
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The market model of CDO 

spreads 

 

 
 
 

 

D. Gątarek, V. Petrov, A. Stavrou 

Instytut Badań Systemowych 

Polska Akademia Nauk 
 

Systems Research Institute 

Polish Academy of Sciences 

 

Raport Badawczy 

Research Report 

RB/58/2015 



Control and Cybernetics

vol. 44 (2015) No. 1

The market model of CDO spreads∗

by

Dariusz Ga̧tarek1, Vesselin Petrov2 and Athanasios Stavrou2

1Systems Research Institute, Polish Academy of Sciences
Newelska 6, 01-447 Warszawa, Poland

gatarek@ibspan.waw.pl
2Glencore UK LTD, 50 Berkeley Street, London W1J 8HD, UK

Vesselin.Petrov@glencore.co.uk
Athanasios.Stavrou@glencore.co.uk

Abstract: In this paper we present a new arbitrage-free bottom-
up model of correlated defaults, based on a special approach to sys-
tematic and idiosyncratic risks for individual obligors. The model
admits several attractive features, like consistency with currency and
interest rate models, as well as numerical tractability and flexibility,
making it capable to fit the market for practically all self-consistent
CDO tranche prices. Its background is rather remote from other
approaches, like copulas and point processes, so our presentation is
detailed.

Keywords: CDO pricing, Marshall-Olkin copula, bottom-up
approach

1. Introduction

There are two general classes of reduced-form models of collateralized debt obli-
gation (CDO) spreads – those based on the copula functions and those based
on point processes (Brémaud, 1980). The copula approach seems to be not
flexible enough to model the term and capital structure of CDO spreads under
various market conditions, while point process modeling is not sufficiently suit-
able to model bespoke products and individual obligors. We refer to Burtschell,
Gregory and Laurent (2009) for an excellent account on copula models, and
to Giesecke and Goldberg (2011), Lindskog and McNeil (2001), Longstaff and
Rajan (2008), and Brigo, Pallavicini and Torresetti (2007a) for several examples
of the point process approach to CDO modeling. Gaussian copula (Li, 2000) is
the market standard and is used (or rather misused) in the worst possible way –
every tranche for every maturity is priced with different model parameters with-
out caring about model consistency and absence of arbitrage. Several attempts

∗Submitted: March 2013; Accepted: January 2015
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have been made to overcome these difficulties: Sidenius (2007) constructs a cop-
ula with term structure but for a finite number of tenors only, Brigo, Pallavicini
and Torresetti (2007b) incorporate individual names into a top-down model by
allowing many defaults of a single obligor.

Our purpose is to construct an arbitrage-free bottom-up market model ap-
proach to CDO tranche pricing, i.e. a model:

1. Admitting a natural interpretation of systematic and idiosyncratic risks
in terms of individual spreads.

2. Having the ability to fit to all tranche spreads for all tenors.
3. Consistent with equity, currency and interest rate models, hence suitable

for hybrid products.
4. Having a natural extension to dynamic modelling and credit options.

We will call the model ‘market model’ for these attractive features. We follow the
general copula concept of systematic and idiosyncratic risks and interpolation
between them, but our solution is different – more direct, flexible and intuitive.
Because the research is new, all necessary formulas are given in extent. The
above properties seem to answer almost all open questions in CDO pricing,
although we are aware that it is the judgement of practitioners that decides.
Our research is remotely based on an old idea by Giesecke (2003) and is similar
in spirit to Balakrishna (2006) and Walker (2007).

2. The model

Let Fi : R+ → [0, 1] be a family of distribution functions, describing default
times τi of a number of obligors, i.e. Fi(t) = P (τi 6 t) for 1 6 i 6 N .
Default times τi, on the one hand, may be independent, on the other – co-
monotonic. Correlations may vary between perfect and null, imposing changes
in prices of CDO tranches. Finding correlations fitting market prices, being
a kind of interpolation between independent and co-monotonic case, is one of
most important tasks in credit derivatives modelling. The market standard
interpolation method is the Gaussian single factor copula (Li, 2000), with the
default times being constructed as follows:

τi = F−1
i

(

Φ

(

αiΦ
−1 (X0) + Φ−1 (Xi)

√

1− α2
i

))

, (1)

where 0 6 αi 6 1 andX0, X1, ..., Xd is a family of independent random variables
uniformly distributed on [0,1], i.e. P (Xi < t) = P (Xi 6 t) = t. The random
variables X1, ..., Xd are called idiosyncratic factors and the random variable X0

is called systematic factor. There exist a number of other copulas called after
their authors: Gumbel, Clayton, Frank, Student, and many others. The default
times in a general single factor copula approach are constructed as follows:

τi = F−1
i (Φαi

(Q (αi, X0, Xi))) ,

whereQ is a continuous function, such that the numbers 06 α 6 1 form an inter-
polation between independent and co-monotonic border cases, i.e. Q(0, x, y) =
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y, and Q(1, x, y) = x, and Φα is a distribution of Q (α,X0, Xi) . The proper
choice of the functions Φα and Q determines to which class the copula belongs.
An interesting special case is the so called random factor loading, where the
correlation parameter α is a function (see Andersen and Sidenius, 2005). We
refer for details to Burtschell, Gregory and Laurent (2011).

We are strongly convinced that the copula approach is not very suitable
for CDO modelling, and we are going to introduce a new approach related
to reliability theory (Barlow and Proschan, 1965). First consider the border
cases: if αi ≡ 0, then τi are independent, and if αi ≡ 1 for all i, then τi are
co-monotonic. We know from Burtschell, Gregory and Laurent (2009) that co-
monotonic defaults minimise the price of equity tranche. In other words, num-
bers 0 6 αi 6 1 form interpolation between independent (high equity price) and
co-monotonic (low equity price) border cases, preserving the marginal distribu-
tion F1(t), ..., Fd(t) of the random variables τ1, ..., τd. We are going to construct
a new interpolation method with more freedom in modelling correlation and
simpler tranche pricing formulae. Let Gi : R+ → [0, 1] and Hi : R+ → [0, 1] be
two families of distribution functions satisfying

(1−Hi(t))(1 −Gi(t)) = 1− Fi(t). (2)

Define two families of random variables Y1, Y2, ..., Yd (idiosyncratic factors) and
Z1, Z2, ..., Zd (systematic factors) by

Yi = H−1
i (Xi) and Zi = G−1

i (X0). (3)

It should be kept in mind that X0, X1, ..., Xd are independent random variables
uniformly distributed on [0,1]. We denote by t ∧ s = min{t, s}. Calculate that
Fi is the distribution function of τi = Yi ∧ Zi:

P (τi > t) = P (Yi ∧ Zi > t) = P (Yi > t, Zi > t) = P (Yi > t)P (Zi > t)
= P (Xi > Hi(t))P (X0 > Gi(t)) = (1−Hi(t))(1 −Gi(t)) = 1− Fi(t).

(4)

In particular: if Fi(t) = Hi(t), then τi is independent of τj for any i 6= j, if
Fi(t) = Gi(t) for all i, then τi = G−1

i (X0), hence all random variables τi are
co-monotonic. The economic interpretation of (2) is quite natural – the default
may be caused either by external events (systematic) or by the company itself
(idiosyncratic).

Define

λi(t) = −
d ln (1− Fi(t))

dt
=

1

1− Fi(t)

dFi(t)

dt
> 0. (5)

Obviously

Fi(t) = 1− exp



−

t
∫

0

λi(s)ds



 and
dFi(t)

dt
= λi(t)(1− Fi(t)).
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The quantity λi(t) admits natural interpretations as a hazard rate, namely

λi(t)dt = P (t 6 τi < t+ dt|t < τi).

Let λsys
i (t) > 0 and λidio

i (t) > 0 be two hazard rates defined by

λ
sys
i (t) = −

d ln (1−Gi(t))

dt
and λidio

i (t) = −
d ln (1−Hi(t))

dt
.

In other words

Gi(t) = 1− exp



−

t
∫

0

λ
sys
i (s)ds





and

Hi(t) = 1− exp



−

t
∫

0

λidio
i (s)ds



 .

Obviously,

λ
sys
i (t) + λidio

i (t) = λi(t).

The family of functions

0 6 λ
sys
i (t)/λi(t) 6 1

form an interpolation between the independent and the co-monotonic case with
term structure, hence richer than Gaussian copula interpolation, consisting of
numbers 0 6 αi 6 1. Setting the market model in terms of ratios λsys

i (t)/λi(t),
analogously as for the Gaussian copula, is not practical, because giving the
complete capital and term structure would require a massive matrix, therefore
other synthetic input data are needed. This topic will be briefly discussed in
the last section. Similar construction for Gaussian copula is called ‘random
factor loading’ (Andersen and Sidenius, 2005) and is much more technically
complicated.

Obviously, τi|Zi are conditionally independent and their distribution is

P (τi > t|Zi = z) = P (Yi ∧ z > t) = (1−Hi(t)) I (z > t) .

Define point processes:

N(t) =
d

∑

i=1

I (τi < t)− total number of defaults, (6)

M(t) =

d
∑

i=1

I (Zi < t)− number of systematic defaults, (7)
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and the number of idiosyncratic defaults in the set of names numbered from
j + 1 as

Nj(t) =
d

∑

i=j+1

I (Yi < t), (8)

where I is the indicator function. If we assume that Zi are co-monotonic i.e.
Zi 6 Zi+1, what is equivalent to Gi+1 6 Gi for all i, then

P (M(t) = j) = P (Zj < t < Zj+1) = P (Gj+1(t) < X0 < Gj(t)) =

Gj(t)−Gj+1(t), (9)

setting G0 ≡ 1. In consequence

P (M(t) > i) = Gi(t) (10)

and

P (N(t) = m) =

m
∑

j=0

P (M(t) = j)P (Nj(t) = m− j) =

m
∑

j=0

(Gj(t)−Gj+1(t))P (Nj(t) = m− j). (11)

Construction of the systematic factor as Zi = G−1
i (X0) is counter-intuitive,

since the first default Z1 = G−1
1 (X0) determines all next default times, i.e.

Zi = G−1
i (G1(Z1)) – and this is not the way markets work. It is not disturbing

for static models, but may give rise to a problem while modelling dynamics.
There are several ways to construct a family of co-monotonic random variables,
i.e. Zi 6 Zi+1, with given cumulative distributions Gi without counter-intuitive
‘future prediction’ property, via structural models, see, for instance Hull, Pre-
descu and White (2005). Our construction is developed in terms of point pro-
cesses with multiple defaults to keep consistent the point processes approach.
Let V1, V2, ..., Vd be a family of independent random variables uniformly dis-
tributed on [0,1], obviously independent of X0, X1, ..., Xd. Define

Zd = G−1
d (Vd) = G̃−1

d (Vd), (12)

Zi = Zi+1 ∧ G̃−1
i (Vi) for i<d, (13)

where G̃i(t) is a distribution function defined by

G̃i(t) = 1− exp



−

t
∫

0

(

λ
sys
i (s)− λ

sys
i+1(s)

)

ds



 = 1−
1−Gi(t)

1−Gi+1(t)

=
Gi(t)−Gi+1(t)

1−Gi+1(t)
. (14)
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Obviously, Zi 6 Zi+1,P (Zd > t) = 1−Gd(t), and, by induction,

P (Zi > t) = P
(

G̃−1
i (Vi) ∧ Zi+1 > t

)

= P
(

G̃−1
i (Vi) > t, Zi+1 > t

)

= P (Vi > G̃i(t))P (Zi+1 > t) = (1 − G̃i(t))(1 −Gi+1(t)) = 1−Gi(t)
(15)

and

P (M(t) = j) = P (Zj < t 6 Zj+1) = P
(

G̃−1
j (Vj) < t 6 Zj+1

)

= G̃j(t) (1−Gj+1(t)) = Gj(t)−Gj+1(t).
(16)

The so constructed jump process M(t) is Markovian on {0, 1, . . . , d} with tran-
sition intensity

P (M(t+ dt) = j|M(t) = i) =
(

λ
sys
j (t)I(j > i)− λ

sys
j+1(t) I(j > i)

)

dt+ I(i = j).

We set λ
sys
d+1(t) ≡ 0. Probabilities given by the predicting approach coincide

with those given by the Markovian one, so both models are indistinguishable
from the pricing point of view. Notice that the market model admits multiple
defaults, but their probability is very small when compared with single defaults.

Notice the dynamical structure of the model, since there is no transformation
of time as in copula models, what makes it consistent with equity, currency and
interest rate models, hence suitable for hybrid products. We may easily gener-
alise the market model by making hazard rates λ

sys
i (t) and λidio

i (t) stochastic
processes allowing for consistent modelling CDO options, tranches and tranche
options. In such case the conditional default probability is given by the formula

P (τi > t|Fs) = E







exp



−

t
∫

s

(

λ
sys
i (s) + λidio

i (s)
)

ds





∣

∣

∣

∣

∣

∣

Fs







I(τi > s),

where Ft is the natural filtration. Such a model will be investigated in the
future, although its practical use is questionable these days – tranche options
are practically not traded.

3. Calculation of probabilities

There exists a simple algorithm to calculate P (Nj(t) = m) by Hull and White
(2004), based on the Bernoulli triangle, namely

P (Nd(t) = 0) = 1, P (Nd(t) = m) = 0 for m > 0,

P (Nj−1(t) = 0) =

d
∏

i=j

(1−Hi(t)) = P (Nj(t) = 0) (1−Hj(t)) ,

P (Nj−1(t) = m) = P (Nj(t) = m− 1)Hj(t) + P (Nj(t) = m) (1−Hj(t))
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for m > 0. In practice, P (Nj(t) = m) = 0 for large (exceeding 30) m. The

point process Nj(t) may be as well approximated by a Poisson process Ñj(t)

with intensity
d
∑

i=j+1

λidio
i (s). Hence,

P (Nj(t) = m) ≈ P
(

Ñj(t) = m
)

=

1

m!





t
∫

0

d
∑

i=j+1

λidio
i (s)ds





m

exp



−

t
∫

0

d
∑

i=j+1

λidio
i (s)ds





=
1

m!



−

d
∑

i=j+1

ln (1−Hi(t))





m
d
∏

i=j+1

(1−Hi(t)).

The processes Ñj(t) are Markovian in the Poisson approximation with transition
intensity

P
(

Ñj(t+ dt) = k

∣

∣

∣ Ñj(t) = i
)

=



























d
∑

i=j+1

λidio
i (t)dt if i = k − 1,

1−
d
∑

i=j+1

λidio
i (t)dt if i = k,

0 otherwise.

Denote by Yfirst = min{Yi : 1 6 i 6 d} the first default of idiosyncratic type,
whilst Z1 is the first default of systematic type. Only systematic defaults may
be multiple. Calculate that

P (Yfirst > t) =
d
∏

i=1

(1−Hi(t)) = exp



−

t
∫

0

d
∑

i=1

λidio
i (s)ds





and

P (Z1 > t) = 1−G1(t) = exp



−

t
∫

0

λ
sys
1 (s)ds



 .

Hence

P (t 6 Z1 6 t+ dt |Z1 > t )

P (t 6 Yfirst 6 t+ dt |Yfirst > t )
=

λ
sys
1 (t)

d
∑

i=1

λidio
i (t)

,

what represents the common market view – multiple defaults may happen but
their probability is much smaller than probability of single defaults. This in-
equality is also an informal proof that idiosyncratic hazard rates are responsible
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for equity prices, while the systematic hazard rates deal with the more senior
tranches, demonstrated more rigorously in Burtschell, Gregory and Laurent
(2009).

Let us collect the properties of the market model:

• The process M(t) is Markovian on {0, 1, . . . , d},
• The processes Nj(t) are Markovian on all subsets of {j+1, j+2, . . . , d},
• There exists a Markovian approximation on {j, j+1, j+2, . . . , d} of the
process Nj(t),

• Transition probabilities for the process M(t) admit closed formulae,
• Transition probabilities for the processes Nj(t) admit accurate approxi-
mate formulae and fast calculation algorithms,

• The model admits single defaults with large probability and multiple de-
faults with very small probability.

4. Index and tranche pricing

The credit spread Spread for the premium index leg is calculated as

Spread(TN)

N
∑

i=1

δiDF (0, Ti) (d− EN(Ti)) = LGD · ELoss, (17)

where Tj are fee payment days, δj = Tj − Tj−1 is accrual period, DF (0,t) is a
discount factor and the expected loss ELoss is defined by

ELoss =

TN
∫

0

DF (0, t)EN(dt) =

d
∑

i=1

TN
∫

0

DF (0, t)Fi(dt) =

d
∑

i=1

TN
∫

0

DF (0, t)λi(t)(1 − Fi(t))dt.

Since λ
sys
i (t) + λidio

i (t) = λi(t), we have the following separated representation
for the expected loss

ELoss = ELosssys + ELossidio,

where

ELosssys =

d
∑

i=1

TN
∫

0

DF (0, t)λsys
i (t)(1− Fi(t))dt

and

ELossidio =

d
∑

i=1

TN
∫

0

DF (0, t)λidio
i (t)(1 − Fi(t))dt.
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By the formula (17) all spreads may be decomposed into idiosyncratic and sys-
tematic parts, as well. Therefore, λsys

i (t) and λidio
i (t) have one more natural

economic interpretation – they are just infinitesimal increases of both expected
losses ELosssys and ELossidio, associated with the i-th obligor. The market
model may be quoted in terms of both hazard rated and expected losses.

Taking into consideration formula (11) and Section 2 we may easily price
the CDO tranches. Assume deterministic recovery rate R and loss-given-default
LGD = 1 – R as a fraction of the nominal for all obligors and the notional of
every obligor to be equal LGD−1. Define the tranche as [k,K] and let the CDO
consist of d obligors with equal notional. The survival amount associated to the
tranche [k,K] is defined as

SkK(t) =

(

Kd

LGD
−N(t)

)+

−

(

kd

LGD
−N(t)

)+

. (18)

Hence, the expected survival amount is equal

ESkK(t) = QK(t)−Qk(t), (19)

where

Qk(t) = E

(

kd

LGD
−N(t)

)+

=

n(k)
∑

j=0

P (N(t) = j)

(

kd

LGD
− j

)

,

n(k) = max {n : LGD · n < kd} .

The upfront payment Upfront and credit spread Spread for the premium leg are
calculated as

SpreadkK(TN )

N
∑

i=1

δiDF (0, Ti)ESkK(Ti) +

Upfront
d(K − k)

LGD
+

TN
∫

0

DF (0, t)ESkK(dt) = 0. (20)

This result reflects the picture of a CDO tranche as a portfolio of CDS swaps.
The following trapezoidal approximation is commonly used

−

Tj+1
∫

Tj

DF (0, t)EAkK(dt) ≈

DF (0, Tj) +DF (0, Tj+1)

2
(EAkK(Tj)− EAkK(Tj+1)) .
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5. Examples and Markov approximation

The number of potential calibration parameters is enormous – 6 tenors for 125
obligors are quoted by the market, what makes possible 750 partition parameters
of hazard rates into systematic and idiosyncratic parts. We propose here two
natural ways of aggregating these data in order to avoid overfitting:

Example 1 Marshall-Olkin copula (shock model)
An important special case, when Gi = G1 for all i, is called Marshall-Olkin

copula or “shock model” and represents the systematic factor of catastrophic
character – forcing defaults of all obligors at the same time Z1. For the shock
model the number of defaults formula takes the form

P (N(t) > m) = (1−G1(t))P (N0(t) > m) +G1(t).

Example 2 Stepwise systematic hazard rate
In this case Gi = Gi+1 for 1 6 i < kj and 1 6 j 6 g. In other words,

there is only a small number of systematic distributions and obligors default in
clusters. The Marshall-Olkin copula is a special case of this example.

There exists a Markov approximation of the process N(t). Remember that the
process of systematic defaults M(t) is Markov with transition probability

P (M(Tj+1) = n |M(Tj) = i ) ≈















0 for n < i,

1−
d
∑

k=i+1

(

G̃k(Tj+1)− G̃k(Tj)
)

for n = i,

G̃n(Tj+1)− G̃n(Tj) for n > i.

If all idiosyncratic spreads are identical i.e. Hi = H1 for all i, then the process
of all idiosyncratic defaults

N0(t) =
d

∑

i=1

I (Yi < t)

is Markov with transition probability

P (N0(Tj+1) = n |N0(Tj) = i ) ≈







0 for n < i and n > i+ 1,
1− (d− i) (H1(Tj+1)−H1(Tj)) for n = i,

(d− i) (H1(Tj+1)−H1(Tj)) for n = i+ 1.

We may construct the process N(t) as a composition of processes M(t) and
N0(t), giving its transition probability

P (N(Tj+1) = n |N(Tj) = i)
= P (M(Tj+1) = n |M(Tj) = i ) + P (N0(Tj+1) = n |N0(Tj) = i)− I(i = n).

This approximation slightly underestimates the expected loss.
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6. Multifactor case

We need to introduce more factors to assure a better fit of the market, es-
pecially under stressed conditions. This construction is analogous to the one
already introduced, although some extra notation is needed, what may make
the presentation less clear.

Let U1, U2, ..., Uk,
(

X i
j

)

16j6di,16i6k
be a family of independent random vari-

ables on [0,1], uniformly distributed. Let Gj
i : R+ → [0, 1], Hi : R+ → [0, 1] and

Fi : R+ → [0, 1] be three families of distribution functions such that

(1−G
j
i (t))(1 −H

j
i (t)) = 1− F

j
i (t).

Define two families of random variables
(

Y i
j

)

16j6di,16i6k
(idiosyncratic factors)

and
(

Zi
j

)

16j6di,16i6k
(k systematic factors) by

Y i
j =

(

Hi
j

)

−1
(X i

j) (21)

and Zi
j =

(

Gi
j

)

−1
(Ui).

Calculate that F i
j is the distribution function of τ ij = Y i

j ∧ Zi
j :

P
(

τ ij > t
)

= P
(

Y i
j > t, Zi

j > t
)

= P (Y i
j > t)P (Zi

j > t)
= (1 −Hi

j(t))(1 −Gi
j(t)) = 1− F i

j (t).
(22)

Define point processes:

N(t) = card
(

i, j : τ ij < t
)

, N i(t) = card
(

j : τ ij < t
)

,

M i(t) = card
(

j : Zi
j < t

)

and

N i
j(t) = card

(

k > j : Y i
k < t

)

. (23)

If we assume that Zi
j are co-monotonic, i.e. Zi

j 6 Zi
j+1, then analogously as in

the single-factor case

P
(

M i(t) = m
)

= Gi
m(t)−Gi

m+1(t) (24)

and therefore

P (N(t) = m) =
∑

m1+...+mk=m

k
∏

i=1

P
(

N i(t) = mi

)

, (25)

where

P
(

N i(t) = m
)

=

m
∑

j=0

P
(

M i(t) = j
)

P
(

N i
j(t) = m− j

)

=

m
∑

j=0

(

Gi
j(t)−Gi

j+1(t)
)

P
(

N i
j(t) = m− j

)

.

The model may be approximated by a k-dimensional Markov process as it was
introduced in the previous section.
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7. Numerical results

Let us consider ITRX.9 quotations of the day 30/05/2008 (given in Table 1).

Table 1. ITRX.9 quotations of the 30/05/2008
Tranche Name 5 Years 7 Years 10 Years

ITRX.9 0%-3% 33.75% 41.75% 47.13%
ITRX.9 3%-6% 300.00 398.00 520.00
ITRX.9 6%-9% 188.00 234.00 300.00
ITRX.9 9%-12% 128.00 151.00 190.00
ITRX.9 12%-22% 63.00 73.00 88.00
ITRX.9 0%-100% 80.00 86.00 91.00

Calculations were performed according to a proprietary approach of func-
tional dependence between idiosyncratic and systematic hazard rates, leading
to very good fitting to all tranches with three consecutive tenors simultaneously
– 5, 7 and 10 years. Its general concept is as follows:

1. Hazard rates are divided into systematic part and idiosyncratic part and
systematic hazard rates are divided into fatal part and mezzanine part,
i.e. λfatal

i (t) + λmezz
i (t) = λ

sys
i (t).

2. There is one universal factor of the catastrophe character, applied to all
names at the same level i.e. fatal hazard rate is equal for all names
λ
fatal
i (t) = λfatal(t).

3. All idiosyncratic hazard rates λidio
i (t) have the same level provided the

total spread is larger than the fatal hazard rate, i.e.
λidio
i (t) = min

{

λidio(t), λi(t)− λfatal(t)
}

.
4. The mezzanine hazard rate λmezz

i (t) is distributed among three factors
chosen to improve the fitting of mezzanine tranches, i.e.
λmezz
i (t) = λi(t)− λ

fatal
i (t)− λidio

i (t).

Table 2. Hazard rates
Hazard rate 5 Y 7 Y 10 Y

Idiosyncratic 41.43 30.72 11.95
Fatal 101 84 105

Mezzanine λmezz
i (t) = λi(t)− λ

fatal
i (t)− λidio

i (t)

We see that in Spring 2008 the market was afraid not of individual indepen-
dent defaults but of defaults of the whole economy. And it was right. In our
opinion this presentation is a much more transparent indicator than compound
or base correlation, telling in practice nothing.

We see that setting the model in terms of ratios λsys
i (t)/λi(t), analogously

as for the Gaussian copula, would not be practical, since the ratio λ
sys
i (t)/λi(t)
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strongly depends on the level of hazard rates, which vary from small numbers
for investment grade obligors to large ones for nearly defaulted companies.

The errors are less than 1 basis point and they are well within bid-ask spreads
(see Table 3 and Fig. 1).

Our choice of the market model setting was of course arbitrary, since this is
the first research in the field, and may be improved by further study.

Table 3. Quality of fit
Tranche Name 5 Y 7 Y 10 Y

ITRX.9 0%-3% -0.12% 0.05% 0.00%
ITRX.9 3%-6% 0.50 -0.48 0.00
ITRX.9 6%-9% 0.27 -0.20 -0.55
ITRX.9 9%-12% 0.44 -0.13 -0.09
ITRX.9 12%-22% 0.14 0.12 0.06
ITRX.9 0%-100% -0.00 -0.00 -0.00

 
Errors of iTraxx of 30/05/08
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Figure 1. Quality of fit

References

Andersen, L. & Sidenius, J. (2005) Extensions to the Gaussian copula:
Random recovery and random factor loadings. Journal of Credit Risk
1(1), 29-70

Balakrishna, B. S. (2006) A semi-analytical parametric model for credit
defaults. Available at http://www.defaultrisk.com/pp crdrv128.htm



162 D. Ga̧tarek, V. Petrov and A. Stavrou
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