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An Integer Programming Approach to Inductive Learning From 
Examples 

1. Introduction 

Machine learning from examples is a process of inferring a classification rnle (concept 
description) of a class from descriptions of some individual elements of the class called 
positive examples, with some elements from outside of the class, called negative 
examples, which are used for narrowing the solution space. Each example is assumed 
positive or negative. 

Traditionally, the most relevant requirements to be satisfied by learning procedures are: 

• completeness, i.e. that the classification rule must correctly describe all the positive 
examples, 

• consistency, i.e. that the classification rnle must not describe any negative examples, 
• convergence, i.e. the classification rule must be derived in afinite number of steps, 
• the classification rule of minimal "length" is to be found, e.g. with the minimum 

number of attributes (or, more generally being "simple"). 

The sense of the first three is quite natura!, and the sense of the fourth reflects an 
obvious fact that long mies are not "legible" to the humans; hence their practical 
usefulness may be limited. 

In practice, due to imperfect data and other elements of the process, the first two 
requirements are usually meant in a relaxed way as: 

• a partia/ completeness, i.e. that the classification rule must correctly describe, say, 
most of the positive examples, 

• a partia/ consistency, i.e. thai the classification rule musi describe, say, a/most none 
of the negative examples. 

Examples are described (cf. Michalski, 1983) by a set of K "attribute - value" pairs 
written as 

K 

e= A[a.#v.] 
j=I J J 

where aj denotes attributej with value vj and# is a relation exemplified by=,<,> etc. 

For instance, if the attributes are: height, color _of_hair, color _of_eyes, than the concept 
"look of a one women" may be described by 

[height = "high"]A[color_of_hair = "blond"J1,[color_of_eyes = "blue"]. 

We propose here a modified inductive learning procedure based on Michalski's (1973, 
1983) star-type methodology. The method is based on some elements of the authors' 



previous work (cf. Kacprzyk and Szkatuła, 1994a,b, 1995, 1996, 1997a,b, 1998, 1999, 
2002a,b, 2005a,b,c and Szkatuła and Kacprzyk, 2005). Basically, since the algorithm 
builds the rule sought in an iterative way, a pre-processing of data (examples) is 
performed based on an analysis of how frequent the values of the particular attributes 
occur in the examples. These frequencies are used to derive weights associated with 
those values, and the problem is represented as a modification of the set covering 
problems, and solved by a modification of a greedy algorithm (IP _GRE) or a genetic 
alg01ithm (IP _GA). 

The paper is organized as follows. In Section 2 the inductive learning problem is 
represented as a modification of the set covering problems. In Section 3 the basie steps 
of the IP method are described. In Section 4 the IP _GRE procedure is presented. In 
Section 5 the IP _GA procedure is presented. In Section 6 and Section 7 computation 
results are given. 

2. Problem Formulation of Inductive Learning from Examples 

Suppose that we have a finite set of examples U and a finite set of attributes 
A={ap···•aK). Va1 ={vj_1>vj_2 , •• • ,vj.L1 ) is a domain of the attribute aj, j=l, .. . ,K, 

where Lj denotes number of values of the j-th attribute. V = _ U Va; . f: U x A • V is 
J-1, ... ,K 

a function such that f(e",aj)E Va1 for every aj EA and e" EU, n=l,2, ... ,N . Each 

example e" EU is described by K attributes A= {ap···,aK I, and is represented by 

K 

e" = /\[aj =f(e",a)] 
J=l 

(1) 

where f (e", aj)= vj.,(i.n)• and vj.r(i.n) E Va; . Function f (e", a) denotes that the 

attribute aj taking on a value vj.r(i.n) for example e". The index t(j,n) for 

j E {1, 2, ... , K) and n E {l, 2, ... , N) specifies which value of the j-th attribute is used in 
the n-th example. 

An example e" in (1) is composed of K "attribute-value" pairs (selectors), denoted 
sj =[aj= vj.r(j.r,)]. Conjunction of l :5: K "attribute-value" pairs, i.e. 

I\ S . = C 1 
je/ J 

where I !:;;;{l, ... , K), card(l) = l is called a complex. 

(2) 

A complex c' covers an example e" if all the conditions on attributes given as j- th 
selectors are covered by (equal to) the values of the respective attributes in the example, 

V j E I . The set of all the examples described by the conjunction C1 will be denoted 
[C']. 
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For instance, for K=3 the complex [a,= "woman"]"[ a3 = "35 years"] covers the 
example [ a1 = "woman"]"[ a2 = "married"]"[ a3 = "35 years"] but does not cover the 

example [ a1 = "man"]"[ a2 = "married"Jd a3 = "35 years"] . 

Suppose that we have a finite set of examples U, a finite set of attributes A u {ad) , 

{ad) n A = 0 , ad is a decision attribute and V0 , = { v d,,. v d,z, ... , v d,L, ) is a domain of the 

attribute ad. We have the sets { Y,,., : l = !, ... , Ld) , where Y,, ., = { e E U : f (e, ad) = v d.l), 

'<lvd„ E V0 , and Y,.,., u ... u Y,, _,.,, =U, Y,, ., n Y,, .j = 0 for i* j. Thus, the decision 

attribute splits the set of examples into the non-empty, disjoint and exhaustive subsets, 
that we call the decision classes. 

Let us class Y,,.,, for vd,I E V0,. Suppose that we have a set of positive examples: 

(3) 

and a set of negative examples: 

(4) 

with S,(Y,,), SN(Y,,) * 0, S,(Y,,) nSN(Y,,) =0, by assumption. 

An implication R,: et, • [ a, = v,., ], IE (1, ... , L,) is called the k-th "elementary" rule for 

the class Y,., , where et•= Je";, [aj = vj.,0 . .,] is description of example in terms of condition 

attributes aj, jE 1,, 1, i;;[t, ... , KJ and this example belongs to class Y,., .The index t(j,k) 

specifies which value of the j-th attribute is used in the k-th rule. 

Each rule is characterised by the coefficient of its strength. The strength of a rule R,, 

which depends upon the number of examples described by the conditional part of the 
rule et,, belonging to a given class Y,., is defined in the following manner: 

card({e:eE[e'•Jandf(e,a,)=v,,)) lt · 'd t th t , Th 
ą(C''l = · . 1s ev1 en a 05ą(C'J5I. e more 

card({e: eE U)) 

examples are described by the rule, the greater the value of the rule strength coefficient 
(i.e. the more important the rule is). 

In this paper we consider the classification rules to be the disjunction (via "u") of 
"elementary" rules consisting of complexes of type (2), i.e. 

(5) 

where: /1 , ... ,IL i;;[t, ... ,KJ and "u" corresponds to the connective "or". 
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Suppose that we have a finite set of examples U, a finite set of attributes {a" ... ,a.} u{a,}, 

a, is a decision attribute and v., = {v,." v,.,, ... , v,,,._} is a domain of the attribute a,. Let us 

class Y,,, , for v,., Ev., . Suppose now that we have P positive examples and N negative 

examples. The positive examples are therefore em E S, (Y,,) , m = 1, .. . ,P, and are written 

as 

(6) 

where: v1_,u,,.,, Ev., , j = 1, ... , K, while the negative examples are e" E SN(Y,,,), n= 1, ... ,N, 

and are wri tten as 

(7) 

where: v J,,( 1., , Ev., , j = I, ... ,K and S,(Y,,,), SN(Y,,) ~ 0, S,(Y,,,) n SN(Y,,,) = 0. 

The idea of data pre-processing proposed in this work is as follows. For each attribute 
a 1 in the examples, it is evident that not each possible value occurs at the same intensity 

(frequency). Clearly, if a value occurs more frequently in the positive examples and less 
frequently in the negative examples, then it can be argued that it should rather appear in 
the rule sought. Clearly, these frequencies should be relative because the sizes of sets of 
the positive and negative examples need not be the same. 

The above rationale may be formalized as follows : first we introduce the following 
function, for each attribute a 1 , j = 1, ... , K and particular values v1., E v., , I= 1, ... , L1 , where 

thej-th attribute a1 taking on the value v;.,u ... , for example e"' Es, and the value v;. ,u.,, 

for example e" E SN 

where: 

• -{l ó(e, vil )- 0 

for V j, l (j,m ) = V )) 

otherwise 

for V j, l (j ,n ) = V} ) 

othenvise 

(8) 

Therefore, (8) expresses to what degree the particular values v1., e v., of attribute a 1 

occurs more often in the positive than in the negative examples. We may therefore 
assume that this normalized value g;(vJJ) is used as a weight of value v1_1 e v., of each 

attribute a 1 , due to the rationale mentioned above. 

Suppose now that we have a positive example e"', such that 
e"' =[a,= v,.,o ... ,l /\ .. , /\ [a. = vK,,( K ,m) ]' and we consider a complex 
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(9) 

that corresponds to the ·set of indices I= (j1, •• ,j„Jr;;;; il, ... ,KJ; the set of indices 

{j,, ---, j,,.} is clearly equivalent to a vector x = [x i Jr, such that x i = I if a selector 

[aj= vj.,,j,m)] occurs in the complex (9), and O otherwise, j =I, ---, K. 

For insiance, for K = 3 and example e"' = [height = "high"J" [color_of_hair = "blond"]" 
[color_of_eyes = "blue"], the vector (0,1,0f is equivalent to the complex [color_of_hair 
= "blond"]; the complex [height = "high"] is equivalent to the vector [l,0,0]'. 

As already mentioned, to the value vj_,,j_ .. , Ev., , of each attribute a 1 a weight g lvNu .... ,) is 

assigned, and an example e;; with weights is written as 

K 

e; = j';1[ai =vj,1(j,m);g/vj,1(j,mJ)] (10) 

An example e;; given by (10) is then composed of the weighted selectors, 

s7 =[aj = vJ.<U.•>;g/vMj,.,)] , and a conjunction of them, i.e. 

c.:, = " SW = 
Je / i;; {I, -~, KI J 

= .. ~ . s7 =[aj,= vi1,t<J1,m);gJ1 (v/1,tU1,m))]A ... A[aj .. = vj •. l(j,.,mJ;g i .. (v j,.,t(j,.,m))] 
l„h,h•· .. J• 

(11) 

is called a weighted complex. Notice that for the above c.:, the vector x has the elements 

x1,,x1, , ... ,x1• =I, while, for jE[l,2, ... ,KJ\{j1,j2 , ... ,j"'J wehave x1 =0 . 

For a weighted complex c& its weighted length is 

j K 

dw(C~)= L(l-g j (vj.<( j.m) ))·Xj+ I;O-glvj,<<i,m))) -xj= I;O-g j (v j.,(j.m)))·xj (12) 
jsj1 fa;: I\ •.. . KJ\(j1,i) , ... ,J„J }=I 

which reflects the philosophy of data pre-processing introduced above, i.e. a higher 
relevance of those values of attributes which occur more often in positive than in 
negative examples. 

The length of the weighted classification rule composed of L weighted complexes, 
Rw • [class= Y..,), Rw = c[J u ___ u c{,;- is 

dR (C;J u ... uC{,;-) = max dw(C~) 
w i= l ,-.L 

(13) 

The problem of learning from examples was to find an optima! classification rule 
R~ = et u ... uc{,;-• such that 

(14) 



i.e. which minimizes the weighted length of the classification rule. 

Since the (exact) solution of problem (14) is very difficult, an auxiliary problem is 
solved (cf. Kacprzyk and Szkatuła, 1996), i.e. an R~ = c,:( u ... uc(/ is sough such that 

(15) 

where the minimization is consecutively performed over the sets of indices /1, ••• , IL [cf. 
(5)]; the solution of (15) is in generał very close to that of (14), while much easier to 
obtain. 

If the requirements to be satisfied by learning procedures are: 

• a partia/ completeness, i.e. that the classification rule must correctly describe most 
of the positive examples, 

• a partia/ consistency, i.e. that the classification rule must not describe most of the 
negative examples, 

the problem (15) can be represented as a modification of the set covering problem 
(SCP). 

3. Solution by Using the IP Method 

Suppose that we have a finite set of examples U, a finite set of attributes [ap••·,a<} u [a,}, 

a, is a decision attribute and v., = {v,_,. ... , v,.,,,} is a domain of the attribute a, . We have 

the decision classes (Y,,, : I= 1, ... , L,} , where Y,, ., = ( eE U: J (e, a,)= v,.,} , Vv„ E v., . The rules 

are iteratively induced for each class. 

Let us class Y,,., for v,., Ev.,. Suppose that we have a set of positive examples Sp [cf. 

(3)), e"'ES„ m=1, .. ,P andasetofnegativeexamples SN [cf.(4)]. ep.,,ESN, n=1, ... ,N, 

SN.SP* 0, Sp n SN= 0, by assumption. 

For example e"' Es,, where 

and all the negative examples eP+" E SN, n= 1, ... ,N, where 

we construct a 0-1 matrix ZN•K=fZnjl. n= 1, ... ,N, j = 1, ... ,K, defined as 
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z . = {1 for VJ,<(J.m) '7- Vj.,(J.P+a) 

n1 Q for V J,t(J,mJ = V J,1(},P+n) 

(16) 

The rows of this matrix correspond to the consecutive negative examples eP+" E SN, 

n= 1, ... ,N and the columns correspond to the subsequent attributes a1, .•. ,aK. The value 

z.j = I occurs if attribute aj takes on different values in the positive and negative 

example, i.e. v1_,u,m> in e'" are not equal to v1,,u·""' in eP+n; and z„j = O otherwise. 

In such a matrix there are clearly no rows with all the elements equal O since, by 
assumption, the sets of positive and negative examples are disjoint (and non-empty), 
SN,Sp1'-0, SpnSN=0. Thus, for any positive and negative example there always 
exists at least one attribute taking on a different value in these examples. 

Consider now the following inequality 

K 

LZ,yXj2'Yn, 
j=I 

n= 1, ... ,N (17) 

where y = [y 1, ... ,y N J7 is a zero-one vector (of N elements), and x = [x1, ... ,xK J7 such that 
xj E [0,11, for J = 1, ... ,K [cf. the remark in (9)]. 

Any vector x defined above which satisfies inequality Zt "?.y (17) determines therefore 
in a unique way [cf. (9)] some complex composed of selectors from the description of 
the example such that the conditions of partia! completeness and partia! consistence are 
satisfied. It describes at least one example from the set of positive examples, and it does 
not describe most of the examples from the set of negative examples. If vector x does 
not describe the n-th negative example, than y" = I; and y" = O otherwise. 

The minimization in problem (15) may be written using the inequality (17) as 

(18) 

The minimization over the set of indices 11 may be replaced by the minimization with 

respect to x which yields [cf. (14)] an R: = ci u ... uc~; such that 

(19) 

Each minimization with respect to x in (19) is therefore equivalent to the determination 
of a 0-1 vector x' which uniquely determines the complex of the shortest weighted 
length. On the other hand, the satisfaction of Zt ~ i\ (if i\ is a unit vector) guarantees 

that such a complex would not describe the all negative examples. If a complex must 
describe almost none of the negative examples, problem (18) can be written as 
a modification of the set covering problem (SCP) 
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subject to 

K 

LZnjx/?:yn, 
j = I 

n= I, ... ,N 

and an additional constraint 

N 

LY n ~N -rei 
n=I 

where 

c1 =(1-g 1(v1.,c; .... , )), ZniE(O,l), xiE(O,l), 

J=l, .. . ,K, y=[y,, ... ,yNf, Y.E(O,l), n=l, ... ,N 

gi ven a param eter rei ~ O. 

(20) 

(21) 

(22) 

(23) 

The above problem is the same as the original SCP with the exception that no more then 
rei rows are uncovered. Then, it is elear that no more then rei rows can be deleted from 
the problem. Note here that we may, in deleting rows, lose some information about the 
problem that could have been better used. Note also that this reduction test cannot 
always be applied. In the set covering problem (SCP) [cf. Beasley and Chu (1996)] there 
is only constrains (21) and vector y = [y 1, ... , y N f is a unit vector. 

Our modified set covering problem (20), (21), (22), (23) is the problem of covering at 
least N-rei rows of an N-row, K-column, zero-one matrix (z.i) by a subset of the 

columns at minimal cost ci. We define xi = I if column j with cost ci> O is in the 

solution and xi = o otherwise. Equations (21) and (22) ensures that the most rows (at 

least N-rei rows) are covered by at least one column and equation (23) is the integrally 
constraint. It always has a feasible solution (a unit vector x of K element), due to the 
required disjoints of the sets of positive and negative examples and the way the matrix Z 
was constructed. 

So, we are looking for a 0-1 vector x at minimum cost and a 0-1 vector y = [y 1, ... , y N f 

which determines the covered rows, y" = J if n-th row is covered by solution x and y" = 
O otherwise. By assumption, at least N-rei rows (given a parameter rei~ O) must be 
covered by solution x . 

JOQ N 
Theo, an "elementary" rule for class Y,,,, v,., Ev., , may not describe at least ( - Ir, )% 

N ,., 

negative examples. 



Example 1. Let consider the class Y,,, , for v,., Ev.,. Suppose that in Fig. 1 all the 

training examples are shown. Those belonging to the class (the six positive examples) 
are marked by EB and those not belonging to the class ( the six negati ve examples) are 
marked by e. 

® 

Figure I. 

A one elementary rule for the class Y,., , for rei = O (that not describe all the negative 

examples) and for rei = 1 (i.e. may don't describe no more than one training example), 
is illustrated in Fig. 2. 

0 $ $ 0 

$ 

0 0 $ 8 8 

G.l 0 © 

G) 8 0 \'& 0 
0 

rel•O rel•l 

Figure 2. 
a 

The set covering problem is a well-known combinatorial optimization problem and has 
been proven to be NP-complete (Garey and Johnson, 1979). NP-complete problems are 
problems that are not currently solvable in polynomial time. A number of optima! and 
heuristic algorithms which try to find a "good" solution quickly have been presented in 
the Iiterature in recent years. 

The first published approximation algorithms for the SCP with a worst-case analysis 
used the greedy heuristic [cf. Johnson (1974), Lovasz (1975), Chvatal (1979)]. The 
approximation ratio of greedy algorithm (i.e. the worst ratio between the cost of 
a greedy solution and the optimum) is In N+ I. A probabilistic analysis of the SCP 
defined by randomly generated matrices appears in Vercellis (1984). 

A number of optima! algorithms for the SCP, typically based upon tree-search 
procedures, have appeared in Balas and Ho (1980), and Beasley (1987). Beasley (1987) 
presented an algorithm for the SCP that combines problem reduction tests with dual 
ascent, subgradient optimization and linear programming. Fisher and Kedia (1990) 
presented an optima! solution algorithm based on a dual heuristic. Beasley (1992) 
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combined a Lagrangian heuristics, feasible solution exclusion constraints, Gomory's f­
cuts and an improved branching strategy to enhance his previous algorithm [cf. Beasley 
(1987)] . Harche and Thomson (1994) developed an exact algorithm based on a new 
method, called a column subtraction (or row sum) method, which is capable of solving 
large sparse instances of set covering problems. 

Among the heuristic methods, Balas and Ho (1980) reported that a reasonable !ower 
bound for the SCP could be found by a dual ascent procedure together with subgradient 
optimization to improve upon the !ower bound obtained from the dual ascent procedure. 
They considered a heuristic of the greedy type where at each stage an uncovered row i is 
chosen and covered by choosing the column j which minimizes some function F ( c j, 

number of uncovered rows in column j, j covers i) to generate an upper bound ( Zus) for 
the problem. Balas and Ho considered five different forms for the function F. A key 
feature of their work was the use cutting planes. Essentially they added to the original 
SCP additional constraints (of the same type as shown in equation (21) in order to 
increase the value of the linear programming relaxation of the (enlarged) SCP so that 
(eventually) it has the same value as the optima) SCP (integer) solution. Beasley (1990) 
presented a Lagrangian heuristic algorithm and reported that this heuristic gave better 
quality results than a number of other heuristics. Jacobs and Brusco (1993) developed 
a heuristic based on simulated annealing. Sen ( 1993) investigated the performances of a 
simulated annealing algorithm and a simple genetic algorithm on the minimal cost set 
covering problem. A comparative study of severa! different approximation algorithms 
for SCP was conducted in Grossman and Woal (1995). 

Christofides and Korman (1975) presented a computational survey of a number of 
different methods for the SCP. Etcheberry (1977) presented an algorithm based upon 
Lagrangean relaxation of a subset of the covering constraints with subgadient 
optimization being used to determine the Lagrange multipliers. Paixao (1984) presented 
an algorithm based upon decomposition and state space relaxation. Beasley and Chu 
(1996) presented a genetic algorithm for the SCP. They proposed severa! modifications 
to the basie genetic procedure including a new fitness based crossover operator, a 
variable mutation rate and a heuristic feasibility operator tailored specifically to the 
SCP. Severa) neural network based algorithms were suggested or developed for 
problems related to the SCP [cf. Croall and Mason (1991), Jefries (1991)]. 

For the solution of problem (19) we apply the IP method with elements of a greedy 
algorithm and a genetic algorithm. We assume that the classification rule must correctly 
describe most of the examples, at least A,,am;,,g, by assumption. The measure of 

classification accuracy A,,am;,,g is the ratio of examples correctly classified to the total 

number of examples, in percentage. 

Suppose that we have a finite set of examples U, a finite set of attributes 
A=(a, •.. ,aK}u(ad}. Let us class Y,,, , for vd_,e v., . and a set ofpositive examples Sp [cf. 

(3)], and a set of negative examples SN [cf. (4)] . The consecutive steps of the algorithm 
are as follows: 

10 



Step 1. Set the initial values : s = s P , i.e. the w hole set of examples is initially assumed 

to contain the positive ones, SN is a set of negative examples, and R~ = 0, i.e. the initial 

set of complexes is assumed empty, iteration r = O, given parameter rei 2' 0. 

Step 2. Iteration r = r + I . Determine the weights G by analyzing (pre-processing) of 
the examples due to (8). 

Step 3. Determine an appropriate starting point; a good starting point may be a so-called 
centroid [cf. Kacprzyk and Szkatuła (1996)] that is some (possibly none existing) 
example in which the attributes take on values that occur most often in the positive 
examples and seidom in the negative examples. 

The positive examples e"' ESP, m = 1, ... , P, are written as 

(24) 

while the negative examples e'" Es., n= I, ... ,N (for simplicity the upper index P is 
omitted below and later on when it does not lead to confusion), are written as: 

(25) 

For each attribute a1 , j = I, ... ,K, we determine sucha value vMi."J Ev., that [cf. (8)] 

where: 

v1., E v., , I=!, .. . , L1 , v01 is the set of possible values of attribute a 1 , 

Ó(e',v . ,)={1 for v1.,u.1J =vJ.I . 
' · O otherwise 

Now, we form an example, called a centroid 

(26) 

(27) 

that contains the selectors with the most typical pos1t1ve values of the particular 
attributes. Needless to say that this example may be artificial, i.e. nonexistent. The 
concept of a centroid is crucial for the efficiency of the algorithm. 

We introduce a similarity measure TJ yielding a degree of similarity (from [O, 1]) between 
the centroid e' and a positive example e'" [cf. (24)] as, e.g.: 

(28) 

or 

li 



K 

rJ<e"',e) = Ic;<vj,u.-,)·o<e"',,,j.,u .. ,l (29) 
)"'I 

where g;(vi.,u .. ,) is the weight of the value vi.•U.'> of attribute aj obtained by using, e.g., 
(8). 

Finally, in the set of positive examples we find such an example eP ESP for which 

max 11(e"',e•) 
e"'ESp 

(30) 

i.e. the closest positive example to e'. 

Then, as the starting point for the next iterations there is adopted a real (existing) 
example that is the closest, e.g., in the sense of the measure of similarity (28) or (29), to 
the one found by (30). This example eP 

is used in the algorithm proposed in the next steps as the starting point. 

Step 4. For the eP we form the matrix ZN•K=CZnjl, n= 1, ... ,N, j = 1, ... ,K, due to (16) 

and a modification of the set covering problem such that 

K 
min L,CjXj 
x,y j=l 

with linear constrains 

K 

Lz,l}xJ?.Yn, 
}""I 

N 

LYn ?:N-rei 
n=I 

where: 

n= 1, ... ,N 

ci =(1-gi(vM1.,,)), Znj E (0,1), xj E (0,1), n= 1, ... ,N, 

Y = [y 1 , ... , y N J7 is a 0-1 vector, rei ?: O . 

j = 1, ... ,K, 

Step 5. To solve above problem we apply a greedy algorithm IP _GRE or genetic 
algorithm IP_ GA. The 0-1 vector x • = [x;, ... ,x; J7 found in arbitrary way determines in a 

unique way the complex C~ • and the 0-1 vector y = [y 1, ... , y N ]7 determines the fulfilled 
constrains. 
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Step 6. Include complex c~· found in Step 5 into the classification rule sought R~ (i.e. 

that with the minimal weighted length), R~:= R~ u c~·;ą(Ci/), where ą(C,f) is the 

strength of the r-th elementary rule, and discard from the set of positive examples S all 
examples covered by complex c,~ · . 

Step 7. If the set of examples S remaining is small enough, STOP and the rule 

(31) 

/ 1, ••• ,IL ,;;; {I, ... , Kl, is the one sought; otherwise, return to Step 2. 

Example 2. Assume that we have two class Y,,,, , Y,,,, for v,.,, e v., , v,.,, e v., . Suppose 

that in Fig. 3 all the training examples are shown. Those belonging to class Y,,,, are 

marked by (B (11 examples) and those belonging to class Y,.,, are marked by 0 (11 

examples). 

0 

(±) $ 0 $ $ 0 

© EB 0 

(±) 0 0 0 

0 (±) 0 

(±) 0 0 
©© 

Figure 3. 

Let consider the class Y,, • . First, we find the set of elementary rules for the class Y,,. 

that correctly describe the most training examples, for rei 1, i.e. 
c'• u. .. uc'• • [a,= v,.,, ], is illustrated in Fig. 4. 

00 0 
~ 

e e e 

Figure 4. 

Next, we determine in the same way the set of rules for the class Y,,,, , i.e. 

c'• u ... uc'• • [a,= v,.,, ], is illustrated in Fig. 5. 
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0 / 
I 

© © I 0 \G'l EB I 

' I , 
G) I _J~J~ 

G) \_ ~~-\-0_) ! 
__ _: 6:) ' 0 

ffi ' 0 0 · , 
I / 

--- -
/ 

Figure 5. 

The rules formed in this manner can be applied to classification of new examples, i.e. 
ones that have not appeared in the learning process. Such a classification is carried out 
through verification of fulfilment of conditions in the conditional parts of the rules, and 
in case of equivocal situations (when more than one, or none, of the rules is fulfilled) , 
the degree of matching of the class is accounted [ cf. Szkatuła, 1995). 

4. The IP _GRE Procedure 

To solve problem (20), (21), (22), (23) (i.e. Step 5 in the IP procedure) we apply 
a modification of the greedy algorithm IP _GRE. The example eP, found in Step 3 of the 
IP procedure, is used in the algorithm as the starting point. For the eP we form the 
matrix ZN•K=(z„i], n= I, ... ,N, j = I, ... ,K, due to (16). We assume initially that 

x•=[x;, .. . ,x~f =[O, ... ,Of and y•=[y;, ... ,y~]= [O, ... ,Of, rel?.O. 

Step 1'. We assume the initial matrix to be M := Z. 

Step 2'. We calculate the efficiency of element x;, j = I, ... ,K with respect to the matrix 

M which is defined as 

N 

E(xj,M) = Im,1/(1-g/vj,,c;.,>)) (32) 

We choose the highest value E(x / , M), and set x >=I . 

Step 3'. We denote thej*-th column of Mas m/ = [m>/ ,m2/ • ... ,mN/ f and calculate new 

matrix Mas 

(33) 

and we obtain new vector y • = [y;, .. .. y ~] as 

[max{m1/ ,y;}. ... ,max/mN/ .y~ )f (34) 
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N 

Step 4'. If }): <! N - rei then STOP, otherwise return to Step 2'. 
n=I 

The 0-1 vector x • = [x; , ... ,x; ]' found in such a way determines in a unique way the 

complex C~ sought and the 0-1 vector y • = [y;, ... , y ~ J determines the fulfilled 

constrains. Now, we can go to Step 6 of the IP algorithm. 

5. The IP _GA Procedure 

For the solution of problem (20), (21), (22), (23) (i.e. Step 5 IP procedure) we apply 
modification of genetic algorithm. A genetic algorithm (GA) can be understood as an 
intelligent probabilistic search algorithm which can be applied to a variety of 
combinatorial optimization problems. It requires a set of individual elements (i.e. 
population) to be initialized. Each individual in the population is encoded into a string 
that represents a possible solution to a given problem. The fitness of a solution is 
evaluated with respect to a given objective function. Highly fit solutions are given 
opportunities to reproduce by exchanging pieces of their bits in the strings, in crossover 
procedure, with other highly fit solutions. Mutation is often applied after crossover by 
altering some bits in the strings. This produces new solutions that can either replace the 
whole population or replace less fit solutions. This evaluation-selection-reproduction 
cycle is repeated until a satisfactory solution is found. The theoretical foundations of 
genetic algorithms were originally developed by Holland (1995). 

The basie steps of a simple genetic algorithm are shown below: 

Set t = 1. Generate an initial population P(t) of possible solutions; 
Evaluate fitness of solutions in the population; 

while a satisfactory solution has been found do 
begin 

Select solutions from the population; 
Recombine solutions to produce new solutions; 
Evaluate fitness of new solutions; 
Set t = t+ 1. Rep lace some or all of the solutions in the population by the new 
solutions and create the new population P(t) . 

end; 

The first step in designing a genetic algorithm for a particular problem is to devise a 
suitable representation scheme, i.e. a way to represent a possible solution in 
a population. We assume a K-bit binary string which represents the potentia! solution 
structure, where K is the number of variables in our problem (i.e. columns in the SCP). 
In this representation a value 1 for the j-th bit implies that column j is in the solution x 1 , 

i.e. that x~ is in the solution, respectively. This binary representation of the solution 

x1 = [x/ ,xLxL ... ,xLl' as [1,0,1, .. . ,1,0]' is illustrated in Figure 6. 
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,., x{ x[_I 

Column 2 K-1 K 

bit string o o 

Figure 6. Binary representation ofsolution x 1 as [I,0,1, ... ,1,0( 

We note that a bit string might represent an infeasible solution. An infeasible solution is 
A. 

one for which at least one of constraints is violated, i.e. Iz,,,x .1 = O for some n E /, 

11 =1 

where /={I, ... ,N) is the set of rows. There are a number of standard ways of dealing 

with constrains and infeasible solutions in genetic algorithms: 

• to use a special representation that automatically ensures that all solutions are 
feasible, 

• to separate the evaluation of fitness and infeasibility [Chu and Beasley (1995)), 
• to design a heuristic repair operator which guarantees to transform any infeasible 

solution into a feasible solution [Beasley and Chu (1996)], 
• to apply a penalty fi.mction [Goldberg (1989), Smith and Tate (1993)) to penalize the 

fitness of any infeasible solution without distorting the fitness landscape. 

In our procedure, IP_ GA, in each iteration all solutions are evaluated with respect to 
their completeness and consistency. We adopted a simple approach of using 
a penalty/evaluation fi.mction which assigns utility to candidate solutions. The fitness of 
an individual solution x is calculated simply by 

. K N 
eval(x) = j(x)-gm„ N Lf,,(x) 

11=1 

where: 

K 

J<x)= Ic.1x, 
)'=I 

. -Io Jor I_1:, z,,_" •x.1 > o 
/ ,, ( .\)- K 

I for Iz,,, ·x, = o 
i= I 

gm"' =max{g.1 :J=l, ... ,K}, n=l, ... ,N 

(35) 

where .r, is the value of the j-th column in the string corresponding to the solution x and 

c, is the cost ofj-th column. 
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The second step in designing a genetic algorithm is to generate an initial population of 
feasible solutions. In our problem the initial population was randomly generated and the 
size of the population was proportional to the number of columns. 

The third step is a particular choice of crossover and mutation operators which are 
applied to the new population. 

We arbitrarily adopted the crossover operator which for two solutions forms two new 
solutions. Under the one point crossover operator, two structures in the population 
exchange portions oftheir binary representations. This can be implemented by choosing 
a point at random, called a crossover point, and exchanging the segments to the right of 
this point. For example, select two solutions x 1 and x 2 from the population 

1 1 1 11 1 1 r X =[x1,X1, X3,, .. ,XK- l•x}.,:] 

x 1 = [xi!, x}, xf, ... ,x}_1, x} f 

and suppose that the crossover one point has been chosen as indicated. Then, we obtain 
two new structures: 

xl' =[xi,x\, fx} , ... ,xL,x}]" 
.,, -, '> I I I f 

x- = [x] ,Xj',X3,•• ·•XK-l•xK] . 

After the new population has been selected, mutation is applied to each structure in the 
new population. The mutation procedure is performed that mutates some randomly 
selected bits in the solution. It works by inverting each bit in the solution with some 
probability (the mutation rate). The rate of mutation is generally set to be a small value. 
For example, by selecting a solution x 1 from the population 

x1 = [x/ , Xi, xi, ... ,x:C_1, x:C J" 

we obtain 

The fourth step is the choice of a selection method. Selection is the process of choosing 
structures for the next generation from the structures in the current generation. The 
structures of new population are chosen by a stochastic universal sampling Baker 
(1987). This method uses a single wheel spin. This wheel is spun with a number of 
equally spaced markers equal to the population size. The selection pointers are then 
randomly shuffled and the selected structures are copied into the new population. A new 
population is formed with those better solutions more likely to appear and the cycle 
repeats. 

Our procedure steps are as follows: 
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Step l '. Set t = 1. Generale an initial population of random solutions P(I) = 

{x' ,x 2 , ... ,./}. Each solution is simply a binary string of length K. Evaluate the fitness 

eval(x 1 ) ofindividuals in the population, / = 1,2, ... ,P. 

Step 2'. A mutation operator is applied to each solution in the population. 

Step 3'. For the first solutions (the crossover rate multiplied by the size of the 
population) a crossover operator is applied. Two solutions are chosen and form two new 
solutions. 

Step 4'. The new solution generated by the crossover and mutation procedures may not 
be feasible because the constraints may not all be satisfied. We evaluate the fitness 
eval(x 1 ) of new individuals in the population. 

Step 5'. If a termination condition satisfied STOP, the best solution found is the one 
with the smallest fitness in the population; otherwise, go to Step 6'. 

Step 6'. Select a new population P(t+ 1) from population P(t) and return to Step 2' 

The 0-1 vector x' =[x;, ... ,x~]' found by this way determines in a unique way the 

complex c1;, sought. Now, we can go to Step 6 ofIP algorithm. 

The IP_ GA algorithm described above is relatively simple and efficient. It requires a 
number of parameters, e.g. the population size, probabilities of applying genetic 
operators, etc. 

6. Application of the IP Algorithm to Solve Test Problems 

6.1. Solution of Test Example 

Suppose that the examples are described by the following three attributes ( concerning 
some features of human beings): 

a,: "height" with values from the set {"high", "low"}, 

a2 : "color_of_hair" with values from the set {"dark", "red", "blond"}, 
a3 : "co lor_ of_ eyes" with values from the set {"blue", "green"} 

and a decision attribute "class" with values from the set {"class I", "class 2"}. Suppose 
that we have tlu·ee examples belonging to class I : 

e1: [height = low] [color_of_hair = blond] [color_of_eyes = blue] 
e1 : [height = high] [color_of_hair = red] [color_of_eyes = green] 
e3 : [height = high] [color_of_hair = blond] [color_of_eyes = blue] 

and five examples belonging to class 2: 
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e4 : [height = high] [color_of_hair = blond] [color_of_eyes = green] 
e5 : [height = low] [color_of_hair = dark] [color_of_eyes = blue] 
e6 : [height = high] [color_of_hair = dark] [color_of_eyes = blue] 
e7 : [height = high] [color_of_hair = dark] [color_of_eyes = green] 
e8 : [height = low] [color_of_hair = blond] [color_of_eyes = green] 

notice that both types are written as in (6) and (7) but with the ",-" omitted for 
simplicity. 

We wish to find the two classification rules: 

R,','. • [class= class I] , Rfv' • [ class = class 2] 

where R,'; and R1}' are disjunction of the complexes to be found. 

To determine the first classification rule, R,';, we will use the algorithm IP proposed in 

the previous sections. To visualize the results we use two-dimensional diagrams. Each 
box of the diagram represents the conjunction of some values of the attribute a 2 (rows) 

and a1,a3 (columns). In Fig. 7 all the training examples are shown. Those belonging to 

class I (positive examples, Sp) are marked by "+", and those belonging to class 2 (the 

negative examples, SN) are marked by"-". 

a, green blue 

dark - -
red + 

blond - - + + 

I high / low I high / low ! a 1 

Figure 7. Training examples: the positive examples are marked by "+", the negative examp les are 
marked by "-" 

The steps of the IP algorithm are as follows. 

Step 1. We denote the two disjoint sets of examples as: 

Sp = { e1 , e2 , e3 } , 

SN = { e4, es, e6, e7, es}, 

Rf = 0 , rei = I (i.e. the classification rule may don 't describe no more than one training 

example), and assume the initial set to be S =Sp. 

Step 2, Determine the weights G by analyzing (pre-processing) of the examples due to 
(8). For each of the value of attribute a1 , j = I, 2, 3, we calculate 

19 



I :i m I 8 n . -
g;(v)= 3:Z::o(e ,v)- 5:Z::o(e ,v) foreach veV,,,, J -1,2,3. 

111=1 11=4 

We obtain, therefore, first, for the attribute a1 "height": 

I 3 I 8 
1;1(/aw) = - "&(e"' ,low)-- "&(e",low) = 1/3 -2/5 = - 1115 . 3Li 5Li 

111=1 11=4 

I 3 I 8 

g, (high)= 3 :Z::o(e"' , high) -5 Lli(e" ,high) = 2/3 - 3/5 = 1/ 15 
m=I n=4 

Then, for the second attribute, a2 : "color_of_hair", we obtain 

I~ ,,, I~ ,, 
g2 (blund) = 3 L..,li( e ,blond) - 5L, 6(e ,blond) = 

m=I 11=4 

2/3 - 2/5 = 4/15 

3 8 

r:,(red) =_!_ "&(e"' ,red)- _!_ " &(e", red) = 113 ,_ 3Li 5Li 
111= 1 11=4 

I 3 m l s n .., 
g,(dark) =-"o(e ,dark)--"li(e ,dark) = - J/5. 

- 3 L, 5Li 
111=1 /J : 4 

Finally, for the third attribute, a3: "col or_ of_ eyes", we obtain: 

J 8 

g3 (blue) = -i L li(e"', blue) - ¾L li(e", blue) = 2/3 - 2/5 = 4/ 15 
111=1 11=4 

J 8 

g3(green) = -i L li(e'", green) -¾L li(e" ,green) = 113 - 3/5 = - 4/15. 
111=1 11=4 

Step 3. For each of the three attributes we calculate, using (26), the value of v: , 
J = I, 2, 3, i.e. we calculate subsequently for all values of the particular attribute the value 

of 

{ 
3 8 } 

v; =arg max ~Lli(e"',v)-_!_ Lli(e",v) =arg rnax( g,(v)j . 
· ••el, J 5 1•eJ,., 

'J 111= 1 11= -ł I 

For the attribute "height" we obtain: 

v; = arg rnax{ g 1(/ow),g1(high)} = high. 

For the second attribute, "color_of_hair", we obtain: 

Finally, for the third attribute, "color_of_eyes", we obtain: 
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v_; = arg max{g3 (blue),g3 (green)) = blue. 

The centroid, e' (see Fig. 8), is therefore e' = [height = high][color_of_hair = red] 
[ co lor_ of_ eyes =blue]. 

green blue 

! high I low ! high I low ! a 1 

Figure 8. Centroid e' and the starting point e 2 for the algorithm that is marked by shaded box 

Calculating for all the positive examples e"' from S the value of 17(e"', e') using (29), we 
obtain: 

11(e 1,e') =4/15, 

11(e2,e') = 1/15 + 1/3 =2/5, 

11 ( e3 , e') = I/ 15 + 4/15 = 1/3 

and hence, due to (30) we take the example e2 as the starting point for the algorithm, 
see Fig. 9. 

Step 4. For the e2 mentioned above, i.e. 

e2 : [height = high][ co lor_ of_hair = red] [ co lor_ of_ eyes = green] 

and all the negative examples 

e4 : [height = high](color_of_hair = blond] [color_of_eyes = green] 
e5 : [height = low][color_of_hair = dark] [color_of_eyes = blue] 
e6: [height = high][color_of_hair = dark] [color_of_eyes = blue] 
e7 : [height = high][color_of_hair = dark] (color_of_eyes = green] 
e8 : (height = low][color_of_hair = blond] [color_of_eyes = green] 

we form the matrix ZN•K=fz,y] n=l,2,3,4,5, j=l,2,3 due to (16): 

Problem (18) can be written as a modification of the set covering problem (SCP) 
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subject to 

J 

Lz,!,x., ~Y11 
J=I 

n= I, ... ,5 

and additional constraint 

; 

LYn ~4 
11=1 

where: 

c1 =(l-g1 (v 1 )), z,,; E{0,1}, x1 E{O,I}, j=l,2,3, n=l,2,3,4,5, 

Y = [ y 1, ••• , y 5 ]'" is a 0-1 vector. 

Step S. Step 5 of algorithm may be solved by a greedy or a genetic algoritlun. The 
algoritlun was implemented as the IP algorithm with the IP_ GRE and IP_ GA procedure. 
To solve problem we apply the greedy algorithm IP_ GRE. We assume initially 
x' =[x,'.x;,x;J" =[0,0,0]'" 

Step}'. We assume initially M·=Zand y' =[y;, ... ,y;]= [O, ... ,o]1, rei= I , i.e. at most 

one examples may not be correctly covered, by assumption. 

Step 2'. We calculate using (32) the efficiencies of the elements x1 .x2 ,x3 with 

respect to the matrix M: 

E(x1, M) = 15114 x 2 = 15/7, 

E(x 2 , M)= 3/2 x 5 = 15/2, 

E(x 3 • M) = 15119 x 2 = 3 0/] 9. 

We choose the highest value, and set x;. = I, i.e. x • = [O, I, of. 

Step 3 '. We obtain new vector [y;, .. , y; ]" as [I , ... ,1]'". Vector x • don ' t describe all the 

negative examples. 

5 

Step 4'. Since I y ;, =5~ 4 than STOP and go to Step 5. 
11= 1 

We obtain x • = [O, I, of and [y;, .. , y; ]" = [I, I, I, 1,1]'" , its related optima! complex as 

c,',> [color_of_hair = red], q(c,11:) = 1 \ 8 = 0.125. 
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In Fig. I O complex cJ; is shown as left-shaded boxes. 

Step 6. We "add" (via "u") the complex c/1; found in Step 5 to the classification rule 

sought R1
1
1'., R,'; = R1

1
1'. u c,1;; 0.125. From the set of positive examples S we remove all 

examples described by that complex c,';; i.e. we remove e2 , and hence S = { e1 ,e3 }, see 

Fig. 9. 

green blue 

Dark 
Red 
Blond I - I + 

I high i low ! high I low I a1 

Figure 9. Complex c,1; and the training examples for the next iteration 

Step 7. Since S is not small enough, then we repeat Step 2. 

Step 2. Determine the weights G by analyzing (pre-processing) of the examples due to 
(8). For each of the value of attributes we calculate: 

for each v Ev,,,, j = 1,2,3. We obtain therefore, first, for the attribute "height": 

I I 8 

g,(law)= 2 I o(e"',1owi- 5 Ioce",law)= 112- 215 = 1110 
m=l.3 11=4 

I I 8 

g, (high)=-;; L o(e"' ,high)-sLo(e" ,high)= 112 - 3/5 = -1/10. 
- 111=1.3 11=4 

Then, for the second attribute, "co lor_ of_ hair", we obtain: 

I I 8 

g,(blond)=2 I o(e'",blond)-5Lo(e",blond)= I -2/5 = 3/5 
111 =1,3 11=4 

I m I s " 
g,(red)=-;; L o(e ,red)--:-Lli(e ,red)= O 

- m= l,3 ) n::a4 

8 

g,(dork)=}_ ""°' o(e"',dark)-}_""°'o(e",dark)= -3/5 
- 2 L. 5L.. 

111=1,3 11=4 

Finally, for the third attribute, "color_of_eyes", we obtain: 
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I I 8 

g3 (blue) = 2 L B(e"',blue)- 5LB(e",blue) = I - 2/5 = 3/5 
111"'1,3 11=4 

I m l s „ 
g,(green) = 2 I o(e ,green)-sLB(e ,green)= - 3/5. 

111=1,3 11=4 

Step 3. For each of the three attributes we calculate, using (26), the value of v~, 

j = 1,2,3, i.e. we calculate subsequently for all values of the particular attribute a, the 

value of 

v; =arg max{_!_ L B(e"', v)-.!_ i: B(e", v)} 
1•el „1 2 m=U 5 ,,,,,4 

For the attribute "height" we obtain: 

v; = arg max{g1(/ow),g1(high)} = low. 

For the second attribute, "color_of_hair", we obtain: 

Finally, for the third attribute, "color_of_eyes", we obtain: 

v; = arg max{g3 (blue),g3 (green))= blue. 

The centroid is therefore e' = [height = low][color_of_hair = blond] [color_of_eyes = 
blue] and in this case it is one of the existing examples ( e1 from the set of positive 
examples) though it need not always be the case. Usually, the centroid does not 
constitute any of the positive examples, and for each positive example one should 
calculate the value of v;, e.g. , due to (26). In Fig. I O centroid e' which is equal existing 

examples e1 is mark(:d by shaded box . 

.__gr_e_e,_1 _.__b_lu_e_~I a3 

j high j low j high j low j a 1 

Figure IO. Centroid e' is equal existing examples e1 which is marked by shaded box 

We take the example e1 as the stai1ing point for the algorithrn. We assume initially 
, [ , , 'jr_ [ ]T d , , , r _ [ ]T x =x1 ,x2 ,x3 - 0,0,0 an y =[y 1 , ... ,y, J - 0, ... ,0. 
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Step 4. For the example e1, i.e. e1 = [height 
[color_of_eyes = blue] and all the negative examples: 

low) [ col or_ of _hair 

e~: [height = high) [color_of_hair = blond) [color_of_eyes = green) 

e5 : [height = low) [color_of_hair = dark] [color_of_eyes = blue] 

e6 : [height = high) [color_of_hair = dark) [color_of_eyes = blue) 

e 7 : [height = high] [color_of_hair = dark] [color_of_eyes = green] 

e8: [height = low] [color_of_hair = blond] [color_of_eyes = green] 

we form the matrix Z due to (16): 

Step 5. To salve the problem in Step 4 we apply the greedy algorithm IP_ GRE. 

Step 1 '. We assume initially M·=Z and [y;, ... , y ;]7'= (o, ... ,of, rei= I. 

blond] 

Step 2'. We calculate using (33) the efficiencies of the elements x1 ,x1 ,x3 with 

respect to the matrix M: 

E(x,, M) = I 0/9 x 3 = I 0/3 

E(x1 , M) = 5/2 x 3 = 15/2 

E(x 3 , M) = 5/2 x 3 = 15/2. 

We choose the highest value, and set x; · = I , i.e. x' = [O, I, of. 

Step 3'. We calculate new matrix M: 

r
l O I 

o o o 
M= o o o 

o o o 
O O I 

and a new vector y'=[y;, .. ,y;]r 

negative examples. 

[0,1,1,1,0f. Vector x does not describe two 

5 

Step 4 '. Since L y ;, = 3 < 4 then we return to Step 2 '. 
11::::I 

Step 2'. We calculate using (32) the efficiencies of the elements x1,x1 ,x3 with respect 

to the matrix M: 
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E(x 1, M)= 10/9 x I= 10/9 
E(x 2 , M)=0 

E(x,, M)= 512 x 2 = 5. 

We choose the highest value, and set xi := I, i.e. x · ; [O, I, 1]'. 

Step 3'. We calculate new vector y' ={y; , .. ,y;J7' = [1, ... ,1{. Vector x' does not describe 

all the negative examples. 

5 

Step 4'. Since L y ;, ;5;,,4 than STOP and go to Step 5. 

The vector x' ;[o, I, 1f found by greedy algoritlun determines in a unique way the 

complex c,;: sought as 

c,f = [color_of_hair = blond] [color_of_eyes = blue], 

ą( c,t·) ; 2 1 s ; 0.25 . 

In Fig. 11 complex c,j,' is shown by right-shaded boxes. 

Step 6. We add the complex c,l,' found in Step 5 to the rule sought R,'i;, R/,; = R/i'. v ciJ;; 
0.250. From the set of positive examples S delete all examples covered by this complex 
c,;, . i.e. we delete e 1 and e 2 • 

Step 7. The set of positive examples S is small enough, is empty. The classification rule 
sought is therefore 

R,',' ; c,','.;0.125 v c,;,' ; 0.250, i.e. 

[color_of_hair = red];0.125 v 
[color_of_hair=blond] /\ [color_of_eyes_blue]}; 0.250 
• [ class = class I] 

green blue a, 
dark 

red 

blond 

Figure 11. Complex c,'i; (marked by left-shaded boxes) and c,;,' (marked by right-shaded boxes) 
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6.2. Solving a Monk's Problem 

Let consider a standard example known as the Monk's (M3) problem described by 
seven discrete-valued attributes: 

a 1 : head shape 
a1 : body shape 
a 3 : is smiling 
a,: holding 
a;: jacket color 
a6 : has tie 

a,: class 

{ ro und, square, octagon}, 
{ ro und, square, octagon}, 
{yes, no}, 
{ sword, balloon, fl ag}, 
{red, yellow, green, blue}, 
{yes, no}, 
{ class I , class O}. 

The tra ining data set includes 122 examples (with 6 misclassifications) which 
represented 30% of the total event space. The classification is binary. The rest ing <l ate 
includes all possible examples ( 432 examples). 

To visualize the results we use two-dimensional diagram [c.f. Wnek, Sarma, Wahab, 
Michalski , I 991 ]. Basically, each part (box) of the diagram (which consists of 18 rows 
and 24 columns) represents the conjunction of some values of the attributes a,, a1 , a3 

(rows) and a,, a;, a6 (columns). 

On the fi rst diagram (Fig. 12) all the training examples are shown. Those belonging to 
class 1 (say, the positive examples) are marked by "+", and those belonging to class O 
(say, the negative examples) are marked by "-". Misclassifications are marked by the 
boxes o. 
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On the second diagram have been presented all the training examples and the 
classification rules created by IP method (Fig. 13 ). 

The rules derived are shown as follows: 

Classificalion inio class I is marked by left-shaded boxes B 
Classification into class O is marked by right-shaded boxes B 
Classificalion simullaneously inio class I and O is marked by boxes B 
Example does not fulfill rules is marked by boxes O 

a, a, a, 

_.I_ round 

n round 

~ square 

n 

._L... octag 
n 

_.I_ round 
n square 

_.I_ square 

li 

,-.L octag 

li 

e-L ro und 
li octagon 

._L... square 

n 

_.I_ octa}? 

n 

Figure 13. Training examples and created classificalion rules. 

On the third diagram (Fig. 14) have been presented all testing examples and the results 
of the IP method. We will plot the results in the same way: "+" indicates thai the 
algoritlm1 classifies the entity as a member of the class I, and "-" as a member of the 
class O. Additional square will indicate misclassifications. 

The classification accw-acy of the rules derived is the percentage of testing examples 
correctly classified. 
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a, a, 

___;/_ round !+ + ++ ++ - - I+ ++ '+I+ I+ - - +I+ l+I+ l+I+ - -
n round ++ ++ ++ - - ++ + + + + - - ++ I++ + + - -

e----L square ++ + + ++ - - ++ + + + + - - ++ + + ++ - -
li ++ + ++ + - - ++ ++ + + - - ++ + + + + - -

e----L octag - - - - + + - - - - - - - - - - - - - - - - - -
n - - - - - - - - - - - - - - - - - - - - - - - -

___;/_ round l+I+ l+I+ '+I+ - - I+ l+I+ l+I+ I+ - - +I+ +I+ +I+ - -
li square ++ '+ + + + - - ++ + + + + - - ++ + + + + - -

._L square + + + + + + - - ++ ++ + + - - ++ + + + + - -
n ++ + + + + - - ++ + + + + - - ++ + + ++ - -

e----L octag - - - - + + - - - - - - - - - - - - - - - - - -
n - - - - - - - - - - - - - - - - - - - - - - - -

___;/_ round I+ I+ I+ I+ l+I+ - - +I+ I+ I+ I++ - - + ++ +++ - -
n octagon ++ + + + + - - ++ + + + + - - + + + + + + - -

-1'._ square + + ++ + + - - ++ + + + + - - ++ + + + + - -
li ++ + + ++ - - I+ +++ +I+ - - +I++ + + + - -

-1'._ octag - - - - + + - - - - - - - - - - - - - - - - - -
li - - - - - - - - - - - - - - - - - - - - - - - -

o o n a..1 

y n y n y n a 6 

Figure 14. Testing examples and results of learning algorithm (accuracy 98.6%) 

We will compare the results obtained by using IP method with the following ones from 
the literature: 

• ID3, IDSR, AQR and CN2 - At the Departament of Komputer Scence, University of 
Karlsruhe, Germany [Kreuziger, Hamann, Wenzel I 99 I]. 

• PRISM - At the Institute of Informatics, University of Zurych, Switzerland [Keller 
199 I). 

• AQ17-DCI and AQ17-FCLS -At the A11ificial Intelligence Centra, Georgie Mason 
University (Bala, Bloedorn, Jong, Kaufman, Michalski, Pachowicz, Vafaie, Wnek, 
Zhang 1991]. 

• IP - the one proposed in this paper. 

The results are presented in Fig. 15, and one can notice that the IP implementation 
attains the highest classification accuracy (ca. 98%) among the techniques considered. 

One significant characteristic of this comparison is that the results are less biased than in 
comparisons performed by a single person advocating a specific learning method, and 
rnore accurately reflect the generalization behavior of the learning techniques as applied 
by knowledgeable users. 
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Figure 15. Classification accuracy of different methods machine learning from examples 

7. Application of the IP Algorithm to Solve Some Medical Problems 

7.1. Solving a Thyroicl Cancer Problem 

The medical data set published by Nakache and Asselian have been collected on patients 
with thyroid cancer at Hospital Ambroise Pare, from 1960 to 1980. They concern 281 
patient, all submitted to a surgical treatment. The time of analysis has been fixed in July 
198 I. At that time, the patient is <lead or alive. The survival time is then fully known for 
those patients who have died before the time of analysis. For those who are stili alive, 
we only know the inferior limit of their survival time, cf. Fig. 16. Patients who survive 
may be completely cured and their survival paltem might have no relationship to those 
who die. 

1960 1980 July 1981 

) survivor 

death 

death --------i----- --;. 
---------------- - ~death 

beginning of the study end of collection of data time of analysis 

Figure 16. Retrospective medical data set 

Each patient was described by the following 12 attributes in a discrete coding: 

sex. 
age, 
histology, 

{ małe, female} 
{<40, 40-60, 60-70, >70} 
{ well differentiated, poorly differentiated} 
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metastasis, {yes, no} 
enlargement, {uni-lobe, uni-lobe+isthm, all the thyroid} 
clinical lymph nodes, {yes, no} 
clinical aspect, {unique nodule, multi nodules, important enlargement} 
pathological lymph nodes, {yes, no} 
compressive syndromes, {yes, no} 
invasion, { no, small, average, large} 
survi va! time, { in months}, length in month of survival time from the 

entrance in the study (between 1960 and 1980) to the time of 
analysis, 

survival, {survivor, non survivor at time of analysis}. 

Two of the 12 attributes are impo1iant: survival time (in month) of a patient at the time 
of analysis, and survival or non survival at the time of analysis. 

Looking at each attribute separately, we had 229 survivors and 52 dead during the study. 
Among 52 patients there were 14 patients with missing values. The dependence between 
the time of survival and the number patients was presented in Fig. 17. 

18 ~ -----------------~ 

16 -

"' 14 
-;; 
.!! 12 -
-:. 
c. 10 -
o 
~ 
.o 
; 6 -

" i 4 

2 

o -ł--'----'--,f--L--4-~-+-'~+-'--'-+~-'-+----+-'-~t-'---'-+~'-+-L....L-f 
12 24 36 48 60 72 84 96 108 120 over 

120 

time of death in months 

Figure 17. Dependence between the time of death in months and the number of patients 

The aim of such a study is to identify prognostic elements of disease evolution and to 
define a prognostic rule for a new case coming from the same population and being in 
the same conditions. 

The patients (training examples) have been divided into two classes. The class attribute 
is the survival time. The first class includes patients with the survival time over 7 years. 
The patients with the survival time below 7 years belong to the second class. Thus, 48 
examples belong to the first and 29 examples belong to the second class. The problem 
of learning from examples is formulated as to find two classification rules: 

R,','. • [class = c!assl], R,t• • [class= c/ass2] . 
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The R{,; is specified by "elementary" conditions depending on the attributes, / = 1,2, for 

the classes: 

class i: the patients will be alive over 7 years, 
class 2: the patient will <lead during 7 years, 

using all examples as patterns. 

The IP method was applied to the data described above. The results of applying the 
method to medical data are presented and described below 

We use IP_ GRE (with elements of a greedy algoritlun) and A1,,,,,,,,,, = I 00%. The 

measure of classification accuracy A1,,,,,.,,,, is the ratio of examples correctly classified to 

the class I ( or class 2) to the to tal number of examples, in percent. The classification 
rules for the first and the second class are presented below. 

[age <=40] [metastasis = no] [clinical aspect = unique nodule] [compressive 
syndromes = no]; 0.364 u [metastasis = no] [pathological lymph nodes = no] 
[compressive syndromes = no]; 0.468 u [histology = well differentia/ee(] 
[metastasis= no] [clinical aspect = unique nodule] [invasion = no]; 0.403 
• [ class = class I] 
IP_ GRE: A"""'"'"= I 00 %, by assumption. 

[metastasis= yes] [compressive syndromes = yes]; 0.104 u [histology = poorly 
differentiated] [metastasis = yes ]; 0.156 u [ clinical aspect = importcmt 
enlargement]; 0.078 u [histology = poorly differentiated] [compressive syndromes 
= yes]; 0.104 u (40 < age <=60] [histology = poorly differentiated] [pathological 
lymph nodes = yes]; 0.065 u [metastasis= yes]; 0.234 u [pathological /ymph 
nodes = yes] [compressive syndromes = yes]; 0.039 u [clinical a:,pect = multi 
nodules] [clinical lymph nodes = yes]; 0.052. • [class= class 2] 
IP_ GRE: A1e,,,,,,,,, = I 00 %, by assumption. 

Next, we assume, that the classification rules for elements belonging to class l must 
correctly describe most of the examples belonging to class l, I= I, 2, at least A'""""'" = 

97.5%, by assumption (i.e. may not describe not more than two training examples). We 
use IP_ GRE (with elements of a greedy algoritlun) and IP_ GA (with elements of 
a genetic algoritlun). We used the mutation rate = O.Ol, the crossover rate = 0.6, and the 
size of the population = 50. 

The classification rules for the first class are presented below. 

[age <=40] [metastasis= no] [compressive syndromes = no]; 0.364 u .. [metastasis 
= no] [pathological lymph nodes = no] [compressive syndromes = no]; 0.468 u 
[histology = well differentiated] [metastasis= no] [invasion = no]; 0.455 
• [ class = class I] 
IP GRE: A1,,,,,,,,,, = 97.5 % by assumption. 
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[melas/as is = no] [c/inical lymph nodes = no] [invasion = no]; 0.468 
[compressive syndromes = no] [invasion = average]; 0.052 u [c/inical wp 
unique nodule] [c/inical lymph nodes = yes]; 0.104 • [class= class I] 
IP_ GA: A1, 0 ,,,,,,g = 97 .5 % by assumption. 

Table I. Same parameters describing the process of finding a classification rule for the first class 

u 

ect = 

Algorithm A1ca111111g %, Number of iterations Number of selectors in rule 

b assum tion 
IP _GRE 100% 3 11 

at least 97.5 % 3 9 
IP2 GA at least 97.5 % 3 7 

The classification rules for the second class are presented below. 

oorly [metas/asis = yes] [compressive syndromes = yes]; 0.104 u [histology = p 
differentiatedJ [me/astasis = yes]; 0.156 u [c/inical aspecl = impo 
enlargemenl]; 0.078 u [hislology = poorly diflerenliatedJ [compressive synd, 
= yes]; 0.104 u [40 < age <=60] [pathological lymph nodes = yes]; 0.07 
[metastasis = yes]; 0.234 u [patho/ogical lymph nodes = yes] [compre 
syndromes = yes]; 0.039 u [c/inical aspect = multi nodules] [clinical lymph n 

rtant 
·omes 
8 u 
'jssive 

odes 
= yes]; 0.052 • [class= class 2] 
IP_ GRE: A1eomh>g = 97.5 % by assumption. 

yes]; 
nale] 

[40 < age <=60] [pathological lymph nodes = yes]0.078 u [metastasis = 
0.234 u [c/inical aspect = important enlargemenl]; 0.078 u [sex = 1 

[invasion = average]; 0.039 u [invasion = large]; 0.065 u [age <=40] [cli ·nica! 
aspecl = multi nodules]; 0.026 • [class= class 2] 
IP_ GA: A1,,,,.,,,,," = 97.5 % by assumption. 

Table 2. Same parameters describing the process offinding a classification rule for the second class 

Algorithm A1eami11g %, Number of Number of selectors in rule 

by assumption iterations 

IP_GRE 100% 8 15 
at least 97.5 % 8 14 

IP2 GA at least 97.5 % 6 9 

r the Some parameters describing the process of classification the patients into the first o 
second class are presented in Table 3. The ratio of correct classification decisions to 
total number of decisions made was taken as the measure of classification accurac 

the 
y. in 

percentage. 

Table 3. Same parameters describing the process of classification the patients inio the first or second class 

Algorithm A1eammg %, by assumption Classification accuracy, achieved 

IP_GRE 100% 100% 
at least 97.5 % 98.7 % 

IP GA at least 97 .5 % 98.7% 
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As can be seen, the shortest classification rules were obtained by using the method 
IP GA. 

7.2. Solving a Coronary Heart Disease Problem 

There are several factors of blood, both morphological as well as of plasma, thai can 
indicate some illness. Only very basie blood examination is unfortunately so far widely 
considered. Meanwhile, for example, the blood viscosity changes due to some physical 
and psychical conditions of people, both il! and well. lt has been found [ cf. Dintenfas 
( I 969, I 981 )] that the blood viscosity and plasma viscosity are functions of cells 
aggregation and fibrin level. 

For example, the blood viscosity of smokers or those being under stress also increases. 
Additionally, within the last few years it has been observed that the rate of sial acid is 
responsible for existence of negative electrical charges in blood and plasma. Many other 
relations among various factors are stil! under investigations. 

It is difficult for medical doctors to determine the descriptions of diseases in the form of 
generał decision rules, hence machine learning methods from examples can be applied. 
The task is to develop a knowledge base that contains sufficient information to diagnose 
the coronary heart disease. That is, to provide decision rules which are sufficient to 
describe the disease in terms of symptoms. 

In our considered medical classification problem there are 90 examples, either il! or 
healthy persons, 60 of them have been chosen as a so-called training set and another 30 
persons for testing in order to check how the methods work and to compare the results. 
Table 4 shows the data for two selected persons, one iii and the second healthy. 

Table 4. Data of two selected people 

No Attribute Patient no 9 (healthy) Patient no I O (iii) 

I lkl 4.42 4.99 

2 lk2 7.90 7.20 

3 lk3 16.00 15.00 
4 lpi 1.64 1.35 
5 lo2 2.80 1.50 

6 agr 2.22 2.25 
7 fil 46.40 17.40 

8 fib 297.00 330.40 
9 ht 45.00 45.00 

JO sas 0.059 0.077 
li sak 0.056 0.057 
12 oh 7.348 7.367 

The following 12 blood factors (attributes) have been measured: 

/kl - blood viscosity for coagulation quickness 230/s, 
lk2 - blood viscosity for coagulation quickness 23/s, 
/kJ - blood viscosity for coagulation quickness 15/s, 
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lpi - plasma viscosity for coagulation quickness 230/s, 
lp2 - plasma viscosity for coagulation quickness 23/s, 
agr - aggregation level of red blood cells, 
jil - blood cells capacity to change shape, 
fib - fibrin level in plasma, 
ht hematocrite value, 
sas - sial acid rate in blood serum, 
sak - sial acid rate in blood cells, 
ph - acidity ofblood. 

Due to requirements of the considered inductive methods the real values of the a, 

attributes, j = 1, ... ,12 , have been arranged into some number of groups. The application of 

statistical analysis on the set of healthy persons has allowed to obtain for each j-th 
- - -

attribute its average value p i , a standard deviation 8 1 and an interval [ p 1 - t5,, p 1 + 81 ] 

that constituted three aggregated groups. Physicians have suggested four groups for two 
attributes: sas and sak, because of a higher accuracy required. This aggregated groups 
used for computation are shown in the Table 5. In this way the continuous-value 
problem has been changed into discrete-value one. 

Table 5. The aggregated groups used for computation 

No Attribute Group no I ·Group no 2 Group no 3 Group no 4 

I lkl < 3.8 [3.8, 4.3] > 4.3 

2 lk2 < 5.7 [5.7, 6.71 > 6.7 

3 lk3 < 13 [13, 161 > 16 

4 lol < 1.3 fl.3, 1.51 > 1.5 

5 lp2 < 1.5 [1.5, 1.9] > 1.9 

6 agr < 1.7 [1.7, 21 > 2 

7 fil < 14.5 [14.5, 2.31 > 22.3 

8 fib < 212 [212,298] > 298 
9 ht <42 [42,461 > 46 

IO sas < 0.06 [0.06, O 07] (0.07, O 08] > 0.08 

li sak < 0.06 [0.06, 0.071 (0.07, 0.081 > 0.08 

12 ph < 7.3 [7.3, 7.35] > 7.35 

The problem of learning from examples is formulated as to find classification rules into 
the classes: 

class J: the patients have no coronaty heart disease, are healthy, 
class 2: the patients have a coronary heart disease, are iii, 

using all examples as patterns. 

The sets of examples corresponding to the groups were the input to the learning 
programs. We use IP_GA (with elements of a genetic algorithm) and IP_GRE (with 
elements of a greedy algorithm), and assume that the classification mies must correctly 
describe most of the learning examples belonging to class 1 and class 2, at least A,,,.,,,.,.,, 

by assumption. 
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The ratio of correct classification decisions to the total number of decisions made was 
taken as the measure of classification accuracy, in percentage. The results of applying 
the methods to medical data are presented and described in Tables 6, 7 and 8. 

Table 6. Some parameters describing the process of finding a classification rule for the first class 

Algorithm A /c(//1H/1g %, Number of iterations Number of selectors in rule 
by assumption 

IP_GRE 100% 16 43 
at least 97 % 13 26 

IP_G A 100% 18 46 

at least 90 % 13 26 

Table 7. Some parameters describing the process offinding a classification rule for the second class 

Algorilhm A1eami11g %, Number of iterations Number ofselectors in rule 
by assumption 

IP_GRE 100% 19 55 
at least 97 % 17 33 

IP_GA 100% 19 49 

at least 90 % 19 37 

The percentage of correct classifications is the measure of classification accuracy, in 
percentage. Better classification accuracy for testing examples was obtained by using the 
classification rui es correctly describes most of the training examples. 

Table 8. Some parameters describing the process of classification the patients into the first or second class 

Algorithm A1caming %, by assumption Classification accuracy, achieved 

IP_GRE !00% 90.0% 
at least 97 % 96.7% 

IP_GA 100% 73.4 % 
at least 90 % 96.7% 

We found the classification rule R,'; = c,;J ;q(C,~) u ... uc,:: ; ą(c,;; ), where 

1,, .. ,/1_.;;; {I, ... ,KJ, q(C,~), I= I, ... ,L is the weight of the complex c,;i obtained by using 

(31). For each attribute a1 ,j=l, . . ,Kand each value vJ.'U-'l Ev,, , we determine 

[. 

U([a, = V;_,,,.11ll = 2)D([aj = VJJ(J./)],c,::i 
/,,,ł 

where: 

I {q(C,::) 
SD([a, =v,_,,.,.,,],C,,:)= O 

if [a., = v.,.,un1 occurs i11 the camp/ex C,~'. 

olherwise 

For each attribute a., ,j= 1, ... ,K we determine u(a1 ) 
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I. 

u(a,) = I,U([a, = v, _,(j,I) ]) = L Z:SD([a, = v,.,,, .,) ],C,'.:) 
~1 .•!1J1€I:, ~1 .,11.11EV~, / :: I 

Values u(a,) ,j= 1, ... ,K for classification rule for the first class (well) and for the 

class (iii) are presented in the Table 9 and Fig. 18. 

second 

Table 9. Va lues u(a,) ,J= I, ... , K for classification rule for the first class (healthy) and for the sec 

class (iii), IP _G RE method was applied, A1, 0 ,,,,,,, = 97% 

ond 

Attribute a_, u(a1 ) for classification rule u(a., ) for classification rule for the Total 
for the first class second class 

/kl O.O 17 0.050 O .067 1----------f-----------1----------------+--
/ k] O.O O.O O.O 
/kJ 0.266 0.250 o .516 

0.300 0.200 o .500 
0.100 0.516 o .616 
0.017 0.050 o .067 

O.O 0.033 o .033 

0.300 0.266 o .566 
0.083 0.017 o . 100 

sas 0.450 0.350 o .800 
sak 0.133 0.266 o .399 

h 0.183 0.150 o .JJ.) 

---
0,6 

0,5 

0,4 

0,3 

0 ,2 

O, 1 

o 

Figure 19. Values u(a1 ) ,}=/, ... ,K (i.e. u(/k/), .. , u(ph)) for classification rule for the first class (he althy) 

and for the second class (iii); IP_ GRE method was applied. 

8. Conclucling Remarks 

We have presented an improved inductive learning method IP with elements of ge 
or greedy algorithrns to derive classification rules from sets of positive and neg 
examples. The computational results are very encouraging. 

netic 
ative 
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