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Chapter 1

Proof of the Routh
criterion

Even if the Routh criterion is still an important tool in modern robust
stability analysis and most control textbooks illustrate its implementa-
tion, the proof of this useful test is almost always omitted. The exclusion
is probably due to the fact that the proofs available in the literature ei-
ther require advanced mathematical concepts [1], [2] or provide little
insight into the mechanism of the criterion [3], [4].

An alternative proof of the Routh test and the rules for determining
the zero distribution of a real polynomial with respect to the imaginary
axis was suggested in [5]. This proof uses only elementary geometric
properties of polynomials that show pictorially how the numbers of sign
permanences and variations along the first column of the Routh array are
related to the number of the left half–plane (LHP) and right half–plane
(RHP) roots of a polynomial.

As will be shown next, the adopted approach, which is reminiscent of
the one in [6] and [10], proves useful also in the treatment of the critical
cases that may arise in the construction of the Routh table.

1.1 Basic recursions

Consider the nth–degree polynomial:

Pn(s) =
n∑

k=0

an,k s
k, an,k ∈ R, ∀k, (1.1)
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and decompose it into its even and odd parts as

Pn(s) = Qn(s) +Qn−1(s), (1.2)

where

Qn(s) =
bn/2c∑

k=0

an,n−2k s
n−2k (1.3)

and

Qn−1(s) =
b(n−1)/2c∑

k=0

an,n−1−2k s
n−1−2k. (1.4)

The entries of every row of the Routh table coincide with the coeffi-
cients of the decreasing powers of s in the polynomials Qi(s), 0 ≤ i ≤ n,
formed, starting from (1.3) and (1.4), according to the Euclidean recur-
sion:

Qi−2(s) = Qi(s)− qi−1 sQi−1(s), (1.5)

where qi−1 is the ratio of the leading coefficients of Qi(s) and Qi−1(s),
respectively. If all leading coefficients are different from 0, this procedure
defines recursively a sequence of n numbers {qi, 0 ≤ i ≤ n− 1}.

Assume first that no leading coefficient is equal to zero. This implies,
in particular, that Qn(s) and Qn−1(s), as well as the other polynomi-
als Qi(s), are coprime. In fact, if Qn(s) and Qn−1(s) had a common
factor Ch(s) of degree h, the same factor would be present in Qi(s),
i ≥ h; hence, Qh(s) would turn out to be equal to Ch(s), and Qh−1(s)
identically equal to zero.

Consider now the polynomials:

Pi(s) = Qi(s) +Qi−1(s), 1 ≤ i ≤ n, and P0(s) = Q0(s). (1.6)

Combining (1.5) and (1.6) we obtain

Pi−1(s) = Pi(s)− qi−1 sQi−1(s). (1.7)

In the following, it is shown first how the distribution of the roots of
Pi(s) is related to that of Pi−1(s). Then, the root distribution of Pn(s)
is found by recursively applying this result starting from P0(s) and P1(s).
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1.2 Root distribution

Relation (1.7) can be embedded in the locus:

P̂i(s; q) := Pi(s)− q sQi−1(s), q ∈ R, i = 1, 2, · · · , n. (1.8)

Clearly, P̂i(s; 0) = Pi(s) and P̂i(s; qi−1) = Pi−1(s). Moreover, qi−1 is the
only value of parameter q for which P̂i(s; q) has degree i− 1.

Consider the i continuous arcs on the complex plane described by
the i roots of P̂i(s; q) as q varies from 0 to qi−1. One and only one of
these arcs tends to the point at infinity as q tends to qi−1 because, if no
leading coefficient is equal to 0, Qi−1(s) and, thus, Pi−1(s) = P̂i(s; qi−1)
have i− 1 finite roots, whereas for q 6= qi−1 the polynomial P̂i(s; q) has
i finite roots. Concerning these arcs, the following lemma holds.

Lemma 1.2.1 No arc crosses the imaginary axis at a point s = β with
β finite.

Proof If a crossing occurred at s = β, then

P̂i(β; qi−1) = Pi(β)− q β Qi−1(β) =
[Qi(β)− q β Qi−1(β)] +Qi−1(β) = 0 (1.9)

for a suitable value of q. This would imply that both the real and the
imaginary parts of P̂i(β; qi−1), i.e., Qi(β)−q β Qi−1(β) and Qi−1(β),
vanish simultaneously, which contradicts the assumption that no leading
element is zero and, consequently, Qi(s) and Qi−1(s) are coprime. �

The only arc that tends to infinity as q → qi−1 is confined to either
the LHP or the RHP, as is the case for all of the other i − 1 arcs. In
fact, for q ∈ [0, qi−1), this arc neither touches the imaginary axis nor
passes to another half–plane through the point at infinity; consequently,
it belongs to the half–plane on which its point corresponding to q = 0
lies. The following lemma indicates the location with respect to the
imaginary axis of the unique arc that tends to infinity.

Lemma 1.2.2 The arc that tends to infinity as q → qi−1 lies in the
LHP if qi−1 > 0 and in the RHP if qi−1 < 0.
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Proof Denoting Pi(s) as

Pi(s) =
i∑

j=0

ai,k s
k, (1.10)

so that
Qi−1(s) = ai,i−1s

i−1 + ai,i−3s
i−3 + · · · , (1.11)

polynomial (1.8) may be written as

P̂i(s; q) = (ai,i−qai,i−1)si+ai,i−1s
i−1+(ai,i−2−qai,i−3)si−2+· · · (1.12)

which, for q = q̄ ∈ [0, qi−1) and |qi−1 − q̄| � |qi−1|, exhibits a root of
very large magnitude close to the real root

z̄ = − ai,i−1

ai,i − qai,i−1
= − 1

qi−1 − q̄
(1.13)

of the polynomial

(ai,i − q̄ai,i−1)si + ai,i−1s
i−1 (1.14)

approximating P̂i(s; q̄) for |s| large. The sign of z̄ is opposite to that of
qi−1 because |q̄| < |qi−1|. It follows that z̄ is in the LHP if qi−1 > 0,
and in the RHP if qi−1 < 0. This is also true for the root of very large
magnitude of P̂i(s; q̄) close to z̄ and for all of the points belonging to the
corresponding arc. �

An immediate consequence of Lemmas 1.2.1 and 1.2.2 is the following
corollary that relates the numbers nl,i and nr,i of LHP and RHP roots
of Pi(s) to the corresponding numbers nl,i−1 and nr,i−1 for Pi−1(s).

Corollary 1.2.3 If qi−1 > 0, then

nl,i = nl,i−1 + 1, nr,i = nr,i−1, (1.15)

and, if qi−1 < 0, then

nl,i = nl,i−1, nr,i = nr,i−1 + 1. (1.16)

�
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1.3 Routh’s theorem

On the basis of the results of Section 1.2, the following theorem can be
proved.

Theorem 1.3.1 (Routh’s Theorem) The numbers nl,n and nr,n of the
LHP and RHP roots of Pn(s) coincide, respectively, with the numbers
of sign permanences and sign variations between consecutive elements
along the first column of the Routh array for Pn(s).

Proof Observe that qi−1 > 0 if and only if sgn(ai,i) = sgn(ai−1,i−1),
and qi−1 < 0 if and only if sgn(ai,i) = −sgn(ai−1,i−1). Therefore, a
positive value of qi−1 corresponds to a sign permanence between the
leading elements of the rows of order i and i − 1, whereas a negative
value of qi−1 corresponds to a sign variation between the same elements.
By recursively applying Corollary 1.2.3 n times starting from P0(s) and
P1(s), it turns out that nr,n coincides with the number of sign variations
encountered along the first column, and nl,n = n − nr,n coincides with
the number of sign permanences, because each sign variation introduces
an RHP root in the polynomial of immediately higher degree in the
sequence (1.6) and each sign permanence an LHP root. �

An immediate consequence of Theorem 1.3.1 is the following.

Corollary 1.3.2 (Routh’s Stability Criterion) Polynomial Pn(s) is Hur-
witz (all roots in the open LHP) if and only if all of the leading coeffi-
cients of its Routh array have the same sign. �

1.4 Critical cases

The critical cases arise when the leading coefficient of Qn−1(s) or of a
polynomial generated by recursion (1.5) is equal to zero, that is, when
a row of the Routh table begins with a zero. As is known, if all the
entries of this row are equal to zero, then Qn(s) and Qn−1(s) have a
common factor Ch(s) of degree h > 0 whose coefficients coincide with
the entries of the row of order h preceding the all–zero row of order h−1.
The roots of Ch(s) are symmetric with respect to the origin (quadrantal
symmetry) and some, or all, of them may be on the imaginary axis;
half of the remaining roots, if any, are in the LHP and half are in the
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RHP. This situation is treated in the standard control literature: the
procedure to evaluate the location of the roots is simple and unequivocal
in this case. Therefore, here attention is limited to polynomials Pn(s) =
Qn(s) +Qn−1(s) with Qn(s) and Qn−1(s) coprime.

To overcome the difficulty due to the vanishing of a leading coefficient
(but not of all coefficients of a row), various expedients that are not
completely satisfactory have been suggested. A technique that draws
on the considerations developed in the previous section is outlined next.
For simplicity, it is assumed that the vanishing leading entry is followed,
in the same row, by a nonzero entry. To this purpose, it is useful to
adopt a new notation for the coefficients of Qi(s):

Qi(s) =
bi/2c∑

k=0

ri,i−2ks
i−2k (1.17)

so that (see (1.10))

ri,i−2k = ai+1,i−2k = ai,i−2k. (1.18)

Assume that the first row whose initial entry is equal to zero is the
row of order i, so that ri,i = 0 (but ri,i−2 6= 0). Using this new notation,
polynomial Pi+1(s) can be written as

Pi+1(s) = ri+1,i+1s
i+1 + ri+1,i−1s

i−1 + ri,i−2s
i−2 + ri+1,i−3s

i−3 + · · · .
(1.19)

Consider now the polynomial:

P̃i−2(s) := (s+ 1)Pi+1(s) (1.20)

whose roots are those of Pi+1(s) with an additional LHP root at −1.
Therefore, the first column of its Routh table exhibits the same number
of sign variations as that for Pi+1(s) and a number of sign permanences
equal to that for Pi+1(s) plus one. The upper three rows of the Routh
table for (1.20) are:

i+ 2 ri+1,i+1 ri+1,i−1 ri+1,i−3 + ri,i−2 · · ·
i+ 1 ri+1,i+1 ri+1,i−1 + ri,i−2 ri+1,i−3 + ri,i−4 · · ·
i −ri,i−2 ri,i−2 − ri,i−4 ri,i−4 − ri,i−6 · · ·

(1.21)

Since the rows of order i + 2 and i + 1 in (1.21) begin with the same
element, the sign permanence between their leading elements can be
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associated with the additional LHP root at −1. In this way, the numbers
of sign permanences and variations from the row or order i + 1 to that
of order 0 account for the root distribution of Pi+1(s) itself.

In practice, it is not necessary to actually form polynomial P̃i−2(s)
according to (1.20). In fact, the row of order i+2 need not be computed,
and the rows of orders i + 1 and i in the above array can directly be
obtained from those of the same orders in the array for Pn(s). Specif-
ically, the entries of the new row of order i + 1 are given by the sum
of the entries of the same column in the old rows of orders i + 1 and
i, and each entry of the new row of order i is given by the difference
between the entry in the same position and that at its right (if any) in
the old row of order i. In conclusion, to evaluate the root distribution
of Pn(s), it is enough: (i) to determine the number of sign permanencies
and variations along the first column of the array from the row of order
n to the row of order i+ 1 (like in the popular ε–method), (ii) to modify
the rows of order i+ 1 and i as indicated above, and (iii) to evaluate the
numbers of sign permanencies and variations from the new row of order
i + 1 to the row of order 0 (which avoids the problems associated with
the use of cumbersome expressions involving ε–terms).

The extension of the procedure to the case in which more initial
entries of a row are equal to zero is straightforward [5].

Example Consider the polynomial:

P8(s) = s8 + s7 + 3s6 + 2s5 + 4s4 + 3s3 + 4s2 + 2s+ 1. (1.22)

The upper five rows of its Routh table are

8 1 3 4 4 1
7 1 2 3 2
6 1 1 2 1
5 1 1 1
4 0 1 1

(1.23)

With the suggested procedure, the rows of orders from 5 to 0 turn out
to be

5 1(= 1 + 0) 2(= 1 + 1) 2(= 1 + 1)
4 −1(= 0− 1) 0(= 1− 1) 1(1− 0)
3 2 3
2 3/2 1
1 5/3
0 1

(1.24)



8 Chapter 1. Proof of the Routh criterion

By neglecting the row of order 4 in (1.23), there are three sign perma-
nencies along the first column of (1.23). In the first column of (1.24)
there are three sign permanencies and two sign variations. It follows that
(1.22) has 6 LHP and 2 RHP roots. To obtain the same (correct) result
with the ε–method, no approximation of the cumbersome expressions
involving ε–terms is allowed.

1.5 Concluding remarks

The locations of the roots of two consecutive polynomials in the Routh
sequence (1.6) have been related to each other by means of simple geo-
metric properties. In particular, it has been shown that, on passing from
Pi−1(s) to Pi(s), i− 1 roots remain in the same half–plane, whereas the
ith additional root is in the LHP if their leading coefficients have the
same sign and in the RHP otherwise.

By applying this result iteratively starting from P0(s) and P1(s), a
simple proof of the rule for counting the LHP and RHP roots of a given
polynomial Pn(s) has been provided. The adopted approach turns out
to be particularly useful in the treatment of the critical cases.
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