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Abstract
The spread of the COVID-19 pandemic has a simultaneous temporal and spatial component. This pattern 
results from a complex combination of factors, including social ones, that lead to significant differences 
in the evolution of space-time distributions, both between and within countries. The aim of this study was 
to assess changes in the regularity of the spatial distribution of the number of diagnosed COVID-19 cases 
in Poland over more than a year of the pandemic. The analysis utilized daily and weekly data for 380 coun-
ties (poviats), using the local – Poisson risk semivariogram – measure of spatial autocorrelation. Despite 
the heterogeneity and errors in  the source data, it was possible to  identify clear patterns of  temporal 
changes in the spatial distribution of COVID-19 cases, manifested by differences in the nature and extent 
of their autocorrelation.
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Introduction
The current state of knowledge  
on the space-time dynamics 
of COVID-19 in the world

The rapid spread of the COVID-19 epidemic 
has a simultaneous temporal and spatial 
component. This pattern results from a com-
plex combination of  factors, including social 
ones, that lead to  significant differences 

in  the evolution of  space-time distributions 
both between and within countries.

Among the tens of  thousands of  scien-
tific articles published, since the beginning 
of the pandemic over year ago, strictly medi-
cal issues, as well as those related to public 
health and socio-economic consequences, 
dominate. However, from the very beginning, 
there has been research thread that draws 
attention to  the space-time relations taking 
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place during the development of the pandemic  
which uses for this purpose GIS and spatial 
econometrics instruments. A partial sum-
mary of the content of publications belonging 
to this trend is covered by the work of Fatima 
et al. (2021). The authors searched the Pub-
Med database as  of September 30, 2020 
using the phrase: ‘Spatial Analysis’ OR ‘Geo-
graphic Mapping’ OR ‘Spatial Regression’ OR 
‘Space time Clustering’ OR ‘Spatio Temporal 
Analysis’ AND ‘COVID-19’. In this way, they 
identified 74 peer-reviewed papers published 
in  English as  of January 1, 2020. Fatima 
et al. (2021) identified, firstly, the dominance 
of  studies from only three countries: China, 
Brazil and the USA. Secondly and thirdly, they 
diagnosed the main goals of  the performed 
analyzes and the methodology used for this 
purpose. Thus, selected publications included: 
(a) cartographic visualization of  the course 
of  the epidemic, (b) development of  SARS-
CoV-2 virus infection risk maps, and / or  (c) 
construction of  time-space epidemiological 
models. In these papers, their authors used 
the methodology of clustering, hot / cold spot 
identification, spatial scanning statistics and 
spatial regression modeling. Factors limiting 
the use of  these techniques were the defi-
ciencies and shortcomings of  data on  the 
progress of  the epidemic, which, together 
with the scarcity of small-scale demographic, 
environmental and socio-economic informa-
tion, made it  very difficult and challenging 
to  study causal relationships with potential 
factors influencing the course of COVID-19.

Similar findings were made by the authors 
of  a slightly earlier printed review, which 
included 63 items published between the end 
of  January and the beginning of  May  2020 
(Franch-Pardo et  al., 2020). They further 
emphasize that understanding the space-
time dynamics of COVID-19 can help in mak-
ing decisions, planning and implementing 
social activities. Interactions between public 
health officials, infected persons and health-
care professionals to  improve the quality 
of  information on  the disease proliferation 
and assess the likelihood of  new outbreaks 
are important in  this regard. Correlation  

analyzes are used, i.e., to estimate the impact 
on the epidemic development of actions in the 
field of health policy (localization of health / 
sanitation services and control, mapping / 
tracking of  human movement), the formula-
tion of appropriate scientific and political con-
cepts, and the projection of spatial diffusion 
and temporal trends.

Use of  the same keywords and other cri-
teria as  Fatima et  al. (2021) for the search 
of  the PubMed database on  April 15, 2021 
gave a list of  596  items, 541 of  which are 
publications available with full text. As many 
as  342 of  them appeared in  the PubMed 
database after September 30, 2020, i.e. they 
could not be included in the study by Fatima 
et al. (2021). This proves the high intensifica-
tion of  works in  the field of  spatial analysis 
(increase by  over 700%) and probably the 
outdated of  some of  the conclusions provid-
ed by  the above-mentioned authors (Fatima 
et  al., 2021). Undoubtedly, the geographic 
scope of  the analyzes performed has wid-
ened. The  dominance of  publications from 
China, the USA and Brazil is  not so  strong 
anymore. Most of  the available studies are 
those that concern the development of  the 
COVID-19 epidemic in  individual countries 
(Danon et  al., 2020; Gomes et  al., 2020; 
Hernández-Flores et  al., 2020; Hohl et  al., 
2020; Kim et al., 2020; Liu et al., 2020; Molla-
lo et al., 2020; Niu et al., 2020; Ramirez-Alda-
na, 2020;Castro et al., 2021; Gaudart et al., 
2021; Gupta et al., 2021; Huang et al., 2021; 
Lipsitt et  al., 2021; Mościcka et  al., 2021; 
Vaz,  2021). Although so  far rare, there are 
also available results of analyzes carried out 
on a supra-national scale, especially concern-
ing the European Union (Mounir Amdaoud 
et  al., 2020; Hass &  Jokar Arsanjani, 2021; 
Sannigrahi et  al., 2020), entire continents 
(Weiss et  al., 2020 – Africa) and even the 
whole Earth (Shadi Nazari et al., 2020).

An undoubted drawback of  most of  the 
spatial analyzes of  the development of  the 
COVID-19 pandemic published so far is their 
time scope. Most authors rely on  relatively 
short series of data ranging from a few weeks 
to  several months. They are rarely selected 
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due to the need to take into account a specific 
phase of  the epidemic. Therefore, the inter-
pretation of these partial results must be car-
ried out with great care. The  calculations 
of the spatial autocorrelation and its changes 
over time during the epidemic development 
were usually a secondary element of  the 
analyzes performed. They served mainly 
as a tool in the identification of local clusters 
(LISA – Local Indicators of  Spatial Associa-
tion, Gomes et al., 2020; Parvin et al., 2020; 
Ramírez-Aldana et  al., 2020; Castro et  al., 
2021; Hass &  Arsanjani 2021; Vaz, 2021)  
and their evolution over time.

The course of the COVID-19 epidemic 
in Poland and the current state 
of research

The first case of  COVID-19 in  Poland was 
registered on  March 4, 2020. The  first vic-
tim of the epidemic was a 57-year-old wom-
an who died on March 12, 2020. The  state 
of epidemic threat in Poland was introduced 
on March 16, 2020 – 5 days after the World 
Health Organization announced a pandemic 
in the world. Further restrictions were added 
on  March 25 and 31, and on  April 16, the 
country introduced the obligation to  cover  
the mouth and nose in all public places.

The number of identified cases of the dis-
ease has been growing rapidly since March 
10, reaching the level of  300-400  per day 
at  the turn of  March and April. From the 
beginning of  June to  the beginning of  July, 
the epidemic slowed down somewhat – the 
number of  positive test results decreased 
from around 500  per day to  around 250. 
By August 20, the increase continued from 
a maximum of  around 900  new cases per 
day. After a short-term reduction, in  mid-
September, a rapid growth of new infections 
began – the Second Wave of  the epidemic. 
It can be assumed that it was related to the 
beginning of  the new school year on  Sep-
tember 1. Wave Two  peaked on  November 
7, when 27,875  new COVID-19 cases were 
registered. The  situation began to  improve 
significantly from November 20, 2020, when 

more than 24,200 patients were registered. 
The  next minimum of  the incidence curve  
– around 5000 people a day – was around 
February 8, 2021. Since then, another increase 
has continued – the Third Wave of  the Epi-
demic. In the analyzed period, its maximum 
occurred on March 10, 2021, when the daily 
number of  identified cases of  the disease 
exceeded 21,000. The viral genome research 
conducted in  March 2021 showed that the 
so-called “British” mutation was responsible 
for the rapid increase in  the incidence and 
soon also of deaths (its share reached 70%). 
Its  spread in  Poland is  associated with the 
mass visits to  the country before Christmas 
by thousands of Poles from Great Britain.

As of  March 20 (Rynek Zdrowia, 2020)  
since the beginning of  the pandemic, 
2,036,700  infections have been confirmed 
in  Poland, and 49,159  patients have died. 
According to conservative estimates, the real 
number of  infected people may be  several 
times greater and exceed 10 million. Random 
studies (Rosińska et  al. 2020b) conducted 
in December 2020 showed that the percent-
age of  infections that were detected varied 
depending on the place from 11% to 32%.

Research on  the spatial aspects of  the 
development of  the COVID-19 epidemic 
in Poland is still scarce, and the state of knowl-
edge in this area is still partial and very lim-
ited by the availability and quality of source 
data. Śleszyński (2020), basing on  the data 
from the first 100  days of  the pandemic, 
described the sequence of  its phases, its 
spatial diffusion, and concentration. Other 
authors (Kowalski et al. 2021) pointed to the 
relationship between the incidence rates 
and the spatial distribution of  air pollution. 
This corresponds to  the results of  the publi-
cation of Pozzer et al. (2020) estimating that 
as  much as  28% of  deaths from COVID-19 
in  Poland may be  related to  air pollution.  
In the world ranking presented in  that arti-
cle, Poland is placed second after the Czech 
Republic. Krzysztofiak et  al. (2020) paid  
particular attention to  the region that 
was most affected by  the Pandemic in  its 
first phase. It was Upper Silesia – a region 
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with a long mining and industrial tradition. 
The  authors explain the mosaic distribution 
of  cases and deaths from COVID-19 in  the 
Śląskie Voivodeship referring to  the pro-
cesses of  urban shrinkage, trans-industri-
alism, hard coal mining and polycentricity.  
Jarynowski et al. (2020a, 2020b) determined 
the relationship between the SARS-CoV-2 
onset date and the number of  confirmed 
COVID-19 cases in  the first wave (March 4 
to  May 22, 2020), and socioeconomic vari-
ables at  the poviats level (previously NUTS-
4). They found that immigration and the 
logarithm of overall mobility are the best pre-
dictor of  the time of  arrival of  SARS-CoV-2, 
while emigration, industrialization and air 
quality explain the intensity of  the epidemic 
in poviats the most. Variables that were pre-
viously considered important, such as popu-
lation and population density, income, and 
share of  the elderly population, turned out 
to be less important. Jarynowski et al. (2020a, 
2020b) for the entire analyzed period and the 
two indicators taken into account, calculated 
the Moran ‘I’ index, indicating a highly sta-
tistically significant (p < 0.001) positive auto-
correlation. An isolated, but very interesting 
study is  the publication by  Bochenek et  al. 
(2021), who identified relationships between 
the dynamics of  a pandemic, determined 
by the number of identified COVID-19 cases 
and the number of  deaths caused by  this 
disease, and meteorological conditions. 
However, when reading it, doubts arise as to 
whether the authors took into account a rela-
tionship between meteorological conditions 
and the efficiency of the pandemic data col-
lection and reporting system.

Purpose and scope of the study

The aim of  this study was to  identify, char-
acterize and mathematically describe the 
spatial autocorrelation of  daily and weekly 
data on  the number of  identified COVID-19 
cases in  Poland in  poviats during the full 
year of  the pandemic (from March 2020 
to  March 2021). The  obtained spatial auto-
correlation models can be used to determine  

the regularity of the spatio-temporal develop-
ment of  the pandemic, as well as  to assess 
the quality of official data. These results can 
also be used for planning and management 
within central and local government adminis-
tration. At the moment, the author does not 
know of  any similar type of  study from any 
country in the world.

Analysis area and source data

The administrative division of Poland 
and the system for collecting data 
on the COVID-19 epidemic

The administrative division in Poland is three-
tier: 2477  communes, 380  poviats and 
16  voivodeships (as of  January 1, 2020, 
Statistics Poland, 2020). Analyzes of  the 
spatial autocorrelation of  COVID-19 cases 
identified in  Poland were performed using 
data from poviats. This is  because at  this 
level there are the lowest-grade Sanitary 
and Epidemiological Stations (SANEPID) units 
belonging to  the State Sanitary Inspection  
(https://www.gov.pl/web/gis/o-gis), responsi-
ble for collecting and publishing data on the  
COVID-19 pandemic.

Poviats are divided into urban (66) and 
non-urban (314). Their area ranges from 13.3 
to 2976.4 km2 (average 822.9 and standard 
deviation 520.0 km2), the number of  inhabit-
ants from approximately 19.8 to 1793.6 thou-
sand (average 100.9, standard deviation 
119.9  thousand). There is  also a large 
variation in  the population density in  these 
administrative units, as  it ranges from 18.9 
to 3708.7 people / km2 (the standard devia-
tion is  as much as  650.4  people per  km2). 
Therefore, regardless of the high uncertainty 
as to the accuracy of SARS-CoV-2 virus infec-
tion registers, the problem of Small Numbers 
can be expected (Waller & Gotway, 2004). It 
occurs in areas where spatial units are char-
acterized by  a large diversification of  the 
number of  inhabitants. For  some of  them, 
having a very small population, small, ran-
dom, differentiation in  the number of  cases 
of  the analyzed feature, the calculation 
of standardized indicators for the population  
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(e.g. number of  cases / 1000  inhabitants) 
is burdened with a large and unknown error.

Until the end of November last year, the 
only publicly available source of data on the 
development of the pandemic in poviats (mor-
bidity and deaths in  the 24-hour step) was 
a database collected by a group of enthusi-
asts led by Michał Rogalski (2020). However, 
when several times they discovered signifi-
cant inaccuracies in the data published over-
night on the website of the Ministry of Health, 
it  was decided to  fully centralize the flow 
of information – practically there was no pos-
sibility of  their social control. Michał Rogal-
ski’s group was basing their pandemic figures 
on data provided directly by individual Poviat 
Sanitary and Epidemiological Stations, now 
such information is  sent directly to  the Min-
istry of Health in Warsaw and there is  pro-
cessed, compiled and made available to the 
public at: https: //wojewodztwa-rcb-gis.hub. 
arcgis.com/pages/dane-do-pobrania.

The inaccuracies revealed by  Michał 
Rogalski and his associates consisted of dis-
crepancies between the sum of cases report-
ed by individual poviat SANEPiDs and the fig-
ures published on the website of the Ministry 
of Health of the Republic of Poland. It is diffi-
cult to assess how accurate (reliable) the data 
collected at the poviat level are.

The assessment of  the course of  the 
COVID-19 pandemic in  Poland is  undoubt-
edly hindered by the relatively small number 
of  tests performed, and according to WHO, 
effective testing of people suspected of being 
infected allows the epidemic to be controlled 
and the virus transmission to  be limited 
(Medonet, 2020). From September 2020, peo-
ple with symptoms indicating the possibil-
ity of  COVID-19 infection are being tested 
in  Poland as  a priority. Preventive tests are 
also performed on people who report to stay 
in a sanatorium or are referred to hospices, 
health care facilities and nursing homes. 
Healthcare professionals are also tested 
on an ongoing basis. Poland, with the number 
of 270,835 tests per 1 million inhabitants (as 
of March 8, 2021), ranks very far in the world 
ranking. The maximum daily number of tests 

performed in  Poland exceeded 80,000, and 
usually oscillates between 20 and 40,000.

Data used in the study

This analysis uses the available data on  the 
daily number of  new COVID-19 cases 
in poviats in the period from March 9, 2020 
to March 14, 2021 (371 days). The first 5 days 
of the pandemic (from March 4, 2020) were 
omitted because they did not constitute 
a full week. The  analysis was performed 
for 53  weekly totals– from Monday to  Sun-
day. The  inspiration for such a decision was 
weekly cyclicality, which was clearly visible 
in the data, discussed in more details below. 
The  first Monday during the pandemic was 
March 9. Time and material scope of the ana-
lyzes made it  necessary (1) to  integrate the 
databases of the M. Rogalski’s team (period 
from March 9, 2020 to November 23, 2020) 
and ‘government’ data (after November 24, 
2020) and (2) to calculate weekly sums based 
on them. The latter dataset is 100% complete 
and does not show any obvious errors. In the 
first one, there were large gaps, and many 
errors consisting in a decrease in the cumula-
tive number of cases in subsequent days. Such 
data was removed from the analysis. The lack 
of even one daily value was also the reason 
for the elimination of  a given poviat from 
the analyzes of weekly totals. Overall, in the 
first period of 260 days (37 weeks), the mean 
completeness of daily data was 96.3%, rang-
ing from 82.9 to 98.4%. The greatest short-
comings characterize the first month of  the 
COVID-19 pandemic – until April 8, 2020. 
For this range, data are available for an aver-
age of 88.5% of poviats. Due  to  the above-
mentioned rule, the losses in  the weekly  
sums are greater. For the first 37 weeks, data 
are available for an average of 93.4% of povi-
ats (from 80.8 to 98.4%), and for the first 5 
– only 85.1%.

Unfortunately, neither the first nor the 
second database contained information 
on  the gender and age structure of  people 
identified with the infection in individual povi-
ats. Aggregated information for the entire  
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country concerns mainly gender and age rela-
tionships among people who died as a result 
of  COVID-19. Demographic characteristics 
of  the disease in  the period March-August 
2020 included in the study by Rosińska et al. 
(2020a) is  not relative to  the general struc-
ture of the population. It shows that while the 
proportion among the sexes is  similar, the 
age groups are dominated by  people from 
30 to  49  years old (35 to  40% of  the total  
number of identified cases).

One of  the most characteristic features 
visible on  the chart of  identified COVID-19 
cases daily values of  is their weekly cyclical-
ity, mentioned above. Obviously, it  is a func-
tion of many social and institutional factors, 
and directly depends on the number of tests 
performed. It should be noted that although 
this cyclicality is visible in the entire analyzed 
collection of data from Poland, it  is particu-
larly strong in the period after November 24, 
when data gathering and sharing was cen-
tralized at  the Ministry of  Health. Analyzes 
made by Li (2020) on data from 149 countries 
of  the world show significant linear correla-
tions between this weekly periodicity and the 
total number of  cases and deaths, ranging 
from 50% to  84% for the group of  coun-
tries where the death rate is  almost three 
orders of  magnitude, from a few to  about  
a thousand per million.

In addition to the data on the daily number 
of new COVID-19 cases, this study utilizes:
•	 data on the number of inhabitants in povi-

ats as  of December 31, 2019 obtained 
from the Local Data Bank of  the Central 
Statistical Office (https://bdl.stat.gov.pl/
BDL/start),

•	 population distribution in the 1×1 km grid 
from the National Census carried out 
in 2011, made available via the Geostatis-
tics Portal of the Central Statistical Office 
at: Geostatistics Portal (2020),

•	 GIS layer of  polygons of  administrative 
borders of  poviats as  of August 8, 2019 
from the “State register of  borders and 
areas of territorial divisions of the country” 
(http://www.gugik.gov.pl/pzgik/dane-bez-
oplat/dane-z – state-register-of-borders-

and-area-units-territorial-subdivisions-
country-prg).

Methodology of analysis

Local autocorrelation: classical, 
population-weighted semivariogram 
and Poisson risk semivariogram

In this study, to analyze the spatial autocor-
relation of data on COVID-19 cases identified 
during a day in poviats, instead of economet-
ric methods commonly used in  epidemiol-
ogy (Waller & Gotway, 2004; Lawson, 2006; 
Lai  et  al., 2008; Pfeiffer et  al., 2008; Getis, 
2010) geostatistical methods were utilized 
(Goovaerts, 1997; Oliver, 2010). This decision 
was made for two reasons. First, this study 
is part of a wider project in which local spa-
tial autocorrelation models (Poisson risk semi-
variograms) were used to  correct (smooth) 
empirical data on  the spatial distribution 
of  identified COVID-19 cases using Poisson 
kriging (Goovaerts, 2005). ‘Classic’ measures 
of autocorrelation, such as the Moran, Geary 
or Getis-Orda correlograms, do not provide 
such possibilities. It was also decided that 
this part of  the project should be  included 
in  a separate publication that would focus 
on the numerically defined regularities of the 
spatial distribution, and not to  the distribu-
tion itself, presented cartographically. Sec-
ondly, the author of this study does not know 
of a publication that would indicate any short-
comings of the used autocorrelation measure 
in relation to the above-mentioned ‘classical’ 
measures.

In order for geostatistical methods to be 
widely used, it was first necessary for their pro-
cessing to  take into account their specificity  
in the calculation algorithms. The result of this 
consideration is development of Poisson krig-
ing using as a model of spatial autocorrelation 
not the traditional Matheron semivariogram 
estimator, but the risk semivariogram (Oliver 
et  al., 1992, 1998; Goovaerts, 2005; Mon-
estiez et al., 2006; Krivoruchko et al., 2011; 
De Oliveira, 2014; Stach &  Wysocka, 2014; 
Azevedo et  al., 2020). The  theoretical foun-
dations of this methodology and an overview  
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of  its applications were presented by  Goo-
vaerts (2017). The  components of  this 
methodology that were used in  this study  
are briefly described below.

The infection/ disease incidence rate in the 
polygon α (spatial unit α) vα  is its adjusted, 
if  necessary – due to  age and / or  gender 
structure, number d(vα) in this polygon divid-
ed by the number of people inhabiting it n(vα) 
and multiplied by  100,000 or  another con-
stant (1000, 10,000, 1,000,000). Very often, 
when n(vα) is  small, the index z (vα)  =  d(vα)/
n(vα) gets an  unrealistically small or  large 
value. This feature is called the ‘Small Num-
bers’ problem mentioned earlier (Waller 
& Gotway, 2004).

Traditionally, in  geostatistics, semivari-
ance was adopted as  a measure of  spatial 
autocorrelation (Goovaerts, 1997; Oliver, 
2010), defining the change in  dissimilarity 
between data as a function of their distance 
and, possibly, direction (occurrence of anisot-
ropy of the phenomenon) [1].
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However, this does not fully solve the prob-
lem, since the analyzed variable represents 
counts of the cases, and therefore a discrete 
random variable with a Poisson distribution. 
The  classic formula for the measure of  dis-
similarity – semivariance [1] – must be modi-
fied in  this type of  analysis so  that, taking 
into account the weight of the population, the 
significance of the ‘Small Numbers’ problem 
can be reduced. The risk semivariance γRv (h) 
(Monestiez, 2006) for pairs of  spatial units 
separated by the vector h is as follows [3]:
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where: 
N(h)	–	 the number of pairs of spatial units (vα ,  vβ) 
which (population-weighted) centroids are sepa-
rated by the vector h, and 
m*	 –	 the average of the frequency of events for 
N areas weighted by the number of inhabitants. 

The  squared differences [z (vα) – z (vβ)]
2  occur-

ring in  the traditional form of  semivariance are 
modified (weighted) by the function of their num-
ber of  inhabitants in  the form of  the expression 
n(vα)·n(vβ) / [n(vα) + n(vβ)] which is inversely propor-
tional to their standard errors. As a result, more 
trustworthy data pairs are given more importance. 
This importance depends on the number of inhab-
itants according to the rule: the greater it  is, the 
lower the standard error. The modifications of the 
classical semivariance estimator introduced  
in the above formula are the more important the 
greater the diversity of the number of inhabitants 
in the set of analyzed spatial units.

Parameterization of local 
autocorrelation calculations

Before starting the calculations of empirical 
semivariances, a decision should be  made 
to  determine their important parameters: 

[3]
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(1) taking into account or omitting any pos-
sible directional relations (anisotropy of  the 
spatial distribution) and (2) the width and 
number of distance h intervals for which the 
calculations are performed. When analyzing 
the identified cases of COVID-19 in poviats, 
it was decided to ignore the potential anisot-
ropy. First, there are no reasonable premises 
indicating the possibility of  its existence. 
Besides, the tests performed on  data from 
a few randomly selected dates did not show 
any directional relations. This does not mean, 
of course, that the problem is unequivocally 
resolved.

When determining the width and num-
ber of  compartments, the intention was 
to  achieve contradictory goals: on  the one 
hand, to  obtain the most accurate picture 
of spatial relations, especially over short dis-
tances, and on the other hand, to obtain sta-
tistically reliable results. The  first postulate 
would require calculations for many narrow 
distance ranges, and therefore for relatively 
small subsets of  pairs of  poviats. With high 
uncertainty as  to the quality of  the source 
data, this would produce results with low sta-
tistical reliability. After a series of tests, it was 
finally decided to  carry out calculations for 
35 compartments (lags) 8 km wide. The total 
scope of the analysis was therefore 280 km, 
i.e. about half the diameter of  the country’s 
territory. This principle is  quite commonly 
used in  geostatistics. The  number of  data 
pairs for individual intervals with a complete 
data set (data from all 380  poviats) is  pre-
sented in Fig. 1B. Only for the first interval it is 
smaller than 100 and equals 75. For intervals 
over 40  km this value is  already over 500, 
and over 120  km – 1000  pairs. Such large 
samples certainly significantly reduced the 
negative impact of outliers.

In the analyzes of spatial autocorrelation 
performed in  this study, standardized data 
of  counts for individual spatial units had 
to be related to one point. Geometric cen-
troids of these units’ polygons are very often 
used for this purpose. However, in a situa-
tion where the distribution of the population 
in the polygons is highly uneven, it introduces  

a considerable inaccuracy to  the results 
obtained. A much better option is  to use 
population distribution centroids, and this 
is  also the chosen solution. Unfortunately, 
precise data on the distribution of the popu-
lation of Poland are available only from the 
National Census carried out in 2011. Howev-
er, it was recognized that in the period that 
has elapsed, there have been no significant 
changes in  the spatial distribution of  the 
population, and the benefits of this solution 
are much greater than possible inaccuracies 
resulting from the differences between the 
distributions in 2011 and 2020. The average 
distance between the poviat’s geometric 
centroid and its center resulting from the 
population distribution is 2732 m (min. 123, 
max. 11,512, standard deviation 2129  m). 
Taking into account that the average dis-
tance of the nearest neighbor between pov-
iat centroids weighted by  the distribution 
of the population is 18,722 meters (Fig. 1A), 
the ‘error’ resulting from the use of the coor-
dinates of the geometric center could reach 
even several dozen percent of this interval. 
In several situations, for example the city 
of Poznań and the Poznań poviat, when the 
latter surrounds the city on  all sides, then 
the centroid designated for it  is located 
inside the centrally located city. Similar 
situations apply to spatial units with a very 
irregular, crescent-like shape (e.g. Bielsko 
poviat). Unfortunately, the procedure in the 
QGIS program used to determine the center 
of  the poviat does not allow ‘forcing’ such 
a point to be inside the range.

In order to fully interpret the results of the 
spatial autocorrelation analysis of  daily and 
weekly data of the number of newly registered 
SARS-CoV-2 virus infections, a graphical and 
statistical summary of  the distribution of dis-
tances between population-weighted centroids 
of poviats is required (Fig. 1A). As already men-
tioned, the average of these distances (of the 
nearest neighbor) is 18,722 meters. The median 
is nearly 2 km greater (20,424 m), the extreme 
values are between 961 and 41,420  meters. 
The  distance range, defined by  its standard 
deviation, amounts to 9404 meters.
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The spatial ranges obtained as  a result 
of the autocorrelation analysis should be com-
pared with the average number of  poviats 
(and more precisely their centroids), deter-
mined on  the basis of  the ‘peer-to-peer’ 
distance matrix, located within a given 
radius from the selected poviat (Fig.  1B). 
This is  because it  enables the assessment 
of  the number of  possible clusters grouping 
poviats with similar numbers of cases. From 
these calculations the conclusion is that there 
is on average 1 other poviat within a radius 
of  20  km (1.07). When the search radius 

is increased to 50 km, there are on average 
about 10 poviats (9.82). For the radii of 100 
and 200  km, the corresponding values are 
34.7 and 114.9 poviats.

Modeling of local autocorrelation

The software used in  this study (Goovaerts, 
2005), apart from the calculation of  the 
three types of  empirical semivariograms 
discussed above, also performs the adjust-
ment of parametric models to them. For this 
purpose, the VARFIT algorithm developed  
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Figure 1. Characteristics of the distance between weighted distribution of population by poviat centroids. 
A. Nearest neighbor histogram, cumulative curve and basic distance statistics. B. Graph of the average 
number of poviats (centroids) within a specified radius from the selected one (in 10 km intervals), and the 
number of data pairs used to calculate the semivariance for individual 8 km wide intervals
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be used that allow the identification of such 
situations and partial or complete elimination 
of  their negative impact (Goovaerts, 1997). 
However, they are quite time-consuming and, 
in  this study, in  which the calculations and 
modeling of  a total of 1272 empirical semi-
variograms (371 days + 53 weeks x 3  types 
of semivariograms) were performed, their use 
was not possible. To make so many calcula-
tions, a completely automatic solution was 
required, despite being aware of  its poten-
tially negative consequences. One  of  the 
problems was, for example, the alignment 
of functions by the algorithm even in a situa-
tion where the data clearly showed no spatial 
autocorrelation, or an unrealistic shape of the 
model. Unfortunately, the software used 
in  this study did not generate any quantita-
tive indicator of the quality of the model fit.

Therefore, it  was decided that the sum-
mary of the autocorrelation modeling phase 
would be qualitative rather than quantitative. 
It consisted of  a visual assessment, on  the 
basis of  the automatically generated graph, 
of  the nature of  the model and the quality 
of its fit, as well as subjective allocation to one 
of five classes: (1) no spatial autocorrelation, 
(2) chaotic autocorrelation, (3) weak autocor-
relation, (4) strong autocorrelation with one 
spatial range, (5) strong autocorrelation with 
two spatial ranges. The  determining factor 
in  the division was the empirical semivari-
ogram and the Poisson risk model. The deci-
sion to  classify a specific case into class 4 
or 5 was sometimes made after checking the 
numerical form of the model. In some cases, 
however, these results were ignored. This was 
the case, for example, when the algorithm  
fitted two functions to the empirical semivari-
ogram, but the relative contribution of  one 
of them to the total variance of the data was 
negligible – a situation often referred to  as 
overfitting. Distribution to  the distinguished 
classes could in  some cases arouse contro-
versy, because there were no strict, quantita-
tive criteria for their distinction. However, the 
author estimates that there were few such 
cases – not more than 3 to 5% of the entire 
analyzed set of models.

by  Pardo-Iguzquiza (1999) was used. In the 
implementation of the ‘Poisson Kriging’ soft-
ware (Goovaerts, 2005), the procedure tests 
all possible combinations of one or  two ele-
mentary functions selected from the follow-
ing three available semivariogram models: 
spherical, exponential and cubic. Out of them 
a composite model is selected that is charac-
terized by  the smallest weighted sum of  the 
squares of  the differences between the 
curves: experimental γ (hl) and model, γRv (hl) 
according to the formula [4]:

γ γh h h  ( ) ( )
2
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ˆ( )
L

l l l
l

WSS         w
=

= −∑
	 [4]

where: 
L – the number of distance classes.

The software user can choose one of five 
weight variants of  w(hl). In the calculations, 
the results of  which are presented in  this 
study, a variant was selected in  which the 
weight is  directly proportional to  the root 
of  the number of pairs of points for a given 
interval and inversely proportional to  the 
value of  the empirical semivariogram for 
this interval. Such a scheme prefers semi-
variances computed from many pairs of data 
(and therefore more reliable), and at  the 
same time their lower values, which usually 
occur at short distances, because a good fit 
of the semivariogram in its initial part has the 
greatest impact on the accuracy of the krig-
ing estimation.

Due to  the exponentiation procedure, 
semivariance as  a derivative of  variance 
is very sensitive to the occurrence of outliers.  
A single, extremely large or small value in close 
proximity to  ‘typical’ values can completely 
distort the picture of actual spatial relations 
Records of COVID-19 cases certainly contain 
many of such outliers. This is especially true 
in the first period of the pandemic, when the 
system of  controlling the registered cases 
was not yet operational. At that time, there 
could have been many significant mistakes, 
mostly omissions. In analyzes performed 
on  single data sets, various procedures can 
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Results

Autocorrelation of daily data: Poisson 
risk semivariogram models’ types

Examples of  the 5 distinguished types (with-
out autocorrelation, chaotic autocorrelation, 
weak autocorrelation, strong autocorrelation 
with one range, strong autocorrelation with 
two ranges) of  Poisson risk semivariograms 
for daily data from specific days are presented 
in Figure 3. Figure 4 contains maps showing 
the number of  identified cases of COVID-19 
for the same selected dates. The  individual 
types of autocorrelation of daily data during 
the year occurrence distribution is  present-
ed in  Figure 2. To facilitate and extend the 
interpretation of the data contained therein,  
the curve of  daily COVID-19 case sums for 
the whole Poland has also been added.

Out of  371 Poisson risk semivariograms 
for the daily number of new COVID-19 cases 
in poviats, as many as 85 (22.9%) were clas-
sified as  not showing spatial autocorrela-
tion. Their occurrence is limited to the period 
in  which data were collected by  a group 
of  volunteers on  the basis of  information 
provided by individual poviat and voivodship 
SANEPIDs (before 24 November 2020, Fig. 2). 
These appearances were concentrated in four 

sequences. The first (7 times) took place dur-
ing the initial 10 days of the analyzed period 
(9-18 March 2020). The  greatest number 
(as many as 55 cases of the lack of autocor-
relation) occurred between April 20 and July 
3, 2020. Another 15  cases, somewhat dis-
persed in  time, were recorded between July 
18 and August 23, 2020. The  last sequence 
of  6  cases occurred during the Pandemic 
Wave Two  peak, between November 5  
and 15, 2020.

The overwhelming majority of dates with 
a lack of  spatial autocorrelation expressed 
by  the Poisson risk semivariogram are days 
with a low number of cases and a high pro-
portion of poviats where no infected persons 
were identified. In those days, it  was often 
observed that spatial units with extremely 
high and low values of  the analyzed fea-
ture were directly adjacent to  each other. 
The  example of  July 24  presented in  Fig-
ure 4 is a situation with one cluster of high 
incidence rates in Upper Silesia and western 
Małopolska and a dozen or so randomly scat-
tered individual poviats with a similar level 
of positive COVID-19 test results in  relation 
to the entire population.

Situations with no  ‘local’ autocorrelation 
occurred in different phases of the pandemic 
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– the beginning and maximum of Phase One, 
the period between Phase One and Two, and 
at  the peak of  Phase Two. They intertwined 
during these periods with more regular  

spatial patterns and ceased to  appear 
after centralizing the procedures for col-
lecting and processing information. All  this 
shows quite clearly their genesis. Apart from  
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Figure 3. Selected examples of  empirical semivariograms (traditional, weighted by  population and 
Poisson risk, dashed line) and their models (solid line) of COVID-19 cases for days without clear spatial 
autocorrelation (2020-07-24), with chaotic autocorrelation (2020-08-17), weak (2020 -07-23), strong with 
one component (2020-10-12) and strong with two components (01-07-2021) recorded in poviats. The unit 
of the semivariance is the number of cases per 10,000 inhabitants squared



Figure 4. Examples of spatial distribution of COVID-19 cases per 10,000 inhabitants registered in poviats 
for selected days (see Figure 3) with different types of spatial autocorrelation. No color fill means no data 
in the spatial unit. The principle of division into classes for each map is  identical, but the boundaries 
of the class intervals are different: class 1 with gray filling – no recorded COVID-19 cases, classes 2-6  
– quintiles of the variable distribution
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single cases of random appearance of large 
new outbreaks of  the disease in  its initial 
stage, it is a result of the shortcomings of the 
test execution system and the collection 
and processing of  data on  positive results. 
The main mechanism of virus spreading in the 
population is a diffusion process (Śleszyński, 
2020), and as  such it  is characterized  
by spatial autocorrelation.

The chaotic type of  autocorrelation and 
the corresponding example of  the spatial 
distribution of  daily COVID-19 cases are 
presented in Figures 3 and 4. The existence 
of  autocorrelation is  not in  doubt here, but 
the empirical Poisson risk semivariograms 
are characterized by a large amplitude of dif-
ferences between the values calculated for 
successive intervals. There were the fewest 
of  such situations, because they were found 
only for 28 data sets (7.5%). Most often, they 
were scattered single days occurring in  the 
period from March to  September 2020. 
The  last case was recorded on  December 
8, 2020. The  chaotic semivariograms were 
noted more often for the reports of  cases 
from Sunday and Monday (8 and 5  cases; 
from Tuesday to Saturday it was 4, 3, 2, 3 and 
3  cases). The  August 17, 2020  map, repre-
senting one of the terms with Poisson’s chaot-
ic risk semivariogram, shows a situation with 
a scattered few small clusters of high values 
(and sometimes even individual poviats) that 
are often adjacent to units with very low rates 
of SARS-CoV-2 infection.

The weak autocorrelation type was 
assigned to those Poisson risk semivariogram 
models, which were characterized by a very 
high share in  the total variance of  the sam-
ple of  the random component represented 
by  the nugget semivariance (model value 
for a 0-meter interval). An exemplary graph 
of such a semivariogram for the data on July 
23, 2020 is  shown in  Figure 3, and the spa-
tial distribution of  the source incidence data 
for that day on  the map in  Figure 4. In this 
particular case, the nugget semivariance 
of  0.0603  accounted for over 73.6% of  the 
entire model variance. Forty one similar mod-
els of  semivariograms were identified, which 

constitutes 11% of the entire analyzed period. 
Their occurrence, with the exception of  one 
case in  January 2021, is  also concentrated 
in  the period before November 24, 2020. 
Most often they were single days, showing 
no difference in  the frequency of occurrence 
during the week. Only during the Pandemic 
Second Wave peak, between November 7 and 
20, 2020, there was a sequence of 9 days with 
weak autocorrelation intertwining with those 
where autocorrelation was not found at all.

In 79  days (21.3%) a strong autocor-
relation with one range was found. Only 
3 of  them took place after November 24, 
2020 (Fig. 2). It differs from the weak auto-
correlation type described above by  the 
lack or a relatively low nugget semivariance. 
An  example of  such empirical semivari-
ograms and their models from October 12, 
2020 is shown in Figure 5. The range of the 
Poisson risk model was 77.5 km and the nug-
get was zero. In south-eastern and central 
Poland (Fig.  4), several clusters of  poviats 
with very high and high incidence of people 
with identified SARS-CoV-2 virus infection 
(from 1.20 to  9.44  cases / 10,000  inhabit-
ants) were formed that day. The distributions 
of the number of COVID-19 cases, character-
ized by  this type of  spatial autocorrelation, 
occurred quite frequently in the period of one 
month after March 20, 2020 (Fig. 2). Again, 
more of them began to appear in the first half 
of July 2020. The period of their greatest fre-
quency, or rather domination, is two months 
starting from August 20, 2020, and therefore 
immediately before the beginning of the Sec-
ond Pandemic Wave and during its growth 
phase. It should also be  noted that consid-
ering the types with a chaotic and weak  
autocorrelation, the ones with one range 
occurred in 122 sets of daily data (32.9%).

A strong autocorrelation with two struc-
tures was recorded for 139 sets of daily data 
with the number of  COVID-19 cases identi-
fied in poviats (37.5%, Fig. 2). As many as 106 
of them occurred after November 24, 2020. 
This type of  spatial autocorrelation distin-
guished on  the basis of  Poisson risk semi-
variograms was characterized by  complex 
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Figure 5. Histograms and statistics of  the ranges of  Poisson risk semivariogram models for daily 
COVID-19 case data in poviats in the period from March 9, 2020 to March 14, 2021. The comparison 
also includes models with weak and chaotic autocorrelation. A. Single-range models. B. First structure 
in models with two ranges. C. Second structure in dual range models
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models being a combination of  two accept-
able mathematical functions. At the same 
time, as  in the previous type, the nugget 
semivariance was relatively small or  zero. 
The necessity to use more than one function 
to construct a semivariogram model is usu-
ally interpreted (Goovaerts, 1997) as a com-
bination of  the effects of  various processes 
operating at different spatial scales. Besides, 
such a complex model of the semivariogram 
also makes it  possible to  evaluate the rela-
tive share of  each component in  the total 
variability of the analyzed feature (variable). 
Figure 3 shows an example of a strong spa-
tial autocorrelation with two structures, 
dated January 7, 2021. The range of the first 
structure on that day was 51.5 km, and the 
second one was 1 259.5  km (extrapolated 
range; see explanations later in  this sec-
tion). This model also contained a nugget 
structure. Their relative ratio in  the radius 
covered by  the calculations (up to 280 km), 
related to the population-weighted variance 
of the data, amounted to 2.4, 34.9, and 55.6 
(nugget, first and second structure, respec-
tively). According to  this the long-distance 
autocorrelation, perhaps covering the whole 
country, was of  the greatest importance 
that day. This ‘epidemiological background’ 
should be ‘superimposed’ over clusters com-
posed of several / a dozen poviats that cre-
ated ‘hot’ and ‘cold’ spots of  the epidemic. 
The  actual picture of  the spatial variability 
of the number of identified COVID-19 cases 
in poviats on January 7 is presented on the 
map (Fig. 4). At that time, Poland was divided 
into two parts: north-west with high infec-
tion rates (>  3.3  people / 10,000  inhabit-
ants) and south-east – with low (< 1.7 people 
/ 10,000). Both zones, however, were very 
differentiated, with clusters of  poviats with 
higher or  lower index values than the aver-
age. At the end of this thread of  interpreta-
tion of  the results of  Poisson risk semivari-
ogram modeling, it should be added that two 
spatial autocorrelation structures were also 
identified in  21  cases where it  was chaotic 
or weak. Twenty of  them took place before 
November 24, 2020.

Autocorrelation of daily data: 
parameters of Poisson risk 
semivariogram models

Histograms and statistics of  autocorrela-
tion ranges determined by  the parameters 
of  Poisson risk semivariogram models are 
presented in Figure 5. Figure 6 presents their 
variability over time for individual sets of dai-
ly data. All  types of  models were included 
in both sets, including those with chaotic and 
weak autocorrelation. The  median ranges 
of the first structure for the models with one 
and two ranges are very similar and equal 
72.4  km and 69.4  km, respectively (Fig.  5A 
and 5B). However, the dispersion of  the 
autocorrelation ranges is  quite significant 
in  both types of  models, and in  those with 
two ranges, there are also a lot of outliers. 
However, the interquartile range is  similar 
and ranges from 50 to 95 km. The minimum 
values are also similar (15.5-17.5 km). Com-
parison with the data in  Figure 3B allows 
to  conclude that most often 10 to 30 povi-
ats (radius 50-95 km) were within the range 
of  strong autocorrelation, and the most 
typical clusters grouped them from 15 to 19 
(radius approx. 70 km). It is also worth noting 
that the maximum range of  the first struc-
ture, excluding outliers, is about 160-180 km. 
This is the typical diameter of a voivodeship, 
i.e. units of  the highest level of  the admin-
istrative division in Poland. The voivodships, 
grouping from 12 to  42  poviats, although 
they have only existed in their present form 
since 1999, often have a distinct natural, 
social and historical specificity.

The statistics of  the range of  the second 
data autocorrelation structure of  the num-
ber of  identified COVID-19 cases can only 
be  estimated approximately (Fig.  5C). Only 
in 50 situations, out of 160 models with two 
structures (over 31%), it  was shorter than 
280  km, i.e. the maximum range of  empiri-
cal semivariance calculations. For  the 
remaining days, this range was estimated 
from the parameters of  the fitted function. 
In 50% of cases (80 models), however, such 
a range was unrealistically large, and even 
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amounted to  over a thousand kilometers. 
For  the construction of  the histogram and 
the range statistics calculation for the sec-
ond structure in these situations, a constant 
value of 600 km was adopted, representing 
approximately the average diameter of  the 
territory of  Poland. This decision was based 
on the assumption that, taking into account 
the strong limitations of  people’s mobility 
between individual countries, the maximum 
range of  autocorrelation in  such analyzes 
should be  limited to  the territory of  each 
of them separately. As a result of such action, 
a bimodal histogram was obtained (Fig. 5C), 
with one lower frequency peak in the range 
between 200 and 280  km, and the other 
at distances of 600 km.

The values of the autocorrelation ranges 
shown in time, in Figure 6, determined on the 
basis of Poisson risk semivariogram models, 
at first glance give the impression of chaos 
and the absence of  any trends. However, 
the application of  smoothing by  the local 
polynomial method (LOESS) reveals long-
term tendencies masked by high variability 
of everyday values. In the first period of the 

Pandemic, the range of  both, the first and 
second autocorrelation structures was clear-
ly shorter than in  the second. The  change 
took place in early November 2020, during 
the Second Wave maximum. Before that, 
the average range of the first structure was 
about 65 km, and of the second – 235 km. 
At the turn of December 2020 and January 
2021, these values stabilized at around 90 
and 540 km (an increase of 38 and 129%). 
Figure 6 also shows quite clear fluctua-
tions in  the LOESS curves occurring in  the 
period from March to  November 2020. It 
seems that taking into account the results 
obtained for the data aggregated into 
weekly periods (Fig. 10), only changes in the 
range of the first component can be consid-
ered reliable. They indicate that in  the first 
period of  development of  the COVID-19 
pandemic in  Poland (March – April 2020), 
the range of  autocorrelation was slightly 
larger (approx. 80-85 km), and it has stabi-
lized at the above-mentioned level of 65 km  
since May.

It is quite difficult to  interpret the graphs 
of changes in the relative shares of individual 
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components of  Poisson risk semivariogram 
models (Fig.  7). The  values of  partial vari-
ances of  each structure were standardized  

in relation to the variance weighted by popu-
lations in individual poviats of each set of daily 
data. Doubts relate mainly to the share of the 
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long-distance structure, because its partial 
variance in most cases concerns the extrapo-
lated range, exceeding many times, as men-
tioned earlier, the maximum radius of  dis-
similarity calculations. Therefore, it is limited 
to  indicating very general tendencies of  the 
other two components, because the short-
term ones may be apparent. Increased shares 
of  nugget semivariance are quite clearly  

associated with the peaks of  the infection 
curve in April, August and November 2020. 
After November 24, 2020, the share of  the 
first – short-distance structure has clearly 
increased and stabilized. It also seems that 
the decline in the share of the second – long-
distance structure from December 2020 
to the end of the analyzed period also reflects 
the real changes.
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Autocorrelation of weekly data

The results of  the spatial autocorrelation 
analysis of  the number of  identified COV-
ID-19 cases in  poviats aggregated into 
weekly periods (53 data sets) are presented 
in  Figures 8 to  11. They are almost 100% 
consistent with those presented above for the 
daily step of  the analysis. Therefore, the fol-
lowing description will take into account only 
some of their more interesting aspects.

There is  relatively less of  Poisson risk 
semivariogram models for data of  weekly 
non-autocorrelation cases in  the set (17.0 
to 22.9%), and more of those with strong auto-
correlation with one range (26.4 to 21.2%) and 
two ranges (39.6 to  37.2%). However, these 
differences are not statistically significant. 
After November 24, 2020, all weekly Poisson 
risk semivariograms show a strong autocor-
relation (Fig. 8). Noteworthy is the significant 
statistical difference (p < 0.05) in  the range 
of  the first structure for models with one  

and two components (Fig.  9C). The  medi-
an of  the former is  66.6  km, and the latter 
– 88.9  km. The  comparison of  the ranges 
of  individual structures (spatial components) 
for weekly data (Fig.  10) suggests a slight 
decrease in  the range of  the first structure 
in the last three weeks of the analysis period, 
i.e. at  the time of  the build-up of  the third 
wave of the pandemic. Such regularity in the 
daily data (Fig. 6) was not noticed. For weekly 
data, the opposite is the relation of the share 
of both structures in the total data variance 
(Fig. 11). The short-distance structure is more 
important. This is  very clear for the period 
after November 24, 2020.

Summary and conclusions

The results of the analysis of daily and weekly 
indicators of  infection numbers in  poviats 
during the year from the beginning of  the 
pandemic are heavily burdened with short-
comings of  the data collection, verification  
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Figure 10. Temporal variability of the ranges of Poisson risk semivariogram models for weekly COVID-19 
case data in poviats in the period from March 9, 2020 to March 14, 2021. The comparison also includes 
models with weak and chaotic autocorrelation, and the range of the first structure also applies to models 
with one structure. For  the extrapolated ranges of  the second structure with a length of  more than 
600 km, such a value close to the diagonal average of the territory of Poland was arbitrarily assumed. 
A 3rd degree polynomial was used to  better illustrate the long-term trend in  the range of  the first 
structure. The  vertical, green arrow shows the division of  the analyzed data set on COVID-19 cases 
in  poviats in  the country into two subsets: until November 24, 2020 and after that date (detailed  
explanations in the text)
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and processing system. The  lack of  a well-
organized flow of information during the first 
eight and a half months of  its duration, cur-
rently limits the possibilities of correctly iden-
tifying the spatial regularities of disease pro-
gression in Poland, and in real time hindered 
making the right decisions about socio-eco-
nomic activities. It should be noted that the 
aggregation of  daily data into weekly peri-
ods did not significantly improve their qual-
ity – it did not limit the share of periods with 
no  spatial autocorrelation. This means that 
the problem was not related to delays in col-
lecting information from individual poviats 
(“shifting” data from day to day), but to  the 
non-systematic appearance of  large errors 
in  time and space. This may also be proven 
by  the presence, in  days and weeks with 
no local autocorrelation, of highly statistically 
significant values of  the global Moran auto-
correlation index (data not presented in  this 
article). Certainly, the relatively small number 
of  tests performed and the rules, according  

to which people were qualified to have these 
tests done, did not promote the precise 
assessment of  the actual spatial dynamics  
of COVID-19 in Poland.

Assuming, however, that the distribution 
of data errors was random both in time and 
space, one can try to “filter them out”, at least 
partially. The basic tool for this is a Poisson 
risk semivariogram computed from the data 
and parametrically smoothed. The  model 
of such a semivariogram can be used to iden-
tify outliers and eliminate their impact on the 
analyzed spatial distribution. On the other 
hand, the time series of such models enables 
the quantification of the changing regularities 
of the spatial process, and thus gives grounds 
for making genetic hypotheses. This was the 
main goal of this study. It used data from pov-
iats on  the number of  identified COVID-19 
cases for the period of  371  days, starting 
from March 9, 2020 and ending on  March 
14, 2021. Weekly totals (from Monday to Sun-
day) for full 53  weeks were also analyzed. 
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Figure 11. Temporal variability of  the relative shares of  the distinguished structures of  Poisson risk 
semivariogram models for weekly sums of COVID-19 cases in poviats in the period from March 9, 2020 
to March 14, 2021. The list also includes models with weak and chaotic autocorrelation, and the term 
“first structure” also applies to models with one structure. The shares were relativized in relation to the 
sample variance weighted by the number of inhabitants. A 3rd degree polynomial was used to better 
illustrate the long-term trend of the share of the first structure. The vertical, purple arrow defines the 
division of the analyzed data set on COVID-19 cases in poviats throughout the country into two subsets: 
until November 24, 2020 and after that date (detailed explanations in the text)
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The discussion on the obtained results must, 
unfortunately, be limited, because in the liter-
ature available to the author, there is nothing 
so far that would allow them to be confront-
ed with the characteristics of  the dynamics 
of  local autocorrelation of  the COVID-19 
epidemic progress for other areas and /  
or other periods.

The lack of  spatial autocorrelation was 
demonstrated in  23% of  daily and 17% – 
weekly data. They occurred during the first 
period of the pandemic from March to August 
and at  the Second Wave maximum. After 
changing the system for collecting and pub-
lishing data, they did not appear even once. 
Before this date, there were also frequent 
cases of chaotic and weak autocorrelation.

Most, i.e. 58.4% of  daily data sets and 
66.0% of weekly data in total, showed a very 
strong autocorrelation with a small share 
of  the random component. Autocorrelation 
models with two structures: short-distance 
and long-distance, dominated (respectively 
37.2 and 39.6%). This indicates the pres-
ence of  something that, by  analogy with 
geochemical mapping, can be called an ‘epi-
demiological background’, in  which there 
are clusters of  poviats with high (so-called 
hot-spots) and low (so-called cold-spots) num-
bers of  diagnosed COVID-19 cases. This, 
by analogy to terrain representation, creates 
a landscape with local hills and depressions 
superimposed on  gradual changes in  the 
height of  the area on a regional scale. Such 
situations occurred throughout the analyzed 
year, but their absolute dominance (96.3%) 
characterizes the period after November 24, 
2020, when the data collection and process-
ing system was reorganized. Situations with 
strong autocorrelation and one structure 
represent a picture with isolated clusters 
of poviats with high and low epidemic inten-
sity rates, showing no  regional connections. 
Such cases were frequent in  the first period 
of the development of the Pandemic, especial-
ly between the First and Second Waves of the 
disease and during the build-up of the Second 
Wave. It should also be  noted that the sys-
tems with one and two spatial structures also 

occurred on  days and weeks with autocor-
relation classified as weak or chaotic. It can 
be assumed that in most of  such cases, the 
number and magnitude of errors in the data 
made it difficult to correctly identify the real  
spatial regularities.

The autocorrelation of disease data shows 
two ranges: an average of about 70 km and 
over 280  km (possibly also the scale of  the 
entire country). Within the radius determined 
by  the first range, there are from a few 
to  a dozen poviats. The  maximum range 
of  the first structure is  about 160-180  km, 
which corresponds quite well with the size 
of the voivodships. The first range decreased, 
and then increased (85-65-90  km). This lay-
out applies to  both daily and weekly data. 
The  second range increased significantly 
at  the start of  the Second Wave of  the Pan-
demic. Noteworthy is the significant statistical 
difference in  the range of  the first structure 
for models with one and two components for 
data aggregated up to weeks. It shows that 
when there was no regional ‘epidemiological 
background’, the clusters of poviats with simi-
lar COVID-19 incidence rates were slightly 
smaller. The systematic appearance of poviat 
clusters composed of a few or a dozen units 
(autocorrelation radius approx. 70  km) indi-
cates the need for coordinated administra-
tive activities on such a scale, and not, as was 
the case most often, on  the scale of  entire 
voivodeships. On the other hand, focusing 
on  individual poviats with extremely high 
numbers of  cases will also not be  effective, 
due to  the strong links resulting from social 
and economic activity.

The share of the random component (nug-
get semivariance) decreased significantly 
after November 24, 2020. It reached its 
maximum at the height of the Second Wave 
of  pandemic (first half of  November 2020). 
The  daily data is  dominated by  the second 
component (long-distance), and the weekly 
data – by the first (short-distance). The impor-
tance of the short-distance component in the 
weekly data clearly increased during the 
analyzed period. According to this the differ-
ences between the values typical for clusters  
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of  poviats, both of  the ‘hot-spot’ and ‘cold- 
-spot’ type, and the regional background 
increased in the course of the epidemic pro-
gression. This tendency has been reversed 
since the beginning of the Third Wave of the 
pandemic. The  analysis of  data aggregated 
into weekly periods also shows, which seems 
logical, that changes in the ‘level’ of epidem-
ics in  clusters occur faster and on  a larger 
scale (shorter distances) than changes in the 
regional ‘epidemiological background’. 
It  is  not visible in  the comparison for daily 
data, but it may be the result of high uncer-
tainty in the assessment of the scope of the 
long-distance structure.

Undoubtedly, the most important conclu-
sion from the analysis carried out in this study 

is  the need to  reorganize the system of  col-
lecting, verifying and reporting epidemic 
data in  Poland. This must be  done without 
waiting for the next COVID-19 phase, or  for 
the next pandemic, which will come sooner 
or later. Many publications in the media indi-
cated both financial and personal limitations 
of the State Sanitary Inspection and the lack 
of administrative actions that would improve 
this sad state of affairs immediately after the 
pandemic began.

Editors‘ note:
Unless otherwise stated, the sources of tables and 
figures are the authors‘, on the basis of their own 
research.
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