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Abstract: MCMC setups are among the best known methods
for conducting computer simulations necessary in statistics, physics,
biology, etc. However, to obtain appropriate solutions, additional
convergence diagnosis must be applied for trajectory generated by
Markov Chain. In the paper we present the method for dealing
with this problem, based on features of so called ”secondary” chain
(the chain with specially selected state space). The secondary chain
is created from the initial chain by picking only some observations
connected with atoms or renewal sets. The discussed method has
some appealing properties, like high degree of diagnosis automation.
Apart from theoretical lemmas, the example of application is also
provided.
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1. Introduction

The end of the previous century brought a colossal improvement in speed of
calculations. Because of computer development, researchers could build more
complex, more ”real-life” models. The same applies to mathematics, statistics,
physics and biology, where computer simulations are widely used.

One of the best known methods in computer simulations are MCMC (Markov
Chain Monte Carlo) algorithms, successors of MC (Monte Carlo) approach (see
Metropolis et al., 1953, Metropolis and Ulam, 1949). They are commonly used
in many practical areas (see, e.g., Boos, Zhang, 2000; Booth, Sarkar, 1998;
Bremaud, 1999, Doucet et al., 2000; Gelfand et al., 1990; Gilks et al., 1997;
Kass et al., 1998; Koronacki et al., 2005; Lasota, Niemiro, 2003; Li et al., 2000;
Mehta et al., 2000; Robert, Casella, 2004; Romaniuk, 2003).

The MCMC method is based on a simple observation. In order to find the ex-
pected value EπX

h(X) for some function h(.) and probability distribution πX(.),
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we could generate Markov Chain X0, X1, X2, . . . with the stationary distribu-
tion πX . The convergence of estimator derived from the simulated samples is
guaranteed by ergodic theorems (see, e.g., Robert, Casella, 2004, for additional
details). Hence, we do not have to generate values directly from πX(.), but
we may use more general algorithms like the Gibbs sampler or the Metropolis-
Hastings algorithm.

But during the conduct of simulations two questions arise all the time. The
first one is connected with choosing appropriate number of steps nstat for sim-
ulated trajectory, when the sampled transition probability Prnstat

x0
(.) is close

enough to the assumed stationary probability πX(.) regardless of the starting
point x0. The second one is related to finding the number of steps n2, when the
estimator of EπX

h(X), derived from sample Xnstat+1, Xnstat+2, . . . , Xn2 , has suf-
ficiently small error, measured e.g. by variance. These two questions are covered
by convergence diagnosis and are one of main aspects for MCMC simulations.

There is a lot of various convergence diagnosis methods (see, e.g., Robert,
Casella, 2004, for comparative review). But we have to say that it is not so
easy to compare them and find ”the best one” or even ”the best ones”. Firstly,
these methods very often base on different features of the underlying Markov
Chains, e.g. specific structure of state space for Markov Chain. Secondly, the
two questions mentioned before are used to be written in mathematical formulas
not corresponding to one another, i.e. not directly comparable. Thirdly, it is
not even possible to draw a comparison between the heuristic and theoretical
(i.e. based on mathematical proofs) methods. Therefore, each new convergence
diagnosis method may be seen as additional tool for experimenters, which gives
them a new possibility to check the obtained simulations.

In this paper we discuss the method based on the concept of the so called
”secondary chain”. Such a chain is derived from the original trajectory by ob-
serving the samples only in moments determined by special, probability rules.
These rules are connected with notion of atoms and renewal sets, which are
a specific example of more general renewal moments and are part of renewal
theory.

The method presented has three main advantages. Firstly, it is supported by
strong mathematical reasoning. Therefore, it is far less influenced by observer’s
intuition and his experience than the entirely heuristic methods. Secondly, the
obtained solutions are strict, i.e. they are not asymptotic. Hence, this method is
not biased by additional error provided by limit theorems. Thirdly, the discussed
solutions may be used in highly automated manner. This gives the possibility
to prepare general diagnosis algorithms for a wide class of MCMC problems.

The paper is organized as follows. In Section 2 we present the necessary
basic definitions and theorems. Then, in Section 3.1 we introduce the notion of
secondary chain and some fundamental facts about it. In Section 3.2 we formu-
late two inequalities which are directly connected to the convergence diagnosis
questions mentioned before. Then, we find answers for these questions in Sec-
tions 3.3 and 3.4 in a few lemmas and more heuristic remarks. These are based
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on the properties of secondary chain. In Section 4 we present how the derived
results may be applied in case of a simple example. The concluding remarks are
contained in Section 5.

2. Basic definitions and theorems

In this section we introduce fundamental definitions and theorems. Addi-
tional necessary definitions may be found in, e.g., Bremaud (1999), Fishman
(1996), Robert and Casella (2004).

Let (Xi)i=0 = (X0 = x0, X1, . . .) denote a Markov Chain (abbreviated fur-
ther MC), and B(X ) be the σ–field of Borel sets for space X .

The chain (Xi)i=0 has its values in a space X , where X ⊂ N or X ∈ B(Rk).
In the first case such MC is called a discrete MC, and in the second – an MC
on continuous state space.

Suppose that the chain (Xi)i=0 is ergodic and has an adequate stationary
probability distribution πX(.). In this paper the term ”ergodicity” means that
the chain is recurrent (or Harris recurrent in case of MC on continuous state
space X ), aperiodic and irreducible.

If (Xi)i=0 is a discrete Markov Chain, we define its transition matrix PX as

PX = (Pr (Xk+1 = j|Xk = i))
sX

i,j=1 , (1)

where sX is the power of X . In case of continuous state space X , let us denote
by KX(., .) the transition kernel of this chain

Pr(Xk+1 ∈ B|Xk = x) =

∫

B

KX(x, y) dy . (2)

Definition 1 The set A is called an atom if there exists a probability distrib-
ution ν(.) such that

Pr(Xk+1 ∈ B|Xk = x) = ν(B) (3)

for every x ∈ A and every B ∈ B(X )

Definition 2 The set A is called renewal set if there exist a real 0 < ǫ < 1
and a probability measure ν(.) such that

Pr(Xk+1 ∈ B|Xk = x) ≥ ǫν(B) (4)

for every x ∈ A and every B ∈ B(X ).

These two definitions may be found in, e.g., Asmussen (1979), Robert and
Casella (2004).

If A is a renewal set, it is advantageous to slightly change the used MCMC
algorithm which generates the values of (Xi)i=0. It is easily seen that

Pr(Xk+1|Xk) = ǫν(Xk+1) + (1 − ǫ)
Pr(Xk+1|Xk) − ǫν(Xk+1)

1 − ǫ
(5)
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in case of discrete MC, or

K(xk, xk+1) = ǫν(xk+1) + (1 − ǫ)
K(xk, xk+1) − ǫν(xk+1)

1 − ǫ
(6)

for MC on continuous state space X . Hence, we have the following modification
of the algorithm: when Xk ∈ A, generate Xk+1 according to

Xk+1 =

{

Xk+1 ∼ ν(.) if Uk+1 ≤ ǫ

Xk+1 ∼ K(xk,.)−ǫν(.)
1−ǫ

if Uk+1 > ǫ
, (7)

where Ui are iid random variables from a uniform distribution on [0, 1], indepen-
dent on (Xi)i=0. Since (5) or (6), the modification (7) of the MCMC algorithm
does not change the properties of the chain. Also its stationary distribution is
still the same, i.e. πX(.). This modification for MCMC algorithms was intro-
duced in Athreya and Ney (1978), Nummelin (1978). The generation according
to (7) may be difficult because of the complex structure of the ”remainder”
kernel. A way around this problem was shown in Mykland, Tierney and Yu
(1995).

Definition 3 The atom (or renewal set) A is called geometrically ergodic atom
(or renewal set) if there exist r > 1 and M > 0 such that

|Prn
x(y) − πX(y)| ≤ Mr−n , (8)

for any x, y ∈ A, where Prn
x(.) denotes Pr(Xn = . |X0 = x).

Let us denote by EπX
h(X) the expected value of the function h : X → R

calculated according to the stationary distribution πX . Appropriate symbols –
CovπX

(g, h) and VarπX
(h) – are used for covariance and variance.

3. Proposal for the of convergence diagnosis method

In this section we present a convergence diagnosis method for the MCMC
output. This proposal uses the notions of atoms and renewal sets and also some
properties derived for discrete Markov Chains (see Section 2).

3.1. Introducing secondary chain

Suppose that we are interested in diagnosing convergence of some ergodic
Markov Chain (Xi)i=0 = (X0 = x0, X1, . . .). We denote a stationary probability
measure for this chain by πX(.), its transition matrix by PX (or transition kernel
by KX(., .) in case of MC on continuous state space) and the space of its values
by X . Suppose also that we know two atoms (or renewal sets) A1,A2 for this
chain.
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Therefore, we can create the secondary chain (Yi)i=1 based on our initial
chain (Xi)i=0. If A1,A2 are atoms, then we can define

ζ1 := min{i = 1, . . . : Xi ∈ A1 ∪ A2} , (9)

ζk+1 := min{i > ζk : Xi ∈ A1 ∪ A2} , (10)

Yk = Xζk
. (11)

It is seen that the chain (Yi)i=1 has Markov Property for the truncated (reduced)

space Y
′

:= {A1,A2} — see Lemma 1 for proof.
If these two sets are renewal sets, we should introduce the modification (7)

and change the definition of the chain (Yi)i=1 according to

ζ1 := min{i = 1, . . . : (Xi ∈ A1 ∧ Ui ≤ ǫA1) ∨ (Xi ∈ A2 ∧ Ui ≤ ǫA2)} ,
(12)

ζk+1 := min{i > ζk : (Xi ∈ A1 ∧ Ui ≤ ǫA1) ∨ (Xi ∈ A2 ∧ Ui ≤ ǫA2)} ,
(13)

Yk = Xζk
, (14)

where ǫAj
denotes the parameter ǫ for appropriate renewal set Aj in condi-

tion (7). Also in this case the secondary chain (Yi)i=1 has Markov Property for

the space Y
′

.
We may conclude previous observations in a simple lemma:

Lemma 1 If A1,A2 are atoms (or renewal sets), the chain (Yi)i=1 defined by
conditions (9) — (11) (or (12) — (14), respectively) is a Markov Chain for the
space Y

′

:= {A1,A2}. This chain is ergodic.

Proof. The chain (Yi)i=1 has Markov property for reduced space {x : x ∈ A1 ∪
A2} from Strong Markov Property. If Aj is a small set, then from (3) probability
Pr(Yk+1 ∈ B|Yk = y) is constant for all y ∈ Aj . Hence

Pr(Yk+1 ∈ Aj′ |Yk ∈ Aj) = Pr(Yk+1 ∈ Aj′ |Yk = y) (15)

for all y ∈ Aj .
If Aj is a renewal set, the argument is similar. The modification (7) intro-

duces independent generation from probability measure νAj
(.) with probability

ǫAj
. And this measure is constant for all y ∈ Aj .
The ergodicity of (Yi)i=1 follows directly from ergodicity of (Xi)i=0.

The proof similar to the one given above may be found in Guihenneuc-
Jouyaux and Robert (1998), but it is more complicated there than the straight-
forward reasoning presented in Lemma 1.

For simplicity of notation, we continue to call atoms or renewal sets Aj as
special sets, keeping in mind different definitions of the secondary chain (Yi)i=1

for these two cases.
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The moments ζi defined previously, may be additionally partitioned between

corresponding special sets. Hence, we obtain the following definition of ζ
(j)
i for

the fixed atom Aj :

ζ
(j)
1 := min{i = 1, . . . : Xi ∈ Aj} , (16)

ζ
(j)
k+1 := min{i > ζ

(j)
k : Xi ∈ Aj} . (17)

For the renewal set Aj the definition of ζ
(j)
i is an equivalent change of the above

formulas, i.e.:

ζ
(j)
1 := min{i = 1, . . . : Xi ∈ Aj ∧ Ui ≤ ǫAj

} , (18)

ζ
(j)
k+1 := min{i > ζ

(j)
k : Xi ∈ Aj ∧ Ui ≤ ǫAj

} . (19)

Therefore, ζ
(j)
1 may be considered as the moment of first visit in the set Aj .

Lemma 2 For the fixed j = 1, 2, the sums of the form
∑ζ

(j)
i+1

k=ζ
(j)
i

+1
Xk are con-

ditionally iid in the stationary regime for i = 1, . . .. The same applies for the

sums
∑ζi+1

k=ζi+1 Xk for i = 1, 2, . . ..

Proof. The variables ζ
(j)
k and ζk are stopping times. Therefore, the sequences

(

X
ζ
(j)
i

+1
, . . . , X

ζ
(j)
i+1

)

(or their equivalents for ζk) are conditionally iid in the

stationary regime from the Strong Markov Property. Hence, the appropriate
sums are also conditionally iid (for additional remarks see, e.g., Bremaud, 1999,
Chapter 2.7).

3.2. Diagnosis of the initial chain

As we have noted in Section 3.1, for chain (Xi)i=0 with two known special
sets Aj (j = 1, 2) we may introduce additional chain (Yi)i=1. The chain (Yi)i=1

is a discrete MC with only two states, regardless of cardinality and power of the
space X .

During diagnosis of the initial chain, we are interested in two values – nstat

and nVar. The first value – nstat – is the time moment when we are close enough
to stationary distribution πX , i.e.

∥

∥Pnstat
x0

− πX

∥

∥ ≤ ε1 , (20)

where ‖.‖ indicates some determined norm for space X , e.g. total variation norm
which is used in the rest of this paper, Prnstat

x0
(.) = Pr(Xnstat = . |X0 = x0).

When the number of simulations nstat in the MCMC algorithm is attained, in
the light of (20) we may treat (Xi)i≥nstat

as being distributed almost from a
stationary distribution πX .
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Suppose that we are interested in obtaining an estimator of the expected
value EπX

h(X) based on the average of the initial chain. It is easy to see that
we would like to achieve sufficiently small variance of this estimator and find
the quantity nVar fulfilling the condition

Var

(

1

s

nVar
∑

k=nstat+1

h(Xk) − EπX
h(X)

)

≤ ε2 , (21)

where s = nVar − nstat.
We conclude observations concerning the problems given by (20) and (21)

in the following lemmas and remarks.

3.3. Finding nstat value

Let us start from the the classical case, when X has only two states.

Lemma 3 Suppose that X = {A1,A2} = {1, 2}. Then, inequality

∥

∥Prnstat
x0

− πX

∥

∥

sup
≤ ε1 (22)

is fulfilled for

nstat ≥
ln ε1(α+β)

min{α,β}

ln γ
, (23)

where α and β are derived for transition matrix of (Xi)i=0

PX =

(

1 − α α
β 1 − β

)

, (24)

and γ = 1 − α − β.

Proof. In this case, it is known that stationary distribution is

πT
X = (πX(1), πX(2)) =

1

α + β
(β, α) (25)

and the k–th step transition matrix is

P
k
X =

(

πX(1) πX(2)
πX(1) πX(2)

)

+
γk

α + β

(

α −α
−β β

)

. (26)

If we start our chain in the state A1 = 1, then the k–th step probability will be

(

πY (1) +
αγk

α + β
, πY (2) +

−αγk

α + β

)

. (27)
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Hence, (22) is fulfilled for such nstat that αγnstat

α+β
≤ ε1. If we start the chain from

the state A2, we obtain βγnstat

α+β
≤ ε1. Joining these two results and knowing

that γ < 1, we establish (23). Another approach to this result with some faults
(e.g. the chain considered there is not MC) may be found in Raftery and Lewis
(1999).

Then, we can turn to a more general case, when X has more than only two
states.

Lemma 4 Suppose that X is a finite space and A1 is a known atom for X . Then

∑

y∈X

|Prn
x(y) − πX(y)| ≤ 2Prx(ζ

(1)
1 ≥ n) +

n−1
∑

j=0

Prx(ζ
(1)
1 = j)·

(

n−j−1
∑

k=1

∣

∣

∣Prk
A1

(A1) − πX(A1)
∣

∣

∣PrA1(ζ
(1)
1 ≥ n − k − j)+

+ πX(A1)EA1

(

ζ
(1)
1 − (n − j)

)

+

)

. (28)

Proof. Let us remind that ζ
(1)
1 may be treated as the moment of the first visit

in the set A1.
If we know the atom A1, then for any y ∈ X we have

πX(y) = πX(A1)

∞
∑

n=0

PrA1(Xn = y, ζ
(1)
1 ≥ n) , (29)

where Prx(.), as usually, denotes Pr(.|X0 = x). The proof of (29) may be found
in Robert and Casella (2004, see Theorem 4.5.3).

We have

Prn
x(y) = Prx(Xn = y, ζ

(1)
1 ≥ n) +

n−1
∑

j=0

Prx(Xj ∈ A1, ζ
(1)
1 = j)·

(

n−j−1
∑

k=0

Prk
A1

(A1)PrA1(Xn−k−j = y, ζ
(1)
1 ≥ n − k − j)

)

. (30)

The notation P k
A1

(A1) and PrA1(.) is validated because of the thesis of Lemma 1.
Using expansion (30) we have

|Prn
x(y) − πX(y)| ≤ Prx(Xn = y, ζ

(1)
1 ≥ n) +

∣

∣

∣

∣

∣

∣

n−1
∑

j=0

Prx(ζ
(1)
1 = j)·

(

n−j−1
∑

k=0

Prk
A1

(A1)PrA1(Xn−k−j = y, ζ
(1)
1 ≥ n − k − j

)

− πX(y)

∣

∣

∣

∣

∣

. (31)
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Hence

|Prn
x(y) − πX(y)| ≤ Prx(Xn = y, ζ

(1)
1 ≥ n) +

∣

∣

∣

∣

∣

∣

n−1
∑

j=0

Prx(ζ
(1)
1 = j)·

(

n−j−1
∑

k=0

Prk
A1

(A1)PrA1(Xn−k−j = y, ζ
(1)
1 ≥ n − k − j) − πX(y)

)

−πX(y)

∞
∑

j=n

Prx(ζ
(1)
1 = j)

∣

∣

∣

∣

∣

∣

. (32)

From (29) for any j ≤ n − 1 we have

πX(y) = πX(A1)

n−j−1
∑

k=0

PrA1(Xn−k−j = y, ζ
(1)
1 ≥ n − k − j)+

+ πX(A1)
∞
∑

l=n−j+1

PrA1(Xl = y, ζ
(1)
1 ≥ l) . (33)

After applying (33) to (32) we have

|Prn
x(y) − πX(y)| ≤ Prx(Xn = y, ζ

(1)
1 ≥ n) +

∣

∣

∣

∣

∣

∣

n−1
∑

j=0

Prx(ζ
(1)
1 = j)·

(

n−j−1
∑

k=0

(

Prk
A1

(A1) − πX(A1)
)

PrA1(Xn−k−j = y, ζ
(1)
1 ≥ n − k − j)−

πX(A1)

∞
∑

l=n−j+1

PrA1(Xl = y, ζ
(1)
1 ≥ l)



− πX(y)Prx(ζ
(1)
1 ≥ n)

∣

∣

∣

∣

∣

∣

. (34)

Straightforwardly

|Prn
x(y) − πX(y)| ≤ Prx(Xn = y, ζ

(1)
1 ≥ n) +

n−1
∑

j=0

Prx(ζ
(1)
1 = j)·

(

n−j−1
∑

k=0

∣

∣

∣Prk
A1

(A1) − πX(A1)
∣

∣

∣PrA1(Xn−k−j = y, ζ
(1)
1 ≥ n − k − j)+

+πX(A1)

∞
∑

l=n−j+1

PrA1(Xl = y, ζ
(1)
1 ≥ l)



+ πX(y)Prx(ζ
(1)
1 ≥ n) , (35)

which constitutes (28).
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The equations (28) and (35) may be used to establish further dependencies
between the initial and the secondary chain. Now we present a simple lemma,
which may be helpful in the practice of MCMC setups.

Lemma 5 Suppose that A1 is a geometrically ergodic atom with constant M1

and coefficient r1, and there exist M2 > 0, r2 > 1, M3 > 0, r3 > 1 such that

PrA1(ζ
(1)
1 ≥ n) ≤ M2r

−n
2 , (36)

and

Prx(ζ
(1)
1 = n) ≤ M3r

−n
3 (37)

are fulfilled. Then, inequality

∑

y∈X

|Prn
x(y) − πX(y)| ≤ ε1 (38)

is satisfied for n given as the solution of formula

2
M3r

1−n
3

r3 − 1
+

M2M3r3(r
−n
3 − r−n

2 )

(r2 − 1)(r2 − r3)
+

+
M1M2M3

(r2 − r1)

(

r1r3(r
−n
3 − r−n

1 )

(r1 − r3)
+

r2r3(r
−n
3 − r−n

2 )

(r3 − r2)

)

≤ ε1 . (39)

Proof. After applying conditions (8), (36), (37) to inequality (28) we can straight-
forwardly prove (39).

It is worth noting that it is possible to improve the inequality (39). If we
know the value of stationary probability πX(A1), then we have a more detailed
condition

2
M3r

1−n
3

r3 − 1
+

πX(A1)M2M3r3(r
−n
3 − r−n

2 )

(r2 − 1)(r2 − r3)
+

+
M1M2M3

(r2 − r1)

(

r1r3(r
−n
3 − r−n

1 )

(r1 − r3)
+

r2r3(r
−n
3 − r−n

2 )

(r3 − r2)

)

≤ ε1 . (40)

3.4. Finding nVar value

After establishing nstat we may turn to finding evaluation for nVar. To sim-

plify the notation in the rest of this section we denote by ζ
(j)
1 the first visit in

set Aj for the chain (Xk)k≥nstat
, by ζ

(j)
2 – the second one, etc.

As previously, we start from the case of the two-state space X .
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Lemma 6 Suppose that X = {A1,A2} = {1, 2} and Xnstat ∼ πX . Then condi-
tion (21) is fulfilled for any s = n − nstat given by inequality

αβ(h(1) − h(2))2

(α + β)3

(

2γ(γs − 1)

s2
+

(α + β)(1 − 2γ)

s

)

≤ ε2 , (41)

where γ = 1 − α − β.

Proof. For simplicity of notation, as in Lemma 3 we suppose that state i denotes
the atom Ai.

We have

Var

(

1

s

n
∑

k=nstat+1

h(Xk) − EπX
h(X)

)

=

=
1

s2

(

Var

(

n−1
∑

k=nstat+1

h(Xk) − (s − 1)EπX
h(X)

)

+

+ 2 Cov

((

n−1
∑

k=nstat+1

h(Xk) − (s − 1)EπX
h(X)

)

(h(Xn) − EπX
h(X))

)

+

+ Var (h(Xn) − EπX
h(X))

)

. (42)

In this case we can write the covariance as

Cov

((

n−1
∑

k=nstat+1

h(Xk) − (s − 1)EπX
h(X)

)

(h(Xn) − EπX
h(X))

)

=

=

n−1
∑

k=nstat+1

E ((h(Xk) − EπX
h(X)) (h(Xn) − EπX

h(X))) =

=

s−1
∑

k=1

E ((h(Xn−k) − EπX
h(X)) (h(Xn) − EπX

h(X))) . (43)

From the assumption that Xnstat ∼ πX , for n ≥ nstat the variables Xn may
be treated as derived from stationary distribution πX . Therefore

E ((h(Xn−k) − EπX
h(X)) (h(Xn) − EπX

h(X))) =

= E (h(Xn−k)h(Xn)) − E
2
πX

h(X) . (44)
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From properties (25) and (26) for the two-state MC we have

E (h(Xn−k)h(Xn)) − E
2
πX

h(X) = h2(1)πX(1) Pr1(Xk = 1)+

+ h(1)h(2)πX(1) Pr1(Xk = 2) + h(2)h(1)πX(2) Pr2(Xk = 1)+

+ h2(2)πX(2) Pr2(Xk = 2) − (h(1)πX(1) + h(2)πX(2))
2

=

=
αβ

(α + β)2
γk(h(1) − h(2))

2
. (45)

Applying (42) and simple recurrence to the above formula we obtain

Var

(

1

s

n
∑

k=nstat+1

h(Xk) − EπX
h(X)

)

=

=
1

s2

(

Var

(

n−1
∑

k=nstat+1

Xk − (s − 1)EπX
h(X)

)

+

+2
αβ

(α + β)2
(h(1) − h(2))

2
γ

1 − γs−1

1 − γ
+ EπX

h2(X) − E
2
πX

h(X)

)

=

=
1

s2

(

2αβγ

(α + β)3
(h(1) − h(2))2

(

s − 1 − γ
1 − γs−1

1 − γ

)

+

+ s

(

h2(1)
β

α + β
+ h2(2)

α

α + β
−

(

h(1)
β

α + β
+ h(2)

α

α + β

)2
))

,

(46)

which constitutes the thesis (41).

Now we turn to the general case, i.e. when X has more than only two states.
In practice, an experimenter, after generation of some length of the chain, is
interested in knowing whether an appropriately small error measured by (21) is
attained. Therefore, it is possible in practice that an observer could choose such
values of nstat and nVar that they are also moments of visits in special sets A1

and A2. This procedure is helpful in elimination of ”tails”, i.e. two fragments of
chain: between nstat and first visit in the special set, and last visit in the special
set and nVar. The estimation of these tails is very complicated in case of nVar

evaluation.
Let nstat and nVar be values preliminarily chosen by the experimenter. For

these deterministic parameters, suppose that ns ≥ nstat and nV ≤ nVar are
moments of visit in a special set Aj , where ns is first such moment, and nV is
the last one. Let

M(j) = #{k : ns ≤ ζ
(j)
k ≤ nV} . (47)

Obviously, M(j) is the random number of visits in Aj between ns and nV. For
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the determined j we have

1

nV − ns

nV
∑

k=ns+1

h(Xk) − Eπx
h(X) =

=
1

nV − ns

M(j)−1
∑

i=1







ζ
(j)
i+1
∑

k=ζ
(j)
i

+1

h(Xk) −
(

ζ
(j)
i+1 − ζ

(j)
i

)

EπX
h(X)






, (48)

which constitutes the following remark:

Remark 1 Suppose that ns ≥ nstat and nV ≤ nVar are moments of visits in the
special set Aj . Then

VarπX

(

1

nV − ns

nV
∑

k=ns+1

h(Xk) − Eπx
h(X)

)

=

= VarπX







1

nV − ns

M(j)−1
∑

i=1







ζ
(j)
i+1
∑

k=ζ
(j)
i

+1

h(Xk)

−
(

ζ
(j)
i+1 − ζ

(j)
i

)

EπX
h(X)

))

. (49)

In order to achieve appropriate evaluation of (49) we have to find variance

estimator of single ”fragment” in the trajectory. Let S
(j)
i =

∑ζ
(j)
i+1

k=ζ
(j)
i

+1
h(Xk).

Then the value

σ2
(j) = VarπX







ζ
(j)
2
∑

k=ζ
(j)
1 +1

h(Xk) −
(

ζ
(j)
2 − ζ

(j)
1

)

EπX
h(X)






(50)

may be estimated by the usual sum of squares estimator

σ̂2
(j) =

1

m(j) − 1

m(j)−1
∑

i=1



S
(j)
i −

1

m(j) − 1

m(j)−1
∑

l=1

S
(j)
l





2

, (51)

where m(j) is the number of visits in Aj (see Lemma 2). A similar estimator
for the case of M(j) → ∞ was introduced in Robert (1995).

We could generalize our considerations for the case of more than only one
special set. Let ns and nV be moments of visits in some special sets A1 and /
or A2, not in only one determined Aj . We use additional notation

T (j,l) = (ζ2 and Y2 ∈ Al) − (ζ1 and Y1 ∈ Aj) , (52)



998 M. ROMANIUK

M(j,l) = #{k : ns ≤ Yk ∈ Aj , Yk+1 ∈ Al, ζk+1 ≤ nV} . (53)

In such a case we have from Strong Markov Property

1

nV − ns

nV
∑

k=ns+1

h(Xk) − Eπx
h(X) =

=
1

nV − ns

m−1
∑

i=1





ζi+1
∑

k=ζi+1

h(Xk) − (ζi+1 − ζi) EπX
h(X)



 . (54)

In other words, we divide sequence (Xi)
nV

i=ns
into moments determined by ζi.

In the right-hand side sum of (54) we can distinguish M(1,1) fragments which
start and finish in A1, M(1,2) fragments which start in A1 and finish in A2, etc.
Therefore we have the following remark:

Remark 2 Let ns ≥ nstat and nV ≤ nVar be moments of visits in special sets.
Then

VarπX

(

1

nV − ns

nV
∑

k=ns+1

h(Xk) − Eπx
h(X)

)

=

= VarπX







1

nV − ns

2
∑

j,l=1

M(j,l)−1
∑

i=1







ζ
(l)
i+1 and Yi+1∈Al

∑

k=ζ
(j)
i

+1 and Yi∈Aj

h(Xk)−

T (j,l)
EπX

h(X)
))

. (55)

As previously, we need appropriate variance estimator of the trajectory ”frag-
ment”. Let

S
(j,l)
i =

ζi+1 and Yi+1∈Al
∑

k=ζi+1 and Yi∈Aj

h(Xk) . (56)

Then, variance

σ2
(j,l) = VarπX





ζ2 and Y2∈Al
∑

k=ζ1+1 and Y1∈Aj

h(Xk) − T (j,l)
EπX

h(X)



 (57)

may be estimated by the usual sum of squares

σ̂2
(j,l) =

1

m(j,l) − 1

m(j,l)−1
∑

i=1



S
(j,l)
i −

1

m(j,l)

m(j,l)−1
∑

k=1

S
(j,l)
k





2

, (58)

where m(j,l) is the number of transitions between special sets Aj and Al.
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As previously stated, in the method presented we would like to eliminate
the problems caused by ”tails”, which are very hard to estimate for the exper-
imenter. Therefore, based on Remark 1 and formula (51), we could postulate
that condition (21) is fulfilled for any n ≥ nVar if

nstat + σ̂(j)

√

m(j) − 1

ε2
≤ nVar . (59)

And from Remark 2 and estimator (58) we could postulate the generalization
of condition (59). Then, (21) is fulfilled for any n ≥ nVar if

nstat +

√

m(1,1)σ̂
2
(1,1) + m(1,2)σ̂

2
(1,2) + m(2,1)σ̂

2
(2,1) + m(2,2)σ̂

2
(2,2)

ε2
≤ nVar . (60)

We have to note that the presented considerations are based on theoretical
foundations, but also include strong heuristic ”flavour”. Our initial remarks use
random variables ns and nV, which are also moments of visits in special sets.
In (59) and (60) we ”overinterpreted” these results as if s = nVar − nstat were
a deterministic variable and both nstat and nVar are moments of visits in spe-
cial sets. Because of this, it is possible to formulate inequalities for meeting
the condition (21) in a relatively simple way. But the lack of direct connection
between (59), (60) and the previous results is a disadvantage of such approach.
However, in practice it is always possible to start or finish observations of tra-
jectory in appropriate moments, i.e. visits in the special sets.

Results for an estimator similar to (58) may be found in Robert (1995). But
in this reference only the asymptotic features of distances between the values

m(j)σ̂
2
(j)

n
(61)

for n → ∞ and various Aj are used.
In this paper we use non-asymptotic features and we show direct connection

between the discussed method and condition (21), which is the basis for MCMC
methodology.

4. Example of application

After introducing the methodology appropriate for finding values nstat and
nVar, we present now the example of their application. For simplicity of notation
and in order to derive conclusions, we use state space X with a few atoms.

We should emphasize that the solutions established in lemmas in Section 3
give exact (i.e. demonstrated by mathematical reasoning, not only heuristic ap-
proach) and precise (i.e. non-asymptotic) values. Therefore, we may focus only
on the problem of transition of the acquired results from theoretical formulas
to the practical example.
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Let us suppose that we are interested in finding the value Efh(X), where
f(.) describes the state space X with eight atoms and stationary probabilities

f(.) = (1/20, 1/20, 2/20, 2/20, 3/20, 3/20, 4/20, 4/20) , (62)

i.e. first atom has stationary probability 1/20, the second one – 1/20, etc.,
and h(.) is a uniform function on X , i.e.

h(.) = (1, 1, 1, 1, 1, 1, 1, 1) . (63)

Because of this special form of the function h(.), all the states of space X have
the same ”weight” and ”importance” during MCMC simulations.

In order to calculate Efh(X) we use independent Metropolis-Hastings algo-
rithm (see e.g. Robert and Casella, 2004). Our main trajectory has million
elements and is initiated from state one. We also assume that A1 = 3 and
A2 = 7. Therefore, we may compare values nstat and nVar on the basis of states
with various stationary probabilities.

Firstly we would like to find nstat. To apply lemmas from Section 3.3, we
have to evaluate necessary parameters r1, M1, r2, M2, r3, M3 (see assumptions
for Lemma 5). Normally, experimenter may have some additional knowledge
about these values, but we use additional simulations in order to determine
r1, M1, r2, M2, r3, M3. Hence, we generate additional sets of 50000 trajectories
with 100 steps in each trajectory and appropriate starting points – states one,
three and seven. Then, we apply the ”pessimistic optimization” approach.

Namely, if we suppose that for the optimal parameters r1 and M1 we have

|Prn
A1

(A1) − πX(A1)| ≈ M1r
−n
1 , (64)

then

|PrnA1
(A1) − πX(A1)|

|PrA1(A1) − πX(A1)|
≈ r−n+1

1 . (65)

Therefore, we can find a ”pessimistic” evaluation of r̂1 in the sense of satisfying
the condition

r̂1 = min
r∈R+

{

∀n = 2, 3, . . . : r−n+1 −
|Prn

A1
(A1) − πX(A1)|

|PrA1(A1) − πX(A1)|
≥ 0

}

. (66)

As easily seen, (66) gives us the ”maximal pessimistic” guess for r̂1, because
in this light r̂1 has to be the upper limit for all steps in strictly deterministic
sense. In case of any numerical errors or even for greater values for n (note
exponential decrease in conditions for Lemma 5), this method may give larger
values of r̂1 than they are in reality. However, other methods, like meeting the
weaker condition

r−n+1 −
|Prn

A1
(A1) − πX(A1)|

|PrA1(A1) − πX(A1)|
≥ 0

∨

∣

∣

∣

∣

r−n+1 −
|Prn

A1
(A1) − πX(A1)|

|PrA1(A1) − πX(A1)|

∣

∣

∣

∣

≤ δ (67)
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for some small enough δ, may be easily criticized because of unknown error
generated by the selection of the value of δ.

After fixing the value r̂1, like in (66), we may find M̂1 in the same manner,
as satisfying the condition

M̂1 = min
M∈R+

{

∀n = 1, 2, . . . : Mr̂−n
1 − |Prn

A1
(y) − πX(A1)| ≥ 0

}

. (68)

The analogous formulas may be derived for parameters r2, M2, r3, M3.

Then, from the ”pessimistic optimization” for A1 we have

r̂1 = 1.04 , M̂1 = 0.0268 ,r̂2 = 1.0941 , M̂2 = 1.0888 ,

r̂3 = 1.0904 , M̂3 = 0.1372 . (69)

We can substitute these values into the formula (39) in order to find the number
of steps nstat for the given value ε1 (see Table 1). In this table, the column ”True
value of ε1” give the exact value of the left-hand side for (39) and the determined
number of steps nstat from the second column. The graph of the left-hand side
of (39) as a function of steps number n is shown in Fig. 1.

Table 1. Evaluation of nstat for the third state

Assumed value of ε1 Number of steps nstat True value of ε1

0.1 90 0.0978145
0.02 120 0.0196767
0.01 135 0.00974242
0.001 190 0.000981598
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If we use the improved inequality (40) instead of (39), we may observe the
reduction of the necessary number of steps nstat, especially for larger ε1 (see
Table 2). This phenomenon is even easier to trace in Fig. 2, where curve is
much steeper at the beginning of the graph.

Table 2. Evaluation of nstat for the third state based on inequality (40)

Assumed value of ε1 Number of steps nstat True value of ε1

0.1 75 0.0981865
0.02 114 0.0195048
0.01 131 0.00989127
0.001 190 0.000967164
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Table 3. Evaluation of nstat for the seventh state

Assumed value of ε1 Number of steps nstat True value ofε1

0.1 71 0.0992184
0.02 107 0.0192124
0.01 123 0.00961369
0.001 176 0.000988225

m(1) − 1

ε2
(71)

(compare with (59)) is calculated.
The same calculation could be done for A2 (see Table 5).
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Table 4. Evaluation of nVar for the third state

Assumed Number Start Stop Theoretical
value of ε2 of steps nstat length

0.1 90 180 306 125.294
0.02 120 278 858 575.985
0.01 135 278 1282 995.365
0.001 190 388 13226 12835.7

Table 5. Evaluation of nVar for the seventh state

Assumed Number Start Stop Theoretical
value of ε2 of steps nstat length

0.1 71 144 222 75.3279
0.02 107 222 622 398.957
0.01 123 246 1074 823.829
0.001 176 360 8886 8525.97

As it was observed during simulations, the value σ(j) may not be correctly
estimated. This can be seen, e.g., in Fig. 4, where the value of σ̂(2) as a function
of steps n for the seventh state is plotted.

100 20000 40000 60000 80000

5.25

5.5

5.75

6

6.25

6.5

6.75

Figure 4. Value of σ̂(j) as a function of n

Because of this, we may calculate the estimator σ̂(j) based on a larger part
of the main trajectory (or even the whole of it) and then put the estimated
value into the inequality (59). For example, if we do this for the whole one
million steps trajectory, we obtain new evaluations for nVar. These values for
the seventh state are shown in Table 6.
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Table 6. Evaluation of nVar for the seventh state with corrected value of σ̂(2)

Assumed Number Start Stop Theoretical
value of ε2 of steps nstat length

0.1 71 144 230 80.8683
0.02 107 222 727 500.687
0.01 123 246 1139 878.454
0.001 176 360 9260 8861.14

If we compare Tables 5 and 6, we can note that values for nVar are 10 – 20%
bigger if we take into account the whole trajectory for the purpose of estimation
of σ(2).

Next, we may apply the inequality (60) based Remark 2. As previously,
in order to minimize the bias of estimators, we multiply by two the maximum
values from Tables 1 and 3 for the fixed ε2 = ε1. This gives us the starting
values for evaluation of nVar.

The results derived for both sets A1 and A2 simultaneously are given in
Table 7.

Table 7. Evaluation of nVar for both atoms simultaneously

Assumed Number Start Stop Theoretical
value of ε2 of steps nstat length

0.1 90 180 222 41.5832
0.02 120 244 323 78.518
0.01 135 274 522 245.208
0.001 190 382 3783 3400.62

If we compare outcomes from Table 7 and the previous ones, we can easily see
that taking into account both of the atoms dramatically reduces the necessary
number of steps nVar. This can be explained by additional information provided
by considering two sets instead of only one.

As previously, random behaviour of σ̂(j,l) may be observed. Therefore, we
also calculated the estimators σ̂(j,l) for the whole trajectory. The results for this
case may be found in Table 8. The evaluations of nVar reveal a bigger value,
similarly as in the case for only one special set.

It is worth noting that despite the simple structure of the state space X , the
presented application has deep connections with more complex problems, e.g.
similar atom state space may be found in analysis and restoration of images
degraded by noise (see, e.g., Koronacki et al., 2005, Lasota, Niemiro 2003).
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Table 8. Evaluation of nVar for both atoms simultaneously with corrected value
of σ̂(j,l)

Assumed Number Start Stop Theoretical
value of ε2 of steps nstat length

0.1 90 180 230 46.7273
0.02 120 244 502 252.75
0.01 135 274 751 469.959
0.001 190 382 4571 4181.49

5. Concluding remarks

We start from formulating two inequalities which correspond to standard
questions in MCMC setups, i.e. when the sampled transition probability is close
to the determined stationary probability of Markov Chain? and how many it-
erations should be used in order to minimize the error of estimator? These
inequalities correspond to finding two values – number of steps nstat and nVar

for the trajectory generated by some MCMC method. Then we use the fea-
tures of secondary chain in order to appoint these values in a series of lemmas.
Thereby we obtain a useful set of conditions which could be used for checking
the convergence in the MCMC setup. The example of application of theoretical
lemmas and reasoning based on them for the case of state space with atoms is
also provided. It should be mentioned that this paper comprises some results
from the Ph.D. dissertation (see Romaniuk, 2007), where additional remarks
may be found.

We should emphasize the usefulness of the presented method, which could
be used in a highly automated manner and provide strict results for the exper-
imenter. However, we should note that not just one, but a whole set of various
algorithms and methods should be applied in order to control the MCMC out-
put and guarantee the convergence of the simulated trajectory at a satisfactory
level.

The possibilities of complementing the discussed method might also be con-
sidered. For example, the conditions obtained might be improved, like in (40).
However, additional information about the structure of state space or underly-
ing Markov Chain may be necessary in such a case. The dependencies among
the number of special sets, their allocation, possible modes in state space and
obtained solutions may be examined. The lemmas may be also generalized for
other cases of state space structure and numbers of special sets.
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