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Abstract. Analysis of geographica11y related data often requires the 
combination of data from different sources. Data are commonly repre­
sented in grids, and unfortunately, the grids containing different data 
do not match properly: they can differ in cell size and/or orientation. 
A novel methodology was presented to a1Jow the data of one grid to be 
remapped onto the other grid. The method makes use of a fu7..zy infer­
ence system that performs the remapping, using additional information 
relating to the data distribution. Previous research has revealed that the 
best parameters used in the inference system are dependent on the input, 
and as such an automatic determination of which parameters should be 
used, would improve the performance. In this article, we propose a solu­
tion for this automatic dctcc:tion, hy first, gC'ncrating a training set that 
is related to the input and then determining what the best parameters 
are for this training set. 

Keywords: map overlay, spatial reasoning, fuzzy inference system 

1 Introduction 

Tn geographic sciences, there often is a need to combine data coming from dif­
ferent sources. Combining such data poses interesting problems: the data are 
obtained using different technologies and commonly the format in which the 
data are presented differs. A common representation format for numerical data 
spread over a region (such as e.g. concentration of a pollutant) is a grid: a raster 
that divides the region of interest into a number of cells, each of which is as­
signed a value that is considered to be representative for the area covered by 
that cell. However, different data can l,e defined on incompatible grids, these 
are grids between which there is no one-to-one mapping of the cells of the grids. 
Consequently, it is very difficult to compare the different grids, and to draw 
conclusions. As there is no clear mapping of one cell to another cell, it is dif­
ficult to perform correct calculations and to draw reliable conclusions. This is 
for example the case when studying the exposure of humans to specific airborne 
pollutants, where the population data does not align properly with the pollution 
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data, but it also occurs io many environmental or wildlife studies. In [l], a novel 
methodology to pre-process gridded data to belp solve this issue was proposed. 
This approach uses a fuzzy inference system in order to derive new output val­
ues. The inference system requires parameters that relate to the output; several 
candidate parameters were presented in [2]. Initial observations presented in [3] 
showed tbat tbe performance of tbe system is highly dependent on the parame­
ters used. In [3], these parameters were chosen iotuitively and manually in order 
to judge the performance under ideal conditions. In this article, a methodology 
to find ideal parameters using an automatically generated training set for a given 
dataset is presented and verified using experiments. 

2 Problem description 

2.1 Map overlay problem 

Combining data that are represented on different grids implies combining the 
data in the cells of the grids. The firs t issue is that there ru-e many ways to 
define a grid: the size of the grid celL'5 can differ, or one grid can be at an 
angle when compared to another grid. Grids with different orientation or size 
of grid cells are called incompatible, which makes it very difficult to compare 
data io one grid to data on the other grid. This is further complicated by the 
second is.sue: io a grid, the grid cell is considered to be the smallest unit for 
which data arc known . With each grid cell, a number, representative for the cell, 
is as.sociated. Usually, this is an aggregated value, but the underlyiog spatial 
distribution that resulted in the value is not contained in the data. If the number 
for instance holds the concentration of a pollutant, there is no way of knowing 
how it is distributed inside the cell: there can be a single point source, or it can 
be uniformly distributed over the area covered by the cell. The fact that the 
distribution is not known makes it rlifficult to map cells of incompatible grids to 
one other; the problem is referred to in literature as the map overlay problem. 
The general approach to solve the map overlay problem, is to remap one grid onto 
to other grid (sometimes implicitly), io order to achieve a one-to-one mapping 
between the grid cells. 

2.2 Current approaches 

General concept To find a clear mapping between different grids, the most 
straightforward idea is to transform one grid onto the other grid; this means 
remappiog the data contained io one grid, to match the other grid. This makes 
the grids compatible, and results in a one-to-one mapping of the grid cells of 
both grids. Different methods exist, an overview of current solutions is io [4] and 
in [5]. A short overview is listed below. 

Areal weighting In areal weightiog, the data represented within each cell is 
considered to be uniform over the cell, and independent of neighbouring cells. 
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The contribution of a cell of one grid to a cell in the other grid is determined 
by the amount of overlap: the percentage of overlap is the percentage of the 
modelled value that is mapped in the other grid cell. 

Areal smoothing Tn areal smoothing, the modelled feature is considered to be 
smooth over the area; mathematically this is achieved by interpreting the mod­
elled feature as a third dimension and fitting a smooth surface over the volume. 
Resampling this smooth surface using a different raster, results in the remapped 
grid. Tn both approaches, a&sumptions regarding the underlying distributions are 
made, but these assumptions very often have no connection to the real world 
situation. 

Regression methods Different regression methods to approach the problem 
exists. Tn these methods, an attempt Ls made to establish patterns of overlap, 
which are then used to estimate the data. The data are often assumed to have 
a specific distribution (e.g. poisson). The assumption of the distribution is also 
here what limits the po&Sibilities of this approach. 

2.3 Additional data approach 

Data fusion is a field in which different datasets are combined with the aim of 
providing a higher quality dataset. Tn [6], the authors combine datasets that 
contain descriptive data: regions on the map are annotated with text labels to 
indicate types of land cover. The definition of the regions differ, as do the text 
labels used, yet it is possible to combine the knowledge to yield a better data. 

When considering a grid with numerical data, often other data are avail­
able that are known to be related to this data. In the origin of our research, 
the numerical data concerns concentration of specific airborne pollutants. Other 
studies have shown a correlation between the presence of these pollutants and 
traffic. Consequently, the distribution of the pollutant should relate to the road 
network and traffic density - taking into account dispersion of the pollutants, for 
which we have a dispersion model available. Tn [1), it was proposed to use this 
additional information: the transformation of a grid that contains data on such 
a pollutant might be done better when taking the road network into account. 
However, using additional information po..c;cs new problems. Even though a cor­
relation between both supplied data (particular pollutant and traffic) might be 
known, in general, the data will be from different sources and may conccn1 data 
measured at different times or with different accuracy. Furthermore, there is no 
guarantee that the supplied additional knowledge is the only explanation for 
the original data: there may be other sources of this particular pollutant that 
are not known or supplied. The additional information can therefore only be 
used to supply information on the underlying dLstribution. Following this addi­
tional information too strictly might yield no solutions or might obfuscate other 
sources. Despite these uncertainties and imprecisions, it is possible to perform 
an intelligent reasoning in order to achieve a better distribution. The intelligent 
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reasoning is further elaborated on in [l], the subsequent intelligent method and 
initial results arc described in more detail in [7]. 

3 Al Algorithm 

3.1 Prerequisites 

The algorithm presented in [7] processes the data using a fuzzy inference system, 
in a way that mimics the intelligent reasoning. The fuzzy inference system is a 
concept from artificial intelligence, in which fuzzy sets are used to dett:rmine new 
values. Fuzzy set theory is an extension of traditional set theory which, among 
other things, allows for the representation of uncertain or imprecise values. This 
is achieved through the use of a membership function, which maps the domain 
onto the interval [0, l] 

A= {(x,µ,;(x))lx EA} 

µCA) : A • [0, Jj 
XHµ,;(x) 

Higher membership grades imply higher possibilities or certainties - this depends 
on the interpretation given to the fuzzy set ([8]). A consequence of the ability to 
represent imprecise values, is that fuzzy sets also can be used to represent linguist 
terms such as high or low, by defining a linguistic term as a fuzzy set over the 
domain and associating higher membership grades to values of the domain that 
better match the linguistic term. If for example v-a.lues range between 0 and 
100, the linguistic term representing high can be represented by a fuzzy set that 
increases linearly from 0 for the value 80, to I for the value 100. The core of the 
fuzzy inference system is a set of rules of the form 

IF xis <linguistic term> 
TIIEN y is <linguistic term> 

Here, x is an input variable that it matched with the linguistic term; the first 
is is a fuzzy match that matches a numeric value with a fuzzy set (which is the 
representation of the linguistic term). As such, the rule is a representation for a 
natural language predicate, e.g. if x is high. Multiple parameters and linguistic 
terms can be combined through logical operators such as and and or, to form 
a more elaborate premise. The y is the output value that is assigned a value, 
which is a linguistic tem1 also represented by a fuzzy set. The inference system 
has multiple rules, and typically all these rules arc cv-a.luated. As multiple rules 
can have a matching premise, there can be multiple values for y. These arc 
aggregated using a standard fuzzy aggregation method to yields a single fuzzy 
set that represents the output value. This is then defuzzilied to result in the 
crisp, numerical value returned by the system. 
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3.2 Translating the problem to fit a rulebase 

Parameters Tn [7), it is explained how the given problem is translated to fit the 
rulebase approach. The ruleba.se system can he considered separately for each 
cell in the output grid; the output value y is the value that should be associated 
with the cell. To employ the rulebase, it is necessary to find parameters x that 
relate to the ideal output. With these parameters, it is possible to generate 
a rulebase that will compute an output value y. For a given output cell, one 
example of such a parameter would be the total value of the auxiliary cells 
that overlap with the output cell. In [2], different parameters were proposed, 
some based on overlapping cells, others based on distances. As the value of 
the parameter will need to be matched against linguistic terms, an adequate 
range for each parameter is also needed: this range allows us to defined the 
linguistic terms, and thus to say when a value is high or low. Tn [2], a number 
of intuitively obtained parameters were proposed and manually verified. In [3], 
several parameters and their ranges were considered, and simulations were run on 
artificial data. For each segment, every parameter and its possible range ( which 
is specific for each segment) were calculated. The parameters were manually 
selected and used in the fuzzy inference system to determine the underlying 
distributions. The simulations showed that the performance of the system is 
different per case, and that different datasets benefit from a different selection 
of parameters. Consequently the performance of the system can be improved 
by finding the most appropriate parameters for a given dataset. However, even 
though the target grid is supplied, directly calculating new values for the cells of 
the target grid is problematic: a cell in the target grid can overlap with multiple 
input cells. This makes it difficult to determine its value, as different input cells 
are involved, and the portion of each input cell that should be mapped to the 
output cell needs to be found. 

Segments Basically, the goal is to redistribute the data within each input cell, 
and then remap it to the target grid. This can be done by considering a new grid, 
obtained from the intersection between input and target grid, referred to as the 
segment grid. The segment grid is an irregular grid, which has the property that 
every segment belongs to exactly one cell in the input grid, and to exactly one 
cell in the output grid. Furthermore, every cell both in input as output grid is 
covered by an integer number of segments. Examples are shown on Figure 2(a) 
and 3(b). Consequently, it is possible to redistribute the data of an input grid 
cell over the segments that are covered by it. After this, the value of a grid cell in 
the target grid can be computed by aggregated the the different segments that 
it covers. For the rulebase system, the segment grid will be used as the target 
grid. 
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4 Paranieters 

4.1 What are the best parameters? 

In [2], a number of parameter definitions were proposed. These range from quite 
intuitive v-alucs {e.g. amount of overlap between a segment and the additional 
data), to more elaborate ones (e.g. the distance to high v-alues in additional data 
that do not overlap the overlapping input cell). Not only is it necessary for the 
calculated parameter to relate to the optimal output but, it is also necessary to 
find an appropriate range in order to assess when the parameter is high or low. 
Criteria for good parameters are: 

l. relate to the output v-alue 
2. have a proper range 

4.2 Relating to the output 

The first requirement of a good parameter, is that it relates to the output value, 
yet in general, the output v-aluc is unknown. Suppose that output value is known, 
then it is possible to use the Pearson correlation {l) to determine for each pa­
rameter whether or not it relates to the ideal output, and how well it relates. 
Pearsons's product-moment correlation between a list of values X and a list of 
v-alues Y is defined as {[91): 

cor(X Y) _ L (x, - E(X))(y, - E(Y)) 
' - , (n - l)s(X)s(Y) 

{l) 

Here, E() is the expected value, approximated by the meau of the list , and 
s{) the notation for the standard deviation of the list. The Pearson correlation 
results in a value in the range [-1, l]. Positive numbers imply a proportional 
correlation {thus for the parameter, this implies a proportional connection: high 
v-d!ues relate to high v-alues) and negative numbers an inverse correlation {thns 
high v-d!ucs relate to low v-alucs). The closer the v-d!uc is to 0, the weaker the 
correlation. The Pearson correlation therefore not only provides data how the 
parameter relates to the output, but also how well it relates. The problem with 
nsing the Pearson correlation is that it requires a data set in which ideal output 
values arc known, which moves the problem of finding good relating parameters 
to finding a suitable training set. This will be considered in Section 5.1. 

4.3 Proper range 

After the first stage of determining what the good parameters are, it needs to 
be investigated if an appropriate range for the parameters can be defined. A 
parameter that shows perfect behaviour compared to the ideal output is nseless 
without a properly defined range, as there would be no frame of reference to 
know if the value is high or low in the rulebase system. The range of a parame­
ter should reflect the possible values of the parameter. The lower bound of the 
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range is defined as the lowest possible value that this segment cau have while 
still maintaining a possible remapping. The upper bound is defined as the high­
est possible value that this segment cau have while still maintaining a possible 
remapping. An appropriate range has the following properties: 

1. it is not a degenerate interval for all segments 
2. it is such that the parameters for different segments do not have the same 

relative value within the range 

If the range is degenerate, i.e. lower and upper limit arc equal (and thus equal 
to the parameter), the evaluation to high or low will yield the same result, 
and this parameter will not contribute to the outcome. However, the range can 
be degenerate for some segments: the parameter would still contribute for the 
segments for which it docs have a valid range. If a parameter evaluates the same 
in the range for every segment, then this parameter docs not contribute either. 
All the evaluations for the parameter will be the same (it will always be low, or 
always be high, to the same extent), for every segment. This property is more 
computationally intensive to verify, as it implies evaluating the parameter with 
the range and comparing the outcome for all segments. 

4.4 Example 

A simple example for a parameter is the value represented in the overlapping 
cells of the auxiliary grid. For a given output segment, the value of the param­
eter x will be the weighted sum of all overlapping auxiliary cells, where the 
percentage of overlap are the weights; this is the value that would be assigned to 
the segment in the case of areal weighting. The range is considered specifically 
for this parameter and this output segment, and will be the possible range this 
parameter can have. The highest possible value occurs if the value of the over­
lapping auxiliary cells is completely mapped onto this segment. This simulates 
the situation where the explanation for the value of these cells is fully located 
inside the selected segment, and this provides an upper limit. The lowest possible 
value is the inverse situation: the justification for the value of the overlapping 
auxiliary cello; is not in the segment, in which case the lowest possible value is 
0. It should be noted that if cells of the auxiliary grid are fully contained inside 
this segment, then the sum of their values serves as the minimum possible value 
(this data can never be mapped outside the segment). Other parameters and 
ranges arc calculated in a similar way. 

5 Parruneter selection 

5.1 Data generation 

Tn order to select which parameters are suitable using the Pearson correlation, 
it is necessary to obtain data that is representative for the given problem, but 
also has an ideal output. 
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In [3), the author concluded that the parameters are highly dependent on 
the dataset used. Additional experiments showed that the main reason is the 
difference between the rasters: how are the grids oriented and what are the 
relative cell sizes'/ It was observed that - as long as the rasters arc similar - the 
ideal parameters arc usually the same1 • As such, it is sufficient to generate a 
training set that has the same grid definitions as the supplied problem. It still 
needs values for different cells; to achieve that, geometrics as shown on figure 
le were generated and v-a.lucs were associated with the features. The pooitioning 
and values of the features was not random, but followed specific rules to force 
a variety in the numerical data. The main argument for not generating the 
training using fully random data to prevent situations where the randomness 
might yield less adequate training set, and consequently to also make sure the 
developed system is deterministic. The pattern was choocn so that it is easily 
accommodated for different grid definitions; it also provides a subjective view 
on how good the grids are an approximation of the situation. The pattern was 
then sampled using the provided grids. 

5.2 Calculation 

In the test data, it is possible to calculate every parameter and its range, for every 
output segment. As the test pattern was also sampled with the segment grid, 
there is an ideal value for each segment. Consequently, the Pearson correlation 
can be calculated for each candidate parameter, comparing its values with the 
ideal output values. The best parameters are those with the correlation v-a.lucs 
furthest from 0. 

Note that it is also possible to calculate the range on the training set, and 
only keep those parameters that have a good range. However, the range is specific 
to the value of a parameter and segment in a given situation and it.s computation 
does not need the ideal output v-a.lue. There actually arc several benefits to cal­
culating the range on the original dataset rather than on the training set. First, 
it will allow to select thooe parameters that have a proper range for the current 
problem. Even though the training set is made such that it should resemble the 
original data quite well, there may be situations in which the range for a given 
parameter in the dataset is degenerate for all segments, even though it is not in 
the training set. In such situation, the use of the parameter and its range will 
not contribute to the evaluation. Consequently, it may be omitted {for perfor­
mance reasons) or it may be replaced by another a parameter that has a valid 
range, even if it has worse correlation. Using the original dataset to determine 
if a parameter docs not have a degenerate range for all segments increases the 
chance of using a good parameter and range. The second benefit is related to 
performance. The range has to be calculated for the chooen parameters in the 
given dataset in order to determine the new values. There is no real need to know 
the range for the training set, so thooe calculations do not need to be performed. 

1 This might not be the case if the data modelled is very similar iu neighbouring cells, 
as is for instauce the case when resampling a grid over a grid with smal]er cells. In 
such situations, the grid gives the impression of a higher accuracy than the data. 
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6 Experiments 

6.1 Prerequisites 

In [~], rliffPrent data.sets werp considered anrl test.er! using three manually and 
optimally chosen parameters. For the experiments here, a two artificial datasets 
are considered. These are ma.de from sampling the geometries as shown on Figure 
la and lb. For these artificial datasets, an ideal solution is known and as such, it 
is possible to determine what the best parameters are without having to resort 
to the generation of a test dataset. The geometries are quite different: the first 
one is comprised of line sources whereas the second one only has area sources. 
In addition, the reference geometry as described in 5.1 and shown on Figure le 
will be generated. This is a geometry designed to exhibit different properties; it 
only has line sources, but with a specific pattern and different values for different 
lines. 

~~ •• '-' ... ' 
' . 

' r -
i 
' . 
. 

{a) {b) {c) 

Fig. 1. The three geometries used to test the algorithms and their approximation as 
input grids. Geometry (a) contains two line sources with a constant value, geometry {b) 
contains 3 area sources with a constant value and geometry (c) contains different line 
patters with varying associated values. Greyscales are used to illustrated the values: 
higher values are shaded darker. 

The geometries described above will be considered over two different sets of 
grids, to generate two different test cases and one reference test case. For both 
test cases, it is necessary to generate an input grid, an auxiliary grid and an 
output grid. The input grids for the test cases are also shown on Figure l. For 
both cases, the same 12xl 2 grid will be used for the input. 
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6.2 Case 1 

The target grid for case l is shown on Figure 2(a). It is a 25x25 grid that covers 
exactly the same area as the input grid. The segment grid, obtained from the 
intersection of input grid and target grid, is also shown on the figure. F igure 
2(b-d) shows the approximation of the geometrics using the first set of grids 
for auxiliary grid and segment grid. All grids cover exactly the same area; the 
auxiliary grid a 15xl5 grid and the segment grid used in the calculations. On the 
figure, different grey scales are used to indicate different ranges of v-d.lues. The 
segment grids hold the optimal solution, and show how the data of the inpnt 
cells should be redistributed. 

• •·. ,•· •· ;... .....;.. f--i •• - • •· --

·

,. . . ·1 ~-. . . . .. -- . :.... _· -----_ 
' . ' 

' ' 
' ' . ' 

~ . - ~ ~ . . . ; . --

(a) {b) (c) {d) 

Fig. 2. Test case I. Target grid {top) and resulting segment grid {bottom) (a). The 
auxiliary grid (top) and segment grid (bottom), for the first geometry (b), second 
geometry (c), and reference geometry (d). 

All candidate parameters implemented in the prototype were calculated for 
each output cell. Many of these candidates were dismissed as either having no 
correlation to the output (Pearson correlation did not yield a nnmber), or as hav­
ing a degenerate range for all segments. Seven parameters remained. On table 
l, the correlations of the seven remaining parameters arc listed for the different 
datasets, in decreasing order of correlation. While the values are different, pa­
rameters with the best correlations are similar. The first four parameters occur 
in the same order. The last three parameters occur in different order, but their 
correlation is lower than 0.31, which is too low to reliably consider that there is 
a good correlation. 
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6.3 Case 2 

The target grid for the seeond case is shown on Figure 3{a). The same 25x25 grid 
as in the first test case was used, but rotated over 20° counter clockwise. Figure 
3(1>-d) shows the approximation of the geometries using the second set of grids 
for auxiliary grid and segment grid. The auxiliary grid is the same l5xl5 grid as 
before, but rotated at a 10° angle compared to the input grid. The calculations 

(a) (b) (c) (cl) 

Fig. 3. Test case 2. TaTgct g,id (top) and TCsulting segment g,id (bottom) (a). The 
auxiliary g,id (top) and segment g,id (bottom), for the first geometry (b), second 
geometry (c), and reference geometry (<l). 

were the same as in the previous test case, and again seven parameters remained. 
The order of the parameters is rlifforent comparerl to the previous test case, 
even though the approximated geometries are the same: parameters p2 and p3 
swapped places; parameter p4 went from being the fourth best to being the 
worst parameter. This illustrates that the parameters are linked with the way 
the grids overlap, rather than with the approximated geometries. On table 1, the 
correlations are listed for the three datasets, in decreasing order of correlation. 
While the values for the different geometries are different, parameters with the 
best correlations are similar and occur in the same order. 

7 Conclusion and future work 

Both testcases show that the choice of which parameters are most suitable is de­
pendent on the layout of the grids. Consequently, it is possible to use a reference 
data set, which is completely known beforehand, and use the provided rasters to 
come up with an adequate reference set from which the most suitable parameters 
for the problem can be determined. This allows for an automatically adjusted 
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case 1 casc2 
dataset 1 dataset 2 data.set 3 dataset 1 dataset 2 dataset 3 
pl 0.65 pl 0.94 pl 0.76 pl 0.76 pl 0.99 pl 0.81 
p2 0.60 p2 0.90 p2 0.76 p3 0.76 p3 0.98 p3 0.81 
p3 0.56 p3 0.77 p3 0.62 p2 0.64 p2 0.89 p2 0.74 
p4 0.30 p4 0.49 p4 0.35 p6 0.32 p6 0.36 p6 0.33 
p5 0.18 p5 0.31 p7 0.22 p7 0.20 p7 0.32 p7 0.22 
p6 0.13 p7 0.25 p5 0.21 p5 0.18 p5 0.27 p5 0.20 
p7 0.12 p6 0.21 p6 0.11 p4 0.03 p4 0.02 p4 0.05 

Table 1. The correlat1ons for the parameters m the different datasets in tLe two 
considered testcases, in decreasing order of corre]atiou 

rulebase system to be generated. The key issue will be determining the reference 
set. The current choice performs quite well for the current crop of examples, as 
the order of well correlated parameters is maintained. 

In this article, we presented a methodology to find the best suited param­
eters to use a rulebase system to remap gridded data. The remapping of the 
data is done by means of auxiliary data that have a known correlation and a 
rulebase system. The optimal parameters for the rulebase system are found out 
not dependent on the data, but rather on the grid layouts of the different grids 
that are involved. This property allows for the generation of a reference data set 
with an optimal output, from which the optimal parameters can be determined. 
Using the Pearson correlation, the parameters can be related to the optimal 
output, and their quality can thus be assessed. The discovered parameters can 
then be used in the rulebase system to calculate the desired grid transformation. 
This addition had already been integrated in our current implementation. The 
current reference geometry is sufficient for the considered problems, but it needs 
to be studied further if it is universal enough. 
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