
poprzednio

INSTYTUT BADA SYSTEMOWYCH
POLSKIEJ AKADEMII NAUK

TECHNIKI INFORMACYJNE
TEORIA I ZASTOSOWANIA

Wybrane problemy

Tom 3 (15)

poprzednio

ANALIZA SYSTEMOWA W FINANSACH
I ZARZ DZANIU

Pod redak
Andrzeja My sk go

Warszawa 2013

©

ISBN 9788389475442

SECURITY AWARE SCHEDULING FOR PARALLEL
JOB MODEL IN CLOUD SYSTEMS

Jakub Ga̧sior
& Franciszek Seredyński

Studia Doktoranckie IBS PAN
Department of Mathematics and Natural Sciences,

Cardinal Stefan Wyszynski University
e-mail: j.gasior@ibspan.waw.pl

Abstract.. This paper proposes a multi-objective parallel job scheduling algorithm
for a Computational Cloud environment. We present a fault-tolerant, scalable and
efficient solution for optimizing scheduling of N independent jobs on M parallel
machines that minimizes two objectives simultaneously, namely the failure proba-
bility and the total completion time of all the jobs. Obtaining an optimal solution for
this type of complex, large-sized problem in a reasonable computational time using
traditional approaches or optimization tools is extremely difficult. As this problem
is NP-hard in the strong sense, a meta-heuristic method which is the second version
of the non-dominated sorting genetic algorithm (NSGA-II) is proposed to solve this
problem. This approach is based on the Pareto dominance relationship, providing
no single optimal solution, but a set of solutions which are not dominated by each
other. The performance of the presented model and the applied GA is verified by a
number of numerical experiments. The related results show the effectiveness of the
proposed model and GA for small and medium-sized problems.

Keywords: multi-objective optimization; genetic algorithm; risk resilience

1 INTRODUCTION

The idea of Cloud Computing (CC), which emerged in recent years as a
natural extension of Grid Computing, gradually revolutionizes a possibil-
ity of access and availability of supercomputing resources to customers
without the need of possessing expensive computers, specialized software
and buying licenses. It reduces the concept of computational power to a set
of services, which can be bought from specialized organizations. However,
after an initial enthusiastic reception of this idea by people from business
and industry and getting some experience from working Cloud Computing,
new issues concerning CC have been formulated. The main one can be ex-
pressed in the following way: how users can be assured that their valuable

24 Jakub Ga̧sior & Franciszek Seredyński

data passed to CC system will be safe while stored, communicated and pro-
cessed, and how the security of their partial or final results of computing
will be guaranteed. In this paper, we aim to address such problems related
to the new generation of CC, where issues of high performance and se-
curity both will be considered and new effective solutions will be worked
out.

While the range of problems to be solved to provide secure computa-
tions in CC is wide, we will focus on two key issues. One of such issues
is to provide a reasonable level of security-aware and robust computation
in distributed systems. To obtain this, our approach proposes combination
of generic methods of monitoring and discovery of anomalies and threats,
leading to defining a security-assurance condition during the job mapping
process for use under potentially failure-prone and risky conditions. An-
other key issue is providing efficient resource management of CC. An effi-
cient resource management of parallel and distributed systems is tradition-
ally performed by a set of load balancing and scheduling algorithms. Be-
cause load balancing and scheduling problems in a general form are known
to be NP-hard, it means that a time complexity of exact algorithms deliver-
ing solutions will be at least exponential, and a provider of a system must
rely on approximate solutions offered in an acceptable time using meta-
heuristics or heuristic approaches. One of the distinctive features of this
paper is an attempt to work out a class of load balancing and scheduling
algorithms which, while maintaining performance criteria, will also pro-
vide security mechanisms enabling to work in untrusted or fault-tolerant
environments.

Obviously, the conflict between achieving good performance, in terms
of execution time, and achieving high quality of security-assurance intro-
duces new challenges in security critical CC scheduling. Extensive study
indicates that the scheduling performance is affected by the heterogeneities
of security and computational power of resources. Different jobs may have
varied security requirement and even the same security requirements may
exhibit different security overhead on different computational nodes. The
aim of our study is to propose an efficient algorithm which effectively han-
dles the multi-criteria parallel job scheduling problem, taking into account
not only the job completion time but also the security constraints existing
in a CC system.

The remainder of this paper is organized as follows. Section 2 presents
the related work. In Section 3 we describe our system model. Section 4
briefs the NSGA-II algorithm and its application. Section 5 demonstrates

SECURITY AWARE SCHEDULING FOR PARALLEL JOB MODEL... 25

the performance metrics, the input parameters and experimental results.
Finally, Section 6 concludes the paper.

2 RELATED WORK

Recently, a great interest of researchers in Cloud and Grid Computing do-
mains has been focused on the secure scheduling, which aims to achieve an
efficient assignment of tasks to reasonable trustful machines. The conflict
between achieving good performance and high quality of security protec-
tion imposed by security-critical applications introduces a new challenge
in resource allocation domain. Moreover, security heterogeneity and the
dynamic property of Cloud makes solving this challenge more difficult.

A simple classification of security-aware computing models was intro-
duced in [4], where authors defined six possible scenarios to be faced by
a computing environment. An interesting approach to job-failure mecha-
nism is presented in [5]. The authors proposed a failure detection service
and a failure handling mechanism as the fault-tolerance method in Grid
scheduling. It enables the detection of both task failures and user’s security
requirements without need of updating the protocol and the local policy at
the computational nodes.

The integration of the security mechanism with the scheduling algo-
rithms seems to be one of the most important issues in Cloud scheduling.
Heuristic methods, due to their robustness, have been successfully applied
to solve the large-scale task scheduling problem in the dynamic Grid en-
vironment. However, many of them cannot be directly applied in a risky
environment [9]. In [1] well-known ad-hoc heuristics, namely, Min-Min,
Minimum Completion Time and Sufferage methods were modified to in-
corporate the security requirements using a trust model for Grid systems.
In [8] and [9] the authors considered the risky and insecure conditions in
on-line scheduling in Grids caused by the software vulnerability and dis-
trusted security policy. They applied a game-theoretical model introduced
in [6] for modeling the resource owners selfish behavior in the hierarchical
Grid structure.

The results presented in [9] were extended in [14] by considering the
heterogeneity of the fault-tolerance mechanism in a security-assured Grid
job scheduling. The authors defined four types of GA-based on-line sched-
ulers for the simulation of some fault-tolerance mechanisms, including job
retry, job migration (with and without check-pointing), and job replication
mechanisms.

26 Jakub Ga̧sior & Franciszek Seredyński

Due to the NP-hardness of the Cloud job scheduling problem, the exact
solutions can not be applied to the large problems that often arise under real
life scenarios. Therefore, the approximation methods that suffice to find a
near optimal solution are more promising approaches. Heuristics and meta-
heuristics have shown to be useful approaches for solving a wide variety
of hard-to-solve combinatorial and multi-objective optimization problems.

In [7] authors proposed genetic algorithm for finding a suboptimal so-
lution to the job scheduling problem in Grid environments. In [2] genetic
algorithms were used for job scheduling on computational Grids to opti-
mize the makespan and the total flowtime. The aim of this work was to
show the power of genetic algorithm in the design of effective schedulers
to assign a large number of jobs originated from large scale applications
to Grid resources. In [16] two implementations of cellular Memetic Al-
gorithms (MA) were introduced for job scheduling in Grid systems when
both makespan and flowtime are simultaneously minimized. MA is a rel-
atively new class of population-based heuristic methods in which the con-
cepts of genetic algorithm (evolutionary search) and local search are com-
bined [15].

Our approach provides the solution for parallel job scheduling prob-
lem in distributed CC environment, while taking into account the security
constraints of both user and system. We define our solution as a Pareto-
based evaluation instead of more common practice of converting the multi-
objective problem into a single-objective by combining the various criteria
into a single scalar value or alternating them in order to optimize one cri-
terion at a time while imposing constraints on the others. In our approach
a vector containing all the objective values representing the solution fit-
ness and the concept of dominance is used to establish preference between
multiple solutions.

3 SYSTEM MODEL

In this section we formally define basic elements of the model and pro-
vide corresponding notation. Then, we define possible characteristics of
the model that change the available information and the type of jobs to
be scheduled. The model provides a complete representation of system
resources. Additionally, it includes information about resource character-
istics and availability. It provides information used by task assignment al-
gorithms within the scheduling framework.

SECURITY AWARE SCHEDULING FOR PARALLEL JOB MODEL... 27

3.1 Definitions and Notation

The system model is an extension of the work introduced in [12] and
defined as follows. A system consists of a set of m parallel machines
M1,M2, ...,Mm. Each machine Mi is described by a parameter mi, which
denotes the number of identical processors Pi, called also the size of ma-
chine Mi. Figure 1(a) shows a set of parallel machines in CC system.

Fig. 1: Example of the Cloud Computing system. A set of parallel machines (a) and the
multi-threaded job model (b).

Set of n users (U1, U2, ..., Un) submits jobs to the system, expecting
their completion before required deadline. Thus, in the system there is a set
of n jobs J1, J2, ..., Jn. A job Jj is described by a tuple (rj , sizej , tj , dj).
The release time rj can be defined as the earliest time when the job can
be processed. In this model we assume rj ≥ 0. A sizej is referred to as
the processor requirements. It specifies a number of processors required to
run the job Jj within assigned machine. We can define this as degree of
parallelism or a number of threads. Rigid jobs are parallel jobs that require
a fixed number of processors for parallel execution: this number is not
changed until the job is completed. We assume that job Jj can only run
on machine Mi if sizej ≤ mi holds, that is, we do not allow multi-site
execution and co-allocation of processors from different machines. Then,
the wj = tj ∗ sizej denotes the work of job Jj . A machine executes a job
of the sizej when sizej processors are allocated to it during time tj , which
defines required number of instructions of job Jj . Finally, dj is the required
deadline of the job. Figure 1(b) shows an example of the multi-threaded job
model.

Our framework considers an open queuing network model with n ma-
chines each serving its own local queue. Arriving jobs are stored in a global
queue and they are dispatched to nodes only at the end of predefined inter-
vals called allocation intervals. We assume a fail-stop execution, meaning
that if a job fails on a site, then it will be rescheduled to restart at an-

28 Jakub Ga̧sior & Franciszek Seredyński

other site. Modeling the real-life scheduling situation, jobs are scheduled
in batches. We assume that all jobs are scheduled independently, that is
there is no communication among them. Results presented in the follow-
ing sections are obtained from a single scheduling event in one allocation
interval.

3.2 Security Model

We consider a security-aware scheduling scheme, to address the security
issues in a computational Cloud environment. While a job is submitted
in Grid, users have to define a Security Demand (SD) for that job. When
setting up the SD, users should be concerned about job sensitivity, job ex-
ecution environment, access control and data integration [9]. On the other
hand, the defense capability of a machine is attributed to intrusion detec-
tion, firewall, anti-virus/worm, and attack response capabilities. In our pa-
per, this defense capability is modeled by a Security Level (SL) factor. The
SL evaluates the risk existing in the allocation of a submitted job to a spe-
cific machine. Each resource has its own SL value, which is one of its basic
characteristics.

In our model, a job will be aborted, if the machine’s SL is lower than the
job SD. The SD is a real fraction in the range [0,1] with 0 representing the
lowest and 1 the highest security requirement. The SL is in the same range
with 0 for the most risky resource site and 1 for a risk-free or fully trusted
site. Specifically, we define a job failure model as a function of the dif-
ference SD− SL between the job demand and site trust. The Formula (1)
presented below expresses the failure probability regarding a scheduling of
a job Jj with a specific SDj value, to the machine Mi with Security Level
value SLi [9]. The negative exponent indicates that the failure probability
grows with the difference SDj − SLi:

PFailure =

{
0, ifSDj ≤ SLi,

1− exp−(SDj−SLi), ifSDj > SLi.
(1)

3.3 Performance Metrics

Typical way of assessing system’s performance is measuring the comple-
tion time of submitted jobs. There exist various levels of aggregation, on
which the performance can be measured: the level of individual jobs, the
level of organizations or the level of the complete system. Let us denote S

SECURITY AWARE SCHEDULING FOR PARALLEL JOB MODEL... 29

as a schedule. The completion time of jobs on machine Mi in the sched-
ule Si is denoted by Ci(Si). Two different objectives are considered in this
work:

– The minimization of the maximum completion timeCmax, which means
the duration of all the processes. We consider minimization of the time
Ci(Si) on each machine Mi over the system in such a way that the
makespan is defined as Cmax = maxi{Ci(Si)},

– The minimization of the total failure probability ΣPFailure, defined as
a sum of failure probability of each scheduling. We define the failure
probability of an allocation as a function, depended on the difference
between Security Demand and Security Level.

Thus, the problem can be formulated as follows: Minimize (Cmax, ΣPFailure).
An important decision in such multi-objective optimization is how to eval-
uate the quality of solutions since the conflicting and incommensurable
nature of some of the criteria makes this process more complicated.

4 GA-BASED DUAL OBJECTIVE SCHEDULING
FRAMEWORK

We propose a multi-criterion Genetic Algorithm (GA) to solve the studied
problem. GA is a meta-heuristic search technique that allows large solution
space to be heuristically searched, by applying evolutionary techniques
from nature. Typically, a GA is composed of two main components, which
are problem dependent: the evaluation function and the encoding schema.
The evaluation function measures the quality of a particular solution. Each
solution is associated with a fitness value, which is represented by the com-
pletion time of the schedule and total failure probability. The efficiency of
a GA depends on the encoding scheme applied.

4.1 Chromosome Encoding

The first step in the proposed GA is to consider a chromosome representa-
tion or solution structure. In the case of job scheduling, each chromosome
represents a schedule of a group (batch) of jobs on a group of machines.
A chromosome can be represented as a sequence of individual schedules
(one for each machine in the group) separated by a special value. Each in-
dividual schedule is a queue of jobs assigned to that machine [11]. In this
study we use the structure presented in Figure 2 for the solution of the pre-
sented model, in which each gene is a pair of values (Jn,Mm), indicating

30 Jakub Ga̧sior & Franciszek Seredyński

that job Jn is assigned to machine Mm, where n is the index of the job in
the batch of jobs and m is the index of the machine. The execution order
of jobs allocated to the same machine is given by the positions of the cor-
responding genes in the chromosome on First-Come-First-Serve basis. For
example, in Figure 2 Jobs 5 and 1 are allocated on Machine 1, Jobs 3 and
4 are allocated on Machine 2, while Jobs 2 and 6 are allocated on Machine
3. Algorithm scans the final solution from left to right, thus Job 4 will be
executed before Job 3. This representation has been regarded in literature
as efficient and compact, with reduced computational costs (crossover and
mutation are easier to implement on this type of representation) [13].

Fig. 2: Chromosome encoding schema. Upper numbers define allocation sequence. A job
is first scheduled to the site identified by the leftmost (Jn,Mm) pair.

4.2 Genetic Operators

Genetic algorithms produce new chromosomes by combining existing chro-
mosomes. This operation is called crossover. Crossover globally searches
through the solution space and produces two new offspring chromosomes
(children) from the parents. Some genes of the two parents are exchanged
to create the new chromosome. This operation depends on the chromosome
representation, and can be very complicated. Although general crossover
operations are easy to implement, building specialized crossover opera-
tions for specific problems can greatly improve the performance of the ge-
netic algorithm. The well known standard single point crossover is adopted
in this work.

Before a genetic algorithm finishes the production of a new chromo-
some, it performs a mutation. A mutation makes random, but small, changes
to an encoded solution. This prevents the falling of all solutions into a local
optimum and extends the search space of the algorithm. The main task of
the operator is to maintain the diversity of the population in the successive
generations and to exploit the solution space. In this paper, a mutation oper-
ator, called swap mutation, consists of swapping any two randomly chosen
genes in a chromosome. It selects two machines, and then randomly selects
a task on each machines. The tasks are interchanged between machines if
they have similar properties, otherwise, the search continues.

SECURITY AWARE SCHEDULING FOR PARALLEL JOB MODEL... 31

Finally, selection is a process which decides about the choice of chro-
mosomes for the crossover operation depending on the fitness function
value or the rank value. In this work, the tournament parent selection is
adopted. This selection is one of many selection methods in GA which
randomly chooses few solutions from the parent population and selects the
winner (based first on the non-dominated front, and then on the value of
the crowding distance) for crossover.

4.3 Fitness Evaluation

The fitness (or objective) function measures the quality of each individ-
ual in the population according to some criteria. For the scheduling prob-
lem, the goal is to obtain task assignments that ensure minimum execu-
tion time, maximum processor utilization, a well balanced load across all
processors, or a combination of these.To evaluate generated chromosomes
we implement the second version of a non-dominated sorting genetic al-
gorithm (NSGA-II) [3]. This algorithm is based on the Pareto dominance
relationship. Note that in the multi-objective optimization problem, there is
no single optimal solution, but a set of solutions which are not dominated
by each other, as depicted in Figure 3.

50 100 150 200
4

6

8

10

12

14

16

18

Σ
P

F
ai

lu
re

C
Max

Fig. 3: An example of NSGA-II Pareto front.

In the NSGA-II algorithm, an initial population P0 is first randomly
generated. In each generation t, the following processes are executed. The
population of children Qt (all the offspring chromosomes) is created with

32 Jakub Ga̧sior & Franciszek Seredyński

the operations of evaluation, selection, crossover and mutation. After that,
all the individuals from Pt and Qt are ranked in different fronts. The non-
dominated front of level 1 is constituted and includes all the non dominated
solutions. In order to find the solutions in the next front, the solutions of
previous fronts are not considered. This process is repeated until all the
solutions are ranked and assigned to several fronts. Then, the best solu-
tions (in the best front and with the best value of the crowding distance)
are chosen for the new population Pt+1. This generation is repeated until
the stopping criterion is satisfied. The overall structure of the NSGA-II is
presented in Algorithm 1.

Algorithm 1 NSGA-II Algorithm

Initialize Population P0 of size N ;
Evaluate Objective Values;
Assign Rank Based on Pareto dominance;
while stopping criterion is not satisfied do

Generate the Offspring Population Qt of size N (with the operations of selection, crossover
and mutation);
Compose the populations of Parents and the Offspring in Rt = Pt ∪Qt of size 2N ;
Assign Rank Based on Pareto dominance in the combined population Rt;
Pt+1 = 0;

i = 1;

while |Pt+1|+ |Fi| < N do
Pt+1 ← Pt+1 ∪ Fi;

i = i+ 1;

end while
Rank the solutions of Fi by the crowding distance and
add N − |Pt+1| solutions in Pt+1 by descending order of the crowding distance.

end while

There are four parameters to set in this algorithm. The population size
and the number of generations define the computing time of the algorithm,
the probabilities of crossover pc and mutation pm define the convergence
and diversity of the obtained results. Table 1 summarizes those parameters.

5 PERFORMANCE EVALUATION

An important role of the scheduling process is an appropriate allocation of
jobs on machines. We consider system with a different number of proces-
sors in each machine. It enforces the use of algorithms which globally dis-
tribute jobs among machines of the system. Each job should be allocated in

SECURITY AWARE SCHEDULING FOR PARALLEL JOB MODEL... 33

such a way the completion time of schedule S, as well as total failure prob-
ability is minimized. We assume that scheduler have an a priori knowledge
of the service demand of each job. Thus, a matrix called Expected Time to
Compute (ETC) can be generated. ETC[i, j] defines the time at which
machine Mi completes job Jj , after having finished any previously as-
signed jobs. In this section we analyze the performance of NSGA-II based
scheduling algorithm for the problem defined in this paper. Its compara-
tive performance study has been conducted with with three security-aware
variants of popular scheduling policies. We briefly introduce them below.

– Min-Min heuristic establishes the set of minimum completion times
for every unscheduled job and gives highest priority to the job that can
be completed first (with minimum completion time). Selected job is
then assigned to the machine which offers it this time. Min-Min exe-
cutes shorter tasks in parallel whereas longer tasks follow the shorter
ones;

– Max-Min heuristic establishes the set of minimum completion time
for each job in the same way as Min-Min, but the job with the maximum
minimum completion time is given highest priority in local queue and
is assigned to the corresponding machine. The idea behind Max-Min
is overlapping long running tasks with short running ones. Thus many
shorter tasks can run in parallel with the longer ones;

– Suffrage heuristic is based on the idea that better scheduling results
could be generated by assigning a job to a machine that would ”suffer”
most in terms of ETC if that particular machine is not selected. Specif-
ically, the suffrage value of a job is the difference between its second
and first earliest completion time.

All of the above heuristics operate in f-risky mode, that is they allocate jobs
to available sites to take at most f-risk, where f is a probability measure
defined by Equation 1. Research shows that the optimal f-value to achieve
the minimum makespan is equal to 0.5 [10]. We adapt that value in our
simulation experiments.

5.1 Input Parameters

We used in our experiments a set of randomly generated job instances. The
set was generated with the following parameters: the number of jobs nJ

ranging from 100 to 200 jobs, the average execution time of a job tJ was set
to 5, and the average number of threads sizeJ was set to 4 and the average
number of cores mi was set to 6. It was assumed that the release time r was

34 Jakub Ga̧sior & Franciszek Seredyński

Table 1: Simulation Parameter Settings

System Parameters Value setting

Number of jobs (nJ) 100, 150, 200

Number of machines (nM) 4, 8, 16

Average execution time of a job (tj) 5

Average number of threads (sizej) 4

Average number of cores (mi) 6

Job security demand (SD) 0.6 - 0.9 uniform distribution

Machine security level (SL) 0.3 - 1.0 uniform distribution

Genetic Algorithm Parameters Value setting

Number of generations 100

Population size 100

Crossover rate 0.9

Mutation rate 0.1

equal to 0 during the experiment. Deadline was not specified due to static
character of the simulation. Table 1 summarizes key simulation parameters
used in the experiment.

5.2 Simulation Results and Analysis

Figure 4 depicts the results of conducted experimental simulations. Batches
of 100, 150 and 200 independent jobs were scheduled in the system con-
taining 4, 8 and 16 machines. NSGA-II algorithm is based on the Pareto
dominance relationship and it results in a set of solutions which are not
dominated by each other. For the sake of simplicity, we present only first
non-dominated Pareto front from each experimental condition containing
the best overall solutions. Solutions found by three security-aware heuris-
tics were also presented in order to provide comparative performance study
of our solution.

Due to the fact that each solution is evaluated through both optimization
criteria, our scheduler has the ability to predict and avoid a large amount of
potential failures, while achieving reasonable level of computational over-
head. Although variants of tested heuristics are security aware algorithms
and give priority to higher security demanding tasks they do not achieve
comparative results. It can be seen that none of the heuristics returned so-
lution for the scheduling problem ranked in the first non-dominated Pareto
front.

SECURITY AWARE SCHEDULING FOR PARALLEL JOB MODEL... 35

We argue that the resulting set of non-dominated solutions gives user
greater flexibility and ability to prioritize his needs according to a spe-
cific criteria. Thus, it is possible to find compromise between computa-
tional overhead and desired security requirements. Our analysis shows that
the application of GAs improves significantly the system’s overall perfor-
mance. Although GAs can cause delays to jobs until they come up with a
good solution, the results strengthen the assertion that GAs are suitable for
resolving large search space problems such as job scheduling in the Cloud.

6 CONCLUSION AND FUTURE WORK

Security-driven job scheduling is crucial to achieving high performance
in an Cloud computing environment. However, existing scheduling algo-
rithms largely ignore the security induced risks involved in dispatching
jobs to remote sites, which are owned by other organizations. The paper
proposes a novel paradigm of GA-based dual objective scheduling for large
computational cloud systems. As Cloud is considered to be a risky environ-
ment, our scheduler additionally takes into account the security constraints
of the system. Thus, the proposed solution makes efforts to incorporate se-
curity into job scheduling and aims to minimize both job completion time
and security risks. Non-security aware algorithms do not consider security
overhead and security constraints of a job and therefore possibly assign the
task to a node that only result in small computation time but a large total
security overhead.

GA, due to its very nature, is capable of exploiting and exploring in the
whole range of solution search space globally and picking near optimal
scheduling solution. The security aware genetic algorithm makes effort
to optimize quality of security and at the same time satisfy high level of
performance metric. Experimental results confirm that algorithm performs
better than other compared heuristics giving better completion time and
security-assurance level for the same level of security.

This paper could be extended by enhancing our framework with decision-
making mechanisms to determine which strategies are Pareto-efficient and
which of them should be applied by the scheduler without further input
from the end user. We would also like to study the impact of implementing
other risk-resilient scheduling strategies such as replication, check pointing
and preemption on the overall performance of the Cloud system.

36 Jakub Ga̧sior & Franciszek Seredyński

20 40 60 80 100 120 140 160 180
6

7

8

9

10

11

12

Σ
P

F
ai

lu
re

C
Max

Min−Min

Max−Min

SR

Min−Min

Max−Min

SR

Min−Min

Max−Min

SR

4 machines
8 machines
16 machines

(a) Set of 100 jobs.

0 50 100 150 200 250 300
6

8

10

12

14

16

18

20

Σ
P

F
ai

lu
re

C
Max

Min−Min

Max−Min

SR

Min−Min

Max−Min

SR

Min−Min

Max−Min

SR

4 machines
8 machines
16 machines

(b) Set of 150 jobs

�

�

�

�

�

�

�

(c) Set of 200 jobs.

Fig. 4: Results of simulation experiments employing NSGA-II Scheduler and three
security-aware heuristics: Min-Min, Max-Min and Suffrage for the set of a) 100, b) 150
and c) 200 randomly generated jobs scheduled on 4, 8 and 16 machines.

SECURITY AWARE SCHEDULING FOR PARALLEL JOB MODEL... 37

ACKNOWLEDGMENT

This contribution is supported by the Foundation for Polish Science under
International PhD Projects in Intelligent Computing. Project financed from
The European Union within the Innovative Economy Operational Pro-
gramme 2007-2013 and European Regional Development Fund (ERDF).

References

1. F. Azzedin and M. Maheswaran. Integrating trust into grid resource management systems.
In Proceedings of the 2002 International Conference on Parallel Processing, ICPP ’02, pages
47–, Washington, DC, USA, 2002. IEEE Computer Society.

2. J. Carretero and F. Xhafa. Using genetic algorithms for scheduling jobs in large scale grid
applications. Journal of Technological and Economic Development, 12:11–17, 2006.

3. K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan. A fast elitist non-dominated sorting genetic
algorithm for multi-objective optimisation: Nsga-ii. In Proceedings of the 6th International
Conference on Parallel Problem Solving from Nature, PPSN VI, pages 849–858, London, UK,
UK, 2000. Springer-Verlag.

4. M. Humphrey and M. R. Thompson. Security implications of typical grid computing usage
scenarios. Cluster Computing, 5(3):257–264, July 2002.

5. S. Hwang and C. Kesselman. A flexible framework for fault tolerance in the grid. Journal of
Grid Computing, 1:251–272, 2003.

6. Y.-K. Kwok, K. Hwang, and S. Song. Selfish grids: Game-theoretic modeling and nas/psa
benchmark evaluation. IEEE Trans. Parallel Distrib. Syst., 18(5):621–636, May 2007.

7. V. D. Martino and M. Mililotti. Sub optimal scheduling in a grid using genetic algorithms.
Parallel Comput., 30(5-6):553–565, May 2004.

8. S. Song, K. Hwang, and Y.-K. Kwok. Trusted grid computing with security binding and trust
integration. J. Grid Comput., pages 53–73, 2005.

9. S. Song, K. Hwang, and Y.-K. Kwok. Risk-resilient heuristics and genetic algorithms for
security-assured grid job scheduling. IEEE Trans. Comput., 55(6):703–719, June 2006.

10. S. Song, Y.-K. Kwok, and K. Hwang. Security-driven heuristics and a fast genetic algorithm
for trusted grid job scheduling. In Proceedings of the 19th IEEE International Parallel and
Distributed Processing Symposium (IPDPS’05) - Papers - Volume 01, IPDPS ’05, pages 65.1–,
Washington, DC, USA, 2005. IEEE Computer Society.

11. R. Tavakkoli-Moghaddam, F. Taheri, M. Bazzazi, M. Izadi, and F. Sassani. Design of a genetic
algorithm for bi-objective unrelated parallel machines scheduling with sequence-dependent
setup times and precedence constraints. Comput. Oper. Res., 36(12):3224–3230, Dec. 2009.

12. A. Tchernykh, J. M. Ramı́rez, A. Avetisyan, N. Kuzjurin, D. Grushin, and S. Zhuk. Two level
job-scheduling strategies for a computational grid. In Proceedings of the 6th international con-
ference on Parallel Processing and Applied Mathematics, PPAM’05, pages 774–781, Berlin,
Heidelberg, 2006. Springer-Verlag.

13. A. S. Wu, H. Yu, S. Jin, K.-C. Lin, and G. Schiavone. An incremental genetic algorithm
approach to multiprocessor scheduling. IEEE Trans. Parallel Distrib. Syst., 15(9):824–834,
Sept. 2004.

14. C.-C. Wu and R.-Y. Sun. An integrated security-aware job scheduling strategy for large-scale
computational grids. Future Gener. Comput. Syst., 26(2):198–206, Feb. 2010.

15. F. Xhafa and A. Abraham. Computational models and heuristic methods for grid scheduling
problems. Future Generation Computer Systems, 26(4):608 – 621, 2010.

38 Jakub Ga̧sior & Franciszek Seredyński

16. F. Xhafa, E. Alba, B. Dorronsoro, and B. Duran. Efficient batch job scheduling in grids using
cellular memetic algorithms. Journal of Mathematical Modelling and Algorithms, 7:217–236,
2008.

