of Canadian Society of Civil Engineers, Fredricton, June 1993
[1]).

* Computer Aided Design - Present and Future, Tempus Workshop at T.U. Budapest-
Miskolc, June 1993 [9].
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7.2 Discussion and Conclusions

The program has been conceived to permit a unified analysis of all the history-
independent responses of complex structures, since the limit analysis and elastic
analysis may be considered as particular cases of the shakedown analysis. It
permits also an approximate but simple analysis of nadaptation and post-yielding.
That concerns also cases when an incremental approach is not feasible because the
loading history 1s unknown. It permits to deal even with very large displacements,
since no second-order approximations are necessary and continuous changes of the
collapse mechanism are accounted for.

The geometry changes taken into account are due exclusively to compatible plastic
deformations (collapse mechanism). Therefore the approach describes rather the
inadaptation or post-yielding than the pror-to-collapse process. It means that
structures  rather  stiff elastically may be considered for analysis. For
elastically more compliant systems our method should be in some way combined with
proposals aiming at elastic pre-collapse deformation, e.g., [72], [119].

Since the procedure permits current modification of the structure configuration,
it may be also used to assess the safety of deformed/damaged structures,
introducing  the vector of configuration changes obtained from in-site
measurements.

The d-approximation of the yield criteria depending upon four stress-resultants
appears 10 be a versatile way do describe different shapes of the criteria met in
practice. The case which should be considered has always d>0.5. Sometimes a better
approximation may be obtained by taking d larger than the value for inscribed
polyhedron. If needed, changing the type of PWL approximation may easily be done.
In some structural configurations, as, e.g., eccentrically braced frames or any
structures with overlapping joints, using yield criteria accounting for shearing
forces is recommended. Some difficulties consist in the scarcity of data
concerning the vyield critena for real-shaped cross-sections, especially when
torsion is present. A directly practice-oniented study aimed at preparation of a
catalogue containing these data is surely needed.

Discretized loads applied at nodes are considered, as in POL(SAP), to act at shear
centres of the cross-sections. If non-symmetric cross-sections were considered, it
would need In an elastic analysis only the appropriate way of introducing initial
data. The above will concern also plastic analysis under assumption that the

position of the shear centre remains constant.
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The case studies revealed an interesting feature concerning plastic behaviour of
structures at large displacements. The limit load mulupliers appeared 1o be more
sensitive to geometry changes than the shakedown load multipliers. The latter are
smaller than the former and, therefore, at geometrical hardening the 1wo
corresponding curves are divergent, whereas at softening they converge. In many
cases (e.g., Figs. 5.5, 6.3) the shakedown curve soon joins the hmit-load curve.
This effect seems 1o be the more visible, the more the structure 1s lorsion
resistant and complex. For simple plane frames this effect is less frequent. We
can interpret this phenomenon as an ability of the stucture 1o 1mprove s
geometry 1 the complexity of the configuration leaves some space for it. This
problem was more extensively discussed at the CAD workshop in Budapest [9].

The two-step analysis permitting for determination of a "secant” sensiivity of
the load multipliers 10 geomeltry changes seems a more rational way for estimation
of safety than that proposed elsewhere [31], [71], and consisting of verificanon
of the initial stability of the considered process. Sometimes a process initially
instable may stabilize quickly and vice-versa. In our proposal an average
sensitivity depending on the allowable displacement chosen is found and it

determines the correction in the estimation of the structure safety level.

The advantages of the proposed approach may be summarized as below:

I. It furnishes load multipliers for all history-independent limit states of
skeletal structures, determining load varation domains safe against these
limit states.

2. Mechanisms of immediate collapse as well as incremental collapse (if this
mode of inadaptation is decisive) are automatically derived.

3. The same procedure gives also information on post-yielding and inadaptauon
processes at  large  displacements;  sensitivity of the  corresponding
multipliers 1o deformation may be studied and eventual corrections to  the
code safety factors may be proposed.

4. All the above may be done using standard FE procedures and data from

commercial codes.
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7.3 Future develepment

Below some research topics that seem to be needed for extension and updating of the
actual study, as well as for 1ts easy practical implementation are listed. The author
either started or intends 1o start in the future the work on at least of these
IUPEC'\.

e Accounting for matenial struin hardening will permit not only a more realistic
determination of the load-displacement curves, but will permit also to follow the
hardening (softening) due 1o alternating plasticity. [t is feasible and is hoped
to be done soon by the author.

e Collecting a data-base concerning  plastic  properties of  real cold-rolled steel
profiles and presenting them 1n a catalogue useful for determination of yield
criteria. Such a catalogue would find large application, by far larger than this
study. The above concerns first of all the contnbution of shear stresses
(torsion, shearing forces) to yielding.

e Modules of commercial design programs concerning verification of maximal stresses
in elastic cross-sections should and may be rearranged in the form useful for easy
derivation of elastic criteria. Similarly to the case of plasuc behaviour, the
above concerns first of all the contribution of shear stresses.

e To permit study of the prior-to-limit (shakedown) state deformations which is
needed, e.g., for estimation of the real peak load at geometrical softening, a
study of shakedown by selected incremental processes (see Borkowski, Kleiber,
[11]) is intended and implementation of Maier’s proposals [72] will be tried.

e (Case studies intended concern first of all the influence of torsional rigidity and
strength on the shakedown and yielding and on the spatial interaction of
interconnected plane frames. The above concerns both initial behaviour and
response  for large displacements. Among the structural  configurations,
eccentrically braced frames producing  exterior shells of the buildings ment
special attention, because of the reasons given in Section 5.7.1.

¢ Studies in shakedown optimization of steel frames and in the sensitivity of

optimum solutions to design parameters are also intended.
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Appendix Al Listing of input data and data formars
APPENDICES

ALl 23-07-93 19:26:0¢ Page 1

FORIMAT OF DATA FOR BEAM ELEMENT (SAP 1V)*

(1) MAIN-=- ===

READ (5,100,EN0=990) KED, NUMNP NELTYP LL NF NDYN, MODEX, NAD,
. XEQ3,N10SV
100 FORMAT (12A4/915)

HED (1-72) Head Line

NUMKP  (1-5) Nurber of Nodal Points

NELTYP (&-10) vucer of Zlement Eype
(11-13) Nrumper of Load Cases
(16-20) Nuper of Kinematical Loads
(21-25) Nuper of Freguences

(26-30) Analysis Code O-Static

(31-35) Solution Mode 0-Execution, 1-Data Check
(36-40) lteration Vector

(L1-45) Equation per Block

(46-50) Tape 10 Save Flag

(2) INPUTJ (Record of Nodal Data)--

READ  (5,1000) LT,N,JPR,(IDCN, 1), 01=1,6) X(N),Y(N),2(N) KN, T(N)
1000 FORMAT (2(A1,14),515,3F10.0,15,710.0)

R (@] Coordinate System C-cylindrical

N (2-4) Subsequent Number of Nodal Points

JPR (5) Code of Print

10 (6-10)
(11-15)
(16-20) Soundary Conditions Code -1 loss in whole structure
(21-25) 1 less in this direction
(26-30) 0 frge direction
(31-35)

X (36-45)

Y (46-55) Nodal Points Coordinate

z (56-65)

KN (66-70) Increament for Generation 0-without

™ (71-80) Nodal Point Temperature

(3) MAIN (Data of element type) -
control Card

READ (5,1001) NPAR
1001 FORMAT (1415)

wirte format from team but reed from main pragram

MTYPE=2; (1-5) Type of Beam Elemen

NUMEL (6-10)  Number of Beam Element

NUMETP  (11-15) Number of Geometric Property Sets
(16-20) Number of Fixed end Forces
NUMMAT  (21-25) WNumber of Materials

7777 (26-30) Number of Continuous Loads

O e
-
>

(L) TEAM (Material data)

Materisl Property Cards
a) material identyfication card

READ (5,1000) N, E(N),G(N),RO(N),WGHT(N)
1000 FORMAT (15,4F10.0)

NUHAT 1-5) Haterial ldentyfication Number
E (6-15) Young's Modulus

G (16-25) Poisson’s Ratio

RO (26-35) Mass Density

WGHT (36-45) Weight Density

(S)TEAM (Dats of Cross-Section)--

READ (5, 1002)N, (COPROP(N, J), i=1,6)
1002 FORMAT(15,6F10.0)

il (1-5)  section Number
COPROP(N,1)  (6-15) Axisl Ares x
COPROP(N,2)  (16-25) Shear Area vy
COPROP(N,3)  (26-35) Shear Area I
COPROP(N,4)  (34-45) Torsion XX
COPROP(N,5) (66-55) Inertia Moment yy
COPROP(N,6)  (56-85)

http://rcin.org.pl

L1l



112

Path: E:\SAPP
File: BEAM1 MAT 6,100 a 23-07-93 19:26:04 Page 2

(Q)TEAM (Data of Gravity Loads Multipliers)-

READ (5,1006) ((EMULCI,J),J=1,4),1=1,3)
1030 FORMAT (4F10.0)

EMUL (1-10)  case A

(11-20) case B Fraction of X-Direction Gravity

(21-30) case C

(31-40) case
Card 2 Y-Direction Gravity
Card 3 Z-Direction Gravity

o

(T)TEAM (Element D

READ(S,3000) INEL,INI,INJ, INK, IMAT, INEL, ILC, INELKI, INELKJ, INC,
3000 FORMAT(1015,216,18)

IHEL (1-5) Beam Number

NI (6-10)  Mode |

INd (11-15)  Node j

MK (16-20) Node k

1MAT (21-25) Material Number

IMEL (26-30) Element Property Number

ILcet) (26- ) case A

1LC(2) 4 ) case B Fixed End Forces Identifications
1Lee3) ( ) case C

1LC(&) ( -40) caseD

[NELKE (41-45) End Release ode at Node i

INELKS (46-50) j

INC (51-56) Increment - Usefull by Generation of Elament

(8) INL (Data of External Losds)-

300 READ (5,1001) N,L,R
1001 FORMAT (215,7F10.4)

N 1-5) Nodal Point Number
(6-10)  structure Load case
R (11-20) X-Direction Force
21-30) ¥
(31-40) 2
(61-50) X-Axis Moment
(51-60) Y-Axis Moment
(61-70) Z-Axis Woment

READ (5,1002)  (STR(I,L),1=1,4)
1002 FORMAT (4F10.0)

STR (1-10)  Multiplier for Element Case A
(11-20) B
(21-30) c
(31-40) [

READ (5,1005) N, (SFT(N,J},J=1,12)
1005 FORMAT(IS,6F10.0 / F15.0,5F10.0)

N 1-5) Number

SFT(N, 1) (6-15) force x

SFT(N,2) (16-25) Force y

SFT(N,3) (26-35) Force z

SFT(N,4) (36-45) Moment xx  NODE 1|
SFI(N,5) (46-55) Moment yy
SFT(N,6) (56-65) Moment rr
SFT(N,T) €1-15) Force x

SFT(N,8) €16-25) Force y

SFT(N,9) (26-35) Force z

SFT(N,10) (36-45) Moment xx NODE J
SFT(N,11) (L6-55)  Moment yy

SFT(N,12) (56-65) Moment zr

Appendix Al Listing of inpur data and data formats



Appendix Al Listing of input data and data formats

Path: E:\SAPP
File: EL poc 3,284 & 23-07-93 19:13:24 Page 1

INPUT DATA FOR FIRST STEP (UNDEFORMED CONFIGURATION)

() rmm ot e nmnmeono oo
LA S R HS NS R 00000 .00000 00000
2 1 1 1 1 1 1 6.00000 @ .00000 00000
3.0 0 0 0 0 @ 00000  .00000  6.00000
4 0 0 0 0 0 0 3.00000 .00000 6.00000
S 0 0 0 0 ©0 0 6.00000 @ .00000 6.00000
6 0 0 0 0 0 0 00000  6.00000  6.00000
7 0 0 O 0 0 0 6.00000 6.00000 6.00000
8 1 1 1 1 1 00000 6.00000 00000
9 1 1 1 1 1 1 6.00000 6.00000 00000
(3] mm oo R e e iR o s n s i m s e s
2 9 1 0 1
S R TR L
121000000.0 3 0 0
(5) .....................................................................
1 068750 0 0. .00005875 .0088930 .0010425
(6) ---------------------------------------------------------------------
0. 0 0. 0.
0. 0 0. 0.
0. 0 0. 0
(7)o m o oo o
1t 1 3 2 1 1 0 0 0 0 0 0 0
2 2 5 1 1 1 0o 0 0 0 O 0 0
3 3 4 1t 1 1 o0 0 0 0 0 O 0
4 4 5 1 1 1 0 0 0 0 0 0 0
5 3 6 1 1 1 0 0 0 0 0 0 0
6 5 7 2 1 1 0 0 0 0 0 0 0
7 6 7 9 1 1 0 0 0 0O 0 0 0
8 6 8 3 1 1 0 0 0 0 0 0 0
$ 7 9 5 1 1 0 0 0 O o0 0
(B et ot oo
3 1 1.0000 0000 0000 0000 0000 0000
302 0000  1.0000 0000 0000 0000 0000
3 3 0000 0000 2.0000 0000 0000 0000
42 0000 1.0000 0000 0000 0000 0000
4 3 0000 0000  -2.0000 0000 0000 0000
5 2 0000 1.0000 0000 0000 0000 0000
5 3 0000 0000  -2.0000 0000 0000 0000
6 1 1.0000 0000 0000 0000 0000 0000
6 3 0000 0000  -2.0000 0000 0000 0000
7 3 0000 0000  -2.0000 0000 0000 0000
G R e e L e e e L L L L LR R P LEEEELLLEEEERE:
1. 0. 0 0
1. 0. 0 0
1. 0. 0 0
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Appendix Al Listing of input data and data forrnnats

Path: E:\SAPP
File: EL1 poc 3,284 a 20-07-93 23:40:30 Page 1

INPUT DATA FOR SECOND STEP (DEFORMED CONFIGURATION)

9 1 3 0 0 0 0 42 0

()= e o m
LS IS E EE B B 00000  .00000  .00000
2 17 1 1 1 1 1 6.00000 .00000  .00000
3 0 0 0 0 0 0 02000  .00165  6.00031
& 0 0 0 0 0 0 3.0199  .00993 5.99031
S 0 0 0 0 0 0 6.01962 .01677 5.99913
&6 0 0 0 0 0 o0 00375  6.00162 5.99979
7 0 0 0 0 0 0 6.00381 6.01662 5.99951
8 1 1 111 00000  6.00000  .00000
9 1 1 1 1 1 1 6.00000 6.00000  .00000
(3]s mm
2 9 1 0 1
3 R L L e
121000000.0 3 0 0
L
1 .06875000 .00000000 .00000000 .00005875 .00889300 .00104250
(8- - oo e nemmamemeecaacoeeee e
0. 0. 0. 0
0. 0. 0. 0
0. 0. 0. 0
(7)== = mmmmmmmmm e oo
1 1 3 2 1 1 0 0 0 0 0 © 0
2 2 5 1 1 1 o 0 O0 0 0O 0O 0
33 4 1 1 1 0o 0 0 0 0 0O 0
4 4 5 1 1 1 o 0 O 0 0 O 0
5 3 6 1 1 1 0 0 0 0 0 0 0
6 5 7 2 1 1 0 0 0 0 0 -0 0
7 6 7 9 1 1 0o 0 0 0 0 0 0
8 6 8 3 1 1 0 0 0 0 0 0 0
9 7 9 5 1 1 0o 0 0 O 0O O 0
(B)r= = mmrm o e o e o e
3 1 1.0000 0000 0000 0000 0000 0000
3 2 0000 1.0000 0000 .0000 0000 0000
3 3 0000 0000  -2.0000 .0000 .0000 0000
42 0000  1.0000 0000 .0000 .0000 0000
4 3 0000 0000 2.0000 .0000 0000 0000
5 2 0000 1.0000 0000 .0000 0000 0000
5 03 0000 0000  -2.0000 .0000 .0000 0000
6 1 1.0000 0000 0000 .0000 .0000 0000
6 3 0000 0000  -2.0000 .0000 0000 0000
7003 0000 0000  -2.0000 .0000 0000 0000
(9) 7= mmmmm oo
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File: INI2 HAT 3,152 & 23-07-93 19:21:44 Page 1

INPUT DATA FOR SOLA (SUB. INI2) PROGRAM INI

(1) READ (1,%) NEL,NND,1SC,NCLA MM, KN

FREE FORMAT
NEL  : WUMBER OF ELEMENT
NND : WUMBER OF WODAL POINTS
IsC : NUMBRE OF LOAD CASES
NCLA  : NUMBER OF CLASS OF ELEMENT (TYPE)
MM : NUMBER OF UNKNOWS FOR ELEMENT (&°NEL)
NN : NUMBER OF DEGREE OF FREEDOM (6*FREE NODES)

(2)  READ (1,*) (XW(L),YW(I),2H(1),1=1,NND) -

FREE FORMAT
X : NCOAL POINT COORDIKATE [N X-DIRECTION
W : NOOAL POINT COORDIMATE [N Y-DIRECTION
24 : NODAL POINT COORDINATE IN Z-DIRECTION

(3)  READ (1,%) (MLCL),NRCI),[=1,NEL) -~
ML i LEFT  NODE WUMBER
NR : RIGHT NODE WUMBER

(4)  READ (1,*) (IDCI),I=1,6"KND) -
10 : NUMBER OF DEGREE OF FREEDOM
(5)  READ (1,*) (NCL(1),I=1,NEL) -~
NCL : MATER IDENTYFICATION NUMBER

(6)  READ (1,*) (ACD),Ix(1),IyCl),12¢1),NOCT) Mxo(1), Myo(l) Kzo(l)

*, 131, NCLA)

A 1 AXIAL AREA

Ix : TORSION xx

Iy : IWERTIA YY

1z : IMERTIA 22

N0 : YIELDS IN EXTENSION

Hxo @ YIELDS IN TORSION MOMENT X
Myo : YIELDS IN UNITAXIAL MOMENT Y
Mz0 : YIELDS IN UNIAXIAL MOMENT Z

(7)  READ (1,*) (SC(L),1=1,ISC*NN) -
SC : LOAD VECTOR IN SHAKEDOWN ANALYSIS
ISC : WUMBER OF LOAD CASES

(8) READ (1,%) (P(I),1=1,NN) -
P : LOAD VECTOR IN LIMIT ANALYSIS

INPUT  DATA DURING RUNNING THE PROGRAM

(M READ(®,’(A30)") TYT
AL : NAME OF THE TASK

2) READ(*,*) 1US
s = 0 ELASTIC LIMIT
=1 LIMIT ANALYSIS
= 1 SHAKEDOWN ANALYSIS

3 READ(*,*) (RWW(I),RV(I),1=1,15C)
RVV RV : LIMIT OF LOADS VARATION

1sC : NUMBER OF LOAD CASES

(4) READ (*,*) NYC

NTC : YIELD CONDITION =1 FOR LOWER BOUND APPROX. LB=1
=2 FOR UPPER BOUND APPROX. UB=2
=3 FOR “D-APPROX." 8s=3

5) READ(*,*) EPSD

EPSD : ACCURACY

6) READ(*,*) IPRI

1PR1 : LEVEL OF OUT PUT OF PLASTICITY
(¢4} READ(*,*) IPRINT

IPRINT @ LEVEL OF QUT PUT OF SIMPLEX’
(8) READ(*,*) XwY

KWy : STEP OF OUTPUT

) READ(®,") AL

AL : STEP OF CALCULATION

Path:

E:\SAPP
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Path: E:\SAPP
File: FRAME DOC 1,503 a 23-07-93 19:16:18 Page 1

INPUT DATA FOR SDLA PROGRAM (INI PROG.)FIRST STEP ONLY
(1) mmmmmmmm s m s e e R REETEEEEE

.06875 5875E-8 B8B93E-6 10425E-7 2.918 .037 1. .271



Appendix A2 Listing of program INI
A2

1-PROGRAM NI (INPUT DATA)

Ssave
PROGRAM N1
IMPLICIT DOUBLE PRECISION(A-H,0-2)
4 This program to prepare the input dats for the main program
c SOLA for the first step only

DOUBLE PRECISION XW,YW,2W,Ix,1y,1z,N0,Hx0, Hyo, Hzo,5C,A,RWV, RV, EPSD
*EPS, AL, AA,EY, SO, YNH, VYN, P

CHARACTER*S0 HED
CHARACTER*12 CDAT
CHARACTER*30 TYT
CHARACTER*1 I1Q

DIMENSION XW(12),YW(12),ZW(12) NL(12) NR(12),1D(56),A(4),1x(4),
*ly(4),12(4) NOC4), Mxo(4), Kyo(4) Mzo(4),SCIP0) , RWW(E) ,RV(E),
*ist(12),NCL(D), YNN(4) , VYM(8&4),P(30)

COMMON /PAR/NEL ,NND, I1SC, MM, NN, NV, NO,NZ, NSHS NS MS KTTT KTT KT
=, 1US,NCLA,LSP, IPRI  KWY, [PRINT, IT,NYC

COMMON/RD/EPSD ,EPS AL ,AA
DATA NCL 7 9*1 /
c DATA YNM /90.00,1.500,2.00,2.00/
DATA YNH /2918D-3,37D-3,1.D0,271D-3/
© DATA  YNM /32850-3,560-3,1.00,1990-3/
DATA 1D /12%1,30%0,12*1/

WRITE (*,%)7THE NAME OF DATA FILE
READ (*,*) CDAT

OPEN (1,FILE = CDAT )

OPEN (2,FILE='SSSS.DAT*)

OPEN (4, FILE='SOUON.DAT')

WRITEC®, ™) COAT
reswsasssesss SUBROUTINE INI2Z FOR [NPUT DATA *ssessssssssssssansans
CALL IKI2(NCL,1D,WL, NR A, Ix, 1y, 1z, KO, Kxo, Hyo,Kzo,SC,ist, RV, RV,
STYT KED, XMW, YW, ZW, YNK, VYK, P)

resessesevess SUBROUTINE INDATO 10 WRITE INILIAL DATA®®swvsssssvaans
CALL INDATACTYT, XW, YW, 2W,A, 1X, 1Y, 12, NO, HXO,HYO, K20, RVY, RV, SC)

SUBROUTINE INI3 FOR WRITE DATA FOR SDOWN**#essssnsssss
> interface between ini and sdown----------------o-
INIZ(NCL, 1D, KL, NR A, Ix,ly,12,K0, Kxo, Kyo Kzo,SC, ist, RW, RV, TYT
* HED, XW, YW, 24, YNM, VYN, P)

STOP
ERND

N AR AS AR AR RS S AR R IR AR RSk R AR R R

SUBROUTINE INT2(NCL,1D,NL,NR,A,1x,1y,12,N0 Mxo,Myo, Kza,SC, ist,
*RVV, RV, TYT KED  XW, YW, 2W, YN VTM,P)

DOUBLE PRECISION XW, YW, 2W, 1x, 1y, 12,N0 Kxo Kyo,
= EPS AL, AA,EY, SO, THK, VYH,P

Kz0,S8C, A, RV RV, EPSD

CHARACTER™5Q HED
CHARACTER*30 TYT
CHARACTER®Y 10

CIMENSION XW(1),YW(1),2W(1) KLCT),NRCT), 1DCT) KCL(TY,
SACH), Ix(1), Iy(1), 12(1) , NO(1)  Mxo( 1) Myo( 1) Kzo(1),SCC1) RV (1),
T ORVOT), STC1), YRMCT), VYKCD) PCT)

COMMON /PAR/KEL ,NRD, 15SC, MM, NN, KV, No, NZ NSMS KS WS KTTT KTT,KT
*,1US, NCLA,LSP, IPRI, KWY, IPRINT, IT NYC

COMMON/RD/EPSD, EPS, AL, AA

WRITE(® »)r#eswaasassnsnss <) anglygig *rersstsesasnsas
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&

a

WRITE(*,*)'TITLE OF PROBLEM '

READ (*,/(AS0)’) HED

WRITE(2,*) HED

READ (1,*) NEL,NND, ISC,NCLA,MM, NN

READ (1,%) (XW(1),YM(1),2W(1),1=1,NND)

READ (1,%) (NL(1),NRCI),I=1,NEL)

READ (1,*) CIDC1),1=1,6*KND)

READ (1,*) (NCL(1),1=1,KEL)

READ (1,%) CACI),IXCI), Ty(1),12C1) NOCT) HxoC1) Hyo(1) Mzoll)
*, 1=1,NCLA)

READ (1,%) (SCC1),1=1,I1SC*NK)

READ (1,%) (PC1),1=1,KN)

WRITE(®,*)‘NAME OF TASK’

READ(*,’(A30)") TYT

WRITE(®,*)/TYPE OF TASK(LSP) OPT:2,MULTI:1,NORM:0*
READ(*,*) LSP

WRITE(®,*)*TYPE OF TASK(IUS) EL:0 LA:-1 SD:1 *NUMBER OF STEPS'
READ(*,*) IUS

WRITE(®,*)’'LIMITS OF VARATION OF LOADS (RVV,RV)*ISC’
READC*,*) (RW(I),RVCI),1=1,1S0)

WRITE(*,*) ‘YIELD CONDITION NYC:, LB=1: UB=2 : 8S=3’
NYC

READ(*,*) EPSD

WRITE(®,*)/LEVEL OF OUT PUT OF PLASTICITY'
READ(*,*) PRI

WRITE(®,*)LEVEL OF OUT PUT OF SINPLEX’
READ(*,*) IPRINT

TFCIUS.LT.~1.0R. IUS.GT.1)THEN
WRITE(*,*)'STEP OF OUTPUT’

READ(*,*)  KWY

ENDIF
TF(ABS(IUS).GT.1.AND.LSP.LE.1)THEK
WRITE(®,*)'STEP OF CALCULATIONS’
READ(*,*) AL

ENDIF

WRITE(*,*)'0.K.2  Y/N'

READ(*,“(A1)’) IQ

1F(1Q.EQ.'N' .OR.1G.EQ."n")GOTO 4

THIS BLOCK FOR LIMIT AMALYSIS
(FOR ELASTIC AND L.A SC IS MULTIPLIED BY RV SC(NN))

IFCIUS.GE.1)GOTO 14

DO 13 1=1,15C

00 12 J=1,NK

1FC1.EQ.1)GOTO 15
SCOI=SCOII*SCLCI-1)*HKR+J) "RV )
6010 12

SCCII=SCCI*RVIT)

CONT I NUE

COWT I NUE

CONT I NUE

*4%t% CALCULATION OF Nym==sxess
IF(NYC.EQ.1)THEN
KT=8
ENDIF
TF(NYC.EQ.2)THEN
KT=4
ENDIF
TF(NYC.EQ.3)THEN
KT=24
ERDIF
KTT=KT+KT
KTTT=KTT4KTT
NV=NEL*KTTT
NS=NN+KV+1
NO=NS-1
NZ=MM+1
HS=NZ+1
NSMS=NS*HS
EPSD=1.D-8
KWy=1
cc=.0

Appendix A.2 Listing of program INI
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[ 1WY=0
c IPRI=Y
€ IPRINT=0

CALL GENK(NCL,YNM, VYM)

0O 18, J=1,NEL
18 1ST()=0
4 EPS FOR SIMPLEXA
EPSSEPSD
RETURN
END

SUBROUTINE GENK (NCL,YRM,VYH)

IMPLICIT DOUBLE PRECISION(A-H,0-2)

DIMENSION NCL(1),YNM(1),VYN(1)

COMMON /PAR/MEL ,NND, 1SC, MM, NN, NV, No,NZ,NSHS NS, MS, KTTT,KTT,KT
*,1US NCLA,LSP, IPRT KWY, IPRINT, IT, NYC

COMMON/RD/EPSD , EPS AL AL
c DATA YNM / 800.,60.,80.,40./
c TNM : YIELD MORMAL FORCE AND MOMENTS
c (Mo, Mxo, Myo, Mz0)
C NCLCJ) NUMBER OF CLASS OF ELMENTS J
[ VYN 2 VECTOR OF YILED MOUDULY

C KTTT=2*KTT

c d= 471

c d=.461
d=.504

c d=.750

JJ=0
DO 47 J=1,MEL
NCL(J) = 1
JK=(NCL(J)-1)%4+3
DO 47 I=1,KTTT
Ji=get
if(nyc.eq.3)then

¢ WRITE(*,*)'D=’,D
vym( ] j)=d*yrem(jk)
else
VYR(JJI=YNM(JK)
endif

47 CONTINUE

IF (JJ.NE.NV) WRITE(*,*)'ERROR GENK’, JJ KV

RETURN
END

A AR AR A SRR TR RSN N AR N A RS AT R R R AR AR

SUBROUTINE [NDATACTYT,XW, YW, 2W, A, IX, 1Y, 12, N0, KXO, YO, HZO,RVV, RV
*,50)

DOUBLE PRECISION XW,YW,2W,SC,A,1X,1Y,12,K0,KXO,KYO, K20, RVV RV
*EPSD,EPS AL, AA

CHARACTER*30 TYT
DIMENSION XW(1),YWCT), ZWCT), ACT), IX(1), 1Y(1),12(1),K0C1) MXO(1),
"MYO(1),M20(1),5CC1), RW(1) RV(1),IST(1)

COMMON /PAR/NEL, NND, 1SC, MM, NN, NV, No, N2 NSHS, NS MS,KTTT KTT KT
*, 1US, NCLA,LSP, PRI, KWY, IPRINT,IT,NYC
COMMON/RD/EPSD  EPS AL, AA

WRITE(Z,*)TYT
IF(1US.EQ.0)WRITE(2,330)
[FCIUS.GT.0)WRITE(2,334)
IF(IUS.LT.0)WRITE(2,335)

3 IF(IHA.GT.0)WRITE(2,336)
WRITEC2,333)(XW(1),YWC1),2ZUW(1), 1=1,NND)
WRITE(2,337)
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330
3
332
333
334
335
336
337

338
339
340
341

WRITE(2,338)(1,A(1),1X(1),1v(1),1Z(1),NOCI) KXO(1),HYO(1),K20C1),
*1=1,NCLA)

TFCIUS.GT.OMWRITE(R, 339)(RW(1),RV(1), 1=1,15C)
TFCIUS.LE.O)WRITE(R,340)(SCCL), =1, KN)
TFCIUS.GT.OIWRITE(Z,340)(SCCI), I=1, RKN*I5C)

WRITE(2,341)EPSD, AL

FORMAT ( 1+, 35X, /ELASTIC ANALYSIS')

FORMAT(3H  ,12.2,1H:,12.2,1H: 12.2)

FORMAT (2X, 10A4 )

FORMAT(1H , *CO-ORDINATES' ,6F11.6)

FORMAT (1H+, 35X, ' ****SHAKE DOWK®"**")

FORMAT ( 1H+, 35X, 'LIMIT ANALYSIS')

FORMAT ( 1H+ 55X, ' KARDEK NG’ )

FORMAT(1H 34X, '***MATERIAL DATA***'/1X, ‘CLASS’ BX, 'AERA’, 11X,
- Ikt 13X, Chyt 13X, 112, 16X, TN, 12X, (Mo, 11X, ‘Hyo’ , 12X, 'Hz0")

FORMAT(1H ,14,8015.4)

FORMAT(TH , 'RV’ ,6F8.3)

FORMAT(TH ,SC(1),12F8.3)

FORMAT(TH ,'ACCURACY’,1D15.4, " STEP',1D15.4)

RETURN
END

AR AAAAAEAsSEissRsEbdeR RSNt

SUBROUTINE INI3(NCL,ID,NL,NR A, X, 1y, 1Z,NO,Mxo0,Myo,Hzo,
*SC, ist,RVV, RV, TYT HED,XW, YW, 2W, YNH, VY P)

DOUBLE PRECISION XW,YW,ZW, Ix, ly, 1z K0, Mxo,Myo,M2z0,5C, A, RVV, RV, EPSD
* EPS,AL,AA EY,S0, TN, VYN, P

CHARACTER®S0 HED

CHARACTER*30 TYT

CHARACTER™1 IQ

DIMENSION XW(1),YW(1),2W( 1), KL(1),NR(1), 1DCT), NCL(T),

T AQHY, IXC1), Dy (1), 12¢1), HOCT) Mxe( 1) Mya(1) Mzo(1), SC(1),RW(1),
= RVE1),i8TC1), YRKCT),VYM(1),PC1)

COMMON /PAR/NEL, NND, 1SC, MM, KN, KV, Ko, K2, NSHS NS, MS KTTT KTT KT
= 1US,NCLA,LSP, IPRI,KwY, IPRINT, 1T, NYC
COMMON/RD /EPSD, EPS, AL A

WRITE(4,*) HED

write(4,/(A30)") TYT

WRITE(4, ™) NEL,NKD, ISC MM KK KV, No MZ, NSMS, NS,MS KTTT,KTT KT
*,1US,KCLA,LSP, IPR1, WY, IPRINT, 1T NYC

WRITECA, ™) (OXW(1),YW(1),2W(1),1=1,KND)

WRITECG,*) (NL(I),NR(1), 1=t KEL)

WRITECA,*) C(ID(1),1%1,6°KKD)

WRITECL,®) (NCL(I),I=1,KEL)

WRITECL,*) CACI), IxCI), Ty(1), 1201y, KOCI), Mxa(1) Hyo( 1), Kze(1)
*,1=1,KCLA)

WRITE(L,™) (SC(1),1=1,ISCTRN)

WRITECL,*) (RWW(1),RV(1),1=1,180)

WRITECG,™) (YRM(1),1%1,4)

WRITE(L,*) (VYM(I), 1=} KV)

WRITE(G,*) (IST(1),I=1 KEL)

WRITE(L, ™) EPSD,EPS AL

write(s,®y (pli),i=1,nn)

RETURN
END

Appendix A2 Listing of program INI
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A3

111-PROGRAM SOUA( SDAKEDOWN, LIMIT AND ELASTIC LIMIT ANALYSES
OF SPATIAL STRUCTURAL SYSTEMS
$save

PROGRAM SDLA
crnemnne
< This porgram for space structure (shakedwon, limit analysis
c and elastic Limit)
crmennnn
IMPLICIT DOUBLE PRECISION(A-H,0-2)
DOUBLE PRECISION Ix, Iy, 1z, N0 Hxo Myo, Mzo

CHARACTER®S0 HED
CHARACTER™12 CDAT
CHARACTER*30 TYT
CHARACTER®*1 1Q

DIMENSION XW(9),YW(9),ZW(P), NLID), NR(D), 1D(54) ,ACL), Ix(h),Iy(4),
*12(4),ND(4) Mxolh) Hyols) H1o(4),SC(P6),RVV(4) ,RV(4), ist(9) NCLID)
*YNM(G) VYM(BS4) P (30),AAA(20),8BB(20),CCC(20),000(20),EEE(20)
BIMENSION $(50120),CC(54,54),C(1620),CT(1620),GNT(576),EMM(3754),
“EM(3%54),ESED(BSL), GAMMACT,4), XMATDAT(1,8) , xmatdat1(1,8),
*xmatdat2(1,8),X(900),Y(60)

DIMENSION T1D(9,6),X1(9),Y1(9),21(9),E(F),G(9),RO(P) NGHT(T),
“COPROP(9,6) EMUL(3,4),STR(S,3), INL(P), INJ(P), INK(F), NNN(10),
*NNL(10),R(10,6)

COMMON /PAR1/ NF NDTN, MODEX,NAD,KEQB,N10SV,KN,MTYPE NUMEL, IMAT,
*IMEL, ILC(4), INELKI, INELKJ, INC
COMMON /PAR/NEL,NND, 1SC, MM, NN NV, Ko, HZ,NSMS NS MS,KTTT KTT KT
,1US,NCLA,LSP, IPRT,KWY, IPRINT, 1T NYC
COMMON /RD/EPSD, EPS, AL, AA

c COMMON /MEC/ IME , AMECH

c*****XMATDAT]1 for elastic limit, XMATDAT2 for plastic analysis (SD+LA)

¢ DATA XMATDAT /4E-3,1€-6,1E-6,26-6,90., 1.5, 2., 2. /

C*****DATA MATDAT/ A, Ix, 1y, 1z, WO, Mxo, Myo,Mzo /
DATA XMATDAT1 /.06875,5873E-8,8893E-6,10425€-7,3.285,.056,1.,.199/
DATA XMATDAT2 /.08875,587SE-8, B893E-6,10425€-7,2.918,.037,1.,.271/

OPEN (1,FILE="VECTX.DAT')
OPEN (2,FILE=’SSS.DAT’, status=’unknown’, forms’formatted’)
OPEN (3,FILE="STRVECT.DAT*, STATUS='OLD")
OPEN (4, FILE="SDWON .DAT')
OPEN (7,FILE="SIMP DAT’)
OPEN (8,FILE='VECTY.DAT')
c open (9,files’EL.D’, statuss’old’)
open (9,file='EL.D*)
open (10, files'plot.dat’ forms’formatted’)
OPEN (10,FILE="PLOT.DAT' FORM='FORMATTED '
* ACCESS='DIRECT' RECL=16)
open (10, files'plot.dat’ status='unknown’ form='formatted’
*, sccess='direct’ reclald)
open (11,file='plote.dat’, form=formatted’)
OPEN (14, FILE="CMATG.DAT' STATUS='OLD')

nnn o

a

ewsesnusen | TERATION(HAINLOOP)**n sasannanaans
c SUBROTINUE INI4 TO READ DATA FORM INI PROGRAM
CALL INI4(NCL, 1D, NL MR A, 1x, 1y, 12,N0, Mx0,Myo, M20,
*SC, ISt RVV, RV, TYT HED,XW, YW, ZW, TR, VY, P)

if(ius.eq.0)then
do 20 i=1,8
xmatdet(1,i)=xmatdati(l,i)
20 contimue
else .
do 30 i=1,8
xmatdat(1,i)=xmatdat2(1,1)
30 continue
endif

c*** READ (3,%) EMM

c***  CALL RSTR(EMM,EM,GAMMA, XMATOAT NCL)
READ (3,%) EM
CALL GENCT(C,CT, (D)
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CALL GENN(GNT, xmatdat)
c***** JUS = 0 for elastic limit *w*==e
c*****[t is possible to run the program for £D ans EL at the same time
if (ius.eq.0) then
CALL GEND(EM,ESED,RVV, RV, XMATDAT)
CALL GENS2(S,ESED,VYM,gnt)
CALL SIMPLEX(S,X,Y,Nv,0,1,0,1BL,EPS, IPRINT)
CALL INIR3e(X,Y,XW, YN, ZW)
do 32 i=1,8
xmatdat(1,i)=xmatdatz(1,1)
32 continue
CALL GENN(GNT,xmatdat)
CALL GEND(EM,ESED,RVV,RV,XMATDAT)
CALL GEWS(CT,S, ESED,VYM,GNT)

endif
¢ CALL SIMPLEX(S,X,Y NO,NN NZ MM, IBL,EPS,IPRINT)
GO0 TO 999

* IUS = 1 or fus > 1 for shakedwon **
if(ius.ge.1) then
CALL GEMD(EM, ESED,RVV, RV, xmatdat)
CALL GENS(CT,S,ESED,VYN,GNT)
endif

ctiudt JUS < 0 for limit snalysis *=we=ves

if (ius.lt.0) CALL GENST1(CT,S, VYM,GNT p)
write(*,*) ‘number of steps’,IT
CALL SIMPLEX(S,X,Y NO, NN, WZ MM, I1BL EPS, IPRINT)
c write(1,’(8E16.8)") X
c write(8, (8F16.8)7) ¥
CALL INDATACTYT,XW,YW,ZW,A, 1X,1Y,1Z KO, HXO,NYO,H20, RV, RV, SC)
CALL INIRI(X,Y,XW,YW,2ZW)
CALL MECH(X,XW,YW,2W,1D)
CALL INface(11D,XW,YW,ZW, NUMNP  NUMETP , NUMF [ X, NUMMAT
*E,G,RO, COPROP, WGHT ,LL, NI, INJ, INK, KKK, NNL)

REWIND &

c wewesws END OF FIRST ITERATION **essssscs
IT=1T+1

c to write data for sdwon for the next step

CALL INI3(NCL,ID,NL,NR,A,Ix, 1y, 1z NC Mxo, Myo, Hzo,SC, ist RV RV,
*TYT,HED,XW, YW, 2\, YNM, VYN, P)
¢ 999 continue

< if you would like to print simplex matrix please call sub. MORUK
¢ CALL MDRUK(S,HS NS, 12, “MSTHPLEXXX')
< write(* *) ‘number of steps’, IT
STOP *This step finished 0.k’
END
OO ™ A AN AR A duan s hbaduasbuntsasssbtnsstnnn srassaeaRbRR R RR R AT

SUBROUTINE INT&(NCL, 1D, KL KR A, 1x, 1y, 12 NO Mxo, Myo, Mzo,
*SC,iSt,RVV, RV, TYT HED,Xw, YW, 2W, YNM, VTM,#)

C*=***70 READ DATD FROM INT PORGRAM

DOUBLE PRECISION XW, YW, ZW, Ix,ly, 1z, K0, Mxo,Myo,Kzo0,5C,A,RVV RV, EPSD
* EPS,AL,AA,EY, SO, YNM, VYH,p

CHARACTER*50 HED
CHARACTER*30 TYT
CHARACTER*1 1@

DIMENSION XW(T),YW(1),ZH(1) KL(1), KR(1), 1DC1), NCL(T),
= ACTY, IxC1), Iy (1), 12C 1), NOC 1), Mxo( 1), Mro(1),Kzo( 1), SC(1) RW(1),
* RV(1),istC1), YNM(T),VYM(1),p(1)

COMMON /PAR/MEL ,NND, ISC, MM NN, NV Ko, N2 NSMS NS, MS, KTTT KTT KT
=, 1US,NCLA,LSP, 1PRT KWY, [PRINT, 1T NYC
COMMON/RD/EPSD , EPS AL, AA

READ (4, ' (A50)') HED
READ(4, "(A30)") TYT
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READ(4,*) MEL,MND, ISC,MM, NN, NV No NZ NSMS, NS MS KTTT KTT, KT
*,1US,NCLA,LSP, IPRT KWY, [PRINT, IT,NYC

READ(4,*) (MW(1),YW(1),2W(1),1=1,NND)

READ(4,*) (NL(I),NR(1),1=1,NEL)

READ(4,*) (ID(1),1=1,6%NND)

READ(4,*) (NCL(1),1=1,NEL)

READC4,*) (ACI), IxC1), Iy (1), 1201),HOC1) Mxo( 1), Mya(i), Mza(l)
*,1=1,NCLA)

READ(4,*) (SC(1),I=1,ISC*NN)

READCL, ™) (RVV(I),RV(I), 1=1,1SC)

READ(4, ™) (YNM(I),1=1,4)

READCG, ™) (VYM(1),I=1,RV)

READ(&,*) (IST(1),I=1 NEL)

READ(4,*) EPSD,EPS, AL

read(4,*) (P(i),i=1,nn)

RETURN
END

cecoce errsaaerTaseEtAsEAEEL AR R RN AR

SUBROUTINE RSTR (EMM,EM, GAMMA  XMATDAT,NCL)

IMPLICIT DOUBLE PRECISION(A-H,0-2)

DIMENSION EMM(1),EM(1),GAMMA(1,4) XMATDAT(1,8),KCL(1)

COMMON /PAR/MEL ,NND, ISC, MM, NN NV, No, NZ  NSMS NS, NS, KTTT KTT, KT
*,1US NCLA,LSP, IPRI KWY IPRINT IT NYC

COMMON /RD/EPSD EPS AL AL

REDUCES STERSS EM

ITNPUT ELASTIC STRESSES FORM SAP EMM
ouTPUT REDUCES VALUES OF STRESSES EM
EM = ENM*GANMA

an o0

€ MATDAT(SECTION CLASS/(A,lx,ly,1z,N0,Mxo,Hyo,Hzo)}
€ GAMMA (SECTION CLASS/(Myo/NO,Myo/Mxo,1,Myo/Mz0))

00 18 1=1,MC1A
GAMMA(1,1) =O0ATDAT(L,7)/XMATDAT(!,5))
GAMA(1,2) ODWMTDATCL, 7)/XMATDAT(1,6))
GAMMA(1,3) =1.
€ GABA(I,3) =(OWTDATCI,T)/XWTDATCI, 7))
18 GAMMA(I,&) =(OMTDATCI,7)/XMATDAT(I,B))

=1

0O 22 J=1,ISC

DO 22 I=1,MEL

EM(IT) = EMOACIT)  “GAMMA(NCL(I), 1)
EM(11+1)= EMMCIT®1) *GAMMA(NCL(I),2)
EM(11+42)= EMA(11+2) *1.

EM(IT+3)= EMM(1T+3) *GAMMA(NCL(1),4)
EM(IT+4)= EMM(1I+4) *1.

EM(11+5)= EMM(11+5) *GAMMA(NCL(1),4)

22 1l=l1+6
RETURN
END
cececc!

SUBRCUTINE GENCT(C,CT,ID)

IMPLICIT DOUBLE PRECISION(A-H,0-2)

DIMENSION Q(6,12),CC(54,54),C(1),CT(1), 1D(1)

COMMON /PAR/MEL ,NND, 1SC MM NN WV No NZ NSMS, NS, MS KTTT KTT, KT
*, 1US,NCLA,LSP, IPRI KWY  IPRINT, [T NYC

c INPUT CC = COMSISTENT MATRIX C

[ ouTPUT CT = (CCtranspose)

c ini- rumber of the first node of the element

c inj- second

c c local metrix ¢

3 iyl column of location of the first part of matrix c
¢ iy2 second

14 q transformed matrix ¢ to the global coordinate

< OPEN (11,FILE='PRCC.DAT’)

c This matrix from sep program



124 Appendix A3 Listing of program SDLAS-MAIN

n

(not Including boundary condition in consideration)
OPEN (12,FILE='PRC.DAT’)
OPEN (13, FILE="PRCT.DAT")

a oA

DO 17 1=1,HM

DO 17 J=1, MM
17 cCcl,4=0.0

DO 55 K=1,NEL .

READ(14,*)iyl,nc, ((qCi,j),i=1,m), j=1,nc),

1 1y2,((q¢i,j),i=1,nc), =nc+1,2%nc)
c WRITE(®,*)iyl,nc, ((q(i,}),i=1,nc), j=1,nc),
iy2,((qCi,j),i=1,nc), j=nc+1,2%nc)
c srresEes | NPUT TO THE CC HATRIX®®*=eews

CALL PUTM (@,1,8,6, CC,IY1+1, (k-1)*61,MM,6NN0)

CALL PUTM (Q,7,12,6,CC,172+1,(k-1)"6+1,MM,6°NND)

55  CONTINUE
3 WRITE(11, 7 (24F5.2) 1 )CC
[+ saswsssr ELIMINATION OF FIXED DEGREES OF FREEDOMv*==wwese

c **here start taking boundary condition in consideration**
=1
00 99 1=1,NND*6
IF (I0(1).EQ.D0) THEN
DO 98 J=1,MM
CCIr) = cCed, 1)
8 1= 11+1
ENDIF
99 CONTINUE
¢ WRITE(12,(24F5.2)") C
IF (11-1 _NE. MM*NN) WRITE (*,*) 'ERROR CC’,11-1,MH*NN

<

¢ sasenararsrras TRANSPOTION Soevenssssenees
H sesssess trangpose C matrix to CT###aswsss
DO 170 I=1,NN
DO 170 J=1,MM -
170 CTCCI-1)*NN*1) = CCCI-1)*Mmey)

¢ WRITE(13, 7 (48F5.2)") CT
3 WRITE(13,*) CT

RETURN

EHO

ccecee

SUBROUTINE GENN (GNT,xmatdat)
IMPLICIT DOUBLE PRECISION(A-N,0-2)
DIMENSION GNT(1),GRAD1(4),S(1), xmatdat(1,8)
COMMON /PM/HEL,HIID,lSC,FR,NI,IN,In,IIZ,ISIlS,!S,NS,KTT‘I,UT,lT
*,1US,NCLA,LSP, IPR] KWY, IPRINT,IT NYC
COMMON /RD/EPSD EPS, AL , AA

Cosen

4 GENERATION OF ELEMENT GRADIENT MAJRIX NT

€ INPUT INTO S MATRIX

chaan
DO 28 I=1,KTT
CALL GENG1(I,GRAD1,xmatdat)
GNT(I)  =GRAB1(1)
GNT(I+KTTT)=GRAD1(2)
GNTCI+KTTT#KTTT) = GRAD1(3)
GNTCI+KTTT#KTTT#+KTTT) =GRAD1(4)
GNT(1+4*KTTT) = 0.00

28 GNT(I+5*KTTT) = 0.00

00 29 [=KTT+1,KTYT
CALL GENG1(I,GRAD1, xmatdat)
GNT(1) =GRAD1(1)
GNT(I+KTTT)=GRAD1(2)
GHT(142*KTTT)=0.00
GNT(1+3°KTTT)=0.00
GNT(I+4*KTTT)=GRAD1(3)

29 GNT(I+S*KTTT)=GRAD1(4)

RETURN
END

CCCcccttwessnnannn
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SUBROUTINE GENG(NYP, GRAD)
IMPLICIT DOUBLE PRECISION(A-H,0-2)
DOUBLE PRECISION GRAD(4)
DIMENSION GAMMA(1,4)
COMMON /PAR/NEL NND, 1SC, MM NN, NV, No, NZ,NSMS, NS MS,KTTT KTT KT
“,1US,NCLA,LSP, 1PRT, KWY, [PRINT, IT NYC
Crnnnn
4 GEMERATION OF GRADIENTS FOR WYC=1
4 FOR LOWER BOUND
Crenen
GO TO(51,53) NYC
St WYe=1

Do 11 1=1,4
11 GRAD(1)=1.00

X=(NYP-1)/2.

TF((NYP-1)/2.KE.NINT(X)) GRAD(4}=-1.D0
X=(NYP-1)/4.

TFC(NYP-1)/4 . NE.NINT(X)) GRAD(3)=-1.00
X=(NYP-1)/8.

TFCONYP-1) /7B ME NINT (X)) GRAD(Z);-'\.DO
X=(NYP-1)/16.

TFC(NYP-1)/16. NE . NINT(X)) GRAD(1)=-1.D0

60 T0 77

e

c GEMERATION OF GRADIENTS FOR NYC=2

c FOR UPPER BOUND

.

53 Wvc=2
DO 12 1x1,4

12 cRA®(1)=0.00
IF (WYP_EG.1.OR.NYP.EG.9 ) GRAD(1j = 1.D0
1F (NYP.EQ.2.0R.NYP.EQ.10) GRAD(2) = 1.D0
1F (WYP.EQ.3.0R.NYP.EQ.11) GRAD(3) = 1.00
IF (MYP.EQ.4.OR_MYP_EQ.12) GRAD(4) = 1.D0
IF (NYP.EQ.5.0R.NYP.EQ.13) GRAD(4) =-1.0D0
IF (NYP.EQ.6.0R.NYP.EQ.14) GRAD(3) =-1.D0
IF (NYP_.EQ.7.OR.NYP.EQ.15) GRAD(2) =-1.00
IF (NYP.EQ.B.OR.NYP.EQ.16) GRAD(1) =-1.D0

77 CONTINUE
RETURN
END

ccceced!

SUBROUTINE GENG1(NYP1, GRAD1,xmatdat)
IMPLICIT DOUBLE PRECISION(A-H,0-2)
DOUBLE PRECISION GRAD1(4)
DIMENSION GAMMA(1,4), xmetdat(1,8)
COMMON /PAR/NEL ,NND, ISC,MM NN NV No NZ NSMS NS MS KTTT KTT, KT
= 1US,NCLA,LSP, IPRI,KWY, IPRINT, [T NYC
common / /d,e,en,dn,ex,dx, ey, dy, ez, dz

Coewen

[ GENERATION OF GRADIENTS FOR NYC=1

c FOR LOWER BOUND

grenen
GO 10(52,54,56) ,NYC

52 NYC=1

00 13 1=1,MCLA

GAMMA(T,1) = (XMATDAT(1,7)/XMATDAT(1,5))

GAMMA(1,2) =(XMATDAT(1,7)/XMATDAT(],6))
c GAMMA(CL,3) =1,

GAMMA(L,3) =(XMATDAT(1,7)/XHATDAT(I,7))
13 GAMMA(IL,4) =(XMATDAT(1,7)/XMATDAT(I,8))

GRAD1 (4 )=GAMMA(1,4)
GRAD1(3)=1.D0

GRAD1(2Y=GAMMA(1,2)
GRAD1(1)=CAMMA(1,1)

c GRAD1(1)=(2./90.)
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c GRAD1(2)=(2./1.5)
c GRAD1(3)=1.00
c GRAD1(4)=1.d0

X=(NYP1-1)/2.

TFCCNYP1-1)/2.NE.NINT(X)) GRAD1(4) = -GRAD1(4)
X=(NYP1-1)/4.

TFCCNYP1-1) /4. NE.NINT(X)) GRAD1(3) = -GRAD1(3)
X=(NYP1-1)/8.

LFCCNYP1-1)/B.NE.NINT(X)) GRADT(2) = -CRAD1(2)
X=(NYP1-1)/16.

TECONYPT-1)/16.NE NINT(X)) GRADI(1) = -GRAD(1)

go to 78
crnen
< GENERATION OF GRADIENTS FOR NYC=2
c FOR UPPER BOUND
creven
54 NYC=2
¢ write(*,*)’ xmatdat’' xmatdat

DO 15 1=1,NCLA

GAMMA ([, 1) =(XMATDAT(I,7)/XMATDAT(1,5))

GAMMA(1,2) =(XMATDAT(1,7)/XMATDAT(I,6))
[ GAMMA(1,3) =1. =

GAMMA(1,3) =(XMATDAT(1,7)/XMATDAT(1,7))
15 GAMMA(1,4) =(XMATDAT(1,7)/XMATDAT(I,8))

GRADT(4)=GAMMA(1,4)
GRAD1(3)=1.00

GRAD1(2)=GAMMA(1,2)
GRAD1(1)=GAMMA(1, 1)

anan

DO 14 I=1,4
14 GRAD1(1)=0.D0

IF (NYP1.EQ.1.0R.NYP1.EQ.9 ) GRAD1(1) = gamma(1,1)
IF (NYP1.EQ.2.0R.NYP1.EQ.10) GRAD1(2) = gamma(1,2)
IF (NYP1.EQ.3.0R.NYP1.EQ.11) GRAD1(3) = 1.d0

IF (NYP1.EQ.4.OR.NYP1.EQ.12) GRAD1(4) = gamma(1,4)
IF (NYP1.EQ.5.0R.NYP1.EQ.13) GRAD1(4) = -gamma(1,4)
IF (NYP1.EQ.6.0R.NYP1.EQ.14) GRAD1(3) = -1.d0

IF (NYP1.EQ.7.0R.NYP1.EQ.15) GRAD1(2) = -ganma(1,2)
IF (NYPi.EQ.8.0R.NYP1.EQ.16) GRADI(1) = -gamme(1,1)

GoToT78

crenenn
c GEMERATION OF GRADIEMTS FOR NYC = 3
c FOR D APROXIMATION

P
56  NYC=3

DO 16 I=1,NCLA

GAMMA(1,1) =(XMATDAT(1,7)/XMATDAT(1,5))

GAMMA(1,2) =(XMATDAT(I,7)/XMATDAT(1,6))

GAMMA(1,3) =1.
c GAMMA(L,3) =(XMATDAT(1,7)/XMATDAT(1,7))
16 GAMMA(I,4) =(XMATDAT(I,7)/XMATDAT(1,8))
c d=.408

d=.504
c D=.75

E=1.- D

EN=E*GAMMA(1,1)

DN=D*GAMMA(1,1)

EX=E*GAMMA(1,2)

DX=D*GAMMA(1,2)

EY=E

oY=D

EZ=E*GAMMA(1,4)

DZ=D*GAMMA(1,4)

00 19 11,4
19 GRAD1(1)=0.d0

LF (NYP1.EQ.1.0R.NYP1.EQ.49 )then
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GRAD1(2) = EX
GRAD1(3) = D

endif

IF (NYP1.EQ.2.0R.NYP1.EQ.50 )then
GRAD1(2) = DX
GRAD1(3) = E

endif

IF (NYP1.EQ.3.0R.NYP1.EQ.51 )then
GRAD1(2) = EX
GRAD1(4) = D2

endi f

IF (NYP1.EQ.4_OR.NYP1.EQ.52 )then
GRAD1(2) = DX
GRAD1(L) = EZ

endif

IF (NYP1.EQ.5.0R.NYP1.EQ.53 )then
GRAD1(1) = DN
GRAD1(2) = EX

endi f

IF (NYP1.EQ.6.0R.NYP1,EQ.54 )then

GRAD1(1) = EN
GRAD1(2) = DX

endif

IF (NYP1.EQ.7. OR.NYP1.EQ.S5 )then
GRAD1(1) = DN
GRAD1(3) = E

endit

IF (NYP1.EQ.B. OR.NYP1.EQ.56 )then
GRADI(1) = EN
GRAD1(3) = D

endif

IF (NYP1.EQ.9. OR.NYP1.EQ.57 )then
GRADI(1) = DN

GRAD1(4) = EZ

endif

LF (NYP1.EQ.10.0R.NYP1.EQ.58 )then
GRAD1(1) = EN
GRAD1(4) = D2

endif

IF (NYP1.EQ.11.0R.NYP1.EQ.59 )then
GRAD1(3) = E
GRAD1(4) = DZ

endi f

IF (NYP1.EQ.12.0R.NYP1.EQ.80 )then
GRAD1(3) = D
GRAD1(4) = EZ

endif

1F (NYP1.EQ.13.0R.NYP1.EG.61 )then
GRAD1(2) =-EX
GRAD1(3) = D

endif

1F (NYP1.EQ.14.OR.NYP1.EQ.62 )then
GRAD1(2) = DX
GRAD1(3) =-E

endif

IF (NYP1.EQ.15.0R.NYP1.EQ.63 )then
GRAD1(2) =-EX
GRAD1(4) = D2

endif

IF (NYP1.EQ.16.0R.NYP1.EQ.64 Ithen
GRAD1(2) = DX
GRAD1(4) =-EZ

endif

IF (NYP1.EQ.17.OR.NYP1.EQ.65 )then
GRAD1(1) = DN
GRAD1(2) =-EX

endif

IF (NYP1.EQ.18.0R.NYP1.EQ.66 )then
GRAD1(1) =-EN
GRAD1(2) = DX

endif

LF (NYP1.EQ.19.0R_NYP1.EQ.47 ythen
GRADT(1) = DN
GRAD1(3) =-E

endi f



2

IF (NYP1.EQ.20.0R.NYP1.EQ.
GRAD1(1) =-EN
GRAD1(3) = D

endif

IF (NYP1.EQ.21.0R.NYP1.EQ.
GRAD1(1) = DN
GRAD1(4) =-E2

endif

IF (NYP1.EQ.22 OR.NYPI EQ.
GRAD1(1) =-EN
GRADT(4) = D2

endif

[F (NYP1.£Q.23.0R.NYP1.EQ.
GRAD1(3) =-£
GRAD1(4) = 02

endit

IF (NYP1.EQ.24 OR.NYP1.EQ.
GRAD1(3) = D
GRAD1(4) =-EZ

endif

IF (NYP1.EQ.25.0R.NYP1.EQ.

IF (NYPY.EQ.26.0R.NYP1.EQ.
GRAD1(3) = E
GRAD1(4) =-DZ

endif

IF (NYP1.EQ.27.0R.NYP1.EQ.
GRADI(1) = EN
GRAD1(4) =-D2

endit

IF (NYP1.EQ.28.0R.NYP1.EQ.
GRAD1(1) =-DN
GRAD1(4) = EZ

endif

IF (NYP1.EQ.29.0R.NYP1.EQ.
GRAD1(1) = EN
GRAD1(3) =-D

endif

IF (NYP1.EQ.30.0R.NYP1.EQ.
GRAD1(1) =-DN
GRAD1(3) = E

endif

IF (NYP1.EQ.31.0R.NYP1.EQ,
GRADI(1) = EN
GRAD1(2) =-DX

endif

1F (NYP1.EQ.32.0R.NYP1.EQ.
GRAD1(1) =-DN
GRAD1(2) = EX

endif

IF (NYP1.EQ.33.0R.NYP1.EQ.
GRAD1(2) =-DX
GRAD1(4) = EZ

endif

IF (NYP1.EQ.34.0R.NYP1.EQ.
GRAD1(2) = EX
GRADY(4) =-DZ

endif

IF (NYP1.EQ.35.0R.NYP1.EQ.
GRAD1(2) =-DX
GRAD1(3) = E

endi f

IF (NYP1.EQ.36.0R.NYP1.EQ.
GRAD1(2) = EX
GRAD1(3) =-D

endi f

IF (NYP1.EQ.37.0R.NYP1.EQ.
GRAD1(3) =-D
GRAD1(4) =-E2

endi

IF (NYP1.EQ.38.0R.NYP1.EQ.
GRAD1(3) =-E
GRAD1(4) =-D2

68

69

70

7

72

3

74

7S

76

7

78

™

80

81

82

&3

84

85

86

Ythen

)then

Ythen

Ythen

Ythen

Jthen

Jthen

Ythen

Jthen

Jthen

Jthen

Ythen

Jthen

ythen

Ythen

)then

Jthen

Ythen

Jthen
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endi f

IF (NYP1.EQ.39.0R.NYP1.EQ.B7 )then
GRAD1(1) =-EN
GRAD1(4) =-DZ

endif

IF (NYP1.EQ.4D.OR.NYP1.EQ.88 )then
GRAD1(1) =-DN
GRAD1(4) =-EZ

endit

IF (NYP1.EQ.41.OR_NYP1.EQ.89 )then
GRADI(1) =-EN
GRAD1(3) =-D

endif

IF (NYP1.EQ.42.0R.NYP1.EC.50 )then
GRAD1(1) =-DN
GRAD1(3) =-E

endif

IF (NYP1.EQ.43.0R.NYP1.EQ.91 )then
GRADI(1) =-EN
GRAD1(2) =-DX

endif

IF (NTP1.EQ.44.0R.NYP1.EQ.92 Jthen
GRADT(1) =-DN
GRAD1(2) =-EX

endi f

IF (NYP1.EG.45.0R.NYP1,EQ.93 )then
GRAD1(2) =-DX
GRAD1(4) =-E2

endif

IF (NYP1.EQ.46.0R.NYP1.EQ.94 )then
GRAD1(2) =-EX
GRAD1(4) =-DZ

endif

IF (NYP1.EQ.47.0R.NYP1.EQ.95 )then
GRAD1(2) =-DX
GRAD1(3) =-E

endif

IF (NYP1.EQ.4B.OR.NYP1.EQ.96 )then
GRAD1(2) =-EX
GRAD1(3) =-D

endif

T8 COMTINUE

RETURN
END

ceeeec

SUBROUT [NE GEND(EM,ESED,RVV,RV,xmatdat)

IMPLICIT DOUBLE PRECISION(A-H,0-2)

DIMENSION EM(1),ESED(1),RVW(1),RV(1),xmatdat(1,8)

COMMON /PAR/NEL NND , 1SC, MM, NN NV, No, NZ NSHS NS, MS KTTT KTT XT
*,1US,NCLA,LSP, IPRL,KWY, IPRINT, [T, NYC
COMMON/RD/EPSD  EPS AL , AA

GENMRATION OF ELASTIC STRESSES ENVELOPE VCECTOR D
INPUT : EM(I)(I=1,iSC*MM) ELASTIC STRESSES FOR
ISC LOAD SCMEMES.
[N, Mx(tor) My, Mz]
OUTPUT: ESED(nv) ELASTIC STRESS ENVELOPE D
VECTOR d GENERATION

ananon

00 18 1=1,KV
18 ESED(1)=0.00

NZP=0

NC=1

DO 200 J=1,NEL
KN=NC

KMX=NC+1
KNY=MCe2
KNZ=NC+3
KB=NZP+1
KE=NZPeKTT
kkb=1
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kke=ktt
CALL GED (EM,ESED,KN,KMX KMY,KMZ,KB,KE,kkb, kke, RV, RV,xmatdat)

KMY=NC+4

KMZ=HC+S

KB=NZP+1eXTT

KE=NZP+KTT+KTT

kikb=l+ktt a

kke=kttektt

CALL GED (EM,ESED, KN, KMX KMY KMZ, KB, KE, kkb, kke RVY RV xmatdat)

NC=NC+6
NZP=NIP+KTT+KTT

200 CONTINUE

ccecee

el N I NN )

IFCNV.NE.NZP)WRITE(™ ™) ERROR GEN3' NV NIP
[F(NC.NE.NZ) WRI