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Abstract: In this paper we introduce a hybrid approach to data
series classification. The approach is based on the concept of ag-
gregated upper and lower envelopes, and the principal components
here called ‘essential attributes’, generated by multilayer neural net-
works. The essential attributes are represented by outputs of hidden
layer neurons. Next, the real valued essential attributes are nomi-
nalized and symbolic data series representation is obtained. The
symbolic representation is used to generate decision rules in the
IF... THEN... form for data series classification. The approach
reduces the dimension of data series. The efficiency of the approach
was verified by considering numerical examples.
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1. Introduction

In many areas, such as medicine, finance, industry, climate etc., data series arise.
The generated data must be registered, stored, transmitted and then analysed.
The majority of data series research focuses on the following problems: indexing
(e.g. Keogh, Chakrabarti, Pazzani, 2001), clustering (e.g. Keogh, Pazzani, 2001;
Wu, Chang, 2004; Krawczak, Szkatuta, 2010c), classification (e.g. Nanopoulos,
Alcock, Manolopoulos, 2001; Krawczak, Szkatuta, 2010a,b), summarization (e.g.
Lin et al., 2001), and anomaly detection (Shahabi, Tian, Zhao, 2000). Due
to a huge amount of data, different kinds of data series representations were
developed. In the literature one can find specialized algorithms dealing with
such problems, e.g. including decision trees (Rodriguez, Alonso, 2004), neural
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networks (Nanopoulos, Alcock, Manolopoulos, 2001), Bayesian classifiers (Wu,
Chang, 2004), etc. Some representations are general enough to be used in
the mentioned problems, and some are rather specialized, meant for prescribed
applications. It is worth mentioning that there is an increasing interest in data
series mining (Xi et al., 2006).

It should also be noticed that the machine learning methods from examples
creating decision rules could be applied for solving data series classification
problems (Krawczak, Szkatula, 2008).

Data series are often very large. Most of papers on data series mining
deal with the problem of reducing dimensionality. Several data series repre-
sentations were introduced, including the discrete Fourier transform (Faloutsos,
Ranganathan, Manolopulos, 1994), the discrete wavelet transform (Chan, Fu,
1999), the piecewise constant models (Keogh, Chakrabarti, Pazzani, 2001), the
singular value decomposition models (Keogh, Chakrabarti, Pazzani, 2001), the
symbolic aggregate approximation (Lin, Keogh, Lonardi, 2007), and the upper
and lower envelopes (Krawczak, Szkatula, 2010a).

In the present paper our aim was to develop the idea of upper and lower
envelopes of data series for classification, first introduced by Krawczak and
Szkatuta (2010a, b), and then we propose a novel hybrid approach for reducing
dimensionality of the original data series for classification.

The upper and/or lower envelopes give a new data series representation,
and the aggregated envelopes, besides the new representation, give a significant
dimension reduction of data series (Section 2).

The developed hybrid approach involves, in addition to the envelopes, the
following artificial intelligence techniques.

On the basis of aggregated envelopes (upper or lower, or both) generation
of essential attributes for data series is introduced. The essential attributes
constitute another new representation, with additional dimension reduction of
the data series. In order to generate the essential attributes a heteroassciative
memory based on artificial neural networks is applied (Section 3). A three-layer
feedforward neural network with one hidden layer allows to compress data (e.g.,
Krawczak, 2003a, b), and the outputs of the hidden layer neurons constitute
just the essential attributes.

In order to simplify long data series representation we changed the real
values of the essential attributes into nominal values from a short set of possible
nominal values. In this way we obtained a simple symbolic representation of
the original data series.

Another artificial intelligence technique applied in this paper is generation
of decision rules of the following form: ‘IF some conditions are satisfied THEN
the data series belongs to a proper class’ (Section 4). Generation of decision
rules is based on machine learning and the rules constitute a simple model of
data series classification.

The proposed hybrid approach of data series class descriptions in the form
of rules seems to be more legible than others, and, what is most important, the
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approach preserves the character of data series sufficient for proper classification.
In Section 5 the basic elements of the proposed hybrid system are presented.
Section 6 gives examples of practical application of the proposed methodology.

2. The concept of upper and lower envelopes

Suppose we have the following data series

{ze() =y = [21(n), 22(n), ..., 2k (n)] (1)

forn=1,2,...,N.

Before starting the dimension reduction of the series (1), each series is nor-
malized to have mean equal zero and standard deviation equal one, because it is
obvious that it is meaningless to consider data series with different offsets and
amplitudes.

Following the idea borrowed from the signal processing theory we introduced
piecewise constant upper and lower envelopes of data series. We applied the
piecewise constant functions, also called step functions, with equal length of
steps. The length of steps is denoted m-step, meaning that m sample rates of
the data series constitute one step.

The so called the m-step upper and m-step lower envelopes, m << K, consti-
tute a kind of approximations of (1) in the following way: the m-step upper ap-

= E |m
proximation (envelope) of data series (1), precisely denoted by {z? (n)}:;leJ ,
has the following forms:

2? (n) = max{z (n),z, (n),...,z_(n)}

2(n),...,:cm (n)}

22 (n) = max{z, (n),x

2

z? (n) = max{z, (n),z,(n),...,z_(n)}
7271+1 (n) = max{a:m+1 (n) T, (n),.. T, (n)}
:1072n+2 (n) = max{gcm+1 (n) T, (n),...,xz, (n)}
:Efm (n) = rmau({:lcm+1 (n),z, ., (n),...,z, (n)} (2)

(n) = max{a (n), @ (), w ()}
%J’"”"“ \_%Jm*erl \_%Jmfmﬁ \-%Jm

%Jm’m L%Jmfm+l LﬁJm’m+2
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Similarly, the m-step lower approximations denoted by {x% (n) } :;L%Jm have
the following forms:
2? (n) = min{z (n),z, (n),...,z_(n)}
22 (n) =min{z (n),z, (n),...,z_(n)}
2? (n) =min{z, (n),z, (n),...,z_ (n)}
s =min{z_ (n),z _, (n),...,z, (n)}
;10;14r2 (n) = min{gcm+1 (n) T, (n),...,z, (n)}
:zrg’m (n) = min{:z:erl (n) T, (n),...,x, (n)} (3)

x (n) = min{z (n),x (n),...,x (n)}

3
L%Jmierl \_%Jmfwﬂrl L%Jm7m+2 L%Jm
3 n) = min{x n),x

L = minke )

i
3
+
M
_
=
3

x (n) = min{x (n),z (n),...,x (n)}.
L%Jm L%Jmfm+1 L%Jmfm«#Z L%Jm
In this way we obtained the new representation of the data series. The data
series can now be described by the upper and the lower envelopes, or by both
kinds of the envelopes, the envelopes concept being visualized in Fig. 1.

3700
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Figure 1. 4-step upper and lower envelopes for the first 20 values of an exem-
plary data series
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For m-step upper envelopes, i.e.

b = [, 0t o),

for n = 1,2,..., N, m succeeding equal values are treated as a single value.
So, we can replace each m sequential equal values of an envelope with a single
value. In this way the dimension of such aggregated envelopes is reduced m
times. The aggregated upper envelopes yield a new data series representations
formally represented as:

@}t = (o8, o8 ), )] @

where
2% (n) = max{z, (n),z, (n),...,z_(n)},
zg (n) = max{z,, 1 (n),z,, (n),....z, (n)},
G
x (n) = max{z (n),...,x (n)}.
5] [ s Eie
In the case of the aggregated m-step lower envelopes denoted by
k=] &
P b = [P, 2B )P () o)

the procedure is similar. The aggregated /-step envelopes from Fig. 1 are visu-
alized in Fig. 2.
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—— Aggregated upper envelope —a&— Aggregated lower envelope

Figure 2. The aggregated 4-step envelopes (see Fig. 1)

Due to introduction of the aggregated envelopes the dimension of the original
data series can be significantly decreased. For example, for a given data series
of the length K we obtain the reduced length L%J, where m << K.
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3. Generation of the essential attributes

In this section we introduce another way of compressing the information of data
series involved in aggregated upper or lower envelopes.
For example, let the considered data series be represented as follows:

G k=l G G G
b = [a8 00,08 @), 18 )]
n =1,2,...,N. Next we would like to compress the considered aggregated
envelopes by extracting their essential attributes, and in general, due to the

number ¢ of essential attributes, where ¢ << LKJ, we have another reduction

of dimension of the data series "
{v? ()} _1 = [yF (), 95 (), ..., y§ (n)] - (6)

It is assumed that the vector {y¢ (n)}l::q can be used to reconstruct the

=1
K

vector {a¢ (n)}:;LEJ as the following vector

@)t = (69,88, 855 )]

with an assumed accuracy.

—| K
In the case of the aggregated lower envelopes {ka (n)}:;leJ and the aggre-

gated upper and lower envelopes {:vaD (n)}:z}%J the procedure is similar.

The idea of essential attributes corresponds to the principal component anal-
ysis, well known in literature, see, e.g., Jolliffe (2002). In this paper for obtaining
the essential attributes the hetero association memory implemented by feedfor-
ward neural networks was applied. The neural network used consists of three
layers with one hidden layer; see Krawczak, Szkatuta (2008).

The number of inputs as well as the number of outputs of the neural network
is equal to L%J, the number of dimension of the aggregated envelopes (4) or
(5). The number of hidden neurons is equal to ¢, the number of the essential
attributes. In the case of applying the aggregated upper envelopes, the network
is fed by the aggregated envelopes

—|x
and the outputs of the network {Z{/ (n)}:;leJ = [2¥(n), 2§ (n),... ,:fcf

3%

are compared to the reference values of the aggregated envelopes
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The outputs of the hidden layer neurons {y¢ (n)}zj = [y (n),y§(n),...,
y?(n)} constitute the essential attributes. The case with the aggregated lower
envelopes is processed in a similar way.

After the application of the standard backpropagation algorithm (or its mod-
ifications) for learning of the neural network, the essential attributes are just
the outputs of hidden neurons. In this way we obtained another representa-
tion of data series, and the length g of the new representation is additionally
reduced in comparison with the length L%J of the aggregated envelopes data
series representation.

In order to generate rules, the real values of the essential attributes must be
replaced by symbolic values. The replacement is done in such a way that the
ranges of the essential attributes are divided into some number of elements.

In this paper the respective calculation was done with the method called
equal width interval discretization. It involves determining the domain of ob-
served values of an essential attribute a; € A, j = 1,...,q, and dividing this
interval into equally sized intervals. The set Vo, = {v;1,vj2,...,v;,} is the
domain of the attribute a;, and L; denotes the number of values of the j-th at-
tribute. One can construct interval boundaries, i.e. cut points, in the following
way:

pi = min{ Vo, Va,,..., Vo, } +i-0, (7)
max{Va,, Vay, -, Vo, } —min{Vy,, Vay, ..., Vo, }

P 5
where i =1,..., P — 1, and P € N is a parameter prescribed by the user.

a:

4. Extraction of decision rules

Let us suppose that we have a finite set of examples U, called the learning set,

and a finite set of attributes A={a1,...,ax}. Theset Vo, ={vj1,vj2,...,v51,}

is a domain of the attribute a;, j =1,..., K, L; denotes the number of values

of the j-th attribute. V.= |J V,, and f:U x A — V is a function, where
j=1,... K

f(e" a;) €V, for every aj € Aand e" € U, n=1,2,...,N.
Each example e™ € U is described by K attributes A = {a1,...,ax} and is
represented by K elementary conditions in the following manner:

K
" = A laj = f(e" a5)) (8)
where f(e",a;) = vj1(jn), and vj ¢ ny € Vo, . This notation simply means that
the attribute a; takes on the value v; ;) in the example e”. The index t(j,n)
for j € {1,2,...,K} and n € {1,2,..., N} specifies, which value of the j-th
attribute is used in the n-th example.
For instance, for the attributes: height, colour of hair, colour of eyes, we can
describe the aspect of a person number 1 as
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(height = ‘high’) A (color of hair = ‘blond’) A (color of eyes = ‘blue’).

An example e” is composed of K ‘attribute-value’ pairs, denoted s; = (a; =
Vj1(jny)- The conjunction of [ ‘attribute-value’ pairs, I < K, i.e. _/\I s; = C1,
Jje

where I C {1,..., K}, card(I) =, is called a complez.

We say that the complex C! covers an example e” if all the conditions
of attributes given as j-th selectors are covered by (equal to) the values of
the respective attributes in the example, Vj € I. The set of all the examples
described by the conjunction C'! is denoted [C!]. For instance, the complex
(color of hair = ‘blond’) covers the example

(height = ‘high’) A (color of hair = ‘blond’) A (color of eyes = ‘blue’).

Suppose that we have a decision attribute aq, where {as} (A = 0 and
Vay = {vd,1,vd.2;---,v4,1,} is the domain of the attribute aq. We can perform
the partition of the entire set of examples into the disjoint classes with respect
to the values taken by this attribute. The elements of the set A are referred to as
conditional attributes. We assume that the number and character of attributes
are sufficient for the correct split of examples belonging to different classes.

We have the sets {U,,, : [ =1,..., Lq}, where

U'Ud,L = {e cU: f(e,ad) = ’UdJ},VUd)l S Vad, (9)
where
Upy U UUsy, = U, Upy, MUy, =0 fori#j.

The decision attribute splits the set of examples into the non-empty, disjoint
and exhaustive subsets that we call decision classes.

The sets of the learning examples determined in this manner along with their
division into classes, are the starting point in the process of machine learning,
which is supposed to lead to the descriptions of the classes considered. The
process of formation of a class description on the basis of the set of examples
having certain common properties, which distinguish a given class from the
others, is characterized by the adopted language of data representation and the
applied algorithm of machine learning.

These descriptions of the classes can be represented either in the form of
elementary rules being the logical expressions of the form IF certain conditions
are fulfilled THEN membership in a definite class takes place; in the form of
decision trees; or in the form of the appropriately selected connection weights
in neural networks and their structure.

In this paper the belonging of data series to proper class is modelled in
the form of rules, the rules give a prescription of class representations. In our
case, the conditional part of the rules will contain the conjunction of conditions
related to the subset of attributes selected for the description of the examples.
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An implication
Ry : IF C™ THEN (agq = vay), (10)

le{l,...,Lq}, is called the k-th elementary rule for class U,,,, where C't =

/\I [a; = Uj,t(j,k)] is description of example in terms of condition attributes a;,
JEI

Jj € Ix, Iy € {1,...,K} and this example belongs to class U,,,. The index
t(j, k) specifies which value of the j-th attribute is used in the k-th rule.

Each rule is characterized by the coefficient of its strength. The strength
of the rule Ry, which depends upon the number of examples, described by the
conditional part of the rule C’*, belonging to a given class U, 4. is defined in
the following manner:

card({e : e € [C**] and f(e,aq) = va,})
card({e:e € Uy, })

s(Cv) = (11)
It is evident that 0 < S(CI") < 1. The more examples are described by the
rule, the bigger the rule strength coefficient (i.e. the rule is more important).

For instance, for the problem considered in Experiment 1, the elementary
rule

Ry : IF (a5 =9) THEN (Class = 1)

covers 19 examples and card(U,,,) = 25. Then, using (11), we obtain s(C'*)
=19/25 = 0.76.

A set of rules will be called complete, if it is non-empty and finite and if
Ve € U there exists at least one rule describing it. A set of rules which is
complete and contains the minimum number of rules is called the minimal set
of rules.

The rules, mentioned above, can be formed by applying various algorithms
of machine learning from examples. It is possible to establish:

e the minimal set of rules,
e the complete set of all minimal rules,
e or the set of strong rules.

In view of our experience, the problem was calculated with the method de-
veloped by Szkatula (1995, 2002), Kacprzyk and Szkatuta (1999, 2002, 2005a,b,
2010), which creates the minimal set of rules successively for each class. The
rules must guarantee fulfillment of some requirements, namely they should de-
scribe ‘all’ or ‘almost all’ examples which belong to the considered class, and
they should not describe ‘all’ or ‘almost all’ examples which do not belong to
the considered class. Additionally, they should have minimal length in the sense
of a number of conditions, and so forth.

The set of examples is represented in our case as the table in the computer
program, where each example and each attribute is described by a unique value
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taken by the attribute in the example. In the task considered we deal with
nominal non-ordered attributes.

In our case, the conditional part of the rules contained the conjunction of
conditions related to the subset of the essential attributes. The process of gen-
erating the decision rules is based on a set of examples under the assumption
that for each class the examples have some common properties which distinguish
them from another class.

EXAMPLE 1 Assume that we have two classes U,, , and U,,,. Suppose that in
Fig. 3 all the learning examples are shown. Those belonging to class Uy, , are
marked with @& and those belonging to class U,, , are marked with ©.

d,2

® @ ®» @ D C
@ ® O
@® & O 0]
O @ )
® 0 ©

Figure 3. The learning examples

Consider class Uy, ,. First, we can find the set of four elementary rules for
class Uy, ,, correctly describing all the training examples, see Fig. 4.

Figure 4. Four elementary rules for class U, ,

Next, we can determine in the same way the set of the elementary rules for
class Uy, ,, see Fig. 5. The set of elementary rules for two classes is illustrated
in Fig. 6.

The rules formed in this manner can be applied to classification of new
examples, the ones that have not appeared in the learning process.
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Essential Attributes Generation Module

The essential attrjE)utes are generated, ie. {y¢ (n)}zj and/or {yP (n)}zj
and/or {inD (n)}z:lz for g << {%J (Krawczak, Szkatuta, 2010a,b; Krawczak,
2003a,b).

Essential Attributes Nominalization Module

The real values of the essential attributes are replaced by the symbolic values
(Krawczak, Szkatuta, 2010a,b).

Rule Generation Module

After obtaining the symbolic values of the essential attributes we can start gener-
ating the rules, i.e. (Szkatula, 1995, 2002; Szkatula, Kacprzyk, 2005; Krawczak,
Szkatuta, 2010a,b).

The rules were verified by using the learning and testing data series. The
ratio of correct classification decisions to the total number of decisions made
was taken as the measure of classification accuracy, in percentage.

Such classification is carried out through verification of fulfillment of condi-
tions in the conditional parts of the rules, and in case of equivocal situations
(when more than one, or none, of the rules is fulfilled), the degree of matching
of the class is calculated (Szkatula, 1995, 2002).

6. Experimental results

In order to verify the proposed hybrid system concept the database available
at the Irvine University of California was used (Alcock, Manolopoulos, 1999),
http://kdd.ics.uci.edu/databases/synthetic _control/synthetic_ control.data.html.

The database consists of the data series synthetically generated by the equa-
tions. Fach equation represents a different type of pattern. Each pattern was
taken as a time series of 60 data points. The following equations were used to
create the data points z(t), where 1 < ¢ < 60, for the various patterns:

E:z(t) =v+rs+kx
F:z(t)=v+rs—kax
A:z(t) =v +rs,

where, for each pattern, v is the mean value of the process variable under ob-
servation (v = 80), s is the standard deviation of the process variable (s = 5), r
is a random number between -3 and 3, x is the magnitude of the shift (z takes
a value between 7.5 and 20), k indicates the shift position in E and F (k = 0
before the shift and k& = 1 at the shift and thereafter).

Our aim is to generate a set of elementary rules for the three considered
classes:
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e (lass 1: the data belongs to series E,
e (lass 2: the data belongs to series F,
e (lass 8: the data belongs to series A,

that could be used for classification of other data series, not classified before.

We considered the following learning data series: the first 25 belong to
Class 1, the next 25 belong to Class 2 and the rest 25 belong to Class 3. Each
data series has 60 values, as follows {xk(n)}zjo = [z1(n),z2(n), ..., ze0(n)],
n=12...,N.

The considered normalized learning data series are shown in Fig. 7. Table 1
shows three selected examples of the considered normalized data series.

Figure 7. The image shows (after normalization): 25 data series of Class 1,
25 data series of Class 2 and 25 data series of Class 3

Table 1.

x (15) | x,(15) | x,(15) x55(15) x59(15) X (15)
0.37 0.80 0.23 ... 0.29 0.48 0.52
x(21) | 2D | x(2D) x5 (2D | x5(21) | x6(21)
-0.03 0.35 0.55 ... 0.71 0.39 0.,24
x(22) | x,(22) | x,(22) - x55(22) | x5(22) | x4(22)
0.01 -0.04 0.50 -0.36 0.00 0.21

In the paper three following computational experiments are considered:

Experiment 1. The aggregated 4-step upper envelopes were used to create
five essential attributes.

Experiment 2. The aggregated 4-step lower envelopes were used to create
five essential attributes.
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Experiment 3. Both the aggregated 4-step upper and aggregated 4-step
lower envelopes were used to create five essential attributes.

Thus the original data series were represented by five essentials attributes
and can be treated as learning data for generating elementary rules for the three
considered classes. The results are shown below.

Experiment 1

Our first goal was to reduce the dimensionality of the normalized data. For
each considered data series the 4-step upper envelopes of the learning data se-

ries [x1(n),z2(n),...,ze0(n)] belonging to Class 1, Class 2 and Class 3 were
calculated and aggregated, we obtained [z{(n),z$(n),...,2%(n)], for n =

1,2,...,75, see Fig. 8. For the examples from Table 1 the aggregated /-step
upper envelopes look like in Table 2.

Figure 8. The aggregated 4-step upper envelopes of data series belonging to
Class 1, Class 2 and Class 3

Table 2.

x(15) | x7(15) | x5 (15) x5(15)
0.64 091 -0.01 0.53
X2 | x@l | XYl x%(21)
0.55 0.77 -0.52 0.71
x'(22) | x7(22) | x§(22) x%(22)
0.50 0.98 -0.23 ... 0.21

In order to find the essential attributes of the aggregated upper envelopes
a three layer feedforward neural network was applied with different numbers of
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neurons within the hidden layer. All neurons have sigmoidal activation func-
tions.

Several computational experiments were performed in order to find the op-
timal number of hidden neurons, and the results of the experiment are shown
in Fig. 9.

Figure 9. Values of learning error vs. the number of hidden neurons

According to the experiment the number of neurons of the hidden layer was
chosen as 5, meaning that we assumed that five essential attributes conserve the
information about the data series character. For the experiment, as well for the
learning of the neural network, the backpropagation algorithm was used.

In the next step of our procedure we normalized the data describing the
essential attributes, and the outputs of the hidden layer were multiplied by
1000.

The exemplary values of the essential attributes for the examples number
15, 21 and 22 are shown in Table 3.

Table 3.
yl(A5) | y7A5) | 75 | y7A5) | yi(15)
46 354 46 736 866

yi@h | yi@eh | yY@ey | yi@h | ¥
55 495 43 3 843

w22 | vy (22) | »7(22) | ¥{(22) | ¥{(22)
46 535 60 435 740
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Thus, the original data series can be represented by a set of five essentials
attributes {y{(n),y5 (n),...,y$ (n)}, see Fig. 10.

1000 1000 1000
900 900 - 900
800 I' 800 - 800
A
700 1 : 700 - 700 i ﬁ
600 - y 600 A 600 %
é 23
500 - 500 4 500 A
2
A
400 400 - 400 -
300 300 300
200 200 200 Z
X
100 100 > 100
A
ol 1 0 Eé : | 0 A -
a) 012345 Db 01 2 3 45 ¢ 012345
essential attributes essential attributes essential attributes

Figure 10. The values of the five essential attributes describing the learning
data series belong to Class 1 (a), Class 2 (b) and Class 3 (c)

It is worth mentioning that in Fig. 10 there are plots of the five essential
attributes for some chosen perturbation of the numbers {1, 2, 3, 4, 5}, in this
case the attributes form a vector. For each class the shapes of the plots are
meaningfully different, it means that the composition of the essential attributes
in some sense describes (remembers) the class of each data series.

For a different perturbation of the set numbers of the essential attributes we
can observe the same effect.
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Table 4. The nominalization of the essential attributes

Essential attributes value section Nominal value
>=() and <= 100
> 100 and <= 200
> 200 and <= 300
> 300 and <= 400
> 400 and <= 500
> 500 and <= 600
> 600 and <= 700
> 700 and <= 800
> 800 and <= 900 i
> 900 and <= 1000 Jj

Bl SIS K N E ST Ko N SR A

Table 5.

yo(5) | yi5 | y7(A5) | yi(A5) | y(15)
a d a h i

weh | yy@h | yieh | yi@h | yi2D

a e a e 1

Q22 | ¥ (22) | y7(22) | yi(22) | yi(22)
a f a e h

Next, the nominalization of the essential attributes was arranged in the way
shown in Table 4. In results the values of the essential attributes take one of
the nominal symbolic values: a, b, ¢, d, e, f, g, h, 1, j.

The exemplary values of the essential attributes after the nominalization for
the examples number 15, 21 and 22 are shown in Table 5.

Thus, each example is represented by values of the five essential attributes
and can now be treated as learning data for generation of elementary rules in
the following form

IF some conditions are satisfied THEN the data belongs to a proper class.

In our case, the conditional part of the rules will contain the conjunction of
conditions related to the subset of the essential attributes. The classification
accuracy of the rules derived is the percentage of examples correctly classified.

The minimal set of rules, Ry, k =1,...,9, obtained is shown in Table 6; the
strength s of the rule (11) and the number of examples described by the rule is
given for each case.

The rules correctly classified 100% of the learning data series belonging to
Class 1, Class 2 and Class 3.
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Table 6.
The strength The number of described
R, of the rule learning examples
R,:1F (as=i) THEN (Class=1) 0.76 19
R, : IF (as=h) THEN (Class =1) 0.20 5
R,:1F (as=g) THEN (Class =1) 0.04 1
R, :TF (as=a) THEN (Class =2) 0.92 23
R, :TF (as=b) THEN (Class =2) 0.08 2
R,:1F (a;=b) THEN (Class =3) 0.52 13
R, :IF (as=¢) THEN (Class=3) 0.48 12
R, :IF (a3=c) THEN (Class =3) 0.28 7
Ry :1F (as=d) THEN (Class =3) 0.20 5
Table 7.
5 (15) 5 (15)
a i
¥y (2D 5 (21
a i

When examining Table 6 we can notice that only two out of five essential
attributes participate in creating the generated rules, and these two attributes,
as and as, are sufficient to properly classify the data series. It is worth noticing
that in the space of these two attributes there are several examples overlapping,
e.g. example 15 and 21 are not distinguishable, as shown in Table 7.

All of the considered examples, used in the learning process, which belong
to Classes 1, 2 or 3, and described solely by the two attributes az and a5 in the
generated rules are depicted in Fig. 11.

Next, the rules were verified by using 75 new testing data series which did
not participate in the generation of rules (25 for each of three classes). The
rules correctly classified 97.3% testing data series (i.e. 73 data series).

Experiment 2

For each considered data series the 4-step lower envelopes of the learning data
series [z1(n),x2(n),...,xe0(n)] belonging to Class 1, Class 2 and Class 3 were
calculated and aggregated, and we obtained [z (n), zP(n),..., 22 (n)], for n =
1,2,...,75, see Fig. 12.

In order to compress the envelopes, a three layer feedforward neural network
was applied. The network has 15 inputs, 15 outputs and 5 neurons within the
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Experiment 3

Both the 4-step upper envelopes and 4-step lower envelopes of the learning data

series [21(n), z2(n), ..., zeo(n)] belonging to Class 1, Class 2 and Class 3 were ag-
gregated and we obtained [z{(n),z¥ (n),...,z%(n), 2P (n), 28 (n),..., 2% ()],

forn=1,2,...,75, see Fig. 14.

Figure 14. The aggregated 4-step upper and 4-step lower envelopes of data
series

In order to compress the envelopes, a three layer feedforward neural network
was applied. The network has 30 inputs, 30 outputs and 5 neurons within the
hidden layer. Thus, the original data series can be represented by a set of five
essential attributes {y{P(n), y5P (n),...,y$P(n)}, see Fig. 15.

Next, the nominalization of the essential attributes was arranged in the way
shown in Table 4.

The obtained minimal set of rules Ry, k = 1,...,17, the strength s of the
rule (11) and the number of described examples are shown in Table 9. The rules
correctly classified 100% of the learning data series.

Next, the rules were verified by using 75 new testing data series which did
not participate in the generation of rules (25 of each of three classes). The rules
correctly classified 93.3 % of testing data series (i.e. 70 data series).
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Table 9.
R, The strength | The number of described
of the rule learning examples
R, : IF (as=b) THEN (Class = 1) 0.72 18
R, : IF (as=c) THEN (Class = 1) 0.16 4
R, : IF (as=a) THEN (Class = 1) 0.12 3
R, : IF (ay = b) THEN (Class = 2) 0.44 11
R, : TF (ay = c) THEN (Class = 2) 0.20 5
R IF (a4 = a) THEN (Class = 2) 0.16 4
R, : TF (as = d) THEN (Class = 2) 0.16 4
Rq 1 IF (a3 = i)A( as = €) THEN (Class = 2) 0.04 1
R, : IF (as=g) THEN (Class = 3) 0.36 9
R, : IF (as = g) THEN (Class = 3) 0.32 8
R, : IF (as=h) THEN (Class = 3) 0.28 7
R,, : IF (as = i)A( as= i) THEN (Class = 3) 0.08 2
R, : IF (a; = a) THEN (Class = 3) 0.08 2
Ry, . IF (a, = b)A(as=1i) THEN (Class = 3) 0.04 1
R,; : IF (as=f) THEN (Class = 3) 0.04 1
R\ : TF (a3 = h)A( as= i) THEN (Class = 3) 0.04 1
R, : TF (a; = d)A( a, = h) THEN (Class = 3) 0.04 1

7. Conclusions

In this paper we introduced a new hybrid concept of data series representation
for solving the classification problems. The concept is first based on the so
called ‘upper and lower envelopes’ and ‘aggregation of the envelopes’, and then
on essential attributes of the envelopes. Both representations allow for the
reduction of dimensionality of the original data series.

Next we generated a set of rules to classify the exemplary data series. The
original data must be prepared in an accessible way for obtaining the envelopes
as well as the normalization and the nominalization for obtaining the rules.

A numerical example shows that even after a reduction of dimensionality (as
well as reduction of information), the new representations preserves information
about the data series characteristics.

The tests show that the accuracy of the hybrid methodology is similar for the
upper and lower data series envelopes, and it is sufficient. In the case of using
both upper and lower envelopes the accuracy obtained is rather not satisfying,
the reason being that the number of essential attributes was assumed too small.
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