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Abstract: Fuzzy regions are a concept allowing the uncertain or
imprecise spatial data to be represented. Many geographic or spa-
tial data are prone to uncertainty or imprecision and while such data
can be represented, it is still necessary to be able to perform basic
tasks one expects to perform in a geographic context. A number
of operations have been considered in the past; in this contribution
the topological concepts of fuzzy regions will be examined. For this
purpose, appropriate definitions for the boundary, interior and ex-
terior of fuzzy regions will be developed. These definitions can then
be applied in an extension of the 9-intersection model.

Keywords: fuzzy regions, fuzzy topological concepts, fuzzy
toplogy.

1. Introduction

When dealing with geographically related data, one concludes that many of the
data are prone to either imprecision or uncertainty. This can be due to the fact
that the data are inherently imprecise or uncertain, or that it is impossible to
make an accurate assessment (for whatever reason: too costly, too complicated,
etc.). While a lot of theoretical work has been done, currently used practical
models have no or limited provisions to represent the uncertainty; this tends
to lead to less realistic models: areas where a feature can be present are often
over-estimated to be sure to include all possible cases, ignoring the fact that in
some locations the feature may be far less possible to occur.

There are different approaches to representing spatial spatial uncertainty
or imprecision. An intuitive approach is to define the region by means of two

∗Submitted: December 2010; Accepted: February 2012
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boundaries: an inner boundary and an outer boundary. Points within the inner
boundary are said to completely belong to the region, points outside the outer
are said not to belong to the region, and the points in between both boundaries
make up some grey area. This approach was adopted by Clementini (Clemen-
tini and Di Felice, 1996; Clementini, 2004) and Cohn and Gotts. This approach
allows for an interesting analysis but, as points in the grey area are not differ-
entiated further, the applicability is somewhat limited. Another approach to
extend tradition regions with uncertainty or imprecision is to define a buffer re-
gion around the area. This approach has been used by us in Verstraete, Van Der
Cruyssen and De Caluwe (2000) and by Du et al. (2005a), and applies fuzzy set
theory to assign to points different degrees of membership for belonging to the
region. The buffer is used to define an area around the region, in which points
are commonly given decreasing degrees of membership. While this approach
allows for a more fuzzy modelling of the data, it is also not without flaws. The
most noticeable problem is the fact that it does not yield a closed system for
simple set operations: the intersection or union of two such regions is not nec-
essarily representable as a new region. Other approaches in literature are the
Fuzzy Minimum Bounding Rectangles (Petry, Robinson and Cobb, 2005) and
the Realm/ROSE approach (Schneider, 1996; Schneider and Pauly, 2007).

In this contribution, attention will go to the representation model for fuzzy
regions which we first presented in Verstraete et al. (2004). There, a fuzzy re-
gion is defined as a fuzzy set over a two-dimensional domain, without imposing
further limitations on the distribution of membership grades. In Verstraete et
al. (2008), a methodology for the topological aspects of such regions was consid-
ered using the nine-intersection model and simple ad-hoc concepts of boundary,
interior and exterior definitions. The definitions of those concepts were fairly
simple and it became obvious they exhibited some shortcomings; in this con-
tribution, the search for better definitions for these topological concepts is pre-
sented. From the shortcomings of the previous definitions, required and desired
properties are deduced, and used to uncover a number of definitions that will
be put forward and compared against one another. With these new definitions,
the same methodology for the topological study (Verstraete et al., 2008) can be
applied.

The presented concept will concern fuzzy regions defined as fuzzy sets over
the two-dimensional domain, thus carrying a veristic interpretation. Since sub-
mitting this article, we have extended the model with an additional level of
uncertainty that carries a possibilistic interpretation. This additional level can
be used for the notion of candidate regions (and thus candidate boundaries).
So far, the development of that model has taught us that the use of candidate
regions makes most operations result in a number of possible outcomes - each
annotated with a possibility degree - and this will also be the case for the topol-
ogy. The new model also unifies the representation of regions (veristic) and
points (possibilistic), which will also mean that the topology between different
types of objects will also result from it. At this point, we are concerned with
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the definitions of the concepts we need in order to derive the topology between
fuzzy regions that only have the veristic level.

As the model uses fuzzy set theory, some definitions and notations will be
presented first, mainly to provide a reference for the notations used further on.

1.1. Fuzzy set theory

1.1.1. Definitions

Fuzzy set theory is an extension of traditional set theory, where a value in
the range [0, 1] is associated with each element of the set. This value is the
membership grade; a value 0 indicates that the element does not belong to the
set.

Definition 1 (Fuzzy set) Consider the universe U . A fuzzy set Ã is a set,
with an associated membership function µÃ, defined by

µÃ : U → [0, 1]

x 7→ µÃ(x).

The membership function associates a membership grade µÃ(x) to each element
x. Elements that are not part of the set are considered to have membership grade
0. A fuzzy set Ã with a finite number of elements x, y and z, can be denoted as

Ã = {(x, µÃ(x)), (y, µÃ(y)), (z, µÃ(z))}.

Membership grades can carry one of three interpretations: they can be inter-
preted as degrees of membership (i.e. a veristic interpretation), degrees of pos-
sibility (i.e. a possibilistic interpretation), and degrees of truth. It was proven
in Dubois and Prade (1999) that other interpretations are equivalent to one
of these three. In this concept, the interpretation as degrees of membership is
meaningful for fuzzy regions (all points belong to a region, but to a different
extent), whereas the interpretation as degrees of possibility can be used to rep-
resent fuzzy points (only one point is the "real" one, the region represents all
possible candidates). In this contribution, we will only consider the model to
be used to represent fuzzy regions, thus using the veristic interpretation.

1.1.2. Operations

When working with fuzzy sets, it can often be required to derive crisp sets
based on the fuzzy set at hand. For this purpose, the α-cut is introduced: it
removes all aspects of fuzziness and reverts the fuzzy argument to a crisp set.
The α-cut of a fuzzy set is a crisp set containing all the elements of the fuzzy
set for which a constraint it satisfied: a strong α-cut contains the elements with
membership grades greater than a given α; a weak α-cut contains the elements
with membership grades greater than or equal a given α, as illustrated in Fig.
1.
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Figure 1. Example of the α-cut of a fuzzy region Ã .

Definition 2 (Strong α-cut) The strong α-cut is defined as:

Ãα = {x | µÃ(x) > α}.

A special case of a strong α-cut is the support ; this is the strong α-cut with
threshold 0. This is an important α-cut, as it contains all the elements that
belong to some extent to the fuzzy set.

Definition 3 (Weak α-cut) The weak α-cut is defined as:

Ãα = {x | µÃ(x) ≥ α}.

Similarly to the strong α-cut, the weak α-cut has a special case, now for a
threshold 1. This α-cut is called the core, and returns all the elements that fully
belong (membership grade 1) to the given fuzzy set.

Definition 4 (Height) The height of a fuzzy set is the highest membership
grade in a fuzzy set. Thus, the height of a fuzzy set Ã is (Dubois and Prade,
2000):

height(Ã) = sup
x

(µÃ(x))

where sup is the supremum.
Quite often it is interesting to have at least one element in a fuzzy set with

membership grade 1, as such fuzzy sets satisfy additional properties that can
be of importance. Such a fuzzy set is called normed. The choice of working
with normalized fuzzy sets or not depends on a lot of factors, but the presented
model supports both approaches.

1.2. Related work

Many authors have described the expected behaviour of imprecise or uncertain
regions. In the following subsections, different approaches, for which topology
has been studied, are briefly mentioned and matched against the model that is
continued in this contribution.
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1.2.1. Broad boundary model and Egg-yolk model

The broad boundary model was presented in Clementini and Di Felice (1996);
it extends the model for regions (in an entity based model) using a geometrical
approach. The concept extends the boundary of a region: instead of a single
polyline representing the boundary, two lines are used, called inner and outer
boundary. Inside the inner boundary are all the points that certainly belong
to the region (or the points that completely belong to the region - the broad
boundary model makes no distinction between imprecision and uncertainty);
outside the outer boundary are the points that do not belong to the region. In
between remains the broad boundary, containing points that may or may not
belong to the region (or that belong partly to the region). No other information
concerning points in the broad boundary is provided, but the assumption is
made that the extension of the boundary is smaller than the inner boundary
(this is called the small boundaries assumption, which limits the uncertainty of
a region). The interior (inside the inner boundary) and exterior (outside the
outer boundary) of a region with broad boundary are open sets, whereas the
boundary itself is a closed set.

The egg-yolk approach presented by Cohn and Gotts (Cohn and Gotts, 1994;
Gotts and Cohn, 1996) describes a similar concept, but now using a logical
approach: the model also makes use of two crisp boundaries: an inner boundary
(called the yolk) inside which points belong to the region and an outer boundary
(called the egg) outside which points do not belong to the region. The main
difference is in the definition of the boundary, which in the egg-yolk model is an
open set.

For both models, topology is described based on the intersection of the
different components that play a part: interior, exterior and boundary. The
described topology for both models differs slightly: Clementini has 44 cases,
whereas Cohn and Gotts have 46 cases. Technically, these differences are minor
and mainly due to assumptions (e.g. small boundaries assumption made by
Clementini) and the small difference in definitions, the interesting aspect is that
both the geometrical and the logical approach lead to similar conclusions.

Our model can be seen as a generalization of these models, in the sense that
it provides for more information regarding points inside the broad boundary. In
both approaches mentioned, such points are considered similarly, regardless of
the fact that they may be closer to the inner or closer to the outer boundary.
Similar to Clementini’s approach, we also will use the 9-intersection model. This
requires appropriate definitions for the different topological concepts.

1.2.2. Buffering regions

Several authors define a fuzzy region by fuzzifying the boundary of a crisp re-
gion. Du et al. (2005a) map a trapezoidal function over the crisp border and
use this to derive the topological notions of boundary, interior and exterior.
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This approach is similar in concept to what we presented in Verstraete, Van
Der Cruyssen and De Caluwe (2000), where we also allowed for non-linear de-
creasing membership functions by introducing the concept of a shape function:
the shape function allowed for non-linear changes of membership grades within
the fuzzy boundary. Du et al. (2005b) present a way of defining the topology of
such regions; for this purpose, new concepts for interior, exterior and boundary
are defined. All these are fuzzy sets over the two-dimensional domain, with
membership functions derived from the membership function of the initially ex-
tended region. Using these new concepts, a 9-intersection matrix is constructed.
Due to the membership grades of the points, however, the elements of this in-
tersection matrix are not in {0, 1}, but in [0, 1], which makes interpreting the
matrix more challenging. As a concept for fuzzification of a region, it is a fairly
intuitive technique to grasp and to work with in simple situations; but it poses
problems to define many operations. Du, Qin and Wang (2008) introduce the
concept of simple regions with broad boundaries (SBBRs for short), defined as
in Du et al. (2005a), and perform a topological case study. For this, appropri-
ate definitions for interior, exterior and boundary, and the 9-intersection model
using a 4-tuple representation are used. The definitions are derived from trape-
zoidal function; those for for interior and exterior are quite straight-forward,
the definition for the boundary is more open to argumentation. Considering the
inner and outer boundaries of two regions, a 4-tuple containing the relation be-
tween both inner boundaries, the relation between both outer boundaries, and
the relations between the inner boundary of one region and the outer boundary
of the other region can be used to represent the topology. The result aims to
provide an easier classification of intersection cases and is matched against the
aforementioned egg-yolk approach.

The biggest critique against the model Du uses is that the set operations
are not closed: the intersection or union of two such regions can not always
be represented as such a region (e.g. the intersection of two regions with dif-
fering membership functions, or the intersection of two regions that only have
overlapping boundaries cannot be represented as a region).

In the model developed by us and used in this contribution, quite a different
approach is taken as we started with the premises that basic set operations
need to be closed. To describe the topology of our model, fuzzy regions for
boundary, interior and exterior will also be derived from the distribution of the
membership grades in the fuzzy regions. Given the fact that our model also uses
intersection matrices with element in the range [0, 1], they look quite similar;
however due to the fact that more arbitrary (and realistic) distributions for the
membership grades are possible, the topology cases become more complicated.

In Petry, Robinson and Cobb (2005), the authors use the smallest umscrib-
ing rectangle and largest inscribed rectangle as means to approximate a crisp
boundary. While it works for simple regions, it offers the user no freedom re-
garding the distribution of the membership grades. For more complex regions,
the largest inscribed rectangle is not necessarily unique, and rectangles may not
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be the best approximation of oddly shaped regions.

1.2.3. Rough set approach

Beauboeuf and Petry (2001, 2007) present a topology model for vague regions
in a rough set approach. The authors adopt the RCC calculus by replacing the
elements in the crisp 9-intersection model by appropriate definitions for regions
defined as rough sets. A rough set is defined in a non-empty universe by means
of an indiscernability relation or equivalence relation. This indiscernability indi-
cates how different elements of the universe relate to one another, in particular,
if they can be considered similar. Using this relation, an upper and a lower
approximation of a region can be defined. The combination of upper and lower
approximation yields the rough region. In the intersection matrix, appropriate
definitions for the 9 intersection are considered, using the lower approximation
for interior, the difference between upper and lower approximation for bound-
ary and the difference between the universe and the upper approximation for
exterior. This approach is quite close to the aforementioned egg-yolk method,
and yields 46 intersection cases just like that model.

While the adopted approach of modifying the intersection matrix elements
is similar to our approach, in our approach fuzzy set theory is used. This has
the advantage of not having to determine the equivalence relation between each
two elements in the universe (which might not be possible for all types of data
or all types of universes).

1.2.4. Extending the existing topological concepts

In Schockaert, De Cock and Cornelis (2008), an interpretation of the existing
intersection matrix for application with fuzzy regions is considered. The paper
generalizes 11 relations from the RCC calculus by fuzzifying the C-relation to
work on fuzzy sets (using complement, t-norms and t-conorms). In the paper,
no assumptions or models for fuzzy regions are under consideration, nor is any
model put forward. From a theoretical point of view, it yields a number of
interesting results; especially as conclusions are drawn regarding transitivity
of fuzzy topologies. The approach, however, is situated at quite a different
level compared to the approach presented in this contribution: the authors
perform a pure theoretical analysis, whereas we start from a proposed model
for fuzzy regions, and work our way up to study the topology aspects of these
regions. The conclusions from both approaches should still be put together for
full verification, but a preliminary study has not revealed any contradictions
thus far.

1.2.5. Qualified topological relations

Bejaoui et al. (2008) consider objects with a vague shape consisting of several
crisp objects; ranging from broad point, over a line with a vague shape to a region
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with a broad boundary. From this assumption, a minimal and maximal extent
of each vague shape can be defined, and this results in a crisp object. For each
minimal and maximal extent, topological invariants of interior and boundary
are defined. Using these concepts, in an approach not dissimilar to the egg-yolk
model, topological relations are considered and clustered.

1.2.6. A probabilistic approach

Winter (2000) presents a probabilistic approach to deal with uncertainty and
imprecision. To describe topology, the approach uses the minimal and maximal
distance between regions to derive what the author calls a morphological dis-
tance. This measurement provides quantitative information sensitive to location
imprecision of the regions, which are then abstracted to range classes to provide
topological distinctions. Conceptually, this approach attempts to assign one of
the topological relations to two regions, rather than providing a multitude of
options. For the given example (comparing two regions on different data sets),
this is an appropriate method, but not applicable to fuzzy regions in general as
it is not always possible to label their topology in a single case.

2. The fuzzy region model

2.1. Basic model

In geographical information systems, regions are often represented in a vector
model by means of an outline, which, in turn, is represented by a polygon (pos-
sibly, the region can have holes). The region is then defined as all the points
located inside this polygon. In order to define the concept of fuzzy regions, a
different point of view is necessary: rather than considering a region to consist
of all the points inside a given polygon, consider it as a set of locations, more
specifically all the locations that are inside the polygon that is used to repre-
sents it. Once a region is considered as a set of locations, it is a small step to
extend a region to a fuzzy region: a fuzzy set of locations (where each location
is represented by a point and each location has a membership grade associated).
The membership grades for regions are interpreted in a veristic way: all loca-
tions belong to the region, but some more than others. As mentioned before, a
possibilistic interpretation can be used to represent fuzzy points. As this con-
tribution concerns topology of fuzzy regions, fuzzy points extend beyond the
scope of this contribution. The underlying approach to determine the position
of fuzzy points in relation to fuzzy regions is similar to the presented approach
for regions, though.

Some also would consider a probabilistic interpretation; interpreting the
value associated with each point as the probability that this location belongs to
the region. This opens up interesting properties (e.g. the area where the value
equals 1 would be certain). Our model, however, is based on fuzzy set the-
ory, and the probabilistic interpretation is not one of the three interpretations
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commonly considered for fuzzy sets (Dubois and Prade, 1999). Consequently,
while this interpretation may be possible, it may at the same time prevent
compatibility with fuzzy set theory. This interpretation could be used for the
representation of uncertain regions, but for that purpose we opted to use level-2
fuzzy sets (Verstraete, 2011a), in order to maintain a guaranteed compatibility
with fuzzy set theory.

Ã

p
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p
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p
1

p
4

µ (p)
1Ã

1µ (p)
2Ã

µ (p)
3Ã

µ (p)
4Ã

µÃ(p1) = 1
µÃ(p2) = 0.8
µÃ(p3) = 0.1
µÃ(p4) = 0
...

Figure 2. A fuzzy region, for illustration purposes the fuzzy region is delimitted
by a grey line. The membership grades for points belonging to the region are
shaded, ranging from black (membership grade 1) to white (membership grade
0). A cross-section shows how the membership grades along the drawn line
evolve. On the right are possible membership grades for the points illustrated.

Consider A ⊆ U the set of all the points that belong to the region (this is
a crisp set). The crisp set A is then generalized to a fuzzy set Ã, defined as
follows.

Definition 5 (Fuzzy region) A fuzzy region Ã is defined as:

Ã = {(p, µÃ(p)) | p ∈ U, µÃ(p) > 0}

where

µÃ : U → [0, 1]

p 7→ µÃ(p).

Here, U is the universe of all locations p; the membership grade µÃ(p) expresses
the extent to which p belongs to the fuzzy region.

In Fig. 2, an example of a fuzzy region is shown. This example exhibits a simple
behaviour, where membership grades decrease from the inside towards the out-
side, although the model allows for more complex distributions of membership
grades.

With each element of the fuzzy set, a membership grade is associated; it
has a veristic interpretation (Dubois and Prade, 2000), indicating the degree to
which this element belongs to the fuzzy region.
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The main difference between fuzzy regions and more common fuzzy sets, is
that the domain of the fuzzy region U is in itself a two dimensional domain
(theoretically R

2, but normally limited to a region of interest). For clarity, the
notation Ã will be used for fuzzy regions (and fuzzy sets in general), whereas
A will be used for crisp regions (and crisp sets). The above definition is the
theoretical definition for fuzzy regions. In this form, it is not well suited for
implementation; for implementation purposes, we refer to the models derived
from it as elaborated in Verstraete, Hallez and De Tré (2006), and Verstraete et
al. (2007). In this definition, each point point is a basic element. The definition
has been refined in Verstraete (2010a) using the concept of the powerset ℘ (the
set of all subsets of a given set) to allow for elements of the fuzzy region to be
grouped together, yielding the definition:

R̃ = {(P, µR̃(P ))|P ∈ ℘(R2) ∧ ∀P1, P2 : P1 ∩ P2 = ∅}. (1)

Note that it is required that no two elements of the fuzzy region overlap: the
intersection between any two elements should be empty. A point can only be
considered to belong to the region once, even if it is to a membership grade less
than 1.

2.2. Level-2 fuzzy region

The concept of the fuzzy powerset extension was first introduced in Verstraete
(2011a) and is similar to the previous extension: a fuzzy region will now be
defined as a fuzzy set of fuzzy sets, which is achieved using the fuzzy powerset.
The fuzzy powerset ℘̃ of a set A is the set of of all fuzzy sets over the given set
A,

℘̃(A) =
{

X̃ |∀x : µx̃(x) > 0 ⇒ x ∈ A
}

. (2)

By using the ℘̃(R2) as the domain for the fuzzy region, a region with fuzzy
subregions can be defined. Using the fuzzy powerset, it is possible to define a
fuzzy region similarly as has been done with the powerset.

Definition 6 (Level-2 fuzzy region)

R̃ = {(R̃′, µR̃(R̃
′))|R̃′ ∈ ℘̃(R2)}. (3)

The membership function is defined as:

µR̃ : ℘̃(R2) 7→ [0, 1]

R̃′ → µR̃(R̃
′).

The elements of the fuzzy region R̃ are fuzzy regions as per Definition 5; an
important difference with the previous extension is that it is now allowed for
different subregions to share elements. The definition comprises what is referred
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to as a level-2 fuzzy set: a fuzzy set defined over a fuzzy domain (Gottwald,
1979; Klir and Yuan, 1995) and is named accordingly. This concept is not to
be confused with a type-2 fuzzy set (Mendel, 2001), which is a fuzzy set defined
over a crisp domain but where the membership grades are fuzzy sets.

By using fuzzy regions (in the original definition) as basic elements, we effec-
tively obtain two membership grades for every point p belonging to a subregion
R̃′: the first membership grade is associated directly with the point within the
basic element (µR̃′(p)), whereas the second membership grade is associated with

the subregion (µR̃(R̃
′)) and thus indirectly associated with each of its points.

2.2.1. Operations

Several operators have been defined (Verstraete et al., 2004) and even prelimi-
nary topology considerations have been made (Verstraete, 2010b). Additionally,
more practical models have been derived to facilitate the representation of fuzzy
regions in geographic systems; mainly imposing some limitations on the distri-
bution of membership grades to yield more manageable representations using
existing data concepts (bitmaps, Verstraete, Hallez and De Tré, 2006, or tri-
angular networks, Verstraete, De Tré and Hallez, 2002). For the level-2 fuzzy
regions, some operations have already been developed (Verstraete, 2011b, 2012).

In this contribution, the topological aspects of basic fuzzy regions will be con-
sidered in detail, with the main focus on optimizing definitions for boundary,
interior and exterior. The approach will use our theoretical model in combina-
tion with an extension of the 9-intersection model. The fact that the definition
of the regions deviates from the classical approach (region delimited by a bound-
ary) poses a problem for topological definitions, where the concepts of boundary,
interior and exterior are required. For a fuzzy region, it makes sense for these
concepts to be fuzzy entities themselves, but which properties should they have
and can we derive appropriate definitions for our fuzzy region model without
imposing additional limitations on the model?

The level-2 fuzzy region model is still in early development. Consequently, in
this contribution, only the topological aspects for the basic fuzzy regions defined
by means of the original definition will be considered. The early development
stages of the level-2 fuzzy regions have shown that the operations follow those of
the basic regions very closely; after all, level-2 fuzzy regions are an extension of
basic fuzzy regions that still is compatible. The main impact of moving to the
level-2 fuzzy regions is that there can be multiple candidate regions, which are
also reflected in the output and which may need some aggregation afterwards.
However, up to that last aggregation/interpretation step, the operations and
thus topology should be similar: each candidate region is a basic fuzzy region,
the topological concepts for level-2 fuzzy regions will be the same as those for
basic fuzzy regions, just with multiple candidates.
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3. Topology concepts

3.1. Introduction

3.1.1. Crisp regions

For a crisp region, the concepts of boundary, interior and exterior are pretty
straightforward, even though their purely mathematical definitions may feel
a bit abstract. Informally, the boundary of a region R contains those points
around which no subregion of R can be found that fully encloses the point and
completely belongs to R; which is a mathematical way of saying that it contains
those points that are really on the edge of the region. The interior is then
defined as the set of points that belong to the region, but not to the boundary.
The exterior simply comprises of all the points that do not belong to the region
or its boundary.

3.1.2. Broad boundary regions

As a first step towards introduction imprecision or uncertainty in regions, Cle-
mentini and Di Felice (1994) defined the concept of broad boundary regions. In
this concept the region was basically delimited by two boundaries: inner and
outer boundary. The combination of these two made up the broad boundary:
the entire region enclosed between the inner and outer boundary is considered
to be the broad boundary. While it extends on the crisp region model, it still
uses very crisp concepts: all points either belong to the region, to the boundary
or to none of those. As it plays with an intuitive notion, it is interesting to have
this model as special case of the fuzzy region model, just like the crisp model is
a special case.

The egg-yolk model (Cohn and Gotts, 1994) uses a similar representation.
The results are quite similar to the broad boundary model, even though the
authors use a different approach and different assumptions.

3.1.3. 9-intersection model

One approach to model the topology between crisp regions, is the 9-intersection
model, see Egenhofer and Sharma (1993) . It uses the concepts of interior (points
considered to be inside the region, denoted ·◦), exterior (points considered out-
side the region, denoted ·−) and boundary (denoted ∂·), then considers every
possible intersection between these concepts for both regions. This yields a total
of 9 possible intersections, commonly grouped in the matrix shown below:





A◦ ∩B◦ A◦ ∩ ∂B A◦ ∩B−

∂A ∩B◦ ∂A ∩ ∂B ∂A ∩B−

A− ∩B◦ A− ∩ ∂B A− ∩B−



 (4)

By assigning each matrix element 0 if the intersection is empty, and 1 if the
intersection is not empty, 29 = 512 matrices are possible. Depending on imposed
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restrictions on the regions (e.g. presence of holes), only a subset of the 512
relations is valid. For crisp regions without holes and no disconnected parts in a
two-dimensional space R

2, only eight such intersection matrices are meaningful,
yielding the relations: disjoint, contains, inside, equal, meet, covers, coveredBy
and overlap; illustrated in Fig. 3. An alternative way of describing topology is by





0 0 1

0 0 1

1 1 1









1 1 1

0 0 1

0 0 1





(a) (b)




1 0 0

1 0 0

1 1 1









1 0 0

0 1 0

0 0 1





(c) (d)




0 0 1

0 1 1

1 1 1









1 1 1

0 1 1

0 0 1





(e) (f)




1 0 0

1 1 0

1 1 1









1 1 1

1 1 1

1 1 1





(g) (h)

Figure 3. Topological relations for crisp regions: disjoint (a), contains (b), inside
(c), equal (d), meet (e), covers (f), coveredBy (g) and overlap (h), with their
intersection matrices.

means of the RCC calculus, but as the nine-intersection model lends itself easier
toward an extension in a qualitative approach, we opted for the 9-intersection
model. In this paper, several options for appropriate definitions for boundary,
interior and exterior will be discussed. These definitions can then be used to
define a similar intersection matrix which will then be further investigated.

4. Topology concepts for fuzzy regions

4.1. Introduction to fuzzy concepts

In Verstraete et al. (2008) and Verstraete (2010b), the topology of fuzzy re-
gions was considered using simple, intuitive definitions for the topology con-
cepts. These definitions had some shortcomings, which led to the development
of improved definitions. The initial definitions are introduced here, so they can
be used to explain the shortcomings.
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4.1.1. Boundary

To come to an appropriate definition of the topological concepts for fuzzy re-
gions, first let us consider a fuzzy region Ã, consisting of an inner section where
points have membership grades 1 and gradually decreasing membership grades
in a concentric way. We will give an intuitive definition as a starting point, and
use the shortcomings of this definition as a guideline to derive a better defini-
tion. Consider only those points for which µR̃(p) < 1. It can be argued that
points for which µR̃(p) > 0.5 belong more to the region than not, and similarly
that points for which µR̃(p) < 0.5 belong more to the outside of the region than
to the region itself. This makes points with membership grade µR̃(p) = 0.5
seem like good candidates for perfect boundary points, with points with greater
differences from 0.5 receiving lower membership grades. This can be achieved
as follows:

Definition 7

∆R̃ =
⋃

α∈]0,1]

{(p, 2(0.5− |0.5− α|))|p ∈ ∂R̃α}. (5)

By definition of the α cut, R̃α is a crisp region. As such, it is possible to consider
the traditional boundary concept of a crisp region, denoted ∂R̃α. This definition
can be rewritten to introduce the notation of the membership function as

∆R̃ = {(p, µ∆R̃(p)}

where

µ∆R̃ : U → [0, 1]

p 7→ inf
α
{2(0.5− |0.5− α|))|p ∈ ∂R̃α}.

This definition is similar to the definition Du et al. (2005a) applied for fuzzy
regions defined by means of a fuzzy buffer (Verstraete, Van Der Cruyssen and De
Caluwe, 2000; Du et al., 2005a). It will now be used as a starting point to search
for properties that are either mandatory or interesting for a fuzzy boundary;
based on these properties a new definition will be derived. In Verstraete et
al. (2008) and Verstraete (2010b), a slightly different definition was used to
compensate for a major shortcoming (it is incompatible with crisp regions) of
the above definition.

4.1.2. Interior and exterior

Following the same reasoning as above, we can consider an intuitive definition
for the interior and exterior. If the points with membership grade 0.5 are consid-
ered to be the best points of the boundary, then it also makes sense to consider
the points with a membership grade less than 0.5 not to belong to the inte-
rior. Defining the interior based on the above boundary definition is a fairly
straightforward matter.
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Definition 8 (interior R̃◦ of fuzzy region R̃)

R̃◦ = {(p, µR̃◦(p)}

where

µR̃◦ : U → [0, 1]

p 7→

{

0 µR̃(p) ≤ 0.5
1− µ∆R̃(p) elsewhere.

The exterior can be considered in a completely analogous manner.

Definition 9 (exterior R̃− of fuzzy region R̃)

R̃− = {(p, µR̃−(p)}

where

µR̃− : U → [0, 1]

p 7→

{

0 µR̃(p) ≥ 0.5
1− µ∆R̃(p) elsewhere.

4.2. Examples used

To examine the definitions, a number of specific sample regions will be used.
These are examples chosen to be more or less representative for situations that
can be expected in the general case (either for the entire region, or for some
part of the region):

• crisp region A, represented as a fuzzy region Ã (Fig. 4a)
• broad boundary region B, represented as B̃ (Fig. 4b)
• fuzzy region C̃1, with continuously strictly decreasing membership grades

from the core outward and fuzzy region C̃2, with continuously strictly
decreasing membership grades from the core outward, but with lines of
equal membership grades not forming closed lines (Fig. 4c)

• fuzzy region D̃1, with decreasing membership grades in {0.2, 0.4, 0.6, 0.8,
1} and D̃2, with decreasing membership grades in {0.2, 0.4, 0.6, 0.8, 1} but
with lines of equal membership not forming closed lines (Fig. 4d)

• fuzzy region Ẽ, with non-decreasing membership grades from the inside
out: the membership grades first decrease to 0.4, then increase again to
0.6, to finally decrease to 0 (Fig. 4e)

Regions Ã and B̃ are interesting to illustrate the compatibility with crisp and
with simple models. How the broad boundary region can be represented may
differ in definitions, and the intuitiveness and workability of its representation
as a fuzzy region is of interest; membership grade distributions will therefore
depend on the definitions. Regions C̃1 and D̃1 are straightforward examples
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a b c d e

Figure 4. Graphical illustration of the example regions, the top row shows
a drawing of the region with grey scales to indicate membership grades, the
bottom row shows a cross section from the core outward. (a) crisp region Ã,
(b)broad boundary region B̃, (c) continues decreasing membership grades (with
and without spatial discontinuity, C̃2 and C̃1), (d) discontinuous membership
grades (with and without spatial discontinuity, D̃2 and D̃1), (e) non-decreasing
membership grades, Ẽ

of regions that are likely to be quite common, where the latter is used to il-
lustrate discontinuities in the membership grade. Regions C̃2 and D̃2 are both
regions that are used to verify how the definitions handle regions with spatial
discontinuities. Region Ẽ finally is used to see how strange membership grade
distributions are dealt with.

4.2.1. Deriving required properties

In the above sections, we have introduced some fairly intuitive definitions. We
will now use these so see on what points they fail and what properties are
desirable for the fuzzy topological concepts.

A first and major point of criticism to the definition of the boundary is that
it yields an empty boundary when applied to crisp regions (e.g. the example
region Ã). Surely, any extension of an existing model should be compatible
with the existing model. A second point of criticism to this is that in our fuzzy
region model there currently is no a priori requirement for a fuzzy region to
contain points with membership grade 0.5, in which case no points in ∆R̃ will
have membership grade 1. While it is strictly speaking not necessary for fuzzy
sets to be normalized (Klir and Yuan, 1995), the downside here is that it can be
the result even when working with only normalized regions. This also appears
counter-intuitive: a region which has membership grades in {0.2, 0.4, 0.6, 0.8, 1},
such as examples D̃1 and D̃2, can be nicely defined, but would yield 0.8 as
the highest membership grade in the boundary and no single part that is the
border to the full extent (Fig. 5c). Finally, there is a more tricky problem that
can surface as well. Consider the examples C̃2 and D̃2: membership grades
are decreasing from the inside out, but points with membership grade 0.5 do
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a b c d

Figure 5. Graphical illustration of the boundaries of the example regions, us-
ing definition 12. The top row shows a drawing of the region with grey scales
to indicate membership grades, the bottom row a cross section from the core
outward. (a) crisp region, (b) broad boundary region, the cross section may
depend on on how the region is modelled to match various definitions, (c) con-
tinuous decreasing membership grades (with and without spatial discontinuity),
(d) discontinuous membership grades (with and without spatial discontinuity,
(e) non-decreasing membership grade

not form a closed line. The boundary will yield a normalized fuzzy set, but
the α level of the boundary at 1 is not a closed line, as illustrated by the
example region C̃2 (Fig. 5b). It should be noted that it is possible to define
regions with membership grade distributions such that there are α levels at
which the boundary does not form a closed line. In general, this should not lead
to problems (it usually means the region is oddly defined to begin with), but
one should not expect it to happen to the core of the boundary. The definition
does make it easy to represent broad boundary regions: by assigning all points
of the broad boundary the membership grade 0.5, these points will become the
boundary of the region (Fig. 5a). For the last example of a region with a non-
decreasing membership grade, the result on Fig. 5d was to be expected; even
though it is a bit odd to have multiple concentric cores in the boundary region.

Trying to solve these issues by imposing restrictions to the definition of
fuzzy regions themselves may limit the concept too much, so the attention will
go towards improving the definition of the boundary concept. Using the above
observations, the following properties are deemed important:

1. no concept (boundary, interior and exterior) should ever be empty for
non-empty regions

2. when dealing with normalized regions, the concepts should be normalized
3. the concepts should not depend on the presence (or absence) of any par-

ticular membership grade
4. there should be a closed line for relevant alpha cuts.

Apart from properties that will be required, additional interesting properties
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- while not mandatory - will play a part in comparison of different definitions:

1. logical connection between neighbouring points inside the boundary
2. a relation between ∂R̃α and (∆R̃)α
3. ability to represent broad boundary regions.

In this contribution, the above definition will be modified, but a different ap-
proach will also be considered. This will yield a number of candidate definitions
which will then be examined further.

5. Membership grade derived concepts

Here, we will continue with Definition 7, section 4.1.1, and improve on it to
derive a better candidate for the definition of the boundary.

5.1. Boundary

To overcome the first criticism, it suffices to take into account different α levels:
these are crisp regions and their boundary is found using the definition for crisp
boundaries. Not only does this modification solve the issue for crisp regions, it
also guarantees that if a fuzzy region has a crisp boundary at some part, it will
have boundary points for that part as well.

Definition 10

µ∆R̃ : U → [0, 1]

p 7→ max(sup{α|p ∈ ∂R̃α}, 2(0.5− |0.5− µR̃(p)|))).

This is also the definition we used used for the case study in Verstraete (2010b).
This adaptation solves the issues that occur in the crisp case, but it still exhibits
some strange results in the general case. For discontinuities in the range [0, 0.5],
the results poses no surprises: points p with membership grade µR̃(p) = 0.2 that

belong to ∂R̃0.2 are given membership grade µ∆R̃ = 0.4, and points that are
more inside the region but also have membership grade µÃ = 0.2 are also given
the membership grade µ∆R̃ = 0.4. Discontinuities in the range [0.5, 1] pose more

issues: points p with membership grade µR̃(p) = 0.8 that belong to ∂R̃0.8 are
given membership grade µ∆R̃ = 0.8; other points that also have membership
grade µÃ = 0.8 are actually given the membership grade µ∆R̃ = 0.4.

5.2. Interior and exterior

Regardless of the changes to the definition of the boundary, the previous defini-
tions for the interior and exterior still satisfy the properties put forward. Both
these definitions are similar and will use the new boundary definition.
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a b c d e

Figure 6. Graphical illustration of the boundaries of the example regions, us-
ing Definition 10. The top row shows a drawing of the region with grey scales
to indicate membership grades, the bottom row a cross section from the core
outward. (a) crisp region, (b) broad boundary region, the cross section may
depend on how the region is modelled to match various definitions, (c) continu-
ous decreasing membership grades (with and without spatial discontinuity), (d)
discontinuous membership grades (with and without spatial discontinuity, (e)
non-decreasing membership grade

5.3. Digression

5.3.1. Examples

We will now look in to the performance of these definitions with the examples
from Section 4.2.

Crisp region A, represented as Ã The definition is such that it reverts
back to the crisp definition: the only points in the boundary will be the points
that are in ∂Ãα, for α = 1, Fig. 6a. The interior and exterior are also exactly
the same as in the crisp definition.

Broad boundary region B, represented as B̃ The first question is how to
represent a broad boundary region; the most obvious approach is to assign points
in the inner broad boundary the membership grade 1, and points in between
inner and outer boundary the membership grade 0.5. The definitions revert
back to the definitions for boundary, interior and exterior of broad boundary
regions, Fig. 6b.

Fuzzy region C̃1, with continuously strictly decreasing membership

grades from the core outward Here things get interesting. All the points
with membership grades in ]0, 0.666] belong to the boundary to the extent de-
termined by the formula 2(0.5− |0.5− µR̃(p)|). Points with membership grades
in ]0.666, 1[ will get the same membership grades as in the original region, which
provides for a local minimum in 0.666, Fig. 6c. Furthermore, the points in ∂Ãα,
for α = 1 belong to this extent to the boundary.
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Fuzzy region C̃2, with continuously strictly decreasing membership

grades from the core outward, but no closed line The boundary looks
similar to the above boundary, the lines at each α-level are closed.

Fuzzy region D̃1, with decreasing membership grades ∈ {0.2, 0.4, 0.6, 0.8,
1}. For this region, the boundary looks as in the figure. Points, for which
µD1

(p) ∈]0, 0.5[ belong to the boundary to some extent greater than the extent
to which they belong to the region. Points with µD1

(p) ∈]0.5, 1[ that are not
part of the boundary of an α level also belong to the boundary, but now to a
lesser extent than the extent to which they belong to the boundary. Finally,
points for which µD1

(p) ∈]0, 0.5[ that are part of the boundary of some α level
belong to the boundary to the same extent as to the region, Fig. 6d.

Fuzzy region D̃2, with decreasing membership grades ∈ {0.2, 0.4, 0.6, 0.8,
1}. The boundary will look similar to the boundary of D̃1.

Fuzzy region Ẽ The boundary will have a similar shape as before, but with
a change similar as was observed for region C̃1: there will be an additional local
minimum, Fig. 6e.

5.3.2. Properties

Required properties The definitions will never yield an empty boundary for
a non-empty region: as soon as there are points, there will be points that are
part of the boundary of some α level. The same reasoning can be applied for
points with membership grade 1, so as soon as there are points with membership
grade 1 in the region, there will be such points in the boundary. As the boundary
always contains the points of the boundary of core of the fuzzy region, the core
of the fuzzy boundary will form a closed line around the core of the region.
There is no dependency of specific membership grades, so all the mandatory
properties are satisfied.

Desired properties Apart from properties that will be required, additional
interesting properties - not being mandatory - will play a part in the comparison
of the different definitions. Here, the strange membership grades around the
points p for which µC̃1

(p) = 0.666 stand out: intuitively, there is no reason for

this to be a local minimum. It also occurs in region Ẽ. As a result of this,
the definition fails on the first property. There is a connection between the α

levels of the boundary and the boundaries of the same α levels: (∆R̃)α encloses
∂R̃α. Finally, broad boundary regions can be easily represented, as shown in
the examples.



Deriving topological concepts for fuzzy regions 133

5.3.3. Summary

This approach improves a lot on the intuitive definition, while still remaining
true to the intuitive aspects. Both the crisp case and the broad boundary case
are incorporated in the model, and the results are normalized for a normalized
input. Even spatial discontinuities will not occur for the core of the region, and
can only occur in quite artificial examples for other membership grades. The
difference between the boundaries ∆C̃1 and ∆D̃1 is also a bit undesirable: the
region D̃1 could be seen as a discrete approximation of C̃1, yet their boundaries
look quite different. In the continuous case, the region differs from the intu-
itive definition because the membership grades of the boundary do not decrease
towards the core of the region.

Apart from looking at the boundary, it is worth considering the interior and
exterior. For the region C̃1, the interior will consist of the interior of the core of
the region (and these points will have membership grade 1), and then the points
for which µC̃1

(p) < 0.5, but these points will get very low values: no longer is
there a gradual transition as before, and the local minimum that occurs in the
boundary now becomes a local maximum. There is a similar difference with the
interior of D̃1 as was observed for the boundaries. The exterior has not changed
because of the change of boundary definition.

6. α-level based

In this section, the property that the boundary of every α-level equals the same
α-level of the fuzzy boundary is put forward:

∂R̃α = (∆R̃)α. (6)

From this property, a number of possible definitions for boundary and other
concepts are derived.

6.1. Boundary

The above property implies that the definition of the boundary is of the form:

Definition 11

µ∆R̃ : U → [0, 1]

p 7→

{

x if6 ∃α : p ∈ ∂R̃α

sup{α : p ∈ ∂R̃α} elsewhere

with x still to be determined.

Independent of the values of x, this definition already matches the first three
desired properties. The most obvious candidates for x are 0, µR̃(p) and some
value in between (for the sake of argumentation, we will use µR̃(p)

2). These three



134 J. VERSTRAETE

options translate to: remaining points belong to the same extent to the boundary
as they do to the region (x), do not belong to the boundary (0), or belong to a
lesser extent to the boundary than to the region. If x > µR̃(p), the property we
put forward (6) would no longer hold. Note that if the membership grades of the
region are continuously and strictly decreasing, for all points p with membership
grade in ]0, 1[ there ∃α : p ∈ ∂R̃α, implying all points with membership grade
less than 1 will be in the boundary with that same membership grade; this can
also occur for only a portion of the boundary.

The case where x = 0 only considers boundary points to be those points that
belong to the boundary of some α level, and assigns them this α as membership
grade.

Definition 12

µ∆R̃ : U → [0, 1]

p 7→

{

0 if 6 ∃α : p ∈ ∂R̃α

sup{α : p ∈ ∂R̃α} elsewhere.

If x = µR̃(p), then all points that are not part of the boundary of any α

level are assigned the same membership grade as in the original region. The full
equality in (6) no longer holds, but is weakened to ∂R̃α ⊆ (∆R̃)α (yet both will
have the same outline). Points, for which µR̃(p) = 1, would all be assigned a
membership grade 1, making the whole region part of the boundary. As this is
not desired, it is necessary to add an exception for this case; yielding:

Definition 13

µ∆R̃ : U → [0, 1]

p 7→







µR̃(p) if 6 ∃α : p ∈ ∂R̃α

0 if p ∈ R̃◦

1

sup{α : p ∈ ∂R̃α} elsewhere.

The case where x ∈]0, µR̃(p)[ (e.g. µ2
R̃
(p)) is similar, only now the points that

are not part of the boundary in any α-level are assigned a smaller value.

Definition 14

µ∆R̃ : U → [0, 1]

p 7→







(µR̃(p))
2 if 6 ∃α : p ∈ ∂R̃α

0 if p ∈ R̃◦

1

sup{α : p ∈ ∂R̃α} elsewhere.

The compatibility with the broad boundary regions is not possible for x = 0,
but is possible for x ∈]0, µR̃(p)], as it suffices to assign the points in the broad
boundary a membership grade in ]0, 1[ to make them part of the boundary.
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6.2. Interior and exterior

The use of the α-levels allows for a straightforward definition of the interior if
we - in analogy to the boundary - impose that the property

(R̃α)
◦ = (R̃◦)α (7)

must be satisfied,

µR̃◦ : U → [0, 1]

p 7→

{

sup{α : p ∈ R̃◦

α} if 6 ∃α : p ∈ ∂R̃α

x elsewhere.

Similarly as with the boundary Definition 11, there are different possibilities
for the parameter x. As for the boundary, it is impossible that x > µR̃(p);
however, it is now also impossible for x = µR̃(p), as this would violate (7). The
only valid values for x are therefore x ∈ [0, µR̃(p)[.

The exterior can be considered quite analogue to the interior, except that
now the property changes to

(R̃α)
− = (R̃−)α (8)

µR̃− : U → [0, 1]

p 7→

{

sup{α : p ∈ R̃−

α } if 6 ∃α : p ∈ ∂R̃α

x elsewhere.

Again, several options remain for the parameter x, but they are similar as for
the interior: any x ≥ µR̃(p) would violate (8), leaving x ∈ [0, µR̃(p)[ as valid
values.

6.3. Digression

6.3.1. Examples

We will now look into the performance of these definitions with the examples
from Section 4.2.

Crisp region A, represented as Ã Regardless of the value of x, the defini-
tion reverts back to the crisp definition: the only points in the boundary will be
the points that are in ∂Ãα, for α = 1. The interior and exterior are also exactly
the same as in the crisp definition.

Fuzzy region C̃1, with continuously strictly decreasing membership

grades from the core outward As the membership grades are strictly de-
creasing, every point p for which µC̃1

(p) ∈]0, 1[ will belong to the boundary to

the same extent as to the region. The points in ∂Ãα, for α = 1 will also belong
to it to the full extent.
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a b c d

Figure 7. Graphical illustration of the boundaries of the example regions, using
Definition 12. The top row shows a drawing of the region with grey scales
to indicate membership grades, the bottom row a cross section from the core
outward. (a) crisp region, (b) continuous decreasing membership grades (with
and without spatial discontinuity), (c) discontinuous membership grades (with
and without spatial discontinuity), (d) non-decreasing membership grade

a b c d

Figure 8. Graphical illustration of the boundaries of the example regions that
have different boundaries when changing the value of x: using Definition 13 (a),
(b) and Definition 14 (c), (d). The top row shows a drawing of the region with
grey scales to indicate membership grades, the bottom row a cross section of
from the core outward. (a),(c) continuous decreasing membership grades (with
and without spatial discontinuity), (b),(d) discontinuous membership grades
(with and without spatial discontinuity)
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Fuzzy region C̃2, with continuously strictly decreasing membership

grades from the core outward, but no closed line The boundary looks
similar to the above boundary, however the disconnected parts are closed.

Fuzzy region D̃1, with decreasing membership grades ∈ {0.2, 0.4, 0.6, 0.8,
1}. Points for which µD̃1

(p) ∈ ∂D1α, for some α are given that α as member-
ship grade in the boundary. Other points are given x, which results for x

respectively 0, µD̃1
(p) and µD̃1

(p)2 in the boundaries in Figs. 7d, 8a and 8c.

Fuzzy region D̃2, with decreasing membership grades ∈ {0.2, 0.4, 0.6, 0.8,
1}. The boundary will look similar to the boundary of D̃1, but the lines will
be closed.

Fuzzy region Ẽ Points for which µẼ(p) ∈ ∂Eα, for some α are given that α

as membership grade in the boundary. Other points are given the value x, for
x respectively 0, µẼ(p) and µẼ(p)

2 the boundaries are shown in Figs. 7d, 8b
and 8d.

Broad boundary region B, represented as B̃ The definition is immedi-
ately compatible with the crisp case, but a trick is required to make it compatible
with the broad boundary region. First, it should be noted that regardless of the
value x, it is not possible to have all points in the boundary get the same value:
the boundary of the core will have membership grade 1, whereas other points of
the boundary will get a lower membership grade. Following the definition, all
points in the broad boundary should belong to the boundary of some α-level of
the region. The only way to achieve this is to assign membership grades that are
strictly decreasing from the kernel outward, in which case the boundary will be
similar to that of C̃1, Fig. 7b. When x > 0 in the definition, other constructions
are also possible, in which case the boundary resembles that of D̃1, Fig. 8a and
Fig. 8c, albeit with fewer discontinuities in the membership grade distribution.

6.3.2. Properties

Required properties The definitions will never yield an empty boundary for
a non-empty region: as soon as there are points, there will be points that are
part of the boundary of some α level. The same reasoning can be applied for
points with membership grade 1, so as soon as there are points with membership
grade 1 in the region, there will be such points in the boundary. As the boundary
always contains the points of the boundary of core of the fuzzy region, the core
of the fuzzy boundary will form a closed line around the core of the region. All
the mandatory properties are satisfied.
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Desired properties The first desired property concerns a logical connection
between neighbouring points in the boundary. For the case where x = 0, points
just next to the core of the boundary can get a membership grade 0, so this is
quite a crisp distinction. However, for the other values of x, there is a softer
transition. By construction, we have equality between (∆R̃)α and ∂R̃α (or
rather equality between the outer outline of (∆R̃)α). As shown in the examples,
both crisp regions and broad boundary regions can be represented in a way that
is compatible with the concepts for boundary, interior and exterior.

6.3.3. Overview

This approach improves a lot on the previous definitions; even if it moves further
away from the initial intuitive definition, it does stay quite close to the crisp
concepts. The presence of the parameter x allows for a number of distinct
definitions, each with slightly different properties. The differences between the
example regions C̃1 and D̃1 are much smaller than before, and especially for x

equal to the membership grade in the original region, ∆D̃1 resembles a discrete
version of ∆C̃1.

The membership grades in the interior and exterior are - unlike in the previ-
ous definition - independent from the boundary. A similar parameter here allows
for a number of distinct definitions as well. Some combinations of the parame-
ters in the boundary and interior lead to interesting results. If both parameters
are set to 0, then no point belongs to both the interior and the boundary at the
same time. Increasing the parameter in the boundary definition will increase the
membership grade of the points in the boundary, for which it is applicable. The
highest possible value will make those points belong as much to the boundary
as to the interior. Increasing the parameter in the interior, on the other hand,
impacts on the points that belong to a boundary at some α level. It should be
noted that it is possible to assign values that may yield (7) failing. The impact
of the parameter in the definition of the exterior is similar.

7. Determining topology

7.1. Intersection matrices

7.1.1. Definition

Once the concepts of interior, boundary and exterior are known, the topology
can be investigated using an extension of the 9-intersection matrix as shown in
(4). the 9-intersection matrix for fuzzy regions is:





h(Ã◦∩̃B̃◦) h(Ã◦∩̃∆B̃) h(Ã◦∩̃B̃−)

h(∆Ã∩̃B̃◦) h(∆Ã∩̃∆B̃) h(∆Ã∩̃B̃−)

h(Ã−∩̃B̃◦) h(Ã−∩̃∆B̃) h(Ã−∩̃B̃−)



 . (9)
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Here h(X) is a shorthand notation for the height(X) of a fuzzy set X , Definition
4. The intersection is the fuzzy intersection, by means of a t-norm (e.g. mini-
mum). Note that matrix elements are no longer limited to {0, 1}, but can have
any value in the range [0, 1]. This, in turn, will influence how the intersection
matrices will be interpreted. A full case study of the fuzzy 9-intersection matrix
has been made using the intuitive definitions for the topological concepts. This
yields a large number of cases, but there are similarities between some cases,
and there are different ways of grouping these similar cases together. Even
though the choice of the definitions may have some impact on the cases, the
methodology is completely independent of the definitions used, even though the
results may differ.

7.1.2. Methodology

Using the definitions, it is possible to perform a case study as illustrated in
Verstraete (2010b), where the initial intuitive definitions were used. The matrix
elements are in the range [0, 1], implying that an infinite number of cases is
possible. It can, though, be greatly reduced by considering a limited number
of values and value ranges for each intersection element. In Verstraete (2010b),
we considered those are equal to 0 or to 1, or have a value in [0, 1[ or ]0, 1]. The
interpretations are that the intersection is either empty, is an intersection to
the full extent, can be empty or can be to the full extent. While this leaves 49

possible options, not all of them can occur, just as not all of the 29 possible cases
can occur in the traditional 9-intersection matrix. It is also possible for cases
to be grouped together, which resulted in a manageable 44 cases for the case
study with the intuitive definition. It is important to realize that the different
cases are not mutually exclusive.

A full case study is in progress, but methods are applied to find similarities
in order to speed up generating the cases for the different families of definitions.

As in the crisp case (and the broad boundary model), it is also possible to
create a conceptual neighbourhood graph. This is a graph in which all cases are
present as nodes, and an edge connects two nodes that have a minimal number
of differences between them. For example if two intersection cases have the
same elements, but one (in one matrix this element is 0 whereas in the other it
is [0, 1[), then these matrices will be connected with an edge.

In the approach, it is interesting to also group the different intersection cases;
for each matrix element this will yield at most four groups (in the case study
with the intuitive definition, many elements only yielded two or three groups).

7.2. Usage

7.2.1. Identifying matching cases

For two given fuzzy regions, it is fairly easy to construct the intersection matrix,
which is a matrix with nine elements in the range [0, 1]. Using the groups that
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were defined above, it is possible to determine which cases in the case study
match the given situation. In general, more than one case will match: for
any value in the range ]0, 1[, both cases [0, 1[ and ]0, 1] will match. To be
able to compare the different matching cases, the concept of match values was
introduced.

7.3. Match values

As there can be multiple cases that match a given value, it is necessary to
provide some qualitative measure to compare them.

Definition 15 (Match value mi
x for a case i and a matrix element

x)

mi
x =

{

x if range of case i = ]0, 1]
1− x if range of case i = [0, 1[.

For a given intersection matrix, we will now have different matching cases,
and match values that indicate for each element how well it matches a given
case. By aggregating the match values of all the matrix elements of a single
case, a single number is obtained. This number is considered representative for
how well this particular case matches the given matrix.

8. Conclusion

In this contribution, some options for the topology of fuzzy regions were con-
sidered. A family of definitions for boundary, interior and exterior was derived
and tested against a number of representative cases. These concepts are a first
and important step towards a full topological case study. The methodology of
the case study has been mentioned (and referenced) and it has been performed
using the previous definitions of the concepts. The full case study has been
performed with the methodology, and will be performed again using the defini-
tions presented here. From that study we know the topological concepts are not
simple unique cases, but that any random example may match multiple cases.
This is also described in the article. The methodology we described provides
for an algorithm to reason with all the possible cases, and a new case study
considering all topological cases (using the described methodology) is ongoing.
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