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Preface

We study stability of minimal points and solutions to parametric (or
perturbed) vector optimization problems in the framework of real
topological vector spaces and, if necessary, normed spaces. Because
of particular importance of finite-dimensional problems, called mul­
ticriteria optimization problems, which model various real-life phe­
nomena, a special attention is paid to the finite-dimensional case.
Since one can hardly expect the sets of minimal points and solu­
tions to be singletons, set-valued mappings are natural tools for our
studies.

Vector optimization problems can be stated as follows. Let X be a
topological space and let Y be a topological vector space ordered by
a closed convex pointed cone K. c Y. Vector optimization problem

K. - min lo{x)
subject to x E Ao , (Po)

where 1 : X ---+ Y is a mapping, and Ao C X is a subset of X, relies
on finding the set Min(fo, Ao,K.) = {y E 10{Ao) I10{Ao) n (y - K.) =
{y}} called the Pareto or minimal point set of (Po), and the
solution set S(fo, Ao,K.) = {x E Ao lfo{x) E Min(fo,Ao,K.)}. We
often refer to problem (Po) as the original problem or unper­
turbed one. The space X is the argument space and Y is the
outcome space.

Let U be a topological space. We embed the problem (Po) into
a family (Pu ) of vector optimization problems parametrised by a
parameter u E U ,

K. - min I{u,x)
subject to x E A{u), (Pu )

where 1 : U x X ---+ Y is the pararnetrised objective function and
A : U=::t Y , is the feasible set multifunction, (Po) corresponds to a
parameter value 'Uo . The performance multifunction M : uz; y ,
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is defined as M(u) = Min(f(u, '), A(u),K:) , and the solution mu1­
tifunction S ; U=t y , is given as S(u) = S(J(u,'), A(u), K), and
f : U X X ~ Y, A(u) eX.

Our aim is to study continuity properties of M and S as functions
of the parameter u. Continuous behaviour of solutions as functions
of parameters is of crucial importance in many aspects of the theory
of vector optimization as well as in applications(correct formulation
of the model and/or approximation) and numerical solution of the
problem in question.
We investigate continuity in the sense of Hausdorff and Holder of the
multivalued mappings of minimal points M(u) and solutions S(u)
as functions of the parameter u under possibly weak assumptions .
We attempt to avoid as much as possible compactness assumptions
which are frequently over-used (see eg [83]).
It is a specific feature of vector optimization that the outcome space
is equipped with a partial order generated by a cone the properties
of which are important for stability analysis. In many spaces cones
of nonnegative elements have empty interiors and because of this we
derive stability results for cones with possibly empty interior. This
kind of results are specific for vector optimization and do not have
their counterpart in scalar optimization.
We introduce two new concepts: the notion of containment(with
some variants for cones with empty interiors), [161, and the notion of
strict minimality, [12J.

The containment property (GP) , defined in topological vector spaces,
is introduced to study upper semicontinuities (in the sense of Haus­
dorff) of minimal points, [11, 16J . It is a variant of the domination
property (DP) , which appears frequently in the context of stability
of solutions to parametric vector optimization problems. Although
it is not a commonly adopted view point, the domination prop­
erty may be accepted as a solution concept which generalizes the
standard concept of a solution to scalar optimization problem. In
consequence, the containment property (GP) may also be seen as a
solution concept in vector optimization. To investigate more deeply
this aspect we interpret the containment property as a generaliza­
tion of the concept of the set of </J-Iocal solutions appearing in the
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context of Lipschitz continuity of solutions to scalar optimization
problems. Under mild assumptions the containment property im­
ply that the set weakly minimal points equals the set of minimal
points. This equality, in turn, is a typical ingradient of standard
finite-dimensional sufficient conditions for upper semicontinuity of
minimal points.
To study Holder upper continuity of minimal points we define the
rate of containment of a set with respect to a cone, which is a real­
valued function of a scalar argument, see [14, 15]. The rate of growth
of this function influence decisively the rate of Holder continuity of
minimal points, [15].

Strictly minimal points are introduced to study lower sernicontinu­
ities (lower Hausdorff, lower Holder) of minimal points [20, 13]- The
definition of a strictly minimal point is given in topological vector
spaces and it is a generalization of the notion of a super efficient
point in the sense of Borwein and Zhuang defined in normed spaces.
We discuss strict minimality in vector optimization by proving that
it is a vector counterpart of the concept of ifJ- local solution to scalar
optimization problem.

Theory of vector optimization may be considered as an abstract
study of optimization problems with mappings taking values in the
outcome space equipped with a partial order structure. As such, it
contains many concepts and results which generalize and/or have
their counterparts in scalar optimization. The very definition of the
set of minimal points of vector optimization problem in the outcome
space may serve as an example here. This is a counterpart of the
optimal value of scalar optimization problem. Another example is
the concept of well-posed optimization problem. In subsequent de­
velopments we often compare our results and considerations with
the corresponding approaches in scalar optimization. For instance,
we define several classes of well-posed vector optimization problems
by generalizing the concept of scalar minimizing sequence and in
these classes we investigate continuity of solutions. For scalar op­
timization problems, the existing approaches and results on well­
posedness are extensively discussed in the monograph by Dontchev
and Zolezzi [33].
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Convergence and rates of convergence of solutions to perturbed op­
timization problems is one of crucial topics of stability analysis in
optimization both from theoretical and numerical points of view.
For scalar optimization it was investigated by many authors see eg.,
[72], [32], [47], [78], [55), [81], [59], [60], [82], [2], and many oth-
ers. An exhaustive survey of current state of research is given in
the recent monograph by Bonnans and Shapiro [26]. In vector opti­
mization the results on Lipschitz continuity of solutions are not so
numerous, and concern some classes of problems, for linear case see
eg.,[28], [29], [30], for convex case see eg., [25], [31].

The organization of the material is as follows. In Chapter 2 we
investigate upper Hausdorff continuity of the multivalued mapping
M, M(u) = Min(r(u)IK:) assigning to a given parameter value u
from a topological space U the set of minimal points of the set
r(u) C Y with respect to cone K: C Y, where for any subset A
of a topological vector space Y the set of minimal points is defined
as Min(AIK:) = {y E A I A n (y - K:) = {y}}, and r : U=t Y,
is a given multivalued mapping. The main tool which allows us to
obtain the general result is the containment property (GP). Some
infinite-dimensional examples are discussed. A special attention is
paid to the containment property (GP) in finite-dimensional case,
when Y = Jrl.

In Chapter 3 we discuss upper Holder continuity of the minimal
point multivalued mapping M . To this aim we introduce the rate
of containment 8 which is a one-variable nondecreasing function,
defined for a given set A and the order generating cone K:. The
assumption of sufficiently fast growth rate of this function appears
to be the crucial assumption for all upper Holder stability results of
Chapter 3.

In Chapter 4 we apply the results obtained in Chapters 2 and 3
to derive conditions for upper Hausdorff and upper Holder stability
of minimal points to parametric vector optimization problems by
taking r(u) = f(u, A(u)). Moreover, we introduce the concept of
{p- strong solutions to vector optimization problem (Po), which is
a generalization of the concept of a q'>-local minimizer to scalar
optimization problem, the latter being introduced by Attouch and
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Wets [6J.

In Chapter 5 we investigate the lower continuity and lower Holder
continuity of the minimal point multivalued mapping M. To this
aim we introduce the notion of strict minimality mentioned above
and the rate of strict minimality. In Section 5.5 we apply the results
obtained in Chapter 5 to parametric vector optimization problems
and we derive sufficient conditions for lower and lower Holder conti­
nuity of Pareto point multivalued mapping M. An important tool
here is the notion of <l>- strict solution to vector optimization prob­
lem introduced in Section 6.1 . This notion can be interpreted as
another possible generalization of the concept of tj>-local minimizer.

In Chapter 6 we propose several definitions of a well-posed vector
optimization problem. All these definitions are based on properties
of c-solutions to vector optimization problems. For well-posed vec­
tor optimization problems we prove upper Hausdorff continuity of
solution multivalued mapping S, S(u) = S(f(u,'), A(u), K).
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5

Lower continuity of minimal points with respect
to perturbations of the set.

The questions of lower semicontinuity of minimal points arise in
investigation of some other problems, for instance, in vector varia­
tional inequalities, duality theory etc. The results obtained can be
directly applied to stability of vector optimization problems.

In infinite-dimensional spaces. lower semicontinuity of minimal
points was investigated by several authors, eg., by Attouch and Riahi
[4], Penot and Sterna-Karwat [?], present author [?]and others, and
in finite-dimensional spaces, by Gorokhovik and Rachkowski [381.
Tanino, Nakayama, Sawaragi [83].

In finite-dimensional spaces, the key requirement which allows to
prove lower semicontinuity of minimal points under perturbations is
the density of properly minimal points in the set of minimal points
(see eg [38]). The same remains true in any topological vector space
with the notion of proper minimality suitably defined. In Section
5.2 we introduce the notion of strictly minimal points (Definition
5.2.1). In normed spaces, strict minimality generalizes the notion
of super efficiency (see [27]). In Section 5.3 we give our main result
(Theorem 5.3.1), where the key requirement is the density of strictly
minimal points in Min(AIK:). Conditions ensuring this property are
given in [?I,[?].

5.1 Strong proper minimality

Let A be a subset of Y. The domination property (DP) holds for
A if A C Min(AIK:) +K:. H a cone K.u C Y is not pointed, then
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ao E Min(AI}Co) means that (A - ao) n (-Ko) c }Co.
A point ao E A is strongly properly minimal, (see also [1]), ao E

SPMin(AI}C), if there exists a dosed convex cone Ko, }Co f Y,
intKo f 0, }C \ {O} C intKo, such that for each O-neighbourhood
W there exists a O-neighbourhood 0

(K \ W) +0 C }Co, (24)

(25)

and ao E Min(AIKo).
Cone K has a base 8 if e is convex, 0 f/ cl8 , where cl(·) stands

for the closure, and X = cone(8). For any O-neighbourhood V, we
put

}Cd(V) = cone(8 +V).

Proposition 5.1.1 Let K be a closed convex cone with a base 8,
and let Ko be a closed convex cone/Co f Y, intKo f 0, K \ {O} C
intKo. If}Co satisfies 24, then

Kd(V) c }Co

for some 0-neighbourhood V .

Proof. Since 0 f/ de, there exists a a-neighbourhood W such
that 8 n W = 0. By 24, there exists a O-neighbourhood 0
such that 8 +0 C }Co, or Kd(O) = cone(8 +0) C Ko.

o
Proposition 5.1.2 Let K be a closed convex cone with a topolog­
ically bounded base e. For any 0- neighbourhood V, cone Kd(V)
satisfies condition 24, ie., for each O-neighbourhood W there exists
a 0-neighbourhood 0 sudi that

(26)

Proof. Let W be a O-neighbourhood. Since 8 is topologically
bounded, there exists .x > 0 such that A8 C W , for 0 ~ A < .x ,
and for x E K\W , we have x = A:r:():r: , where A:I: > .x . Moreover,
there exists a a-neighbourhood 0 such that 0 C xv Hence

- .x
x + 0 C Ax8x + AV = AxWz: + :f"V) C oone(8 + V).

:r:
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o
In Proposition 5.1.2, the boundednesa of e is important as shows

the example below.

Example 5.1.1 Let Y = f:'" , and IC = l'f. The functional f(x) =
E:'l ~ has the properly that f(x) > °for x E IC \ {O}. Hence, the
set

e = {x E IC I f(x) = I}

is a base of IC. e is unbounded since the sequence {x.} C e,

x. = (0, ...,0 ..t. ,0, ...)
k-th JlOOilion

is unbounded and the condition 26 is not satisfied. To see this let us
take a sequence {y.} C IC \ w, w = {x E e- sup" Ix,,1 < I}, and
{q.}, where

•

1

~
1;- th poeition

,0, ...).

Now, Y. + qk fi cone(e + V), for any O-neighbourhood V smaller
than if = {x EF'l sup" Ix,,1 < I}, since

1 1
z. = Yk + qk = kX• + q. = k[Xk +Pk) ,

where P. = (0, ..., 0, .-!,.. ,0, ...). The main drawback here is
i-th po.sition

the fact that Yk has the representation Yk = A.(Jk with {A.} tending
to zero.

Corollary 5.1 Let IC be a closed convex cone with a topologically
bounded base e in a locally convex space Y and let A be a subset of
Y. The following conditions are equivalent:

(i) a E SPMin(AIIC),

(ii) a E Min(AlclX:d(V)), where V is a convex O-neighbourhood.
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Proof. (ii) -+ (i). If a E Min(AlclKd(V)) , then by Propo­
sition 5.1.2, clKd(V) satisfies condition 24, and hence a E

SPMin(AIK) .

(i) -+ (ii) Let a E SPMin(AIK). Then a E Min(AIKo) ,
where Ko satisfies 24. By Proposition 5.1.1, there exists a
O-neighbourhood V such that 25 holds, and hence a E Min(AlclKd(V)).

o
Let us note that in any locally convex space, for all sufficiently small
neighbourhoods V, Kd(V) are pointed, which may not be the case
for clKd(V) .

5.2 Strict minimality.

Let A c Y be a subset of a real Hausdorff topological vector space
Y , and let K be a closed convex pointed cone.

Definition 5.2.1 An element ao E A is strictly minimal (see also
(!J), denoted byao E SMin(AIK) , if for any O-neighbourhood W
there exists a O-neighbourhood° such that

Equivalently

[(A \ (t1{) + W)) + OJ n [ao - Kj = 0.

(A - 11{}) n [0 - Kj C W.

(27)

(28)

Each strictly minimal point is clearly minimal. Moreover, the
following proposition holds.

Proposition 5.2.1 For any subset A of Y we have

SPMin(AIK) C SMin(AIK)

Proof. Let an E SPMin(AIK) and W be any O-neighbourhood.
By 24, there exists a O-neighbourhood °such that [K \ Wj +°C s:«. Let W 1 be a O-neighbourhood such that W 1 + W 1 C
W . By 0 1 we denote a O-neighbourhood such that [K \ Wd +
0 1 c Ko.

We claim that [(A \ (£10 + W)) + 0 1 n Wd n [t1{) - KJ = 0.
Otherwise, it would be (a - £10) + q = -k, for some a E A \
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(110+ W), q E wlnOl, and k E!C. We would have k E!C\Wl
since otherwise a - 110 E W. But then, by 24, it would be
-k - q = a - 110 E -!Co, which is a contradiction with the
minimality of 110 with respect to !Co. This proves that 110 E
SMin(AI!C)·

o

A characterisation of strict minimality via section mapping S :
Y -t Y, S(y) =A n (x -!C) , is given in Th.2 and Corollaries 1 and
2 of [1).

Proposition 5.2.2 If!C is nonnal, then 0 E SMin(!CI!C) .

Proof. Since!C is normal, for each O-neighbourhood W, there
exists a O-neighbourhood 0 such that [0 +!Cl n [0 -!C] c W,
and thus !C n 10 -!C] c W •

o
The following proposition gives a characterisation of strict mini­

mality in terms of nets.

Proposition 5.2.3 Let A c Y be a subset of the space Y and eo E
Min(AIIC). The following are equivalent:

(i) 110 E SMin(AI!C) ,
(ii) [or any nets {x",}, {Yet} such that {x",} c A, y", E x" +!C,

and y", -t ll(), it must be x", -t ll().

Proof. Suppose on the contrary that there exist two nets {x",}, {y",}
such that {x",} cA, Y", -t ll(), x", $K y"" and x'" does not tend
to ll(). This means that there exists a V-neighbourhood W such
that for a certain subnet {xJl} C {x",} we have xJl - ll() It W.
On the other hand, YJl = XJl + cJl' for some cJl E!C, or

XJl - ll() = YJl - 110 - cJl.

Since {YJl} tends to 110 , for each O-neighbourhood V we have
YJl - 110 E V for P2: P.·
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Hence, {x,l3,,} forms a subnet of {x,e} and x,e" - l1{) E [A­
ao] n [V - Kl, but x,e" - ao ~ W, which contradicts the strict
minimality of ao .
Suppose now that l1{) ~ SMin(AIK) . There exists a O-neighbourhood
W such that for each a-neighbourhood V one can find Xv EA,
qv E V, Cv E K such that

X v - ao = qv - Cv ,

where qv tends to zero and Xv - ao ~ W. Moreover, Xv + Cv =

qv+ ao , ie, Xv ~K Yv = qv+ao, and {Yv} tends to l1{) but {xv}
does not. This contradicts (ii).

o
By Propositions 5.2.2, 5.2.3 and Proposition 1.3 of [11 we get the

following corollary.

Corollary 5.2 K is normal if and only if aE SMin(KIK) .

Example 5.2.1 1. Let Y = £00, and K = £c: be a natural order-
ing cone, K = {x = (x n ) E £00 I X n ~ 0 nE N}. Let

A = {x E £00 Illxlloo ~ 1}.

We havexo = (-1, -1..., -1, ...) E Min(AIK) andxo E SMin(AIK).
To see the latter we need to show that for every e > 0 there ex-
ists 8 > a such that for all y E (A - xo) n (Q - K), where
Q = {q E £00 I IIqlloo < 8}, we have Ilvlloo < c. Indeed, let
V = x - Xo = q - k, where X E A, q E Q, k E K. Since
IIxo +q - kll oo ~ 1 we have kn

~ qn for all n E N, and conse­
quently

Iqn - knl ~ qn + r: ~ 2qn ,

which means that it is enough to take 8 = e/2 .

2. A s previously, let Y = foo, and let K = f'f be a natural ordering
cone. Let

A = {x E foo I f (x) = a}

where f is a continuous linear functional, f(x) = 2:~=1 ~. The
setA is a subspace and Min(AjK) = A. ButSMin(AIK) = 0.
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First we show that 0 (j. SMin(AIA:). Consider the sequence
{Xk} c A defined as

1 _2k - 1

Xk=(k'0, ...O, k ,0, ...).
" ... .J

t-th position

•

•

Ck =(0, ...,0,
2k- 1

.s:
k-th poo;Uon

,0, ... ) EA:,

and IIqklloo = t, IIxklloo = 2';' > 1. According to Propo­
·sition 5.12.:J, 0 (j. SMin(AjA:). To see that for any a E A,
a (j. SMin(AjA:), consider the sequence {Zk} C A, Zk = Xk +a.
Now, it is enough to observe that Zk - a = qk - Ck, and to apply
Proposition 5.2.9.

5.3 Main results

Let Y be a real Hausdorff topological vector space and let r :U -+ Y
be a multivalued mapping defined on a topological space U. By
M we denote the multivalued mapping, M ; U -+ Y, M(u) =
Min(r(u)IA:) .

Theorem 5.3.1 Let A: be a dosed convex pointed cone in Y, and
ll() E domr. Assume that

Min(r(ll()IA:) C d(SMin(r(Uo) lA:)) , (29)

and (D P) holds for all I'[u) in a certain neighbourhood Uo of ll(). If
r is A:-l.c. and u.H.c. at Uo I then M is l.c. at (Uo).

Proof.
Let us note first that since r(Uo) =F 0 and r is A:-l.c. at Uo,
it must be r(u) =F 0 in some neighbourhood (; of ll(), and, by
(DP) , Min(r(u)IA:) =F 0, for u E (; n Uo.
Take any Yo E Min(r(ll())lA:) . We show that M is I.e. at
(!lo, Uo). Let W be a O-neighbourhood,and let W1 , W2 be
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O-neighbourhoods such that W 1+W 1 C ItV and W2+W 2 C W 1 •

By (29), there exists Yl E SMin(r(uo)IK) , Yl E Yo + W 2 • By
strict minimality of Yl, there exists a O-neighbourhood 0 such
that

Therefore,

for any O-neighbourhood 0 1 such that 0 1 + 0 1 cO.

On the other hand,

There exists a neighbourhood U1 of'll() such that for all u E U1

r(u) c r(uo) + 0 1 n W2 (31)
c [(r(tl<J) \ (Yl +W2 ) ) + 0 1 n W2} U (Yl + Wd·

Moreover, there exists a neighbourhood U2 of Uo such that for
u E U2

(Yl + 0 1 n W2 - K) n r(u) =I 0,
i.e., for each u E U2 there exists Yu, Yu E I'(u) n (Yl + 0 1 n
W2 - K) , and consequently

Yu - K C Yl + 0 1 n W2 - K .

Now, by 30,

By 31, for u E U1 n U2

(Yu - K) n r(u) C Yl + W1 C Yo + W.

By (DP) , for each u E uOnU1nU2 there exists n, E Min(r(u)IK) =
M(u) such that

17u E (Yu - K) n r(u) c Yo +W,

which completes the proof.
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o
Note that in the proof we use K-lower continuity of I' only in

the vicinity of Yo.
In view of Proposition 5.2.1, by Theorem 5.3.1, we can formulate

the following result which generalizes Theorem 3.1 of [1].

Theorem 5.3.2 Let K be a closed convex pointed cone in Y, u.o E
domf. If

Min(f(u.o)IK) c cISPMin(r(Uo)IK) , (32)

I' is u.H.c. and K-I.c. at u.o ,and (DP) holds for. all I'(u) in some
neighbourhood of Uo l then M is I.e. at u.o.

Sufficient conditions for lower continuity of minimal points can
also be given by assuming that 0 is a strictly minimal point of K l

which, by Corollary 5.2, amounts to saying that K is normal. We
have the following result.

Theorem 5.3.3 Let K be a closed convex nonnal cone in Y. As­
sume that f(u.ol is closed, cLMin(r(u.o)/K) is compact, and (DP)
holds for all r(u) in a certain neighbourhood Uo of Uo.

Iff is K-Lc. and u.Hic: at Uo, then M is l.c. at Uo.

Proof. Let Yo E Min(f(u.o)IK). We start by showing that, under
our assumptions, for any O-neighbourhood W there exists a
O-neighbourhood V such that

[«Min(r(u.o)IK) + K) \ (Yo +W)) +VI n (Yo - K] =0. (33)

To see this, suppose on the contrary that there exists some W
such that, for any O-neighbourhood V , we have

Yo - kv = 1Jv +k~ +qv = Zv +qv ,

where kv, k~ E K l 1Jv E Min(r(u.o)IK) , Zv = 1Jv+k~ ~ Yo+ W,
and the net qv tends to O. Since clMin(f(u.olIK) is compact,
the net {1Jv Iv E· V} contains a converging subnet. Without
loss of generality we may assume that the net itself converges
to a certain 1J E I'[Uo). Consequently,

•

•

Yo-1J=limkv+k~,
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and, since K, is closed, Yo - TJ E K, which implies that Yo = TJ .
By 34, lim ku + k~ = 0, and, since K, is normal, by Proposition
1.3 p.62 of [1], {kv } and {k~} both tend to zero. By taking any
O-neighbourhood W1 such that W1 +W1 C W , one can find a
O-neighbourhood \10 such that for all V C yo we have TJu +k~ C

TJ +W1+W1 C Yo + W , contradictory to the assumption that
TJv + k~ fj. Yo +W . This proves 33 .

Let W 1 be a O-neighbourhood such that W1 + W 1 C W.
By 33, there exists a O-neighbourhood VI such that for any
O-neighbourhood V2, V2 + V2 C V1, we have

[((Min(r(Uo)IK,) +K,) \ (Yo +Wt}) +V2 ] n [(Yo +V2) - K,! = 0.

On the other hand, since (DP) holds for r(Uo) ,

r(Uo)+V2nW1 C [((Min(r(1l{))IK,) +K,) \ (Yo +W1 ) ) + V2 n W1! U (Yo + W).

There exists a neighbourhood U1 of Uo such that

r(u) c [((Min(r(Uo)IK,) + K,) \ (Yo +W1 ) ) + V2 n Wd u (Yo +W).
(35)

for u E VI' Moreover, there exists a neighbourhood V2 of Uo
such that

iu« + V2 n W1 - K,) n r(u) 1= 0,
for u E U2. Hence, for u E U2 there exists Yu E r(u) n (Yo +
V2 n W1 - K,) , and

u« - K, C Yo + V2 n W 1 - K, .

Since, u; E V2 n W1 C V2 , by 33,

(Yu - K,) n [((Min(r(uo)IK,) +K,) \ (Yo + Wd) + V2 n W1] = 0.

By 35, and by (DP), for u E u; n U1 n U2 , there exists TJu E

Min(r(u)IK,) such that

TJu E (Yu - K,) n r(u) c (Yo + W) . (36)

This completes the proof.

o
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5.4 Lower semicontinuity of minimal points in normed
spaces

Let Y be a reel linear normed space with the closed unit ball B.
We start with the following proposition.

Definition 5.4.1 ([48],[49]) We say that cone I( C Y allows plas­
tering if there exists another closed convex pointed cone /Co such
that for each k E le

k +bllkllB c /Co,
where b > 0 is independent of k .

Proposition 5.4.1 The following are equivalent:
(i) there exists a closed convex pointed cone 1(0 satisfying condi­

tion (2.0,
(ii) le allows plastering /Co ,
(iii) I( has a bounded base.

Proof. (i) - (ii) . If le allows plastering /Co, then for any e > 0
and k E 1(, IIkll ~ e , we have k +beE C /Co and /Co satisfies
condition (24) .

Suppose IlOW that /Co satisfies condition (24). There exists
b> 0 such that for ko E le, llkoll ~ 1, we have

ko+bB c /Co . (37)

'Iake any c E le. By37, ko+bB c 1(0, whereko = k/llkll E le.
Consequently, k + bllkllB c /Co, which means that I( allows
plastering /Co .
(ii) -+ (iii). Suppose that cone le allows plastering /Co. This
means that there exists a linear continuous functional f E fCt
which is strictly uniformly positive on le, ie.,

f(x) ~ bllxll for x E le .

The set El = {x E le I/(x) = I} is clearly bounded closed and
COIlvex, O!t El , and I( = cone(8) .

(iii) -+ (ii). For the proof of this part see Krasnoselskii [48).
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o
A point ao E A is said to be super efficient [271, ao E SE(AIK:) ,

if there exists a number M such that

cl (cone (A - ao))n (B - K:) C M B.

Proposition 5.4.2 For any subset A of Y we have

SE(AIK:) C SMin(AIK:).

Proof. Suppose on the contrary that ao f/. SMin(AIK:). By 28,
there exists co > 0 such that for each n

[(A - ao) \ eoBI n [l/nB - K:] i- 0,

and one can choose an E A, lIan - Cl{)1l 2: co, such that an ­
Cl{) = 1/n(bn - k n ) . Consequently, n(an - ao) = bn - kn and
IIn(an - ao)1l -+ +00, which means that ao f/. SE(AIK:).

o
Theorem 5.4.1 Suppose that K: has a bounded base 8. Then

SPMin(AIK:) = SE(AIK:).

Proof. If Cl{) E SPMin(AIK:), then, by Proposition 5.1.1, there
exists e > 0 such that

(A - ao) n (-K:d(e)) = {O} ,

where, as previously, K:d(e) = cone(e +cB) . Thus, cone(A ­
ao) n (cB - 8) = 0. Now, by the same arguments as those
used in the proof of Proposition 3.4[27], we conclude that ao E
SE(AIK:) .
Suppose now that Cl{) f/. SPMin(AIK:). By Proposition 5.1.1,
for any e > 0

(A - Cl{)) n [-cone(8 +cB)] i- 0.

Equivalently, cone(A - Cl{)) n (-8 + cB) i- 0. By the same
arguments as those used in the proof of Theorem 4.1 [39], ao f/.
SE(AIK:), which completes the proof.
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In view of the above results, in normed spaces we have the following
variant of Theorem 5.3.2.

Theorem 5.4.2 Let Y be a rwllinear nonned spac£ and KeY a
dosed convex pointed cone in Y. Let Uo E doml' . Suppose that

,

•

Min(r(Uo)IK) C cl(SE(f(Uo)IK)) , (38)

and (DP) holds for all I'(u) in a certain neighbourhood U« of Uo. I]
fisK-I.e. at (l/(J, Uo) and u.H;c. at Uo, then M is Le. at (1/0, Uo) .

Proof. By Proposition 5.4.2, each super efficient point is strictly
minimal, and by Theorem 5.3.1, the assertion follows.

o

Let K be a Bishop-Phelps cone, i.e.,

x; = {y E Y Ifey) ~ allyllllfll},
where I is a linear continuous functional on Y and 0 < a < 1. This
is a closed convex pointed oone. If it is nontrivial, then Ka has a
bounded base e

e = {z EKI/(z) = I}.

The following characterisation holds.

Proposition 5.4.3 Let Y be a real linear nonned space, A a nonempty
subset of Y and ao E Min(AIK,,). If there exi8ts fJ < a such. that
ao E Min(AIKp), then ao E SPMin(AIK,,) .

Proof. By Proposition 5.4.1, cone Kp satisfies condition 24. More­
over, for z E Ka , IIzll ~ E: , we have

I(z+o) = I(z)+1(0) ~ all/ll.lIzl1 +1(0)
~ allz + 011 . 11/11- all/ll.lIoll- 11111.11011
~ 1I/11·lIz + 011 la - (~+:?l\I"] .

94

•



(39)

To have 0' - (a+l}lIoll > {3 we choose
t:-lIol1

11
011

< (a - {3)c
20' + 1 - {3

o
From Proposition 5.4.3 it follows that K a allows plastering K f3 ,

{3 < a, with b= (0' - {3)/(2O' + 1 - {3) .
For Bishop-Phelps cones, the following well-known result [67],

gives sufficient conditions for the domination property to hold.

Theorem 5.4.3 Let Y be a Banach space and A a nonempty closed
subset of Y . If inf f(A) > -00, then for any a E A there exists
llQ E A such that ao E a - K a and ao is minimal.

By Theorem 5.4.3 and Proposition 5.4.3 we obtain the following
stability result.

Theorem 5.4.4 Let Y be a Banach space and I'(uo) f:. 0. Assume
that there exists a neighbourhood Uo ofUo such that all the sets r(u)
are closed and infvEf(U) f(y) > -00,

If
Min(r(uo)IKa ) C cl(UMin(r(uo)lKf3 ) ) ,

f3<er.

r is K-l.e. and u.H.c. at 'UQ, then M is l.e. at 'UQ.

Proof. Follows from Theorem 5.4.3, Theorem 5.4.3, and Theo-
rem 5.3.2. 0

Theorem 5.4.4 can be viewed as a variant of the stability result
proved by Attouch and Riahi [4].

Conditions 29 of Theorem 5.3.1, 32 of Theorem 5.3.2 and 38 of
Theorem 5.4.2 are density type requirements. Density property has
been investigated on different levels of generality and for different
notions of proper minimality (e.g., [271, [?J, [?], [44]). Here we use
the result of Borwein and Zhuang [27].

We say that a subset A of Y is K-lower bounded if there is a
constant M > 0 such that

AcMB+K.
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A subset A is K:-Iower bounded if either it is topologically bounded,
Le., A c M B for some positive constant M > 0, or there exists an
element m such that a - m E K: for all a EA.

Theorem 5.4.5 (Borwein, Zhuang (27)) LetY be a Banach space,
K: an ordering cone and A a nonempty subset 0/Y . Assume that K:
has a closed and bounded base e. 1/ either of the following cowli­
tions is satisfied, then SE(AIK:) is norm-dense in the nonempty set
Min(AIK:):

(i) A is weakly compact;
(ii) A is wealcly closed and K:-lower bounded while e is weakly

compact.

For convex sets condition (ii) can be rewritten in the form
(ii)' A is convex and closed and '\;-lower bounded while e is

weakly compact.
In view of this result we can rewrite Theorem 5.4.2 in the follow­

ing form .

Theorem 5.4.6 Let Y be a Banach apace. Suppose that lC posseses
a weakly compact base, r(Uo) is closed and comiez, Min(r(Uo)IK:)
is botInded, and (DP) holds/or all r(u) in a certain neighbourhood
ofUo.

If r is K:-Lc. and u.H.c. at Uo, then M is I.c. at Uo .

Proof. It is enough to observe that if Min(r(Uo)lK:) is topo-
logically bounded and (DP) holds for r(Uo), then r(Uo) is
'\;-bolUlded. Thus, by Theorem 5.4 .5, Min(r(Uo)IK:) C cl(SE(r(Uo)IK:)).
Now, the assertion follows from Theorem 5.4.2.

o

Theorem 5.4.7 Let Y be a Banach space. Suppose that K: has a
bounded base and all the sets r(u) in a certain neighbourhood VD of
Uo are weakly compact. If r is u.H. c. andK.« Lc. at Uo I then M is
l.c. at Uo .
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5.5 Modulus of minimality.

Definition 5.5.1 ([12],[20]) (Strict minimality) We say that x E
Min(AIK:) is strictly minimal point, x E SM(AIK) , if for each
e > 0 there exists b > 0 such that

[A \ B(x, e)]n [(x + oB(O, 1)) - K:] = 0.

Definition 5.5.2 (Modulus of minimality) The modulus of min­
imality of A, SMin(AIK:) =I- 0, is the junction m : R+ -+ R+,
defined as

m(c) = inf v(c, x) (40)
XESM(AIK:>

where v : R+ x SM(AIK) ----t R+, is the modulus of minimality o]
x E SMin(AIK:) defined as

v(c, x) = sup 0 (41)
0:

(A \ B(x, c))
n[x + oB(O, 1) - K:] = 0.

Equivalently,

[(A \ B(x,c)) + bB(O, 1)] n [x - K:] = 0. (42)

5.6 Lower Holder continuity of minimal points

Theorem 5.6.1 Let Y be a normed space and let K: c Y be a closed
convex pointed cone. Assume that r : V ----t Y is a set-valued map­
ping defined on a normed space U . If

(i) M(uo) c cl(SM(Uo)) , and for any e > 0, for all z E SM(Uo) ,
m(c) > 0 and

[(r(Uo) \ (z +e- B») +m(c) . B] n (z - K:) = 0,

(ii) DP holds [or all I'(u) in some neighbourhood VI o] uo,

(iii) r is Hausdorff continuous at Uo, ie., [or each € > 0 there exists
a neighbourhood U2 of Uo such that

r(u) c r(Uo) + e -B,
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and
r(Uo) c I'(u) + c . B ,

for u E U2 ,

then M is lower Hausdorff semicontinuous at Uo, ie., for each e > 0

M(Uo) c M(u) + c . B,

for u E U1 n U2 •

Proof. Let us take any e > 0, and yE M(Uo) . By (i), there exists
Yl E SM(uo) , such that YI E Y + ~c' B, and

1 1
[(r(uo) \ (YI + 2"c' B» + m(2"c)' Bl n (Yl - K) = 0.

Hence
1 1 1 1 1

[(r(UO)\(Yl +2"c.B»+ 2"m(2c).Bjn (Yl+2m(2"c).B-IC) = 0.
(43)

I. Consider first the case , where m(c) ~ ~c. By the upper
Hausdorff semicontinuity of r, for u E U2 ,

I'(u) c r(uo) + ~m(~c) . B
c [(r(uo) \ (Yl + ~c' B» + !m(~c) . B] U [YI + (~m(!c) + ~c) . El,

(44)
and by the lower Hausdorff semicontinuity of r, for u E U1

there exists Y2 E r (u) such that

1 1
Y2 E Yl + 2m(2"c) . B ,

and,

By (43),

(Y2 - IC) n [(r(u) \ (Yl + ~c. B» + ~m(~c) . Bl = 0.

Now, by (44), for u E UI ,
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Since (DP) holds for f(u) , for u E VI n U2 there exists 772 E
M(u) such that

and since m(e) ::; 4e,
3

1]2 E YI + :r~ .Bey +e . B .

This means that for u E VI n U2

M(U{)) c M(u) +e- B,

which completes the proof in the case 1.

Consider now the case 11, where m(e) > ~e. By the upper
Hausdorff semicontinuity of f , for u E U2 ,

r(u) c r(uo) + le. B
c [(f(Uo) \ (y + ~c' B)) + ~e. Bl U [Yl + (~e + ~c) . B],

(45)
and by the lower Hausdorff semicontinuity of r, there exists
Y2 E r(u), u E U2 , such that

In consequence

and by (43),

1 1 1
(Y2 - K.) n [(r(uo) \ (YI +2e . B)) +2m(2e) . Bl = 0.

Since !m(~c) > ~c the latter implies that

1 1
(Y2 - K.) n [(r(uo) \ (Yl + 2e · B)) + BC' El = 0.
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and

Now, by (45),

5
(Y2 - K) n r(u) C YI + BC' B.

Since (DP) holds for r(u) , u E UI , there exists 172 E M(u) ,
u E U1 n U2 such that

5
172 E (Y2 - K) n r(u) C YI +8c' B,

7
1]2 E Y + BC . Bey +e . B .

This means that for u E UI n U2

M(U{) c M(u) + C' B,

which completes the proof.

n

Theorem 5.6.2 Let Y be a normed space and let KeY be a closed
convex pointed cone. Assume that r :U --+ Y is a set-valued map­
ping defined on a nortned space U . If

(i) M(u) c cl(SM(u» , for any u E UI and for any e > 0, for all
Z E SM(u) , m(c) = infu EU1 m(c, u) > 0, where m(., u) is the
modulus of minimality of the set I'(u) , and

[(r(u) \ (z +c· B») + m(c)' Bl n (z - K) = 0,

(ii) DP holds for r(uo)

(iii) r is Hausdorff continuous at Uo, ie., for each e > 0 there exists
a neighbourhood U2 of Uo such that

r(u) c r(uo) +C' B,

and
r(Uo) c r(u) +c· B,
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then M is upper Hosisdorff semiconiinuous at 1to, ie., for each e > 0
there exists a neighbourhood U3 of Uo such that

M(u) c M(Uo) +e -B,

[or u E U3 •

Proof. Let UB take any e > 0, and y(u) E M(u) , u E U1 n U2. By
(i), there exists Yl(U) E SM(u) , such that Yl(U) E YI + ~c' B,
and

Hence

11111
[(r(u)\(Yl(u)+2€·B))+2 m (2c).Bjn(YI(u)+2m (2c).B-K) = 0.

(46)
Consider first the case where m(c) ::; t€. By the lower Haus­
dorff semicontinuity of I' , for u E U2 ,

r(uo) c r(u) + ~m(4c) . B
c [(r(u) \ (Yl(U) + ~c' B)) + ~m(!c)' B] U [YI(U) + (~m(~c) + ~c) . Bl,

(47)
and by the upper Hausdorff semicontinuity of I", there exists
Y2(UO) E r(Uo) such that

1 1
Y2(Uo) E YI(u) + 2m(2€) . B,

for any u E U2 , and,

By (46),

. 1 1 1
(Y2(UO) - K) n [(r(u) \ (YI(U) + 2c' B)) + 2m(2c) . Bl = 0.

Now, by (47), for u E U1 n U2 ,
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Since (DP) holds for r(uo), for u E UI n U2 , there exists
7]2(UO) E M(14l) such that

and since m(e) :::; ~£,

3
7]2(UO) E YI(U) + 4£' E c y(u) +£. E.

This means that for U E UI n U2

M(u) c M(uo) +£. B,

which completes the proof in the case I.

Consider now the case I1, where m(£) > ~£. By the lower
Hausdorff semicontinuity of r, for u E UI ,

r(uo) c r(u) + ~c' E
c [(I'(u) \ (Yl(U) + ~£' E)) + ~£. El U [Yl(U) + (lc + ~c)' El,

(48)
and by the upper Hausdorff semicontinuity of r, there exists
Y2(UO) E r(uo) I u E UI , such that

1 1
Y2(Uo) E Yl(U) + 2m(2c) . E.

In consequence

1 1
Y2(UO) - K:c: Yl(U) + 2"m(2"c) . E - K,

and by (46),

111
(Y2(Ui» - K) n [(r(u) \ (Yl (u) + 2"c' E)) + 2"m(2"£) . El = 0.

Since !m( ~£) > ~£ the latter implies that

(Y2(UO) - K) n [(f'(u) \ (Yl (u) + ~E: • E)) + ~E: • Bl = 0.
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and

Now, by (48),

5
(Y2(UO) - K,) n r(Uo) C Yl(U) + SC' B.

Since (DP) holds for I'(uo) , there exists 1]2(Uo) E M (Uo) , such
that

7
1]2(UO) E y(u) + '8c' B C y(u) + e . B.

This means that for u E U1 n U2

M(u) C M(uo) + C' B,

which completes the proof.

o

Theorem 5.6.3 Let Y be a normed space and let K, C Y be a closed
convex pointed cone. Assume that r : U --+ Y is a set-valued map­
ping defined on a normed space U . If

(i) M(u) c cl(SM(u)) , in some neighbourhood U2 of Uo and for
any e > 0, for all z E SM(u) , m(c) = infuE u 2 m(c,u) > 0,
where m(., u) is the modulus of minimality of r(u) ,

[(r(u) \ (z +e- B)) + m(c) . Bl n (z - K,) = 0,

where m(c) ~ u«, where k > 0,

(ii) DP holds for all r(u) in some neighbourhood Uo of Uo,

(iii) ris locally Lipschitz at Uo, ie.,

for Ul, U2 in a neighbourhood U1 of Uo ,
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then M is locally Lipschiiz at uo, ie., for each Uh U2 E Vo n VI

2
M(Ul) C M(U2) + (1 + k)L. B.

Proof. Let u}, U2 E Vo n VI n V2. Let Y E M(ud. By (i), there
exists YI E SM(Ul) ' such that Yl E Y + tLllul - U21l· B. Since
YI E SM(UI)'

1 1
[(f(ud\(Yl+kLlluI-u211·B))+m(kLlluI-u2!I)·B]n(Yl-K) = 0,

and hence

1 1 1 1 1
[r(Ud\(Yl+kLlluI-u21l·B)+2m(kLllul-u211)·BJn(Yl+2m(kLllul-u211)·B-K) =

(49)
By local Lipschitz continuity of I",

f(U2) c r(ud + Lllul - U21l· B
c [(f(Ul) \ (YI + iLllul - u21l· B)) + Lllul - u211· Bl U [Yl + (1 + i)LlIul - r

(50)
and since YI E r(ud, there exists Y2 E r(U2) such that

Y2 E Yl + Lllul - u211· B,

and, since Lllul - U21l < ~rn(tLlIul - u21D ,

1 1
Y2- K C Yl+LIl'uI-u211·B-K C u, +2m(kLllul-u21l)·B-K .

By (49),

1 1 1
(Y2-K)n[r(UI)\(YI +kLllul-u211·B)+2m(kLllul-u2ID·BJ = 0,

and since Lllul - u211 :s; im(tLllul - u211),

1
(Y2 - K)n [f(ud \ (YI +kLllu1 - u211· B) +LlluI -u211· Bl = 0.

Now, by (50),

(Y2 - K) n r(U2) C u. + {1 + ~)LlluI - u211· B.
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Since (DP) holds for r(uz) , there exists r/z E M(U2) such that

1 2
7}2 c (Y2- K)nf(uz) c u, +(1+k")L!lul-Uz!l·B C y+(1+k")Lllul-u211·

This means that for Ul, U2 E o; n U1

2
M(ud C M(U2) + (1 + k")L!lu1 - u211)· B,

which completes the proof.

o
Theorem 5.6.4 Let Y be a normed space and let KeY be a closed
convex pointed cone. Assume that f : U ~ Y is a set-valued map­
ping defined on a normed space U . If

(i) M(l1(J) C cl(SM(uo» ,

[(f(uo) \ (z + e· B» +m(e) . B} n (z - K) = 0,

where m(e) is the modulus of minimality ofr(Uo) , m(e) 2: ke ,
k > 0,

(ii) DP holds for all r(u) in some neighbourhood Uo of Uo,

(iii) I' is upper and lower Lipschitz at Uo, ie.,

I'(u) C f(uo) + Lllu - uoll' B

1
f(uo) c r(u) + 2"Lllu - uoll · B

for u in a neighbourhood U1 of Uo ,

then M is lower Lipschitz at uo, ie., for u E Uo n U1

2
M(Uo) c M(u) + (1 + "k)L!lu - Uoll.

Proof. Let u E Uo n U1 • Let y E M(Uo). By (i), there exists
Yl E SM(Uo) , such that Yl E Y + tLllu - Uo!l . B. Since Yl E
SM(Uo) ,

1 1
[(f(Uo)\(Yl +k"LlIu-uo!l·B»+m(k"L!lu-uoID·B]n(Yl-K) = 0,
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and hence
1 1 1 1 1

[r(UO)\(Yl+kLllul-u211·B)+2"m(kL!lu1-u211)·Bjn(Yl+2"m( kLllul-u2ID·B-K:) =

(51)
By the upper Lipschitz continuity of r ,
I'(u) c r(uo) + Lllu - UQIl· B

C [(r(uo) \ (Yl + iLlIu - uoll ' B)) + Lllu - uoll· BJ U [Yl + (i + I)Lllu - UQII
(52)

and since Yl E I'(uo) , by the lower Lipschitz continuity, there
exists Y2 E r(u) such that

1
Y2 E Yl + 2"Lllu - uoll· B ,

and, since ~Lllu - UQII ~ ~m(iLllu - UQII)'

1 1 1
Y2-K: C Yl +2Ll/u-uoll·B-K: C Yl +"2m( kLllu-uoID·B-K:.

By (51),

III
(Y2-K:)n[r(UO)\(Yl+kL ll u-UQ!I.B)+2m( kLlIu-uoID·Bj = 0,

and since Lllu - uoll ~ m(iLllu - uol!) ,

1
(Y2 - K:) n [r(UQ) \ (Yl +k L ll u - UQII· B) + Lllu - uoll' Bl = 0.

Now, by (52),
1

(Y2 - K:) n I'(u) C Yl + (1 + k)Lllu - uoll . B.

Since (DP) holds for r (u) , there exists 772 E M (u) such that

1 2
772 c (Y2-K:)nr(u) C Yl+(1+k)Ll/u-u1II·B c y+(l+i)Ll/u-uoll.

This means that for u E Vo n VI

k+2
Nf(uo) C M(u) + ----;;-Llu - uoll . B,

which completes the proof.

o
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5.7 Lower continuity of minimal points in vector optimiza­
tion

Definition 5.7.1 The solution Xo E S(j, A, K) is called c,b-striet
if there is no x E S(j, A, K) , x l' Xo, such that

f(xo)- f(x) E c,b(lI xo-xll)·B+K, or f(x)- f(xo)-c,b(llxo-xll)·B E -K,

where c,b : R+ -- R+ is a nondecreasing admissible function.

Proposition 5.7.1 Let KeY be a closedconvex cone in a normed
space Y, and intK #- 0. Let f : X -- Y be a Lipschitz mapping
defined on a normed space X , and let A c X be a subset of X . If
Xo E S(j, A, K) is c,b-strict, then f(xo) is a strictly minimal element
of f(A).

Proof. Suppose that Xo E S(j, A, K) is c,b-strong. Because of the
symmetry of balls in Y , there is no x EA, x l' Xo , such that

f(x) - f(xo) + c,b(lIx - Bxll) . B c -K.

Since llf(x) - f(sx)11 < Lllx - sxll and c,b is nondecreasing
c,b(illf(x) - f(sx)ll) ~ c,b(llx - sxll) and

1
f(x)- f(xo)+c,b( L IIf(x)- f(xo)II) ·B c f(x)-f(xo)+c,b(lIx- sxll)·B c -K.

Take e > 0 and put W = {f(x) I IIf(x) - f(xo)11 < LE:}. For
any any x E A \ W we have IIf(x) - f(xo)/j ~ Le . Since c,b is
nondecreasing, c,b(lIf(x) - f(xo)ll) ~ c,b(Le:) , and hence, there is
no x E A \ W, x l' Xo, such that

1
f(x)- f(xo)+c,b(c:)·B c f(x)- f(Bx)+c/J( L IIf(x)- f(sx)ID·B c -K,

which means that

[f(A) - W] n [c,b(E:) . B - K] = 0,

ie., f(xo) is strictly minimal.

o
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