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Abstract: One of the crucial problems in the field of know-
ledge discovery is development of good interestingness measures for
evaluation of the discovered patterns. In this paper, we consider
quantitative, objective interestingness measures for "if..., then..."
association rules. We focus on three popular interestingness mea-
sures, namely rule interest function of Piatetsky-Shapiro, gain mea-
sure of Fukuda et al., and dependency factor used by Pawlak. We
verify whether they satisfy the valuable property M of monotonic de-
pendency on the number of objects satisfying or not the premise or
the conclusion of a rule, and property of hypothesis symmetry (HS).
Moreover, analytically and through experiments we show an inter-
esting relationship between those measures and two other commonly
used measures of rule support and anti-support.

Keywords: association rules, Piatetsky-Shapiro’s rule interest
function, gain measure, dependency factor, support, anti-support,
Pareto-optimal border.

1. Introduction

In data mining and knowledge discovery, the discovered knowledge patterns are
often expressed in the form of “if..., then...” rules. They are consequence
relations representing correlation, association, causation etc. between indepen-
dent and dependent attributes. If the division into independent and dependent
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attributes has been fixed, the rules mined from data are regarded as decision
rules, otherwise as association rules.

It has been recognized early on in the knowledge discovery literature that
the number of rules discovered in databases can be quite large and can easily
overwhelm the human capabilities to understand them and to find useful re-
sults. This is due to the fact that many rules are either irrelevant or obvious,
and do not provide new knowledge (Morzy and Zakrzewicz, 2003). To address
the problem of evaluation of attractiveness of the mined rules, various quanti-
tative measures of interestingness have been defined and studied (e.g. support,
confidence, anti-support, gain, rule interest function, lift) (Bramer, 2007). They
allow for reducing the number of rules that need to be considered by ranking
them and filtering out the useless ones. Each of the interestingness measures
has been introduced to reflect different characteristics of rules.

Generally, interestingness measures can be divided into objective and subjec-
tive. The first group can be established through statistical arguments, derived
from data to determine whether a rule is interesting or not. For example, rules
that cover only very few transactions, and can therefore capture spurious rela-
tionships in data, are discarded by objective measures. On the other hand, the
group of subjective measures regards a rule as uninteresting unless it reveals
unexpected information about the data or provides knowledge that can lead
to profitable actions (Tan, Steinbach and Kumar, 2006). Thus, for subjective
evaluation criteria rare cases in the data are often interesting and rules that
cover them are of high value. All in all, objective measure can be seen as those
that depend on the structure of the rules and the underlying data used in the
discovery process, whereas the subjective measures depend on the class of users
who examine the rule (Silberschatz and Tuzhilin, 1996).

Let us also stress that there is no general interestingness evaluation approach
that will work for any real-life problem. The choice of an interestingness measure
for a certain application is a non-trivial task that should be closely related to the
domain of a particular problem and should take advantage of available domain
knowledge.

Since the literature is now a rich resource of interestingness measures, natu-
rally, there arises a need of studying and analyzing relationships between various
measures. Such studies could show similarities and differences in the behavior
of the measures (e.g. whether the measures rank the rules in the same way) and
are a useful tool helping to choose a proper measure for the particular use.

While choosing interestingness measure(s) for a certain application, the users
also often take into consideration properties (features) of measures, which reflect
the user’s expectations toward the behavior of the measures in particular situ-
ations. For example, one may demand that the measure used increase its value
for a given rule (or at least does not decrease) when the number of objects in the
dataset that support this rule increases. Thus, verification whether particular
interestingness measures satisfy some valuable features is another valid problem
from both theoretical and practical points of view. Such analysis would widen
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our understanding of measures and of their applicability, and could also unveil
some relationships between different measures.

In this paper, we focus on three well-known objective measures: rule interest
function proposed by Piatetsky-Shapiro (1991), gain measure of Fukuda et al.
(1996) and dependency factor, considered by Pawlak (2004) and Popper (1959).
We investigate whether they possess a useful feature called property M intro-
duced by Greco, Pawlak and Stowiriski (2004), and hypothesis symmetry (HS)
advocated by Eells and Fitelson (2002) and Fitelson (2001). Moreover, on the
basis of satisfying the property M, we draw some conclusions about very par-
ticular relationship between rule interest function and gain measure, and two
other simple but meaningful measures of rule support and anti-support.

In order to achieve the above objectives, the rest of the paper is organized
as follows. In Section 2, there are preliminaries on rules and their quantitative
description. In Section 3, we verify analytically whether rule interest function,
gain measure and dependency factor have the analyzed property M. In Sec-
tion 4, we investigate the relationship between the first two measures and the
Pareto-optimal border with respect to support and anti-support. Illustration of
the results on a real life dataset is presented to support the theoretical consider-
ations with experimental results. Next, in Section 5, we analyze if rule interest
function, gain measure and dependency factor satisfy the hypothesis symmetry.
The paper ends with conclusions.

2. Preliminaries

The discovery of knowledge from data is done by induction. It is a process
of creating patterns which are true in the world of the analyzed data. In this
paper we consider discovering knowledge represented in the form of the rules.
The starting point for such rule induction (mining) is a sample of a larger reality
often represented in the form of a data table.

Formally, a data table is a pair § = (U, A), where U is a nonempty finite
set of objects, called universe, and A is a nonempty finite set of attributes. For
every attribute a € A, let us denote by V, the domain of a, and a(z) will stand
for the value of attribute a for an object x € U. A rule induced from a data
table S is denoted by ¢ — ¢ (read as "if ¢, then "), where ¢ and v are
built up from elementary conditions using logical operator A (and). The ele-
mentary conditions of a rule are defined as (a(z) rel v) where rel is a relational
operator from the set {=, <, <, >, >} and v is a constant belonging to V.
The antecedent ¢ of a rule is also referred to as premise or condition, whereas
the consequent v of a rule is often called conclusion, decision or hypothesis.
Generally, a rule can be seen as a consequence relation (see critical discussion
in Greco, Pawlak and Stowinski, 2004, about interpretation of rules as logical
implications) between premise and conclusion. The attributes that appear in
elementary conditions of the premise (respectively, conclusion) are called con-
dition attributes (respectively, decision attributes). Obviously, within one rule,
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the sets of condition and decision attributes must be disjoint. The rules induced
from data may be either decision or association rules, depending on whether
the division of A into condition and decision categories of attributes has been
fixed or not.

2.1. Support and anti-support measures of rules

One of the most popular measures used to identify frequently occurring asso-
ciation rules in sets of items from information table S is support (Agrawal,
Imielinski and Swami, 1993). The support of condition ¢ (analogously, 1), de-
noted as sup(¢) (analogously, sup(v))), is equal to the number of objects in U
having property ¢ (analogously, property ). The support of rule ¢ — 1 (also
simply referred to as support), denoted as sup(¢ — 1)), is the number of objects
in U having property ¢ and . Thus, it corresponds to statistical significance
(Hilderman and Hamilton, 2001). The domain of the measure of support can
cover any natural number. The greater the value of support for a given rule,
the more desirable the rule is, thus, support is a gain-type criterion.

Anti-support of a rule ¢ — ¢ (also simply referred to as anti-support), de-
noted as anti—sup(¢ — 1), is equal to the number of objects in U having the
property ¢ but not having the property . Thus, anti-support is the number
of counterexamples, i.e. objects for which the premise ¢ evaluates as true but
which fall into a class different than . Note that anti-support can also be
regarded as sup(¢ — —). Similarly to support, the anti-support measure can
obtain any natural value. However, its optimal value is 0, because it reflects the
situation in which a rule has no counterexamples at all. Any value greater than
zero means that the considered rule is not certain, i.e. there are some coun-
terexamples for that rule. The less counterexamples we observe in the dataset,
the better, and therefore anti-support is considered a cost-type criterion.

Some authors define support and anti-support as relative values with respect
to the number of all objects in the dataset U (Tan, Steinbach, and Kumar, 2006).
Then, the rule support (respectively, anti-support) can be interpreted as the
percentage of objects satisfying both the premise and conclusion (respectively,
counterexamples) of the rule, in the dataset. In this paper we will consider the
former definition of support and anti-support, however, using the latter would
not influence the generality of the conducted analysis and the obtained results.

2.2. Piatetsky-Shapiro’s rule interest function, gain and dependency
factor

The rule interest function, RI, introduced by Piatetsky-Shapiro (1991) is used
to quantify the correlation between the premise and conclusion. It is given by
the following formula:

sup()sup(9)

(1)
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For rule ¢ — v, when RI = 0, then ¢ and v are statistically independent and
thus, such rule should be considered as uninteresting. When RI > 0 (RI < 0),
then there is a positive (negative) correlation between ¢ and ¢ (Hilderman and
Hamiltonet, 2001). Obviously, it is a gain-type criterion, as greater values of
RI reflect stronger trend toward desirable positive correlation.

The gain function of Fukuda et al. (1996) is defined in the following manner:

gain(¢ — ) = sup(d — ) — Osup(¢) (2)

where O is a fraction constant between 0 and 1. Note that, for a fixed value of
© = sup(y)/|U|, the gain measure becomes identical to the above rule interest
function RI. Moreover, if © is zero then gain boils down to calculation of the
support of the rule, and when © is equal to 1, gain will take negative values
unless all objects satisfying ¢ also satisfy ¢ (in that case gain will be 0). Thus,
gain can take any integer value depending on what value © is set at. For a fixed
O, greater values of gain are more desirable, thus it is a gain-type criterion.

The dependency factor used by Pawlak (2004) and also considered earlier
by Popper (1959), is defined in the following manner:

sup(¢ — ) _ sup(y)

_Tew@ 0
0= = Suplo— 0, sup(w) ¥
@) 0

The dependency factor expresses the degree of dependency, and can be seen
as a counterpart of correlation coefficient used in statistics. When ¢ and 1 are
independent of each other, then n(¢ — ¢) = 0. If —1 < n(¢ — @) < 0, then
¢ and 1) are negatively dependent, and if 0 < n(¢ — ¢) < 1, then ¢ and ¥
are positively dependent on each other. The dependency factor is a gain-type
criterion.

2.3. Property of monotonicity M

Greco, Pawlak and Stowiriski (2004) considered a group of interestingness mea-
sures, called Bayesian confirmation measures, from the viewpoint of their use-
fulness for measuring interestingness of decision rules. In general, Bayesian
confirmation measures say in what degree a piece of evidence in premise con-
firms a hypothesis in the conclusion of a rule. Greco, Pawlak and Stowiriski
(2004) claim that confirmation measures should enjoy a valuable property M
describing monotonic dependency on the number of objects satisfying or not
the premise or the conclusion of the rule. Though the property was introduced
in the perspective of confirmation measures, its definition is wide enough to
cover any interestingness measures and we are strongly convinced that it is a
desirable property for any measure.
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The property M was formally defined in Greco, Pawlak and Stowiriski (2004)
as follows:
An interestingness measure

F = [sup(¢ — ), sup(=¢ — 1), sup(¢ — =), sup(—=¢ — —¢)] (4)

being a gain-type criterion, has the property M if and only if it is a function
e non-decreasing with respect to sup(¢ — ),
e non-increasing with respect to sup(—¢ — 1),
e non-increasing with respect to sup(¢ — —)), and
e non-decreasing with respect to sup(—¢ — —b).

The property M with respect to sup(¢ — ) (or, analogously, with respect
to sup(—¢ — —))) means that any evidence in which ¢ and ¢ (or, analogously,
neither ¢ nor v) hold together increases (or at least does not decrease) the
credibility of the rule ¢ — 1. On the other hand, the property M with respect
to sup(—¢ — 1) (or, analogously, with respect to sup(¢p — —))) means that
any evidence in which ¢ does not hold and v holds (or, analogously, ¢ holds
and 1 does not hold) decreases (or at least does not increase) the credibility of
the rule ¢ — .

Let us use the following example, considered by Hempel (1945), to show the
interpretation of the property. Consider a rule ¢ — :

if © is a raven then x is black.

In this case ¢ stands for being a raven and v stands for being black. If an
interestingness measure F(¢ — 1) (being a gain-type criterion) possesses the
property M then:

e the more black ravens there are in the dataset, the more credible is the
rule, and thus F'(¢ — 1) obtains greater (or at least not smaller) values,

e F(¢ — 1) also obtains greater (or at least not smaller) values when the
number of non-black non-ravens increases,

e the more black non-ravens appear in the dataset, the less credible becomes
the rule and thus, F(¢ — 1) obtains smaller (or at least not greater)
values,

o (¢ — 1) also obtains smaller (or at least not greater) values when the
number of non-black ravens in the dataset increases.

Property M makes use of elementary parameters of the considered dataset
(numbers of objects satisfying some properties) and therefore is an easy and
intuitive criterion helping to choose an appropriate interestingness measure for
a certain application.

2.4. Property of Hypothesis Symmetry (HS)

Eells and Fitelson (2002) have analyzed some confirmation measures from the
viewpoint of four properties of symmetry, introduced by Carnap (1962). Again,
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we believe that these properties should be considered for any interestingness
measure, and not be limited to the group of Bayesian confirmation measures.

Considering an interestingness measure c¢(¢ — 1), the considered symmetries
were defined as follows:

e evidence symmetry (ES): c(¢p — ) = —c(—¢ — )

e commutativity symmetry (CS): ¢(¢p — ¢) = c(¢p — @)

e hypothesis symmetry (HS): ¢(¢ — ¢) = —c(¢p — )

e total symmetry (TS): c(¢p — ) = c(—¢ — —).

It has been concluded in Eells and Fitelson (2002) that, in fact, only (HS) is
a desirable property, while (ES), (CS) and (TS) are not. The meaning behind
the hypothesis symmetry is that the significance of the premise with respect to
the conclusion of a rule should be of the same strength, but of the opposite sign,
as the significance of the premise with respect to a negated conclusion.

The arguments for (HS) can be presented by an exemplary situation of ran-
domly drawing a card from a standard deck (Earman, 1992; Greco, Pawlak and
Stowiniski, 2004). Let the premise ¢ of a rule stand for that the drawn card is
the seven of spades, and let ¢ be the hypothesis that the card is black. It is
clear that the premise confirms the hypothesis in 100%. Moreover, obviously,
the evidence that the card is the seven of spades (¢) is negatively conclusive
(completely disconfirms) for the hypothesis that the card is not black (—).

2.5. Support—anti-support Pareto-optimal border

Let us denote by <4, a partial preorder given by the dominance relation on
a set X of rules in terms of two interestingness measures: support and anti-
support, i.e. given a set of rules X and two rules r1,79 € X,r; <44 72 if and
only if

sup(ry) < sup(re) A anti — sup(r1) > anti — sup(rs). (5)

Recall that a partial preorder on a set X is any binary relation R on X
that is reflexive (i.e. for all z € X, zRx) and transitive. In simple words, if
the semantics of xRy is "x is at most as good as y", then a complete preorder
permits to order the elements of X from the best to the worst, with possible
ex-aequo (i.e. cases of x,y € X such that xRy and yRz) and with possible
incomparability (i.e. cases of z,y € X such that not xRy and not yRzx).

The partial preorder <,-, can be decomposed into its asymmetric part <5,
and its symmetric part ~4—, in the following manner: given a set of rules X
and two rules r1,ry € X, 71 <4-q 72 if and only if

sup(ry) < sup(ra) A anti — sup(ry) > anti — sup(ra), or
sup(ry) < sup(rz) A anti — sup(r1) > anti — sup(ra)

(6)

MOTEOVET, 71 ~4-q T2 if and only if

sup(ry) = sup(re) A anti — sup(r1) = anti — sup(rs). (7)
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If for a rule r € X there does not exist any rule ' € X, such that r <, 7’/
then r is said to be non—-dominated (i.e. Pareto—optimal) with respect to support
and anti-support. A set of all non-dominated rules forms a Pareto—optimal
border of the set of rules in the evaluation space. A set of all non-dominated
rules with respect to support and anti-support will be called a support-anti-
support Pareto-optimal border. In other words, it is the set of rules such that
there is no other rule having greater support and smaller anti-support.

The approach to evaluation of the set of rules in terms of two interestingness
measures being rule support and anti-support was proposed and presented in
detail in Brzeziniska, Greco and Stowiriski (2007), and later also considered in
Stowinski et al. (2007). The idea of combining those two dimensions came
as a result of looking for a set of rules that would include all rules optimal
with respect to any measure with the desirable property M. It was proved by
Brzeziniska, Greco and Stowinski (2007) that the best rules according to any
measure with M must reside in the set of rules non-dominated with respect to
support and anti-support:

THEOREM 1 When considering rules with the same conclusion, rules that are
optimal with respect to any interestingness measure that has the property M must
reside on the support—anti-support Pareto-optimal border.

Thus, we can consider satisfying of the property of monotonicity M by a
measure as a sufficient condition for stating that rules optimal with respect to
this measure will be found on the support—anti-support Pareto-optimal border.
It is a valuable result as it unveils relationships between different interestingness
measures. Among the practical applications of the above result, one can men-
tion potential efficiency gains as rules optimal with respect to measures with
the property M can be found in the support—anti-support Pareto-optimal set
instead of searching through the set of all rules. Moreover, rule evaluation can
be narrowed down to mining only the support—anti-support Pareto-optimal set
instead of conducting rule evaluation separately with respect to many measures
with property M, as we are sure that rules optimal according to any of them,
are in that Pareto set.

Fig. 1 presents a general outlook of the support—anti-support evaluation
space. Since anti-support is a cost-type criterion (the smaller its value the
better), the shape of the support—anti-support Pareto-optimal border resembles
a curve concave up.

Another valuable and practical feature of the support—anti-support Pareto-
optimal border is that it contains the set of non-dominated rules with respect
to another evaluation space based on support and confidence. The confidence
of a rule (Agrawal, Imielinski and Swami, 1993), denoted as conf(¢ — 1) is a
popular interestingness measure defined as:

sup(¢ — ¢)

conf( =) = *E s

: (8)
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Figure 1. Support—anti-support Pareto-optimal border

The support—confidence evaluation space was proposed by Bayardo and
Agrawal (1999), who proved that for rules with the same conclusion, rules
that are optimal with respect to many interestingness measures such as Laplace
(Clark and Boswell, 1991; Webb, 1995), lift (IBM, 1996) (also known as interest,
Brin et al., 1997, or strength, Dhar and Tuzhilin, 1993), conviction (Brin et al.,
1997), and other will reside on the support—confidence Pareto-optimal border.
This evaluation space was also considered in Stowiiiski Brzeziniska and Greco
(2006). Thorough analysis conducted in Brzezinska, Greco and Stowinski (2007)
showed that the support—confidence Pareto-optimal border has the advantage
of presenting a smaller number of rules (more precisely a not greater number
of rules) than the support—anti-support Pareto-optimal border. However, its
disadvantage is that it does not present the rules optimizing any attractiveness
measure satisfying the property M. In fact, all the rules which are present on the
support—anti-support Pareto-optimal border and not present on the support—
confidence Pareto-optimal border maximize an attractiveness measure which is
not monotone with respect to support.

3. Analysis of property M

For the simplicity of presentation, the following notation shall be used through-
out the next sections: a = sup(¢ — ¥), b = sup(—¢p — V), ¢ = sup(¢p — ),
d = sup(—¢p — ), a+c = sup(p), a+b = sup(v), b+ d = sup(—¢),
c+d=sup(—), a+b+c+d=|U|. We also assume that set U is not empty,
so that at least one of a, b, ¢ or d is strictly positive. Moreover, we also assume
that any value in the denominator of any ratio is different from zero.
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In order to prove that a measure has the property M we need to show that
it is non-decreasing with respect to a and d, and non-increasing with respect to
b and c.

THEOREM 2 Measure RI has the property M.

Proof. Let us observe that measure RI can be rewritten as:

(a+b)(a+c)
I —q— TR
BRI =) =e— 2y ©)
After some simple algebraic transformation, we obtain
ad — bc
RIe=¥) = et (10)

Taking into account equation (10), to prove the monotonicity of RI with respect

to a we have to show that ifa increases by A >0, then RI does not decrease, i.e.

(a+A)d—bc  ad—bc > 0. (1)
a+b+c+d+A a+btct+d

After few simple algebraic passages, and remembering that a, b, ¢, d and A are
non-negative, we get

(a+A)d—be _ _ ad—be _
a+b+c+d+A a+b+c+d ™ 19
B b(b+ ¢+ d)A + beA (12)

“Gibrcrdatbrerdra) 020
so that we can conclude that RI is non-decreasing (more precisely, strictly
increasing) with respect to a. Analogous proof holds for the monotonicity of RI
with respect to d.

Now, to prove the monotonicity of RI (10) with respect to b we have to show
that an increase of b by A > 0, will not result in an increase of RI, i.e.

ad — (b+ A)c ad — be

— <0. (13)
a+b+ct+d+A a+btct+d
Through simple algebraic transformations we get that:
ad— (b+A)c  ad—be  _
a+b+c+d+A a+b+c+d ™ (14)
cla+c+ d)A + adA

_ <0.
@tbrcrd@tbrcrdra) <00

Since a, b, ¢, d and A are non-negative, we can conclude that RI is non-
increasing (more precisely, strictly decreasing) with respect to b. Analogous
proof holds for the monotonicity of RI with respect to c. [

THEOREM 3 The gain measure has the property M.
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Proof. Let us consider the gain measure expressed as follows:
gain(¢ — ¥) = a — O(a+c) (15)

where © is a fractional constant between 0 and 1. As gain(¢ — 1) does not
depend on b nor d, it is clear that the change of b or d does not result in any
change of gain(¢ — ). Thus, we only need to verify if :

e (i) the increase of a results in non-decrease of gain(¢p — 1),

e (ii) the increase of ¢ results in non-increase of gain(¢ — ).

Condition (i). Let us assume that A > 0 is the value by which @ increases.
Condition (i) will be satisfied if and only if

gain(¢ — ) =a—O(a+c) < gain'(¢p — ) = (a+A)—O(a+ A+c) (16)
Let us observe that
a—0(a+c)<(a+A)—O(a+A+c)&
Sa—a0—-cO®<a+A-a0—-cO-0A& (17)
SA-—0A>0& A(1-0)>0.

The last inequality is always satisfied as A > 0 and (1 — ©) > 0, because © is
a fractional constant between 0 and 1. Thus, condition (i) is satisfied.

Condition (ii). Let us assume that A > 0 is the value, by which ¢ increases.
Condition (ii) will be satisfied if and only if

gain(¢p — ) =a—0O(a+c) > gain'(¢p - ) =a—O(a+A+c). (18)
Let us observe that
a—0O(a+c)>a—06(a+A+c)e

Sa—a®—cO®>a—ab —cO —60A & (19)
S 0> -0A < A6 > 0.

The last inequality is always satisfied as A > 0 and © > 0. Thus, condition
(ii) is satisfied. Since all four conditions are satisfied, the hypothesis that gain
measure has the property M is true. [

Having determined that both of the analyzed measures do satisfy the desired
property M, we can draw conclusion that rules optimal according to them will
be found on the support—anti-support Pareto-optimal border.

Now, let us prove by counterexample that the dependency factor n(¢ — )
does not have the property M.

THEOREM 4 Dependency factor n(¢ — 1)) does not have the property M.

Proof. Let us consider the dependency factor rewritten as follows:

S E Y
a-—r+c¢
n(¢ —y) = At etl, (20)

atctatbterd
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It will be shown by the following counterexample that n(¢ — ) does not
satisfy the condition that the increase of a results in non-decrease of n(¢ — ),
thus this measure does not have the property M. Let us consider case «, in
which a=7, b=2, ¢=3, d=3, and case o', in which a increases to 8 and b, ¢, d
remain unchanged. The dependency factor does not have the property M as
such increase of a results in the decrease of the measure:

n(¢ — ) = 0.0769 > 0.0756 = ' (¢ — 1)). (21)

4. Experimental illustration of the result

It was proved by Brzeziiska, Greco and Stowiriski (2007) that rules optimal
with respect to any interestingness measure that has the property M will reside
on the support—anti-support Pareto-optimal border. Since the above analysis
shows that both RI and gain satisfy the property M, we can conclude that rules
optimal with respect to them will be found in the set of rules non-dominated
according to support and anti-support. Several computational experiments an-
alyzing rules optimal with respect to RI and gain in the perspective of rule
support and anti-support have been conducted in order to illustrate the the-
oretical results concerning their possession of the property M and thus their
occurrence on the support—anti-support Pareto-optimal border.

Fig. 2 shows an exemplary diagram from those experiments. For a real
life dataset containing information about technical state of buses, a set of all
possible rules was generated. A set of 85 rules with the same conclusion was
then isolated, and dominated and non-dominated rules with respect to support
and anti-support were found. The support—anti-support Pareto-optimal border
is indicated in Fig. 2 by circles connected by a line. Four points marked as
r1, T2, T3, T4 form the Pareto-optimal border. Each of those points represents
rules characterized by particular values of support and anti-support (i.e.,
represents rules with sup(¢ — ) = 50 and anti — sup(¢p — ) = 4, ro rules
with sup(¢p — ) = 49 and anti — sup(¢ — ) = 2, r3 rules with sup(¢p —
1) = 48 and anti — sup(¢ — 1) = 1, and r4 rules with sup(¢ — ) = 45 and
anti — sup(¢ — 1) = 0). In the generated set of 85 rules, we have distinguished
rules optimal according to RI (marked by r3), and gain for different values of
O. For © = 0.33 the rules with maximal gain are marked as r1; when ©® = 0.5
these are the rules marked as ro or r3; finally when © = 0.66 these are the rules
marked as r3. The diagram shows that, indeed, rules optimal with respect to
those measures lie on the support—anti-support Pareto-optimal border. It means
that rules optimal with respect to RI or gain can be found more efficiently
by looking for them in the support—anti-support Pareto-optimal set instead of
searching the set of all rules. Moreover, if the user is not interested in knowing
which particular rules are optimal according to RI or gain, we can narrow
down the data mining process to searching only for the support—anti-support
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Figure 2. Pareto-optimal border with respect to rule support and anti-support
includes rules optimal in RI and gain

Pareto-optimal set because we are sure that it contains RI and gain-optimal
rules (though we do not know which ones they are).

During this experiment we have also calculated the optimal value of the
dependency factor. This measure does not have the property M, so we could
not conclude right away that rules optimal according to it will be on the support—
anti-support Pareto-optimal border. However, since possession of the property
M is only a sufficient condition for lying on that border, we cannot exclude a
situation in which rules optimal with respect to the dependency factor will be
found on the support—anti-support Pareto-optimal border. For this dataset we
have such a case. Rules marked as r4 are optimal according to dependency
factor and they also belong to the set of non-dominated rules with respect to
support and anti-support. Thus, r4 can also be regarded as a counterexample
proving that possession of property M is not a necessary condition for lying on
the support—anti-support Pareto-optimal border.

5. Analysis of hypothesis symmetry (HS)

The verification of the property of hypothesis symmetry was done for all three
considered measures separately, by checking if their values for rules ¢ — 1 and
¢ — —p are the same but of opposite sign.

THEOREM 5 Measure RI has the property of hypothesis symmetry.
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Proof. Let us consider RI expressed as follows:

(a+c)(a+D)
RI =aq— ————=. 22
(6—w)=a- TEIOLD (22
For a negated conclusion RI is defined as:
(a+c)(c+d)
I ) =c¢c— —>———", 2
RIG =) == o d (23)
The hypothesis symmetry will be satisfied by RI if and only if:
(a+c)(a+b) (a+c)(c+d)
SRSl S LI /N P S LA L et 24
a+b+c+d le a+b+c+d] (24)
Through simple mathematical transformation we obtain that:
~(@at+o)(atb)  ad—be (25)
at+bt+ct+d a+btc+d
and
d d—1>
_eqlotdlerd)  ad—be (26)

at+b+c+d a+b+c+d
and thus, we can conclude that RI has the property of hypothesis symmetry. m

THEOREM 6 The gain measure has the property of hypothesis symmetry if and
only if © = 1/2.

Proof. Let us consider gain expressed as follows:

gain(¢p — ) =a — O(a +c). (27)
For a negated conclusion gain is defined as:

gain(¢p — —p) = c— O(a + c). (28)
The hypothesis symmetry will be satisfied by gain if and only if:

a—0(a+c)=—[c—0O(a+0)]. (29)

Through simple mathematical transformation we obtain that the above equality
is satisfied only when

a+c=20(a+c) (30)

that is, when © = 1/2. L]

THEOREM 7 The dependency factor n does not have the property of hypothesis
symmetry.
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Proof. Let us consider dependency factor expressed as follows:

_a a+b
3 btctd
o — ) = EE T @1
ate T afbrerd

For a negated conclusion it is defined as:

c c+d
+ +b+c+d
n(g — —p) = e _eFbEeRd (32)
a+tc + a+b+c+d

To prove that the dependency factor does not satisfy the hypothesis symmetry
let us use the following counterexample. Let us consider a situation in which
a=0b=c=10 and d = 20. We can easily verify that

(¢ — ) = 0.11 # 0.09 = n(¢ — ). (33)

6. Conclusions

As an active research area in data mining, rule evaluation has been consid-
ered by many authors from different perspectives. This paper concentrated on
measuring the relevance and utility of induced rules according to three popu-
lar interestingness measures: rule interest function of Piatetsky-Shapiro, gain
measure of Fukuda et al., and dependency factor of Pawlak.

A theoretical analysis has been conducted verifying which of those measures
satisfy valuable properties M and hypothesis symmetry (HS). It has been proved
that the rule interest function and gain measure are characterized by both of
those properties, while the dependency factor does not satisfy any of them.
Such analysis of properties of interestingness measures was carried out in order
to widen our knowledge and understanding of those measures, and of their
applicability.

Since measures RI and gain satisfy property M, they can be regarded as
functions non-decreasing with respect to sup(¢ — ) and sup(—¢ — —p), and
non-increasing with respect to sup(—¢ — ¢) and sup(¢ — —)). Moreover, the
possession of the property M unveils an interesting relationship between rule
interest function and gain on one hand, and two other interestingness mea-
sures: rule support and anti-support, on the other hand. It has been shown
that rules maximizing rule interest function or gain will surely be found on
the rule support—anti-support Pareto-optimal border (when considering rules
with the same conclusion). Thus, one can concentrate on mining the set of
non-dominated rules with respect to support and anti-support and be sure to
obtain in that set all rules that are optimal with respect to any measure with the
property M, which includes rule interest function and gain measure. These re-
sults have also been illustrated on an exemplary dataset, containing information
about technical state of buses.
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The results obtained are useful for practical applications because they show
which interestingness measures are relevant for meaningful rule evaluation. By
using the measures which enjoy the desirable properties one can avoid analyzing
unimportant rules.
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