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Preface

We study stability of minimal points and solutions to parametric (or
perturbed) vector optimization problems in the framework of real
topological vector spaces and, if necessary, normed spaces. Because
of particular importance of finite-dimensional problems, called mul­
ticriteria optimization problems, which model various real-life phe­
nomena, a special attention is paid to the finite-dimensional case.
Since one can hardly expect the sets of minimal points and solu­
tions to be singletons, set-valued mappings are natural tools for our
studies.

Vector optimization problems can be stated as follows. Let X be a
topological space and let Y be a topological vector space ordered by
a closed convex pointed cone K. c Y. Vector optimization problem

K. - rnin lo(x)
subject to x E Ao , (Po)

where 1 : X ---+ Y is a mapping, and Ao C X is a subset of X, relies
on finding the set Min(fo, Ao,K.) = {y E 10(Ao) I10(.40) n (y - K.) =
{y}} called the Pareto or minimal point set of (Po), and the
solution set S(fo, Ao,K.) = {x E Ao lfo(x) E Min(fo,Ao,K.)}. We
often refer to problem (Po) as the original problem or unper­
turbed one. The space X is the argument space and Y is the
outcome space.

Let U be a topological space. We embed the problem (Po) into
a family (Pu ) of vector optimization problems parametrised by a
parameter u E U ,

K. - min I(u,x)
subject to x E A(u) , (Pu )

where 1 : U x X ---+ Y is the parametrised objective function and
A : U=::t Y , is the feasible set multifunction, (Po) corresponds to a
parameter value 'Uo . The performance multifunction M : uz; y ,
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is defined as M(u) = Min(f(u, '), A(u),K:) , and the solution mu1­
tifunction S ; U=t y , is given as S(u) = S(J(u,'), A(u), K), and
f : U X X ~ Y, A(u) eX.

Our aim is to study continuity properties of M and S as functions
of the parameter u. Continuous behaviour of solutions as functions
of parameters is of crucial importance in many aspects of the theory
of vector optimization as well as in applications(correct formulation
of the model and/or approximation) and numerical solution of the
problem in question.
We investigate continuity in the sense of Hausdorff and Holder of the
multivalued mappings of minimal points M(u) and solutions S(u)
as functions of the parameter u under possibly weak assumptions .
We attempt to avoid as much as possible compactness assumptions
which are frequently over-used (see eg [83]).
It is a specific feature of vector optimization that the outcome space
is equipped with a partial order generated by a cone the properties
of which are important for stability analysis. In many spaces cones
of nonnegative elements have empty interiors and because of this we
derive stability results for cones with possibly empty interior. This
kind of results are specific for vector optimization and do not have
their counterpart in scalar optimization.
We introduce two new concepts: the notion of containment(with
some variants for cones with empty interiors), [161, and the notion of
strict minimality, [12J.

The containment property (GP) , defined in topological vector spaces,
is introduced to study upper semicontinuities (in the sense of Haus­
dorff) of minimal points, [11, 16J . It is a variant of the domination
property (DP) , which appears frequently in the context of stability
of solutions to parametric vector optimization problems. Although
it is not a commonly adopted view point, the domination prop­
erty may be accepted as a solution concept which generalizes the
standard concept of a solution to scalar optimization problem. In
consequence, the containment property (GP) may also be seen as a
solution concept in vector optimization. To investigate more deeply
this aspect we interpret the containment property as a generaliza­
tion of the concept of the set of </J-Iocal solutions appearing in the
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context of Lipschitz continuity of solutions to scalar optimization
problems. Under mild assumptions the containment property im­
ply that the set weakly minimal points equals the set of minimal
points. This equality, in turn, is a typical ingradient of standard
finite-dimensional sufficient conditions for upper semicontinuity of
minimal points.
To study Holder upper continuity of minimal points we define the
rate of containment of a set with respect to a cone, which is a real­
valued function of a scalar argument, see [14, 15]. The rate of growth
of this function influence decisively the rate of Holder continuity of
minimal points, [15].

Strictly minimal points are introduced to study lower sernicontinu­
ities (lower Hausdorff, lower Holder) of minimal points [20, 13]- The
definition of a strictly minimal point is given in topological vector
spaces and it is a generalization of the notion of a super efficient
point in the sense of Borwein and Zhuang defined in normed spaces.
We discuss strict minimality in vector optimization by proving that
it is a vector counterpart of the concept of ifJ- local solution to scalar
optimization problem.

Theory of vector optimization may be considered as an abstract
study of optimization problems with mappings taking values in the
outcome space equipped with a partial order structure. As such, it
contains many concepts and results which generalize and/or have
their counterparts in scalar optimization. The very definition of the
set of minimal points of vector optimization problem in the outcome
space may serve as an example here. This is a counterpart of the
optimal value of scalar optimization problem. Another example is
the concept of well-posed optimization problem. In subsequent de­
velopments we often compare our results and considerations with
the corresponding approaches in scalar optimization. For instance,
we define several classes of well-posed vector optimization problems
by generalizing the concept of scalar minimizing sequence and in
these classes we investigate continuity of solutions. For scalar op­
timization problems, the existing approaches and results on well­
posedness are extensively discussed in the monograph by Dontchev
and Zolezzi [33].
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Convergence and rates of convergence of solutions to perturbed op­
timization problems is one of crucial topics of stability analysis in
optimization both from theoretical and numerical points of view.
For scalar optimization it was investigated by many authors see eg.,
[72], [32], [47], [78], [55), [81], [59], [60], [82], [2], and many oth-
ers. An exhaustive survey of current state of research is given in
the recent monograph by Bonnans and Shapiro [26]. In vector opti­
mization the results on Lipschitz continuity of solutions are not so
numerous, and concern some classes of problems, for linear case see
eg.,[28], [29], [30], for convex case see eg., [25], [31].

The organization of the material is as follows. In Chapter 2 we
investigate upper Hausdorff continuity of the multivalued mapping
M, M(u) = Min(r(u)IK:) assigning to a given parameter value u
from a topological space U the set of minimal points of the set
r(u) C Y with respect to cone K: C Y, where for any subset A
of a topological vector space Y the set of minimal points is defined
as Min(AIK:) = {y E A I A n (y - K:) = {y}}, and r : U=t Y,
is a given multivalued mapping. The main tool which allows us to
obtain the general result is the containment property (GP). Some
infinite-dimensional examples are discussed. A special attention is
paid to the containment property (GP) in finite-dimensional case,
when Y = Jrl.

In Chapter 3 we discuss upper Holder continuity of the minimal
point multivalued mapping M . To this aim we introduce the rate
of containment 8 which is a one-variable nondecreasing function,
defined for a given set A and the order generating cone K:. The
assumption of sufficiently fast growth rate of this function appears
to be the crucial assumption for all upper Holder stability results of
Chapter 3.

In Chapter 4 we apply the results obtained in Chapters 2 and 3
to derive conditions for upper Hausdorff and upper Holder stability
of minimal points to parametric vector optimization problems by
taking r(u) = f(u, A(u)). Moreover, we introduce the concept of
{p- strong solutions to vector optimization problem (Po), which is
a generalization of the concept of a q'>-local minimizer to scalar
optimization problem, the latter being introduced by Attouch and
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Wets [6J.

In Chapter 5 we investigate the lower continuity and lower Holder
continuity of the minimal point multivalued mapping M. To this
aim we introduce the notion of strict minimality mentioned above
and the rate of strict minimality. In Section 5.5 we apply the results
obtained in Chapter 5 to parametric vector optimization problems
and we derive sufficient conditions for lower and lower Holder conti­
nuity of Pareto point multivalued mapping M. An important tool
here is the notion of <l>- strict solution to vector optimization prob­
lem introduced in Section 6.1 . This notion can be interpreted as
another possible generalization of the concept of tj>-local minimizer.

In Chapter 6 we propose several definitions of a well-posed vector
optimization problem. All these definitions are based on properties
of c-solutions to vector optimization problems. For well-posed vec­
tor optimization problems we prove upper Hausdorff continuity of
solution multivalued mapping S, S(u) = S(f(u,'), A(u), K).
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2

Upper Hausdorff continuity of minimal points with
respect to perturbations of the set

In this chapter we study upper Hausdorff continuity of the set-valued
mapping M: U=t Y, called the minimal point multifunetion,

M(u) = Min(r(u)IK:) ,

where r :uz; Y is a given set-valued mapping. Let us note that in
parametric vector optimization problems of the form

K. - min f (u,x)
subject to x E A(u)

the performance multifunction M : U=t Y , is given by

M(u) = Min(J(u, '), A(u),K:) = Min(J(u, A(u))IK:).

Hence, M(u) = M(u) , with I'(u) = f(u,A(u)). The motivation for
studying upper Hausdorff continuity of Pareto point multivalued
mapping M is that this type of continuity is a standard ingredient
of stability results of solutions multivalued mapping S . This aspect
will be discussed in detail in chapter 7.

In the present chapter we derive sufficient conditions for upper Haus­
dorff continuity of the minimal point multivalued mapping M cor­
responding to a given multivalued mapping r. The main Theorems
of this chapter are Theorems 2.2.1, 2.4.1, and 2.4.2. In Chapter 4,
by applying these theorems to the mapping r(u) = f(u,A(u)) we
derive sufficient conditions for upper continuity of Pareto point mul­
tivalued mapping M . The main tool for our results of this chapter
is the containment property defined below.
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2.1 Containment property

Let A C Y be a subset of a Hausdorff topological vector space Y ,
and let KeY be a closed convex pointed cone in Y. For any
O-neighbourhood W , denote

A(W) = A \ (Min(AjK) + W).

Definition 2.1.1 ([11]) (Containment property) We say that
the containment property (GP) holdsfor A iffor every0-neighbourhood
W there exists a 0- neighbourhood 0 such that

A(W) + 0 C Min(AIK) + K. (1)

Note that a O-neighbourhood 0 satisfying (1) is chosen indepen­
dently of y E A(W). If A i- 0 and (GP) holds, Min(AIK) # 0.
Recall that the domination property (DP) holds for A if A C
Min(AIK) + K. In general, neither (GP) implies (DP) nor con­
versely. Even for compact sets (GP) may not hold. To see this,
consider in R2 the set A = {(Yl,Y2) I 0 ~ Yl < 1 0 ~ Y2 < I}. For
the cone K = R~ = {(YbY2) I YI ~ 0 Y2 ~ O}, (GP) does not hold.
Here Min(AIK) i- WMin(AIK) .

However, we have the following proposition.

Proposition 2.1.1 If(GP) holdsforA , then A C clMin(AIK)+K.

Proof. Let x EA. If x E clMin(AIK), the inclusion holds. If
x r/. clMin(AIK) , by (GP), there exists a O-neighbouhood 0 such
that x + 0 c Min(AIK) + K which yields the result.

o

Proposition 2.1.2 Let intK =I- 0 and let A c Y be a subset of Y .
If (GP) holds for A, then WMin(AIK) C clMin(AIK).

Proof. On the contrary, suppose that there is Y E WMin(AIK) \
clMin(AjK). Hence, (y - intK) n A = 0, and

(y - intK) n (Min(AIK) + K) = 0. (*)
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Since y fI clMin(AIK) , and Y is Hausdorff, by (GP), there exists
O-neighbourhood 0 in Y such that

y +0 c Min(AIK) +K,

and consequently (y - intK) n (Min(AIK) +K) i= 0, contradictory
to (*) .

o

By Theorem 1.1 of [57],p.136, WMin(AIK) is closed whenever A
is closed.This implies that clMin(AIK) C WMin(AIK). Hence, by
Proposition 2.1.2 we obtain the following corollary.

Corollary 2.1 Let intX i= 0. Let A C Y be a nonempty and
closed subset of Y. If (GP) holds for A, we have WMin(AIK) =
cl Min(AIK) .

Corollary 2.2 Let intX i= 0. Let A C Y be a nonempty and closed
subset of Y. If (GP) holds for A and Min(AIK) = WMin(AIK) ,
then (DP) holds for A .

Proposition 2.1.3 Let intK. i= 0. Let A C Y be a nonempty com­
pact subset of Y. The following conditions are equivalent:

(i) (GP) holds for A,

(ii) (DP) holds for A and Min(AIK) = WMin(AjK).

The following proposition gives an equivalent formulation of the
containment property (GP) for cones with nonempty interior .

Proposition 2.1.4 Let K be a closed convex pointed cone in Y,
intX i= 0, and A C Y a subset of Y. The following are equivalent:

(i) (GP) holds for A

(ii) for each O-neighbourhood W there exists a O-neighbourhood 0
such that each y E A(W) can be represented as

Y = "111 +kll , where "111 E Min(AIK) , and kll +0 c K. (2)
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Proof.(i) ~ (ii). For any a-neighbourhood 0, define

Ko = {k E K I k + 0 c K} .

Clearly, we have intK = UoEN Ko . We show that for any a-neighbourhood
Q there exists a a-neighbourhood 0 such that

(Min(AIK) +K)Q c Min(AIK) + Ko, (3)

where (Min(AIK) + K)Q = {y E Y I y + Q C Min(AIK) + K}. In­
deed, let a E (Min(AIK)+K)Q' ie., a+Q C Min(AIK)+K. Since a E
cl(-K) , for any a-neighbourhood Q there exists a a-neighbourhood
o such that Qn (-Ko) f:- 0. Thus there exists q E Qn (- Ko) such
that a +q E Min(AIK) +K, and consequently a E Min(AIK) +Ko.
Suppose now that (GP) holds for A, ie., for each a-neighbourhood
W there exists a O-neighbourhood Q such that for any y E A(W)

y E (Min(AIK) + K)Q ,

and by (3) , for some a-neighbourhood 0, Y E Min(AIK) + Ko.
(ii) ~ (i). Obvious.

o

2.1.1 Containment property in finite-dimensional case.

Let K c Jl"l be a closed convex and pointed cone in the m-dimensional
space Rm with the norm 11·11.
It was shown by Petschke [66] that a pointed closed convex cone K
in Rm admits a compact base 8. Hence, we have m < 11011 < M for
any°E 8.
Let A C Jl"l. If A is convex and closed, then Min(AIK) need not
be closed (see Arrow, Barankin, Blackwell [3]). Hence, even for con­
vex sets in finite-dimensional case (GP) does not imply (DP). We
start with a result establishing the relation between the domination
property (DP) and the containment property (GP).

Theorem 2.1.1 Let K be a closed convex and pointed cone in Rm,
intK f:- 0. Let A be a closed convex subset of Rm. Assume that
clMin(AIK) is compact. If
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(i) clMin(AIK) = W Min(AIK),

(ii) (DP) holds for A,

then (CP) holds for A.

Proof. The set clMin(AIK) + K is closed and convex, SInce
clMin(AIK) is compact, and A + K = clMin(AIK) +K .
Suppose on the contrary that (CP) does not hold for A. This means
that there exist sequences {Zn}, {Yn} such that

Zn EA \ B(Min(AIK),co),

Yn E B(zn, ~), and Yn f/. dMin(AIK) +K. By (DP),

where T/n E Min(AIK) , kn E K, IIknll > co. Since K is based with a
compact base 8 , kn = :A.nBn , with A, > 0, Bn E e .By the inequality

we get eo < :A.n · M , and consequently, the sequence {l3n} , /3n = ).In '

is bounded. Without loss of generality, we can assume that 0 <
/3n :s 1. By convexity of A ,

Since clMin(AIK) is compact, {T/n} contains a convergent subse­
quence with the limit point" T/ E dMin(AIK). Without loss of gen­
erality we can assume that {T/n} converges to'fJ and {Bn} converges
to a B E 8. The sequence {Wn} , Wn = T/n + Bn , for n = 1, ... , tends
to W = T/ + BE A. Clearly, W f/. B(Min(AIK), c2) , (0 < C2 < e1) .
We show that W E 8(Min(AIK) +K) , where 8(.) denotes the bound­
ary of a set. On the contrary, if W + B(O, el) C Min(AIK) +K, for
some cl> 0, then for some N

and

Zn +B(0,cd2) =
W n + (:A.n - l)Bn + B(0,ed2) E W + B(O,Cl) + K:c: Min(AIK) +K,
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contradictory to the fact that limn(zn - fin) = O. Hence, w E
8(Min(AIK) + K), and (w - intK) n A = 0, which proves that
w E W Min(AIK). This contradicts the fact that clMin(AIK)
WMin(A1K).

o

It is easy to give examples showing that the equality clMin(AIK) =
WMin(AIK) is important for (GP) property.

Example 2.1.1 Let A C R2 , K = R~, and

A = {(x,y) I0 ~ x < 1, 0 <Y < I}

Here Min(AIR~) = {(O, O)}, WMin(AIR~) = {(x, y) E A Ix =
Oor y = O}, (DP) holds for A and (GP) does not.

The assumption that Min(AIK) is compact cannot be dropped.
Also the convexity and the closedness of A cannot be weakened
to K-convexity and K-closedness.

Corollary 2.3 If A is convex and closed, Min(AIK) =f: 0, clMin(AIK)
is compact, clMin(AIK) = WMin(AjK), then (GP) holds for A.

Proof. This follows from the result of Henig [40].

o

Theorem 2.1.2 Let A be a convex and closed subset of Rm, and let
Min(AIK) be compact. The following conditions are equivalent:

(i) Min(AIK) =f: 0, Min(AIK) = W Min(AIK),

(ii) (GP) holds for A.

Assume now that the set A c Rm is polyhedral, ie., A is the solution
set of a system of a finite number of linear inequalities,
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and we prove an analogue of Theorem 2.1.1 without compactness
of Min(A1K). The recession cone of A, Rec(A), is given by the
system of homogeneous inequalities,

Rec(A) = {y E tr: I < bi, y >S 0 i El},

and Min(AIK) =I- 0 if and only if Rec(A) n [-K] = {D} (Th.3.18 of
[57]).
To make the presentation self-contained we prove closedness of Min(AIK)
and of Min(AIK) +K whenever A is a polyhedral set. Usually, the
closedness of Min(AIK:) is proved as a consequence of scalarization
properties of linear multiobjective optimization problems with poly­
hedral cones. Here we prove the closedness of Min(AIK) directly
for any closed convex pointed cone K.

Proposition 2.1.5 If A is a polyhedral subset of R'", and K: is a
closed convex pointed cone, then Min(A]K) is closed.

Proof. Suppose on the contrary that Min(AIK) is not closed.
There exists a sequence of minimal points {1]n} E Min(AIK) such
that {1]n} converges to TJ E A and TJ (j. Min(AIK). Hence, there is
an fj E A such that 1]-fj E K \ {D}.
Let us split the index set I into two subsets 11 , h C I such that

(bi,1]n) = c; i E 11 and (bi,1]n) < et i E 12 •

Hence, (bt,1]) = c;, for i E 11 and (bi,TJ) > (bi,fj) for i E 11 , because
ij EA. Moreover, (bi , ij) > (bi ,1] ) for some i E 12 , since otherwise
o i- - k = fj - 1J E Rec(A). Thus, there are two index subsets
13 714 C 12 , with 14 i- 0, such that

(bi,ij) < (bi,1]) iEI3 and (bi,ij) > (biJ7J) iEI4 •

Consequently,
(bi , ij -1]) SDi E Is =:J t,
(bi , ij - 1]) < DiE 13

(bi , ij - TJ) > DiE 14 ,

for some subset Is cl, 13 U 14 U Is = I .
For each n, put
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and consider W n = 1]n +'n{iJ-1]). For i E 13U15 , we have (bi , wn ) <
et , and for i E 14 ,

(bi,1]n) + In (hi, (iJ - 1])) ~ (bi,1]n) + ~b- ~bi' 1])) . (hi, (iJ - 1])) = c, .
il1]-1]

Finally, W n EA, and W n E 1]n - K. This contradicts the minimality
of 1]n'

o

Proposition 2.1.6 FOT any polyhetlml set A C Jl!'1 and any closed
convex pointed cone K in Rm, Min(AIK) + K is closed.

Proof. If Min(AIK) = 0, then Min(AIK) + K is empty, hence
closed. Assume that Min(AIK) i- 0, and consider any convergent
sequence {zn} C Min(AIK) + K, lim., Zn = z. We have Zn = X n +
AnOn, where X n E Min(AIK) , On E 8, and An ~ O. By compactness
of e, without loss of generality, we may assume that {On} converges
toOE8.
We start by showing that under our assumptions, {An} contains a
bounded subsequence. Indeed, suppose on the contrary that {An}
tends to +00. Then

1 1
An [xn + AnOn] = An X n + On -t 0,

and, since On -t 0 i- 0 lim., }n X n = -0. On the other hand,

and, by passing to the limit (bi , -0) ~ 0, ie., -0 E Rec(A) n [-Kl ,
contradictory to the assumption that Min(AIK) i- 0 (see the remark
above).
Consequently, {An} contains a convergent subsequence {Anl} , Ant -t

A ~ 0, and AntOn: -t k E K, and xn: -t X E Min(AIK) , since, by
Proposition 2.1.5, Min(AIK) is closed, and finally Z = x + k E
Min(AjK) + K.
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o

In general, if Min(AIK) = WMin(AIK), and (DP) holds for A,
then

A c W Min(AIK) + intK U {O}. (4)

Theorem 2.1.3 If A c Rm is a polyhedral set, and K C Rm is a
closed convex and pointed cone in H"; then the following conditions
are equivalent:

(i) (DP) holds for A, and Min(AIK) = W Min(AIK),

(ii) (GP) holds for A.

Proof. The implication (ii) --l' (i) is obvious. To prove that (i) --l'

(ii) suppose on the contrary that (GP) does not hold for A. Thus,
there exists a sequence {Yn} C A such that Yn ~ B(Min(A1K), co)
and B(Yn, ~) n [A + K]C 1= 0. By this, there exist {Yn} C [A +Kr ,
liIlln(Yn -Yn) = 0, and {zn} C 8(Min(AIK)+K) , limn(Yn-zn) = O.
If, for at least one n, Zn EA, then Zn E W Min(A[K) \ Min(AIK) ,
a contradiction. Hence, for all n, Zn ~ A, and moreover,

(Zn - K) n (Min(AIK) + K) C 8(Min(AIK) + K), (5)

since otherwise Zn - le + B(O,r) C Min(AIK) + K for some le E K,
and r > 0, and consequently, Zn + B(O,r) C Min(AIK) + K, which
is impossible because Zn E 8(Min(AIK) + K) .
By Proposition 2.1.6, Min(AIK) + K is closed, and hence, Zn =
7Jn + >.nOn, where 7Jn E Min(AIK) , On E e, and x, > O. Moreover,
.An > colM, and without loss of generality we can assume that
.An > 1.
Since Zn f/. A , there is a subset K, of the index set I such that

Let us note that, if necessary, one can always shift slightly Yn, so
as to have (bi , Yn) = Ci, for i E K,. By compactness of e, we can
assume that {On} tends to 0 E e.
Suppose first that (bk,O) = 0, for k E K,. For i ~ K" (bi , 7Jn) +
.An (bitOn) < Ci, and either (bi,O) ::; 0, or (bit0) > O. In the latter
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case it must be (bi, B) ~ Cl - (bi1f/n) 1 because otherwise (bi, B) >
Cl - (bi, f/n) 2: An (bi, On) , and

(bi1f/n)-Ci+An(bi1Bn) = [(bi, f/n+O)-CiJ+(bi , Bn-B)+(A,.-1)(bi1Bn) > O.

Hence, n« +BE A, and consequently, n« +BE W Min(AIIe), since
f/n + 0 E 8(Min(Ajle) + le) , which is a contradiction.
Hence, it must be (bi , B) > 0, for Borne f El\" because (bk , On) > 0
for k El\,. We show that each Zn can be represented in the form
Zn = tt« + AnOn, where 1]n E Min(AIIe) 1 and (bi,1]n) = er, Indeed,
we have

(bi, Bn) > 0 i E 1\,1 and (bi , ()n) = 0 i E 1\,2 (bi, Bn) < 0 i E 1\,3,

where I\, C 1\,1 , 1\,2 = {i Ell (bi , Zn) = c.}, 1\,3 c I \ 1\,. Suppose that
for all k E I\, such that (bk , ()) > 0 we have (bk 1f/n) < Ck , and put

fin = 1/2 mm Ck - (bk , 1]n) > O.
k E I\, (bk,Bn )

(bk 1B) > 0

Ob fir t th t c ch k E ' cl;-(bJ.;,!7n) f3 Nserve s a ror ea 1\" An > (bll,,8
n

) > n' ow

(bi,zn - (An - fJn)Bn) = (bi,1]n) + fin(bi,()) ~ (bi1f/n) + ci~~~~~}n)(bj,Bn) = t; i El\,

(bi,Zn - (An - fJn)Bn) = (bi,1]n) + fJn(bj,Bn) < (bj,f/n) + An(bj,Bn) ~ Ci i E 1\,1 \ I\,

(bi,Zn - (An - fin)Bn) = (bi,1]n) ~ Ci i E 1\,2

(bi , Zn - (An - f3n)()n) ~ (bi , f/n) ~ t; i E 1\,3,

which means that W n = Zn - (An - f3n)()n E An (zn - le), and, by
(4),

W n E Min(AIIe) + intle C int(Min(AIIe) + le) ,

contrary to (5) .This proves that for Borne t « I\, such that (bl , B) > 0
it must be (bl,1]n) = Cl .

By letting Hi = {y E H" I (bl , y) = Cl}, we get

11
- 11 > di t( H) - (bl , zn) - Cl _ An(bl , Bn )

Yn Zn - 18 Zn, l - J(b
l
)2 - J(b

l
)2 '

which implies that An -+ O. This is a contradiction.

o
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2.2 Upper Hausdorff continuity of minimal points for cones
with nonempty interior.

We start with the main result of this section.

Theorem 2.2.1 (Bednarczuk, [16]) Let U be a topological space
and let Y be a HausdorfJ topological vector space. Let KeY be a
closed convex pointed cone in Y , intK i- 0. Suppose that

(i) T is upper Hausdorff continuous at Uo ,

(ii) r is K-lower continuous at Uo , uniformly on Min(r(uo)IK) ,

(iii) (C P) holds for I'[uo) .

The minimal point multifunetion M is upper Hausdorff continuous
at Uo.

Proof. Let W1 , W be O-neighbourhoods, WI + W1 C W. By
Proposition 2.1.4, there exists a O-neighbourhood 0 such that any
z E r(Uo)(W1) can be represented in the form

Z = 1J:; + kz, 1Jz E Min(r(Uo)IK) , kz +0 C K. (*)

Let 0 1 be a O-neighbourhood such that 0 1 +01 c o .By (i), there
exists a neighbourhood Uo of Uo such that

r(u) c r(Uo) +W1 n 0 1 C [r(uo)(Wd +WI n 0 1]

U[Min(r(Uo)jK) + W1 +W1 n 0 1] ,

for u E U«, By (ii) , there exists a neighbourhood UI of Uo such that
for u E UI

We show that

for u E Uo n U1 .

Take any y E I'(u) n [r(uo)(Wd + W1 nOd. We have y = 'Y + w,
'Y E [r(uo)(Wdl, w E W1 n 0 1 •
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By (*), / can be represented in the form / = "l-y +- k-y, "l-y E
Min(r(uo)IJC), k-y +0 c JC. By (**), there exists /1 E r(u) such
that /1 = "l-y - Wl - k 1 , Wl E 0 1 , k 1 E JC . Finally

Y - /1 = / +- w - /1 = rh +- k.;+W - "l-y +Wl +k 1
C k-y + k 1 +- 0 c JC ,

which proves (* * *) . Hence, for u E Vo n VI ,

M(u) c M(uo) +W.

o
Below we give an example showing that the uniform JC-Iower

continuity assumption is essential in Theorem 2.2.1.

Example 2.2.1 Let V = cl{1/n I n = 1, ... } with natural topology
and let r :V~ R 2 , be defined as follows

r(o) = {(Yl, Y2) I Y2 = -yt} U U~1 (k, -k + 1)
r(~) = {(YllY2) I Y2 = -Yl +- ~ - n ~ u, ~ n} UU~l(k, -k +-1)

Now Min(r(O)IR~)= {(Yl' Y2) I Y2 = -yt}, and

11 00

Min(r(-)IR~)= ((Yl,Y2) 1112 = -Yl+--, -n::; Yl ~ n}U U (k,-k+l).
n n k =n+l

By Proposition 2.1.3, we obtain the following corollary.

Corollary 2.4 Let U be a topological space and let Y be a Hausdorff
topological vector space. Let JC C Y be a closed convex pointed cone
in Y , intK :I 0. Let I'[uo) be a compact subset of Y . If

(i) r is upper Hausdorff continuous at Uo,

(ii) r is JC-Iower continuous at 'l1{), uniformly on Min(r(uo)IJC) ,

(iii) (DP) holds for r(uo) , and Min(r(uo)lJC) = W Min(r(Uij)lJC),

then M is upper Hausdorff continuous at 'l1{).

In the proof of Theorem 2.2.1 we make use of Proposition 2.1.4
which holds true when intJC :I 0. There are numerous examples of
cones satisfying this condition. For instance, cone R~ of nonnegative
elements in R'", as well the cones of nonnegative elements in the
spaces below have nonernpty interiors.
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Example 2.2.2 1. In the space f'X) of sequences S = {sd, with real
terms

lOO = {s = {Si} I sup js.] < +oo}
iEN

the cone
I!~ = {s = {Si} E r: I Si ~ O}

has nonempty interior.

2. In the space £00(0) of essentially bounded functions f : 0 C
If!1 ....... R, with esssuPXEO If(x)1 < +00, the natural ordering
cone

Loo(O) = {f E £00(0) I f(x) ~ 0 almost everywhere onn}

has nonempty interior.

2.3 Weak containment property

As we have seen in the previous section in the proof of Theorem
2.2.1 we use Proposition 2.1.4 which holds true when intK: i 0.
However, in some important spaces, cones of nonnegative elements
may have empty interiors. For example, in the space of integrable
functions V'(O), 1 :5 p < +00, the cone K:o,(O) of nonnegative
elements

K:V(O) = {f E V(O) I f ~ 0 almost everywhere in O} ,

as well as in the space £P, 1 :5 p < +00, of summable sequences
S = {Si} the cone

K:lP(O) = {S Ef!'l Si ~ O}

have empty interiors (see [44]).

In this section we define weak containment property (WCP) which
is a conterpart of the containment property (CP) for cones with
possibly empty interiors.
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Let Y be a Hausdorff topological vector space with topological dual
Y· . As defined in Section 1.1 the quasi-interior of K· is given as

K· i = {f E Y· I f(y) > 0 for all yE K \ {O} } .

As shown in Proposition 1.1.3 of Section 1.1, in locally convex
spaces, K is based if and only if K· i is nonempty. If intK is nonempty
and e E intK, then S = {f E K« I f(e) = I} (see Theorem 1.1.2 of
Section 1.1) is a base of K· .
Below we prove that K· i is always based.

Proposition 2.3.1 Let K be a closed convex cone in Y and let K« c
Y· be its dual unth. K*i nonempty. Then, for any 00 E K \ {O}, the
set

is a base of K· i •

Proof. S·1 is clearly convex and 0 rf. w-*-cl(S·i) . To see the latter
note that if a net O~ , O~ C S·i, tends in the weak- * -topology to
0" then 0* =I 0 since 0.(00 ) = 1. Moreover, each element f E K*i
can be represented as a positive multiple of an element from S·i.
Indeed, to find AI > 0 and O· E Si such that f = ArO· ,it is enough
to note that

f (00 ) = AI#-O and 0* = { E S*i .

o

The bidual cone K U
,

K** = {y E Y I f(y) 2: 0 for f E K·},

is convex and weakly closed and in locally convex spaces K = K·*
if and only if K is convex and weakly closed (see Theorem 1.1.1 of
Section 1.1, in normed spaces see Kurcyusz [54], Lemma 8.6) .

Let A c Y be a subset of Y and let K* has a base S* .
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Definition 2.3.1 The weak containment property (WCP) holds
for A with respect to e· if for every O-neighbourhood W there ex­
ists 8 > 0 such that for each y E A(W} there exists 171/ E Min(AIK)
satisfying

Note that if y - 171/ satisfies (). (y - 171/) > 8 for some positive 8 > 0,
and all (). E e· , then

Y -171/ E {y E Y I f(y} > 0 for all f E K· \ {O}} de! «: .
In general (WCP) depends upon base. However, we have the fol­
lowing proposition.

Proposition 2.3.2 If K· has a bounded base e~, and (WCP) holds
for A with respect to eo, then (WCP) holds for A with respect to
any base e· of the form

Proof. For each (). E e· there exists a ()o E eo such that

()·(k) = ()o~y) O~(k), for all k E K,

and, since e~ is bounded,

. 1 1
mf. --;-=- > • _ ~ K" for some K, > 0 .

0oEeo Oo(Y) sUPo·Ee· ()o(Y)o 0

o

In the case of eo unbounded, (WCP) holds for A with respect to
any base e· such that

. f 1In -- > K.
O·Ee· ()·w) -

Proposition 2.3.3 Let Y be a locally convex space and let KeY
be a closed convex cone, intK f. 0. For any subset A C Y of Y,
(CP) is equivalent to (WCP) .

32



Proof. Let W be a a-neighbourhood. By (GP), there exists a
a-neighbourhood 0 such that for each y E A(W)

Y - TJy + 0 c K for some TJy E Min(AIK).

Take any Yo E s: = intK. Since 0 can be assumed to be radial,
-8yo EO, for some 8 > a, and

y - TJy - 8yo E K ,

which means that (WGP) holds for A .
To see the converse implication, note that by Theorem 1.1.2, K*
has a weak- *- compact, hence bounded, base 8*. By Proposition
2.3.2, (WCP) holds for S* .

o
We have the following Proposition.

Proposition 2.3.4 Let Y be a locally convex topological vector space
and let KeY be a closed convex cone with K*i =1= 0. Then

(i) x: = {y E Y I l(y) > 0 for all 1 E K* \ {O}} C K \ {a} ,

(ii) w - * - ax» C K* .

(iii) J( = {y E Y I l(y) ~ 0 for all f E K*i},

(iv) w - cl{y E Y I l(y) > a for all 1 E K* \ {O}} c K.

Proof. (i) follows from the fact that in a locally convex space
K = {y E Y I f(y) ~ 0 for all 1 E K*}.
(ii) Since K*i c K* and K* is weakly - * - closed, we get w - * ­
clK*i C J(* .
(iii) If k E K \ {a}, then l(k) > 0 for any 1 E x«, which proves
that K C {y E Y I 1(y) ~ a for all 1 E K*i} .
Suppose now that y tt K. Since Y is locally convex, there exists
10 E J(* such that 10(Y) < O. Let 9 E x», By choosing a > 0 such
that l(y) + ag(y) < a we get h = 1 + a· 9 E K*i and h(y) < O.
(iv) Since K is weakly closed, W - ax: C K.

o
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The inclusion {y E Y I f(y) > 0 for all f E K· i } C K is proved in
[34], Lemma 5.5.

Let us note that if K:' has a base, then x: i: 0. Indeed, if e· is a
base of K· , then, since 0 fj. w - *- cl(e·) , there exists Yo E Y such
that f (Yo) 2 1 for all fEe· . This means that Yo E x: .
It was shown in [44], Lemma 1.27, that if the algebraic interior carK
of a convex cone KeY in a real linear space Y is nonempty, then
the dual cone K· C Y· is pointed. Moreover, if carK· =1= 0, then K
is based (see [42], Theorem I.5e) .

By Theorem 1.1.3, cork: C K i
, and by Proposition 1.1.4, if corb: i:

0, and K· =1= {O}, then K· is based.

Example 2.3.1 1. Let Y = Rm, KeY be a closed convex pointed
cone. For any convex subset A, cor(A) coincides with the topo­
logical interior ofA. Hence, eg., for the cone K = {(Yl'1/2) Iu. 2
o Yl = Y2} we get K· = Hft,h) I f2 2 - fd and t: = 0.

2. For any p E [1, +00) consider the sequence space fP, of sequences
S = {Si} with real terms,

00

RP = [s = {s.] I L:ISiIP < +oo},
i=l

with the natural ordering cone

The ordering cone ~ has empty topological interior and empty
algebmic interior, cor(.e:-) = 0. But

(.e:-)i = {s = {Si} E RP I Si > O}.

3. For any p E [1, +00), consider the space of all p-th Lebesque
integmble functions f :n --+ R with the natuml ordering cone

L~ = {f E LP I f(x) ~ 0 almost everywhere on n}.
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The topological interior int(L~) and car(V) are both empty but
JCi =I- 0. To see this recall that

(L~)i = {f E LP I In fg du » 0 for all 9 E L~ \ {O}},

1. +! = 1 andP q ,

(L~)i = {f E LP I f(x) > 0 almost everywhere on n} .

In locally convex spaces, if (WCP) holds for A, then

A C clMin(AIJC) +JC. (6)

Indeed, if a E A \ dMin(AIJC) , there exists e > 0 such that a fj.
B(Min(AIJC), c). By (WCP) , there exist 1Ja E Min(AIJC) and b > 0
such that

rr(a - TJa) > s
for each 0* E e* , and hence a - 1Ja E JCi C JC .

Suppose now that Y is a Banach space. Let JCi I- 0, Yo E JCi , and

As we have shown before e* is a base of K! . For any k E JC ,

inf{0*(k) I 0*(Yo) = 1, o: E K*}, (7)

can be viewed as an infinite-dimensional linear progmmming prob­
lem. By applying the convex programming duality theory (see ego
Barbu, Precupanu [10], Ch .3, par.3, p.233) the dual takes the form

sup{r I k - r . yo E JC} , (8)

where r is a real number, r E R (compare also [10], Ch.3, Th.3.4.p.235).
Since (8) is formulated with the help of K defined in the" primal"
space Y , to preserve the consistency of terminology we refer to (8)
and (7) as the primal and dual problems, respectively.
Since ro = 0 is feasible for (8), by Proposition 2.1, Ch.3, p.197 of
[10], we have

o~ sup{r Ik-r.Yo E JC} < inf{O*(k) IO·(Yo) = 1, 0* E JC*}. (9)
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Suppose now that for a given k E Kt

inf{O*(k) I O*(Yo) = 1 0* E K*} = f ~ O.

Hence, for any O*(Yo) = 1, 0* E K* , we have

O*(k) 2: f

which entails that k - fyo E K and

f S sup{r I k - r- Yo E K}

which proves that

The function

q(k) = sup{r > 0 I r -1k E Yo +K},

has been also considered in other context (see Namioka[61 D. It is
superlinear, and the graph of q,

Graph(q) = {(k, r) I q(k) ~ r}

is a cone in Y x R. Now the question arises when the optimal value
f is nonzero. Clearly, if, for any Yo E K i and any k E Kt, it would
be r > 0 such that k - ryo E Kt, then x: C cor,e;:iU(_,e;:,,(Ki), ie.,
each k E x: belongs to the core of Kl relative to Kt U (-Ki). It is
easy to point out examples when f = O.

Example 2.3.2 Let p > 1, Y = fP, K = l~. As we observed before

(l~)t = {(Si) E (P I Si > 0 for each i E N}.

By taking Yo = (b), and kn = ('b), we see that for any 1" > 0 there
exists an index I such that

1 1
- - r- < 0 for i > I,
i 3 i 2

and hence f = O.
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Let

This is a nonempty subset of Kt since Yo E K~o' We have

K~iO = U{k E x: I inf{O·(k) IO·(Yo) = 1, 0" E K"} > e5} = U K;o(e5)·
0>0 6>0

By (10), k E K~Q(e5) if and only if k E e5. Yo +K. Now we can rewrite
(W CP) property as follows: for each e > 0 there exists S > 0 such
that for any Y E A(e) there exists "Ill E Min(AIK) such that

Y - "111 E K~o(e5) ,

or equivalently,
Y-"I11 Ee5·yo+K. (11)

When Y is an order complete vector lattice of minimal type (see [80],
Ch.V, p.213), any point k E Ki is proved to be a quasi-interior
point of K, where k E K is said to be a quasi-interior point of K
if the order interval [0, k] is a total subset of Y in the sense that
its linear hull is dense in Y (see Schaefer [80], Ch V. 8, Th.7.7, and
Peressini [65],Ch.4.4). Moreover, each k E x: is a weak order unit
(see [65]), ie., for each Y E K there exists z E K with z ::; y and
z S: k.
The role of Ki is similar to that of intK in the case when the lat­
ter is nonempty. To exploit this analogy we define quasi-weakly
minimal points of a subset A c Y, QWMin(AIK) , as follows

QWMin(AIK) = {a E A I (A - a) n (_Kt) = 0}.

2.4 Upper Hausdorff continuity of minimal points for cones
with possibly empty interiors via weak containment
property

In the present section we use weak containment property (WCP) to
give sufficient conditions for upper Hausdorff continuity of M (The­
orem 2.4.1). Next, we modify (WCP) 80 as to avoid the necessity
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of assuming the weak- * -compactness of the dual cone base S*,
which is the case in Theorem 2.4.1, and we prove Theorem 2.4.2 .

A subset F of Y* is equicontinuous ([42],12.D) if for any c > 0
there exists a O-neighbourhood W such that

lJ(W)j < E

for any f E F. Equivalently, there exists a balanced O-neighbourhood
W such that

f(W) s 1

for each f E F. According to the definition of the polar set A0 to a
given set A, F is equicontinuous if and only if

FcWO

for a balanced O-neighbourhood W. By Banach-Alaoglu theorem,
Wo is relatively weakly- * -compact. When Y is a normed linear
space, FeY· is equicontinuous if and only if it is bounded in the
norm topology of Y* .

Proposition 2.4.1 Let Y be a locally convex space. Let K be a
closed convex pointed cone, intX i- 0, and let K! have an equicon­
tinuous base. Then , for any subset A c Y , (C P) holds for A if and
only if (WCP) holds for A.

Proof. Suppose that (WCP) holds for A. Let W be a O-neighbourhood.
There exists b > 0 such that for any y E A(W) there exists "Iy E
Min(AIK) satisfying

f}* (y - "Iy) > 6, for ()* E 8* .

Since S* is equi continuous, there exists a O-neighbourhood 0 such
that 1(}*(q)1 < b for q EO, ()* E e*. Hence,

(}*(y - "Iy) ~ b > (}*(q) ,

and finally
(}*(y - "Iy) + (}*(q) ? b .

By Proposition ??, the assertion follows.
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o

Theorem 2.4.1 Let U be a topological space and let Y be a Haus­
dorff locally convex topological vector space. Let K. c Y be a closed
convex pointed cone in Y and let K.* have an equicontinuous base
e*. If

(i) I' is upper Hausdorff continuous at Uo,

(ii) r is K.-lower continuous at Uo, uniformly on Min(r(uo)IK.) ,

(iii) (WCP) holds for r(Uo) ,

the minimal point multivalued mapping M is upper Hausdorff con­
tinuous at Uo •

Proof. Let W1 , W be O-neighbourhoods, W1 + W1 C W. By
(iii) , there exists 8 > 0 such that for y E r(Uo)(W1 ) there exists
7]1/ E Min(r(uo)IK.) satisfying

O'(y -7]1/) > 8, (*)

for each 0* E e* . By the equicontinuity of the base e-, there exists
a O-neighbourhood 0 such that

-8/4 < O*(q) < 8/4

for any 0* E e* and q EO.
By (i), there exists a neighbourhood Uo of Uo such that

r(u) c r(Uo) +W 1 nO
c [r(uo)(W1) + W 1 no]
U[Min(r(uo)IK.) + W1 + W 1 no] ,

for u E Vo .

By (ii) , there exists a neighbourhood VI of Uo such that

(7] -I- 0 - K.) n r(u) f- 0, for 7] E Min(r(uo)IK.) , u E U1 .(**)

We show that
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for u E Uon UI • To this aim take any

yE r(u) n [r(uo)(W1 ) + W1 nO], u E U« n UI •

We have y = "'I + W, "'I E [r(uo)(Wdl, W E WI no. By (*), there
exists "1'Y E Min(r(U{))IK) such that rrb-"1'Y) > 8, for each ()* E 8*.
By (**), there exists "'11 E r(u) such that "'11 = "1-y - Wl - k 1

, Wl EO,
k l E K. Thus,

()*(y - "'11) = ()*(y - "'I) + ()*b - "11) + ()*("1'Y - "'11 - k 1
) + ()*(k1

)

> -8/4 + 8 - 8/4 > 8/2 .

Consequently, f(y - "'Id > 0 for any f E K" \ {O}, and hence,
y - "'11 E K i C K. This implies (* * *) , which proves the assertion.

o

The following example shows that the above Theorem cannot be
applied for some cones in finite-dimensional space.

Example 2.4.1 Let KeRn be a convex closed cone in Er with
empty interior. Then K* C R" has no base since the set KT =
{y E K· I y. x = 0 for each x E K} is a nontrivial linear subspace
contained in K* .

In the definition of weak containment property and in the proof of
Theorem 2.4.1 only two properties of base e* are essential. Namely,
in Definition 2.3.1 we use the fact that 0 't. W - * - de·, (since
otherwise there would be no sets with (WCP) property), and in the
proof of Theorem 2.4.1 we use the fact that e* has the representation
property given below. We do not exploit the convexity of e*.

The assumption of equicontinuity of base e* is restrictive. The cone
of nonnegative elements in V(fl) , 1 < P < +00, does not have an
equicontinuous base since it does not have a bounded base (see [34]).

Below we propose to replace e* with another set D which satisfies
the relation

{y E Y I f(y) 2: 0 for all fED} c K.
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We start with the following definition.

Definition 2.4.1 The set DC Y* has the representation prop­
erty, whenever y E Y and f(y) ~ 0 for all fED, then y E 1C.

In view of Proposition 2.3.4 one can choose sets D with the repre­
sentation property basing on part (i) or (iii) of Proposition 2.3.4. In
the case (i) any set D with the representation property is a subset
of 1C* and, in the case (iii), D is a subset of x» .
Let Y = (Y,I! . 11) be a normed space and let IC be a closed convex
based cone in Y . By B* we denote the unit ball in y* ,

B* = {f E Y* I IIf11 < I},

and by 1C.n the quasi-interior of 1C* , (see [44])

lC*i = {f E 1C* I f (y) > 0 for all y E IC \ {O}} ,

which is nonempty whenever IC is based.

It was shown in [34] that for cones of nonnegative elements in H" ,
(P, 1 < P =:; 00, V, 1 ~ p ~ 00, 0[0,1] the set D = lC*i n B*
has the representation property. This corresponds to case (iii) of
Proposition 2.3.4.

In a locally convex space, if IC is convex closed, and hence weakly
closed, we have (see Lemma 8.6 of [54])

IC = 1C** = {y E Y I f(y) ~ 0 for each f E 1C*} .

In consequence, if y f/. 1C, there exists f E 1C* such that f(y) < 0,
and, for

f = f /11111 E D = 1C* n B* ,

we get !(y) < 0 and

{y E Y I f(y) ~ 0 for all 1 E D} =
= {y E Y I f(y) ~ 0 for all f E 1C*} = 1C.
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Let 0 < K, < 1 . Define

Proposition 2.4.2 Let Y be a normed space and let KeY be a
closed convex cone in Y with K"i i- 0. For any 0 < K, < 1 the set

has the representation property, ie, if f(y) ~ 0 for each f E D(K,) ,
then yE K.

Proof. Take any y rf. K. Since K is weakly closed, there exists
f E K· such that f(y) < O. Then I, = K,m E D(K,) and h(y) < o.

o
Definition 2.4.2 The K,-weak containment property (K,-WCP)
holds for A if for every c: > 0 there exists 8 > 0 such that for each
yEA \ B(Min(AIK), c:) there exists "1y E Min(AIK) satisfying

O"(y - "1y) > 8

for each O· E D(K,).

Let us note that the set D(K,) is norm bounded and hence equicon­
tinuous.

Theorem 2.4.2 Let U be a topological space and let Y be a normed
space. Let KeY be a closed convex cone in Y with K..i i- 0. If

(i) r is upper Hausdorff continuous at Uo,

(ii) r is K-lower continuous at 1l{), uniformly on Min(r(uo)IK.) ,

(iii) (K, - WCP) holds for r('l4J) ,

then M is upper Hausdorff continuous at Uo.

Proof. The proof follows the same lines as the proof of Theorem
2.4.1 with S· replaced by D(K,).

o
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2.5 Upper Hausdorffcontinuity of minimal points for cones
with possibly empty interiors via approximation.

Let Y be a locally convex space and let K be a closed convex cone.
By N(O) we denote a family of all balanced convex O-neighbourhoods.
Following [35} we introduce the expansion, or Henig delating
cones of K. Let 8 be a base of K. Since 0 fi cl8, there ex­
ists a balanced convex open neighbourhood \IQ E N(O) such that
\IQ n (8 + \10) = 0. Let NI = {V E N(O) I V c Vo} . For V E NI (0),
define

K y = cl cone(8 + V) .

For any V E NI (0), K y is a closed convex cone. We have

Ky f:- Y, K \ {O} C intKy , n Ky = K. (12)
YENl(O)

For any u E U, V E NI (0) , denote

M(u, V) = Min(r(u)lKy) .

Let A c Y be a subset of Y . For any V E NI (0), W E N(O) denote

A(V, W} = A \ [Min(AIKv ) + W].

Definition 2.5.1 The approximate containment property, (AGP)
holds for A if for every V E NI(O} the containment property (GP)
holds for A with respect to cone K v , ie., for any W E N(O} and any
V E NI (O) there exists Dv E N(O} such that

A(W, V} + Dv C Min(AIKv }+ Ky .

Theorem 2.5.1 Let Y be a locally convex topological vector space
and let KeY be a closed convex and based cone. Let U be a
topological space. If

(i) f is upper Hausdorff continuous at Uo,

(ii) f is K-lower continuous at U{), uniformly on Min(f(uo}jK} ,

(iii) (ACP) holds for f(U{)} ,

then M is upper llausdorff continuous at U{).

43



Proof. Let W, W1 be O-neighbourhoods, and W1 + W1 C W . By
Theorem 2.2.1, for any V E N1(0) there exists a neighbourhood Uo
of Uo such that

M(u, V) c M(uo, V) + W 1

for u E Uo. By examining the proof of Theorem 2.2.1, a neighbour­
hood Uo is chosen independently of K. Now, by the uniform lower
Hausdorff continuity of M(u, V) around Uo with respect to V, there
exists VD E NI (0) such that

M(u) c M(u, V) + W1 for V C VD u E Uo .

Finally,

M(u) C su«. V) + W 1 c M(uo, V) + W1 + W 1 C M(uo) +W.

o

2.6 Multiobjective optimization problems

In this section we consider multiobjective optimization problems

K - Min f(x)
s.t. x E Ao,

where f = (fh ..., fm) : R" ---+ Jr'l, Ao eRn, K c Jr'l a closed
convex and pointed cone.

Theorem 2.6.1 If ft., i = 1, ... , m are linear functions,

Ao = {x E H" I (bi , x) ~ Ci , i E I},

and Min(J(Ao)IK) i- 0, Min(J(Aa)lK) = WMin(f(Ao)IK), then
f(Ao) has the containment property (GP).

Proof. It is enough to observe that f(Ao) is a polyhedral set and
apply Theorem 2.1.3.

o

Theorem 2.6.2 Suppose that ft, i = 1, ..., m, are linear, Ao C R!"
is convex, and Min(J(Ao)jK) cl 0. If Min(AIK) is compact, then
f (Aa) has the containment property (GP).
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Proof. It is enough to note that f(Ao) is convex, since f(>..al +(1­
>..)a2) = >..f(al) + (1 - >..)f(a2) E f(Ao) , and apply Theorem
5.3.3.

o
Consider now parametric multiobjective problems

IC - Min f(u,x)
s.t, x E A(u) ,

where f : U x Rn --t Rm, is a continuous function on U x Rn, with
U being a topological space, A ; U --t H" is a multivalued mapping.

Now we apply Theorem 2.2.1 to the above parametric problem.
We start with the following stability results.

Theorem 2.6.3 Let f = (fI , ..., fm) : U x Er'- --t Rm be linear with
respect to x E H" and let A : U --t H" be a feasible set multifunction
given by a system of inequalities

A(u) = {x E Rn 1gj(U,x) < 0 j E J},

where, for each j E J, the function 9j(14J,') : Er'- --jo R is convex. If

r :U --jo Rm, r(u) = f(u, A(u)), is u.H.c. and l.c. at Uo,

Min(f(uo)IK:) is nonempty and compact, Min(r(uo)llC) = W Min(r(uo)IK:) ,

then M(u) = Min(r(u)llC) is u.H.c. at 14J.

Proof. Since f is linear and 9j(Uo,') , j E J, are convex, the set
r(uo) = f(uo,A(Uo)) is convex. By Theorem 2.1.1, and 2.6.2,
(GP) holds for r(uo). By Theorem 2.2.1, the conclusion holds.

o
Now consider a feasible set multifunction A : U --t R" given by

a system of inequalities of the form

A(u) = {x E Rn I9j(U,X) ::; 0 i E J}, (13)

where, for each j E J, 9j ; U x Rn --jo R is a linear function with
respect to x, 9j(U,X) = (bAu),x) - Cj(U) , j E J, bj : U --t Rn,
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Cj : U -t R. Lower and upper sernicontinuities of the multifunetion
A have been investigated by many authors (see [?]). According to
Propositions 4.1. and 4.2 of [?], in order to apply Theorem 2.2.1 we
need sufficient conditions for u.H.c. and uniform lower semicontinu­
ity of A.

Let F, Fo, FI : U -t Rn, be multifunctions,

F(u) = FI(u) n Fo(u),

and
Fo(u) = {x E Ir Igj(U,x) < 0 j E Jo}
FI(u) = {x E R'" I gj(u,x) = 0 j E Jd,

where, for j E J = Jo U JI the functions gj (u, x) are continuous
on U x Rn, and, for each u E U, the functions gj(u,') are convex
functions on R'" .

The following result has been proved in [?).

Theorem 2.6.4 ([?],Th 3.2.2.) If

(i) FI(u) i- 0 for U E U,

(H) FI (u) forms an affine set in R'" ,

(H) dim linFI(u) = dim linF1 (tl{») for U E U .

then FI and Fare l.s.c. at uo.

We prove the following auxiliary lemma.

Lemma 2.1 If a multifunction A : U -t Rn, of the form (13)
is lower semicontinuous at Uo, the functions bj : U -t R'" ,and
Cj : U -t R are continuous for j E J, then A is uniformly lower
semiconiinuous.

Proof. Let Xo E A(tl{») ,ie., (bj (tl{» ),xo) = Cj(uo) j E JI l (bj(uo), xo) <
Cj(Uo) j E J2 . By the lower semicontinuity

'v'Q3Wo'v'uE Wo (Q + xo) n A(u) -I- 0,

ie., there is a X u E (Q+xo)nA(u) , u E Wo, and moreover X u can be
chosen in such way that (bj(u), xu ) = Cj(u) j E JI , (bj(u), xu ) <
Cj(u) j E J2 .
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Let us take any Xl E A(uo) such that Xl E A(uo) = {X E

A(Uo) 3VI of Uo {bj(u) - bj(uo),Xl - XO) :::; O.

{bj(uo), Xl) = Cj(UO) j E J1 {bi(uo), Xl) < C,.(Uo) j E J2 •

and consider Yu = Xl + [xu - xo] , for U E Wo .
To prove the inequality {b,.(u) ,Yu) < Cj(u) for j E J and U E Wo

we need to show that

(I) for any j E JI , {bAU) , xu) = Cj(u) ::::} {bj(u), [Xl - Xo]) < 0,

(II) for any j E J2 , {bi(u), xu ) < Cj(u) => {bj(u), [Xl - Xo]) <
Cj(U) - {bj(u), Xu) ,

Let us show (I). By assumption, (bj(u),xu) = Cj(U) , and hence, by
continuity of bi and Cj it must be j E JI . Thus, {bj(uo), xo) = Cj(uo) ,
(bj(uo), Xl) = Cj(Uo) , and (bj(u.o), [Xl - xo]) = O. We have

(bj(u),yu) = (bj(u),xu ) + (bj(u), [Xl - Xo])
=cAu) + (bj(uo) , [Xl - xo]) + ([bj(u) - bAuo)], [Xl - Xo])
:S Cj(U) .

This proves I.
To show (II) suppose that (bj(u), xu ) < Cj(u) , and (bj(u.o), xo) ­

Cj(u.o) = a < O. Then by taking any 0'1 > 0 such that 0' + O'} < 0
one can find a neighbourhood VI of u.o such that

(bj(u), xu ) - Cj(u) < a + al < O.

On the other hand, there exists a neighbourhood V2 of Uo such that

(bj(u), [XI-XO]) = (bj(u),xu ) - (bj(u),xu ) + (bj(U), [Xl - xo])
= (bj(u), [xu - xoJ) - (bj(u), xu ) + (bAuo) ,Xl) - (bj(uo),Xl) + (bj(u),
(bj(u), [xu - xo]) - cAu) + Cj(UO) + ([bj(u) - bj(uo)],Xl) .

Let j E J2 , ie., (bj(uo),xo) < Cj(Uo). Then for all U in some neigh­
bourhood V4 of Uo, ci(u) = (bj(u),xu ) < Cj(uo) . If j E J3 , ie.,
(bj(UO),Xl) = Cj(uo) , then

(bj(u),xu) = (bj(uo),xo) + (bj(uo), [xu - xo]) + ([bj(u) - bj(uo)],xu )

= Ci(Uo) + {bj(uo), [xu - xo]) + ([bAu) - bj(uo)],xu ) :S Cj(u)

o
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Theorem 2.6.5 Let f = (11, ..., fm) : U x R" -+ J?!1l be a linear
function of a: E H" and let A : U -+ R" be a feasible set multifunc­
tion given by a system of inequalities

A(u) = {x E ir I gj(u,x):5 0 j E J},

where, for each j E J, gj : U x H" -+ R is a linear function with
respect to x, gj(u,x) = (bAu),x) - cAu) , j E J, bj : U -+ Er',
Cj : U -+ R. If

r : U -+ J?!1l, r(u) = f(u,A(u)) , is u.H.c. and l.c. at uo,

Min(r(Uij)IK:) is nonempty, and Min(f(uo)IK:) = W Min(r(uo)IK:) ,

then M(u) = Min(r(u)IK:) is u.H.c. at u{).

Proof. According to Theorem 2.2.1 we need to show that r, r(u) =
f(u, A(u)) , is uniformly lower semicontinuous on Min(r(uo)IK:).

Let e > O. According to the assumptions, for i E 1 , fi (u, x) =
(Ji(U), x} ,

I(Ji(U), X}-(Ji(UQ), xo}I :5 I(Ji(u), X}-(Ji(UO}' x}1+I(Ji(Uo), X}-(fi(UO)' xo}J ,

and there exists a neighbourhood Uo of Uo and a 0- neighbourood
V = B(O, M) , in Jl'l, M = miniEr{Mi}, where M, < 211,Juo)l! ' such
that

for u E Uo , and

for x E Xo +V. By Lemma 2.1, A is uniformly lower semicontinuous
at Uij. Hence, there exists a neighbourhood UI of Uo such that for
each Xo E A(UQ)

(xo +B(O, M) ) n A(u) f:- 0 u E UI ,

ie., there exists X u E (xo +B(O, M) ) n A(u). Now, for u E Uo n UI

48



Since !(u,xt.) E r(u) , and Yo = !(Uo,xuo ) E r(uoL the above
inequality proves that, for u E VD n VI ,

r(u) n (Yo + B(O,e) ) # 0.

o
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