

An Integer Programming Approach to Inductive Learning From
Examples

1. Introduction

Machine learning from examples is a process of inferring a classification rule (concept
description) of a class from descriptions of some individual elements of the class called
positive examples, with some elements from outside of the class, called negative
examples, which are used for narrowing the solution space. Each example is assumed
positive or negative.

Traditionally, the most relevant requirements to be satisfied by learning procedures are:

e completeness, i.c. that the classification rule must correctly describe all the positive

examples,
® consistency, i.e. that the classification rule must not describe any negative examples,

e convergence, i.e. the classification rule must be derived in a finite number of steps,
o the classification rule of minimal “length” is to be found, e.g. with the minimum
number of attributes (or, more generally being “simple”).

The sense of the first three is quite natural, and the sense of the fourth reflects an
obvious fact that long rules are not "legible" to the humans; hence their practical
usefulness may be limited.

In practice, due to imperfect data and other elements of the process, the first two
requirements are usually meant in a relaxed way as:

® a partial completeness, i.e. that the classification rule must correctly describe, say,
most of the positive examples,
e a partial consistency, i.e. that the classification rule must describe, say, alinost none
of the negative examples.
Examples are described (cf. Michalski, 1983) by a set of K "attribute - value" pairs
written as
X
e= ,-/=\1[a ;]

where a; denotes attribute j with value v; and # is a relation exemplified by =, <, > etc.

For instance, if the attributes are: height, color_of_hair, color_of_eyes, than the concept
”look of a one women” may be described by

[height = "high"]a[color_of_hair = "blond"]a[color_of_eyes = "blue"].

We propose here a modified inductive learning procedure based on Michalski’s (1973,
1983) star-type methodology. The method is based on some elements of the authors’

previous work (cf. Kacprzyk and Szkatuta, 1994a,b, 1995, 1996, 1997a,b, 1998, 1999,
2002a,b, 2005a,b,c and Szkatula and Kacprzyk, 2005). Basically, since the algorithm
builds the rule sought in an iterative way, a pre-processing of data (examples) is
performed based on an analysis of how frequent the values of the particular attributes
occur in the examples. These frequencies are used to derive weights associated with
those values, and the problem is represented as a modification of the set covering
problems, and solved by a modification of a greedy algorithm (IP_GRE) or a genetic

algorithm (IP_GA).

The paper is organized as follows. In Section 2 the inductive learning problem is
represented as a modification of the set covering problems. In Section 3 the basic steps
of the IP method are described. In Section 4 the IP_GRE procedure is presented. In
Section 5 the IP_GA procedure is presented. In Section 6 and Section 7 computation

results are given.

2. Problem Formulation of Inductive Learning from Examples

Suppose that we have a finite set of examples U and a finite set of attributes
A={a,..,ay}. Vﬂ,- ={vj_l,vj‘2,...,vj_,_/} is a domain of the attribute a, j=L.,K,

where L; denotes number of values of the j-th attribute, V.= U V, . f:UxA—V is
jel kY

a function such that f(e",a;)e€ VaJ for every a;€ A and "€ U, n=12,..,N . Each

example "€ U is described by K attributes A = {q,,...,a, }, and is represented by
K
e" = Ala; = f(e",a;)] ¢))
J=l

where f(e",a;)=v; . and vj‘,(j'n)eVa/_. Function f(e",a;) denotes that the
attribute a; taking on a value Vim fOr example ¢". The index #(j,n) for
je{1,2,.,K} and ne (1,2,.., N} specifies which value of the j-th attribute is used in
the n-th example.

An example ¢” in (1) is composed of K “attribute-value” pairs (selectors), denoted

s;=la; =v;,.,]- Conjunction of I £ K ”attribute-value” pairs, i.e.

ns, =C 2)
jel
where I c{1,..., K}, card(I) =1 is called a complex.

A complex C' covers an example ¢" if all the conditions on attributes given as j- th
selectors are covered by (equal to) the values of the respective attributes in the example,

VjeI. The set of all the examples described by the conjunction C' will be denoted
1.

For instance, for K=3 the complex [a,= "woman’]a[e; = 735 years”’] covers the
example [a,= "woman”]a{a,= “married”]a[a;= 735 years”] but does not cover the
example [a, = "man”]a[a,= "married”]a[a; = 35 years”].

Suppose that we have a finite set of examples U, a finite set of attributes Au{a,},
{a;}3M A=, a, is a decision attribute and V, ={v,,v,,,...,v,,} is a domain of the
attribute a,. We have the sets [Yv“ :1=1,..,L,}, where Ym ={ecU: fle,a,)=v,,},

v, €V, and Y, w.vY, =U, ¥, NY, =@ for i#j. Thus, the decision

Vd.Ly
attribute splits the set of examples into the non-empty, disjoint and exhaustive subsets,
that we call the decision classes.

Letusclass ¥, ,for v, €V, . Suppose that we have a set of positive examples:

Sp(¥,)={ecU: f(e,a,)=v,,} 3)

Yau

and a set of negative examples:

Su(Y,,,)= {e€U: fle,a,) # vy and Ve € S,(Y,,,) 3a, € 4, fle.a)) # f(ea,)} Q)

1,8, Y2 @, S,) NS, (¥, Y=, by assumption.

Y

with $,(¥,

Vet Vas Yag

An implication R,: C" = [a, =v,,], le(l,...L,} is called the k~th “elementary” rule for
the class ¥, , where C" = Ala;=v; 0] is description of example in terms of condition
4 Jely A

attributes a,, je I,, I, c{l.., K} and this example belongs to class ¥, .The index (k)

specifies which value of the j-th attribute is used in the &-th rule.

Each rule is characterised by the coefficient of its strength. The strength of a rule &,,

which depends upon the number of examples described by the conditional part of the

rule C", belonging to a given class ¥, is defined in the following manner:

card(le: e€(C"]and f(6.0,)=V)) [i evident that 0<qc™y<1. The more
card({e: e U})

examples are described by the rule, the greater the value of the rule strength coefficient

(i.e. the more important the rule is).

g(chy =

In this paper we consider the classification rules to be the disjunction (via "u") of
“elementary” rules consisting of complexes of type (2), i.e.
Chu.uch = as u.un s, — [class=class ¥,] (5)
hen qEl Tt

Vay

where: 1,...,I, <{l,..,K} and "U" corresponds to the connective "or".

Suppose that we have a finite set of examples U, a finite set of aftributes {a,,....a,}{a,},
a, is a decision attribute and V, ={v,,,v,,,...,v,,,) is a domain of the attribute a4, . Let us
class v, , for v, €V, . Suppose now that we have P positive examples and N negative
examples. The positive examples are therefore " € S,), m=1,..,P, and are written

as

(6)

,.
e "= [al = vl,l(l,m)] AN [al(= vK.l(l(,m)]

where: v €V, , j=1..k, while the negative examples are " S,(¥,), n=1,..,N,

i € Va,

and are written as

&)

» _ _
e’ =la, =v ;1A A [ay =vg,xm)

where: v, €V, . j=1...K and S,(¥,), Sx(Y,) # @, S,(¥,) NSy,)=9.

a, Vg Vas

The idea of data pre-processing proposed in this work is as follows. For each attribute
a; in the examples, it is evident that not each possible value occurs at the same intensity

(frequency). Clearly, if a value occurs more frequently in the positive examples and less
frequently in the negative examples, then it can be argued that it should rather appear in
the rule sought. Clearly, these frequencies should be relative because the sizes of sets of
the positive and negative examples need not be the same.

The above rationale may be formalized as follows: first we introduce the following
function, for each attribute a;, j=1,...,K and particular values v, e V., {=1..L,, where

the j-th attribute a; taking on the value v, for example ¢" € S, and the value v, ,

for example "€ S,

1 & 1 ¥
g == 5<e"',v,.,,)—ﬁzs(e".vj,,) (8)
n=l

m=l

where:
S(e™v,,) ={

1 for v, m =V
0 otherwise

1 jor Yiatim = Vis

0 otherwise

é'(e",v,.,):{

Therefore, (8) expresses to what degree the particular values v, ¢ v, of attribute a;

occurs more often in the positive than in the negative examples. We may therefore
assume that this normalized value g (v,,) is used as a weight of value v, eV, of each

attribute a;, due to the rationale mentioned above.

Suppose now that we have a positive example ", such that
e" =[a, =v,) A Alay =y], and we consider a complex

®

4
C'=la, =v, mlrnla; =v, . .1

J Aty

that corresponds to the set of indices 7=(j,....j,} c{l...K}; ‘the set of indices
{ji+ s i} 18 clearly equivalent to a vector x=[xj]T, such that x; =1 if a selector

la, =v,,,m]0ccurs in the complex (9), and 0 otherwise, j=1,....K .

For instance, for K' = 3 and example ¢ = [height = "high”]A{color_of_hair = "blond”]»
{color_of_eyes = ’blue”], the vector [0,1,0]T is equivalent to the complex [color_of_hair
= "blond"']; the complex [height = "high”] is equivalent to the vector {1,0,0)" .

As already mentioned, to the value v, , €V, , of each attribute a; a weight g (v, ,,.,) is

assigned, and an example e with weights is written as

(10)

m

&
bw = f:l[ai =V 8 Viatim)]

An example ¢, given by (10) is then composed of the weighted selectors,

w) — .
sy =[a; =V, ;m38;(V;0,m)]» and a conjunction of them, i.e.

= A 5
W ercil k)
wo_
i

W o_
;=

= A s amn

AN L2, =) 0im 8 s Vg ANy =V, 0000385 O s m))
= - farerin

is called a weighted complex. Notice that for the above ¢y, the vector x has the elements
X %5, x; =1, while, for je(12,..,KI\{ji, jps 0 jm) We have x; =0.

For a weighted complex C}, its weighted length is

X

)
dy (C)) = X(I“SJ(V/,/(f.n.)))'x/‘L Z(I_gj("f.«/.my))"‘f: Z(l_gj("/‘:um))'xi (12)

=i FEl s K P i) J=l

which reflects the philosophy of data pre-processing introduced above, i.e. a higher
relevance of those values of attributes which occur more often in positive than in

negative examples.

The length of the weighted classification rule composed of L weighted complexes,

Ry >lclass=Y,), Ry = Cp U.UCy s

13

g, (Gl U UCiE) = _rTadew(c&)
i=l, ..,
The problem of learning from examples was to find an optimal classification rule
Ry = C" U ..uCyt” such that

(14)

. 1,
min d, (Gt U.OC)
Tyl

i.e. which minimizes the weighted length of the classification rule.

Since the (exact) solution of problem (14) is very difficult, an auxiliary problem is
solved (cf. Kacprzyk and Szkatula, 1996), i.e. an Ry, = C\" u..uCjt” is sough such that

(15)

min dy (Cly, ..A,n}indw(C{VL)
! L

where the minimization is consecutively performed over the sets of indices /,,...,I; [cf.
(5)]; the solution of (15) is in general very close to that of (14), while much easier to
obtain.

If the requirements to be satisfied by learning procedures are:

® a partial completeness, i.e. that the classification rule must correctly describe most

of the positive examples,
e g partial consistency, i.e. that the classification rule must not describe most of the

negative examples,

the problem (15) can be represented as a modification of the set covering problem
(SCP).

3. Solution by Using the IP Method

Suppose that we have a finite set of examples U, a finite set of attributes {a,,..,a,}U{a,},
a, is a decision attribute and v, ={v,,, ..,v,,,} is a domain of the attribute a,. We have

the decision classes (Y, :1=1,.,L,}, Where ¥, ={ee U:f(e,a,)=v,,}, Vv, & V., . The rules

are iteratively induced for each class.

Let us class v, for v, eV, . Suppose that we have a set of positive examples S, [cf.
(3)], e"€S,, m=1,.,P and a set of negative examples Sy [cf. (4)], ™" €Sy, n=1..,N,
Sy.Sp#@, Sp NSy =2, by assumption.

For example ¢" € S, , where
e" =[a =V 381 Visam] e N = Vi ki85 Vi)

and all the negative examples e"*" €5, n=1,..,N, where
e = [a, = Vi apim 38 Virapem N A Al =V pny 38k Wik opem M s

we construct a 0-1 matrix Zy.x={z,;1, n=1..,N, j=1,..K, defined as

1 for v, ., %V,
) PR
Z _{ Jatim I ” (16)

O for V,iim =Viutioem

The rows of this matrix correspond to the consecutive negative examples ™" €S,
n=1,..,N and the columns correspond to the subsequent attributes a, ...,a, . The value

z,; =1 occurs if attribute a; takes on different values in the positive and negative

example, i.e. v, i " are notequal to v, ,,., in ¢"*'; and z,; =0 otherwise.

In such a matrix there are clearly no rows with all the elements equal O since, by
assumption, the sets of positive and negative examples are disjoint (and non-empty),
Sn.Sp#@, SpnSy =@. Thus, for any positive and negative example there always

exists at least one attribute taking on a different value in these examplies.

Consider now the following inequality

K
Zz,,jxj 2Y. n=1..,N an

7=l

where y =[y,,...,y5]" is a zero-one vector (of N elements), and x =[x, ...,x;]7 such that
x; €{01}, for j=1,...K [cf. the remark in (9)].

Any vector x defined above which satisfies inequality Zx >y (17) determines therefore
in a unique way [cf. (9)] some complex composed of selectors from the description of
the example such that the conditions of partial completeness and partial consistence are
satisfied. It describes at least one example from the set of positive examples, and it does
not describe most of the examples from the set of negative examples. If vector x does
not describe the n-th negative example, than vy, =1; and y, = 0 otherwise.

The minimization in problem (15) may be written using the inequality (17) as

X
xnzgly T (l_g,(vj,:(/,m)))'xj (18)

The minimization over the set of indices 7, may be replaced by the minimization with
respect to x which yields [cf. (14)] an R}, =C} u..uC}* such that

min d,, (C§),.., min d,,(C) (19)
xZ'x2y xZ2tzzy
Each minimization with respect to x in (19) is therefore equivalent to the determination
of a 0-1 vector x" which uniquely determines the complex of the shortest weighted
length. On the other hand, the satisfaction of Zxr>A (if A is aunit vector) guarantees
that such a complex would not describe the all negative examples. If a complex must
describe almost none of the negative examples, problem (18) can be written as
a modification of the set covering problem (SCP)

min 3ex; (20)

subject to

K
> egx2v,, n=1..N @2n

=

and an additional constraint

N
Sy, 2N -rel (22)

n=]
where

¢, =(-8,00,,4m)s 2z, €101, x; € {01},

j=l.oK, Y={pn-u¥y)l’, 7,601, n=1.,N (23)

given a parameter rel 2 0.

The above problem is the same as the original SCP with the exception that no more then
rel rows are uncovered. Then, it is clear that no more then rel rows can be deleted from
the problem. Note here that we may, in deleting rows, lose some information about the
problem that could have been better used. Note also that this reduction test cannot
always be applied. In the set covering problem (SCP) [cf. Beasley and Chu (1996)] there

is only constrains (21) and vector v = [y,,...,yx]1" is a unit vector.

Our modified set covering problem (20), (21), (22), (23) is the problem of covering at
least N-rel rows of an N-row, K-column, zero-one matrix (z,;) by asubset of the
columns at minimal cost ¢;,. We define x; =1 if column j with cost ¢; >0 is in the
solution and x; = 0 otherwise. Equations (21) and (22) ensures that the most rows (at

least N-rel rows) are covered by at least one column and equation (23) is the integrally
constraint. It always has a feasible solution (a unit vector x of K element), due to the
required disjoints of the sets of positive and negative examples and the way the matrix Z
was constructed.

So, we are looking for a 0-1 vector x at minimum cost and a 0-1 vector y =[y,,....yy1"
which determines the covered rows, vy, = [if n-th row is covered by solution x and y, =
0 otherwise. By assumption, at least N-rel rows (given a parameter rel >0) must be
covered by solution x.

N
Then, an “elementary” rule for class ¥, , v, €V, , may not describe at least (1—;),9-2 ¥,)%

n=l

negative examples.

Example 1. Let consider the class ¥, , for v, eV, . Suppose that in Fig. 1 all the

training examples are shown. Those belonging to the class (the six positive examples)
are marked by @ and those not belonging to the class (the six negative examples) are

marked by ©.

& @ ©
@
@ ® ©®
e o
@ (@] ®
Figure 1.

A one elementary rule for the class v, , for rel = 0 (that not describe all the negative
examples) and for rel = 1 (i.e. may don’t describe no more than one training example),
is illustrated in Fig. 2.

D D Q @ @ @
® D
® ® & D g o
®) @ ® @
@ e © @ o 9
rel=0 rel=1
Figure 2.

[u]

The set covering problem is a well-known combinatorial optimization problem and has
been proven to be NP-complete (Garey and Johnson, 1979). NP-complete problems are
problems that are not currently solvable in polynomial time. A number of optimal and
heuristic algorithms which try to find a ”good”™ solution quickly have been presented in
the literature in recent years.

The first published approximation algorithms for the SCP with a worst-case analysis
used the greedy heuristic [cf. Johnson (1974), Lovasz (1975), Chvatal (1979)]. The
approximation ratio of greedy algorithm (i.e. the worst ratio between the cost of
a greedy solution and the optimum) is In N +1. A probabilistic analysis of the SCP

defined by randomly generated matrices appears in Vercellis (1984).

A number of optimal algorithms for the SCP, typically based upon tree-search
procedures, have appeared in Balas and Ho (1980), and Beasley (1987). Beasley (1987)
presented an algorithm for the SCP that combines problem reduction tests with dual
ascent, subgradient optimization and linear programming. Fisher and Kedia (1990)
presented an optimal solution algorithm based on a dual heuristic. Beasley (1992)

combined a Lagrangian heuristics, feasible solution exclusion constraints, Gomory’s f-
cuts and an improved branching strategy to enhance his previous algorithm [cf. Beasley
(1987)]. Harche and Thomson (1994) developed an exact algorithm based on a new
method, called a column subtraction (or row sum) method, which is capable of solving
large sparse instances of set covering problems.

Among the heuristic methods, Balas and Ho (1980) reported that a reasonable lower
bound for the SCP could be found by a dual ascent procedure together with subgradient
optimization to improve upon the lower bound obtained from the dual ascent procedure.
They considered a heuristic of the greedy type where at each stage an uncovered row i is
chosen and covered by choosing the column j which minimizes some function F (c;,
number of uncovered rows in column j, j covers i) to generate an upper bound (Z,;) for
the problem. Balas and Ho considered five different forms for the function F. A key
feature of their work was the use cutting planes. Essentially they added to the original
SCP additional constraints (of the same type as shown in equation (21) in order to
increase the value of the linear programming relaxation of the (enlarged) SCP so that
(eventually) it has the same value as the optimal SCP (integer) solution. Beasley (1990)
presented a Lagrangian heuristic algorithm and reported that this heuristic gave better
quality results than a number of other heuristics. Jacobs and Brusco (1993) developed
a heuristic based on simulated annealing. Sen (1993) investigated the performances of a
simulated annealing algorithm and a simple genetic algorithm on the minimal cost set
covering problem. A comparative study of several different approximation algorithms
for SCP was conducted in Grossman and Wool (1995).

Christofides and Korman (1975) presented a computational survey of a number of
different methods for the SCP. Etcheberry (1977) presented an algorithm based upon
Lagrangean relaxation of a subset of the covering constraints with subgadient
optimization being used to determine the Lagrange multipliers. Paixao (1984) presented
an algorithm based upon decomposition and state space relaxation. Beasley and Chu
(1996) presented a genetic algorithm for the SCP. They proposed several modifications
to the basic genetic procedure including a new fitness based crossover operator, a
variable mutation rate and a heuristic feasibility operator tailored specifically to the
SCP. Several neural network based algorithms were suggested or developed for
problems related to the SCP [cf. Croall and Mason (1991), Jefries (1991)].

For the solution of problem (19) we apply the IP method with elements of a greedy
algorithm and a genetic algorithm. We assume that the classification rule must correctly
describe most of the examples, at least Ag,.,, by assumption. The measure of
classification accuracy A, is the ratio of examples correctly classified to the total

number of examples, in percentage.

Suppose that we have a finite set of examples U, a finite set of attributes
A={a,,..ax}{a,}. Letus class ¥, , for v, eV, , and a set of positive examples S, [cf.
(3)], and a set of negative examples S, [cf. (4)]. The consecutive steps of the algorithm

are as follows:

Step 1. Set the initial values: §=5,, i.e. the whole set of examples is initially assumed
to contain the positive ones, Sy is a set of negative examples, and Ry, =@, i.e. the initial
set of complexes is assumed empty, iteration r = 0, given parameter rel >0.

Step 2. Iteration r = r + 1. Determine the weights G by analyzing (pre-processing) of
the examples due to (8).

Step 3. Determine an appropriate starting point; a good starting point may be a so-called
centroid {cf. Kacprzyk and Szkatula (1996)] that is some (possibly none existing)
example in which the attributes take on values that occur most often in the positive

examples and seldom in the negative examples.

The positive examples " € S,, m = 1, ..., P, are written as

(24)

. . _ .
e" =[a, = Vi 381 Verum M A Alay = Vi ocmyi8x Groirm)]

while the negative examples ¢”"€S,, n=1..,N (for simplicity the upper index P is
omitted below and later on when it does not lead to confusion), are written as:

(25)

€" =[a, =vy,0mi8 Viam) I A Alag = Vi pm 38k Vs

For each attribute a;, j=1,..,K, we determine such a value v, € v, that [cf. (8)]

P N
—};Zd(e"’,v jr,)—%}: 8" v,)} (26)

m=1 n=l

max {g,(v; = max
vNeV_’[g’()] v,,ev,’{

where:
vu€V,, I=1..L;, V, isthe set of possible values of attribute a;,

1
(¢} otherwise

. 1 L =Y
Now, we form an example, called a centroid

27

.
e =[a = vl.l(l.‘);gl(vl.l(l.‘))]A"‘A[aK = VI{,I(K,');gK(vK.v(K.‘))]

that contains the selectors with the most typical positive values of the particular
attributes. Needless to say that this example may be artificial, i.e. nonexistent. The
concept of a centroid is crucial for the efficiency of the algorithm.

We introduce a similarity measure 7 yielding a degree of similarity (from [0,1]) between
the centroid " and a positive example e {cf. (24)] as, e.g.:

N 1 &
e ey = ;Zd(e"',v,,,(,,.)) (28)
j=l

or

X
7", €) =28, (v105m) 0"V, 00,) 29
=

where g (v,,;.) is the weight of the value v,, .., of attribute a, obtained by using, e.g.,
(8).
Finally, in the set of positive examples we find such an example e” € S, for which

max n(e™,e") (30)
e"eSp

i.e. the closest positive example to e’.

Then, as the starting point for the next iterations there is adopted a real (existing)
example that is the closest, e.g., in the sense of the measure of similarity (28) or (29), to

the one found by (30). This example e”
" =la, =V10,)381 Opaa A Al = Vi e 38k Vi)]
is used in the algorithm proposed in the next steps as the starting point.

Step 4. For the ¢ we form the matrix Zy.g={z,), n=1,..,N, j=1,...K, due to (16)

and a modification of the set covering problem such that

with linear constrains
X
Zz,,jij‘Y,,, n=1..,N
j:

N
ZY" 2N —rel

n=1
where:

¢ =U-g v, ;) 25 €01, x; €01}, n=L. N, j=1..K,

¥ =[y,,...Yx]" isa0-1 vector, re/20.

Step 5. To solve above problem we apply a greedy algorithm IP_GRE or genetic
algorithm IP_GA. The 0-1 vector x" =[x, ...,xx 1" found in arbitrary way determines in a

unique way the complex ¢/ and the 0-1 vector y =[y,,...,yy]" determines the fulfilled

constrains.

12

Step 6. Include complex Cj;* found in Step 5 into the classification rule sought Ry (i.e.
that with the minimal weighted length), Ry := Ry W Ci g(CL'), where ¢(C") is the
strength of the r-th elementary rule, and discard from the set of positive examples S all
examples covered by complex C;;’.

Step 7. If the set of examples S remaining is small enough, STOP and the rule
Ry, =G (e ULV G g(Cy) @31

Iy Iy €L, ...,K}, is the one sought; otherwise, return to Step 2.

Example 2. Assume that we have two class ¥, , ¥, for v, eV, , v, eV, . Suppose
ia Ty 4 € Ve Y, €V,

that in Fig. 3 all the training examples are shown. Those belonging to class ¥, ~— are
marked by @ (11 examples) and those belonging to class Y, are marked by © (11

examples).
@
® @ ® @O (6
D & ©
D © O @
© @D @

® 0 ©

D

@

Figure 3.

Let consider the class Y, . First, we find the set of elementary rules for the class Y,

that correctly describe the most training examples, for rel = 1, ie.
Chu.uC > [a, =v,,], is illustrated in Fig. 4.

)

oo\ 0| DD @

52 o 0

G ® e o
[¢] [&] €]

9 ©
@
@
Figure 4.

Next, we determine in the same way the set of rules for the class v, , ie.

ChwuC” 5 a, =v,,], isillustrated in Fig. 5.

13

P o - N
/N /
&® |6 \ee/
e | | oo

—

® 3(191‘%_&(@/ >
B

o ___ o

(\G)/ \
@/ N

——
[S] \ ~
~ 7 ®

Figure 5.

The rules formed in this manner can be applied to classification of new examples, i.e.
ones that have not appeared in the learning process. Such a classification is carried out
through verification of fulfilment of conditions in the conditional parts of the rules, and
in case of equivocal situations (when more than one, or none, of the rules is fulfilled),
the degree of matching of the class is accounted [cf. Szkatuta, 1995].

4. The IP_GRE Procedure
To solve problem (20), (21), (22), (23) (i.e. Step 5 in the IP procedure) we apply
a modification of the greedy algorithm IP_GRE. The example ¢”, found in Step 3 of the

IP procedure, is used in the algorithm as the starting point. For the ¢? we form the
matrix Zy.g=(z,;J, n=1...N, j=1..K, due to (16). We assume initially that

x =[x, xp] =[0,..,0)7 and y" = [y;, ., vy 1= (0,017, rel 20.

Step 1°. We assume the initial matrix to be M = Z.

Step 2’. We calculate the efficiency of element x;, j=1,..,K with respect to the matrix
M which is defined as

N
E(x,M)=Y"m, Hl-g,(v,) (32)

n=l

We choose the highest value E(x ., M), and set x;-.:l .

Step 3°. We denote the j*-th column of M as me = [m”,. My e iy 1" and calculate new

matrix M as
(M) xdiag(l=m, 1=, ., d=my)T (33)
and we obtain new vector y* = [y}, ..,yy] as

(34

[max(mlj.,y;], .H,max{mNj.,y;, nr

14

N
Step 4. If Zy,, > N - rel then STOP, otherwise return to Step 2°.

n=1

The 0-1 vector x” =[x,..,xx]" found in such a way determines in a unique way the

complex Cy sought and the 0-1 vector y” ={y;,..,yy] determines the fulfilled
constrains. Now, we can go to Step 6 of the IP algorithm.

5. The IP_GA Procedure

For the solution of problem (20), (21), (22), (23) (i.e. Step 5 IP procedure) we apply
modification of genetic algorithm. A genetic algorithm (GA) can be understood as an
intelligent probabilistic search algorithm which can be applied to a variety of
combinatorial optimization problems. It requires a set of individual elements (i.e.
population) to be initialized. Each individual in the population is encoded into a string
that represents a possible solution to a given problem. The fitness of a solution is
evaluated with respect to a given objective function. Highly fit solutions are given
opportunities to reproduce by exchanging pieces of their bits in the strings, in crossover
procedure, with other highly fit solutions. Mutation is often applied after crossover by
altering some bits in the strings. This produces new solutions that can either replace the
whole population or replace less fit solutions. This evaluation-selection-reproduction
cycle is repeated until a satisfactory solution is found. The theoretical foundations of
genetic algorithms were originally developed by Holland (1995).

The basic steps of a simple genetic algorithm are shown below:

Set ¢ = 1. Generate an initial population P() of possible solutions;
Evaluate fitness of solutions in the population;
while a satisfactory solution has been found do
begin
Select solutions from the population;
Recombine solutions to produce new solutions;
Evaluate fitness of new solutions;
Set ¢ = t+1. Replace some or all of the solutions in the population by the new
solutions and create the new population P(z).
end;

The first step in designing a genetic algorithm for a particular problem is to devise a
suitable representation scheme, ie. a way to represent a possible solution in
a population. We assume a X-bit binary string which represents the potential solution
structure, where K is the number of variables in our problem (i.e. columns in the SCP).
In this representation a value 1 for the j-th bit implies that column j is in the solution x*,

i.e. that x} is in the solution, respectively. This binary representation of the solution

xt =[x xd, oxk 17 as (L0, ...,L0]7 is illustrated in Figure 6.

! W
Xy Xio1

K-1 K

1
N

Column 1 2 3
bit string I 1 l OT] r 1 1 —l OJ

Figure 6. Binary representation of solution x! as [1,0.1, ...,1,0]

P2

We note that a bit string might represent an infeasible solution. An infeasible solution is
P

one for which at least one of constraints is violated, i.e. » z,x, =0 for some ne/,

n=t

where 7={),..,N} is the set of rows. There are a number of standard ways of dealing

with constrains and infeasible solutions in genetic algorithms:

to use a special representation that automatically ensures that all solutions are

L]
feasible,

s to separate the evaluation of fitness and infeasibility (Chu and Beasley (1995)),

e to design a heuristic repair operator which guarantees to transform any infeasible
solution into a feasible solution [Beasley and Chu (1996)),

» to apply a penalty function [Goldberg (1989), Smith and Tate (1993)] to penalize the

fitness of any infeasible solution without distorting the fitness landscape.

In our procedure, IP_GA, in each iteration all solutions are evaluated with respect to
their completeness and consistency. We adopted a simple approach of using
a penalty/evaluation function which assigns utility to candidate solutions. The fitness of

an individual solution x is calculated simply by

. N
eval(x) = f(X) = Qo %Zf”(x)

=)

where:
P
fx)= chxl
1=l
K
0 for sz x, >0
1,(x) = !
I for Yz, x, =0
j=1

Zuae = Max{g,: j=1,...K}, n=1 N

where x, is the value of the j-th column in the string corresponding to the solution x and

¢, is the cost of j-th column.

The second step in designing a genetic algorithm is to generate an initial population of
feasible solutions. In our problem the initial population was randomly generated and the
size of the population was proportional to the number of columns.

The third step is a particular choice of crossover and mutation operators which are
applied to the new population.

We arbitrarily adopted the crossover operator which for two solutions forms two new
solutions. Under the one point crossover operator, two structures in the population
exchange portions of their binary representations. This can be implemented by choosing
a point at random, called a crossover point, and exchanging the segments to the right of
this point. For example, select two solutions x' and x* from the population

and suppose that the crossover one point has been chosen as indicated. Ther, we obtain
two new structures:

) 1|2 EINE S
xUo=vy, g, Ky, Xk, Xk]
|
S

EREPE IR i i o7
7=y xg s g, xg)

After the new population has been selected, mutation is applied to each structure in the
new population. The mutation procedure is performed that mutates some randomly
selected bits in the solution. It works by inverting each bit in the solution with some
probability (the mutation rate). The rate of mutation is generally set to be a small value.
For example, by selecting a solution ' from the population

AN Y B B { i T
=[x, Y Xy, X |
we obtain
A [i a7
X' o=y, Xy, g, e Xy, Yl

The fourth step is the choice of a selection method. Selection is the process of choosing
structures for the next generation from the structures in the current generation. The
structures of new population are chosen by a stochastic universal sampling Baker
(1987). This method uses a single wheel spin. This wheel is spun with a number of
equally spaced markers equal to the population size. The selection pointers are then
randomly shuffled and the selected structures are copied into the new population. A new
population is formed with those better solutions more likely to appear and the cycle

repeals.

Our procedure steps are as follows:

Step 1’. Set r = /. Generate an initial population of random solutions P(1) =
ix!,x%, .,x"}. Each solution is simply a binary string of length K. Evaluate the fitness

eval(x') of individuals in the population, /=12, ...,P.
Step 2°. A mutation operator is applied to each solution in the population.

Step 3’. For the first solutions (the crossover rate multiplied by the size of the
population) a crossover operator is applied. Two solutions are chosen and form two new

solutions.

Step 4. The new solution generated by the crossover and mutation procedures may not
be feasible because the constraints may not all be satisfied. We evaluate the fitness
eval(x') of new individuals in the population.

Step 5°. If a termination condition satisfied STOP, the best solution found is the one
with the smallest fitness in the population; otherwise, go to Step 6.

Step 6°. Select a new population P(t+1) from population P(z) and return to Step 2’

The 0-1 vector x =[x/, ..,xz1" found by this way determines in a unique way the

complex ¢, sought. Now, we can go to Step 6 of IP algorithm.
The IP_GA algorithm described above is relatively simple and efficient. It requires a

number of parameters, e.g. the population size, probabilities of applying genetic
operators, etc.

6. Application of the IP Algorithm to Solve Test Problems

6.1. Solution of Test Example

Suppose that the examples are described by the following three attributes (concerning
some features of human beings):

a, : "height” with values from the set {"high”, ”low”},
ay: "color_of hair” with values from the set {“dark”, “red”, ”blond”},
ay: ’color_of eyes” with values from the set {”blue”, "green”}

and a decision attribute "class” with values from the set {“’class 17, “class 2”}. Suppose
that we have three examples belonging to class 1:

¢': [height = low] [color_of hair = blond] [color_of eyes = blue]
¢?: [height = high] [color_of hair = red] [color_of eyes = green]

*: [height = high] [color_of hair = blond] [color_of eyes = blue)

and five examples belonging to class 2:

e*: [height = high] [color_of_hair = blond] [color_of eyes = green]
¢ [height = low] [color_of hair = dark] [color_of eyes = blue]
¢®: [height = high] [color_of hair = dark] [color_of eyes = blue]
e’ [height = high] [color_of hair = dark] [color_of eyes = green]
&% [height = low] [color_of_hair = blond] [color_of eyes = green]

3 s

notice that both types are written as in (6) and (7) but with the "A” omitted for
simplicity.

We wish to find the two classification rules:
Ry > [class = class 1], R% — [class = class 2]
where &) and R} are disjunction of the complexes to be found.

To determine the first classification rule, R}y, we will use the algorithm iP proposed in
the previous sections. To visualize the results we use two-dimensional diagrams. Each
box of the diagram represents the conjunction of some values of the attribute a, (rows)
and a,,a, (columns). In Fig. 7 all the training examples are shown. Those belonging to
class 1 (positive examples, Sp) are marked by "+, and those belonging to class 2 (the

LEIRY)

negative examples, Sy) are marked by

d; green blue ay

dark - - -
red +

blond - - + +
rhigll Iow—ﬁigh llow In]

Figure 7. Training examples: the positive examples are marked by ”+”, the negative examples are
g P p g P
marked by -7

The steps of the [P algorithm are as follows.

Step 1. We denote the two disjoint sets of examples as:

Sp :{el,ez, 63},

— 4 3 6 7 8
Sy ={e*,e,e, e, e},

Rl = @. rel = I (i.e. the classification rule may don’t describe no more than one training

example), and assume the initial set to be S =5,.

Step 2. Determine the weights G by analyzing (pre-processing) of the examples due to
(8). For each of the value of attribute «,,j = /.23, we calculate

3 8
g,(v)=%ZB(E"',V)—%Z5(€”,V) foreach ver, , j=123.

m=] n=4

We obtain, therefore, first, for the attribute a,: height™:

3 8
g {low)y = —;—Zﬁ(e"',low)f%ZS(e”,Iow) = 1/3-2/5=-1/15

m=1 n=4

B VO B _
g,(/1,g/1)=525(e ,hxgh)—gza(e Jhigh) =2/3 - 3/5=1/15

m=1 n=4

Then, for the second attribute, a,:”color_of hair”, we obtain

3 8
g (blond) = %Zﬁ(e"’,b,’ond)—;—z 8(e" blond) = 2/3 -2/5= 4/15

m=1 =4

3 8
g (red) = %ZS(e”',r‘ed) - %Z 5(e",red) = 1/3

me=l n=4

3 8
¢ (dark) = EIZ 5(e", dark) - %Z 8", dark) = - 3/5.

m=1 n=d

Finally, for the third attribute, a,:”color_of eyes”, we obtain:

3 8
! m _l 7 N =9/3 _ -
&, (blue) _525@ ,blue) 52 8(e”, blue) =2/3 -2/5= 4/15

m=| =4

3 8
gy(green) = %ZS(E"',green)—%Z 8(e",green) = 1/3 - 3/5=-4/15.

=1 n=d

Step 3. For each of the three attributes we calculate, using (26), the value of v;,

Jj =123, i.e. we calculate subsequently for all values of the particular attribute the value
of

3 8
"; =arg :23:{;128(311:,v)-%ZS(E",v)] =arg p;lq")f{gv,(v)}i

m=1 n=4
For the attribute "height” we obtain:
v, =arg max{g,(Iow),g,(high)} = high.
For the second attribute, color_of_hair”, we obtain:
vy = arg max{gz(blon(f),gz(red),gz(clark)} =red.

Finally, for the third attribute, color of eyes”, we obtain:

