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Abstract: We consider multistage optimal control of a fuzzy dy-
namic system under fuzzy constraints on controls and fuzzy goals on
states in the setting of Bellman and Zadeh (1970) and Kacprzyk (1983,
1997). First, we present the solution by dynamic programming which
is a standard techniques in the class of problems considered. We in-
dicate its limitations, mainly related to its inherent curse of dimen-
sionality. We propose to replace the source problem by its auxiliary
counterpart with a small number of reference fuzzy states and ref-
erence fuzzy controls, solve it by dynamic programming to obtain
optimal reference control policies relating optimal reference fuzzy
controls to reference fuzzy states. Then, we show the use of an in-
terpolative reasoning approach to derive optimal fuzzy controls, not
necessarily reference ones, for current fuzzy states, not necessarily
reference ones.

Keywords: multistage fuzzy control, fuzzy dynamic program-
ming, fuzzy system under control, interpolative reasoning.

1. Introduction

Fuzzy (logic) control has been generally considered a flagship example of success
of fuzzy technology. Basically, its essence may be viewed as that while consider-
ing a control problem we do not intend to build a model of the control process
itself, as is customary in traditional control theory and engineering, because this
may be too difficult or costly, or even such a model may be unknown. We just
assume that we know how to control the process, in the sense of control laws
that maybe do not guarantee optimality but yield good results in practice. Such

∗Submitted: November 2012; Accepted: February 2013
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control laws may be either derived from experienced process operators by some
knowledge elicitation procedure, or can be derived by some (semi)automatic
data mining or knowledge discovery process from data. Normally, linguistic
IF–THEN rules are used to represent control laws, and also models of systems
under control. This paradigm is clearly an example of a descriptive approach
since we explicitly describe how to control the process considered.

Even if the above descriptive approach to fuzzy control has been so suc-
cessful, it may be viewed as somehow counter-intuitive, contradicting the long
tradition of control, the aim of which is to find (prescribe) a best course of action,
assuming knowledge of the dynamics of the system to be controlled, and some
goals to be attained and constraints under which to operate. Such a prescriptive
approach to fuzzy control is even earlier, see Bellman and Zadeh (1970); see
also Kacprzyk’s (1983, 1997) books for a detailed description. This approach is
of a fuzzy optimal control type, and notably dynamic programming is employed
therein.

This paper is concerned with that prescriptive approach to fuzzy control,
to be more specific: with some problems related to the use of dynamic pro-
gramming. We assume a more difficult case of a fuzzy system under control,
given as some known and prespecified fuzzy state transition equation. The mul-
tistage control proceeds over a finite, fixed and specified horizon, under fuzzy
constraints imposed on the controls at the consecutive stages, and fuzzy goals
imposed on the states (equated, for simplicity with outputs) attained. An op-
timal sequence of fuzzy controls (in fact, clearly, of control policies) is sought
which maximizes the membership function of the fuzzy decision given as the
intersection of the consecutive fuzzy constraints and goals. Basically, to ob-
tain solution we employ a fuzzy dynamic programming scheme as proposed by
Kacprzyk (1997). However, due to the inherent curse of dimensionality of dy-
namic programming, which is even more dangerous in the case considered, owing
to an increase of dimensionality caused by the use of fuzzy constraints, goals
and state transitions, we first use a simplification procedure for a reduction of
problem dimensionality through the replacement of a huge number of possible
fuzzy states, fuzzy controls, fuzzy state transitions, etc. by a small number of
the so-called reference fuzzy controls, fuzzy states, fuzzy state transitions, etc.
This has much to do with the problem of sparsity of rule bases in fuzzy control
as first analyzed by Kacprzyk and Fedrizzi (1995), and then further developed
by many, e.g. by Wu, Mizumoto and Shi (1996), Chang, Chen and Liau (2008),
Chen and Ko (2008), or Hsiao, Chen and Lee (1998).

Obviously, through this simplification we obtain a slightly different problem
so that the solution obtained should be adjusted. This is done by using an inter-
polation approach as initiated, and then mainly extended by Kacprzyk (1997),
with an application to regional development planning shown in Kacprzyk,
Romero and Gomide (1999). We will present that approach in much detail,
but with a somehow broader perspective by taking into account some newer
developments in a very relevant field of interpolation in (fuzzy) rule bases, no-
tably by Kóczy and his collaborators (Baranyi, Koćzy and Gedeon, 2004; Koćzy,
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Hirota and Gedeon, 2000; Tikk and Baranyi, 2000; Yam, Wong, and Baranyi,
2006; Wong et al., 2005).

A broad view of the entire area of multistage fuzzy control, or – more specif-
ically – fuzzy dynamic programming, which will be provided, should make it
possible to better present such a general perspective.

First, we outline Bellman and Zadeh’s (1970) seminal framework of (op-
timal) fuzzy decision making and control within which the problem will be
discussed. Then, we present its solution by dynamic programming, which is a
standard solution technique, and indicate its limitations, mainly related to its
inherent curse of dimensionality. We also present some alternative techniques.
We then present an extension of Kacprzyk’s (1993a,b,c, 1997) proposal to re-
place the source problem by its auxiliary counterpart with a small number of
reference fuzzy states and reference fuzzy controls, solve it by dynamic program-
ming, and then “adjust” the solution obtained by using the concept of Kóczy
and Hirota’s (1993a,b, 1997) interpolative reasoning technique, with a refer-
ence to newest development in this field, exemplified by Baranyi, Kóczy and
Gedeon (2004), Kóczy, Hirota and Gedeon (2000), Tikk and Baranyi (2000),
Yam, Wong and Baranyi (2006) or Wong, Tikk, Gedeon and Kóczy (2005). We
show illustrative examples.

2. Multistage fuzzy control: the case of a deterministic

system under control

To start, we will outline the general Bellman and Zadeh’s (1970) approach to
decision making in a fuzzy environment, and show how it can be employed in
multistage fuzzy control with a deterministic system. This will provide us with
a point of departure.

2.1. Bellman and Zadeh’s general approach to decision making and

control under fuzziness

If X = {x} is a set of possible options (alternatives, choices, . . . ), then:
• a fuzzy goal is defined as a fuzzy set G in X , characterized by its member-
ship function µG : X −→ [0, 1] such that µG(x) ∈ [0, 1] specifies the grade
of membership of a particular option x ∈ X in the fuzzy goal G;

• a fuzzy constraint is similarly defined as a fuzzy set C in the set of options
X , characterized by µC : X −→ [0, 1].

The general problem formulation is “Attain G and satisfy C”, which leads
to the fuzzy decision D defined as a fuzzy set in X such that

µD(x) = µG(x) ∧ µC(x), for each x ∈ X (1)

where a ∧ b = min(a, b) may be replaced by another operation, e.g., a t-norm
(see Kacprzyk, 1997), which is defined as a function T : [0, 1]× [0, 1] −→ [0, 1],
satisfying the following properties, ∀a, b, c ∈ [0, 1]:

• Commutativity: T (a, b) = T (b, a),



66 J.Kacprzyk

• Monotonicity: T (a, b) ≤ T (c, d) if a ≤ c and b ≤ d,
• Associativity: T (a, T (b, c)) = T (T (a, b), c),
• The identity element is 1, i.e. T (a, 1) = a.

If we have n > 1 fuzzy goals, G1, . . . , Gn, and m > 1 fuzzy constraints,
C1, . . . , Cm, all defined in X , then the fuzzy decision is

µD(x) = µG1
(x) ∧ . . . µGn

(x)∧

∧µC1
(x) ∧ . . . ∧ µCm

(x), for each x ∈ X. (2)

If, on the other hand, C is defined in X = {x}, G is defined in Y = {y}, and
a function f : X −→ Y , y = f(x), is known, then the fuzzy decision is clearly

µD(x) = µG[f(x)] ∧ µC(x), for each x ∈ X (3)

and, for G1, . . . , Gn defined in Y , C1, . . . , Cm defined in X , and f : X −→ Y ,
y = f(x), we have

µD(x) = µG1
[f(x)] ∧ · · · ∧ µGn

[f(x)]∧

∧ µC1
(x) ∧ · · · ∧ µCn

(x), for each x ∈ X. (4)

In all the above cases the so-calledmaximizing decision, which is the solution
sought, is defined as an x∗ ∈ X such that

µD(x∗) = max
x∈X

µD(x). (5)

It is easy to see that the above general decision making related setting can
readily be extended to the multistage control context.

Now, the control space is U = {u} = {c1, . . . , cm}, the state space is X =
{x} = {s1, . . . , sn}, and both are finite. The system under control is assumed
to be deterministic, governed by a state transition equation

xt+1 = f(xt, ut), t = 0, 1, . . . (6)

where xt, xt+1 ∈ X = {s1, . . . , sn} are the states at t and t + 1, respectively,
and ut ∈ U = {c1, . . . , cm} is the control at t.

At t, t = 0, 1, . . ., ut ∈ U is subject to a fuzzy constraint µCt(ut), and on
xt+1 ∈ X a fuzzy goal, µGt+1(xt+1), is imposed.

The initial state is x0 ∈ X and is assumed to be known and given in advance.
The termination time (planning, or control, horizon), N ∈ {1, 2, . . .}, is assumed
to be finite, fixed and specified in advance (for other types of the termination
time, see Kacprzyk’s book, 1997).

The performance function of the multistage fuzzy control process is evaluated
by the fuzzy decision

µD(u0, . . . , uN−1 | x0) =

= µC0(u0) ∧ µG1(x1) ∧ . . . ∧ µCN−1(uN−1) ∧ µGN (xN ) (7)
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and the problem is to find an optimal sequence of controls u∗
0, . . . , u

∗
N−1 such

that

µD(u∗
0, . . . , u

∗
N−1 | x0) = max

u0,...,uN−1∈U
µD(u0, . . . , uN−1 | x0). (8)

Problem (8) can be solved using the following two basic traditional tech-
niques:

• dynamic programming (Bellman and Zadeh, 1970, Kacprzyk, 1983,1997),
and

• branch-and-bound (Kacprzyk, 1978a, 1979),
and also using the following two new ones, based on:

• a neural network (Francelin, Gomide and Kacprzyk, 2001a,b), and
• a genetic algorithm (Kacprzyk, 1995a,b,d,1996).
For the purpose of this paper the use of dynamic programming is the most

relevant.
First, we rewrite problem (8) as to: find u∗

0, . . . , u
∗
N−1 such that

µD(u∗
0, . . . , uN−1 | x0) = max

u0,...,uN−1

[µC0(u0) ∧ µG1(x1) ∧ . . .

. . . ∧ µCN−1(uN−1) ∧ µGN (f(xN−1, uN−1))] (9)

and since the term µCN−1(uN−1)∧µGN (f(xN−1, uN−1)) depends only on uN−1,
then the maximization over u0, . . . , uN−1 in (9) can be split into:

• the maximization over u0, . . . , uN−2, and
• the maximization over uN−1,

which may be continued for the maximization over u0, . . . , uN−3 uN−2, etc.
This backward iteration implies the set of fuzzy dynamic programming re-

currence equations:






µ
G

N−i(xN−i) =

= maxuN−i
[µCN−i(uN−i) ∧ µGN−i(xN−i) ∧ µ

G
N−i+1(xN−i+1)]

xN−i+1 = f(xN−i, uN−i); i = 0, 1, . . . , N

(10)

where µ
G

N−i(xN−i) is a fuzzy goal at t = N − i induced by the fuzzy goal at
t = N − i+ 1, i = 0, 1, . . . , N ; µ

G
N (xN ) = µGN (xN ).

The u∗
0, . . . , u

∗
N−1 sought is given by the successive maximizing values of

uN−i, i = 1, . . . , N in (10), which are obviously obtained as functions of xN−i,
i.e. as an optimal policy.

3. Multistage fuzzy control with a fuzzy system

For our purposes a relevant and natural extension of the multistage fuzzy control
problem with a deterministic system under control, as outlined in Section 2.1,
is by assuming a fuzzy system under control, the dynamics of which is given as
a fuzzy state transition equation

Xt+1 = F (Xt, Ut), t = 0, 1, . . . (11)
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whereXt, Xt+1 ∈ X are fuzzy states at control stage t and t+1, respectively, and
Ut ∈ U is a fuzzy control at control stage t, t = 0, 1, . . . , N−1; U = {C1, . . . , Cl}
is the set of fuzzy controls, and X = {S1, . . . , Sq} is the set of fuzzy states; both
are assumed finite, for simplicity and practical reasons. The finite termination
time is fixed and specified in advance; for the problem with infinite termination
time, see Kacprzyk and Staniewski (1983).

First, notice that in the previously discussed case of a deterministic system
under control, the consecutive controls applied, u0, . . . , uN−1 ∈ U , and the states
attained, x1, . . . , xN ∈ X , were non-fuzzy, hence we could directly determine
their grade of membership in the fuzzy constraints, µC0(u0), . . . , µCN−1(uN−1),
and in the fuzzy goals, µG1(x1), . . . , µGN (xN ), respectively.

Unfortunately, this is not the case for a fuzzy system as the control applied
and states attained are fuzzy. Thus, their grade of membership in µC0(u0), . . . ,
µCN−1(uN−1), and in µG1(x1), . . . , µGN (XN ), respectively, cannot be directly
determined, and some indirect mechanism (“trickery”) is needed.

At each t, Ut ∈ U is subject to a fuzzy constraint µCt(ut), and on Xt+1 ∈ X
a fuzzy goal µGt+1(xt+1) is imposed, t = 0, 1, . . . , N − 1. We basically need to
redefine the fuzzy constraints and fuzzy goals, for instance, as follows:

µ
C

t(Ut) = 1− diss(Ct, Ut), t = 0, 1, . . . , N − 1 (12)

and

µ
G

t+1(Xt+1) = 1− diss(Gt+1, Xt+1), t = 0, 1, . . . , N − 1 (13)

where diss : [0, 1]×[0, 1] −→ [0, 1] is some measure of dissemblance (dissimilarity,
. . . ) which is traditionally assumed to be a normalized distance between two
fuzzy sets, d(., .) ∈ [0, 1].

The simplest and most widely used normalized distances are (given below
for the fuzzy states and goals, and analogously for the fuzzy controls and con-
straints):

• the normalized linear (Hamming) distance

dl(XN , GN ) =
1

N

N
∑

i=1

| µXN
(si)− µGN (si) | (14)

• the normalized quadratic (Euclidean) distance

dq(XN , GN ) =

√

√

√

√

1

N

N
∑

i=1

[µXN
(si)− µGN (si)]2. (15)

As to other choices, the use of a degree of equality of two fuzzy sets proposed
by Kacprzyk and Staniewski (1983) is also a plausible choice, i.e. µ

G
N (XN ) =

e(XN , GN ) (see Kacprzyk, 1997). Moreover, one can also use one of numer-
ous measures of similarity or dissimilarity, or mose generally, incompatibility,
between two fuzzy sets as given, e.g., in Cross and Sudkamp’s (2002) book.

Then, generally, the fuzzy decision is

µD(U0, . . . , UN−1 | X0) =

= µ
C

0(U0) ∧ µ
G

1(X1) ∧ . . . ∧ µ
C

N−1(UN−1) ∧ µ
G

N (XN ) (16)
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and we seek an optimal sequence of fuzzy controls U∗
0 , . . . , U

∗
N−1 such that

µD(U∗
0 , . . . , U

∗
N−1 | X0) = max

U0,...,UN−1

µD(U0, . . . , UN−1 | X0). (17)

Now, since we focus on dynamic programming here, we will show how prob-
lem (17) may be solved by dynamic programming. For the use of branch-and-
bound (see Kacprzyk, 1979) and a genetic algorithm (see Kacprzyk, 1995a, b,
d), see the book by Kacprzyk (1997).

3.1. Solution by dynamic programming

The application of a dynamic programming scheme to solving problem (17) is
due to Baldwin and Pilsworth (1992).

The fuzzy system under control is described by a fuzzy state transition equa-
tion (11), i.e. Xt+1 = F (Xt, Ut), t = 0, 1, . . ., where Xt, Xt+1 ∈ X are fuzzy
states at control stages t and t + 1, respectively, and U ∈ U is a fuzzy control
at control stage t; X is the set of fuzzy states and U is the set of fuzzy controls.

At each control stage t, Ut is subject to a fuzzy constraint µCt(ut), and on
the resulting Xt+1 a fuzzy goal µGt+1(xt+1) is imposed, t = 0, 1, . . . , N − 1.

Both Ut and Xt+1 are now fuzzy, and hence their grades of membership
in Ct and Gt+1 cannot be directly determined as the values of µCt(ut) and
µGt+1(xt+1), respectively. Therefore, for each t we construct a fuzzy relation R
in U ×X such that

µRt(ut, xt) = µCt(ut) ∧ µGt+1(xt+1), for each ut ∈ U, xt+1 ∈ X (18)

which represents the degree, between 0 and 1, to which the fuzzy constraint Ct

and fuzzy goal Gt+1 are satisfied.

In turn, the degree to which a Ut and Xt+1 satisfy Ct and Gt+1, respectively,
is given as

T (Ut, R
t, Xt+1) = max

xt+1∈X
[max
ut∈U

(µUt
(ut) ∧ µRt(ut, xt)) ∧ µXt+1

(xt+1)] =

= max
xt+1∈X

[max
ut

(µUt
(ut) ∧ µCt(ut) ∧ µGt+1(xt+1) ∧ µXt+1

(xt+1))] =

= max
ut∈U

[µUt
(ut) ∧ µCt(ut)] ∧ max

xt+1∈X
[µXt+1

(xt+1) ∧ µGt+1(xt+1)]. (19)

The fuzzy decision is now given as

µD(U0, . . . , UN−1 | X0) =

= T (U0, R
0, X1) ∧ . . . ∧ T (UN−1, R

N−1, XN ) (20)

which yields the degree to which a particular sequence of fuzzy controls U0, . . . ,
UN−1, and the resulting sequence of fuzzy states X1, . . . , XN , satisfy the respec-
tive fuzzy constraints and fuzzy goals.
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The problem is now to determine an optimal sequence of fuzzy controls
U∗
0 , . . . , U

∗
N−1 such that

µD(U∗
0 , . . . , U

∗
N−1 | X0) =

= max
U0,...,UN−1

µD(U0, . . . , UN−1 | X0) =

= max
U0,...,UN−1

[T (U0, R
0, X1) ∧ . . . ∧ T (UN−1, R

N−1, XN )]. (21)

Notice that the operations assumed, the minimum (“∧”) and maximum
(“∨”) can be replaced by a suitable t-norm and s-norm, i.e. those which would
make it possible to split the respective optimization problems into the consec-
utive optimization steps over the consecutive single controls; for instance, the
minimum or algebraic product are such t-norms.

Assume now for simplicity that the fuzzy constraints are imposed at control
stages t = 0, 1, . . . , N − 1, but the fuzzy goal is imposed only at control stage
t = N . Problem (21) becomes, therefore, the one to find an optimal sequence
of fuzzy controls U∗

0 , . . . , U
∗
N−1 such that

µD(u∗
0, . . . , U

∗
N−1 | X0) =

= max
U0,...,UN−1

max
u0∈U

[µU0
(u0) ∧ µC0(u0) ∧ . . . ∧ max

UN−1∈U
(µUN−1

(uN−1) ∧

∧µCN−1(uN−1) ∧max
xN

(µXN
(xN ) ∧ µGN (xN )) . . .] (22)

where the final state XN is reached from the initial state X0 through the se-
quence of fuzzy controls U0, . . . , UN−1 by applying the fuzzy state transition
equation (11).

It is now easy to see that the structure of (22) is essentially the same as that
of (8), i.e. the two right-most terms depend only on the fuzzy control UN−1 and
not on the other controls, the next right-most term depends only on UN−2, etc.

This leads to the following set of dynamic programming recurrence equa-
tions:































µ
G

N (XN ) = maxxN∈X [µXN
(xN ) ∧ µGN (xN )]

µ
G

N−i(XN−i) = maxUN−i∈U [maxuN−i∈U (µUN−i
(uN−i)∧

∧ µCN−i(uN−i)) ∧ µ
G

N−i+1(xN−i+1)]

µXN−i+1
(xN−i+1) = maxxN−i∈X [maxuN−i∈U (µUN−i

(uN−i)∧
∧ µXN−i+1

(xN−i+1 | xN−i, uN−i)) ∧ µXN−i
(xN−i)]

i = 1, . . .N.

(23)

In principle, this set of dynamic programming recurrence equations can be
solved. However, one can notice a serious potential difficulty. On the one hand,
µ
G

N−i(XN−i) is to be specified for each possible fuzzy state XN−i ∈ X . On the
other hand, the maximization, maxUN−i

(.), is to proceed over all fuzzy controls
UN−i ∈ U . Evidently, the number of all possible fuzzy controls UN−i and
fuzzy states XN−i may be very high, which clearly makes the solution of (23)
practically impossible.
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An obvious first idea to overcome this difficulty is that the numbers of pos-
sible fuzzy controls and fuzzy states are to be considerably reduced to make
(23) solvable in reasonable time. This is virtually the essence of Baldwin and
Pilsworth’s (1992) approach (as it is of Kacprzyk and Staniewski’s, 1982, ap-
proach). This reduction is there called fuzzy interpolation, though interpolation
will be meant later in this paper in a different, even broader sense.

Consider first µ
G

N−i+1(XN−i+1), i = 1, . . . , N . To overcome its possible
troublesome dependence on a very high number of fuzzy states XN−i+1, a rela-

tively small number, say r, of the so-called reference fuzzy states X
1

N−i+1, . . . ,

X
r

N−i+1 is introduced. Then, using the fuzzy conditional statements,
µGN−i+1(XN−i+1) is approximately specified as










IF (XN−i+1 = X
1

N−i+1) THEN [µ
G

N−i+1(XN−i+1) = µ
G

N−i+1(X1
N−i+1)]

ELSE . . . ELSE

IF (XN−i+1 = X
r

N−i+1) THEN [µ
G

N−i+1(XN−i+1) = µ
G

N−i+1(Xr
N−i+1)]

(24)

which evidently corresponds to a fuzzy relation µRN−i+1(xN−i+1, wN−i+1) de-
fined in X × [0, 1] , xN−i+1 ∈ X and wN−i+1 ∈ [0, 1].

Now, if we have a fuzzy state XN−i+1, not necessarily a reference one, then it
yields via the above fuzzy relation RN−i+1 through the max–min composition of
XN−i+1 and RN−i+1 the following induced fuzzy goal at control stage N− i+1:

µ
G

N−i+1(XN−i+1) =

= max
xN−i+1∈X

[µXN−i+1
(xN−i+1) ∧ µRN−i+1(xN−i+1, wN−i+1)]. (25)

Thus, for given UN−i and XN−i+1 the expression to be maximized with
respect to UN−i in (23) is

b(UN−i, XN−i) = max
uN−i∈U

[µUN−i
(uN−i)∧

∧ max
xN−i+1∈X

(µXN−i+1
(xN−i+1) ∧ µRN−i+1(xN−i+1, wN−i+1))]. (26)

Since the number of possible UN−i’s may also be very high, then, similarly
as in the case of fuzzy states, we introduce a relatively small number, say p, of

the so-called reference fuzzy controls U
1

N−i, . . . , U
p

N−i, and, for a given XN−i,
the following fuzzy conditional statements are constructed:







IF (UN−i = U
1

N−i) THEN [b(XN−i, UN−i) = b(XN−i, U
1

N−i)]
ELSE . . . ELSE

IF (UN−i = U
p

N−i) THEN [b(XN−i, UN−i) = b(XN−i, U
p

N−i)]

(27)

which is equivalent to a fuzzy relation defined in U × [0, 1], µR′(uN−i, vN−i |
XN−i), uN−i ∈ U , vN−i ∈ [0, 1]. For simplicity, this fuzzy relation will be
denoted by R′(XN−i).

Now we need to find a method to determine such U∗
N−i that maximizes

b(XN−i, UN−i) with respect to UN−i, for a given XN−i.
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We introduce first a fuzzy set labelled “k-large” defined as

µk−large(x) =

{

0 for x ≤ k
z > 0 for x > k

(28)

such that if x′ > x′′ > k, then µk−large(x
′) > µk−large(x

′′), and µk−large(1) = 1.
The value of k should be carefully chosen so that µk′−large(.) be preferred to
µk′′−large(.) if k

′ > k′′.
Using the R′(XN−i), obtained via (27), we determine through the use of

the max–min composition of “k-large” and R′(XN−i) the following fuzzy sets
induced by “k-large”:

µU(k)(uN−i) = max
xN−i∈X

[µR′(uN−i, xN−i | XN−i)∧

∧µk−large(xN−i)], for each uN−i ∈ U. (29)

As an optimal fuzzy control U∗
N−i we take such U(k) which corresponds to

the highest value of k, i.e.

max
uN−i∈U

µU(k)(uN−i) ≥ m (30)

where m is some parameter to be chosen.
The above procedure is performed for each particularXN−i so that the U

∗
N−i

determined using (30) is in fact a function of XN−i, i.e. is a control policy.

The above procedure is repeated for each reference fuzzy state X
1

N−i, . . . , X
r

N−i

yielding U∗
N−i(X

1

N−i), . . . , U
∗
N−i(X

r

N−i), respectively, which may be represented
as the following fuzzy conditional statement:











IF (XN−i = X
1

N−i) THEN [U∗
N−i(XN−i) = U∗

N−i(X
1

N−i)]
ELSE . . .ELSE

IF (XN−i = X
r

N−i) THEN [U∗
N−i(XN−i) = U∗

N−i(X
1

N−r)]

(31)

which is equivalent to a fuzzy relation defined in X × U , µ
R

N−i

U∗

(xN−i, uN−i),

that represents the optimal fuzzy control policy.
If we are therefore currently at control stage t = N− i in a state XN−i, then

the optimal fuzzy control given by this optimal fuzzy control policy is

µU∗

N−i
(uN−i) = max

xN−i∈X
[µXN−i

(xN−i)∧

∧µR
N−i

U∗

(xN−i, uN−i)], for each uN−i ∈ U. (32)

Example 1. Suppose that: X = {s1, s2, s3}, U = {c1, c2}, N = 3, the fuzzy
constraints are:

C0 = 1/c1 + 0.5/c2 C1 = 0.8/c1 + 0.7/c2 C2 = 1/c1 + 1/c2

and the fuzzy goal is

G3 = 1/s1 + 0.4/s2 + 0.1/s3.
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Let the fuzzy system under control be given by

µXt+1
(xt+1 | xt, ut) =

xt+1 = s1 s2 s3
ut = c1 xt = s1 1 0.7 0.3

s2 0.7 1 0.7
s3 0.3 0.7 1

xt+1 = s1 s2 s3
ut = c2 xt = s1 1 0.7 0.3

s2 1 0.7 0.3
s3 1 0.7 0.3

.

First, we introduce the following three reference fuzzy states:

X1 = 1/s1 + 0.4/s2 + 0.1/s3
X2 = 0.4/s1 + 1/s2 + 0.4/s3
X3 = 0.1/s1 + 0.4/s2 + 1/s3

and the following two reference fuzzy controls:

U1 = 1/c1 + 0.2/c2
U2 = 0.2/c1 + 1/c2.

Now, we present µXt+1
(xt+1 | xt, ut) in the form involving only the reference

fuzzy states and controls, that is

Xt+1 =

Ut = U
1

U
2

Xt = X
1

1/s1 + 0.7/s2 + 0.4/s3 1/s1 + 0.7/s2 + 0.3/s3

X
2

0.7/s1 + 1/s2 + 0.7/s3 1/s1 + 0.7/s2 + 0.3/s3

X
3

0.4/s1 + 0.7/s2 + 1/s3 1/s1 + 0.7/s2 + 0.3/s3

.

We solve (23) for i = 0, i.e. for N − i = 3, and obtain

µ
G

3(X1) = max
x3∈{s1,s2,s3}

[µ
X1

(x3) ∧ µG3(x3)] =

= (1 ∧ 1) ∨ (0.4 ∧ 0.4) ∨ (0.1 ∧ 0.1) = 1

and analogously we obtain

µ
G

3(X2) = 0.4 µ
G

3(X3) = 0.4.

The above is equivalent to























IF X1 THEN µ
G

3(X1) = 1

ELSE
IF X2 THEN µ

G
3(X2) = 0.4

ELSE
IF X3 THEN µ

G
3(X3) = 0.4
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which, due to (24), corresponds to the following fuzzy relation R3 in X × [0, 1]:

µR3(x3, w3) =
x3 = s1 s2 s3

w3 = 0.4 0.4 0.4 1
1 1 1 0.4

.

Now, for i = 2, i.e. N − i = 2, we obtain via (25) the following fuzzy goal
µ
G

3(X3) induced by X3 and R3:

µ
G

3(X3) = max
x3

[µX3
(x3) ∧ µR3(x3, w3)] =

=

U2 = U
1

U
2

X2 = X
1

0.4/0.7 + 1/1 0.4/0.7 + 1/1

X
2

0.4/0.7 + 1/0.7 0.4/0.7 + 1/1

X
3

1/0.4 + 0.4/1 0.4/0.7 + 1/1

and via (26) we obtain

b(X2, U2) =

= max
U2∈{U1,U2}

U2 = U
1

U
2

X2 = X
1

1 ∧ {0.4/0.7+ 1/1} 1 ∧ {0.4/0.7 + 1/1}

X
2

1 ∧ {0.4/0.7 + 1/0.7} 1 ∧ {0.4/0.7 + 1/1}

X
3

1 ∧ {1/0.4 + 0.4/1} 1 ∧ {0.4/0.7 + 1/1}

which is to be meant as
• for X2 = X

1

IF U
1
THEN b(X

1
, U

1
) ELSE IF U

2
THEN b(X

1
, U

2
)

• for X2 = X
2

IF U
1
THEN b(X

2
, U

1
) ELSE IF U

2
THEN b(X

2
, U

2
)

• for X2 = X
3

IF U
1
THEN b(X

3
, U

1
) ELSE IF U

2
THEN b(X

3
, U

2
)

which in turn gives, via (27), the following fuzzy relation R′
2(X1) defined in

U × [0, 1]:

µR′

2
(u2, w2) =

w2 = 0.4 1
u2 = c1 1 0.7

c2 0.7 1
.

Now, if we suppose the test function “k-large” = 1/1, then due to (30), for
m = 1 we find the optimal control at t = 2 to be

U∗
2 = 0.7/c1 + 1/c2

and, in a similar way, we can determine optimal controls for X2 = X
2
and

X2 = X
3
.
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The same is repeated for the next control stages, i.e. for t = 1 and t = 0.
The consecutive optimal fuzzy policies are obtained as:

R0
u∗ =

u0 = c1 c2
x0 = s1 1 0.2

s2 1 0.2
s3 1 0.2

R1
u∗ =

u1 = c1 c2
x1 = s1 1 0.2

s2 1 0.2
s3 1 0.2

R2
u∗ =

u2 = c1 c2
x2 = s1 1 1

s2 0.7 1
s3 0.4 1

.

If, for instance, the initial fuzzy state at control stage t = 0 is X0 = 0.2/s2+
1/s3, then – using consecutively the above optimal fuzzy policies – we obtain
for the consecutive control stages t = 1, 2, 3 the following fuzzy states Xt [via
(11)] and the optimal fuzzy controls U∗

t [via (32)]:

Xt U∗
t

t = 0 0.2/s2 + 1/s3 1/c1 + 0.2/c2
1 0.3/s1 + 0.7/s2 + 1/s3 1/c1 + 0.2/c2
2 0.7/s1 + 0.7/s2 + 1/s3 0.7/c1 + 1/c2
3 1/s1 + 0.7/s2 + 0.7/s3

.

This concludes our short exposition of Baldwin and Pilsworth’s (1992) dyna–
mic–programming–based approach. Notice, first, that it is very complicated, a
couple of parameters have to be prespecified, and for solving non-trivial prob-
lems some conceptual simplifications are necessary, namely the use of reference
fuzzy controls and reference fuzzy states, and then the formulation of the prob-
lems in terms of them. However, even then, to obtain meaningful results a high
number of reference fuzzy states and reference fuzzy controls is needed because
the use of the compositional rule of inference requires “overlapping” reference
fuzzy states and reference fuzzy controls that should cover the entire space of
states and controls. This may lead to too high numbers of them, and hence
in the next section we will present a more effective and efficient approach that
is based on interpolative reasoning in fuzzy rule based that was initiated by
Kóczy and Hirota (1993a,b, 1997) (see also Dubois and Prade, 1992). The ap-
proach presented is based on early ideas by Kacprzyk (1993a, b,c, 1995d) but
is extended and refocused here in view of many new results on fuzzy interpola-
tion, exemplified notably by the works of Kóczy and his collaborators (Baranyi,
Koćzy, and Gedeon, 2004; Koćzy, Hirota and Gedeon, 2000; Tikk and Baranyi,
2000; Yam, Wong and Baranyi, 2006; Wong et al., 2015).
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4. Multistage control of a fuzzy system using dynamic

programming with interpolative reasoning

The essence of a dynamic programing based approach with interpolative reason-
ing was initially proposed in Kacprzyk (1993a,b,c, 1995) and it boils down to the
use of a very small number of non-overlapping reference fuzzy states and con-
trols to formulate in their terms auxiliary fuzzy constraints, fuzzy goals, and a
resulting auxiliary (much simpler!) control problem. Its solution yields an aux-
iliary optimal reference control policy relating optimal reference fuzzy controls
to the particular reference fuzzy states. Such a policy is equated with a fuzzy
relation, which is then used through the max–min composition to determine an
auxiliary optimal control (not necessarily a reference one) for a particular cur-
rent fuzzy state (not necessarily a reference one). Then, the (auxiliary) optimal
control obtained should be in some way adjusted to become a “real” optimal
fuzzy control.

First, a relatively small number, r, of reference fuzzy states X
1

N−i+1, . . . ,

X
r

N−i+1, and a relatively small number, p, of reference fuzzy controls U
1

N−i, . . . ,

U
p

N−i, i = 1, . . . , N − 1, are introduced.

The control problem is then expressed in terms of the reference fuzzy states
and reference fuzzy controls only, and its solution, i.e. an (auxiliary!) optimal
reference control policy, a∗N−i, is expressed by the following fuzzy conditional
statement [see (31)]:







IF (XN−i = X
1

N−i) THEN [U∗
N−i(XN−i) = U∗

N−i(X
1

N−i)]
ELSE . . .ELSE

IF (XN−i = X
r

N−i) THEN [U∗
N−i(XN−i) = U∗

N−i(X
r

N−i)]

(33)

which is equivalent to a fuzzy relation defined in X × U , µ
R

N−i

U∗

(xN−i, uN−i).

This optimal reference control policy obtained should now be used to deter-
mine an optimal fuzzy control for a particular fuzzy state; and both need not
be reference. At t = N − i we are in a fuzzy state XN−i. Then, the optimal
fuzzy control given by this optimal reference fuzzy control policy is [see (32)]

µU∗

N−i
(uN−i) = max

xN−i∈X
[µXN−i

(xN−i)∧

∧µ
R

N−i

U∗

(xN−i, uN−i)], for each uN−i ∈ U. (34)

Let t denote the control stage instead of N − i, for simplicity, and Xt be
a fuzzy number between the two reference fuzzy states Si and Si+1. We seek
its corresponding fuzzy control U∗

t . Clearly, it need not be a reference fuzzy
optimal control.

For effectiveness and efficiency, we assume that the fuzzy states and controls
are defined as triangular fuzzy numbers, i.e. as fuzzy sets in the real line. The
determination of U∗

t boils down therefore to the determination of its mean value
and width. The width is the length of interval given as the lowest and the highest
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values of the support of U∗
t , and the mean value is the middle of the support of

the fuzzy set.
The procedure is as follows, for t = 0, 1, . . . , N − 1:
1. If Xt is the current (not necessarily reference) fuzzy state, with its mean

value Xt, find such two neighboring reference fuzzy states Si, Si+1 ∈ X
that their mean values Si and Si+1, respectively, satisfy

Si ≤ Xt ≤ Si+1. (35)

2. Denote the supports of the above fuzzy states as:
supp Xt = [XL

t , X
R
t ]

supp Si = [SL
i , S

R
i ]

supp Si+1 = [SL
i+1, S

R
i+1]

(36)

where the upper indices L and R denote the left-most and right-most
values of the respective intervals.

3. For the two reference fuzzy states found as above, which satisfy (35), take
their two corresponding optimal reference control policies of type (33), i.e.

{

IF (Xt = Si) THEN U∗
t (Xt) = Cj

IF (Xt = Si+1) THEN U∗
t (Xt) = Ck

(37)

and denote the supports of Cj and Ck as

supp Cj = [CL
j , C

R
j ]

supp Ck = [CL
k , C

R
k ].

(38)

4. For the current fuzzy stateXt, whose support is supp Xt = [X(t)L, X(t)R],
find the optimal fuzzy control U∗

t (not necessarily reference!) the support
of which is [U∗L

t , U∗R
t ], using Kóczy and Hirota’s (1993a, b, 1997) idea of

interpolative reasoning in fuzzy rule bases:

U∗L
t = CL

j +
XL

t − SL
i

SL
i+1 − SL

i

[CL
j − CL

k ] (39)

U∗R
t = CL

k +
XR

t − SR
i

SR
i+1 − SR

i

[CR
j − CR

k ]. (40)

5. Find the mean value of U∗
t as

U∗
t =

1

2
(U∗L

t + U∗R
t ). (41)

Notice, first, that – in view of notable recent developments concerning in-
terpolation in fuzzy rule bases, as mentioned in the beginning of this section,
we have employed a slightly different form of the interpolative reasoning scheme
than in the source papers by Kacprzyk (1993a,b,c, 1995).

The approach presented is conceptually convincing, effective, computation-
ally efficient, and has proved to be useful in solving some planning problems in
regional development – see Kacprzyk, Romero and Gomide (1999).

We will now present an illustrative example which will best illustrate the
essence of our approach. In fact, this example is analogous to that given in
Bellman and Zadeh (1970) for the deterministic system under control so that
even more insight can be gained.

Example 2. Let the state space consist of three reference fuzzy states, X =
{S1, S2, S3}, and the control space consist of two reference fuzzy controls, U =
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{C1, C2}, all defined, for simplicity, as fuzzy numbers in [0, 1] with trapezoid
(triangular) membership functions shown in Fig. 1. The mean value of the
triangular fuzzy number is S2, while its counterparts for the trapezoid fuzzy
numbers are meant to be S1, S3, C1 and C2. The respective spreads, assumed
to be symmetrically distributed around the mean values, are 2∆(Si), i = 1, 2, 3,
2∆(C1) and 2∆(C2).

Suppose that the mean values and spreads are:

• for the reference fuzzy states:
S1 = 0.1 S2 = 0.5 S3 = 0.9

and
2∆(S1) = 0.2 2∆(S2) = 0.2 2∆(S3) = 0.2

• for the reference fuzzy controls
C1 = 0.2 C2 = 0.8

and
2∆(C1) = 0.4 2∆(C2) = 0.4.

00 1

11

1

µSi
x( ) µC j

x( )

x x

S1 S2 S3 C1 C2

S1 S2 S3 C1 C2

2 1
∆( )S 2 2

∆ ( )S 2 3
∆( )S 2 1

∆( )C 2 2
∆( )C

Figure 1. Reference fuzzy states Si, i = 1, 2, 3, and reference fuzzy controls C1

and C2, with their respective mean values and spreads for Example 2

Suppose that the termination time is N = 2, and the fuzzy constraints and
fuzzy goal are defined as, respectively:

C0 = 0.7/C1 + 1/C2

C1 = 1/C1 + 0.8/C2

G2 = 0.3/S1 + 1/S2 + 0.8/S3.

Dynamics of the fuzzy system under control is governed by the fuzzy state
transition equation of type (11), which is given now in terms of reference fuzzy
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states and controls, as:

Xt+1 =

Xt = S1 S2 S3

U t = C1 S1 S3 S1

C2 S2 S1 S3 .

(42)

The fuzzy dynamic programming recurrence equations (10) are now em-
ployed, first for i = 1, and we obtain G1 = 0.6/S1 + 0.8/S2 + 0.6/S3, and the
corresponding optimal reference fuzzy control policy (expressed in terms of the
reference fuzzy states and controls):

a∗1(S1) = C2 a∗1(S2) = C1 a∗1(S3) = C2. (43)

Next, the subsequent iteration of (10), for i = 2, yields G0 = 0.8/S1 +
0.6/S2 + 0.6/S3, and the corresponding optimal reference fuzzy control policy:

a∗0(S1) = C2 a∗0(S2) ∈ {C1, C2} a∗1(S3) ∈ {C1, C2}. (44)

Therefore, for instance, if we start at t = 0 from X0 = S1, then U
∗

0 =

a∗0(S1) = C2 and we obtain X1 = S2. Next, at t = 1, U
∗

1 = a∗1(S2) = C1 and

µD(U
∗

0, U
∗

1 | S1) = µD(C2, C1 | S1) = 0.8.
For our purposes it is expedient and illustrative to present the reference

control policy at t = 1 as in Fig. 2, and at t = 0 as in Fig. ??.
Basically, these figures show for each reference fuzzy state X1 and X0 its

corresponding optimal reference fuzzy control U
∗

1 and U0 depicted in heavy
line; since the optimal reference fuzzy controls need not obviously be unique,
we obtain here C1 and C2, and they are both shown in heavy line.

We will now show the use of interpolative reasoning. Suppose that the initial
(non-reference!) fuzzy state is X0 given as a triangular fuzzy number with the
mean value X0 = 0.2 and spread 2∆(X0 = 0.2.

The consecutive steps of the interpolative-reasoning-based procedure pre-
sented in this paper are:

1. For X0 as given above, we find using (35) that i = 1, i.e. Si = S1 and
Si+1 = S2.

2. We obtain the supports:
supp X0 = [0.1, 0.3]

supp S1 = [0.0, 0.2] .
supp S2 = [0.4, 0.6]

3. The two possible optimal reference fuzzy control policies for S1 and S2

are [see (37)]:
{

IF (X0 = S1) THEN U∗
0 (X0) = C2

IF (X0 = S2) THEN U∗
0 (X0) = C1

(45)

and
{

IF (X0 = S1) THEN U∗
0 (X0) = C2

IF (X0 = S2) THEN U∗
0 (X0) = C2

(46)
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0

1

µ
Si
x( )

µ
C j
x( )

S1 S2 S3

0 1

1

x

C1 C2

1
1

1 1

µ
C j
x( ) µ

C j
x( )

C1 C1C2 C2

1 1
x x

t=1

x
S1 S2 S3

C1 C1 C1C2C2 C2

Figure 2. Pictorial representation of the optimal reference control policy at
t = 1 in Example 2

and, for the first one, i.e. (45), we obtain:

supp C1 = [0.0, 0.4] supp C2 = [0.6, 1.0]

and analogous for the second one, i.e. (46).
4. For X0, the support of which is supp X0 = [0.1, 0.3], and assuming the

optimal reference fuzzy control policy (45), we find by using (39) and (40)
the optimal fuzzy control U∗

0 , the support of which is

supp U∗
0 = [0.75, 1.15]

or, maybe more appropriately, since the fuzzy controls and states are
assumed to be defined as fuzzy sets in [0, 1], it is

supp U∗
0 = [0.75, 1.0].

5. The mean value of U0 is therefore either U0 = 0.95 or U0 = 0.875, respec-
tively, and one can notice that the result obtained is consistent with the
optimal reference fuzzy control policy (44).

6. From X0 and under the above optimal fuzzy control U∗
0 as determined

above, we proceed to the next state, X1. Since X0 is close to S1, and
U∗
0 is close to C2, then we can assume that by the fuzzy state transition

equation of the system under control, (42), we arrive at X1 the support of
which is supp X1 = [0.5, 0.7]. Notice, however, that in the determination
of state transitions in the case considered, another interpolative reasoning
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Figure 3. Pictorial representation of the optimal reference control policy at
t = 0 in Example 2

scheme should be employed to obtain more meaningful results. This will
not be, however, dealt with in this paper, and a simplified state transition
scheme, as outlined above, will be used.

7. For X1 as given above, we find by (35) that i = 2, i.e. Si = S2 and
Si+1 = S3.

8. We obtain the supports:
supp X1 = [0.5, 0.7]
supp S2 = [0.4, 0.6] .
supp S3 = [0.8, 1.0]

9. The optimal reference fuzzy control policy for S2 and S3 is [see (37)]:
{

IF (X1 = S2) THEN U∗
0 (X0) = C1

IF (X0 = S3) THEN U∗
0 (X0) = C2

(47)

such that:

supp C1 = [0.0, 0.4] supp C2 = [0.6, 1.0].

10. For X1, the support of which is supp X1 = [0.5, 0.7], we find by using (39)
and (40) the optimal fuzzy control U∗

0 , the support of which is
supp U∗

1 = [−0.15, 0.45]
or, maybe more appropriately, since the fuzzy controls and states are
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assumed to be defined as fuzzy sets in [0, 1], it is
supp U∗

1 = [0.0, 0.45]
11. The mean value of U∗

1 is therefore U∗
1 = 0.3 or U∗

1 = 0.225, respectively,
and one may notice that the result obtained is consistent with the optimal
reference fuzzy control policy (43).

5. Concluding remarks

We presented an interpolative reasoning technique meant to overcome numerical
difficulties in the solution of optimal multistage fuzzy control problems with
a fuzzy system under control by using dynamic programming. The method,
with the roots in the early Kacprzyk’s (1993a,b,c, 1995d) works, was presented
in a slightly different form and perspective, implied by some recent relevant
results on interpolation in fuzzy rule bases. As for future research, it seems
that a fruitful area will be a more direct use of concepts and results related
to sparse fuzzy rule bases as first analyzed by Kacprzyk and Fedrizzi (1995),
and then further developed by many people, for instance by Wu, Mizumoto
and Shi (1996), Chang, Chen and Liau (2008), Chen and Ko (2008), or Hsiao,
Chen and Lee (1998). The method proposed is conceptually simple, yields a
tractable numerical efficiency, and intuitive results, and may be useful in solving
some practical problems exemplified by an application to regional development
planning (see Kacprzyk, Romero and Gomide, 1999).

References

Baldwin J.F. and Pilsworth B.W. (1982) Dynamic programming for fuzzy
systems with fuzzy environment. Journal of Mathematical Analysis and
Applications 85: 1–23.
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