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1 Abbreviations 
 

BMR Basal Metabolic Rate 

H-BMR mice of the line type selected for high Basal Metabolic Rate 

L-BMR mice of the line type selected for low Basal Metabolic Rate 

RB  random-bred line (non-selected mice) 

PMR  mice of the line type selected for Peak Metabolic Rate (aka VO2max) 

ET  the “expensive tissue” hypothesis 

EB  the “expensive brain” hypothesis 

LTP  long-term potentiation 

fEPSPs field excitatory postsynaptic potentials 

IC  IntelliCage system 

RFID  radio frequency based identification 

CA  cognitive abilities 

CA1  Cornu Ammonis subfield 1 of the hippocampus 

CA2  Cornu Ammonis subfield 2 of the hippocampus 

CA3  Cornu Ammonis subfield 3 of the hippocampus 

DG  dentate gyrus subfield of the hippocampus 

PFA  paraformaldehyde 

PBS  phosphate buffer saline 

PB  phosphate buffer 

DiI  1,1ʹ-dioctadecyl-3,3,3ʹ,3ʹ-tetramethylindocarbocyanine perchlorate dye 

GFAP  glial fibrillary acidic protein 

DAPI  4′,6-diamidino-2-phenylindole 

DAB  3,3'-diaminobenzidine 

BSA  bovine serum albumin 

HEPES 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 

EDTA  ethylenediaminetetraacetic acid 

RT  room temperature 

o/n  overnight procedure 

SEM  standard error of the mean 

SE  standard error of covariance parameter estimation 

p  statistical value of probability of significance 

SAS  Statistical Analysis System 
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s2  covariance parameter estimate 

χ2 2 times the log likelihood from the model of a given dependent variable with 

only the fixed effects minus -2 times the log likelihood from the full model (with 

random factor) 

N.E.  not estimable 

n  number of animals included in the statistical analyses 

F  generation of animals 

h2  heritability 

d  studied traits 

 

 

 

All the gene and protein names are in accordance with guidelines of Hugo Gene Nomenclature 

Committee and UniProt database, respectively 
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2 Summary 
 

The enlarged brains of homeotherms bring behavioral advantages but also incur high energy 

expenditures. Energy fueling evolutionary increase in brain size and enhanced cognitive 

abilities (CA) could come from two primary sources: according to the “expensive tissue” 

hypothesis postulated by (Aiello and Wheeler 1995), the evolution of a larger brain was made 

possible by a diet-related reduction in the size of the digestive tract and by increasing of quality 

(energy density) of the diet. Thereby, an evolutionary increase in brain size resulted from the 

brain-gut trade-off. The second hypothesis, dubbed the “expensive brain” hypothesis (Isler and 

van Schaik 2006), predicts that the energetic costs of an evolutionary increase in brain size were 

covered by increased total energy intake rather than energy savings on metabolically costly 

organs (such as the gut) or processes (reproduction or immunocompetence).  

In my thesis, I asked a question: How were the energetic costs of an enlarged brain overcome 

in the course of evolution? To answer this question, I used the experimental evolution animal 

model consisting of the line types of Swiss Webster mice artificially selected for high (H-) or 

low (L-) Basal Metabolic Rate (BMR), maximal (VO2max) metabolic rate (a.k.a. peak, PMR), 

and random bread lines (RB). The metabolism rates selected in the model are proxies of the 

traits implicated in the evolution of homeothermy. Thus, they are a prerequisite for the 

encephalization and exceptional CA of mammals, including humans. The H-BMR mice had 

bigger guts, but not brains, than mice of other line types. Yet, they were superior to the other 

line types in the cognitive tasks carried out in reward and avoidance learning contexts. 

Conversely, when subjected to the classical paradigm of contextual fear conditioning, the L-

BMR mice lost fear response much faster than the mice of other line types (that is, their memory 

was inferior). Furthermore, the H-BMR mice had higher neuronal plasticity (indexed as the 

long-term potentiation, LTP). They also had increased numbers of neurons and dendritic spines 

in the hippocampus compared to their counterparts. Finally, the activity of cytochrome oxidase 

(CCO), a proxy of the number of neuronal mitochondria, was higher in the H-BMR mice than 

in other line types. 

The results suggest that the evolutionary increase of CA in mammals was initially associated 

with increased BMR and brain plasticity, rather than a direct increase in brain size. Thus, an 

enlarged gut was not traded off for brain size. It could be that in the course of evolution, 

selection for increased total energy expenditures indirectly increased BMR and the metabolic 

rate of better connected and more plastic individual neurons, improving CA. Thus, my study 
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does not support the existence of the brain-gut trade-offs postulated by the ET hypothesis. 

Conversely, my results support the link between CA fueled by high brain metabolism reflected 

in H-BMR as proposed by the EB concept.  
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3 Streszczenie 
 

Dużych rozmiarów mózg występujący u organizmów stałocieplnych niesie ze sobą ogromne 

korzyści związane ze zwiększeniem zdolności kognitywnych, ale wymaga zwiększonych 

nakładów energii. Może ona pochodzić z różnych źródeł. Według hipotezy „kosztownych 

tkanek” postulowanej przez (Aiello and Wheeler 1995), koszt utrzymania dużych rozmiarów 

mózgu jest kompensowany przez ograniczenie zużycia energii osiągane przez zredukowanie 

rozmiarów organów wewnętrznych takich jak jelita oraz poprzez przyjmowanego bardziej 

kalorycznego pokarmu. W związku z tym musiało dojść do ustanowienia kompromisu 

pomiędzy wielkością mózgu a wielkością jelit. Alternatywna hipoteza wyjaśniająca ewolucję 

rozmiaru mózgu nazwana hipotezą „kosztownego mózgu” (Isler and van Schaik 2006), która 

podważa powyższą hipotezę i zakłada, że zwiększone nakłady energii potrzebne do ewolucji 

mózgu i zdolności kognitywnych pochodzą ze zwiększenia puli energii dostępnej w środowisku 

(spożywanie większej ilości/bardziej kalorycznego pokarmu) oraz ze zmniejszenia zużycia 

energii przez procesy takie jak reprodukcja i immunokompetencja. Hipoteza „kosztownych 

tkanek” zakłada, że energia potrzebna na encefalizację pochodzi z jej relokacji, zmniejszenia 

jelit, a tym samym kosztów ich utrzymania względem bardziej kosztownego, większego 

mózgu. Natomiast hipoteza „kosztownego mózgu” wskazuje, że energia potrzebna do ewolucji 

zwiększonych rozmiarów mózgu nie wynikała z jej relokacji, a przez zwiększenie jej ilości w 

środowisku. Nie ma danych doświadczalnych, które pozwoliłyby na zweryfikowanie opisanych 

hipotez.  

W związku z tym w swojej pracy stawiam pytanie: jak koszty związane z dużych rozmiarów 

mózgiem zostały przezwyciężone w toku ewolucji? Aby odpowiedzieć na postawione pytanie 

użyłam jako modelu myszy szczepu Swiss Webster pochodzących z eksperymentu 

selekcyjnego, który pozwolił na wyselekcjonowanie linii myszy o różnych poziomach 

metabolizmu, wysokiego (H-) oraz niskiego (L-) tempa metabolizmu podstawowego (BMR), 

maksymalnego (VO2max) tempa metabolizmu wysiłkowego (PMR) oraz linii kontrolnych (RB). 

Cechy, które były podstawą selekcji są ściśle związane z ewolucją organizmów stałocieplnych 

i są wstępnym warunkiem encefalizacji oraz wyjątkowych zdolności kognitywnych ssaków, 

w tym ludzi.  

W swoich badaniach wykazałam, że myszy wyselekcjonowane na wysokie tempo metabolizmu 

podstawowego (H-BMR) mają, w przeciwieństwie do innych badanych linii, większe organy 

wewnętrzne. U testowanych szczepów myszy nie zmienia się natomiast wielkość mózgu. 
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Myszy H-BMR przewyższały jednak myszy o niskim tempie metabolizmu (L-BMR) 

i zwierzęta kontrolne podczas testów apetytywnych oraz awersyjnych wykonywanych 

w systemie IntelliCage. Natomiast zwierzęta L-BMR słabiej niż inne linie myszy uczyły się 

podczas klasycznego warunkowania strachu. Badanie długotrwałego wzmocnienia 

synaptycznego (LTP) w ścieżce CA3-CA1 hipokampa wykazało najwyższą plastyczność 

synaptyczną u myszy H-BMR. Myszy te charakteryzowały się również większą liczbę 

neuronów i kolców dendrytycznych tworzących aktywne synapsy w hipokampie w stosunku 

do pozostałych badanych linii. Ponadto, myszy H-BRM miały podwyższoną aktywność 

oksydazy cytochromowej, co odzwierciedla zwiększoną aktywność mitochondriów. 

Uzyskane wyniki wskazują, że ewolucyjne zwiększenie zdolności kognitywnych ssaków było 

związane ze zwiększeniem metabolizmu podstawowego oraz plastycznością neuronalnej, a nie 

poprzez wprost proporcjonalne zwiększenie wielkości mózgu. W związku z tym powiększenie 

organów wewnętrznych nie było ewolucyjnym kompromisem przy rozwoju większego mózgu. 

Niezbędna do tego procesu energia nie została uzyskana przez ograniczenie rozmiarów 

narządów wewnętrznych czy wzrostu.  

Uzyskane rezultaty moich badań nie potwierdzają zatem hipotezy „kosztownych tkanek”, 

wykazują natomiast związek pomiędzy zdolnościami kognitywnymi wykazanymi w testach 

behawioralnych a metabolizmem podstawowym zakładanymi przez hipotezę „kosztownego 

mózgu”. 
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4 Introduction 

 

4.1 Evolution of brain size from an energetic perspective 

 

Increased brain size, relative to body mass, is the crucial characteristic of homeotherms 

(Armstrong and Bergeron 1985; Hofman 2015). High encephalization resulted in increased 

behavioral complexity but also incurred energy expenditures an order of magnitude higher than 

that of ectotherms (Pontzer et al. 2016). Furthermore, among homeotherms, relatively larger 

brains contribute disproportionally to energy expenditures. Indeed, brain metabolism accounts 

for ca. 8% of BMR in mice, but over 10% in primates, and up to an exceptional 20% of BMR 

in humans, even though in all those species brain constitutes only 2-3% of body mass (Erbslöh, 

Bernsmeier, and Hillesheim 1958; Mink, Blumenschine, and Adams 1981). An enduring 

question, then, is how the energetic costs of evolving a larger brain were overcome and what 

sort of energetic, anatomic, and physiological trade-offs and/or inherent positive associations 

were involved.  

Any given trait or body function requires energy for its maintenance. Individual’s ability to 

acquire energy is limited either by environmental resource limitations or physiological 

constraints, such as the digestive abilities of the gut (Thurber et al. 2019). Indeed, those 

limitations should bear a direct relationship to the brain size evolution because brain tissue is 

energetically expensive and need more energy to maintain than any other tissue in the body 

(Lewin 1982). Furthermore, brain energetic expenditures cannot be temporarily reduced in 

response to energy limitation (McKenna et al. 2012). The high proportion of energy that must 

be allocated to brain tissue may impose severe pressure on the evolution of brain size, despite 

the benefits of its increase. In the evolution of primates, those demands were met by higher 

caloric content of the diet (consisting of meat, fruits, and insects) or (in the case of humans) 

food that was easier to digest when processed by cooking (Wrangham and Conklin-Brittain 

2003). However, the evolutionary increase in primates' brain size did not simply require higher 

caloric input. Since apes are incapable of torpor and/or hibernation (Biggar and Storey 2015), 

the energy supply to their brains must be continuous and without excessive periods of 

starvation. This requirement most likely posed a significant challenge to proto-humans evolving 

in the seasonal environments, where food availability is often too low to sustain energetic 

demands of large brains (van Woerden et al. 2012; Van Woerden, Van Schaik, and Isler 2010). 

The challenge of environmental seasonality was probably the main factor behind the evolution 



12 
 

of both the unique cognitive abilities of humans and their exceptional propensity to accumulate 

fat depots essential for tiding over food shortages (Zafon 2007). This peculiarity of human 

physiology is one of the fundamental evidences for the significance of energy expenditures in 

the evolution of the human brain. 

4.2 Main hypotheses linking energetics and the evolution of brain size and 

function 

 

Studies on brain size evolution identified several factors fostering encephalization. Among 

them, the most prominent ones are ecological (Parker and Gibson 1977; Milton 1981; Harvey, 

Clutton-Brock, and Mace 1980; Sol 2008), cognitive (Sol 2008; Allman, McLaughlin, and 

Hakeem 1993), and sociological factors (Pérez-Barbería, Shultz, and Dunbar 2007; Dunbar, 

n.d.; Whiten and Van Schaik 2007; Street et al. 2017; Jolly 1966), or foraging strategies 

(Morand-Ferron, Sol, and Lefebvre 2007; Burini and Leonard 2018; Eisenberg and Wilson 

1978). However, since cognitive capabilities are commonly considered adaptive, why are they 

not ubiquitous? The answer to this question may lie in exceptionally high metabolic costs of 

maintenance of brain tissue. Two, partially complementary concepts have embraced this idea. 

The first one, known as the “expensive tissue” hypothesis (the ET hypothesis, thereafter), posits 

that increased encephalization was primarily possible thanks to  funding metabolic costs of the 

enlarged brain by a reduction in energetically demanding gastrointestinal tract, which in turn 

was possible owing to increased cognitive abilities allowing for more efficient foraging (Aiello 

and Wheeler 1995). So, the ET hypothesis predicts a negative correlation between the brain and 

the gut size.  

The ET hypothesis has been exceptionally well received as an explanation for the unique 

features of the evolution of the human brain. However, the ET scenario, in essence, refers to 

physiological mechanisms; therefore, it is difficult to test because such mechanisms are not 

directly preserved in a paleontological record. Its evolutionary significance can thus only be 

tested if they persist as general evolutionary principles also manifested in extant species. In 

particular, a strong assumption of the hypotheses explaining encephalization, including the ET 

hypothesis, is the existence of a positive association between enlarged brains and enhanced CA. 

Indeed, the ET hypothesis found support through studies on guppies (Poecilia reticulata) 

(Kotrschal et al. 2013), cichlid fishes (Tsuboi et al. 2018), frogs, and toads (Liao et al. 2016). 

Nevertheless, the ET hypothesis is hampered by many inconsistences and weaknesses. Several 

studies demonstrated a positive association between brain size and basal metabolic rate, BMR, 

e.g. (Bennett & Harvey, 1985; Isler & van Schaik, 2006; Mace et al., 1981). Since roughly 50% 
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of BMR reflects metabolic costs of maintenance of internal organs, including the gut 

(Konarzewski and Diamond 1995), a positive association between brain size and BMR is 

difficult to reconcile with the ET hypothesis. Furthermore, even though the ET concept was 

widely accepted among anthropologists, it has been questioned in a thorough comparative 

analysis of 100 mammalian species, including 23 primates (Navarrete, van Schaik, and Isler 

2011). The ET hypothesis's major weakness is its overly narrow assumption of a direct 

relationship between brain size/mass and CA. Even more simplistic is the assumption that a 

‘bigger brain is better’ without paying due attention to well-documented vast differences in 

neuronal density that can appear even within the same species (Carlo and Stevens 2013; 

Herculano-Houzel et al. 2014)  

BMR, reflecting metabolic costs of gut maintenance, considered within the ET hypothesis 

framework, is not the only measure of metabolic expenditures likely to be linked with brain 

size. Researchers (Raichlen and Gordon 2011) recently found a positive association between 

exercise capacity (indexed as Peak Metabolic Rate, PMR) and brain size in a comparative 

analysis of non-human mammals. The existence of such a correlation was also supported by the 

results of Chappell et al.’ (Chappell et al. 2007) study, which showed that brain size positively 

correlates with maximum voluntary aerobic capacity in gerbils. Furthermore, selection on 

maximum voluntary aerobic capacity in mice resulted in enlargement of the mid-brain and the 

dentate gyrus (Kolb et al. 2013). It also increased hippocampal neurogenesis (Rhodes et al. 

2003), which may provide a mechanistic basis for the link between brain size and PMR. On the 

other hand, however, the same study failed to find a direct link between PMR and CA. Likewise, 

another study (Chrzaścik et al. 2014) did not detect such a link in the bank voles selected for 

high swim-induced aerobic metabolism, intensity of predatory behavior, and ability to grow on 

a low-quality herbivorous diet, which calls into question the association of the CA with thus 

selected traits. 

The second hypothesis relating to the evolution of brain size and energetics is the “expensive 

brain” hypothesis (EB, thereafter) (Isler and van Schaik 2009). In contrast to the ET hypothesis, 

it does not predict the brain-gut trade-off and points to a positive association between metabolic 

rates and brain size. Thus, according to the EB scenario, the energetic costs of an evolutionary 

increase in brain size were fueled by increased total energy intake rather than energy savings 

achieved through evolutionary reduction of energy allocation to other metabolically expensive 

functions, such as body maintenance or production (growth and reproduction) (Isler and van 

Schaik 2009). The EB hypothesis was tested by Pontzer and collaborators (Pontzer et al. 2016), 
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who used doubly labeled water measurements of total energy expenditure (TEE; kcal day-1) in 

humans and apes. Pontzer et al. compared their BMR and Total Energy Expenditures (TEE) 

and concluded that human lineage had elevated metabolic rates, thereby providing more energy 

for larger brains and faster reproduction without reducing metabolic maintenance costs. 

Hominin brain evolution was therefore fueled in large part by increased mass-specific organ 

metabolic rates rather than anatomical or physiological trade-offs. 

4.3 Energetic costs of neurophysiological processes 

 

Glucose is an essential metabolic substrate and energy source in the mammalian brain 

(Mergenthaler et al. 2013). Oxygen metabolism provides energy essential for brain activities 

such as the maintenance of synaptic transmission and the resting potential of neurons (Attwell 

and Iadecola 2002; Shulman et al. 2004). The adenosine triphosphate (ATP) consumption by 

the major subcellular processes underlying signaling in the brain has been estimated for rat and 

human cerebral cortex (Attwell and Laughlin 2001). For example, fast excitatory synaptic 

transmission requires 1.4 × 105 ATP molecules per presynaptic stimulation to pump out an 

influx of Na+ ions (Attwell and Laughlin 2001), which (assuming 1 Hz for such stimulation in 

the rat cortex) yields a metabolic rate of 8.4 × 106 ATP/min per spine (Karbowski 2019). 

Interestingly, recent data on cortical stimulation and energetics of synaptic transmission in 

rodents reveal that the small increase in the cortical metabolic rate is shared proportionally 

between neurons and astrocytes (Sonnay et al. 2018; 2015), suggesting that the metabolism of 

both neuronal and glial compartments are essential for synaptic function. 

In larger mammalian species, a specific brain metabolism rate (metabolic rate per gram of 

tissue) parallels a decrease of neuronal density with increasing brain size (Herculano-Houzel 

2011). With the smaller number of larger neurons, characterized by a reduced average number 

of abrupt changes in action potential (firing rate), larger brains need less energy per gram of 

tissue to maintain their function. However, it is unclear whether larger neurons are energetically 

more costly. Energy usage depends strongly on the action potential rate - an increase in activity 

of one action potential per cortical neuron increases oxygen consumption by 145 mL/100 g grey 

matter/h of oxygen consumption, as reported by Attwell & Laughlin (Attwell and Laughlin 

2001). However, Herculano-Houzel (Herculano-Houzel 2011) showed that estimated glucose 

use per neuron is relatively constant, varying only by 40% across the six species of rodents and 

primates (including humans). Furthermore, average glucose usage per neuron does not correlate 

with neuronal density in any brain structure (Herculano-Houzel 2011). These observations 
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suggest that the whole brain's energy budget per neuron is fixed across species and brain sizes, 

which is difficult to reconcile with estimates of metabolic costs of neuronal activity (Attwell 

and Laughlin 2001; Harris, Jolivet, and Attwell 2012). In any case, however, remarkable energy 

consumption by the brain is roughly proportional to the number of neurons building a particular 

brain.  

The brain’s CA are determined not only by the number and/or size of neurons but also by the 

phenomenon of neuroplasticity. This term is used by neuroscientists, referring commonly to the 

brain’s ability to change its structure and function in response to the changing patterns of 

incoming stimuli. This flexibility is incredibly important in learning and preserving new 

memories. The first concept linking higher mental abilities and neural activity was proposed by 

Polish scientist Jerzy Konorski in 1948 and almost simultaneously by Donald Hebb in 1949. 

They defined synaptic plasticity as a change in connectivity between neurons (Kandel 2012). 

At the single cell level, synaptic plasticity refers to synaptic connections changes. 

Neuroplasticity allows neurons to adjust their activities in response to new situations or changes 

in their environment. Changes in dendritic spine morphology and dynamics (the postsynaptic 

sites of most excitatory synapses in the brain) serve as good indicators of synaptic plasticity 

(Gray 1959; Yuste and Bonhoeffer 2001). Spines are specialized protrusions emerging from 

neuronal dendrites, with characteristic bulbous enlargements at their tips (spine heads). The 

spines are not static but actively move and alter their morphology continuously, even in the 

adult brain, reflecting the plastic nature of synaptic connections. Additionally, new spines could 

be formed during an animal's whole life, becoming functional synapses and eventually 

replacing the non-activated ones. They are firstly formed in early postnatal life, shaped up by 

the experience, and maintained into adulthood (Holtmaat and Svoboda 2009; Trachtenberg et 

al. 2002). Also, learning requires morphological changes in the neuronal connections and the 

formation of new synapses. Thus, another question about the portion of the total energy budget 

accounting for synaptic plasticity correlated with learning and memory appears. Based on 

neurophysiological and proteomic data for the rat brain (Karbowski 2019) it is estimated that, 

depending on the level of protein phosphorylation, the energy cost of synaptic plasticity 

constitutes energy used for fast excitatory synaptic transmission, typically adding 4.0 to 11.2%. 

Karbowski also discovered that longer memories require more energy to store, except for the 

parameters controlling the speed of molecular transitions (e.g., ATP-driven phosphorylation 

rate). 
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Neurotransmission is the process by which signaling molecules called neurotransmitters are 

released by the axon terminal of a presynaptic neuron and bind and react with the receptors on 

the dendrites of another postsynaptic neuron located a short distance. It is also an energy-

demanding process. For instance, glutamate, the dominant excitatory neurotransmitter in the 

brain, released by ∼90% of the neurons during excitation, diffuses across the synaptic cleft and 

is recognized by receptors on the postsynaptic neuron (Van Den Pol, Wuarin, and Dudek 1990; 

Magistretti 2009). Astrocytes take up glutamate via specific transporters that use the 

electrochemical gradient of Na+ as a driving force, resulting in a tight coupling between 

glutamate and Na+ uptake. Glutamine is subsequently released by astrocytes and taken up by 

neuronal terminals, where it is enzymatically reconverted to glutamate to replenish the 

neurotransmitter pool of glutamate. Both glutamine synthesis and the Na+, K+-ATPase require 

ATP (Magistretti and Allaman 2015; Magistretti et al. 1999). It has been shown that signal 

transmission is the most energy-consuming process in the brain. Most of the ATP is consumed 

during ion pumping, which maintains the resting potential. Moreover, the Na+ ions that enter 

through the synaptic membrane to produce action potentials must be pumped out by the Na+/K+-

ATPase. Since the costs of neural transmission are so high, one might expect that in the course 

of evolution they have been optimized with regard to both brain size and neuronal density 

(Harris, Jolivet, and Attwell 2012). To sum up, synaptic activity has tremendous implications 

for the energy costs of brain activity, and therefore, for the evolution of brain size and cognitive 

abilities. 

4.4 Cognitive abilities vs. brain size 

 

Almost all of the recent studies on cognitive abilities vs. brain size focused on aspects of 

complex behavior, under the assumption that performing of unusual or cognitively demanding 

tasks requires a larger brain (Kotrschal et al. 2013; Roth and Dicke 2005). Going further, we 

can ask the question whether there is a relationship between performance in behavioral tests 

and brain size and/or numbers of neurons in functionally relevant brain structures. ET and EB 

hypotheses conclude that larger brains translate to higher cognitive performance, better foraging 

behavior and adaptation to the environment. Up to now, testing these concepts has been possible 

through correlative studies and using paleontological records. Birds and primates are 

particularly interested in this context because they independently evolved relatively larger 

brains than other vertebrates (Jerison 1973). For example, in birds foraging innovations have 

been reported in over 800 species and include a wide range of behaviors, from eating a novel 

food to using tools. Overington et al.’ results suggest that the cognitive behavior required to 
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perform a wide variety of novel foraging techniques supports the positive relationship between 

innovativeness and brain size in birds (Overington et al. 2009). Deaner and colleagues found 

that absolute brain size is a good predictor of a global cognition index extracted from meta-

analyses in primates. Moreover, there was no indication that neocortex-based measures were 

superior to measures based on the whole brain (Deaner et al. 2007). Using the fossil and extant 

dataset, researchers (Smaers et al. 2021) found that shifts in allometric slope underpin major 

transitions in mammalian evolution and are often primarily characterized by marked changes 

in body size. These results reveal that the largest-brained mammals achieved sizeable relative 

brain sizes by highly divergent paths. In addition, Sol et al. (Sol et al. 2022) estimated neuron 

numbers in 111 bird species. They showed that the number of neurons in the pallial 

telencephalon is positively associated with intelligence.  

However, there are some essential problems with comparative data; cognitive performance is 

challenging to measure on a broad scale, identified correlations do not necessarily imply 

causative relationships, and, finally, they do not explain why the brain should be bigger to 

perform a particular behavior. There is also ample literature demonstrating that brain size alone 

is a poor proxy for CA (Healy and Rowe 2007; 2013). Comparative studies are weakened by 

inconsistencies in the methodology of behavioral assays and data collection. For example, 

Hooper et al. (Hooper, Brett, and Thornton 2022) investigated variation in brain and body size 

measurements across >1000 bird species. They found an extensive variation in brain and body 

size across source datasets, resulting in inconsistent conclusions drawn from comparative brain 

size models based on the particular data source. In particular, using a subset of data on Corvids, 

the authors showed that depending on the data set used in the analysis, multiple contradictory 

conclusions can be drawn about the principal factors affecting brain size evolution. 

The evolution of brain size and CA were further investigated by Chambers et al. (Chambers, 

Heldstab, and O’Hara 2021), who tested the effect of social, ecological, and life-history traits 

on variation in encephalization and specific brain regions amongst extant primates and 

carnivores. In primates, researchers identified significant associations between brain size, diet, 

and sociability. Conversely, the association between brain size and sociability was insignificant 

in carnivores. In both taxa, however, the study revealed complex associations between 

metabolic costs of maintenance of brain tissue and extended developmental periods, reduced 

fertility, and maximum lifespan (Chambers, Heldstab, and O’Hara 2021). Together, these 

studies suggest that differences in methods of brain measurement, particularly differences in 
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measurements of brain regions, should be considered as potential confounding factors affecting 

broad-scale comparative studies on brain size and CA. 

Apart from above discussed methodological difficulties inherent to comparative studies on 

brain size vs. CA, they are all hampered by the lack of a robust association between the two, as 

exemplified by a simple comparison of brain size and CA of an elephant and a man, the latter 

having three times smaller brain, but apparently superior cognitive abilities (Herculano-Houzel 

et al. 2014). The weakness of a principle, ‘The bigger brain is smarter’ is further exposed by 

comparing the social skills of ravens and apes (Pika et al. 2020). The comparison indicates that 

the lack of a specific cortical architecture (absent in ravens but present in apes) does not hamper 

the elaborate cognitive skills of this bird species.  

4.5 Testing the links between energetics and the evolution of brain size and 

function 

 

As discussed above, the evolution of the energetics and brain size and function, and their 

interrelation, are difficult to test because the underlying physiological mechanisms are not 

preserved in the paleontological record. The evolutionary plausibility of the hypotheses 

discussed in Section 4.2 can thus only be tested if they reflect more general evolutionary 

principles applicable to extant animals characterized by a positive association between enlarged 

brains and enhanced cognitive abilities. As discussed in Section 4.3, most studies on the 

associations between brain size and energetics, internal organs, and CA were correlative and 

confounded by potential methodological weaknesses inherent to comparative analyses carried 

out on the between-species level (Van Schaik et al. 2021). Most importantly, natural selection 

acts within-not between- species. Thus, although comparative studies are informative for broad 

evolutionary patterns, they do not allow for the demonstration of causative links (Harvey and 

Pagel 1992), which is essential for solid tests of hypotheses such as the ET and EB.  

Even though a direct re-creation of physiological traits of extinct species is impossible, the 

evolutionary processes leading to encephalization can be at least partly emulated through 

artificial selection experiments carried out on extant species (Garland 2003). Such experiments 

offer a powerful tool for investigating the linkages between anatomical and physiological traits 

that influence physiological performance and testing how performance capacities may constrain 

or facilitate behavioral evolution (Swallow et al. 2009). The artificial selection experiment, 

purposely developed to test the ET hypothesis has been carried out by Kotrschal et al. 

(Kotrschal et al. 2013). They selected lines of guppies (Poecilia reticulata) for relative brain 



19 
 

size and analyzed the between-line variation of the gut size and CA using a ‘Numerical 

Learning’ test. Kotrschal et al. (2013) demonstrated that large-brained females performed better 

in a numerical learning assay than small-brained females. Moreover, in a direct support of the 

ET hypothesis, large-brained lines had smaller guts at the expense of producing fewer offspring. 

Although Kotrschal et al.’s experiment is insightful, it is also hampered with two shortcomings. 

First, their demonstration of the cognitive advantage of having a larger brain has turned out to 

be questionable (Healy and Rowe 2013). More importantly, however, life history and 

physiology of fish is so far removed from that of homeotherms, that it bears unclear relationship 

with possible selection for encephalization in mammals, particularly in primates. 

Here, I tested hypotheses outlined in Section 4.2 in a mammalian model of experimental 

evolution for the first time. I used line types of laboratory mice subjected to artificial selection 

on high (H-) or low (L-) basal (BMR), or high maximum (VO2max) metabolic rates (PMR) 

(Książek, Konarzewski, and Łapo 2004; Gębczyński and Konarzewski 2009; Joanna Sadowska, 

Gębczyński, and Konarzewski 2017), the traits widely accepted as pre-requisites for the 

evolution of homeothermy and large brain size (A. F. Bennett and Ruben 1979; Lovegrove 

2017). Line types of mice divergently selected for BMR are characterized by a conspicuous 

40% difference between low (L-BMR) and high (H-BMR) line types, derived from Swiss 

Webster outbred strain of laboratory house mice (Swallow et al. 2009). Selection for high 

maximum (VO2max) is carried out on four replicated lines and four control (random bred) ones. 

Importantly, in the course of selection, both BMR and VO2max are corrected for body mass 

effect.  

Earlier studies showed that selection for VO2max did not affect BMR, while selection for BMR 

resulted in a reduction of PMR (Gębczyński and Konarzewski 2009). Therefore, the analyses 

of the between-line type differentiation of the energetic costs of maintenance of the brain, 

internal organ masses, and the size vs. variation in BMR and PMR will allow for the cross-tests 

of the predictions of the ET and EB hypothesis. My experimental model allowed me to analyze 

not only trade-offs between anatomic and physiological traits, but also directly test the 

directionality of associations between energy expenditures and the rate of learning through a 

battery of carefully controlled behavioral tests. Finally, the analysis of the between-line 

variation in neurophysiology and cell architecture of the hippocampus, the brain structure 

underlying learning in the performed behavioral tests, allowed me to identify the underpinnings 

of the differences in CA related to the hypotheses in question. 
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5 Aims and objectives 
 

In my thesis, I posed a general question: How were the energetic costs of enlarged mammalian 

brains overcome? To answer this question, I tested predictions of two major hypotheses: the ET 

and EB, presented in Section 4.2 of the Introduction. To do so, I used line types of laboratory 

mice subjected to artificial selection on high (H-) or low (L-) basal (BMR), or high maximum 

(VO2max) metabolic rates (PMR), the traits widely accepted as pre-requisites for the evolution 

of large brain size. This experimental model allowed me to analyze (1) trade-offs between brain 

size, gut size, and BMR or PMR, (2) test the directionality of associations between BMR or 

PMR and the rate of learning (a proxy of cognitive abilities, CA), (3) analyze the size and cell 

architecture of the hippocampus, a brain structure critically involved in the formation, 

organization, and retrieval of new memories, that most likely underlie the differences in CA. 

Then I compared the results of my studies with the predictions of the ET and EB hypotheses. 

More specifically, my thesis aimed at: 

(1) testing the existence of association between BMR or PMR and cognitive abilities (CA) and 

brain size. Such associations are fundamental for all hypotheses relating the evolution of brain 

size to energy expenditures.  

(2) testing the existence of the brain-gut trade-off. This trade-off constitutes the central 

prediction of the ET hypothesis. Conversely, the EB hypothesis does not predict the brain-gut 

trade-off and points to the positive association between metabolic rates and brain size. 

(3) identifying cellular underpinnings of the between line type differences in CA, concentrating 

on the hippocampal cell size and function. In particular, I tested the among-line type 

differences in: 

a) synaptic plasticity, which gave an insight into neuronal mechanisms underlying the 

observed variation in learning abilities; 

b) the size and density of hippocampal neurons and astrocytes, to test whether higher 

CA are associated with more neurons; 

c) the number of dendritic spines in key areas of the hippocampus, as a proxy of 

neuronal connectivity;  

d) the proportion of astrocytes feeding hippocampal neurons since the number and size 

of neurons is not the only determinant of brain information-processing capacity; 
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e) the differences in the density of cytochrome C oxidase (CCO) in the hippocampus 

to estimate the metabolic costs of its activity. 

 

The results are presented below as two consecutive experiments. 
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The results descried in the first part of the thesis were published in Proceedings of the 

Royal Society B: 

Goncerzewicz, A., Górkiewicz, T., Dzik, J. M., Jędrzejewska-Szmek, J., Knapska, E., & 

Konarzewski, M. (2022). Brain size, gut size and cognitive abilities: the energy trade-offs tested 

in artificial selection experiment., Proceedings of the Royal Society B 289(1972). 

https://doi.org/10.1098/RSPB.2021.2747 
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6 Brain size, gut size and cognitive abilities: the energy trade-offs tested in 

an artificial selection experiment 
 

6.1 Materials & Methods 

6.1.1 Animals 

I used 3-4 month-old female mice from two concurrent selection experiments carried out at the 

Faculty of Biology, University of Bialystok. The first experiment consisted of two line types of 

mice divergently selected for high (H-BMR) or low (L-BMR) body-mass-corrected Basal 

Metabolic Rate (BMR), quantified according to the measurement procedure outlined below. 

The resulting divergence between those two non-replicated line types is sufficiently large to be 

confidently attributed to the applied selection rather than to genetic drift (see section 6.1.5.3). I 

also used female mice from the second selection experiment, in which eight genetically isolated 

Swiss-Webster laboratory mouse lines were established. In four of the lines, forming the Peak 

Metabolic Rate (PMR) line type, mice were selected for VO2max quantified as the highest body-

mass-corrected oxygen consumption averaged over 2 min of a 5 min swim in a 25 °C water 

(Gębczyński and Konarzewski 2009; Joanna Sadowska, Gębczyński, and Konarzewski 2017). 

The other four lines form the random bred (RB), control line type (Gębczyński & Konarzewski, 

2009; Sadowska et al., 2017). 

In selection experiments animals were housed in same-sex and same-family groups of four to 

five per cage (365 x 207 x 140 mm) at 23°C and 12:12 light schedule. Throughout the 

experiment animals were fed a standard diet (12.8 kJ g−1 metabolizable energy, 17.0 kJ g−1 

caloric value manufactured by Labofeed, Kcynia, Poland. 

I treated animals following the ethical standards of the European Union and Polish regulations. 

All procedures were approved by the Local Ethical Committee on Testing Animals. 

Measurements of BMR, organ masses, and behavioral tests were carried out on separate groups 

of animals randomly drawn from a stock of animals not qualified for further selection. Each 

mouse was randomly selected from a separate family belonging to a particular line. The 

numbers of animals used in particular trials are given in Table 1. 
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Table 1. The number of animals included in the statistical analyses (n) and generation of 

origin (F). N.M.- not measured. 

 

Trait measured 

Selection direction 

RB H-BMR L-BMR PMR 

n F n F n F n F 

BMR 40 37 76 51 74 51 35 37 

Body Mass 40 37 35 51 34 51 39 37 

Liver Mass 39 37 35 51 34 51 39 37 

Heart Mass 40 37 35 51 34 51 39 37 

Kidneys Mass 40 37 35 51 34 51 39 37 

Brain Mass 40 37 35 51 34 51 39 37 

Correct Nosepokes 

Sucrose 

89 38, 

42, 

43 

19 52, 

53 

21 52, 

53 

71 38, 

42, 

43 

Incorrect 

Nosepokes 

Quinine 

27 46, 

47 

13 68, 

69 

10 68, 

69 

33 46, 

47 

Locomotor 

Activity 

95 38, 

42, 

43 

15 52, 

53 

21 52, 

53 

78 38, 

42, 

43 

Number of Licks 

to the Bottle with 

Sucrose 

90 38, 

42, 

43 

18 52, 

53 

20 52, 

53 

69 38, 

42, 

43 

Fear Extinction 36 42, 

43 

20 53 14 53 37 42, 

43 

 

6.1.2 Measurements of Basal Metabolic Rate 

I used two separate positive pressure open-circuit respirometry systems fitted to two Sable 

Systems FC-1B oxygen analyzers. In each system, the outside atmospheric air was dried and 

then forced through a copper coil submerged along with metabolic chambers (each 350 cc in 

volume) in a water bath stabilized at 32°C (a temperature that is within our animals’ 

thermoneutral zone) to equalize and control the temperature. The air stream was then divided 
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to four independent streams (including the reference stream); each fed at 400 mL min-1 to 

a separate mass flow controller (Sierra Instruments, Monterey, CA or ERG1000, Warsaw, 

Poland), individually calibrated with a bubble flow meter (Optiflow 420, Supelco, Bellefonte, 

PA). The air was then forced through individual metabolic chambers, and further through a 

computer-controlled channel multiplexer (Sable Systems, Las Vegas, NV). Air was after that 

scrubbed of CO2, dried one more time, subsampled at the rate of 75 mL min-1, and fed to an 

oxygen analyzer. BMR (STPD) was calculated with Wither’s equation (Withers 1977) and 

defined as the lowest stable reading that did not vary by more than 0.01% oxygen concentration 

for at least 4 min. 

All metabolic trials were carried out between 0800 and 2000 hours. Before measurements, mice 

fasted for 6 h, then weighed to the nearest 0.1 g. During the two h measurement period, each 

metabolic chamber was sequentially monitored for about 20 min, followed by a 2-3 min break 

for zeroing. 

 

6.1.3 Behavioral tests 

6.1.3.1 Measurements of cognitive abilities in the IntelliCage System 

The IC system is a fully automated, computer-controlled system for the behavioral assessment 

of mice that live in social groups (Lipp et al., 2005; Lipp, 2005). This system is suitable for 

long-term monitoring cognitive functioning in group-housed mice (Figure 1c).  

The IC consists of a large standard rat-size cage 20.5 cm high, 40 cm × 58 cm at the top, and 

55 cm × 37.5 cm at the base. The cage is equipped with four operant learning chambers fitted 

into the corners of the housing cage. Access into the chamber is only possible through a tube 

with a built-in transponder codes reader (antenna) that restricts access to the learning chamber 

to only a single mouse at a time. Each corner, equipped with a proximity sensor, contains two 

openings permitting access to drinking bottles. An automatically operated door controls access 

to the liquid. Poking a nose into the openings (nose poke response) activates an infra-red beam-

break response detector. Each visit to the operant chamber, each nose poke and the amount of 

water consumed (number and duration of licks) is recorded for each animal. The cage control 

unit permits access to particular bottles according to schedules individually pre-programmed 

for each mouse. The cage is equipped with a sleeping shelter in the center, with a feeder on its 

top providing food ad libitum.  

A week before the experiment, the mice were sedated with isoflurane and injected with a glass-

covered microtransponder (11.5mm length, 2.2mm diameter; DataMars) with a unique code 

recognized by sensors installed in the learning chambers (Masuda, Kobayashi, and Itohara 
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2018). After the transponder implantation procedure, subjects were moved from the housing 

facilities to the experimental rooms. The animals were then transferred to the IC, each housing 

10-12 mice randomly drawn from the stocks of their parental lines. Individuals from the same 

line type were housed together to minimize the possible effect of social context (Kiryk et al. 

2011). The number of mice living in the cage was adjusted to exclude competition for access 

to the bottles (Knapska et al. 2013). Mice housed in each IC were maintained in a 12:12 light 

schedule (same as the maintenance conditions in their home animal facility) and subjected to 

learning tasks. The mice were not disturbed except for the technical breaks and cage exchange 

(once a week). Apart from this, the subjects did not have contact with an experimenter. The 

behavioral activity of mice was recorded 24h a day throughout the adaptation period and testing 

procedures and was monitored via remote desktop software (TeamViewer software). Before 

experiments were carried out in the IC system, mice were not water- and food- deprived.  

 

6.1.3.2 Appetitive discrimination protocol 

Cohorts of mice were subjected to the 15-day IC protocol (Figure 1a), consisting of four phases: 

simple adaptation, nose poke adaptation, place preference learning, and reward-seeking 

discrimination learning with each of 8 bottles containing tap water and the assessment of reward 

discrimination learning (5 days) with highly motivating reward (10% sucrose solution) 

accessible in one of the bottles. During the simple adaptation phase lasting 4 days, doors in all 

conditioning units (corners) were open and access to water was unrestricted. During the 

following three days of nose poke adaptation all doors were closed and opened only when an 

animal put its snout (nose poke response) into one of the two openings. When an animal 

removed its nose from the opening, the door closed automatically. During the place preference 

learning phase (days 8-10) access to the drinking bottles was restricted to only one of the IC 

learning chambers for no more than 3 mice drinking from the same conditioning unit. During 

discrimination learning (days 11-15) mice had a choice between nose poking (operant response) 

to the bottle containing tap water or to the bottle containing a reward (sweetened water) placed 

in the same conditioning chamber. They had to remember the location of the reward to perform 

the correct response. A total number of nose pokes, a number of visits (activity) and liquids 

consumption were recorded. 
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6.1.3.3 Aversive discrimination protocol 

In an aversive learning task, a group of naive mice was subjected to the above-described reward-

seeking discrimination learning procedure extended by three additional phases (Figure 1b). 

In the first one mice had access to water in all four corners for 2 days (days 16-17). During the 

next phase, lasting 2 days, mice had access to bottles only in one of the corners, which was 

different from the corner with the reward in the reward-seeking discrimination training. In the 

third phase, lasting 5 days, the bottle preferred during the previous two days was replaced with 

a bottle containing 0.005 M quinine solution evoking aversive, bitter taste perception in mice 

of all studied line types. Changes in the number of nose pokes to the bottles containing quinine 

(i.e., incorrect responses) recorded during the first critical 24 h were considered a response. 

 

 

Figure 1 Scheme of the IC experiments testing cognitive functioning.  

In the reward-seeking discrimination learning task (a) naïve mice were subjected to 

experimental procedures that consisted of simple adaptation phase (days 1-4, not shown), 

nosepoke adaptation phase (days 5-7), place preference learning (days 8-10) and reward-

seeking discrimination learning (reward: 10% sucrose solution, days 11-15). These phases 

were repeated in the aversive discrimination task (b), in which another group of naïve mice 

was also subjected to additional phases: the nosepoke adaptation (days 16-17) and place 

preference learning to a different corner (days 18-19). Next, on days 20-24, mice were exposed 

to an aversive discrimination learning procedure with a 0.005 M quinine solution; (c) IC, and 

automated corner arrangement. 
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The IC system recorded the number of visits, nose pokes, and tube licks in 12 h time intervals. 

PyMICE then assembled all raw data (Python library for mice behavioral data analysis, 

(Kowalski et al., 2015). A critical part of this data set consisted of the last 24 h of the place 

preference learning phase and the next 24 h of the reward-seeking or aversive discrimination 

learning phases and was used in the further analysis (Knapska et al. 2013). Data were excluded 

from the analysis when an animal did not learn to obtain water during the preparatory place 

learning phase and thus was unable to correctly perform subsequent reward discrimination task, 

or, in rare cases, when the animal’s locomotor activity was extremely low (as reported by the 

IC software). 

 

6.1.3.4 Fear conditioning 

The mice were subjected to Pavlovian contextual fear conditioning in a fear conditioning 

chamber (MED ASSOCIATES). The training was carried out according to a classic paradigm 

(Curz, Rustay, and Browman 2009). It consisted of 3 min adaptation period and 5 footshocks 

lasting 1 s and having 0.6 mA intensity, which were applied with interstimulus intervals of 2 

min. The animals were removed from the experimental cage to their home cages 2 min after the 

last footshock was applied. The next day the animals were tested in the same cage for 3 min. 

Fear of the context was assessed by measuring freezing behavior. To avoid counting brief 

inactivity as freezing, freezing was scored only if the mouse was immobile for at least 1 s. The 

freezing observations were transformed to a percentage of total observations in 30 s intervals. 

The experiment was performed in the context that included: transport cages carried by an 

experimenter, bedding in the transport cage, white light on and air-conditioning on in the 

experimental room, conditioning chamber with a metal grid floor, fan, and white light on. 

 

6.1.4 Morphometrics 

Animals subjected to the reward-seeking discrimination learning trial were killed by cervical 

dislocation and dissected. Brain, heart, liver, and kidneys were excised, blotted from excess 

fluids, and weighed to an accuracy of 0.001 g. 
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6.1.5 Statistical analysis 

6.1.5.1 Data handling 

The NORMAL, ROBUSTSCALE and PLOT options in the PROC UNIVARIATE of SAS were 

used to check the assumption of normality and homoscedasticity of the data and their residuals. 

I log10 transformed BMR measurements, because of a strong right-skewness of the distribution.  

Inspection of histograms of residuals and quantile plots of masses of organs revealed 6 outlying 

values, which were excluded from analyses of the respective organs, but were retained in 

analyses of other organs, in which their residuals did not stand out. Offending values are marked 

in red in a data set deposited in DRYAD (https://doi.org/10.5061/dryad.bk3j9kd78). 

Furthermore, 5 individual organ masses were declared as missing, because of mistakes in data 

recording. In behavioral trials some individual observations are also declared as missing due to 

uncertainty of those observations related to temporary malfunction of the sensors (resulting in, 

e.g., negative counts of activity of individual animals). Descriptive statistics of anatomical and 

physiological traits are presented in Table 2. 

 

Table 2. Descriptive statistics of anatomical and physiological traits: arithmetic means and 

standard deviations. 

 

Trait measured 

Selection direction 

RB H-BMR L-BMR PMR 

Mean SD Mean SD Mean SD Mean SD 

BMR (ml O2/h) 52.2 7.0 64.4 7.8 40.1 5.2 53.4 7.5 

Body Mass (g) 29.1 1.8 31.1 2.5 29.8 2.9 28.2 2.3 

Liver Mass (g) 1.50 0.18 1.84 0.25 1.14 0.16 1.46 0.20 

Heart Mass (g) 0.15 0.01 0.20 0.05 0.14 0.02 0.17 0.02 

Kidneys Mass (g) 0.36 0.04 0.45 0.04 0.32 0.04 0.39 0.05 

Brain Mass (g) 0.46 0.02 0.49 0.04 0.46 0.04 0.45 0.03 

 

6.1.5.2 Mixed ANCOVA Models 

All statistical analyses were carried out by a mixed model extension of a general linear model 

(Mixed procedure of SAS/STAT® 14.1 User’s Guide). REML method of estimation and 

variance components constrained to non-negative values were used. Repeated measures mixed 

ANCOVA models were fitted with either equal or unequal residual covariance (with the TYPE 

option of REPEATED statement of procedure Mixed set to CS (compound symmetry) or Toep 
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(Toeplitz structure). For the final analysis, I chose the covariance structure yielding a lower 

Akaike information criterion (AIC). 

Data on BMR and masses of internal organs were analyzed with ANCOVA with line type 

affiliation as a fixed factor, body mass as a covariate, and the Line type × Body mass interaction. 

Initial BMR analyses also included the respirometric system and metabolic chamber coded as 

fixed factors. Their effects (as well as Line type × Body mass interaction) were never significant 

(p > 0.05) and therefore were dropped from final analyses. 

Repeated measures analysis of covariance (ANCOVA) was used to analyze the among-line type 

differences in total numbers of visits to all four corners summed over four continuous 12 h (dark 

followed by light) periods of observation (thereafter Period), covering the last 24 h (thereafter 

Day) of place preference learning, and first 24 h of reward-seeking discrimination learning.  

In the reward-seeking, and aversive discrimination learning tasks, I analyzed the number of 

nosepokes to the bottles in a corner assigned to a given animal during a critical 48 h of trials. 

During the first two 12 h Periods (located left of the vertical dashed line denoting the timeline 

of the experiment, Figure 2 A-C), both bottles in the corner contained water. Subsequently, at 

the onset of the following two 12 h Periods one bottle was filled with 10% sucrose (reward-

seeking discrimination learning) or 0.005M quinine solution (aversively motivated 

discrimination learning). In the ANCOVA model, the numbers of correct responses (i.e., nose 

pokes to the bottle with sucrose) or incorrect responses (in the case of quinine) were corrected 

for (1) the dark and the light experimental Periods and the respective Day (effects of both Period 

and Day coded as a fixed factor of a factorial design) (2) number of nose pokes to the bottle 

with tap water located in the same corner coded as a covariate. I used an analogously structured 

model to analyze the number of licks of the bottles containing tap or sweetened water. 

To analyze the rate of changes in freezing response, I used ANCOVA with the line type as the 

main factor, individual identification of animals, and line (nested within line type) as random 

factors with time (subsequent 30 s intervals) as a covariate. 

In all analyses, replicated lines were nested within line types as the random factor of the model 

(4 replications in the RB and PMR line types, respectively, but 1 line for H-BMR and L-BMR 

line types, respectively, as they were not replicated; 10 lines in total). The respective error mean 

square for 10 lines was used as the denominator of the F statistics testing the effect of line type 

affiliation. Hence, the df for the among line type comparisons was 3 (for the F numerator) and 

6 (for the denominator). 

The significance of the random effect of lines nested within line types was tested with the 

likelihood ratio (LR) test, which employs χ2 distribution of -2 times the log likelihood of fit of 
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the model of a given dependent variable with only the fixed effects minus -2 times the log 

likelihood from the full model (with random factor). The χ2 values with their respective p values 

are presented in Table 3. 

 

Table 3. Likelihood ratio test (LR) statistics for the significance of the random effect of replicate 

lines (nested within line type) in ANCOVA mixed models of analyzed traits. 

 Replicate line effect 

Dependent variable s2 SE χ 2 p 

BMR (ml O2/h) 0.000926 0.001239 1.1 >0.1 

Body Mass (g) 1.27 1.04 6.4 <0.02 

Liver Mass (g) 0.0062 0.0059 3.3 >0.05 

Heart Mass (g) N.E.    

Kidneys Mass (g) 0.00050 0.00037 11.1 <0.001 

Brain Mass (g) 0.00030 0.00021 14.9 <0.001 

Correct Nose pokes 

sucrose 

6.73 5.84 5.3 <0.025 

Activity 7.96 10.73 1.2 >0.2 

Licks 113856 82518 12.8 <0.001 

Incorrect Nose pokes 

quinine 

19.2711 19.5530 2.9 >0.05 

 

Statistical models initially included all respective interactions. The models were then step-wise 

reduced by removing non-significant interactions (p > 0.05) except those that were considered 

integral components of the tested hypotheses (e.g., Line type × Period interaction in statistical 

models of behavioral tests). Initial models of behavioral tests also included the effects of 

generation and batch of animals (a group of animals simultaneously subjected to the behavioral 

test, coded as fixed factors). The generation effect was never significant (p > 0.05), and 

therefore was dropped from the final analyses. However, the batch effect was significant in 

several analyses, as indicated in Table 3. 

As stated in Section 4.5 of the Introduction, I tested for ‘(1) the existence of the brain-gut trade-

off and (2) positive associations between BMR or PMR and CA and brain size’. I started with 
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testing (1) and identified the H-BMR and L-BMR line types with the most divergent BMRs and 

masses of internal organs relevant to testing the gut-brain trade-off. Therefore, in the behavioral 

part of our study, I concentrated on comparing the H-BMR and L-BMR line types with the 

remaining line types, by means of the custom made a priori contrasts of the H-BMR or the L-

BMR line type vs. the rest. Those planned custom hypotheses were tested for the differences in 

slopes of the changes in the number of nose pokes as depicted in Figure 5. They were carried 

out with the Contrast statements of the procedure Mixed of SAS (for details, see SAS script 

provided in Supplementary Material). 

To illustrate the use of the contrast custom hypotheses, let me consider the Line type × Time 

interaction of the extinction of freezing response to a perceived threat illustrated in Figure 6. 

I first tested the heterogeneity of slopes of changes in freezing response of the RB, H-BMR, 

and PMR line types. The resulting test statistic indicated that the slopes did not differ (F2,530 = 

1.51; p = 0.22). In the second custom test, I asked whether the slope of the L-BMR line type 

differed from the remaining line types. This difference was statistically significant at p = 0.005 

with F2,530 = 7.79. Thus, taken together, both custom tests suggested that the statistical 

significance of the Line type × Time interaction in the ANCOVA analysis of the extinction of 

freezing response can be attributed to the difference between the slope of the rate of this 

extinction in the L-BMR mice vs. the slopes of other line types. 

 

6.1.5.3 Evaluation of the effect of genetic drift in divergent selection for BMR 

Because of time and resource limitations, divergent selection for BMR is not replicated. This 

may confound the interpretation of my findings, because one cannot rule out the possibility that 

the between-line type differences between the L-BMR and H-BMR mice were due to genetic 

drift rather than direct effects of the applied artificial selection (Henderson 1997; Konarzewski 

2005). To evaluate the potential effect of genetic drift, the L-BMR vs. H-BMR differences in 

internal organ masses were analyzed according to the guidelines recommended by Henderson 

(Henderson 1997) and Konarzewski et al. (Konarzewski 2005). Briefly, first the within-line 

standard deviations (SDs) of analyzed traits were calculated. Since individual mice used in the 

measurements came from different families, those SDs can be interpreted as phenotypic SDs, 

being a square root of the product of narrow sense heritability of a given trait and its genetic 

SD (Henderson 1997). Then, thus obtained SDs were used to calculate standard deviation SDx 

weighted across both selected line types were used: 
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where SDH-BMR and SDL_BMR are phenotypic standard deviations of the studied trait x, for the H-

BMR and L-BMR line types, respectively, and nH-BMR and nlH-BMR are the numbers of families 

in the respective line types (Konarzewski 2005; Henderson 1997).  

Next, following Henderson (Henderson 1997), the magnitude of separation of the line types for 

the studied trait - were expressed as the multiples of the SDx: 

 

where BMRHx − and BMRLx −  are within line type means of the studied trait.  

Finally, I compared thus calculated dx  with the confidence limits of the magnitude of the 

between line type separation expected under genetic drift, calculated according to equation 16 

from Henderson (Henderson 1997): 

,)/1(2 2
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where h2 is the narrow sense heritability of a given trait, F is the averaged coefficient of 

inbreeding of the selected line type (Hill and Mackay 2004), and n is the number of families 

subjected to selection in both line types.  

Values of dx falling below the upper boundary of the 95% confidence interval (thereafter ddrift) 

should be ascribed to the effect of genetic drift and sampling error alone, acting in the absence 

of genetic correlation between the primary selected trait (BMR) and other analyzed traits. 

Conversely, values of dx exceeding that of ddrift indicate genetic correlations (Henderson 1997). 

Depending on the actual demand, between 40 and 80 families within each selected line type 

were maintained. For calculations, I therefore assumed a conservative number of families equal 

to n = 40 + 40 for both line types. The coefficient of inbreeding (F) for generations F51, F52, 

and F53 used in my study were 0.29, 0.30, and 0.31, respectively. I used n = 80, and averaged 

value F = 0.30 to calculate ddrift for different values of h2, and compared them graphically 

(Figure 4) with the dx computed for organ masses. 
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6.2 Results 

 

6.2.1 Morphometrics 

6.2.1.1 Mixed ANCOVA analyses 

Mean body mass did not differ among mice from the four line types (Table 4). H-BMR mice 

were characterized by conspicuously higher body mass-corrected BMR then mice of all other 

line types (Table 4, Figure 2A and Figure 3A). Their metabolically expensive internal organs 

(liver, heart and kidneys) were also larger than in mice of other line types (Figure 2B, C, D and 

Figure 3B, C, D). Yet, their brains were not significantly larger, particularly when compared 

with their direct counterparts- the mice from the L-BMR line type (Figure 2E and Figure 3E). 

Table 4. ANCOVA results for BMR and organ masses. 

 Line type Body Mass 

Body Mass F3,6 = 1.69 

p = 0.27 

- 

BMR F3,6 = 38.05 

p < 0.001 

F1,212 =82.19 

p < 0.001 

Brain F3,6 = 0.70 

p = 0.58 

F1,132 = 4.09 

p = 0.04 

Liver F3,6 = 10.18 

p = 0.009 

F1,132 = 28.56 

p < 0.001 

Heart F3,6 = 29.93 

p < 0.001 

F1,136 = 13.91 

p < 0.001 

Kidneys F3,6 = 6.34 

p = 0.03 

F1,135 = 48.85 

p < 0.001 
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Figure 2. (A) Basal Metabolic Rate (BMR) in line types of mice selected for high (H-BMR) or 

low (L-BMR) Basal Metabolic Rate (BMR), Peak Metabolic Rate (PMR aka VO2max). RB- 

random-bred line type; (B-D) masses of internal organs, and (E) brain mass. Values are body 

mass adjusted means with standard errors calculated from ANCOVA. Figure bars labeled with 

different letters differ significantly from each other at p = 0.05 
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Figure 3. (A) Individual data for Basal Metabolic Rate (BMR), masses of internal organs (B-

D), and brain mass (E) plotted against body mass in mice of studied line types. The slopes of 

the regression lines did not differ significantly between the line types at p = 0.05. 
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6.2.1.2 Evaluation of the effect of genetic drift on organ masses 

Inspection of Figure 4 reveals that the dxs of internal organ masses (heart, liver, and kidneys) 

are above the value of ddrift in the whole range of h2. Conversely, the dx of the brain mass falls 

well below ddrift for h2 = 0.64 - published estimates of h2 of brain mass in laboratory mice 

(Atchley et al. 1984). Thus, a weak separation of the H-BMR and L-BMR line types for brain 

mass does not allow for its firm recognition as a correlated response to selection on BMR, rather 

than the effect of genetic drift (Atchley et al. 1984). In contrast, the analysis suggests that the 

between line type differences in internal organ masses (heart, liver, and kidneys) are genuine 

effects of the applied selection regimen and indicate their positive genetic correlations with 

BMR. 

 

Figure 4. The magnitude of separation of the H-BMR and L-BMR line types for the studied 

traits (d) along with the upper boundary of the 95% confidence interval (ddrift , blue line) plotted 

against the narrow sense heritability (h2). The d values for organ masses were located 

according to published values of h2 (heart- [8]; liver-[8, 9]; kidneys-[10]; brain mass- [7]). 

Unlike the d values for other traits, the d for the brain mass falls below ddrift and, therefore, 

should be ascribed to the effect of genetic drift. 

Thus, both a direct comparison of all line types presented in section 6.1.5.3 and an evaluation 

of H-BMR vs. L-BMR difference for the effect of genetic drift indicated that the brain-gut 

trade-off as well a positive genetic correlation between BMR and brain size were not observed. 

6.2.2 Behavioral tests 

To compare learning abilities, I trained mice in the IC automated system that allows for 

individual activity assessment and learning of group-housed mice (Knapska et al. 2013). In an 

initial acclimatization period, mice were able to access water in any of the four corners of the 

IC. Each corner had two separate bottles with tap water that the mouse could choose between. 
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During the place preference learning, water access for each mouse was restricted to one of the 

four corners. Next, in the reward-seeking discrimination learning, one of the bottles was filled 

with a reward- 10% sucrose solution and the learning progress was scored as the number of 

nose pokes that opened access to the bottle with reward (correct responses).  

In comparison to the last 24 h of the previous training phase of the training, during the next 24 

h, all mice increased the number of nose pokes to the bottle that now contained the reward. 

However, H-BMR mice accessed the reward more often than their L-BMR, PMR and random-

bred counterparts (Table 5, Figure 5A). Most importantly, a highly significant Line-type × Time 

interaction indicated that the H-BMR mice learned the rewarded response faster than the other 

animals (F1,761 = 15.1; p < 0.001 for the planned comparison of the slope of change of the 

number of nose pokes in the H-BMR mice vs. other line types). 

To test whether the improved learning could be attributed to changes in thirst or taste 

discrimination, the number of licks from the bottles that contained sucrose solution was 

analyzed. I did not observe any differences among the line types in the amount of sweetened 

water consumed (Table 5). Further, because differences in general activity could potentially 

influence the obtained results, I compared the numbers of visits to all corners during the reward-

seeking discrimination learning and the adaptation phase. The rate of visiting corners did not 

differ among the line types (Table 5), excluding the possibility that changes in general activity 

could explain the differences in learning. 

To exclude the possibility that the superior learning response of the H-BMR mice was solely 

limited to the reward-seeking context or higher motivation to perform a nosepoke response, 

I subjected another group of naive mice to a separate behavioral test in the IC system as 

described above, but with the reward-seeking discrimination learning followed by an aversive 

cue discrimination task. In this additional task mice learned to avoid an aversive cue from a 

water solution of 0.005 M quinine placed in one of the IC corners. In the reward-seeking part 

of the trial, the H-BMR mice again accessed the reward more often than the mice of other line 

types (Line-type × Day interaction, F3,306 = 7.13; p < 0.001). In contrast, when sucrose solution 

was replaced with quinine, the number of nose pokes to the bottles now containing its solution 

decreased in the H-BMR mice and remained unchanged in other line types (Figure 5B). This 

resulted in a significant Line-type × Time interaction (Table 5) that was due to a reduction of 

the nose pokes in the H-BMR mice, as only in this line type the number of nose pokes 

significantly dropped once the bottle with tap water was replaced with the bottle containing 

quinine solution (F1,308 = 5.1; p = 0.02 for the planned comparison of the slope of change of the 
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number of nose pokes in the H-BMR mice vs. other line types; (Figure 5B). Thus, the H-BMR 

mice learned to avoid aversive cues faster than the mice of other line types. 

 

Figure 5. Results of the experiments in the IC system.  

(A) Results of the reward-seeking discrimination learning: number of nose poke responses 

giving access to the bottle that contained tap water in preference learning, then sweetened 

water. Values are least square means (±SE) of nose pokes from the repeated measures mixed 

ANCOVA. When labelled with different letters, slopes at p = 0.05 (by a-priori contrasts). (B) 

The least square means (±SE) as in (A), but of the number of incorrect nose pokes counted in 

an aversive cue discrimination learning task, in which I used water solution of 0.005 M quinine.  
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Table 5. Repeated measures ANCOVA results for behavioral tests 

 Line Type Day Period  Day×Period Line Type×Period Line Type×Day 

Correct 

Nose pokes 

sucrosea,b 

F3,6 = 5.45 

p = 0.03 

F1,757=345.5 

p < 0.001 

F1,757=88.5 

p < 0.001 

 F1, 757 = 89.2 

p < 0.001 

F1, = 1.1 

p = 0.3 

F3, 757 = 19.8 

p < 0.001 

Activity b F3,6 = 0.92 

p = 0.48 

F1,803=21.3 

p < 0.001 

F1,803=467.3 

p < 0.001 

 F2,803= 43.7 

p < 0.001 

F1,803 = 28.55 

p < 0.001 

F3,803 = 5.1 

p = 0.002 

Licksb,c F3,6 = 0.36 

p = 0. 78 

F1,713=204.3 

p < 0.001 

F1, 713=259.0 

p < 0.001 

 F2, 713 = 32.3 

p < 0.001 

F1, 713 = 5.3 

p =0.001 

F3, 713 = 5.0 

p =0.002 

Incorrect 

Nose pokes 

quininea 

F3,6 = 1.27 

p = 0.36 

F1,308 = 8.4 

p = 0.004 

F1,308 = 11.4 

p <0.001 

 F1,308 = 4.1 

p = 0.04 

F1,308 = 2.35 

p = 0.07 

F3,308 = 2.88 

p = 0.04 

 

a the numbers of responses (i.e. nose pokes to the bottle with sucrose or quinine) were corrected for numbers of nose pokes to the bottle with tap 

water located in the same corner (used as a covariate, significant at p < 0.001). 

b in this analysis the effect of a batch of animals simultaneously subjected to behavioral test was significant as a fixed factor (p < 0.01). 

c the numbers of licks of the bottle with sucrose were corrected for numbers of licks to the bottle with tap water located in the same corner (used 

as a covariate, significant at p < 0.001)
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Finally, I investigated the differences in learning abilities among line types using a classic 

paradigm of contextual fear conditioning (Rustay, Browman, and Curzon 2008). Following 

conditioning elicited by a mild electric foot shock applied in a novel context I measured 

extinction of freezing response to a perceived threat in yet another group of naive mice. The 

Line type × Time interaction was statistically significant (F15,30 = 2.27; p = 0.03), which 

reflected the heterogeneity of the dynamics of fear extinction in the studied line types, and 

accounted for the L-BMR mice losing fear response much faster than other line types (Figure 

6). 

 

Figure 6. Changes in the fear response. Freezing (immobility) was measured as percentage 

[%] of total observations in 30 s intervals in high (H-BMR), low (L-BMR) Basal Metabolic 

Rate (BMR), Peak Metabolic Rate (PMR aka VO2max) and random-bred (RB) line types of 

mice. Values are the least square means (±SE) from the repeated measures mixed ANCOVA. 

When labelled with different letters, slopes differed from at p = 0.05 (by a-priori contrast). 
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6.3 Discussion 

 

According to the “expensive brain” hypothesis, the costs of increased brain size and cognitive 

abilities (CA) can be satisfied by (1) reallocation of resources towards brain growth and 

maintenance from other energetically expensive organs, as proposed by Aiello and Wheeler 

(1995); or by (2) increasing total energy intake, which may allow covering the costs of cognitive 

abilities without the need for reduction of other structures and functions, including digestive 

abilities (Isler and van Schaik 2006; Pontzer et al. 2016). Here, I comprehensively tested (1) 

and (2) in a mammalian experimental evolution model for the first time. My results do not 

support the existence of the brain-gut trade-off proposed in (1). 

It is important to note, however, that throughout my experiment, mice were fed the same diet. 

Thus, compensation of the reduced gut by increased food quality could not be tested (Simmen 

et al. 2017). Nevertheless, at least in non-mammalian animal models, the brain-gut trade-off is 

likely to occur even without a shift in the quality of consumed food (Kotrschal et al. 2013). 

Also, as was demonstrated elsewhere (Książek, Czerniecki, and Konarzewski 2009) H-BMR 

mice have a considerable digestive safety margins, which would have allowed them for gut size 

reduction as suggested by the brain-gut trade-off hypothesis. 

An increase in energy intake is the hallmark of the evolution of endothermy (Polymeropoulos, 

Oelkrug, and Jastroch 2018), mainly linked with the need to fuel reproduction (Koteja 2000). 

The H-BMR mice are characterized by increased energy intake and reproductive allocation 

(Sadowska et al., 2013) and increased gut mass (Table 1). These observations point to the 

second hypothesis and suggest that the selection for enhanced CA does not need to involve 

a brain-gut trade-off as an initial step toward the evolution of enhanced CA. On the contrary, 

the H-BMR mice with larger guts, but not brains, performed better in cognitively demanding 

tasks than their L-BMR counterparts and mice selected for maximum aerobic metabolism 

(PMR line type). Thus, the results of behavioral tests point to the positive association of CA 

with the evolution of BMR, rather than maximum aerobic metabolism (VO2max, selected for in 

the PMR line type), which has also been implicated in the evolution of homeothermy and large 

brain size (A. F. Bennett and Ruben 1979; Lovegrove 2017; Raichlen and Gordon 2011) 

Robustness of my findings critically depends on the evolutionary relevance of my animal 

model. To date studies on the evolution of brain size and function predominantly used 

comparative method which can only provide correlative inference, often confounded by 

phylogenetic effects. From a methodological perspective, a strong test of the genetic 

correlations between metabolic rates, CA, brain size and function should be provided by 
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artificial selection experiments, because they allow for manipulation of allele frequencies 

directly related to the expected associations (Garland and Rose 2009). Most importantly, animal 

models obtained through artificial selection experiments are characterized by diversification of 

the focal traits much exceeding the scope of variation characteristic for non-selected 

counterparts. Such diversification provides a robust substrate for statistical analyses making the 

statistical resolution of the analyzed associations possible. Thus, the line types originated from 

the same stock of Swiss Webster mice enables direct comparison of selection results, including 

the use of the RB line type as the common reference. 

Apart from the biological relevance of the animal model used in my study, their robustness 

hinges on the credibility of the applied behavioral tests. To deliver biologically pertinent results, 

studies on CA in rodents must be carried out under conditions providing social and 

environmental stimulation, which triggers significant changes at cellular, molecular and 

behavioral levels, particularly in the cortex and hippocampus (Leggio et al. 2005). Here, I 

compared the behavior of mice of all line types when a highly rewarding 10% sucrose solution, 

or unpleasant taste of 0.005 M quinine solution appeared in the IC system. The H-BMR animals 

increased the number of nose pokes giving access to the sucrose solution and decreased nose 

pokes leading to the unpleasant bitter taste to a higher degree than the mice of other line types. 

The IC system allows for studying undisrupted behavior of mice in the familiar environment 

that exploits their natural preferences. Most of the conventional behavioral tests assess learning 

and memory by observation of a single animal in conditions that significantly differ from those 

in the home cage. Since in the IC housing and testing take place in the same cage, a familiar 

environment creates a unique opportunity to test voluntary behaviors of mice in low-stress 

conditions. Such conditions allow for testing learning and memory eliminating many 

confounding factors, such as stress related to novel environment, contact with a human 

experimenter and social isolation (Puścian et al. 2014). The system has been inspired by 

observations of freely moving mice in their natural environment, particularly genetically 

manipulated animals living in large outdoor pens and subjected to constantly changing 

environmental and social conditions (Abbott 2007). As a result, I demonstrated that IC offers a 

reliable range of tests assessing superior CA of the BMR mice in discrimination learning tasks. 

Conversely, contextual fear conditioning test, in which animals learned the association between 

the novel cage (new context) and unpleasant foot shocks revealed that L-BMR mice performed 

worse than the other animals. 
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In the first part of my studies tested directionality of the evolutionary relationships between 

energy expenditures, brain, gut, and CA in a mammalian model of experimental evolution. 

My results point to an evolutionary scenario that would involve initial selection for increased 

overall energy intake, which would result in positive genetic correlations with increased gut 

size and BMR (Kozłowski, Konarzewski, and Czarnoleski 2020) This selection may have 

involved an initial increase in neuronal plasticity, but not necessary increased brain size. This 

scenario is likely, if the brains built of more plastic neurons could have been more effective 

cognitively than the ones built of more neurons of lower plasticity (Herculano-Houzel 2011). 

Such brains would be more effective enabling foraging on better quality food. Subsequently, 

other trade-offs may have occurred in some lineages, such as proto-human apes. The trade-offs, 

such as, e.g., gut reduction, might have allowed for further brain size increases (Pontzer et al. 

2016). 

The above scenario obviously invites questions on the neurophysiological and histological 

underpinnings of the reported, between line type differences in CA. In the following chapters I 

will present the results of the analyses of neuronal plasticity, cell architecture and neuronal 

metabolic activity of the hippocampus- the region of brain most pertinent to behavioral tests 

presented therein.  
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7 Evolution of neurons size and function of the hippocampus: insights 

from the artificial selection experiment. 
 

7.1 Materials & Methods 

7.1.1 Animals 

Animals were treated following the ethical standards of the European Union and Polish 

regulations. All procedures were approved by the Local Ethical Committee on Testing Animals. 

I used 3-4 month-old female mice from the selection experiment carried out at the Faculty of 

Biology, University of Bialystok. Measurements of LTP and histological analyses were carried 

out on separate groups of animals, randomly drawn from a stock of animals not qualified for 

further selection. Each mouse was randomly selected from a separate family belonging to a 

particular line.  

The numbers of animals used in particular trials are given in Table 6: 

 

Table 6. The number of animals included in the statistical analyses (n) and generation of 

origin (F). N.M.- not measured. 

Trait measured RB H-BMR L-BMR 

n F n F n F 

LTP 8 38, 

39 

11 52, 

53 

8 52, 

53 

Nissl staining 14 38, 

39 

3 52, 

53 

3 52, 

53 

DAPI staining 4 59 4 60 4 60 

Anti-GFAP 

immunostaining 

18 59 3 59 4 59 

Dendritic spine 

density 

N.M. - 5 60 5 60 

Cytochrome oxidase 

(COO) activity 

staining 

12 59 5 59 5 59 

 

7.1.2 LTP measurements 

To gain insight into the potential neuronal mechanism underlying observed differences 

in learning, I used long-term potentiation (LTP). LTP is an increase in the efficacy of signal 
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transmission between neurons caused by the strengthening of synapses by recent activity 

patterns. LTP is considered one of the primary cellular mechanisms underlying learning and 

memory (Cooke 2006). I compared the effects of repeated high-frequency stimulation of 

Schaeffer collaterals, that make excitatory synapses onto pyramidal cells in the CA1 area of the 

hippocampus, the brain structure crucial for spatial memory formation (Bliss and Collingridge 

1993; Voikar et al. 2010). 

Naive animals were anesthetized with isoflurane and decapitated. The brains were instantly 

removed and placed in cold artificial cerebrospinal fluid ACSF (NaCl 117 mM, MgSO4 

1.2 mM, KCl 4.7 mM, CaCl2 2.5 mM, NaHCO3 25 mM, NaH2PO4 1.2 mM, 10 mM glucose, 

bubbled with carbogen) and both hemispheres were cut into 400 μm coronal slices with 

a vibratome (LeicaVT1000S). Slices containing the hippocampus were placed in a recording 

interface chamber (Harvard Apparatus) to recover for at least 1.5 h before the recordings start. 

The slices were continuously perfused with carbonated CSF at 33°C. Field excitatory 

postsynaptic potentials (fEPSPs), i.e., temporary depolarizations of postsynaptic membrane 

potentials, were recorded using a glass pipette filled with 20 mMNaCl (impendence 1.0–3.0 

MΩ) from the stratum radiatum in CA1 area of the hippocampus. To evoke fEPSP, Schafer 

collateral-commissural afferents were stimulated every 30 s (test pulses at 0.033 Hz, 0.1 ms) 

with bipolar metal electrodes (FHC, USA). The intensity of test stimuli was adjusted to obtain 

fEPSP with slopes of one-third of the maximal response. After at least 15 min. of stable 

baseline, LTP was induced tetanically (three trains of 100 Hz, 1 s stimulation, separated by 3 

min). After the end of the tetanic stimulation, a test pulse was applied for at least 90 min. 

Recordings were amplified (EX4-400 Dagan Corporation, USA), digitized (POWER1401, 

CED, UK) and slopes of fEPSP analyzed on-line and off-line. For analysis of LTP, the response 

slopes were expressed as a percentage of the average response slopes during the baseline period 

before LTP induction. 

 

7.1.3 Staining  

7.1.3.1 Perfusion and tissue preparation 

BMR, PMR, and RB mice were deeply anesthetized with sodium pentobarbital (133.3 mg/ml), 

pentobarbital (26.7 mg/ml), and morbital, perfused transcardially with PBS (4°C, 50 ml per 

animal) and subsequently with 4% PFA (4°C, 70 ml per animal). Brains were dissected, 

postfixed in 4% PFA (o/n, 4°C) and cryoprotected in 30% sucrose solution (4°C) for at least 

3 days. 40 μm coronal sections containing the hippocampus (coordinates following the atlas of 
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Paxinos and Franklin, 2001) were cut with the use of a cryostat (-20°C) and kept in PBS (4°C) 

until further handling. The number of all animals used in staining experiments is given in Table 

6. 

7.1.3.2 Nissl staining 

Sections from -1,46; -1,82; -2,3 and -2,7 (mm from bregma) coronal sections from mouse 

hippocampus (coordinates following the atlas of Paxinos and Franklin, 2001) were mounted on 

gelatin-coated slides and then dried, dehydrated, and stained according to standard Nissl 

methods: slides were washed in 0.1 % cresyl violet solution (cresyl violet 0.1g; distilled water 

50 ml; acetate buffer 0.2 M pH 3.6 50 ml) for 3-10 min and then dehydrated through graded 

alcohols (70, 95, 100, 100 %) and xylenes. Next, the slides were cleared in xylol and 

coverslipped with DePeX (Serva). 

7.1.3.3 Measurements of the hippocampus and neuronal density estimation 

All measurements were performed using CellSens Dimension Desktop (Olympus Corporation, 

Japan). The microscope image was captured using a light microscope Leica DM1000 LED 

connected to a Leica ICC50 camera, at 400x and 40x magnification for neuron counting and 

hippocampal measurements, respectively. 

The area occupied by the pyramidal layer of the hippocampus was measured on each cross-

section (as the pyramidal hippocampal area). Neuronal density was estimated in the pyramidal 

hippocampal layer, in CA1, CA2, and CA3 regions of the right and left side of hippocampus. 

The measurements were carried out in four coronal sections of hippocampus (-1.46; -1.82; -2.3 

and -2.7 mm from bregma, coordinates following the atlas of Paxinos and Franklin, 2001). 

The neurons were counted inside the rectangle frame with 3000 μm2 area (counting frame) 

located at random in the central part of each of the regions. To obtain unbiased estimate of the 

neuron number within the frame I followed guidelines formulated by Gundersen (Gundersen 

1977). Neurons crossed by the bottom and right-hand side borders of the frame were taken into 

account. Conversely, all neurons crossed by the left-hand side and upper borders of the frame 

were not accounted for thus, eight fields were analyzed for each hippocampal region. 

7.1.3.4 DAPI staining and neuronal density estimation 

Coronal sections of mouse hippocampus, positioned -2,06 mm from bregma (coordinates 

according to the atlas of Paxinos and Franklin, 2001), were mounted on gelatin-coated slides 

covered with Vectashield mounting medium containing DAPI. Next, the sections were 

photographed by means of a Zeiss LSM 780 confocal microscope, using a 63x lens for high 
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resolution imaging (Plan Apochromat 63x/1.4 Oil DIC, Zeiss) at identical capturing parameters 

for all images. Neuronal density was estimated in the pyramidal hippocampal layer, in CA1, 

and CA3 regions of the right and left side of hippocampus. The neurons were counted inside 

the rectangle frame with 2890 μm2 area (counting frame) located at random in the central part 

of each of the regions. To obtain unbiased estimate of the neuron number within the frame I 

followed guidelines formulated by Gundersen (Gundersen 1977). Neurons crossed by the 

bottom and right-hand side borders of the frame were taken into account. Conversely, all 

neurons crossed by the left-hand side and upper borders of the frame were not accounted for 

thus, eight fields were analyzed for each hippocampal region. Number of neuronal nucleus in 

the CA1 and CA3 hippocampus region were counted by ImageJ (NIH) software.  

7.1.3.5 Anti-GFAP immunostaining 

Sections from the perfused brain were blocked with NDS (normal donkey serum). After the 

wash, sections were incubated in 0.1% Triton X-100 in PBS (PBST) for 15 minutes. Then, after 

preincubation in NDS-buffer (5% NDS in PBST) for 1 hour, the chicken anti-GFAP (Abcam, 

1:800, Cambridge, MA, USA,) antibody (Ab) was added for overnight incubation at 4°C. After 

washing cycles in PBST (3 x 1 min), sections were incubated for 2 hours at room temperature 

with secondary antibody 647 Alexa Fluor (Jackson ImmunoResearch, West Grove, PA) at 

1:400 concentration to detect GFAP. After the last round of washing with PBST (3 x 5 min, 

RT) slices were mounted (Fluoromount-G, Southern Biotech) on polysine slides. To control for 

non-specific binding and imaging artifacts ‘no primary antibody’ and ‘no secondary antibody’ 

immunostainings were carried out. Imaging was performed using Olympus microscope 

(Olympus Corporation, Japan) with RGB Camera Hamamatsu ORCA Flash 4.0 V2 and at 20x 

magnification for astrocyte counting. GFAP (astrocyte) immunoreactivity in the hippocampus 

(ROI) (in CA1-CA3 and DG regions) was assessed according to the ImageJ (NIH) macro 

presented in Supplementary materials. 

7.1.3.6 Cytochrome oxidase (CCO) activity staining 

Histochemical reaction for cytochrome oxidase was prepared according to a published protocol 

(Wong-Riley, 1979). Sections from -2,3 mm coronal section from mouse hippocampus 

(coordinates following the atlas of Paxinos and Franklin, 2001) were incubated in solution of 

0.05 PB, 1 g sucrose, 50 mg ammonium nickel, 25 mg DAB, 15 mg cytochrome C, 10 mg 

catalase and 250 μl imidazole (amount per 100 ml). Slices were incubated for 6-8 h in 37°C and 

then washed (3 x 1 min) in 0.05 PB. 
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Cytochrome oxidase (CCO) activity in the CA1-CA3 and DG hippocampus region was 

assessed according to listed ImageJ (NIH) macro presented in Supplementary materials. 

7.1.4 Dendritic spine analysis 

Dendritic spines were visualized using the lipophilic dye Dil (1,1′-dioctadecyl-3,3,3′,3′-

tetramethylindocarbocyanine perchlorate, #D282 Life Technologies, Warsaw, Poland). H- and 

L-BMR mice were deeply anesthetized with sodium pentobarbital (133,3 mg/ml), pentobarbital 

(26,7 mg/ml) and morbital. Their brains were dissected and fixed in 1.5% PFA (1h, RT) and 

moved to ice-cold PBS (10 min, 4°C). Next, they were cut into 140 μm sections on vibratome 

(Leica VT 1000S, Leica Biosystems Nussloch GmbH, Wetzlar, Germany). Slices were 

processed for Dil staining. Random dendrite labeling was performed using 1.6 μm tungsten 

particles (Bio-Rad, Hercules, CA, USA) coated with Dil. Dye was delivered to cells using the 

Gene Gun (Bio-Rad). After staining, slices were fixed with 0.4 % paraformaldehyde in 

phosphate-buffered saline (PBS; overnight at 4°C) and placed on microscopic slides. Z-stacks 

of dendrites from the CA1, CA3 and the DG regions of the hippocampus were acquired using 

the Zeiss LSM 880 confocal microscope with AiryScan on superresolution mode using a 63x 

objective for high resolution imaging (Plan Apochromat 63x/1.4 Oil DIC) (Zeiss, Poznań, 

Poland). Dil emission was excited using a HeNe 594 nm laser. For each image, the following 

parameters were applied: 70 nm pixel size, 300 nm Z-intervals, averaging 4. Maximum intensity 

projections of Z-stacks covering the dendrite length were analyzed using semiautomatic 

SpineMagick! software (Ruszczycki et al. 2012). It allows for marking the dendritic spine head 

and base manually. Next, the software automatically marks spine edges that can be adjusted 

manually to fully reflect the spine shape (Ruszczycki et al. 2012). In these experiments, the 

group size was 5 animals. For each animal, 7-10 single dendrites from selected brain areas (one 

dendrite per neuron per image) were analyzed and dendritic spine density was calculated. There 

were no clearly stained dendrites in the CA2 region, the preparation procedure was time 

consuming, so only BMR animals were taken into consideration.  

7.1.5 Statistical analysis 

Due to the technical complexity and labor-intensity of the LTP and spine density measurements 

I could not carry them out on animals from all line lines. In the case of the spine density, 

I restricted the comparisons to the H-BMR vs L-BMR line types. In case of LTP, however, 

I compared between the mice from the H-BMR, L-BMR line types, and animals randomly 

selected from one of the replicate random bred lines (belonging to the RB line type) as the 

reference. A comparison of body mass-corrected BMR of mice from this line with the animals 
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from the H-BMR and L-BMR lines revealed that BMR of the reference group fell between 

BMRs of the selected lines (ANCOVA, the effect of line: F2,155  = 337.9, p < 0.001). Body mass-

corrected BMRs of mice under comparison averaged (LSM): 64.6 ± 0.7, 52.8 ± 1.8, 39.6 ± 0.7 

for the H-BMR, reference group and L-BMR mice, respectively. Thus, this pattern of 

differences matches that found in a complete comparison of BMR presented in Figure 2A. 

Data on LTP were arcsine transformed and then analyzed using repeated measures ANOVA 

with line type affiliation as a main factor. In this analysis, I compared the LTP slopes between 

the H-BMR and L-BMR line types along with one randomly drowned RB line as the reference 

group. 

Data on spine density were analyzed using ANOVA with line type affiliation (H-BMR or L-

BMR line type) and the hippocampal region as fixed factors and the respective interaction. Data 

on the remaining parameters were analyzed with the same ANOVA model but with replicated 

lines nested within line types as the random factor of the model (4 replications in the RB, but 1 

line for H-BMR and L-BMR line types, respectively, as they were not replicated; 6 lines in 

total). The respective error mean square for 6 lines was used as the denominator of the F 

statistics testing the effect of line affiliation. Hence, the df for the between line type comparisons 

was 2 (for the F numerator) and 3 (for the denominator). Likewise, the df for pairwise t-test 

comparisons between the line types was 3. 

In all initial analyses I also included lateralization (coded as a fixed factor), which was never 

significant (p > 0.05), and therefore was dropped from the final analyses. 

7.1.5.1 Evaluation of the effect of genetic drift on LTP 

As indicated above (Section 7.1.6), the data set on the LTP consisted of the measurements 

carried out on mice from the L-BMR, and H-BMR mice, along with the animals randomly 

selected from only one of the replicate random bred lines. Thus, unlike other comparisons 

between the L-BMR, and H-BMR mice vs. four randomly bred lines, this data set does not 

allow for an unequivocal exclusion of the effect of genetic drift as a potential source of the 

observed between line differences in LTP. To remedy this problem I compared the differences 

in LTP between the L-BMR and H-BMR mice using the guidelines recommended by 

Henderson (Henderson 1997) and Konarzewski et al. (Konarzewski 2005) presented in Section 

6.1.5.3. Accordingly, I calculated the value of the ddrift for LTP and then compared it graphically 

with the values of ddrift calculated for different values of h2. In calculating the ddrift I used the 

number of families equal to 80, and the coefficient of inbreeding F = 30. 
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7.2 Results 

7.2.1 Neuronal plasticity measured with long-term potentiation (LTP) 

In line with the behavioral results (presented in Section 6.2.2), the H-BMR mice manifested 

significantly higher neuronal plasticity measured as the LTP than the mice from the other two 

line types (F2,24 = 18.4 p < 0.001; Figure 7, Table 7). Furthermore, the difference in LTP 

between the H-BMR and L-BMR mice was more significant than that expected under genetic 

drift (Figure 8), suggesting a positive genetic correlation between BMR and LTP. 

Table 7. Descriptive statistics of the LTP measurements (arithmetic means and standard 

deviations). 

 

Trait measured 

Selection direction 

RB H-BMR L-BMR PMR 

Mean SD Mean SD Mean SD Mean SD 

LTP (% of baseline) 191.7 29.5 241.9 45.0 151.0 28.8 N.M. N.M 
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Figure 7. LTP recorded at the Shaffer collaterals of the hippocampus.  

(A) The time course of maximal EPSP slopes was normalized to baseline in the CA1 region of 

the hippocampus. Long-term potentiation was induced by high-frequency stimulation (HFS; 3× 

100 Hz) of the Schaffer collaterals in slices from the H-BMR (orange squares, n = 10), L-BMR 

(black triangle, n = 8), and the RB mouse line type (blue circles, n = 7). The slopes labeled 

with different letters differed at p = 0.05 (the Tukey post-hoc test). (B) Representative traces of 

fEPSP 10 min before (black) and 15 and 90 min after (grey) the induction of LTP. Scale 

bars = 2 mV and 5 ms. Values are the least square means (±SE) from the repeated measures 

mixed ANOVA. (C) Schematic diagram of Schaffer collateral projections from CA3 to CA1 area 

of mice hippocampus. 
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Figure 8. The magnitude of separation (d) of the H-BMR and L-BMR line types with respect 

to LTP, plotted against the upper boundary of the 95% confidence interval (ddrift , blue line). 

In the absence of available h2 estimates, the value of d was plotted against the whole possible 

range of h2. 
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7.2.2 Measurements of the hippocampus size and neuronal density of pyramidal layer 

Total cross-sectional surface area of the hippocampus (being a proxy of its size) did not differ 

between the line types (F2,3 = 0.01; p = 0.98). Conversely, the line type effect on the pyramidal 

hippocampal area was significant (F2,3 = 10.52; p = 0.04), with the H-BMR mice having larger 

area than the RB and L-BMR animals (p = 0.05, t-test with df = 3 and the Tukey-Kramer 

correction, Figure 9). The remaining pairwise comparisons were not significant. 

Neuronal density of the pyramidal layer (estimated by means of the Nissl staining) differed 

significantly between the line types (Figure 10, Table 8). Because of significant Line type × 

Region interaction (Table 8), I subsequently carried the between-line type comparisons 

separately within each of the CA1-CA3 regions of the layer. They revealed that the neuronal 

density of the H-BMR line type was higher than that of the RB line type in all of the regions 

(pairwise t-test with the Tukey-Kramer correction), whereas the L-BMR mice differed 

significantly from the RB line type only in the CA3 region (Figure 10). Neuronal densities of 

the mice of the L-BMR and H-BMR line types did not differ statistically in none of the pairwise 

comparisons.  

To double check the robustness of estimates of neuronal density of the pyramidal layer obtained 

by means of the Nissl staining, I also carried out estimates of the density of the neurons stained 

with the DAPI method in the CA1 and CA3 regions. As in the case of the Nissl staining, the 

analysis revealed a significant Line type × Region interaction (Table 8). Separate analyses 

carried out within each of the regions did not detect the between line type differences in the 

CA1 region (Figure 11). Thus, unlike the Nissl staining, the DAPI staining did not reveal 

increased neuronal density in this region of hippocampus of H-BMR animals (compare Figure 

10 and Figure 11). Conversely, both staining techniques yielded qualitatively identical results 

in the case of the CA3 region, with both the H-BMR and L-BMR mice having higher neuronal 

density than that found in the RB line type, and no significant difference between the H-BMR 

and L-BMR line types. 
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Figure 9. Measurement of pyramidal hippocampal area obtained by the Nissl staining. When 

labelled with different letters, means differed from each other at p = 0.05. Slices from the H-

BMR (orange squares, n = 3), L-BMR (black triangle, n = 3), and the RB mouse line type (blue 

circles, n = 14). 

 

Figure 10. Neuronal density in the CA1, CA2 and CA3 regions of the pyramidal layer of 

hippocampus obtained by means of the Nissl staining. When labelled with different letters, 

means differed from each other at p = 0.05. Slices from the H-BMR (orange squares, n = 3), 

L-BMR (black triangle, n = 3), and the RB mouse line type (blue circles, n = 14). 
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Figure 11. Neuronal density in the CA1 and CA3 regions of the pyramidal layer of hippocampus 

obtained by means of the DAPI staining. When labelled with different letters, means differed 

from each other at p = 0.05. Slices from the H-BMR (orange squares, n = 4), L-BMR (black 

triangle, n = 4), and the RB mouse line type (blue circles, n = 4). 
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7.2.3 Hippocampal astrocyte/neuron ratio 

Differences between the line types in hippocampal astrocyte/neuron ratio (estimated as the 

percent of the GFAP signal positive cross- section area of hippocampus) were on the verge of 

statistical significance (Table 8). This result is, however, difficult to interpret because of the 

highly significant Line type × Region interaction (Table 8). Separate ANOVAs carried out 

within the Line type effect revealed that in the L-BMR and H-BMR line types, the CA3 region 

had a lower astrocyte/neuron ratio than in the CA1 and CA3 regions, respectively, with the 

remaining between-line type differences being non-significant at p = 0.05. The analyses carried 

out within the Region effect indicated that the only difference reaching statistical significance 

was that, within the CA2 region, in which the astrocyte/neuron ratio in the H-BMR line type 

was lower than that in the RB mice (Figure 12). It is, however worth noticing that the trend of 

reduced astrocyte/neuron ratio in the H-BMR and L-BMR vs. RB line type was apparent across 

all regions (Figure 12). 

 

Figure 12. Astrocyte to neuron ratio, expressed as the percent of the GFAP signal positive 

cross- section CA1-CA3 areas of hippocampus. When labelled with different letters, means 

differed at p = 0.05. Slices from the H-BMR (orange squares, n = 3), L-BMR (black triangle, n 

= 4), and the RB mouse line type (blue circles, n = 18). 
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7.2.4 Dendritic spine density 

As indicated by highly significant interaction (Table 8) dendritic spine density was significantly 

affected by both the hippocampal region and line type affiliation. Separate analyses carried out 

within regions revealed that the density did not differ between the line types in the CA1 and 

CA3 regions (F1,88 = 0.0 p > 0.96 and F1,60 = 2,32 p > 013, respectively). Conversely, the density 

was significantly higher in the DG region of the H-BMR mice, compared to the L-BMR line 

type (F1,59  = 0.0, p = 0.0006; Figure 13). 

The difference in dendritic spine density in the DG between the H-BMR and L-BMR mice was 

more significant than that expected under genetic drift (Figure 14). 

 

Figure 13. Dendritic spine density in the CA1, CA3 and DG region of hippocampus. When 

labelled with different letters, means differed at p = 0.05. Slices from the H-BMR (orange 

squares, n = 5), L-BMR (black triangle, n = 5). 

 

Figure 14. The magnitude of separation (d) of the H-BMR and L-BMR line types with respect 

to the density of dendritic spines in DG region of hippocampus. Value of d is positioned against 

the upper boundary of the 95% confidence interval (ddrift , blue line). In the absence of available 

h2 estimates, the value of d was plotted against the whole possible range of h2. 
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7.2.5 Cytochrome C oxidase (CCO) activity 

Cytochrome C oxidase (CCO) density (a proxy of mitochondrial density) significantly varied 

between the line types and regions, with non-significant Line type × Region interaction (Table 

8). The line type effect was clearly due to CCO density being much higher in the H-BMR line 

type than in other mice (Figure 15). A similar trend was also apparent in the DG region, though 

the difference did not reach statistical significance (Figure 15, Table 8) 

 

Figure 15. Cytochrome C oxidase density (expressed as the intensity of color in 8 bit scale of 

gray) in the CA1, CA2, CA3 and DG regions of hippocampus. When labelled with different 

letters, values of means differed at p = 0.05. Slices from the H-BMR (orange squares, n = 5), 

L-BMR (black triangle, n = 5), and the RB mouse line type (blue circles, n = 12). 
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Table 8. ANOVA results for the hippocampus anatomical and cellular characteristics. In all 

comparisons, the effect of lateralization was insignificant and thus dropped from the final 

models. 

 Line type Region Line type × Region 

Neuronal Densitya F2,3 = 9.89 

p = 0.048 

F2,102 = 1.24 

p = 0.30 

F4,102 = 2.59 

p = 0.04 

Neuronal Densityb F2,7 = 6.94 

p = 0.02 

F1,109 = 228.4 

p = 0.001 

F2,109 = 6.29 

p = 0.003 

Astrocyte/Neuron 

Surface ratio  

F2,3 = 9.40 

p  = 0.051 

F2,111 = 5.52 

p = 0.005 

F4,111 = 3.90 

p = 0.005 

Dendritic spinec 

density 

F1,222 = 2.44 

p = 0.12 

F2,222 = 3.01 

p = 0.051 

F2,222 = 9.49 

p = 0.0001 

Cytochrome C 

oxidase in CA1-3 

F2,3 = 24.1 

p = 0.01 

F2,75 = 3.80 

p = 0.03 

F4,75 =0.9 

p = 0.1 

Cytochrome C 

oxidase in DG 

F2,3 = 6.42 

p = 0.08 

- - 

a  Nissl staining 

b  DAPI staining 

c  This comparison was carried out between the H-BMR and L-BMR line type  
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7.3 Discussion  
 

Differences in CA among line types, demonstrated in behavioral tasks presented in Section 

6.2.2 of my thesis, beg the question of the underlying neuronal mechanism. Both appetitive and 

aversive IC learning tasks involve the hippocampus (Voikar et al. 2010). Similarly, contextual 

fear conditioning relies on the hippocampus (Rudy and O’Reilly 2001). Since the H-BMR mice 

performed significantly better in the IC tests, while L-BMR mice were inferior in the fear 

conditioning test, I focused on the identification of the relevant neuronal mechanisms in the 

hippocampal neurophysiology, size, and cell architecture that could explain behavioral 

differences between those line types. Conversely, since the PMR line type did not stand out in 

any of the behavioral tests, I decided to drop them from further analysis, to avoid unjustified 

proliferation of degrees of freedom of statistical analyses. 

My results revealed that the H-BMR, L-BMR, and RB mice differed in the studied parameters. 

In the LTP and spine density analyses the differences were very robust. However, 

morphological analyses brought results at the verge of the commonly adopted p < 0.05 level. 

It is, therefore, worth highlighting that the majority of my statistical inference is based on only 

3 degrees of freedom, constituted by the respective line types, rather than the numbers of 

individual mice considered as degrees of freedom. Such an approach is the only proper way to 

avoid pseudoreplication and allow an appropriate distinction of the effects of selection from 

random effects, such as genetic drift (Henderson 1997). In the case of the LTP and spine density 

comparisons, which were not based on a complete data set incorporating all random bred lines 

(RB), I carried out additional analysis based on Henderson’s guidelines (Henderson 1997). 

Thus, I am confident that our statistical inference is robust, despite the low levels of statistical 

significance of the reported tests. 

First, I tested hippocampal neuronal plasticity using a well-established long-term potentiation 

(LTP) model (Bliss and Collingridge 1993). LTP is an increase in signal transmission between 

neurons caused by the strengthening of synapses by recent patterns of activity. LTP is 

considered one of the major cellular mechanisms underlying learning and memory formation 

(Cooke 2006). Furthermore, excitatory synaptic transmission requires ATP-dependent 

phosphorylation of AMPA receptors (Banke et al. 2000) and, therefore, should be positively 

associated with the rate of aerobic metabolism. My data show increased potentiation in the H-

BMR mice and downregulation in the L-BMR animals, when compared to the RB mice. The 

results suggest upregulation of physiological processes intrinsic to learning in the H-BMR line 
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type, and their downregulation in L-BMR mice. It is consistent with the results of behavioral 

tests.  

Second, I demonstrated that the neuronal density in the CA1-CA3 regions the pyramidal layer 

of hippocampus of the H-BMR mice was higher than that of the random bred (RB) animals that 

served as a reference. The area of pyramidal layer of the hippocampus was also larger in the H-

BMR mice, which together with higher neuronal density translates into more numerous 

neurons. This finding is important, because higher number of neurons is generally associated 

with higher CA (Olkowicz et al. 2016).  

In agreement with the above findings, dendritic spine density reflecting neuroplasticity was 

much higher in the dentate gyrus (DG) region of the H-BMR mice, compared to the L-BMR 

line type. Dendritic spines host synapses providing connectivity between neurons and undergo 

changes in their number and morphology driven by external stimuli (Runge, Cardoso, and de 

Chevigny 2020). The DG is the predominant point of entry of information reaching the 

hippocampus (Zhang, Schlögl, and Jonas 2020). Therefore the density of spines in this region 

is likely to affect learning and memory (Rebola, Carta, and Mulle 2017).  

I must admit, however, that my results brought a couple of apparent conspicuous 

inconsistencies that are nevertheless potentially informative. First, although the H-BMR mice 

manifested significantly higher neuronal density than the RB (control) animals, pairwise 

comparisons indicated that its level did not statistically differ from the neuronal density found 

in the L-BMR mice. This results of the analysis of neuronal density obtained by means of the 

Nissl method were re-affirmed by an independent analysis with the use of DAPI staining. Thus, 

the trend apparent in results of neuronal density in the hippocampus suggests that divergent 

selection on BMR did not result in a parallel divergence in neuronal size. Importantly, this lack 

of divergence is paralleled by the lack of the between-line type difference in the cross-sectional 

area of the hippocampus, and therefore, its size. Thus, higher CA in the H-BMR mice than in 

the L-BMR animals is unlikely to be solely associated with numerous neurons. This conclusion 

agrees well with the results reported by Neves et al. (Neves et al. 2020). They did not observe 

significant correlations between the performance Swiss mice in behavioral tests and the number 

of neurons in any of their brain regions, including hippocampus. Thus, a broad scale positive 

correlation between the number of neurons and CA, reported by (Olkowicz et al. 2016), does 

not hold at the species level, at least in laboratory mice. 
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Another potential inconsistency of my results relates to much higher long-term potentiation 

(LTP) at the Schaffer collaterals of the H-BMR than the L-BMR mice, despite the lack of the 

between-line type difference in the dendritic spine density in the CA1 and CA3 regions. One 

could expect such a difference in those regions, since the spine formation and re-arrangement 

is considered critical for learning and memory formation (Lamprecht and LeDoux 2004). It is 

possible, however, that the lack of the difference in the CA1 and CA3 regions is compensated 

for by the higher spine density in the DG region of the H-BMR mice. 

Overall, my results demonstrated that the differences in CA may arise through re-arrangement 

of the cell architecture and function in the hippocampus without a conspicuous differentiation 

of its size. The positive association between hippocampal size and CA has been demonstrated 

both in humans (Fotuhi, Do, and Jack 2012; Schinazi et al. 2013) and fish (Kotrschal et al. 

2013). Therefore, a question arises, why the selection resulted in differentiation of CA and not 

scaling up of the hippocampus, and more generally, the whole brain, as observed 

interspecifically? This question is even more puzzling, when one considers that the evolutionary 

‘solution’ of the re-arrangement, rather than up-sizing of the hippocampus, identified here in 

the H-BMR line type came at the substantial energetic cost, as indicated by high density of the 

cytochrome C oxidase (CCO) in the CA1-CA3 hippocampal regions. 

To address above question I first need to discuss the legitimacy of the major assumption of my 

study, that is, the existence of a positive association between BMR and metabolic costs of 

maintenance of the brain tissue. Indeed, such association has been demonstrated in mammals 

at the interspecific level (Isler and van Schaik 2006). Moreover, in rodents, as much as 20% of 

interspecific variation in body mass-corrected BMR can be attributed to brain mass variation 

(Sobrero et al. 2011). Since BMR reflects the costs of maintenance of metabolically expensive 

organs (Konarzewski and Diamond 1995), it must also include neuronal energy consumption 

related to maintaining the resting potential and its restoration following action potential 

propagation (Niven and Laughlin 2008). As I pointed out in the Introduction, however, to be 

effective as an evolutionary mechanism driving encephalization, the BMR-brain size 

association must be present at the species level, where natural selection operates (Bennett & 

Harvey, 1985; Isler & van Schaik, 2006). Our results show that, at least in our animal model, 

the positive genetic correlation between BMR and brain size is absent. However, divergent 

selection for BMR resulted in a correlated response of an increased CA in the H-BMR mice. 

Thus, enhanced CA are indeed associated with high BMR at the species level, but not 

necessarily due to an increased brain size. 
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I cannot quantify the exact contribution of an increased CA of the H-BMR mice to their 

exceptional BMR. Yet, their high neuronal density in the CA1-CA3 regions may partly account 

for this association. Interestingly, the cytochrome C oxidase (CCO) density of the H-BMR mice 

is much higher than that of the L-BMR ones, despite the lack of the between-line type difference 

in neuronal density. The cytochrome C oxidase (CCO) can be considered a metabolic marker 

of neuronal activity (Wong-Riley, 2012). Together, these results strongly suggest that 

individual neurons of the H-BMR mice have a much higher metabolic rate than those of the L-

BMR line type, which agrees well with their significantly higher LTP. This result also suggests 

that divergent selection for BMR indirectly increased the metabolic rate of individual neurons 

and that this increase, rather than an increase in the total number of neurons, may account for 

enhanced CA of the H-BMR mice. My results therefore call into question the constancy of 

energy expenditures of a single neuron inferred by Herculano-Houzel (Herculano-Houzel 2011) 

based on interspecific comparisons. 

In conclusion, my findings demonstrated several associations that run counter interspecific 

patterns widely considered as mechanisms of the evolution of CA and large brains. My results, 

along with other studies carried out interspecifically e.g. (Benson-Amram et al., 2016) should 

send a warning signal across the neuroscience community, which is predominantly 

concentrated on interspecific comparisons as a source of inference (Deaner, Nunn, and Van 

Schaik 2000). Such inference can be cross-checked by the experimental evolution models like 

the one used here because, unlike comparative studies, they provide a rigorous and biologically 

meaningful means for identification of causal relationships. 
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8 Conclusions 
 

• My study does not support the existence of the brain-gut trade-offs postulated by the 

“expensive tissue” hypothesis. The results of behavioral tests support the existence of 

the link between cognitive abilities (CA) and high basal metabolic rate (BMR) as 

postulated by the “expensive brain” concept. My study provide the first experimental 

test of both hypotheses carried out by means of a mammalian animal model; 

 

• Selection on high basal metabolic rate (BMR) increases neuronal plasticity, which may 

be the first step towards increased cognitive abilities (CA), instead of the brain size 

increase through the number or size of neurons. Thus, my results run counter a general 

positive correlation between CA and brain size observed at the interspecific level. They 

therefore call into question the validity of those correlations as a universal pattern of the 

evolution of encephalization; 

 

• My results demonstrated that the differences in cognitive abilities (CA) may arise 

through re-arrangement of the cell architecture and function of the hippocampus, 

without a conspicuous differentiation of its size. I therefore concur with still scant 

studies criticizing an overly simplified assumption of a strict size-function relationship 

frequently used in comparative studies on the evolution of brain size and CA; 

 

• Divergent selection for BMR indirectly increased the metabolic rate of individual 

neurons. Thus, my results do not support the notion of the size- independence of energy 

budgets of neurons. An increase of their aerobic metabolism, along with an increase of 

the total number of smaller neurons, may account for an enhanced cognitive abilities 

CA of the H-BMR mice. 
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10 Supplementary materials 
 

SAS codes 

Exemplary SAS code used for analyses of BMR. Similarly structured codes were used for the 

analyses of anatomic traits. 

BMR=log(BMR); 

BM=log(BM); 

title ''; 

run; 

proc sort; 

by line subline; 

run; 

proc print; 

var line subline Setup channel BM BMR; 

run; 

  proc univariate data=BMR normaltest robustscale plot; 

var  BMR; 

by line; 

run; 

proc mixed covtest; 

class line  subline Setup channel; 

model BMR=  setup channel line BM line*BM /solution ; 

random subline(line); 

lsmeans line/tdiff; 

run; 

proc mixed covtest; 

class line  subline Setup channel; 

model BMR=  Setup channel line BM /solution ; 

random subline(line); 

lsmeans line/tdiff; 

run; 

proc mixed covtest; 

class line  subline ; 

model BMR=  line BM /solution ; 

random subline(line); 

lsmeans line/tdiff; 

run; 

proc mixed covtest; 

class line  subline ; 

model BMR=  line BM /solution ; 

*random subline(line); 

lsmeans line/tdiff; 

run; 

quit; 
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Exemplary SAS code used for the analysis of the number of nosepokes (i.e. correct responses) 

in the reward-seeking discrimination learning task. Similarly structured code was used for the 

analyses of other behavioural tasks. 

 

INPUT ID$ line$ subline dark_C1 light_C1 dark_C2 light_C2 dark_rog1 

light_rog1 dark_rog2 light_rog2 Generation batch; 

* The above variables are defined in the data file deposited in DRYAD www; 

  DATA long ; 

  SET Wide; 

*Below the data are re-structured to conform to the Proc Mixed format; 

  correct = (dark_C1); rog = (dark_rog1-dark_C1); phase = 'dark'; time = 1; 

b=batch;f=generation; period=time; OUTPUT; 

  correct = (light_C1); rog = (light_rog1-light_C1); phase = 'light'; time 

= 1; b=batch; f=generation; period=time; OUTPUT; 

  correct = (dark_C2); rog = (dark_rog2-dark_C2); phase = 'dark'; time = 2; 

b=batch; f=generation; period=time; OUTPUT; 

  correct = (light_C2); rog = (light_rog2-light_C2); phase = 'light'; time 

= 2; b=batch; f=generation; period=time; OUTPUT; 

  DROP dark_C1 light_C1 dark_C2 light_C2 dark_rog1 light_rog1 dark_rog2 

light_rog2 generation batch; 

RUN; 

 PROC PRINT DATA=long ; 

RUN; 

  PROC MIXED DATA=long covtest; 

  CLASS ID line subline phase time; 

   MODEL correct =  line  time phase time*phase line*phase line*time rog / 

solution; 

   random subline(line); 

   repeated time*phase / subject=id type=VC; 

   contrast "HBMR vs rest" line*time  3 -3 -1 1 -1 1 -1 1/;   

   contrast "LBMR vs rest" line*time  -1 1 3 -3 -1 1 -1 1/; 

   contrast "RB vs rest" line*time  -1 1 -1 1 -1 1 3 -3/; 

     LSMEANS line/ tdiff; 

   LSMEANS line*time/ tdiff; 

 run; 

 PROC MIXED DATA=long; 

  CLASS ID line subline phase time; 

   MODEL correct =  line  time phase time*phase line*phase line*time rog / 

solution; 

   *random subline(line)/; 

   repeated time*phase / subject=id type=VC; 

   LSMEANS line/ tdiff; 

   LSMEANS line*time/ tdiff; 

 run; 

  *ods pdf close; 

quit; 
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Raw images acquired with microscopy were analyzed with ImageJ software (NIH): 

 

• GFAP (astrocyte) immunoreactivity in hippocampus (ROI) was assessed according to 

listed ImageJ macro: 

 

run("Subtract Background...", "rolling=10"); 

run("Auto Local Threshold", "method=Phansalkar radius=25 parameter_1=0 

parameter_2=0"); 

run("Options...", "iterations=2 count=6 do=Close"); 

run("Analyze Particles...", "size=50-Infinity summarize"); 

 


