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Abstract: MCMC setups are one of the best known methods for
conducting computer simulations useful in such areas as statistics,
physics, biology, etc. However, to obtain appropriate solutions, the
additional convergence diagnosis must be applied for Markov Chain
trajectory generated by the algorithm. We present the method for
dealing with this problem based on features of so called "secondary”
chain (the chain with specially selected state space). The secondary
chain is created from the initial chain by picking only some observa-
tions connected with atoms or renewal sets. In this paper we focus
on finding the moment when the simulated chain is close enough
to the stationary distribution of the Markov chain. The discussed
method has some appealing properties, like high degree of diagnosis
automation. Apart from theoretical lemmas and a more heuristic
approach, the examples of application are also provided.
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1. Introduction

The end of the previous century brought a colossal improvement in speed of
calculations. Because of computer development, the researchers could build
more complex, more "real-life” models. The same applies for mathematics,
statistics, physics and biology, where computer simulations are widely used.

One of the best known methods in computer simulations are MCMC (Markov
Chain Monte Carlo) algorithms, successors of MC (Monte Carlo) approach (see
Metropolis et al., 1953; Metropolis and Ulam, 1949). They are commonly used
in many practical areas (see, e.g., Boos, Zhang, 2000; Booth, Sarkar, 1998;
Bremaud, 1999, Doucet et al., 2000; Gelfand et al., 1990; Gilks et al., 1997;
Kass et al., 1998; Koronacki et al., 2005; Lasota, Niemiro, 2003; Li et al., 2000;
Mehta et al., 2000; Robert, Casella, 2004; Romaniuk, 2003).



206 M. ROMANIUK

The MCMC method is based on a simple but brilliant idea. In order to find
the expected value E., h(X) for some function h(.) : X — RP and probability
distribution 7x(.), we could generate Markov Chain Xg, X1, Xo,... with 7x
as the stationary distribution. The convergence of the estimator, derived from
the simulated sample is guaranteed by the ergodic theorems (see, e.g., Robert,
Casella, 2004 for additional details). Therefore, we do not have to generate
values directly from 7x (.) as in the MC method, but we may use more general
algorithms like Gibbs sampler or the Metropolis—Hastings algorithm.

Yet, during the conduct of simulations two questions arise all the time. The
first one is connected with choosing appropriate number of steps ngyay for sim-
ulated trajectory, when the sampled transition probability Prj==*(.) is close
enough to the assumed stationary probability 7x (.) regardless of starting point
zg. The second one is related to finding the number of steps nva,, when the
estimator of E; h(X), derived from the sample Xy, +1, Xnaaet2s - - - s Xnvar
has error small enough, as measured e.g. by variance. These two questions are
covered by convergence diagnosis and are one of the main issues in MCMC sim-
ulations. However, in this paper we focus only on the first problem, i.e. finding
the value ngtat. Some answers for the second problem may be found e.g. in
Romaniuk (2007b).

There is a lot of various convergence diagnosis methods (see, e.g., Robert,
Casella, 2004; El Adlouni et al., 2006, for comparative review). But we have
to say that it is not so easy to compare them and find "the best one” or even
“the best ones”. Firstly, very often these methods make use of different features
of the underlying Markov Chains, e.g. specific probability structure of the state
space. Secondly, the two questions mentioned before are used to be written
in mathematical formulas not corresponding to one another, i.e. not directly
comparable. Thirdly, it is not even possible to draw a comparison between
heuristic and theoretical (i.e. based on mathematical proofs) methods. There-
fore, each new convergence diagnosis method may be seen as an additional tool
for experimenters, which gives them a new possibility to check the obtained
simulations.

In this paper we discuss the methods based on the concept of secondary
chain. The secondary chain is derived from the original trajectory by observing
the samples only in moments determined by special probability rules. These
rules are connected with the notions of atoms and renewal sets, which are specific
examples of more general renewal moments and are a part of renewal theory.

The methods described cover both theoretical and heuristic approaches.

The presented theoretical method has three main advantages. Firstly, it is
supported by strong mathematical reasoning. Therefore, it is far less influenced
by observer’s intuition and his experience than heuristic methods. Secondly,
the obtained solutions are strict, i.e. they are not asymptotic. Hence, this
method is not biased by additional error provided by limit theorems. Thirdly,
the discussed lemmas may be used in a highly automated manner. This gives the
possibility for preparing general diagnosis algorithms for a wide class of MCMC
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problems.

The heuristic approach is also based on mathematical lemma, but involves
subjective graph checking.

The paper is organized as follows. In Section 2 we present the necessary
basic definitions and theorems. Then, in Section 3.1 we introduce the notion of
secondary chain and some fundamental facts about it. In Section 3.2 we formu-
late two inequalities which are directly connected to the convergence diagnosis
questions, mentioned before. Next, in Section 3.3 we present some theoretical
lemmas which constitute the foundation of the introduced method and provide
the answers for the question about ngat. In Section 3.4 we discuss a more
heuristic approach. In Section 4 we present how the derived results may be
applied in two examples. The concluding remarks are contained in Section 5.

Some of the solutions presented in this paper are based on ideas from Ro-
maniuk (2007a and 2007b). As it was mentioned before, in Romaniuk (2007b)
the methods for finding both values ngat and nvy,, were presented. However, for
Nstat appropriate lemmas only in atom case were proved. In this paper we focus
only on the problem of ng,¢ value, but the generalized lemmas for the case of
renewal sets are added. Additionally, a new heuristic approach for both — atom
and renewal — cases is presented.

2. Basic definitions and theorems

In this section we introduce fundamental definitions and theorems. Addi-
tional necessary definitions may be found in, e.g., Bremaud (1999), Fishman
(1996), Robert and Casella (2004).

Let (X;),_, = (Xo = 20, X1,...) denote a Markov Chain (abbreviated fur-
ther MC), and B(X) is the o—field of Borel sets for space X'.

The chain (X;),_, has its values in a space X', where X C N or X € B(RF).
In the first case such MC is called as discrete MC, and in the second — as MC
on continuous state space.

Suppose that the chain (Xj),_, is ergodic and has an adequate stationary
probability distribution wx(.). In this paper the term “ergodicity” means that
the chain is recurrent (or Harris recurrent in case of MC on continuous state
space X), aperiodic and irreducible.

If (X;),_, is a discrete Markov Chain, we define its transition matrix Px as

Px = (Pr (Xp+1 = j| Xk =19)); -1 (1)
where sy is power of X. In case of continuous state space X, let us denote by
Kx(.,.) the transition kernel of this chain

Pr(Xpy1 € B| Xy =2) = /BICX(x,y) dy . (2)
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DEFINITION 1. The set A is called an atom if there exists a probability distri-
bution v(.) such that

Pr(Xy41 € B| X, =2) = v(B) (3)
for every x € A and every B € B(X).

DEFINITION 2. The set A is called renewal set if there exists a real 0 < € < 1
and a probability measure v(.) such that

Pr(Xg41 € B| X =z) > ev(B) (4)
for every x € A and every B € B(X).

These two definitions may be found in, e.g., Asmussen (1979), Robert and
Casella (2004).

If A is a renewal set, it is convenient to slightly change the used MCMC
algorithm, which generates the values of (X;),_,. It is easily seen that

Pr(Xpq1|Xk) — ev(Xpy1)

Pr(Xg1|Xg) = ev(Xp11) + (1 —¢€) . (5)
in case of discrete MC, or
K(zg,z —ev(x
(1) = (i) + (1 — ) S Tt) — Vi) ©)

1—c¢€

for MC on continuous state space X'. Hence, we have the following modification
of the algorithm: when X € A, generate X1 according to
Xk+1 ~ V() if Uk;+1 S €
X1 = Kzp,)—ev() ; (7)
Kppr ~ ———= if Upy1 > €

where U; are iid random variables from a uniform distribution on [0, 1], inde-
pendent on (X;),_,. In view of (5) and (6), the modification (7) of the MCMC
algorithm does not change the properties of the chain. Also its stationary dis-
tribution is still the same, i.e. mx(.). This modification for MCMC algorithms
was introduced in Athreya and Ney (1978), Nummelin (1978). The generation
according to (7) may be difficult because of the complex structure of the "re-

mainder” kernel. A way around this problem was shown in Mykland, Tierney
and Yu (1995).

DEFINITION 3. The atom (or renewal set) A is called geometrically ergodic
atom (or renewal set) if there exist r > 1 and M > 0 such that

[Pry(y) — mx(y)| < Mr™™ (8)

for any z,y € A, where Pr};(.) denotes Pr(X,, = . | Xo = z).
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Let us denote by E., h(X) the expected value of the function h : X — R
calculated according to the stationary distribution 7wx. Appropriate symbols —
Covry(g,h) and Var,, (h) — are used for covariance and variance.

LeEMMA 1. Let (X;),_, be Harris recurrent Markov Chain and

Enalf(X)] = [ 1f@ldrx(@) < o0 Q
for some function f(.): X — R and

B ()] = /X 1(x)|dmx (2) < 00 , By l(X) £0 (10)

for some function I(.) : X — R. Then we have

%H EZ:O f(Xk) p.n. fX f((E) dﬂ'X (JJ)
T oo l(Xk) oo’ [y l(w) drx(x)

For proof of this lemma see Robert and Casella (2004).

3. Proposal of a convergence diagnosis method

In this section we present a convergence diagnosis method for MCMC output.
This proposal uses notions of atorns and renewal sets (see Section 2).

3.1. Introducing secondary chain

Suppose that we are interested in diagnosing convergence of some ergodic
Markov Chain (X;),_, = (Xo = x0, X1,...). We denote a stationary distribu-
tion for this chain by 7x(.), its transition matrix by Px (or transition kernel
by Kx(.,.) in case of MC on continuous state space) and the space of its values
by X. Suppose also that we know two atoms (or renewal sets) A, Ay for this
chain.

Therefore, we can create the secondary chain (Y;),_, based on our initial
chain (X;),_,. If A1, Az are atoms, then we can define

Cl ::min{izl,...:XiEAlLJAg}, (].2)
Cy1 = min{i > X e AL U Ag} R (13)
Y = Xe, . (14)

It is seen that the chain (Y;),_; has Markov Property for the truncated space
V' = {A;, A} — see Lemma 2.
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If these two sets are renewal sets, we should introduce the modification (7)
and change the definition of the chain (Y;),_; to

Cl I:min{i::l,...l(XiEAl/\UiSGAI)\/(XiEAQ/\UiSGA2)},

(15)
<k+1 = min{i > Ck : (Xl e A NU; < 6.»41)\/ ()(Z c A NU; < 6.,42)} R

(16)
Y, = XCk ) (17)

where €4, denotes the parameter e for appropriate renewal set A; in condi-

tion (7). Also in this case the secondary chain (Y;),_, has Markov Property for

the space Y'. As it was mentioned before, a special method to simulate from

the “remainder” kernel may be necessary (see Mykland, Tierney and Yu, 1995).
We may summarise previous observations in a simple lemma:

LEMMA 2. If Ay, Ay are atoms (or renewal sets), the chain (Y;),_, defined by
conditions (12) — (14) (or (15) — (17), respectively) is a Markov Chain for
the space Y := { Ay, As}. This chain is ergodic.

The proof may be found in Romaniuk (2007b).

For simplicity of notation, we continue to call atoms or renewal sets A; as
special sets, keeping in mind different definitions of the secondary chain (Y;),_;
for these both cases.

The moments (; defined previously, may be additionally partitioned between
the corresponding special sets. Hence, we adopt the following definition of Cl-(J )
for the fixed atom A;:

(9D i=min{i=1,...: X; € A}, (18)
C,(Cjﬁl := min{7 > C,(Cj) (X, € A} (19)

For the renewal set A; the definition of Cl-(j ) is an equivalent modification of the
above formulas, i.e.:
ij) =min{i =1,...: X; e ; ANU; < en, }, (20)
¢V =min{i > ¢V X € A4j AU < eny) (21)

Therefore, Cij ) may be considered as the moment of first visit in the set A;.
Next lemma is used as justification for a heuristic method described further.

LeEMMA 3. If sets Ay, A are atoms, then stationary distribution of wy(.) is
given by

fmeAj dmx (‘T)

my (A;) = Joen, dnx (@) + [, drx(x)

(22)

7
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for j=1,2.
If sets A1, Aa are renewal sets, then stationary distribution of wy (.) is given
by
€A; [ren drx ()
Ty A = J 5 23
(4;) €A Jpen, ATx (@) +ea, [y, drx (@) (23)
for j=1,2.

Proof. Because (Y;),_, is MC, then from the strong ergodic theorem for Markov
chains we have

Zyil H(Yi € Aj) p-n.

m m—oo

Yy (AJ) ) (24)
for j = 1,2, where

m=#{i<n:X; €A UA}. (25)
If Ay, Ay are atoms, then let
m(n) =#{i<n:X; € A UA}, (26)

i.e. m(n) is the random number of visits into A; and A;. Because the initial
chain is Harris recurrent, then for n — oo, we have m(n) — oo (see Nummelin,
2001).

From (12) — (14) and Lemma 1 we have

S (Y € Ay) SrMa(Y; € A;)
(

mn) B E:i(ln)]l(Y;EAl UA2)
_ nL-i-l Do L(Xi € Ay) p.n. fmeAj drx (x)
%-i-l Z?:O ]I(Xz c AU AQ) n—00 fw€A1 dﬂx(I) + fIEAg dﬂ-X(.’,E) .

(27)

Comparing (24) with (27), we obtain (22) (see also Nummelin, 2001 for
similar inference).
If Ay, Ay are renewal sets, then let

m(n) =#{i<n:X; € (A1,U; <ea ) U (A2,U; Seny)} - (28)
From (15) — (17) and Lemma 1 we have

E:;(ln) 1(Y; € Aj) _ Z?;(ln) 1(Y; € A;j)
min) S (Y € AL U Ag)
Y (X € Ay, Ui < eq,)

= —
T 2oimo (X € (A1, Ui < ea) U (A2, Us < ey))

p.n. €A; TEA; dmx (:E)

n—00 €4, meAl dﬁx($)+€A2 fIGAz dﬂ'X(.I)

(29)
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In formula (29) we used the independence property for U; and X; (see (7)). As
previously, comparing (24) with (29), we prove (23).

3.2. Diagnosis of the initial chain

As we have noted in Section 3.1, for chain (X;),_, with two known special
sets A; (j = 1,2) we may introduce additional chain (Y;),_,. The chain (Y;),_,
is a discrete MC with only two states, regardless of cardinality and power of the
space X.

During diagnosis of the initial chain, we are interested in two values — nggat
and nvyy,. The first value — nggay — is the time moment when we are close enough
to stationary distribution 7x, i.e.

[Pz —mxl < er (30

where ||.|| indicates some determined norm for space X, e.g. total variation norm
which is used in the rest of this paper, Pri>=(.) = Pr(X,,,, = . [Xo = o).
When the number of simulations ngt,t in the MCMC algorithm is achieved,
in the light of (30) we may treat (X;) as being almost distributed from
stationary distribution wx.

12> Nstat

Suppose that we are interested in obtaining estimator of the expected value
E,h(X) based on the average of the initial chain. Naturally, we would like
to achieve small enough variance of this estimator and find the quantity nvar
fulfilling the condition

m(l nzV: h(Xk)—E,,zh(X)>§52, (31)

S
k=nstat+1

where s = nvar — Nstat-

In the following we focus only on problem (30). We deal with the second
problem in Romaniuk (2007b). Furthermore, for simplicity of formulation and
notation, we limit ourselves to the case when X is a finite set. However, appro-
priate proofs may be easily generalized for the case of continuous state space X
It is worth noting that from the computational and numerical point of view, the
problem of cardinality of X is rather academic — in computers all the numbers
are represented by the finite set of possibilities.
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3.3. Probability constraints

LEMMA 4. Suppose that X is a finite space and A; is a known atom for X.
Then

Z | Pri(y) — mx (y)| < 2Pry( ( ) >n —|—ZPrm 1) =j)
yeX

n—j—1
( > P () = mx (A Pra (¢ = n— k= j)+
k=1

+7Tx(A1)EA1( (1) (n_j))+) . (32)

Proof. Let us remind that Cl(l) may be treated as the moment of the first visit
in the set A;.

If we know the atom .A;, then for any y € X we have
Tx(y) = mx (A1) Y Pra, (X, = 9.V > n) (33)

where Pr;(.), as usually, denotes Pr(.|Xy = x). The proof of (33) may be found
in Robert, Casella (2004, see Theorem 4.5.3).

We have

n—1

Pl (y) = Pro(X, = 5.1V 2 n) + > Pro(X; € A1, (1Y = )
j=0

(n 7j—1

PI"A1 (A1)Pra, (Xp—p—j = y,él) >n—k —j)) . (34)
k=0

The notation Pffh (A1) and Pr 4, (.) is validated because of the thesis of Lemma 2.
Using expansion (34) we obtain

n—1
IPr2(y) — mx (y)] < Pro(Xp = 5,60 > 0) + Y Pro (¢ = )

n—j—1
( S P (AP (Xneke = 5, >k —j) —mx(y)| . (35)

k=0
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Hence
n—1
P2 (y) — x ()] < Pro(Xn = 5.¢" > n) + Y Pro (¢ = )

n—j—1
( Z Pr.]»c‘h (Al)Pr.Al (ankfj =Y, Cfl) >n— k— ]) - WX(ZJ))

k=0

—rx(y) Z Pr.(cV = 5| . (36)

From (33) for any j < n — 1 we have

n—j—1

mx(y) = mx (A1) Z Pra, (Xn—k—j =5, > n—k — j)+

+7x(A;) Z Pra, (X =y,¢M >0 . (37)
l=n—j+1

After applying (37) to (36) we have

[Priw) = ()] < Pra(Xn = 4,GV 2 )+ |3 Pra((t” = )

1

n—j—
( S (Prh (A — mxe(A)) Pra (Kociy = .60 2 n— k= )
k=0

> waz—y,d”zw)—m(y)Prm( W>n)| . (39)

l=n—j+1
Straightforwardly

n—1
Pr2(y) — mx ()] < Pro(Xo = 3.¢{Y > n) + 3 Pro (¢! = j)-
j=0

n—j—1
( > P (A = mx (A Pray (Xuoiey = 9,8 = n— k= )+

k=0

Frx (Ar) Z Pry, (Xo =y, ¢! >Z>)+m<y>Prz<<i”zm, (39)

l=n—j+1
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which constitutes (32). [

The equations (32) and (39) may be used to establish further dependencies
between the initial and the secondary chains. Now we present a simple lemma,
which may be helpful in practice of MCMC setups.

LEMMA 5. Suppose that Ay is a geometrically ergodic atom with constant M
and coefficient r1, and there exist My >0, 1o > 1, M3 > 0, r3 > 1 such that

Pra, (¢{V > n) < Mary™ (40)
and
Pr (Y = n) < Mary™ (41)

are fulfilled. Then inequality

> IPr(y) - mx(y)] < e (42)

yeX

is satisfied for n given as the solution of formula

1—n —n —-n
M3T3 M2M37“3(7“3 — T )

2 +
rg —1 (rg = 1)(r2 —73)
My Mo M3 (7”17”3(7"3n —") + rars(ry " — 7«2")> <er. (43)
(rg —m1) (r1—r3) (rs —12)

Proof. After applying conditions (8), (40), (41) to inequality (32) we can straight-
forwardly prove (43). [ |

It is worth noting that it is possible to improve the inequality (43). If we
know the value of stationary probability mx (A1), then we have a more detailed
condition

Mgré_" mx (A1) MaMsrs(rs™ —r3 ")

9 +
s — 1 (rg = 1)(r2 —r3)
M, My M, (rlrg,(r;" —r ") | rers(rs” - 7"5”)) <er . (44)
(ra —r1) (r1—73) (rs = r2)

In Lemma 4 there is an important assumption that A; is an atom. However,
we can relax this requirement using the following result:

LEMMA 6. Suppose that A; is a renewal set. Then we have

mx(r) = —omx(A) Y P (X, = . 2 ) (45)

n=0
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Proof. As it was noted, for simplicity of notation the proof will be conducted for
discrete MC. However, it could be easily adapted for continuous state space X.
Let

Tx(y) =Y Pra, (X, =y.¢" >n). (46)
n=0

For any y € & we have

Py = Y Pr@rx(o)+

TeEX z€ renewal set Aq

+ > Pryry@ . (47

z¢ renewal set A;

For the first sum, if z € renewal set A;, then we apply the formula (7). There-
fore the probability of transition to the next state does not depend on a partic-
ular state z. For the second sum, we use (46). Hence

Z Pr, (y)w,X (z) = mx (A1)va, (y)+

reX

+ Y Pr) <2Pul<xn—x,<i”zm>—PrA1<y>+

x¢ renewal set A; n=0

Y Y PaXe = X =Y 20) . (48)

x¢ renewal set A; n=0
Formula (48) may be simplified to
Pro(y)my(2) = Pra,(y) + > Pra, (X, =, ¢V >n) =ny(y), (49
Ty y T‘—X(:I: r.A1 y rA1( n y7<1 _’I’L) 7-‘—X y 9 ( )
rxeX n=1

therefore, (46) is an invariant measure.
From (46) we obtain

= > mPra, ¢V =m) =E4 (V). (50)

Hence, this measure is finite. Then from the theorem of invariant measure
uniqueness, (46) is probability distribution after normalization.
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From Kac’s theorem we have

’ —1
Ea, ((V) =Ea, (X € AL UL < ea,) = (my (A1) ea, (51)

which gives an appropriate normalizing constant for (45). Therefore

1 /
Tx(y) = —7mx (A1) (Y) (52)
€A,
which leads to (45). [
The technique similar to the above proof was used in Robert and Casella
(2004).

Now we can prove the generalization of Lemma 4.

LEMMA 7. Let Ay be a renewal set and all other assumptions be the same as in
Lemma 4. Then

n—1
STIPI(y) - mx ()] < 2Pra(¢Y > n) + D Pro (¢! = j)-
yeX 7=0

L x (A1)

Ay

Pra, ¢V >n—k—j)+

I)I'_A1 Al

(%

+

1 WX<A1>EI(<§”—<n—j))+) - (53)

6_,41

Proof. Analogously to proof of Lemma 4, we apply the formula (45) to (36),
obtaining (53). [ |
Having Lemma 7 we can modify the result of Lemma 5.

LEMMA 8. Suppose that Ay is a renewal set which fulfils the condition

1
mx (A))] < Mirg" (54)

1

| Pri, (A1) —

and there exist Mo > 0, ro > 1, M3 > 0, r3 > 1 such that inequalities (40)
and (40) are satisfied. Then condition (42) is met for n given as the solution
of formula (43).

Proof. Using Lemma 7 analogously as in proof of Lemma 5, we obtain solu-
tion (43). [ |
3.4. Heuristic approach

In the heuristic approach we use results from Lemma 3. The method may
be generalized for continuous space X'.
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From Lemma 3 for atoms we have

Ez €A; X (JJ)

my(A;) = , 55
Y = e @)t S @) (55)
and for renewal sets
€A, D wen, Tx ()
v (4;) = e (56)

€A D pen, dTx () +eay D pen, drx(z)

It is easily seen that these equations may be used as indicators of distance
between stationary distributions wx(.) and my (.), if for left and right sides of
(55) and (56) we take estimators based on various information. We denote these
estimators as 7x (.) and 7y, (.), where n emphasizes the number of steps in
the sequence Xg, X1,...,X,,. We are then interested in convergence diagnosis
based on difference

2wcd, TXon (D) <es (57)

fyn(Aj) — - - <
e Yowen, Txn(T) + 2 ca, Txn(T)
for atoms, and after adequate modification of formula (57) according to (56),
for renewal sets. Intuitively, if quantity (57) is small enough, we could diagnose
convergence.

Estimator 7y, (.) is based on transition probabilities. Let

My = #1k Y € Aj, Yy € A, Gy <nj (58)

Then

m n
by = (1,2), (59)
m(,1),n +M(1,2),n

which is a natural estimator for probability of moving between states 4; and
As for secondary chain Y. Analogously

M2,1),n

By = (60)

M2,1),n T M(2,2),n ’

and the estimator of transition matrix for Y is given by

- 1- &Yn &Yn )
Py, = N T A . 61
& ( ﬁY,n 1- 6Y,n ( )

For two-state discrete MC, the estimator of stationary distribution in this case
is
1

Ty m = (Fym(A1), fyn(A2)) = m (Byns Giyn) - (62)
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For estimator #x ,(.) we apply the weak ergodic theorem. Let

I(Xo=2)+...+ 1(X, =2)

() = o . (63

Then natural estimator for unknown parameter is
Fxn(@) = Nxon(®) - (64)

It is worth noting that apart from using the same MC, we create the above
estimators based on other kind of information — the frequency of moving between
states and calculation of transition probability from transition matrix in case of
7y,n(.), and direct counting of visits in the appropriate states with application
of ergodic theorem for 7x ,(.).

For additional diversification of information used for these estimators, it is
possible to construct two separate chains or to divide one chain into two parts.

4. Example of application

After introducing methods appropriate for finding the value ngt,t, now we
present examples of their application. Firstly, we use state space X with a few
atoms. Then we investigate the renewal sets case.

4.1. Atoms case

We should emphasize that the solutions established in lemmas of Section 3.3
give ewxact (i.e. proved by mathematical reasoning, not heuristic) and precise
(i.e. non-asymptotic) values. Therefore we may focus only on the problem
of transferring the obtained results from theoretical formulas to the practical
example.

Let us suppose that we are interested in MCMC algorithm, for which func-
tion f(.) describes the state space X with eight atoms and stationary probabi-
lities

£(.) = (1/20,1/20,2/20,2/20,3/20,3/20,4/20,4/20) , (65)

i.e. first atom has stationary probability 1/20, the second one — 1/20, etc.

We use independent Metropolis-Hastings algorithm (see e.g. Robert and
Casella, 2004). Our main trajectory has one million elements and starts from
state one. We also assume that A4; = 3 and Ay = 7. Therefore, we may compare
the values nstae based on states with various stationary probabilities.

In order to apply lemmas from Section 3.3, we have to evaluate the necessary
parameters 1, My, 9, Ma, r3, M3 (see assumptions for Lemma 5). Normally, ex-
perimenter may have some additional knowledge about these values, but we use
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additional simulations in order to determine them. Hence, we generate addi-
tional sets of 50,000 trajectories with 100 steps in each trajectory and appropri-
ate starting points — states one, three and seven. Then, we apply ”pessimistic
optimization” approach (see also Romaniuk, 2007b).

So, if we suppose that for the optimal parameters r; and M; we have

| Prly, (A1) — mx (Au)| = Myry ™, (66)
then

| Py, (A) —mx (Al
1 ~ n A 67
Pra, (A) —mx (An)] =1 (67

Therefore, we could find “pessimistic” evaluation of 71 in the sense of satisfying
the condition

71 = min {Vn =2,3,...:r "~ (68)

reRy

| Pri, (Ay) = mx (A 0} ‘

It can be easily seen that (68) gives us the "maximal pessimistic” guess of 71,
because in this light 7; has to be the upper limit for all steps in a strictly
deterministic sense. In case of any numerical errors or even for greater values
for n (note exponential decrease in conditions for Lemma 5), this method may
give larger values of 71 than they are in reality. However, other methods, like
satisfying the weaker condition

e |Pr () = T ()
[Pra, (A1) = (A1)

>0

| Pr, (A1) — mx (A1)
| Pra, (Ar) — mx (A1)

Vo <4 (69)

for some small enough §, may be easily criticized because of unknown error
generated by the selection of value 9.

After fixing the value 7, like in (68), we may find M; in the same manner,
as satisfying the condition

M, = I\/r[%iﬂg+ {vn=1,2,...: MFT" — |Pry (y) — mx(A1)| = 0} . (70)

The analogous formulas may be derived for parameters rq, Mo, 73, Ms3.
Then, from the ”pessimistic optimization” for .4; we have

f1=1.04, My = 0.0268 ,7» = 1.0941 , M, = 1.0888 ,
g =1.0904 , M3 = 0.1372 . (71)

We can substitute these values into the formula (43) in order to find the number
of steps ngtat for the given value 1 (see Table 1). In this table, the column "true
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Assumed value 1 | Number of steps ngiat | True value e
0.1 90 0.0978145
0.02 120 0.0196767

0.01 135 0.00974242

0.001 190 0.000981598

Table 1. Evaluation of nga¢ for Ay

value €1” gives the exact value of the left hand side for (43) and number of steps
Nstat 1S 10 the second column.

The graph of the left hand side (43) as a function of the number of steps n
is shown in Fig. 1.

0.5¢

50 100 150 200

Figure 1. Error level g1 as a function of n for Ay

If we use the improved inequality (44) instead of (43), we may observe the
reduction of the necessary number of steps nsat, especially for larger ¢1 (see
Table 2). This phenomenon is even more easily seen in Fig. 2, where curve is
much steeper at the beginning of the graph.

We may perform the same analysis for the seventh state, i.e. special set As.
In this case the necessary parameters may be evaluated as

F1 = 1.0438 , My = 0.0793 , 7o = 1.14385 , My = 1.1439 ,
Fq =1.1231, M3 = 0.1394 . (72)

Because the atom A5 has higher stationary probability than 4;, we obtain less
Ngstat values (see Table 3 and Fig. 3).
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Assumed value €1 | Number of steps ngtat | True value &q
0.1 75 0.0981865
0.02 114 0.0195048

0.01 131 0.00989127

0.001 190 0.000967164

Table 2. Evaluation of ngat for A; based on inequality (44)

50 100 150 200

Figure 2. Error level £; as a function of n for A; based on inequality (44)

Assumed value €1 | Number of steps ngtat | True value &;
0.1 71 0.0992184
0.02 107 0.0192124

0.01 123 0.00961369

0.001 176 0.000988225

Table 3. Evaluation of nga; for As
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normalizing constant is simultaneously the inverse of maximum ¢; and may be
found numerically, which gives ¢; = 0.6506717064872144.
Similary, e2 = 0.722459686557494 and graph of f,,(.) may be found in Fig. 7.

l,
N 4\

7.5 8 8.5 9

Figure 7. Graph of f,,(.) without the normalizing constant for Az = [7.75, 8]

In order to find parameters r1, M1, r2, Mo, r3, M3, necessary for conditions
(40), (41), (54) we use similar approach as in Section 4.1. Therefore, for A; we
have

F1=1.034 , 7y = 1.0345 , 73 = 1.0131 ,
M, =1.05, My = 1.0069 , M3 = 0.022 (76)

and for A,

f1 =1.03, 75 = 1.0318 , 73 = 1.0078 ,
M, =10.6702 , My = 0.9957 , M3 = 0.007 . (77)

These parameters give us the solutions for inequality (43) (see Tables 4 and 5)
As previously, evaluation for the “less frequent” set As increases the ngias
value by about 20 — 30%.
The heuristic approach may also be applied for this case. The graph is
similar as in the previous example with ”jerked” character.

5. Concluding remarks

We started from formulation of two inequalities, which correspond to stan-
dard questions in MCMC setups, i.e. when the sampled transition probability
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Assumed value 1 | Number of steps ngiat | True value e
0.1 521 0.0989617
0.02 644 0.0199662
0.01 698 0.0098872

0.001 875 0.000987682

Table 4. Evaluation of ng, for set A;

Assumed value 1 | Number of steps ngiat | True value g1
0,1 682 0.0995218
0,02 889 0.0199263

0,01 979 0.00990229

0,001 1275 0.000992949

Table 5. Evaluation of ng. for set As

is close to determined stationary probability of Markov Chain? and how many
iterations should be used in order to minimize the error of estimator? These
inequalities correspond to finding two values — the numbers of steps ngiat and
nvyar for the trajectory generated by some MCMC method. Then we use the
features of secondary chain in order to find the ng, estimator. Therefore, we
obtain a useful set of conditions which could be used for checking the conver-
gence in MCMC setup. The examples of application of theoretical lemmas and
of heuristic approach for the case of state space with atoms and renewal sets are
also provided. It has to be mentioned that this paper comprises some contents
of doctoral dissertation (see Romaniuk, 2007a), where additional remarks may
be found.

We should emphasize the usefulness of the presented method, which could
be used in a highly automated manner and provide the strict results for the
experimenter. However, we should note that not just one, but a whole set
of various algorithms and methods should be applied in order to control the
MCMC output and guarantee the convergence of the simulated trajectory at a
suitable satisfactory level.

The possibilities of complementing the discussed method might also be con-
sidered. For example, the obtained conditions might be improved, like in (44).
However, additional information about the structure of state space or under-
lying Markov Chain may be necessary in such case. The dependencies among
the number of special sets, their allocation, possible modes in state space and
obtained solutions may be examined. The lemmas may be also generalized for
other cases of state space structure and number of special sets.
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