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Abstract: This paper is concerned with a shape optimization 
problem of a viscoelastic body in unilateral dynamic contact with a 
rigid foundation . The contact with Coulomb friction is assumed to 
occur at a portion of the boundary of the body. The non penetration 
condition is described in terms of velocities. The thermal deforma­
tion is taken into account . Using the material derivative method as 
well as the results concerning the regularity of solutions to dynamic 
variational thermoviscoelastic problem the directional derivative of 
the cost functional is calculated. A necessary optimality condition 
is formulated. 

Keywords: dynamic thermoviscoelastic contact problem, shape 
optimization, sensitivity analysis, necessary optimality condition. 

1. Introduction 

This paper deals with the formulation of a necessary optimality condition for 
a shape optimization problem of a viscoelastic body in unilateral dynamic con­
tact with a rigid foundation. The contact with a given friction, described by 
Coulomb law (Duvaut, Lions, 1972), is assumed to occur at a portion of the 
boundary of the body. The contact condition is described in terms of velocities. 
This first order approximation seems to be physically realistic for the case of a 
small distance between the body and the obstacle, and for small time intervals. 
The friction coefficient is assumed to be bounded. Since the friction represents 
significant heat source, heat generation and flow are taken into account . The 
equlibrium state of this thermoviscoelastic contact problem is described by a 
coupled hyperbolic - parabolic system. This system consists of an hyperbolic 
hemivariational inequality of the second order, governing a displacement field, 
and a parabolic equation governing a heat flow. The existence of solutions to 
dynamic hemivariational inequalities is shown in Goeleven, Miettinen, Pana­
giotopoulos (1999) , Ran, Sofonea (2002) , Jarusek, Eck (1999), Jarusek (1996). 
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The existence of solutions to the coupled thermoviscoelastic contact problems 
is shown in Jarusek, Eck (1999) using the Schouder fixed - point theorem. 

The shape optimization problem for a viscoelastic body in contact consists in 
finding, in a contact region, such shape of the boundary of the domain occupied 
by the body that the normal contact stress is minimized. It is assumed, that 
the volume of the body is constant. 

Shape optimization of static contact problems was considered, among oth­
ers, in Haslinger, Neittaanmaki (1988), Klabring, Haslinger (1993), Myslinski 
(1991, 1992, 1994), Sokolowski, Zoh§sio (1992). In Haslinger, Neittaanmaki 
(1988), Klabring, Haslinger (1993) the existence of optimal solutions and con­
vergence of the finite-dimensional approximation was shown. Moreover, it was 
shown that optimal shape of the bodies in contact implies almost constant nor­
mal contact stress. In Myslillski (1991, 1992, 1994), Sokolowski, Zolesio (1992) 
the necessary optimality conditions were formulated using the material deriva­
tive approach (see Zolesio, 1992). Numerical results are reported in Haslinger, 
Neittaanmaki (1988), Myslinski (1994) . The necessary optimality conditions 
for shape optimization problems of dynamic contact problems were formulated 
in Jarusek, Krbec, Rao, Sokolowski (2002), Myslinski (2000) . In Jarusek, Kr­
bec, Rao, Sokolowski (2002) the conical differentiabilty of solutions to parabolic 
variational inequality was shown. The material derivative approach was used 
in Myslinski (2000) to formulate a necessary optimality condition for the shape 
optimization problem of viscoelastic bodies in unilateral contact with a given 
friction. The shape optimization for thermoelastic problems was considered in 
Myslinski, Troltzsch (1999). In this paper a necessary optimality condition was 
formulated for thermoelastic problem described by a coupled elliptic - parabolic 
system with a nonlinear boundary condition. The existence of solutions to opti­
mal design problems for systems described by parabolic or hyperbolic variational 
inequalities was shown in Denkowski, Mig6rski (1998), Gasinski (2000) . 

In the present paper we study this shape optimization problem for a vis­
coelastic body in unilateral dynamical contact with friction and heat flow. Us­
ing material derivative method, Sokolowski, Zolesio (1992), as well as the re­
sults of regularity of solutions to the dynamic variational inequality, Jarusek, 
Eck (1999) , Jarusek (1996), we calculate the directional derivative of the cost 
functional and we formulate a necessary optimality condition for this problem. 

We shall use the following notation : S1 C R2 will denote a bounded domain 
with Lipschitz continuous boundary r . The time variable will be denoted by t 
and the time interval I = (0, T), T > 0. By Hk(Sl), k E (0, oo), we will denote 
the Sobolev space of functions having derivatives in all directions of the order 
k belonging to L2 (S1), Adams (1975). For an interval I and a Banach space B, 
LP(I; B), p E (1, oo), denotes the usual Bochner space, Duvaut, Lions (1972). 

u = ~~ and u = ~:~ will denote first and second order derivatives of function 
u with respect to t, respectively. UN and uy will denote normal and tangential 
components of function u, respectively. Q = I X Sl, "Yi = I X r i, i = 1, 2, 3, 
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where ri are disjoint pieces of the boundary r. 

2. Contact problem formulation 

Consider deformations of an elastic body occupying domain n c R2 . The 
boundary r of domain n is Lipschitz continuous. The body is subject to body 
forces f = (/I, h). Moreover, surface tractions p = (Pl, P2) are applied to a 
portion f 1 of the boundary r. We assume that the body is clamped along 
the portion fo of the boundary r. The contact conditions are prescribed on 
the portion f 2 of the boundary r. Moreover ri n rj = 0, i =f. j, i, j = 0, 1, 2, 
f = four1ur2. 

We denote by u = (u1, u2), u = u(t, x), t E [0, Tj, 0 < T < oo, x E n, 
a displacement of the body and by 0 = 0( t, X) an absolute temperature of the 
strip. 0' = {O'ij(u(t,x))}, i,j = 1,2, denotes the stress field in the body. We 
shall consider viscoelastic bodies obeying the Kelvin-Voigt law, Duvaut, Lions 
(1972), Haslinger, Neittaanmiiki (1988), Hlavacek et al. (1986), Telega (1987): 

O'ij(u(t, x)) = c?jkl(x)ekl(u) + c}jkl(x)ekl(u) X En, 
1 

ekl = 2(uk,l + ul,k), 
(1) 

i, j, k, l = 1, 2, Uk,l = ~. We use here the summation convention over repeated 
indices, Duvaut, Lions (1972) . c?jkl(x) and cijkl(x), i,j, k, l = 1, 2, are compo­
nents of Hook's tensor. It is assumed that the elasticity coefficients c?jkl and 
c}jkl are Lipschitz continuous with respect to the space variable. Moreover, they 
satisfy usual symmetry, boundedness and ellipticity conditions, Duvaut, Lions 
(1972), Jarusek (1999), Haslinger, Neittaanmaki (1988), Halvacek et al. (1986), 
Jarusek, Eck (1999) i.e., 

c~jkl(x) = cjikl(x) = cklij(x), 

m0~iJ~kl ::::; c~Jkl(x)~ij~kl ::::; Mo~ij~kt, 

(2) 
(3) 

for all symetric second order tensors ~ij and all X E n with constants 0 < m0 ::::; 
M5, ~ = 0, 1. 

In an equlibrium state a stress field ()' and a temperature field e satisfy the 
system, Duvaut, Lions (1972), Haslinger, Neittaanmaki (1988), Jarusek, Eck 
(1999), Jarusek (1996), of equations: 

Ui - O'ij(u(t,x)),j = fi(x) + (bije),j in (0, T) X n, i,j = 1,2, (4) 

h ( (t )) aa,;(u(t,x)) 0 0 1 2 b 0 0 1 2 d t th 1 w ere O'ij u , x ,j = · ax; , z, J = , . ij, z, J = , , eno es a erma 
expansion tensor, symmetric, bounded, elliptic and Lipschitz continuous with 
respect to the space variable. The temperature flow is governed by: 

(5) 
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where Cij, i,j = 1, 2, is a tensor of thermal conductivity, Lipschitz continuous 
with respect to the space variable and satisfying usual symmetry, boundedness 
and ellipticity conditions. b}j, i,j = 1, 2, denotes a thermal deformation tensor, 
symmetric, bounded, elliptic and Lipschitz continuous with respect to the space 
variable. The dependance of this tensor on current temperature is neglected. 
The following initial conditions are given 

Ui(O,x)=uo, and ui(O,x)=ul, i = 1,2, in 0, 

e(O,x)=eo inO. 

(6) 
(7) 

uo, u 1 , eo are given functions. The following boundary conditions are given 

ui(x) = 0 on (0, T) x f 0 , i = 1, 2, 

O'ij(u)nj =Pi on (0, T) x f1, i,j = 2, 

UN::; 0, O'N::; 0, UNO'N = 0, on (0, T) X r2, 

(8) 

(9) 

(10) 

Here we use the notation: UN = uini, O'N = O'ijninj, (uT )i = ui - uNni, 
(O'T) i = O'ijnj- O'Nni i , j = 1,2, where n = (n1,n2) is the unit outward versor 
to the boundary r. F denotes the friction coefficient. Moreover, the heat flux 
on the boundary of the strip 0 is equal to: 

ae 
an (t, x) = 1'\,(eg- e), On (0, T) X (fo U f1), (11) 

ae . 
an (t,x) = 1'\,(eg - e) +F I O'N 11 UT I, on (0, T) X r 2 . (12) 

K, is a given nonnegative, bounded, measurable function of the space variable 
and e9 is a given external temperature. Since for u -) oo the term describing 
the frictional heat generation may increase faster than all the other terms, it 
creates the main difficulty in the investigation of the coupled problem. To assure 
the existence of solutions to the problem (1)- (12), we replace the frictional heat 
generation term F I O'N 11 UT I by a function j(x,F I O'N I, I UT 1). This function 
is assumed monotone in the second and third argument and satisfying the linear 
growth condition 

j(x , F I O'N I, I UT I)::; const1(1 + F I O'N I+ I UT I), (13) 

with some positive constant consh E R. Moreover, for 9n ~ g in L2(f2) and 
hn -) h in L 2(f2 ) the function j satisfies for a .e . x E 0 

8 
j( .,gn,hn) ~ j( ., g,h) in L<> (f2), for a > 5. (14) 
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We shall consider problem (4)-(12) in the variational form. Let us assume, 

f E Hl/4(!; (Hl(D.; R2)*) n L2(I; (Hl/2(0.; R2))*), 

p E L2 (I; (H-1/ 2(f1; R2)), uo E H 312(D.; R2), u1 E H 312(D.; R2), 

Bo E £ 2 (0.; R), 89 E L2 (I; H-112 (f; R)), 

F "2: 0, FE L00 (f2 ; R2 ), F(., x) is continuous for a. e.x E r2, 

(15) 

are given. The compatibility conditions UoJrour2 = 0, u1Jro = 0 are assumed to 

be satisfied. The space L2 (Q; R2 ) and the Sobolev spaces H 114 (I; (H1 (D.; R2)*) 
as well as (H112 (f1); R2 ) are defined in Adams (1975), Duvaut, Lions (1972). 
Let us introduce: 

H = H 112(I;H1 (D.;R2 )), F = {z EH: Zi = 0 on (0, T) X ro,i = 1,2}, (16) 

K = { E F : ZN ::::; 0 on (0, T) x f2 }. (17) 

Let us also introduce the bilinear forms: ai(., .) : F x F--> R, i = 0, 1, given 
by 

a0 (u, v) = k c~JkleiJ(u)ekz(v)dxdt, 
a1 (u, v) = k c}jkleij(u)ekz(v)dxdt. 

(18) 

The problem (1)- (12) is equivalent to the following variational problem, Jarusek, 
Eck (1999), Jarusek (1996): find a pair (u, B), such that u E L 2 (I; H 1 (D.; R 2)) n 
H 112(I;H1 (D.;R2)) nK, u E L2(I;H1 (D.;R2)) n H 112(I;L2(D.;R2)) nK, and 
u E L2(J; H-l(D.; R2))n(Hl/2(J; £2(0.; R2)))*, e E Hl/2,l(Q), iJ E (Hl/2,l(Q))* 
satisfying the initial conditions (6)- (7) as well as the following system, Jarusek, 
Eck (1999), Jarusek (1996), 

k u(v- u)dxdt + a0 (u, V-u)+ a1 (u, V-u)- k bijeeij(V- u)dxdt+ 

{T r j(p, I O"N I, (I Vr I -I Ur I)) dsdt "2: (19) 
la lr2 
{ fvdxdt + 1 pvdsdt \/v E K, 

lQ /2 

k Bcpdxdt + k (cije,j1fJ,i + bt/ti,jcp)dxdt + lT fr K(B9 - B)cpdsdt = 

{T r j(p, I O"N I, I Ur l)cpdsdt \/cp EH. 
la lr2 

(20) 
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The existence of solutions to system (19)- (20) was shown in Jarusek, Eck (1999). 

THEOREM 2.1 Assume: (i) the data are smooth enough, i.e. (13), (14), (15) 
are satisfied (ii) r2 is of class Cl,l (iii) the friction coefficient is small enough. 
Than there exists a solution to the problem .{19)- (20). 

Proof. The proof is based on the fixed point theorem of Schouder and is given in 
Jarusek, Eck (1999). First, for a given temperature field B, a unique solution u 
to the contact problem (19) is shown to exist . The proof consists in penalization 
of the inequality (19), friction regularization and employment of localization and 
shifting technique due to Lions and Magenes (see Jarusek, 1996). Next, for the 
found displacement u(B), the existence of a unique temperature field B(u(B)) 
satisfying the heat equation (20) is proved. This procedure defines an operator 
<I> : B---> B. Since the operator <I> maps an appriopiate convex bounded set into 
itself and is completely continuous it implies the existence of a fixed point of this 
operator as well as the existence of a solution to the thermoviscoelastic contact 
problem (19)- (20). • 

We confine ourselves to consideration of the contact problem with a pre­
scribed friction, i.e., 

:F I IJ N I= IJT ~ 1. (21) 

The condition (10) is replaced by the following one, 

UTIJT+ I UT I= 0, IIJT I~ 1 on I X r2 . (22) 

For the sake of simplicity we set Cij = 1, i, j = 1, 2, in (5) . We shall consider the 
temperature flow governing equation (5) with b}j = 0, i,j = 1,2. Moreover, we 
assume, that the boundary condition (12) does not contain the term depending 
on a friction coefficient, i.e. , it has the form 

oe 
on (t , x) = r;,(Bg- B) + g(B, t, x), on (0, T) X r2. (23) 

Let 0. c R 2 be a domain such that n c 0.. We assume that g( ., ., .) : Rx [0, T] x 
0. ---> R satisfies the following assumptions, Myslinski, Troltzsch (1999): 

(A1) g(.,.,.) is continuously differentiable w.r. to (B, t, x) 
I g(O , t ,x) I~ '1/Jo'<l(t ,x) E [O,T] x 0. 
I ge(B , t, x) I + I 9t(B, t, x) I~ '1/JM'<I(B, t, x 
E [-M, M] X [0, 7l x {), 
here, '1/Jo and '1/JM are certain real constants. 

(A2) ge(B, t, x) ~ 0 '<1(8, x, t) E R x [0, T] x 0. 
(A3) Compatibility conditions: Bo(x) = Bo 

is constant on 0. and g(B0 (x),O,x)) = 0. 

(24) 
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go(B, t, x) denotes the derivative of function g with respect to B. By introducing 
a set 

(25) 

and taking into account (22), (23) we transform the system (20)- (21) into : find 
u E K, >- E A and () E H such that, 

1 u(v- u)dxdt + a0 (u , V-u)+ a1(u, V-u) -1 bij{)eij(V - u)dxdt-
Q Q (26) 

1 >-r(vr- ur)dxdT 2: r fvdxdt + 1 pvdxdt 'Vv E K, 
n k n 

{ iJcpdxdt + { B,1cp,idxdt + {T { ;;,( ()9 - B)cpdsdt+ JQ JQ Jo lrour, 

{T { (;;,({)9 - B) +g(B,t, x))cpdsdt =O 'VcpEH. 
lo lr2 

3. Formulation of the shape optimization problem 

(27) 

(28) 

We are going to consider a family {f2s} of the domains f2 8 depending on pa­
rameter s. For each S18 we formulate a variational problem corresponding to 
(26)- (28). In this way we obtain a family of the variational problems depending 
on s and for this family we shall study a shape optimization problem, i.e., we 
minimize with respect to s a cost functional associated with the solutions to 
(26)- (28). 

We shall consider the domain S18 as an image of a reference domain S1 under a 
smooth mapping T s. To describe the transformation T s we shall use the speed 
method Sokolowski, Zolesio (1992). Let us denote by V(s, x) the sufficiently 
regular vector field depending on parameter s E [0, '!9), '!9 > 0: 

V( .,.) : [0, '!9) X R2 --> R2 , 

V (s, .) E C 2 (R2 , R 2 ) 'Vs E [0, '!9), V(. , x) E C([O, '!9), R 2 ) 'Vx E R 2 . (29) 

Let T s (V) denote the family of mappings: T s (V) : R 2 3 X --> x( t, X) E 

R2 where the vector function x( .,X) = x( .) satisfies the system of ordinary 
differential equations: 

(30) 
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We denote by DTs the Jacobian of the mapping Ts(V) at a point X E R 2 . 

We denote by DT_;- 1 and * DT_;- 1 the inverse and the transpose inverse of 
the Jacobian DTs, respectively. Js = detDT8 will denote the determinant 
of the Jacobian DTs. The family of domains {f2s} depending on parameter 
s E [0, '!9), '!9 > 0, is defined as follows: f2o = f2, 

f2s = Ts(f2)(V) = {x E R2 : ::JX E R2 

such that, x = x(s,X), where the function x(.,X) satisfies (31) 

equation (30) for 0:::; T :::; s }. 

Let us consider problem (26)-(28) in the domain f2s. Let Fs, Ks, As be 
defined, by (16) , (17), (23), respectively, with f2s instead of n. We shall write 
Us= u(f2s), O's = u(f2s) and Bs = B(f2s)· The problem (26)- (28) in the domain 
ns takes the form: find Us E Ks, As E As and Bs E Hs such that 

1 iis(V - Us)dxdt + a0 (us, V- Us)+ a1(us, V- Us) -
Q, 

l bijBseij(v- Us)dxdt -1 Ars(vr- itrs)dxdT > (32) 
Q. ~· 1 fvdxdt + 1 pvdxdt 't:/v E H 112 (I; H 1 (f2s; R2 )) n K , 
Q, /s2 

(33) 

Bsr.pdxdt + r Bs,jt.p,idxdt + {T r r;,(Bg- B)dsdt + 
JQs Jo Jrsour.,1 

T 

{ { (r;,(B9 - Bs) + g(Bs, t, x))r.pdsdt = 0 't:/r.p E Hs. 
Jo Jr •• 

(34) 

Let us formulate the optimization problem. By {2 c R 2 we denote a domain 
such that f2s C {2 for all s E [0, TJ), 1'J > 0. Let cp E M be a given function. The 
set M is determined by 

Let us introduce, for given cp E M, the following cost functional: 

Jq,(us) = 1 O'sNc/JsNdZdT, 
/.'l2 

(36) 
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where !/JsN and CJsN are normal components of !/Js and as, respectively, depend­
ing on parameter s. Note that the cost functional (36) approximates the nor­
mal contact stress, Haslinger, Neittaanmiiki (1988), Klabring, Haslinger (1993), 
Mysli1l.ski (1994). We shall consider a such family of domains {Ds} that every 
Sls, s E [0, tJ), tJ > 0, has constant volume c > 0, i.e., every Sls belongs to the 
constraint set U given by 

U={Sls: { dx=c}. 
ln, 

We shall consider the following shape optimization problem: 

For given !jJ EM, find the boundary f2s of the domain Ds 

occupied by the body, minimizing the cost functional (36) 

subject to Sls E U. 

(37) 

(38) 

The set U given by (37) is assumed to be nonempty. (us, As, Bs) E Ks x As x Hs 
satisfy (32)- (34). Note that the goal of the shape optimization problem (38) 
is to find such boundary r2 of the domain n occupied by the body that the 
normal contact stress is minimized. Remark, that the cost functional (36) can 
be written in the following form, Haslinger , Neittaanmiiki (1988), Telega (1987): 

l CJsN!/JsNdSdT = 1 Us!/JsdXdT + 1 CJsij(Us)ekl(!/Js)dxdT -
"1<2 Q, Q, 

l f!/JsdxdT -l bijBseij(!/Js)dxdT (39) 
Q, Q, 

1 Ps!/JsdzdT -1 CJsT!/JsrdzdT. 
/ s l "Ys 2 

We shall assume that there exists at least one solution to the optimization 
problem (38). It implies the compactness assumption for the set (37) in a 
suitable topology. For detailed discussion concerning the conditions assuring the 
existence of optimal solutions see Haslinger, Neittaanmiiki (1988), Sokolowski, 
Zolesio (1992) . 

4. Shape derivatives of contact problem solution 

In order to calculate the Euler derivative (see Sokolowski, Zolesio, 1992) of the 
cost functional (36) we have to determine the shape derivatives ( u', X, B') E 

F x A x H of a solution (us, As, Bs) E Ks x As x Hs of the system (32)- (34). 
Let us recall from Sokolowski, Zolesio (1992): 

DEFINITION 4.1 The shape derivative u' E F of the function Us E Fs is deter­
mined by: 

(us) In= u + su' + o(s), (40) 
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where 11 o(s) IIF /s-+ 0 fors-+ 0, u = uo E F, UsE F(R2 ) is an extension of 
the function Us E Fs into the space F(R2 ). F(R2 ) is defined by {10) with R2 

instead of n. 

In order to calculate the shape derivatives ( u', X, B') E F x A x H of a solution 
(Us, As, Bs) E Ks x As x H8 of the system (32)-(34), first we calculate the material 
derivatives (u•, A., e•) E F X A X H of the solution (us, As, Bs) E Ks X As X Hs to 
the system (32)-(34). Let us recall the notion of material derivative, Sokolowski, 
Zolesio (1992): 

DEFINITION 4 .2 The material derivative u• E F of the function Us E Ks at a 
point X E n is determined by: 

( 41) 

where u E K, Us oTs E K is an image of function UsE Ks in the space F under 
the mapping T s. 

Taking into account Definition 4.2 we can calculate material derivatives of a 
solution to the system (32)-(34): 

LEMMA 4.1 The material derivatives (u•,A•,e•) E K 1 x A x H of a solution 
(us, As, Bs) E Ks x As x Hs to the system {32) - (34) are determined as a unique 
solution to the following system: 

k {u•ry + ii.ry• + ii.rydivV(O) + aii(u•)ekl(ry) + aii(u)ek1(ry•)-

O'ij(u)[T DV(O)Dry + DV(Of Dry]- aij(ry)[T DV(O)Du + DV(Of Du] -

rry- fry• + (aij(u)ekl(ry)- fry)divV(O)}dxdT -

k [bijB•eij(ry) + bijBeij(ry•)- biiB[T DV(O)Dry + DV(Of Dry] + (42) 

bijBeij(ry)divV(O)Jdxdt -

J (p•ry + pry• + pryD)dxdT- j p•ryr + Aryr + Ai]rD}dxdr:::: o 
'Yl 12 

\;fry E K1, 
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fo7 j~ {[-e• ~~- e 8~· divV(O)J + [ve·v<p+ 

'VB'V<p•] + [divV(O)J- (T DV(O) + DV(O))'VB'V<p]}dxdt = 

{T { og 
Jo Jr { 8Be•<p + g'V<pV(O) + 'Vg<pV(O)+ 

621 

(44) 

g<p(divV(O)- (DVn, n))}dzdt + k B0<p(x, O)divV(O)dx V<p EH, 

where V(O} = V(O,X}, DV(O} denotes the Jacobian matrix of the matrix V(O} 
and div denotes a divergence operator. Moreover 

K1 = {~ E F : ~ = u- DVu on f'o, ~n?: nDV(O)u on A1 , 

~n = nDV(O)u on A2 }, 

Ao={xE/'2: UN=O}, A1={xEB: O"N=O}, 

A2 = {x E B : O"N < 0}, 

Bo = {x E /'2 AT= 1, UT=/= 0}, 

B1 = {x E /'2 

B2 = {x E /'2 

L1 ={~EA 

and D is given by 

AT= -1, UT= 0}, 

AT = 1, : UT = 0}, 

: ~?: 0 on B2 , ~:::; 0 on B1, ~ = 0 on Bo }, 

D = div V(O)- (DV(O)n, n). 

(45) 

( 46) 

(47) 

(48) 

( 49) 

Proof. The proof is based on approach proposed in Sokolowski, Zolesio (1992). 
F irst we transport the system (32)- (34) to the fixed domain n. Let U 8 = Us 0 

Ts E F, u = uo E F, As= AsoTs EA, A= Ao EA. Since in general us tJ_ K(O), 
we introduce a new variable zs = DT:;- 1 ~s E K. Moreover , z = u- DV(O)u, 
Jarusek (1996), Sokolowski, Zolesio (1988). Using this new variable zs as well as 
the formulae for transformation of the function and its gradient into reference 
domain n, Sokolowski, Zolesio (1988, 1992), we write the system (32)- (34) in 
the reference domain n. Using the estimates on time derivative of function u, 
Jarusek (1996), the Lipschitz continuity of u, A and e satisfying (32)-(34) with 
respect to s can be proved. Applying to this system the result concerning the 
differentiability of solutions to variational inequality, Sokolowski, Zolesio (1988, 
1992), we can expect that the material derivative (u•,A•,e•) E K 1 x A x H 
satisfies the system (42)- (44). Moreover, from the ellipticity condition of the 
elasticity coefficients by a standard argument, Sokolowski, Zolesio (1988), it 
follows that ( u•, A •, e•) E K1 x A x H is a unique solution to the system ( 42)­
(44). • 
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Recall, Sokolowski, Zolesio (1992), that if the shape derivative u' E F of the 
function Us E Fs exists, then the following condition holds: 

u' = u•- \?uV(O). (50) 

From the regularity result in Jarusek (1996), Mysli1l.ski, Troltzsch (1999) , it 
follows that: 

vuV(O) E F, \JArV(O) EA, v8V(O) EH, (51) 

where the spaces F, H and L are determined by (16) and (23), respectively. In­
tegration by parts of the system ( 42) - ( 44), and consideration of (50), (51), lead 
to a similar system to (42)- (44), determining the shape derivative (u', Xr, 8') E 

F x L x H of the solution (u 8 ,A8r,8s) E Ks x Ls x Hs of the system (32)- (34): 

j~ [il'TJ + UTJ1 + (DV(O) +T DV(O))uTJ] dxdT + 1 UTJV(O)ndsdT+ 

j~ aij(u')ekzTJdxdt- j~[bij81 eij(TJ) + bij\78V(O)eij(TJ')]dxdt + 

j. {.A'iJr+AiJfy,}dxdT+h(u,TJ)+I2(A,u,TJ) :::::0 \/7]EN1, 
"/2 

1 [ufy,(J.L- A)- urA']dxdT + h(u, J.L- A) ::::: 0 \/J.L E L1, 
"/2 

loT k { -8'~~ + \78'\?cp}dxdt+ 

loT l {8~~V(O)n + \78\?cpV(O)n}dsdt = 0, 

N1 = {TJ E F : TJ = A- DuV(O), A E KI}, 

h(cp,rf;) = 1 {aij(cp)eklrP- frf;-

((\?pn)rf; + (p\?rf;)n + prj;H)V(O)n}dxdT, 

l2(J.L, cp, rj;) = ;· {(\?J.L)n\74; + J.L(\7(\?cpn))cp+ 
"12 

J.LY'<PrH + J.LV'cpn} V(O)ndxdT, 

(52) 

(53) 

(54) 

(55) 

(56) 

(57) 
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h(cp, J-L - >.) = j. (cpn)(J-L- >.) + cp(\7 J-Ln) - cp(\7 >.n)+ 
'"'12 (58) 

cp(J-L- >.)H]V(O)ndxdT, 

where H denotes the mean curvature of the boundary r, Sokolowski, Zolesio 
(1992). 

5. Necessary optimality condition 

Our goal is to calculate the directional derivative of the cost functional (36) with 
respect to the parameter s. We will use this derivative to formulate necessary 
optimality condition for the optimization problem (38). First, let us recall from 
Sokolowski, Zolesio (1992) the notion of Euler derivative of the cost functional 
depending on domain n: 
DEFINITION 5.1 Euler derivative dJ(fl ; V) of the cost functional J at a point n 
in the direction of the vector field V is given by: 

dJ(fl ; V)= limsup[J(fls)- J(fl)]/s. (59) 
s-->0 

The form of the directional derivative dJq,(u; V) of the cost functional (36) is 
given in: 

LEMMA 5.1 The directional derivative dJq,(u; V) of the cost functional {36) , for 
cp E M given, at a point u E J{ in the direction of vector field V is determined 
by: 

dJq,(u; V)= j~[u1 1] + U1]1 + (DV(O) +T DV(O))u1J]dxdT+ 

1 U'I]V(O)ndsdt + h (J~jek1 (cp)dxdt + 

{ [((Jijekl(cp)- fcp)V(O)n]ds- { (\lpcpV(O) + lr Jr1 
p v cpV(O) + pcpD)ds- { (J~cprds + h(u, cp)- !2(>., u, cp), lr2 

(60) 

where (J1 is a shape derivative of the function (J s with respect to s. This derivative 
is defined by (40). vP is a gradient of function p with respect to x. Moreover 
V(O) = V(O,X) , cpr and (JT are tangent components of functions cp and (J , re­
spectively, as well as D is given by (49). 

Proof. Taking into account (36), (39), as well as the formula for transformation 
of the gradient of the function defined on domain ns into the reference domain 
n, Sokolowski, Zolesio (1992), and using the mapping (29)- (30) we can express 
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the cost functional (36) defined on domain ns in the form of the functio.nal 
Jc/>(us) defined on domain n, determined by: 

Jc/>(us) = k Usrp detDTsdxdT+ 

k [rrij(DTsus) Ckz(DTsrpD- r rp)detDTsdxdT­

k bijeseij(DTsrp)dxdT-

1 psrp 11 detDT/ DT;1n 11 dsdT-
1'1 

1 Asrrpr 11 detDTs * DT;1n 11 dsdT, 
1'2 

where us = Us o Ts E F, u = uo E F and>..= >..o EA. By (59) we have: 

dJc/>(u; V) = lim sup[Jc/>(us)- Jc/>(u)]/s . 
t-+0 

(61) 

(62) 

Note that it follows by standard arguments, Haslinger, Neittaanmaki (1988), 
Myslinski, Troltzsch (1999), Sokolowski, Zolesio (1992), that the triple 
(us, AsT, Bs) E Ks x Ls x Hs , sE [0, '!9), '!9 > 0, satisfying the system (32)- (34) is 
Lipschitz continuous with respect to the parameters. Passing to the limit with 
s _, 0 in (62) and taking into account the formulae for derivatives of DT;-1 and 
detDTs with respect to the parameters, Sokolowski, Zolesio (1992) , and (40) 
we obtain (60) . • 

In order to eliminate the shape derivatives u', >..', B' from ( 60) we introduce 
an adjoint state (r, q,p) E K 2 x L2 x L3 defined as follows: 

r r(dxdT + r CTij(()ekl(rp + r)dxdT + 1 (r(q - A)(dxdT = 0 
}q }q /'2 

\/( E K2, (63) 

with 

r(T,x) = 0, r(T,x) = 0, 

1 (rr + ~r - ur )odxdT = o, 't!o E L2, 
/'2 

(64) 

{T / Op {T { {T { () 
lo ln- ot cpdxdt + lo ln \lp\lcpdxdt- lo lr2 a~pcpdsdt - (65) 

L \lcpqdx + l qcpnds = 0 Vcp E H, (66) 
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and p (T, x) = 0. Moreover 

K2 = {( E K1 : (n = 0 on Ao}, 

L2 = { r5 E A : r5 = 0 on Ao n Eo } . 
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(67) 

(68) 

Since cjJ E M is a given element, then by the same arguments as used to show 
the existence of solution (u, -\,e) E K x L x H to the system (32)-(34) we can 
show the existence of the solution (r,q,p) E K 2 x L 2 x H to the system (63)­
(65). From (60), (52), (53), (63), (64) and (65) we obtain 

dJq,(u; V)= h(u, cP + r) + h(>-, u, cP + r) + l3(u, q- -\). (69) 

The necessary optimality condition has a standard form (see Haslinger, Neit­
taanmaki, 1988; Hang, Choi, Komkov, 1986; Hlavacek et al., 1986; Sokolowski, 
Zolesio, 1992): 

THEOREM 5.1 There exists a Lagrange multiplier J-L E R such that for all vector 
fields V determined by (29), (30) the following condition holds: 

dJq,(u; V)+ J-L l V(O)nds 2 0, (70) 

where dJq,(u; V) is given by {69) . 
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