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Preface

We study stability of minimal points and solutions to parametric (or
perturbed) vector optimization problems in the framework of real
topological vector spaces and, if necessary, normed spaces. Because
of particular importance of finite-dimensional problems, called mul-
ticriteria optimization problems, which model various real-life phe-
nomena, a special attention is paid to the finite-dimensional case.
Since one can hardly expect the sets of minimal points and solu-
tions to be singletons, set-valued mappings are natural tools for our
studies.

Vector optimization problems can be stated as follows. Let X be a
topological space and let Y be a topological vector space ordered by
a closed convex pointed cone K C Y . Vector optimization problem

K —min fo(z)
subject to x € Ay, (Po)

where f : X — Y is a mapping, and Ag C X is a subset of X, relies
on finding the set Min(fo, 40,K) = {y € fo(A4o) | fo(A)N(y—K) =
{y}} called the Pareto or minimal point set of (F,), and the
solution set S(fy, 40, K) = {z € Aq |fo(z) € Min(fy, Ap,K)}. We
often refer to problem (F,) as the original problem or unper-
turbed one. The space X is the argument space and Y is the
outcome space.

Let U be a topological space. We embed the problem (F,) into
a family (P,) of vector optimization problems parametrised by a
parameter u € U,

K —min f(u,z)
subject to z € A(u), (P.)

where f : U x X — Y is the parametrised objective function and
A : UZZY, is the feasible set multifunction, (F,) corresponds to a
parameter value %p. The performance multifunction M : UZ3Y,




is defined as M(u) = Min(f(u, ), A(u),K), and the solution mul-
tifunction S : UZ3Y, is given as S(u) = S(f(u,-), A(v),K), and
J:UXxX oY, Aw)CX.

Our aim is to study continuity properties of M and S as functions
of the parameter . Continuous behaviour of solutions as functions
of parameters is of crucial importance in many aspects of the theory
of vector optimization as well as in applications(correct formulation
of the model and/or approximation) and numerical solution of the
problem in question.

We investigate continuity in the sense of Hausdorff and Hélder of the
multivalued mappings of minimal points M(u) and solutions S(u)
as functions of the parameter u under possibly weak assumptions.
We attempt to avoid as much as possible compactness assumptions
which are frequently over-used (see eg [83]).

It is a specific feature of vector optimization that the outcome space
is equipped with a partial order generated by a cone the properties
of which are important for stability analysis. In many spaces cones
of nonnegative elements have empty interiors and because of this we
derive stability results for cones with possibly empty interior. This
kind of results are specific for vector optimization and do not have
their counterpart in scalar optimization.

We introduce two new concepts: the notion of containment(with
some variants for cones with empty interiors),[16], and the notion of
strict minimality, {12].

The containment property (CP) , defined in topological vector spaces,
is introduced to study upper semicontinuities (in the sense of Haus-
dorff) of minimal points, [11, 16]. It is a variant of the domination
property (DP), which appears frequently in the context of stability
of solutions to parametric vector optimization problems. Although
it is not a commonly adopted view point, the domination prop-
erty may be accepted as a solution concept which generalizes the
standard concept of a solution to scalar optimization problem. In
consequence, the containment property (CP) may also be seen as a
solution concept in vector optimization. To investigate more deeply
this aspect we interpret the containment property as a generaliza-
tion of the concept of the set of ¢—local solutions appearing in the




context of Lipschitz continuity of solutions to scalar optimization
problems. Under mild assumptions the containment property im-
ply that the set weakly minimal points equals the set of minimal
points. This equality, in turn, is a typical ingradient of standard
finite-dimensional sufficient conditions for upper semicontinuity of
minimal points.

To study Hélder upper continuity of minimal points we define the
rate of containment of a set with respect to a cone, which is a real-
valued function of a scalar argument, see [14, 15]. The rate of growth
of this function influence decisively the rate of Holder continuity of
minimal points, [15].

Strictly minimal points are introduced to study lower semicontinu-
ities (lower Hausdorff, lower Hélder) of minimal points |20, 13]. The
definition of a strictly minimal point is given in topological vector
spaces and it is a generalization of the notion of a super efficient
point in the sense of Borwein and Zhuang defined in normed spaces.
We discuss strict minimality in vector optimization by proving that
it is a vector counterpart of the concept of ¢— local solution to scalar
optimization problem.

Theory of vector optimization may be considered as an abstract
study of optimization problems with mappings taking values in the
outcome space equipped with a partial order structure. As such, it
contains many concepts and results which generalize and/or have
their counterparts in scalar optimization. The very definition of the
set of minimal points of vector optimization problem in the outcome
space may serve as an example here. This is a counterpart of the
optimal value of scalar optimization problem. Another example is
the concept of well-posed optimization problem. In subsequent de-
velopments we often compare our results and considerations with
the corresponding approaches in scalar optimization. For instance,
we define several classes of well-posed vector optimization problems
by generalizing the concept of scalar minimizing sequence and in
these classes we investigate continuity of solutions. For scalar op-
timization problems, the existing approaches and results on well-
posedness are extensively discussed in the monograph by Dontchev
and Zolezzi [33].




Convergence and rates of convergence of solutions to perturbed op-
timization problems is one of crucial topics of stability analysis in
optimization both from theoretical and numerical points of view.
For scalar optimization it was investigated by many authors see eg.,
[72], [32], [47], [78], [55], [81], [59], [60], [82], [2], and many oth-
ers. An exhaustive survey of current state of research is given in
the recent monograph by Bonnans and Shapiro {26]. In vector opti-
mization the results on Lipschitz continuity of solutions are not so
numerous, and concern some classes of problems, for linear case see
eg.,[28], [29], [30], for convex case see eg., [25], [31].

The organization of the material is as follows. In Chapter 2 we
investigate upper Hausdorff continuity of the multivalued mapping
M, M(u) = Min(['(u)|K) assigning to a given parameter value u
from a topological space U the set of minimal points of the set
I'(u) C Y with respect to cone KX C Y, where for any subset A
of a topological vector space Y the set of minimal points is defined
as Min(AIK) = {y€e A| An(y—K) = {y}},and ' : UZY,
is a given multivalued mapping. The main tool which allows us to
obtain the general result is the containment property (C'P). Some
infinite-dimensional examples are discussed. A special attention is
paid to the containment property (CP) in finite-dimensional case,
when Y = R™.

In Chapter 3 we discuss upper Holder continuity of the minimal
point multivalued mapping M . To this aim we introduce the rate
of containment & which is a one-variable nondecreasing function,
defined for a given set A and the order generating cone K. The
assumption of sufficiently fast growth rate of this function appears
to be the crucial assumption for all upper Holder stability results of
Chapter 3.

In Chapter 4 we apply the results obtained in Chapters 2 and 3
to derive conditions for upper Hausdorff and upper Hélder stability
of minimal points to parametric vector optimization problems by
taking I'(u) = f(u, A(u)). Moreover, we introduce the concept of
®— strong solutions to vector optimization problem (F;), which is
a generalization of the concept of a ¢—local minimizer to scalar
optimization problem, the latter being introduced by Attouch and




Wets [6].

In Chapter 5 we investigate the lower continuity and lower Hélder
continuity of the minimal point multivalued mapping M . To this
aim we introduce the notion of strict minimality mentioned above
and the rate of strict minimality. In Section 5.5 we apply the results
obtained in Chapter 5 to parametric vector optimization problems
and we derive sufficient conditions for lower and lower Hélder conti-
nuity of Pareto point multivalued mapping M. An important tool
here is the notion of ®— strict solution to vector optimization prob-
lem introduced in Section 6.1. This notion can be interpreted as
another possible generalization of the concept of ¢—local minimizer.

In Chapter 6 we propose several definitions of a well-posed vector
optimization problem. All these definitions are based on properties
of e—solutions to vector optimization problems. For well-posed vec-
tor optimization problems we prove upper Hausdorff continuity of
solution multivalued mapping S, S(u) = S(f(», ), A(u),K).




6.4 Continuity of solutions to vector optimization prob-
lems

7 Stability results

Now we prove the following stability results.

Theorem 7.0.1 Let X, Y, U ,Y , and K be as in Lemma 6.1, .
Assume that ug € U and

(z) Aisu.s.c atugand FA is sup-lower continuous at (x,uq)
forz € M(f,A) uniformly on M(f,A), f is K-lower continuous on
X,

(i) (P) 1s well-posed in the sense of Definition 6.2.2,

(tit) the set f(A) has the containment property, and the dom-
ination property,

(iv) M(f,A) = WM(f, A).

Then S is u.s.c. at ug.

Proof. Suppose that S is not u.s.c. at 1y. This means that there
exist a closed subset F C X, F'NS(uy) = @, and a sequence
(ug), limgry, = ug such that FNS(ug) # O. Hence, there exists
a sequence (zx), Tx € FNS(w), k=1,2,

Two situations are possible now:

(1) there exists a subsequence (xy,, ) of the sequence (z;) such
that zy,, € A(ug,) \ Aluw), m=1,2,....
(2) for all k sufficiently large x, € A(ug) N R(up).

Consider the case (1) and denote z,, = xx,,, m = 1,2,.... If
(2m) does not contain any convergent subsequence or contains
a subsequence with a limit point z; not belonging to A(uy),
then A is not u.s.c. at uy which contradicts (¢). Hence, suppose
that (2,,) contains a convergent subsequence with a limit point
zo € A(ug). Without loss of generality we can assume that
limmz, = 2. By Lemma 6.1, 2p must be in S(ug), which
contradicts the assumption that F' N S(ug) = 0.

Consider now the case (2), ie. for all k sufficiently large =, €
A(uy) N A(ug). Hence, we have

f(zy) € FA(up) N FA(ug).
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for all k sufficiently large. By Lemma 6.2, the sequence (z;)
must be a minimizing sequence. By (i), and Proposition 6.2.1,
(zx) contains a convergent subsequence with a limit point be-
longing to S(f, A). This, however, contradicts the assumption
that S(f,A)NF = 0.

Since sup-lower continuity is implied by the lower semicontinuity
and the uniformity is achieved on compact subsets we obtain the
following variant of Theorem 7.0.1

Theorem 7.0.2 Let X, Y, U and K be as in Lemma 6.1. Assume
that

(i) A is u.s.c. and Ls.c. at wy, and f is continuous on X,

(it) (P) is well-posed in the sense of Definition 6.2.2,

(7it)  the set f(A) has the containment property, and the
domanation property,

(iv) M(f,A) = WM(f, A),

(v) the set M(f,A) is compact.

Then the Pareto solution multifunction S is u.s.c. at uy.

Theorem 7.0.3 Let X, Y, U and K be as in Lemma 6.1.
Assume that
(1) FAisu.H.c. atuy and sup-lower continuous at (z,w), T €
M(f, A) uniformly on M(f, A), f is K-lower continuous on X, uni-
formnly on A,
(i) (P) is well-posed in the sense of Definition 6.2.4,
(zit)  the set f(A) has the containment property, and the
domination property,
(iv) M(f,A)=WM(f,A).
Then S is u.H.c. at up.

Proof. Suppose that & is not u.H.c. at up. This means that there
exist a neighbourhood W and a sequence (uy), limyur = uy,
and a sequence (zy), zx € S(u) such that

T € S(ug) + W, k=1,2,.... (%)
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Suppose that there exists an infinite subset of integers M; such

that
Ty € Alug) \ Alwg) for ke M. (xx)

Let (2,,) denote the sequence (Ti)kerm, = (2m)-

If cl((2m)) N A(ug) # 0, then there exists a point z; which is a
limit point of the sequence from (z,,) and belongs to A(ug). By
Lemma 6.1, 2o must be in S(uy), and we obtain a contradiction
with the assumption (*).

Hence, it must be cl((2,)) N A(ug) = 0. If there exists a neigh-
bourhood W1 of zero such that cl((2m)) N [A(u) + W1| = @,
then A is not u.H.c. at ug. Otherwise, for each neighbourhood
W of zero

c((zm)) N [A(uo) + W] # 0.

Hence, for each W there exists M such that for a certain (z,,) €
A(ug) we have

Zm ETm +W for m> M.

By the uniform lower-continuity of f on A, for each neighbour-
hood U of zero in Y there exists an index M1 such that

f(zm) € flzn) + U+ K for m> M1.

There exists a neighbourhood U1 such that (for an infinite num-
ber of m, say m € M3) we have

flxm) € [M(f,A) + UL}, me M3.  (x* %)

Indeed, if for each neighbourhood U and all m sufficiently
large, say m > M we would have f(z,) € [M(f,A) + U],
ie. f(xm) € Nm + U, m > M then (z,,) would contain a min-
imizing sequence. Without loss of generality (z,,) itself could
be assumed to be minimizing. And, by assumptions, it would
be contained in the set S(f, A) + W for any W and all m suff-
ciently large. In consequence, also (2y) for m sufficiently large
would be contained in any set of the form S(f, A) + W. This,
however would contradict the assumption (*).
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Thus, (* * *) must hold. Since all z,, for m > M, belong
to A(ug), for each m there exists an element y,, € M(f, A)
such that p,, = f(Zm) — ym € K. Moreover, because of (*
), Pm & Ul. By the containement property, there exists a
neighbourhood O such that

Pm+ O €K for m> M.

On the other hand, be the uniform sup-lower continuity of F.A4
we have

(Y + 1/20 — K) N FA(um) £ 0

for all m sufficiently large, ie.there exists a sequence (w,,) such
that

flwn) € FA(uy) and f(wy,) € ym +1/20— K
for all m sufficiently large and m > M. This gives
f(zm) = f(wm) =
[f(2m) = f(@m] + [f(Zm) — Ym] + lym — f(wm)]

€1/20 + pm + 1/20 + K
e+ KCK.

which contradicts the fact that 2z, € S(uz,).

Consider now the opposite situation and assume that for all k
sufficiently large

i € Alug) NAlug). (% * *x)

Consequently, we have also that
f(zx) € FA(ug) N FA(uo)

for all k£ sufficiently large. Now, by Lemma 6.2, the sequence
(zx) must be a minimizing sequence or z; & S(uy). Since z; €
S(uy) for all k (xx) must be a minimizing sequence. By well-
posedness, for each W there exists an index K such that

Tp € S(up) + W for k2> K.

This, however, contradicts (*) which finishes the proof.
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Figure 1: The feasible and optimal value sets in the space Y for examples 7.0.1
and 7.0.2

O
The following examples show that well-posedness does not imply
the containment property of the set f(A).

Example 7.0.1 Let us consider the vector optimization problem of

the function
| (=z,el®) fz>1
f(m)_{(:r,:cz) f0<zr<1

under the constrainis

00 < =z

The problem in Example 7.0.1 is well-posed but the set f(R)
does not have the containment property. In a simple modification
presented below the set f(A) has the containment property.

Example 7.0.2 Let us consider the vector optimization problem for
the function
(z, el %) ifzx>1

‘f(x):{(x,:rz) if0<z<1
under the constraints

0.0

IA
8
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Figure 2: The feasible and optimal sets in the objective space for Examples
7.0.1 and 7.0.2

7.0.1 Concluding remarks.

Two variants of Theorem 7.0.1 and Theorem 7.0.3 can be obtained
by applying Propositions 7?7 and ?7.

For instance, according to Proposition 7?7 the assumptions (ii7)
and (iv) of Theorems 7.0.1 and 7.0.3 can be replaced by the assump-
tion

(iv) — the set f(A) has the strong domination property.

It should be remembered, however, that this assumption is stronger
than the previous ones. For instance, in Example 7.0.2 the strong
domination property is not satisfied but it is easy to introduce per-
turbations to the problem in such a way that the assumptions of
Theorems 7.0.1 and 7.0.3 are satisfied and the solution multifunc-
tion has the respective continuity properties.

If we consider the definition of well-posed scalar optimization
problems as introduced eg. in [19], then one of the consequences
of well-posedness in that sense is that the problem in question has
nonempty solution set and, in consequence Min(f(A)|R*) is also
nonempty. According to the Remark ?7 the assumptions (i77) and
(iv) of Theorems 7.0.1 and 7.0.3 are then automatically satisfied
and we obtain the scalar counterparts of the above theorems (see

eg. [19]).
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