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vol. 37 (2008) No. 1Convergen
e diagnosis to stationary distribution inMCMC methods via atoms and renewal setsbyMa
iej RomaniukSystems Resear
h Institute Polish A
ademy of S
ien
es, ul. Newelska 6,01�447 Warszawa, Poland, e-mail: mroman�ibspan.waw.plAbstra
t: MCMC setups are one of the best known methods for
ondu
ting 
omputer simulations useful in su
h areas as statisti
s,physi
s, biology, et
. However, to obtain appropriate solutions, theadditional 
onvergen
e diagnosis must be applied for Markov Chaintraje
tory generated by the algorithm. We present the method fordealing with this problem based on features of so 
alled �se
ondary�
hain (the 
hain with spe
ially sele
ted state spa
e). The se
ondary
hain is 
reated from the initial 
hain by pi
king only some observa-tions 
onne
ted with atoms or renewal sets. In this paper we fo
uson �nding the moment when the simulated 
hain is 
lose enoughto the stationary distribution of the Markov 
hain. The dis
ussedmethod has some appealing properties, like high degree of diagnosisautomation. Apart from theoreti
al lemmas and a more heuristi
approa
h, the examples of appli
ation are also provided.Keywords: 
onvergen
e diagnosis, Markov Chain Monte Carlo,Markov Property, atom, renewal set, renewal theory, automated di-agnosis of simulations1. Introdu
tionThe end of the previous 
entury brought a 
olossal improvement in speed of
al
ulations. Be
ause of 
omputer development, the resear
hers 
ould buildmore 
omplex, more �real-life� models. The same applies for mathemati
s,statisti
s, physi
s and biology, where 
omputer simulations are widely used.One of the best known methods in 
omputer simulations are MCMC (MarkovChain Monte Carlo) algorithms, su

essors of MC (Monte Carlo) approa
h (seeMetropolis et al., 1953; Metropolis and Ulam, 1949). They are 
ommonly usedin many pra
ti
al areas (see, e.g., Boos, Zhang, 2000; Booth, Sarkar, 1998;Bremaud, 1999, Dou
et et al., 2000; Gelfand et al., 1990; Gilks et al., 1997;Kass et al., 1998; Korona
ki et al., 2005; Lasota, Niemiro, 2003; Li et al., 2000;Mehta et al., 2000; Robert, Casella, 2004; Romaniuk, 2003).



206 M. ROMANIUKThe MCMC method is based on a simple but brilliant idea. In order to �ndthe expe
ted value EπX
h(X) for some fun
tion h(.) : X → R

p and probabilitydistribution πX(.), we 
ould generate Markov Chain X0, X1, X2, . . . with πXas the stationary distribution. The 
onvergen
e of the estimator, derived fromthe simulated sample is guaranteed by the ergodi
 theorems (see, e.g., Robert,Casella, 2004 for additional details). Therefore, we do not have to generatevalues dire
tly from πX(.) as in the MC method, but we may use more generalalgorithms like Gibbs sampler or the Metropolis�Hastings algorithm.Yet, during the 
ondu
t of simulations two questions arise all the time. The�rst one is 
onne
ted with 
hoosing appropriate number of steps nstat for sim-ulated traje
tory, when the sampled transition probability Prnstat

x0
(.) is 
loseenough to the assumed stationary probability πX(.) regardless of starting point

x0. The se
ond one is related to �nding the number of steps nVar, when theestimator of EπX
h(X), derived from the sample Xnstat+1, Xnstat+2, . . . , XnVarhas error small enough, as measured e.g. by varian
e. These two questions are
overed by 
onvergen
e diagnosis and are one of the main issues in MCMC sim-ulations. However, in this paper we fo
us only on the �rst problem, i.e. �ndingthe value nstat. Some answers for the se
ond problem may be found e.g. inRomaniuk (2007b).There is a lot of various 
onvergen
e diagnosis methods (see, e.g., Robert,Casella, 2004; El Adlouni et al., 2006, for 
omparative review). But we haveto say that it is not so easy to 
ompare them and �nd �the best one� or even�the best ones�. Firstly, very often these methods make use of di�erent featuresof the underlying Markov Chains, e.g. spe
i�
 probability stru
ture of the statespa
e. Se
ondly, the two questions mentioned before are used to be writtenin mathemati
al formulas not 
orresponding to one another, i.e. not dire
tly
omparable. Thirdly, it is not even possible to draw a 
omparison betweenheuristi
 and theoreti
al (i.e. based on mathemati
al proofs) methods. There-fore, ea
h new 
onvergen
e diagnosis method may be seen as an additional toolfor experimenters, whi
h gives them a new possibility to 
he
k the obtainedsimulations.In this paper we dis
uss the methods based on the 
on
ept of se
ondary
hain. The se
ondary 
hain is derived from the original traje
tory by observingthe samples only in moments determined by spe
ial probability rules. Theserules are 
onne
ted with the notions of atoms and renewal sets, whi
h are spe
i�
examples of more general renewal moments and are a part of renewal theory.The methods des
ribed 
over both theoreti
al and heuristi
 approa
hes.The presented theoreti
al method has three main advantages. Firstly, it issupported by strong mathemati
al reasoning. Therefore, it is far less in�uen
edby observer's intuition and his experien
e than heuristi
 methods. Se
ondly,the obtained solutions are stri
t, i.e. they are not asymptoti
. Hen
e, thismethod is not biased by additional error provided by limit theorems. Thirdly,the dis
ussed lemmas may be used in a highly automated manner. This gives thepossibility for preparing general diagnosis algorithms for a wide 
lass of MCMC



Convergen
e diagnosis to stationary distribution in MCMC methods 207problems.The heuristi
 approa
h is also based on mathemati
al lemma, but involvessubje
tive graph 
he
king.The paper is organized as follows. In Se
tion 2 we present the ne
essarybasi
 de�nitions and theorems. Then, in Se
tion 3.1 we introdu
e the notion ofse
ondary 
hain and some fundamental fa
ts about it. In Se
tion 3.2 we formu-late two inequalities whi
h are dire
tly 
onne
ted to the 
onvergen
e diagnosisquestions, mentioned before. Next, in Se
tion 3.3 we present some theoreti
allemmas whi
h 
onstitute the foundation of the introdu
ed method and providethe answers for the question about nstat. In Se
tion 3.4 we dis
uss a moreheuristi
 approa
h. In Se
tion 4 we present how the derived results may beapplied in two examples. The 
on
luding remarks are 
ontained in Se
tion 5.Some of the solutions presented in this paper are based on ideas from Ro-maniuk (2007a and 2007b). As it was mentioned before, in Romaniuk (2007b)the methods for �nding both values nstat and nVar were presented. However, for
nstat appropriate lemmas only in atom 
ase were proved. In this paper we fo
usonly on the problem of nstat value, but the generalized lemmas for the 
ase ofrenewal sets are added. Additionally, a new heuristi
 approa
h for both � atomand renewal � 
ases is presented.2. Basi
 de�nitions and theoremsIn this se
tion we introdu
e fundamental de�nitions and theorems. Addi-tional ne
essary de�nitions may be found in, e.g., Bremaud (1999), Fishman(1996), Robert and Casella (2004).Let (Xi)i=0 = (X0 = x0, X1, . . .) denote a Markov Chain (abbreviated fur-ther MC), and B(X ) is the σ��eld of Borel sets for spa
e X .The 
hain (Xi)i=0 has its values in a spa
e X , where X ⊂ N or X ∈ B(Rk).In the �rst 
ase su
h MC is 
alled as dis
rete MC, and in the se
ond � as MCon 
ontinuous state spa
e.Suppose that the 
hain (Xi)i=0 is ergodi
 and has an adequate stationaryprobability distribution πX(.). In this paper the term �ergodi
ity� means thatthe 
hain is re
urrent (or Harris re
urrent in 
ase of MC on 
ontinuous statespa
e X ), aperiodi
 and irredu
ible.If (Xi)i=0 is a dis
rete Markov Chain, we de�ne its transition matrix PX as

PX = (Pr (Xk+1 = j|Xk = i))
sX

i,j=1 , (1)where sX is power of X . In 
ase of 
ontinuous state spa
e X , let us denote by
KX(., .) the transition kernel of this 
hain

Pr(Xk+1 ∈ B|Xk = x) =

∫

B

KX(x, y) dy . (2)



208 M. ROMANIUKDefinition 1. The set A is 
alled an atom if there exists a probability distri-bution ν(.) su
h that
Pr(Xk+1 ∈ B|Xk = x) = ν(B) (3)for every x ∈ A and every B ∈ B(X ).Definition 2. The set A is 
alled renewal set if there exists a real 0 < ǫ < 1and a probability measure ν(.) su
h that
Pr(Xk+1 ∈ B|Xk = x) ≥ ǫν(B) (4)for every x ∈ A and every B ∈ B(X ).These two de�nitions may be found in, e.g., Asmussen (1979), Robert andCasella (2004).If A is a renewal set, it is 
onvenient to slightly 
hange the used MCMCalgorithm, whi
h generates the values of (Xi)i=0. It is easily seen that
Pr(Xk+1|Xk) = ǫν(Xk+1) + (1 − ǫ)

Pr(Xk+1|Xk) − ǫν(Xk+1)

1 − ǫ
(5)in 
ase of dis
rete MC, or

K(xk, xk+1) = ǫν(xk+1) + (1 − ǫ)
K(xk, xk+1) − ǫν(xk+1)

1 − ǫ
(6)for MC on 
ontinuous state spa
e X . Hen
e, we have the following modi�
ationof the algorithm: when Xk ∈ A, generate Xk+1 a

ording to

Xk+1 =

{

Xk+1 ∼ ν(.) if Uk+1 ≤ ǫ

Xk+1 ∼ K(xk,.)−ǫν(.)
1−ǫ

if Uk+1 > ǫ
, (7)where Ui are iid random variables from a uniform distribution on [0, 1], inde-pendent on (Xi)i=0. In view of (5) and (6), the modi�
ation (7) of the MCMCalgorithm does not 
hange the properties of the 
hain. Also its stationary dis-tribution is still the same, i.e. πX(.). This modi�
ation for MCMC algorithmswas introdu
ed in Athreya and Ney (1978), Nummelin (1978). The generationa

ording to (7) may be di�
ult be
ause of the 
omplex stru
ture of the �re-mainder� kernel. A way around this problem was shown in Mykland, Tierneyand Yu (1995).Definition 3. The atom (or renewal set) A is 
alled geometri
ally ergodi
atom (or renewal set) if there exist r > 1 and M > 0 su
h that

|Prn
x(y) − πX(y)| ≤ Mr−n , (8)for any x, y ∈ A, where Prn

x(.) denotes Pr(Xn = . |X0 = x).
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e diagnosis to stationary distribution in MCMC methods 209Let us denote by EπX
h(X) the expe
ted value of the fun
tion h : X → R
al
ulated a

ording to the stationary distribution πX . Appropriate symbols �

CovπX
(g, h) and VarπX

(h) � are used for 
ovarian
e and varian
e.Lemma 1. Let (Xi)i=0 be Harris re
urrent Markov Chain and
EπX

|f(X)| =

∫

X

|f(x)|dπX(x) < ∞ (9)for some fun
tion f(.) : X → R and
EπX

|l(X)| =

∫

X

|l(x)|dπX(x) < ∞ , EπX
l(X) 6= 0 (10)for some fun
tion l(.) : X → R. Then we have

1
n+1

∑n

k=0 f(Xk)
1

n+1

∑n

k=0 l(Xk)

p.n.
−−−−→
n→∞

∫

X
f(x) dπX(x)

∫

X
l(x) dπX(x)

. (11)For proof of this lemma see Robert and Casella (2004).3. Proposal of a 
onvergen
e diagnosis methodIn this se
tion we present a 
onvergen
e diagnosis method for MCMC output.This proposal uses notions of atoms and renewal sets (see Se
tion 2).3.1. Introdu
ing se
ondary 
hainSuppose that we are interested in diagnosing 
onvergen
e of some ergodi
Markov Chain (Xi)i=0 = (X0 = x0, X1, . . .). We denote a stationary distribu-tion for this 
hain by πX(.), its transition matrix by PX (or transition kernelby KX(., .) in 
ase of MC on 
ontinuous state spa
e) and the spa
e of its valuesby X . Suppose also that we know two atoms (or renewal sets) A1,A2 for this
hain.Therefore, we 
an 
reate the se
ondary 
hain (Yi)i=1 based on our initial
hain (Xi)i=0. If A1,A2 are atoms, then we 
an de�ne
ζ1 := min{i = 1, . . . : Xi ∈ A1 ∪ A2} , (12)
ζk+1 := min{i > ζk : Xi ∈ A1 ∪ A2} , (13)
Yk = Xζk

. (14)It is seen that the 
hain (Yi)i=1 has Markov Property for the trun
ated spa
e
Y

′

:= {A1,A2} � see Lemma 2.



210 M. ROMANIUKIf these two sets are renewal sets, we should introdu
e the modi�
ation (7)and 
hange the de�nition of the 
hain (Yi)i=1 to
ζ1 := min{i = 1, . . . : (Xi ∈ A1 ∧ Ui ≤ ǫA1

) ∨ (Xi ∈ A2 ∧ Ui ≤ ǫA2
)} ,(15)

ζk+1 := min{i > ζk : (Xi ∈ A1 ∧ Ui ≤ ǫA1
) ∨ (Xi ∈ A2 ∧ Ui ≤ ǫA2

)} , (16)
Yk = Xζk

, (17)where ǫAj
denotes the parameter ǫ for appropriate renewal set Aj in 
ondi-tion (7). Also in this 
ase the se
ondary 
hain (Yi)i=1 has Markov Property forthe spa
e Y
′ . As it was mentioned before, a spe
ial method to simulate fromthe �remainder� kernel may be ne
essary (see Mykland, Tierney and Yu, 1995).We may summarise previous observations in a simple lemma:Lemma 2. If A1,A2 are atoms (or renewal sets), the 
hain (Yi)i=1 de�ned by
onditions (12) � (14) (or (15) � (17), respe
tively) is a Markov Chain forthe spa
e Y
′

:= {A1,A2}. This 
hain is ergodi
.The proof may be found in Romaniuk (2007b).For simpli
ity of notation, we 
ontinue to 
all atoms or renewal sets Aj asspe
ial sets, keeping in mind di�erent de�nitions of the se
ondary 
hain (Yi)i=1for these both 
ases.The moments ζi de�ned previously, may be additionally partitioned betweenthe 
orresponding spe
ial sets. Hen
e, we adopt the following de�nition of ζ
(j)
ifor the �xed atom Aj :

ζ
(j)
1 := min{i = 1, . . . : Xi ∈ Aj} , (18)

ζ
(j)
k+1 := min{i > ζ

(j)
k : Xi ∈ Aj} . (19)For the renewal set Aj the de�nition of ζ

(j)
i is an equivalent modi�
ation of theabove formulas, i.e.:

ζ
(j)
1 := min{i = 1, . . . : Xi ∈ Aj ∧ Ui ≤ ǫAj

} , (20)
ζ
(j)
k+1 := min{i > ζ

(j)
k : Xi ∈ Aj ∧ Ui ≤ ǫAj

} . (21)Therefore, ζ
(j)
1 may be 
onsidered as the moment of �rst visit in the set Aj .Next lemma is used as justi�
ation for a heuristi
 method des
ribed further.Lemma 3. If sets A1,A2 are atoms, then stationary distribution of πY (.) isgiven by

πY (Aj) =

∫

x∈Aj
dπX(x)

∫

x∈A1
dπX(x) +

∫

x∈A2
dπX(x)

, (22)
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e diagnosis to stationary distribution in MCMC methods 211for j = 1, 2.If sets A1,A2 are renewal sets, then stationary distribution of πY (.) is givenby
πY (Aj) =

ǫAj

∫

x∈Aj
dπX(x)

ǫA1

∫

x∈A1
dπX(x) + ǫA2

∫

x∈A2
dπX(x)

, (23)for j = 1, 2.Proof. Be
ause (Yi)i=1 is MC, then from the strong ergodi
 theorem for Markov
hains we have
∑m

i=1 11(Yi ∈ Aj)

m

p.n.
−−−−→
m→∞

πY (Aj) , (24)for j = 1, 2, where
m = #{i ≤ n : Xi ∈ A1 ∪ A2} . (25)If A1,A2 are atoms, then let
m(n) = #{i ≤ n : Xi ∈ A1 ∪ A2} , (26)i.e. m(n) is the random number of visits into A1 and A2. Be
ause the initial
hain is Harris re
urrent, then for n → ∞, we have m(n) → ∞ (see Nummelin,2001).From (12) � (14) and Lemma 1 we have
∑m(n)

i=1 11(Yi ∈ Aj)

m(n)
=

∑m(n)
i=1 11(Yi ∈ Aj)

∑m(n)
i=1 11(Yi ∈ A1 ∪ A2)

=

=
1

n+1

∑n

i=0 11(Xi ∈ Aj)
1

n+1

∑n

i=0 11(Xi ∈ A1 ∪ A2)

p.n.
−−−−→
n→∞

∫

x∈Aj
dπX(x)

∫

x∈A1
dπX(x) +

∫

x∈A2
dπX(x)

.(27)Comparing (24) with (27), we obtain (22) (see also Nummelin, 2001 forsimilar inferen
e).If A1,A2 are renewal sets, then let
m(n) = #{i ≤ n : Xi ∈ (A1, Ui ≤ ǫA1

) ∪ (A2, Ui ≤ ǫA2
)} . (28)From (15) � (17) and Lemma 1 we have

∑m(n)
i=1 11(Yi ∈ Aj)

m(n)
=

∑m(n)
i=1 11(Yi ∈ Aj)

∑m(n)
i=1 11(Yi ∈ A1 ∪ A2)

=

=
1

n+1

∑n

i=0 11(Xi ∈ Aj , Ui ≤ ǫAj
)

1
n+1

∑n

i=0 11(Xi ∈ (A1, Ui ≤ ǫA1
) ∪ (A2, Ui ≤ ǫA2

))
→

p.n.
−−−−→
n→∞

ǫAj

∫

x∈Aj
dπX(x)

ǫA1

∫

x∈A1
dπX(x) + ǫA2

∫

x∈A2
dπX(x)

. (29)



212 M. ROMANIUKIn formula (29) we used the independen
e property for Ui and Xi (see (7)). Aspreviously, 
omparing (24) with (29), we prove (23).
3.2. Diagnosis of the initial 
hainAs we have noted in Se
tion 3.1, for 
hain (Xi)i=0 with two known spe
ialsets Aj (j = 1, 2) we may introdu
e additional 
hain (Yi)i=1. The 
hain (Yi)i=1is a dis
rete MC with only two states, regardless of 
ardinality and power of thespa
e X .During diagnosis of the initial 
hain, we are interested in two values � nstatand nVar. The �rst value � nstat � is the time moment when we are 
lose enoughto stationary distribution πX , i.e.

∥

∥Pnstat

x0
− πX

∥

∥ ≤ ε1 , (30)where ‖.‖ indi
ates some determined norm for spa
e X , e.g. total variation normwhi
h is used in the rest of this paper, Prnstat

x0
(.) = Pr(Xnstat

= . |X0 = x0).When the number of simulations nstat in the MCMC algorithm is a
hieved,in the light of (30) we may treat (Xi)i≥nstat
as being almost distributed fromstationary distribution πX .Suppose that we are interested in obtaining estimator of the expe
ted value

EπX
h(X) based on the average of the initial 
hain. Naturally, we would liketo a
hieve small enough varian
e of this estimator and �nd the quantity nVarful�lling the 
ondition

Var

(

1

s

nVar
∑

k=nstat+1

h(Xk) − Eπx
h(X)

)

≤ ε2 , (31)where s = nVar − nstat.In the following we fo
us only on problem (30). We deal with the se
ondproblem in Romaniuk (2007b). Furthermore, for simpli
ity of formulation andnotation, we limit ourselves to the 
ase when X is a �nite set. However, appro-priate proofs may be easily generalized for the 
ase of 
ontinuous state spa
e X .It is worth noting that from the 
omputational and numeri
al point of view, theproblem of 
ardinality of X is rather a
ademi
 � in 
omputers all the numbersare represented by the �nite set of possibilities.
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onstraintsLemma 4. Suppose that X is a �nite spa
e and A1 is a known atom for X .Then
∑

y∈X

|Prn
x(y) − πX(y)| ≤ 2Prx(ζ

(1)
1 ≥ n) +

n−1
∑

j=0

Prx(ζ
(1)
1 = j)·

(

n−j−1
∑

k=1

∣

∣

∣Prk
A1

(A1) − πX(A1)
∣

∣

∣PrA1
(ζ

(1)
1 ≥ n − k − j)+

+ πX(A1)EA1

(

ζ
(1)
1 − (n − j)

)

+

) . (32)Proof. Let us remind that ζ
(1)
1 may be treated as the moment of the �rst visitin the set A1.If we know the atom A1, then for any y ∈ X we have

πX(y) = πX(A1)

∞
∑

n=0

PrA1
(Xn = y, ζ

(1)
1 ≥ n) , (33)where Prx(.), as usually, denotes Pr(.|X0 = x). The proof of (33) may be foundin Robert, Casella (2004, see Theorem 4.5.3).We have

Prn
x(y) = Prx(Xn = y, ζ

(1)
1 ≥ n) +

n−1
∑

j=0

Prx(Xj ∈ A1, ζ
(1)
1 = j)·

(

n−j−1
∑

k=0

Prk
A1

(A1)PrA1
(Xn−k−j = y, ζ

(1)
1 ≥ n − k − j)

) . (34)The notation P k
A1

(A1) and PrA1
(.) is validated be
ause of the thesis of Lemma 2.Using expansion (34) we obtain

|Prn
x(y) − πX(y)| ≤ Prx(Xn = y, ζ

(1)
1 ≥ n) +

∣

∣

∣

∣

∣

∣

n−1
∑

j=0

Prx(ζ
(1)
1 = j)·

(

n−j−1
∑

k=0

Prk
A1

(A1)PrA1
(Xn−k−j = y, ζ

(1)
1 ≥ n − k − j

)

− πX(y)

∣

∣

∣

∣

∣

. (35)
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e
|Prn

x(y) − πX(y)| ≤ Prx(Xn = y, ζ
(1)
1 ≥ n) +

∣

∣

∣

∣

∣

∣

n−1
∑

j=0

Prx(ζ
(1)
1 = j)·

(

n−j−1
∑

k=0

Prk
A1

(A1)PrA1
(Xn−k−j = y, ζ

(1)
1 ≥ n − k − j) − πX(y)

)

−πX(y)
∞
∑

j=n

Prx(ζ
(1)
1 = j)

∣

∣

∣

∣

∣

∣

. (36)From (33) for any j ≤ n − 1 we have
πX(y) = πX(A1)

n−j−1
∑

k=0

PrA1
(Xn−k−j = y, ζ

(1)
1 ≥ n − k − j)+

+ πX(A1)

∞
∑

l=n−j+1

PrA1
(Xl = y, ζ

(1)
1 ≥ l) . (37)After applying (37) to (36) we have

|Prn
x(y) − πX(y)| ≤ Prx(Xn = y, ζ

(1)
1 ≥ n) +

∣

∣

∣

∣

∣

∣

n−1
∑

j=0

Prx(ζ
(1)
1 = j)·

(

n−j−1
∑

k=0

(

Prk
A1

(A1) − πX(A1)
)

PrA1
(Xn−k−j = y, ζ

(1)
1 ≥ n − k − j)−

πX(A1)
∞
∑

l=n−j+1

PrA1
(Xl = y, ζ

(1)
1 ≥ l)



− πX(y)Prx(ζ
(1)
1 ≥ n)

∣

∣

∣

∣

∣

∣

. (38)Straightforwardly
|Prn

x(y) − πX(y)| ≤ Prx(Xn = y, ζ
(1)
1 ≥ n) +

n−1
∑

j=0

Prx(ζ
(1)
1 = j)·

(

n−j−1
∑

k=0

∣

∣

∣Prk
A1

(A1) − πX(A1)
∣

∣

∣PrA1
(Xn−k−j = y, ζ

(1)
1 ≥ n − k − j)+

+πX(A1)

∞
∑

l=n−j+1

PrA1
(Xl = y, ζ

(1)
1 ≥ l)



+ πX(y)Prx(ζ
(1)
1 ≥ n) , (39)
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h 
onstitutes (32).The equations (32) and (39) may be used to establish further dependen
iesbetween the initial and the se
ondary 
hains. Now we present a simple lemma,whi
h may be helpful in pra
ti
e of MCMC setups.Lemma 5. Suppose that A1 is a geometri
ally ergodi
 atom with 
onstant M1and 
oe�
ient r1, and there exist M2 > 0, r2 > 1, M3 > 0, r3 > 1 su
h that
PrA1

(ζ
(1)
1 ≥ n) ≤ M2r

−n
2 , (40)and

Prx(ζ
(1)
1 = n) ≤ M3r

−n
3 (41)are ful�lled. Then inequality

∑

y∈X

|Prn
x(y) − πX(y)| ≤ ε1 (42)is satis�ed for n given as the solution of formula

2
M3r

1−n
3

r3 − 1
+

M2M3r3(r
−n
3 − r−n

2 )

(r2 − 1)(r2 − r3)
+

+
M1M2M3

(r2 − r1)

(

r1r3(r
−n
3 − r−n

1 )

(r1 − r3)
+

r2r3(r
−n
3 − r−n

2 )

(r3 − r2)

)

≤ ε1 . (43)Proof. After applying 
onditions (8), (40), (41) to inequality (32) we 
an straight-forwardly prove (43).It is worth noting that it is possible to improve the inequality (43). If weknow the value of stationary probability πX(A1), then we have a more detailed
ondition
2
M3r

1−n
3

r3 − 1
+

πX(A1)M2M3r3(r
−n
3 − r−n

2 )

(r2 − 1)(r2 − r3)
+

+
M1M2M3

(r2 − r1)

(

r1r3(r
−n
3 − r−n

1 )

(r1 − r3)
+

r2r3(r
−n
3 − r−n

2 )

(r3 − r2)

)

≤ ε1 . (44)In Lemma 4 there is an important assumption that A1 is an atom. However,we 
an relax this requirement using the following result:Lemma 6. Suppose that A1 is a renewal set. Then we have
πX(y) =

1

ǫA1

πX(A1)

∞
∑

n=0

PrA1
(Xn = y, ζ

(1)
1 ≥ n) . (45)



216 M. ROMANIUKProof. As it was noted, for simpli
ity of notation the proof will be 
ondu
ted fordis
rete MC. However, it 
ould be easily adapted for 
ontinuous state spa
e X .Let
π

′

X(y) =

∞
∑

n=0

PrA1
(Xn = y, ζ

(1)
1 ≥ n) . (46)For any y ∈ X we have

∑

x∈X

Prx(y)π
′

X(x) =
∑

x∈ renewal set A1

Prx(y)π
′

X(x)+

+
∑

x 6∈ renewal set A1

Prx(y)π
′

X(x) . (47)For the �rst sum, if x ∈ renewal set A1, then we apply the formula (7). There-fore the probability of transition to the next state does not depend on a parti
-ular state x. For the se
ond sum, we use (46). Hen
e
∑

x∈X

Prx(y)π
′

X(x) = πX(A1)νA1
(y)+

+
∑

x 6∈ renewal set A1

Prx(y)

(

∞
∑

n=0

PrA1
(Xn = x, ζ

(1)
1 ≥ n)

)

= PrA1
(y)+

+
∑

x 6∈ renewal set A1

∞
∑

n=0

PrA1
(Xn = x, Xn+1 = y, ζ

(1)
1 ≥ n) . (48)Formula (48) may be simpli�ed to

∑

x∈X

Prx(y)π
′

X(x) = PrA1
(y) +

∞
∑

n=1

PrA1
(Xn = y, ζ

(1)
1 ≥ n) = π

′

X(y) , (49)therefore, (46) is an invariant measure.From (46) we obtain
π

′

X(X ) =

∞
∑

n=0

PrA1
(Xn ∈ X , ζ

(1)
1 ≥ n) =

=

∞
∑

m=0

mPrA1
(ζ

(1)
1 = m) = EA1

(ζ
(1)
1 ) . (50)Hen
e, this measure is �nite. Then from the theorem of invariant measureuniqueness, (46) is probability distribution after normalization.
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's theorem we have
EA1

(ζ
(1)
1 ) = EA1

(X ∈ A1, U1 ≤ ǫA1
) = (π

′

X(A1))
−1

ǫA1
, (51)whi
h gives an appropriate normalizing 
onstant for (45). Therefore

πX(y) =
1

ǫA1

πX(A1)π
′

X(y) , (52)whi
h leads to (45).The te
hnique similar to the above proof was used in Robert and Casella(2004).Now we 
an prove the generalization of Lemma 4.Lemma 7. Let A1 be a renewal set and all other assumptions be the same as inLemma 4. Then
∑

y∈X

|Prn
x(y) − πX(y)| ≤ 2Prx(ζ

(1)
1 ≥ n) +

n−1
∑

j=0

Prx(ζ
(1)
1 = j)·

(

n−j−1
∑

k=1

∣

∣

∣

∣

Prk
A1

(A1) −
1

ǫA1

πX(A1)

∣

∣

∣

∣

PrA1
(ζ

(1)
1 ≥ n − k − j)+

+
1

ǫA1

πX(A1)Ex

(

ζ
(1)
1 − (n − j)

)

+

) . (53)Proof. Analogously to proof of Lemma 4, we apply the formula (45) to (36),obtaining (53).Having Lemma 7 we 
an modify the result of Lemma 5.Lemma 8. Suppose that A1 is a renewal set whi
h ful�ls the 
ondition
|Prn

A1
(A1) −

1

ǫA1

πX(A1)| ≤ M1r
−n
1 (54)and there exist M2 > 0, r2 > 1, M3 > 0, r3 > 1 su
h that inequalities (40)and (40) are satis�ed. Then 
ondition (42) is met for n given as the solutionof formula (43).Proof. Using Lemma 7 analogously as in proof of Lemma 5, we obtain solu-tion (43).3.4. Heuristi
 approa
hIn the heuristi
 approa
h we use results from Lemma 3. The method maybe generalized for 
ontinuous spa
e X .



218 M. ROMANIUKFrom Lemma 3 for atoms we have
πY (Aj) =

∑

x∈Aj
πX(x)

∑

x∈A1
πX(x) +

∑

x∈A2
πX(x)

, (55)and for renewal sets
πY (Aj) =

ǫAj

∑

x∈Aj
πX(x)

ǫA1

∑

x∈A1
dπX(x) + ǫA2

∑

x∈A2
dπX(x)

. (56)It is easily seen that these equations may be used as indi
ators of distan
ebetween stationary distributions πX(.) and πY (.), if for left and right sides of(55) and (56) we take estimators based on various information. We denote theseestimators as π̂X,n(.) and π̂Y,n(.), where n emphasizes the number of steps inthe sequen
e X0, X1, . . . , Xn. We are then interested in 
onvergen
e diagnosisbased on di�eren
e
∣

∣

∣

∣

∣

π̂Y,n(Aj) −

∑

x∈Aj
π̂X,n(x)

∑

x∈A1
π̂X,n(x) +

∑

x∈A2
π̂X,n(x)

∣

∣

∣

∣

∣

≤ ε3 (57)for atoms, and after adequate modi�
ation of formula (57) a

ording to (56),for renewal sets. Intuitively, if quantity (57) is small enough, we 
ould diagnose
onvergen
e.Estimator π̂Y,n(.) is based on transition probabilities. Let
m(j,l),n = #{k : Yk ∈ Aj , Yk+1 ∈ Al, ζk+1 ≤ n} . (58)Then
α̂Y,n =

m(1,2),n

m(1,1),n + m(1,2),n
(59)whi
h is a natural estimator for probability of moving between states A1 and

A2 for se
ondary 
hain Y . Analogously
β̂Y,n =

m(2,1),n

m(2,1),n + m(2,2),n
, (60)and the estimator of transition matrix for Y is given by

P̂Y,n =

(

1 − α̂Y,n α̂Y,n

β̂Y,n 1 − β̂Y,n

) . (61)For two-state dis
rete MC, the estimator of stationary distribution in this 
aseis
π̂T

Y,n = (π̂Y,n(A1), π̂Y,n(A2)) =
1

α̂Y,n + β̂Y,n

(β̂Y,n, α̂Y,n) . (62)
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 theorem. Let
ηX,n(x) =

11(X0 = x) + . . . + 11(Xn = x)

n + 1
. (63)Then natural estimator for unknown parameter is

π̂X,n(x) = ηX,n(x) . (64)It is worth noting that apart from using the same MC, we 
reate the aboveestimators based on other kind of information � the frequen
y of moving betweenstates and 
al
ulation of transition probability from transition matrix in 
ase of
π̂Y,n(.), and dire
t 
ounting of visits in the appropriate states with appli
ationof ergodi
 theorem for π̂X,n(.).For additional diversi�
ation of information used for these estimators, it ispossible to 
onstru
t two separate 
hains or to divide one 
hain into two parts.4. Example of appli
ationAfter introdu
ing methods appropriate for �nding the value nstat, now wepresent examples of their appli
ation. Firstly, we use state spa
e X with a fewatoms. Then we investigate the renewal sets 
ase.4.1. Atoms 
aseWe should emphasize that the solutions established in lemmas of Se
tion 3.3give exa
t (i.e. proved by mathemati
al reasoning, not heuristi
) and pre
ise(i.e. non-asymptoti
) values. Therefore we may fo
us only on the problemof transferring the obtained results from theoreti
al formulas to the pra
ti
alexample.Let us suppose that we are interested in MCMC algorithm, for whi
h fun
-tion f(.) des
ribes the state spa
e X with eight atoms and stationary probabi-lities

f(.) = (1/20, 1/20, 2/20, 2/20, 3/20, 3/20, 4/20, 4/20) , (65)i.e. �rst atom has stationary probability 1/20, the se
ond one � 1/20, et
.We use independent Metropolis-Hastings algorithm (see e.g. Robert andCasella, 2004). Our main traje
tory has one million elements and starts fromstate one. We also assume that A1 = 3 and A2 = 7. Therefore, we may 
omparethe values nstat based on states with various stationary probabilities.In order to apply lemmas from Se
tion 3.3, we have to evaluate the ne
essaryparameters r1, M1, r2, M2, r3, M3 (see assumptions for Lemma 5). Normally, ex-perimenter may have some additional knowledge about these values, but we use



220 M. ROMANIUKadditional simulations in order to determine them. Hen
e, we generate addi-tional sets of 50,000 traje
tories with 100 steps in ea
h traje
tory and appropri-ate starting points � states one, three and seven. Then, we apply �pessimisti
optimization� approa
h (see also Romaniuk, 2007b).So, if we suppose that for the optimal parameters r1 and M1 we have
|Prn

A1
(A1) − πX(A1)| ≈ M1r

−n
1 , (66)then

|PrnA1
(A1) − πX(A1)|

|PrA1
(A1) − πX(A1)|

≈ r−n+1
1 . (67)Therefore, we 
ould �nd �pessimisti
� evaluation of r̂1 in the sense of satisfyingthe 
ondition

r̂1 = min
r∈R+

{

∀n = 2, 3, . . . : r−n+1 −
|Prn

A1
(A1) − πX(A1)|

|PrA1
(A1) − πX(A1)|

≥ 0

} . (68)It 
an be easily seen that (68) gives us the �maximal pessimisti
� guess of r̂1,be
ause in this light r̂1 has to be the upper limit for all steps in a stri
tlydeterministi
 sense. In 
ase of any numeri
al errors or even for greater valuesfor n (note exponential de
rease in 
onditions for Lemma 5), this method maygive larger values of r̂1 than they are in reality. However, other methods, likesatisfying the weaker 
ondition
r−n+1 −

|Prn
A1

(A1) − πX(A1)|

|PrA1
(A1) − πX(A1)|

≥ 0

∨

∣

∣

∣

∣

r−n+1 −
|Prn

A1
(A1) − πX(A1)|

|PrA1
(A1) − πX(A1)|

∣

∣

∣

∣

≤ δ (69)for some small enough δ, may be easily 
riti
ized be
ause of unknown errorgenerated by the sele
tion of value δ.After �xing the value r̂1 like in (68), we may �nd M̂1 in the same manner,as satisfying the 
ondition
M̂1 = min

M∈R+

{

∀n = 1, 2, . . . : Mr̂−n
1 − |Prn

A1
(y) − πX(A1)| ≥ 0

} . (70)The analogous formulas may be derived for parameters r2, M2, r3, M3.Then, from the �pessimisti
 optimization� for A1 we have
r̂1 = 1.04 , M̂1 = 0.0268 ,r̂2 = 1.0941 , M̂2 = 1.0888 ,

r̂3 = 1.0904 , M̂3 = 0.1372 . (71)We 
an substitute these values into the formula (43) in order to �nd the numberof steps nstat for the given value ε1 (see Table 1). In this table, the 
olumn �true
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e diagnosis to stationary distribution in MCMC methods 221Assumed value ε1 Number of steps nstat True value ε10.1 90 0.09781450.02 120 0.01967670.01 135 0.009742420.001 190 0.000981598Table 1. Evaluation of nstat for A1value ε1� gives the exa
t value of the left hand side for (43) and number of steps
nstat is in the se
ond 
olumn.The graph of the left hand side (43) as a fun
tion of the number of steps nis shown in Fig. 1.
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Figure 1. Error level ε1 as a fun
tion of n for A1If we use the improved inequality (44) instead of (43), we may observe theredu
tion of the ne
essary number of steps nstat, espe
ially for larger ε1 (seeTable 2). This phenomenon is even more easily seen in Fig. 2, where 
urve ismu
h steeper at the beginning of the graph.We may perform the same analysis for the seventh state, i.e. spe
ial set A2.In this 
ase the ne
essary parameters may be evaluated as
r̂1 = 1.0438 , M̂1 = 0.0793 , r̂2 = 1.14385 , M̂2 = 1.1439 ,

r̂3 = 1.1231 , M̂3 = 0.1394 . (72)Be
ause the atom A2 has higher stationary probability than A1, we obtain less
nstat values (see Table 3 and Fig. 3).



222 M. ROMANIUKAssumed value ε1 Number of steps nstat True value ε10.1 75 0.09818650.02 114 0.01950480.01 131 0.009891270.001 190 0.000967164Table 2. Evaluation of nstat for A1 based on inequality (44)
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Figure 2. Error level ε1 as a fun
tion of n for A1 based on inequality (44)
Assumed value ε1 Number of steps nstat True value ε10.1 71 0.09921840.02 107 0.01921240.01 123 0.009613690.001 176 0.000988225Table 3. Evaluation of nstat for A2
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226 M. ROMANIUKnormalizing 
onstant is simultaneously the inverse of maximum ǫ1 and may befound numeri
ally, whi
h gives ǫ1 = 0.6506717064872144.Similary, ǫ2 = 0.722459686557494 and graph of fν2
(.) may be found in Fig. 7.
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0.2

0.4
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1

Figure 7. Graph of fν2
(.) without the normalizing 
onstant for A2 = [7.75, 8]In order to �nd parameters r1, M1, r2, M2, r3, M3, ne
essary for 
onditions(40), (41), (54) we use similar approa
h as in Se
tion 4.1. Therefore, for A1 wehave

r̂1 = 1.034 , r̂2 = 1.0345 , r̂3 = 1.0131 ,
M̂1 = 1.05 , M̂2 = 1.0069 , M̂3 = 0.022 (76)and for A2

r̂1 = 1.03 , r̂2 = 1.0318 , r̂3 = 1.0078 ,
M̂1 = 10.6702 , M̂2 = 0.9957 , M̂3 = 0.007 . (77)These parameters give us the solutions for inequality (43) (see Tables 4 and 5)As previously, evaluation for the �less frequent� set A2 in
reases the nstatvalue by about 20 � 30%.The heuristi
 approa
h may also be applied for this 
ase. The graph issimilar as in the previous example with �jerked� 
hara
ter.5. Con
luding remarksWe started from formulation of two inequalities, whi
h 
orrespond to stan-dard questions in MCMC setups, i.e. when the sampled transition probability
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e diagnosis to stationary distribution in MCMC methods 227Assumed value ε1 Number of steps nstat True value ε10.1 521 0.09896170.02 644 0.01996620.01 698 0.00988720.001 875 0.000987682Table 4. Evaluation of nstat for set A1Assumed value ε1 Number of steps nstat True value ε10,1 682 0.09952180,02 889 0.01992630,01 979 0.009902290,001 1275 0.000992949Table 5. Evaluation of nstat for set A2is 
lose to determined stationary probability of Markov Chain? and how manyiterations should be used in order to minimize the error of estimator? Theseinequalities 
orrespond to �nding two values � the numbers of steps nstat and
nVar for the traje
tory generated by some MCMC method. Then we use thefeatures of se
ondary 
hain in order to �nd the nstat estimator. Therefore, weobtain a useful set of 
onditions whi
h 
ould be used for 
he
king the 
onver-gen
e in MCMC setup. The examples of appli
ation of theoreti
al lemmas andof heuristi
 approa
h for the 
ase of state spa
e with atoms and renewal sets arealso provided. It has to be mentioned that this paper 
omprises some 
ontentsof do
toral dissertation (see Romaniuk, 2007a), where additional remarks maybe found.We should emphasize the usefulness of the presented method, whi
h 
ouldbe used in a highly automated manner and provide the stri
t results for theexperimenter. However, we should note that not just one, but a whole setof various algorithms and methods should be applied in order to 
ontrol theMCMC output and guarantee the 
onvergen
e of the simulated traje
tory at asuitable satisfa
tory level.The possibilities of 
omplementing the dis
ussed method might also be 
on-sidered. For example, the obtained 
onditions might be improved, like in (44).However, additional information about the stru
ture of state spa
e or under-lying Markov Chain may be ne
essary in su
h 
ase. The dependen
ies amongthe number of spe
ial sets, their allo
ation, possible modes in state spa
e andobtained solutions may be examined. The lemmas may be also generalized forother 
ases of state spa
e stru
ture and number of spe
ial sets.
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