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Abstract: We address the problem of deriving Pareto optimal
solutions of multiple objective optimization problems with predeter-
mined upper bounds on trade-offs. As shown, this can be achieved
by a linear transformation of objective functions. Each non-diagonal
element of the transformation matrix is related to a bound on the
trade-off between a pair of the objective functions.
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1. Introduction

Consider the multiple objective optimization problem in the following general
formulation:

max
x∈X

f(x), (1)

where X is the set of feasible solutions; f(x) = (f1(x), f2(x), . . ., fk(x)), fi :
X → R, i ∈ Nk, are objective functions; Nk = {1, 2, . . . , k}. Solving this
problem consists in deriving, in principle, all Pareto optimal elements of X (see
definition below).

Problem (1) is often used as an underlying model for Multiple Criteria De-
cision Making (MCDM) problems. Solving an MCDM problem means deriving
an element of X , which is the most preferred for the Decision Maker (DM).

As a rule, it is impossible to obtain upfront complete information about DM’s
preferences, which is needed to derive the most preferred element of X . There-
fore, methods of deriving and manipulating partial information about DM’s
preferences gain in importance. One approach to handling partial information

1This research was supported by the Polish-American Freedom foundation in the framework

of Lane Kirkland Program administered by Polish – U.S. Fulbright Commission.
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about DM’s preferences is to manipulate upper bounds on trade-offs between ob-
jective functions (see, for example, Kaliszewski, Micha lowski, 1999; Kaliszewski,
2006). In particular, this approach is widely used in interactive methods of
MCDM with relative preference expressing (see, for example, Roy and Walle-
nius, 1992; Kaliszewski, Micha lowski, 1999; Kaliszewski, 2006; Kaliszewski and
Zionts, 2004).

In this paper we address the problem of deriving Pareto optimal solutions
of (1) with predetermined upper bounds on trade-offs (trade-off solutions). This
problem was formulated and investigated earlier by Kaliszewski and Micha lowski
(1997); recent developments in this direction are presented in Kaliszewski (2006).

Computationally effective methods for deriving trade-off solutions are based
on scalarizing the problem (1), i.e. replacing f(x) by a surrogate parametric
objective function. Surrogate functions used up to now have at most k inde-
pendent parameters, which can be used to enforce upper bounds on trade-offs
for any solution of the scalarized problem. This means that when manipulating
upper bounds on trade-offs one can have at most k degrees of freedom, while
the number of trade-offs can be as much as k(k − 1).

We propose a new form of scalarizing parametric function resulting from a
linear transformation of objective functions. This form allows predetermining
an upper bound on the trade-off for each pair of objective functions separately.
This means that when manipulating upper bounds on trade-offs one can have
up to k(k − 1) degrees of freedom.

2. Notation and definitions

Let us observe that in problem (1) each x, x ∈ X , is represented by its evaluation
y = f(x). Thus, for the purpose of MCDM, instead of problem (1) we can
consider the problem

max
y∈Y

y, (2)

where

Y = {f(x) : x ∈ X},

is the set of (vector) evaluations, Y ⊂ Rk. Solving (2) consists in deriving all
Pareto optimal evaluations (see definition below).

Given Y , the set of Pareto optimal evaluations P (Y ) and the set of weakly
Pareto optimal evaluations W (Y ) are defined as

P (Y ) = {y ∈ Y :6 ∃ y′ ∈ Y (y′
> y & y′ 6= y)},

W (Y ) = {y ∈ Y : ∀ y′ ∈ Y \{y} ∃ p ∈ Nk (yp > y′
p)}.

Feasible solution x is called Pareto optimal (weakly Pareto optimal) solution
of problem (1), if f(x) ∈ P (Y ) (f(x) ∈ W (Y )).
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For any y∗ ∈ Y and any j ∈ Nk, let

Z<
j (y∗, Y ) = {y ∈ Y : yj < y∗

j & ∀ s ∈ Nk\{j} (ys > y∗
s)}.

Definition 1 (Kaliszewski, Micha lowski, 1997) Let i, j ∈ Nk, i 6= j. If
Z<

j (y∗, Y ) 6= ∅, then the number

Tij(y∗, Y ) = sup
y∈Z<

j
(y∗,Y )

yi − y∗
i

y∗
j − yj

(3)

is called trade-off between i-th and j-th objective functions for evaluation y∗. If
Z<

j (y∗, Y ) = ∅, then by definition we assume Tij(y∗, Y ) = −∞ .

Trade-off Tij(y∗, Y ) indicates how much at most the evaluation y∗ can be
improved in the i-th component relative to its worsening in the j-th component
during passage from y∗ to any other evaluation from Y , under the condition
that the remaining components do not worsen.

3. The main result

Let us introduce a positive matrix B = (βij)k×k ∈ Rk×k with the main diago-
nal elements equal to one, and the remaining elements satisfying the following
conditions:

(a) βpjβji 6 βpi, i, j, p ∈ Nk, i 6= j, j 6= p,

(b) βij 6 1/βji, i, j,∈ Nk, i 6= j.

Let us consider the following linear transformation of Y :

YB = {By : y ∈ Y }.

Theorem 1 Let By∗ ∈ W (YB). Then y∗ ∈ P (Y ) and for any i, j ∈ Nk, i 6= j,
we have

Tij(y∗, Y ) 6
1

βji
.

Proof. Let By∗ ∈ W (YB). From the definition of W (YB) we have that for any
y ∈ Y , y 6= y∗, there exists p ∈ Nk such that Bpy

∗ > Bpy, where Bp is the
p-th row of matrix B. Suppose y∗ /∈ P (Y ). Then there exists y ∈ Y such that
y > y∗ & y 6= y∗. From B > 0 we get Bsy

∗ < Bsy for any s ∈ Nk, which is a
contradiction. Thus, y∗ ∈ P (Y ).

Let i, j ∈ Nk. It remains to show that Tij(y∗, Y ) 6 1/βji under the condition
Z<

j (y∗, Y ) 6= ∅, i.e. to show that any y ∈ Z<
j (y∗, Y ) 6= ∅ satisfies the inequality

yi − y∗
i

y∗
j − yj

6
1

βji
. (4)
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Let y ∈ Z<
j (y∗, Y ) 6= ∅. Then, by definition, we have

ys > y∗
s for any s ∈ Nk\{j}. (5)

Moreover, y∗ ∈ W (YB) implies Bpy
∗ > Bpy for some p ∈ Nk. By regrouping

the elements in the last inequality we get

y∗
p − yp >

∑

s∈Nk, s6=p

βps (ys − y∗
s). (6)

There are three possible cases.

Case 1. p = i. From (6) and (5) we have

y∗
i − yi >

∑

s∈Nk, s6=i

βis (ys − y∗
s) > βij

(

yj − y∗
j

)

.

From (b) we obtain

yi − y∗
i

y∗
j − yj

6 βij 6
1

βji
.

Case 2. p = j. From (6) and (5) we have

y∗
j − yj >

∑

s∈Nk, s6=j

βjs (ys − y∗
s) > βji (yi − y∗

i ) and
yi − y∗

i

y∗
j − yj

6
1

βji
.

Case 3. p 6= i, p 6= j. Then y∗
p − yp 6 0. From (5) and (6) we have

0 > y∗
p − yp >

∑

s∈Nk,

s/∈{p,i,j}

βps (ys − y∗
s) + βpi (yi − y∗

i ) + βpj

(

yj − y∗
j

)

> βpi (yi − y∗
i ) + βpj

(

yj − y∗
j

)

.

Hence βpi(yi − y∗
i ) 6 βpj(y∗

j − yj). From (a) we have

yi − y∗
i

y∗
j − yj

6
βpj

βpi
6

1

βji
.

Thus, in each case we obtained inequality (4).

4. A corollary

We shall now show that Theorem 1 is related to a result known from literature,
formulated below as Corollary 1. To this aim we shall exploit the following
fundamental result attributed usually to Bowman (1976) (see also some other
references in Kaliszewski, 2006, p. 43).
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Proposition 1 Let Y ⊂ R
k, y∗ ∈ Y , y0 ∈ R

k, y0
i > yi, for all y ∈ Y , i ∈ Nk.

Then y∗ ∈ W (Y ) if and only if there exist λi > 0, i ∈ Nk, such that y∗ is a
solution of the optimization problem

min
y∈Y

max
i∈Nk

λi(y
o
i − yi)

Let us rewrite Proposition 1 for Y replaced by YB, where as before, YB =
{By : y ∈ Y }.

Proposition 2 Let y∗
B = By∗, y0

B = By0, where y∗ and y0 are as in Proposi-
tion 1. Then y∗

B ∈ W (YB) if and only if there exist λi > 0, i ∈ Nk, such that
y∗

Bis a solution of the optimization problem

min
y∈YB

max
i∈Nk

λi((y
o
B)i−yi) = min

y∈Y
max
i∈Nk

λi

(

(

y0
i − yi

)

+
∑

j∈Nk

j 6=i

βij

(

y0
j − yj

)

)

. (7)

We consider now a special instance of matrix B. Let k positive numbers ρi,
i ∈ Nk, be given. We define matrix B with the elements

βii = 1, βij =
ρj

1 + ρi
, i, j ∈ Nk, i 6= j. (8)

These elements satisfy conditions (a) and (b). Indeed, for any i, j, p ∈ Nk, i 6= j,
j 6= p, we have

βpi − βpjβji =
ρi

1 + ρp
−

ρj

1 + ρp

ρi

1 + ρj
=

ρi + ρiρj − ρjρi

(1 + ρp) (1 + ρj)
> 0 (9)

and

βijβji =
ρj

1 + ρi

ρi

1 + ρj
=

ρiρj

(1 + ρi) (1 + ρj)
< 1. (10)

With this instance of B, Proposition 2 takes the following form:

Proposition 3 Let y∗ ∈ Y , y0 ∈ R
k, y0

i > yi for all y ∈ Y , i ∈ Nk. Let ρi > 0,
i ∈ Nk, and B be the matrix with elements defined by (8). Then By∗ ∈ W (YB)
if and only if there exist λi > 0, i ∈ Nk, such that y∗ is a solution of the
optimization problem

min
y∈Y

max
i∈Nk

λi

(

(

y0
i − yi

)

+
∑

j∈Nk

j 6=i

ρj

1 + ρi

(

y0
j − yj

)

)

. (11)

To make one more modification of this proposition, we will use the following
evident lemma.



352 D. PODKOPAEV

Lemma 1 Let y∗ ∈ Y , y0 ∈ R
k, y0

i > yi for all y ∈ Y , i ∈ Nk. Let ρi > 0,
i ∈ Nk. Then, following two statements are equivalent:

1. there exist λi > 0, i ∈ Nk, such that y∗ is a solution of the optimization
problem (11).

2. there exist λ
′

i > 0, i ∈ Nk, such that y∗ is a solution of the following
optimization problem:

min
y∈Y

max
i∈Nk

λ′
i (1 + ρi)

(

(

y0
i − yi

)

+
∑

j∈Nk

j 6=i

ρj

1 + ρi

(

y0
j − yj

)

)

.

Taking into account the following evident equality

λ′
i (1 + ρi)

(

(

y0
i − yi

)

+
∑

j∈Nk

j 6=i

ρj

1 + ρi

(

y0
j − yj

)

)

=

= λ′
i

(

(

y0
i − yi

)

+
∑

j∈Nk

ρj

(

y0
j − yj

)

)

,

from Proposition 3 and Lemma 1 we obtain

Proposition 4 Let y∗ ∈ Y , y0 ∈ R
k, y0

i > yi for all y ∈ Y , i ∈ Nk. Let ρi > 0,
i ∈ Nk, and B be the matrix with elements defined by (8). Then By∗ ∈ W (YB)
if and only if there exist λi > 0, i ∈ Nk, such that y∗ is a solution of the
optimization problem

min
y∈Y

max
i∈Nk

λi

(

(

y0
i − yi

)

+
∑

j∈Nk

ρj

(

y0
j − yj

)

)

. (12)

Applying Theorem 1, we obtain, as a corollary, the following result of Kali-
szewski and Micha lowski (1997).

Corollary 1 Let y∗ ∈ Y , y0 ∈ R
k, y0

i > yi for all y ∈ Y , i ∈ Nk and let
ρi > 0, i ∈ Nk. If y∗ is a solution of problem (12) for some λi > 0, i ∈ Nk,
then y∗ ∈ P (Y ) and

Tij(y∗, Y ) 6
1 + ρj

ρi
for all i, j ∈ Nk, i 6= j.

5. Discussion

Proposition 4 states that problem (12) considered by Kaliszewski and Micha-
 lowski gives the same solutions and the same upper bounds on trade-offs as
the problem (7) in the case of matrix B with elements defined by (8). But in
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contrast to the previous method, with the latter problem we can vary upper
bounds on trade-offs separately with k(k − 1) degrees of freedom.

Indeed, consider matrix B with the elements defined by (8) as a point in

space Rk(k−1) with coordinates βij , i, i ∈ Nk, i 6= j. Since inequalities (9) and

(10) are strict, they define in Rk(k−1) an open set containing B. Therefore, B

has a neighborhood in Rk(k−1), where inequalities (9) and (10) hold. In this
neighborhood we can change all k(k − 1) coordinates βij separately.

Example 1 Consider problem (2) for k=3. Let ρ1=0.25, ρ2=0.5 and ρ3=1.
Then, according to Corollary 1, the solutions of problem (12) for any λi > 0,
i ∈ N3, have upper bounds on trade-offs as shown in Table 1.

Table 1.

i
j 1 2 3

1 6 8

2 2.5 4

3 1.25 1.5

According to Proposition 4, these solutions are weakly Pareto optimal solu-
tions of the transformed problem

By → max

y ∈ Y

where

B =





1 2/5 4/5
1/6 1 2/3
1/8 1/4 1



 .

These solutions can be found by solving scalarized problem (7).
Modifications of B allow deriving evaluations with upper bound patterns,

which cannot be achieved by manipulating ρi’s. For example, it is possible to
decrease upper bounds on trade-offs between the first and the second objective
from 6 to 4 and between the first and the third objective from 8 to 3, and enforce
upper bounds on trade-offs as shown in Table 2.

To enforce these bounds, we only need to change the value of β21 to 1/4 and
of β31 to 1/3. The modified matrix takes the form

B =





1 2/5 4/5
1/4 1 2/3
1/3 1/4 1



 .
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Table 2.

i
j 1 2 3

1 4 3

2 2.5 4

3 1.25 1.5

It is easy to verify that conditions (a) and (b) hold. By Proposition 2 solutions
of (7) with modified B belong to W (YB). Then by Theorem 1 they are Pareto
optimal solutions of (2) with the required upper bounds on trade-offs as shown
in Table 2.

Note that with problem (12) it is impossible to enforce upper bounds on
trade-offs set as in Table 2. Indeed, it is easy to verify that there do not exist
positive numbers ρ1, ρ2, ρ3 such that

1 + ρ2

ρ1
= 4,

1 + ρ3

ρ1
= 3,

1 + ρ1

ρ2
= 2.5,

1 + ρ3

ρ2
= 4,

1 + ρ1

ρ3
= 1.25,

1 + ρ2

ρ3
= 1.5.

6. Concluding remarks

We have shown how to reduce the problem of deriving solutions of multiple
objective optimization problems with predetermined upper bounds on trade-offs
to the problem of deriving weakly Pareto optimal solutions. Such a reduction
is obtained by a linear transformation of objective functions. Our approach
provides more flexibility in setting upper bounds on trade-offs than other known
results, since its offers k(k − 1) parameters for manipulation, in contrast to k
parameters in traditional approaches.

Another advantage of our result is that it allows formulating properties of
multiple objective problems in algebraic terms.
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