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Abstract ) 

The goal of this work is to develop a thermodynamic setting for phase-field (diffused-interface) 
models with conserved and nonconserved scalar order parameters in thermoelastic materials. Our l 
approach consists in exploiting the second law of thermodynamics in the form of the entropy 
principle according to I. Miiller complemented by the Lagrange multipliers method suggested 
by I.Shih Liu. Such method leads to the evaluation of the entropy inequality with multipliers, 
known as the Miiller-Liu inequality. By a rigorous exploitation of this inequality, combined with 
the application of the dual approach (with entropy or internal energy as independent thermal 
variable), we obtain in Part I a generał scheme of phase-field models which involves an arbitrary 
"extra" vector field. For particular choices of this extra vector field we obtain known phase-field 
schemes with either modified entropy equation or/and modified energy equation. A detailed 
comparison with severa! well-known phase-field models, in particular models by Penrose and 
Fife, Caginalp, Fried and Gurtin, Falk, Fremond et al., Umantsev et al., is presented in Part II 
of this work. 
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ł 1. Introduction 

1.1. Motivation and goal. In classical thermodynamics phase boundaries are consid
ered as singular surfaces. The corresponding models, usually referred to as free bound
ary problems include in particualr one-and two-phase Stefan problems of parabolic or 
parabolic-elliptic type, and the Muscat problem. They have been studied intensively in 

ł the beginning of the eighties last century (see, e.g., [131], [120], [89], [122], [100]). 

J The concept of interfacial energy (or interface tension) does not follow from internal 
properties of the system (such as the energy density function) but is added ad hoc to 

, the interface according to experimentally observed values. As pointed out by Falli: [62] 
/ this approach is most unsatisfactory w hen both phases contain the same materiał, as in 

· the case of a liquid-vapor interface or the interface between partially miscible fluids. To 
improve this situation in 1893 van der Waals [144], and somewhat later in 1901 Korteweg 
[91], included terms depending on the density gradient into the constitutive equation for 
the energy. As a consequence not only the interface energy arises in a natural way but 
also the interface becomes diffuse. 

This type of gradient energy theory has been investigated for mixtures by Cahn and 
Hillard [34], [35], Cahn [36], and for gas-liquid interfaces by Felderhof [63], Widom [147]. 
In elasticity the theory with the gradient of the deformation influencing the energy dates 
back to Toupin [138]. The van der Waals-Korteweg theory has been reconsidered in 
various aspects in Aifantis [1], [2], Aifantis and Serrin [3], [4], Alexiades and AifantiEl [11], 
Slemrod [135], [136], [137], Dunn and Serrin [49]. 

In the last three decades the gradient-type approach has become a popular tool for the 
investigations not only in the liquid-vapour transitions but also in the theory of continuous 
solid-liquid and solid-solid phase transitions. The corresponding model equations are 
usually referred to as phase-field (or diffused-interface) models. 

The phase-field dynamical models of solid-liquid type with conserved and/or noncon
served order parameter are the concern of the present work. 

Among the mostly known and broadly investigated we mention the Caginalp model 
of solid-liquid phase transitions [21], [22], [23], Penrose-Fife models with conserved and 
nonconserved order parameter [129], [130], models due to Fried .and Gurtin [72], [73], 
[74], [75], Gurtin [83], Fremond [70], [71], and Falk [57], [61], [62] for phase transitions 
in solids, in particular phase separation, ordering in alloys, damage and shape memory 
problems. We mention also phase-field models with nonconserved order parameter due 
to Umantsev and Roitburd [141], Umantsev [139], [140], [142], and Umantsev and Olson 
[143]. 

[7] 



8 1. Introduction 

For overvew see, e.g., Carach, Chen and Fife [38], Chen [39], Umantsev [140], Em
merich [51], Singer-Loginowa and Singer [134], Heida, Malek, and Rajagopal [86], and the 
monograph by Brokate and Sprekels [20]. 

As noted by Penrose-Fife [129] the phase-field equations were apparently first sug
gested by Langer [94] on the basis of a similar model, called "Model C" by Halperin, 
Hohenberg, and Ma [85]. Such equations were first studied analytically and numerically 
by Fix [67], [68], Caginalp [21], Langer [94]. Independently, phase-field equations were 
proposed by Collins-Levine [42] to model crystal growth. 

The theory of phase-field models has been advanced by Caginalp and co-workers 
in a series of papers [22], [23], [24], [25], [26], [28], [29], [30], [31], [32], [33] [27]. As 
a matter of fact it was just the lack of a proper thermodynamic setting of the original 
Caginalp's model that gave rise in the neintieth of the last century to a number of so
called thermodynamically consistent models of phase transitions, in particular models by 
Penrose and Fife [129], [130], [66], [64], Alt and the author [5], [6], [7], [9], [10], Wang et 
al. [145]. 

The phase-field (diffuse-interface) models postulate one or more quantities, named 
order parameters, as indicators of the state of the materiał, in addition to the usual 
ones such as temperature, elastic strain, etc. In models of this type - on the con
trary to sharp interface ones - the order parameters vary continuously in the medium, 
including the interfacial regions between the phases where they undergo large varia
tions. 

According to a postulate of a smooth phase transition the phase-field models are based 
on a free energy functional, called Landau-Ginzburg functional, often called Ginzburg
Landau functional, named after V. L. Ginzburg and L. Landau mathematical theory of 
superconductivity. This functional accounts not only for a volumetric energy but also for 
a surface energy of phase interfaces. 

In most of the literature the derivations of phase-field models are based on variational 
arguments and adapt concepts from classical equilibrium thermodynamics in nonequilib
rium situations. In particular, the Penrose-Fife models with conserved and nonconserved 
order parameters have been derived by means of variational arguments. 

Having in mind several objections to variational derivations, in particular not suf
ficient generality of postulated constitutive equations, E. Fried and M.E. Gurtin have 
developed in a line of their papers [72], [73], [74], [75], [83] a thermodynamic theory of 
phase transitions based on a microforce balance in addition to the basie balance laws 
and a mechanical version of the second law of thermodynamics. Parallel to that theory 
M. Fremond [70], [71] has proposed a theory based on microscopic motions as a tool of 
modelling of various phase transitions, specifically shape memory and damage problems. 
Despite of different ideas Fremond's approach bears some resemblance to the Fried-Gurtin 
theory. 

Another approach to modelling phase transitions has beeen proposed by H.W. Alt and 
the author in [9], [10] and applied further in [123], [124], [125], [126], [127], [128]. This 
approach consists in exploiting the second law in the form of the entropy principle ac
cording to I. Miiller [114], [115], [116], complemented by the Lagrange multipliers method 

] 
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suggested by I-Shih Liu [96]. Such method leads to the evaluation of the entropy inequal
ity with multipliers, known as the Miiller-Liu inequality. In [126] the multipliers-based 
approach was applied for deriving generalized Cahn-Hilliard and Allen-Cahn models cou-

, pled with elasticity with suppressed thermal effects. A comparison with the Fried-Gurtin 
theory based on a microforce balance showed coincidence of results and several interesting 
connections. 

Various generalized isothermal Cahn-Hilliard and Allen-Cahn models based on a mi
croforce balance have attracted a lot of mathematical interest, see, e.g., [101], [102], [103]. 

It should be pointed out that the above mentioned thermodynamic approaches allow 
to obtain models with much more generał structure than those introduced by variational 
arguments. 

The nonisothermal phase-field models based on the Fried-Gurtin concept of a micro
force balance have been further developed and studied mathematically by Miranville and 
Schimperna [104], [105]. 

The phase-field and irreversible phase transitions models based on .Fremond's the
ory of microscopic motions ( admitting nonsmooth thermodynamic functions) have been 
studied by Bonfanti, Fremond, and Luterotti [17], [18], Bonetti et al. [16], Colli et a.l. [41], 
Laurenc.;ont, Schimperna, and Stefanelli [95], Luterotti, Schimparna, and Stefanelli [99], 
Schimperna and Stefanelli [132]. 

Recently several phase-field approaches to nonisothermal phase transitions with broad 
range of applications have been advanced by Fabrizio, Giorgi, and Morro [53], [54], [55], 
Fabrizio [52], Gentili and Giorgi [80], Giorgi [81], Morro [109], [110], [111], [112], [113]. 
The applications included in particular model for ice-water transition which allows for 
superheating and undercooling, model for the transition in superconducting materials, 
materials with thermal memory, second-sound transition in solids, as well as Cahn-Hilliard 
fluids. 

We mention also diffuse interface model for rapid phase transfomation in nonequilib
rium system, proposed by Galenko and Jou [77]. 

The goal of the present work is to set up a generał thermodynamic setting for phase
field models with conserved and nonconserved, scalar order parameters in thermoelastic 

'. materials by means of the multipliers-based approach. Our ultimate aim is to obtain 
a generał class of thermodynamically consistent schemes for the Cahn-Hilliard and the 
Allen-Cahn models - two central equations in materials science - in the presence of defor
mation and heat conduction. This is presented in Part II of this work where we discuss a 
generał thermodynamic scheme in several special situations and compare the results with 
the mentioned above well-known phase-field models. In particular, we shall consider there 
the generalized Cahn-Hilliard and the Allen-Cahn models coupled separately either with 
elasticity or with thermal effects. The latter case allows to enlighten a generał question of 
particular interest in phase-field modelling whether to modify the energy or the entropy 
equation by "extra" terms (for related discussion see, e.g., [53] and [113]). 

Let us note that to the class of models which involve an "extra" entropy flux belong, 
e.g., models by Penrose and Fife [129], [130], Caginalp [23]. Alt and the author [5], [7], 
Falk [62], Fabrizio, Giorgi, and Morro [53], Morro [112]. 
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On the other hand, to the class ofmodels which involve an "extra" energy flux belong, 
e.g., models by Aifantis [1], [2], Dunn and Serrin [49], Umantsev [139], Umantsev and 
Roitburd [141], Fried and Gurtin [72], Fremond [70], Bonfanti, Fremond, and Luterotti 
[17], [18], Miranville and Schimperna [104], and Benzoni-Gavage et al. [12]. 

In relation to models modified by extra energy or/and entropy fluxes, the answer 
given by the present work is that both variants of the schemes with extra energy or/ and 
extra entropy fluxes are thermodynamically consistent. More precisely, we prove that one 
can choose a nonstationary part ( depending on the time derivative of the order parame
ter) of the energy flux in an arbitrary way not restricted by the entropy principle. This 
property, characteristic for models governed by gradient-type potentiales, was observed 
firstly in [10] by a rigorous analytical exploitation of the second law of thermodynam
ics in the form of the Miiller-Liu entropy inequality. Following the ideas in [9], [10], we 
worked out in a number of papers [123], [124], [125], [127], [128] a special procedure of 
exploiting the Miiller-Liu entropy inequality, combined with a dual approach. The dual 
approach consists in choosing internal energy or entropy as independent thermal vari
able for the exploitation of the entropy inequality, and afterwards applying the duality 
relations (Legendre transformations) to formulate the resulting equations in terms of the 
absolute temperature. Using such approach we derive here schemes involving an arbitrary 
vector field. Clearly, a finał selection of this field must follow from an additional analysis 
of the resulting model equations. 

What is of interest, extra energy and entropy fluxes are also allowed to appear in 
phase-field models of Cahn-Hilliard fluids, proposed by A. Morro [113]. 

1.2. The multipliers-based approach. Prior to presenting a generał scheme of phase
field models we describe briefly the Miiller-Liu multipliers-based approach. The applica
tion of this approach to phase transition models requires a special procedure based on a 
dual approach. The procedure consits of three main steps. 

In the first step we consider the system of balance laws with a set of constitutive 
variables relevant for the phase transition under consideration. Distinctive elements in 
this set are variables representing higher gradients of the order parameter and its time 
derivative. The presence of such variables is characteristic for theories involving free ener
gies of Landau-Ginzburg type. According to the principle of equipresence we assume that 
all quantities in balance laws are constitutive functions defined on this set of variables. 

The dual approach with internal energy or entropy as independent thermal variable is 
valid under assumption of strict positivity of the specific heat ( so-called thermal stability 
condition). We have found such approach more straightforward in comparison with the 
one using the absolute temperature as primary independent variable. Let us mention 
that phase-field systems with internal energy as thermal variable have been introduced, 
e.g., by Halperin, Hohenberg and Ma [85], Penrose and Fife [129], Galenko and Jou 
[77]. Multicomponent systems with entropy as independent thermal variable have been 
derived, e.g., by Falk [62]. To illustrate the role of the duality relations in evaluating the 
entropy inequality, in this work we present both approaches with entropy and energy as 
independent thermal variables. 

ł 
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In the second step we postulate the entropy inequality with multipliers conjugated 
with the balance laws. Again, we assume that all quantities in this inequality, including 
multipliers, depend on the same constitutive set. Next, making no assumptions on the 

ł multipliers, we exploit the entropy inequality by using appropriately arranged algebraic 
. operations. As a result we conclude a collection of algebraic restrictions on the constitutive 

equations. 
In the third step we presuppose that the multipliers associated with the equations for 

ł the order parameter and the energy are additional independent variables. Then, regarding 
algebraic restrictions obtained in the previous step, we deduce an extended system of 
equations including in addition to the balance laws the equations for the multipliers. 
Moreover, we require the resulting system to be consistent with the principle of frame 
invariance, often referred to as frame indifference (see, e.g., (133, Sec. 9.3.2])., 

1.3. A generał scheme of models. We summarize the main result of this work which j yields a generał scheme of phase-field models with conserved and nonconserved scalar 
order parameters, governed by the first order gradient free energy, in the presence of 
deformation and heat conduction. 

I Let n c llł3 be a bounded domain with a smooth boundary S, occupied by a two
phase body in a fixed reference configuration. The motion of the body is denoted by 
y(X, t) =X+ u(X, t), where u= ('ui) is the displacement vector; F ="iły= I+ "ilu, 

i subject to the condition det F > O, is the deformation gradient. 
We deal with the following quantities in the materiał representation: 

{!o= eo(X) > O - mass density given once and for all along with the body and the fixed 
I reference configuration, 
j S = (Bij) - referential stress tensor, 

b = (bi) - specific body force, 
x - scalar order parameter (phase variable), 

j = (ji) - order parameter flux, 
r - specific rate of produciton of the phase variable, 
T - specific rate of supply of the phase variable from the exterior, 
µ - chemical potentia!, 

0 > O - absolute temperature, 
p, = µ/0 - rescaled chemical potentia!, 
q = (qi) - referential heat flux vector, 

g - specific rate of supply of heat, 
e - specific internal energy, 

'TJ - specific entropy, 
f = e - 0'T} - free energy (Helmholtz) function, 

efJ = f / 0 - rescaled free energy, 
O' - specific entropy production, 

W= (wi) - referential entropy flux, 
CF - specific heat at constant deformation. 
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If elastic effects are suppressed or in case of fluids CF is denoted by Cv and is called specific 
heat at constant volume (see [133]). 

We assume that there are given a free energy f = f(F,x,Dx,0) which is strictly 
concave with respect to 0 for all F, X, Dx, and a dissipation potentia! 1) = D(X;w) with 

X:= (~,D~,D1,x,t) - thermodynamic forces, 

w:= (F,DF,x,Dx,D2 x,0) - state variables, 

which is nonnegative, convex in X and such that TJ(O;w) = O. Above Dx, D 2x, X,t, etc. 
denote variables corresponding to Vx, V2x, X, respectively. Here and in what follows all 
derivatives are materiał; V and V· are the gradient and the divergence with respect to 
materiał point X, superimposed dot denotes the materiał time derivative. 
A generał scheme of phase-field models, denoted (P F)0, is as follows. 

The unknowns are the fields u, X, p, := ~ and 0 > O satisfying the following system of 
differentia! equations in n c JR3 and time t E [O, T], T > O: 

Qou - V · S = Qob, 

QoX + V · jd - Qord = QoT, 

!!:__ó(Qof/0) he,v! d 
Qo 0 - óX + 0 + a ' 

Qoe +V. (qd - x_h6 ) - s. F = g, 

subject to appropriate initial and boundary conditions. Here 

e = e(F,x,Dx,0) = f(F,x,Dx,0)-0!,o(F,x,Dx,0), 

S = Qof,F(F,x,Dx, 0), satisfying SFT = FST, 

(1.1) 

(1.2) 

and rd = fd(X;w), jd = t(X;w), qd = 1i(X;w), ad = ad(X;w) are subject to the 
residua! dissipation inequality 

µ d µ ·d l d d Qor5 := - 0Qor - D 0 · J + D 0 · q + X,t · a :::: O (1.3) 

for all variables {X; w} =: Z0. 
The quantity O" is the specific entropy production. The superscript d indicates that the 
quantity is dissipative, thus contributes to the entropy production. By the Edelen decom
position theorem (see Section 4.2), the quantities rd, jd, qd, ad are given by 

d {)1) ·d {)1) d {)1) 

- Qor = 8(µ/0)' -J = fJD(µ/0)' q = fJD(l/0)' 

d {)1) 
a =a· X,t 

(1.4) 

The subsequent equations in (1.1) represent correspondingly the linear momentum 
balance, the balance equation for the order parameter, a generalized equation for the 
chemical potentia! (equivalent to a microforce balance in the Fried-Gurtin theory, see 
Chapters 9, 10), and the internal energy balance. Equation (1.1)2 combines various types 
of dynamics of the order parameter: 

1 

ł 

j 
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- mixed type if jd =J O, rd =J O; 

- conserved if jd =J O, rd = O; 

- nonconserved if jd = O, rd =JO. 

The expression 8(g0J /0)/8x denotes the first variation of the rescaled free energy f /0 . I with respect to x: 
. _ 8(eof/0) = (eo!) -v-(eof,nx). (1.S) 

8x 0 ~ 0 

J The first equation in (1.2) represents the thermodynamic Gibbs relation assumed to be 
j valid in case of gradient type potentials. The second equation in (1.2) is the standard 

constitutive equation for the stress tensor. 
The characteristic nonstandard element in system (1.1) is the nondissipative extra i vector field he = he (X; w) which contributes to the nonstationary energy flux (superscript 

· e indicates energy). The vector field he is not restricted by the entropy principle. It 
should, however, like all other constitutive quantities in (1.1), be consistent with the 
frame invariance principle. This principle restricts the dependence on the deformation 
gradient F. In particular, the free energy should satisfy 

f(F,x,Dx,0) = f(c,x,Dx,0), 

where C = FT F is the right Cauchy-Green strain tensor; other quantities should trans
form appropriately (see Section 6.1). 
Apart from this restriction the vector field he is an arbitrary quantity that may be 
selected, e.g., on a basis of an additional analysis of the resulting equations. We shall 
present some physically realistic examples of vector he which lead to phase-field models 
well-known in the literature (see Chapters 9, 10 for a detailed discussion). 

Prior to do this, let us summarize the main properties of model (PF)e, i.e., system 
(1.1)-(1.3). 

It will be proved (see Corollary 6.8 and Remark 7.1) that sufficiently regular solutions 
of system (1.1)-(1.3) satisfy the following entropy equation and inequality 

Qo'TJ +V· W= Qoo- - !!:.QoT + QoB > _!!:_QoT + QoB (1.6) 
0 0 - 0 0 

with the entropy production Qoo- given by (1.3), and the entropy flux admitting the 
splitting 

Above 

Wd := -~jd + iqd 

is the standard entropy flux associated with the dissipative fluxes, and 

xN1 with h'i := i(eof,Dx - hd) 

is an extra nonequilibrium entropy flux. 

(1.7) 

(1.8) 

(1.9) 
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lt is of importance to note that according to the splitting (1.7), the extra nonequilib
rium energy fl.ux, -xhe, and the extra nonequilibrium entropy fl.ux, -x,hri, are linked by 
the equality 

x(he + 0hri) = Xf2of,Dx, i.e., he+ 0hr, = Qof,Dx• (1.10) 

Another important property of model (PF) 0 (1.1)-(1.3) is the Lyapunov relation (see 
Corollary 6.11 and Remark 7.1) which asserts that if the external sources vanish, i.e., 
b = O, T = O, g = O, and if the boundary conditions on the domain boundary S imply 
that 

(Sn)•u=O, ~n-j=O, (1-i)n·(qd-xhe)=O, 

x 0n· f,Dx = O, 

(1.11) 

where n denotes the unit outward normal to S = an, and 0 > O is some constant, then 
solutions of system (1.1)-(1.3) satisfy the inequality 

dl ( 1 2 - ) dt f2o e(F,x,Dx,0)+ 21ul -0r,(F,x,Dx,0) dx::::;o. (1.12) 

o 
This provides the Lyapunov relation. 

One can see that the distinguishing elements in system (1.1)-(1.3) are nonstandard 
energy and entropy fluxes, q and W which contain extra nonstationaq terms. The relation 
(1.10) indicates that in phase-field models with the first-order gradient free energy (i.e., 
f,Dx f= O) at least one of the fl.uxes must include an extra nonstationary term with X· 

We point now on model (P F)e with some physically realistic extra energy and entropy 
terms he and h'fl: 

(PF)(i) extra energy and extra entropy terms 

he= Qoe,nx and hri = -Qor/,Dxi 

(PF)(ii) zero extra energy term and extra entropy term 

he= O and h'fl = 1{2of,Dxi 

(PF) (iii) extra energy term and zero extra entropy term 

he= Qof,Dx and h'f/ = O. 

The corresponding systems (PF)e are formulated in Section 7.4. Here we point out that 
with the above special choices of the extra term he, assuming standard forms of the free 
energy f = f(F, X, Dx, 0) and the dissipation potential D = D(X; w), we can derive from 
system (1.1)-(1.3) several known phase-field models with conserved and nonconserved 
order parameter, including the cases with suppressed either elastic or thermal e:ffects. 

1.4. Plan. Part I (Theory) consists of Chapters 2-7. In Chapter 2 we introduce basie 
physical quantities, the balance equations, the state spaces relevant for phase-field models 
under consideration and the constitutive relations. In Section 2.4 we present briefl.y the 

J 

I 
ł 
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ł standard formulation of the second law of thermodynamics in the form of the Clausius
I Duhem inequality and the Coleman-Noll approach of exploiting this inequality. In Section 

2.5 we introduce the entropy principle due to I. Miiller. This principle complemented by 
the multipliers metod proposed by I-Shih Liu is considered as an important alternative to 
the Coleman-Noll approach. In Section 2.6 we formulate the Miiller-Liu inequality with 
multipliers for the system of our concern. 

In Chapter 3 we present basie thermodynamic Gibbs relations formulated alternatively 
either with respect to the free energy or the rescaled free energy. Moreover, we present 
the Legendre duality relations for systems described by the gradient-type free energy 
f = ](F,x,Dx,0), e.g., the Landau-Ginzburg free energy. Such relations -well lmown 

I for classical systems with volumetric free energies - in case of of gradient-type free energies 
are not so common. Since in the present work they play a crucial role we present them 
in a detailed way. 

The exploitation of the entropy inequality always leads to the inequality type condition 
on the constitutive functions, called the residual dissipation inequality. In Chapter 4 
we record two results known in the literature on the representation of solutions to the 

j dissipation inequality. The first one is the decomposition theorem due to D.G.B. Edelen 
and the second one is the theorem due to M.E. Gurtin. In subsequent chapters we shall 
repeatedly make use of these representation results. 

In Chapter 5 we are dealing with the evaluation of the entropy inequality introduced 
in Section 2.6 to select a class of thermodynamically consistent phase-field models. The 
applied procedure is combined with the dual approach. To illustrate the role of the duality 
relations in this procedure we present two alternative approaches of evaluating the entropy 
inequality which use either the entropy or the internal energy as independent thermal 
variable. In Section 5.1 we use the state space with the entropy as the independent 
variable and the internal energy density as a corresponding thermodynamic potential. 
The obtained restrictions on the constitutive relations are stated in Theorem 5.1 in case 
of mixed conserved-nonconserved dynamics of the order parameter, and in Theorem 5.4 
for the nonconserved dynamics. 

In Section 5.2 we present an alternative evaluation of the entropy inequality using the 
state space with the internal energy as independent thermal variable and the entropy 
density as a corresponding thermodynamic potential. The considerations parallel those in 
Section 5.1. The obtained restrictions on the constitutive relations are stated in Theorems 
5.5 and in Theorem 5.6 in the nonconserved case. 

On the basis of the obtained results, in Chapter 6 we introduce two classes of 
extended phase-field models (PF)rJ and (PF)e, in which the multipliers corresponding 
to the balance equations for the order parameter and the internal energy are treated as 
independent variables. Then, on account of the duality relations, we give equivalent for
mulations, (PF) 0 and (PF)n, ofmodels (PF)rJ and (PF)e, with absolute temperature 0 
and inverse temperature '19 = 1/0 in place of entropy TJ and internal energy e, respectively. 
It turns out that models (PF)n and (PF)e are identical. The characteristic feature of 
all presented models is the presence of an "extra" nondissipative vector field he which 
contributes to the nonstationary ( depending on the time derivative of the phase variable) 
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energy and entropy fluxes as well as to the equation for the multiplier associated with 
the balance equation for the phase variable (identified with the rescaled chemical poten
tial). This extra vector field is nondissipative, that is not restricted by the second law of 
thermodynamics. 

It has to be selected in consitency with the frame invariance, but besides this it is an 
arbitrary quantity. 

In literature it is common to formulate models with the absolute temperature as the 
independent thermal variable and the free energy as the corresponding thermodynamic 
potential. For this reason in Chapter 7 we focus our attention on the extended phase-field 
model (PF)e, We present physically realistic examples of this model which depend on 
the specific choice of the extra vector field he. These examples will be used in Part II to 
dissuss relations of model (PF) 0 to well-known phase-field models with conserved and 
nonconserved order parameters. Moreover, for further references we present separately 
model (PF)e with suppressed elastic effects or with suppressed thermal effects. 

Part II (Applications) consists of Chapters 8-10. Here our aim is to unify various 
well-kown approaches to phase-field modelling by revising their arguments in the light of 
the theory presented in Part I. 

In Chapter 8, to set a stage for a comparision with known models, we collect some 
typical examples of the free energies and dissipation potentials. 

In Chapter 9 we discuss relation of our model (PF) 0 to well-known phase-field models 
with conserved order parameter, in particular the Penrose-Fife model, the model with the 
rescaled free energy, the Caginalp model, the Falk's model, the Cahn-Hilliard-de Gennes 
model for polymer phase separation, and the Gurtin model based on a microforce balance 
for the Cahn-Hilliard system coupled with elasticity. 

In Chapter 10 we perform similar comparison of model (P F) 0 with well-known phase
field models with nonconserved order parameter. These include the Penrose-Fife model, 
the Caginalp model, the Fried-Gurtin model based on a microforce balance and its ex
tension due to Miranville-Schimperna, and the Fremond model based on microscopic 
motions. 

REMARK 1.1. In citing works we have tried to be objective as possible. Any omission of 
due references is a personal shortcoming and certainly not intentional. We apologize if 
we have not rendered justice to various significant contributions. 

1.5. Notation. We generally follow the notation of the monograph by M.E. Gurtin [84]. 
Vectors (tensors of the first order), tensors of the second order (referred simply to as 
tensors) and tensors of higher order are denoted by bold letters. 

The unit tensor I is defined by lu= u for every vector u; sr, trS, s-1 and det S, 
respectively, denote the transpose, trace, inverse, and determinant of a tensor S. 

A dot designates the inner product, irrespective of the space in question: u • v is the 
inner product ofvectors u= (ui) and v = (vi), S · R = tr(STR) is the inner product of 
tensors S = (Bij) and R = (R;,j), Am, Bm is the inner product of the m-th order tensors 
Am= (Ai:n . ) and Bm= (Bi:n . ). 

i1 ... 'l.m i1,.,'l.m 

J 

l 
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j In Cartesian components 

(Su)i = SijUj, (ST)ij = sji, trS = sii, u. V= UiVi, 

s. R = SijR;,j, Am. Bm= Af," ... imBf,_' ... im. 

ł Here and throughout the summation convention over repeated indices is used. The trans
pose of a tensor is defined by the requirement that 

u• Sv= (ST u) for all vectors u and v. 

J By A= (Aijkl) we denote the fourth order elasticity tensor which represents a symmetric 
linear transformation of symmetric tensors into symmetric tensors. We write (As)ij = 
(Aijkl€kl)ij· 

The term field signifies a function of a materiał point X E Jlł3 and time t. 
The superimposed dot, e.g., j, denotes the materiał time derivative of the field f (with 
respect tot holding X fixed), 'v and 'v· denote the materiał gradient and the divergence 
(with respect to X holding t fixed). 

For the divergence we use the convention of the contraction over the last index, e.g., 
('v · S)i = 8Sij / OXj-

We write f,A = of /8A for the partial derivative of the function f with respect to 
the (scalar or vector) variable A. Specifically, for f scalar valued and Am = (Ar," ... im) a 
tensor of order m, f,Am is a tensor of order m with components J'"},_. . . 

, 1.1 ··•'1.17'1, 

For a function f = f(F, X, Dx, 0) we denote by óf /Jx its first variation with respect 
to X, defined by the identity 

d~ J f(F, X+ a(, 'vx + a'v(, 0)dXla=O =: j :~ (dX for all ( E Co'(n). 
n n 

This gives the following representation 
óf 
Jx = f,x(F,x, 'vx,0)- V· f,nx(F,x, 'vx,0). (1.13) 

In situations that may cause confusion we shall distinguish between functions and their 
values. Functions are then denoted by "hats", e.g., f = f (F, X, Dx, 0). 

Finally, let us add a comment on the numbering used in this work. Equations are 
numbered sectionwise within each chapter. For example (2.3.1) stands for the first equa
tion in the Section 3 of Chapter 2. If this equation is referred to within Chapter 2 itself, 
it is simply cited as (3.1). Theorems, Lemmas, Corollaries, and Remarks are also num
bered sectionwise within each chapter; typical examples are Theorem 5.1, Remark 2.1, 
Corollary 6.11, and so on. 
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8. Examples of thermodynamic potentials 

To set a stage for a comparison with phase-field models known in the literature which 
will be presented in the subsequent chapters, we collect here some typical examples of 
the free energy and the dissipation potentials. 

8.1. The Helmholtz free energy for phase-field models with an order parame
ter. A generał model of the Helmholtz free energy density describing phase transitions we 
deal with in this work has so-called Landau-Ginzburg form. More precisely, it is composed 
of two parts 

f(F,x,Dx,0) = fv(F,x,0) + fa(F,x,Dx,0), (1.1) 

where the first part fv(F, X, 0) = f (F, X, O, 0) represents the volumetric (homogenous) 
free energy whereas as the second one fa(F, X, Dx, 0) is the gradient (inhomogeneous) 
free energy associated with diffused ( not sharp) phase interfaces. 

We assume that the classical Gibbs relations remain valid in the case of gradient type 
free energy (1.1) (see Section 3.2) 

f = e - 0rJ, 'TJ= -f,e-

The specific heat at constant deformation is given by (see Section 3.3) 

CF = e,e = 0rJ,e = -0 f,00-

(1.2) 

(1.3) 

According to (1.2), the splitting (1.1) off implies the analogous splittings of the internal 
energy e and the entropy 'TJ into the volumetric and gradient parts 

e = ev + ea, rJ=rJv+rJa, 

satisfying 

ev = fv + 0rJv, 'T/v = -fv,e, 

ea =fa+ 0rJa, 'T/a = -fa,e-

Similarly, the specific heat CF splits into the volumetric and the gradient part 

CF= cv + ca, 

where 

cv = ev,e = 0rJv,e = -0 fv,00, 

ca= ea,0 = 0rJa,0 = -0fa,00-

[lo5] 

(1.4) 

(1.5) 

(1.6) 

(1.7) 



106 8. Examples of thermodynam.ic potentials 

8.1.1. The gradient energy. A typical example of the gradient energy considered in 
the present work is given in the following isotropic form 

1 
fa(x, Dx, 0) = 2x(x, 0)1Dxl2 , (1.8) 

where x(x, 0) is a positive function, usually a small interfacial parameter. Consequently, 
in the case of gradient energy (1.8), we have 

ea = ~xelDxl 2 , T/G = -~x'71Dxl 2 , (1.9) 

where 

Xe:= x- 0x,e, x'1 := x,e, Xe+ 0x'1 = x. (1.10) 

Correspondingly, we call Xe the energetic and x'1 the entmpic interfacial pammeter. 
According to (1.10) the coefficient x(x, 0) is made up of the energetic and entropie 

contributions. 
The energetic contribution Xe is due to interaction between different molecules in the 

mixture whereas the entropie one x'1 is due to the connectivity of subunits of a molecule. 
In application to concrete systems one can distinguish special cases of the gradient term 
in the free energy: 

(i) of energetic type x(x, 0) = xe(X) > O. Then 

e,Dx = (f- 0f,e),Dx = f,Dx = xDx = Xe(x)Dx 

~ T/,Dx = -f,enx = -x,eDx = O. 

(ii) of entmpic type x(x,0) = 0x1J(x) > O. Then 

e,nx = (f - 0f,e),Dx = (x - 0x'1(x))Dx = O 

~ 0T/,Dx = -0f,enx = -0x1)(x)Dx = -xDx = -f,Dx· 

(iii) the sum of energetic and entropie terms 

x(x,0) = Xe(X) + 0x1J(X) > Q. 

(1.11) 

(1.12) 

(1.13) 

We note that in case the coefficient x(x, 0) in (1.8) depends linearly on 0 there is no 
gradient contribution to the specific heat coefficient, i.e., ca = -0 f a,00 = O. 

REMARK 8.1. For phase transition models with gradient terms in the entropy density we 
refer, e.g., to [129], [130], [66], [145], [146], [83], [65], [29]. 

For models with gradient term in the internal energy density we refer, e.g., [7], [8], 
[139], [141], [146], [83], [72], [104], [105], [12]. 

Models with gradient terms both in the energy and in the entropy have been consid
ered, e.g., in [10], [37], [113]. It is worth pointing out that such case is physically justified 
for models describing phase separation in binary polymer mixtures (see Section 8.5). 

8.2. The volumetric energy. The volumetric free energy is usually postulated in the 
separable form 

fv(F, X, 0) = f*(0) + W(F, X, 0) + fo(x, 0), (2.1) 

with the subsequent terms representing the thermal energy, the elastic energy, and the 
chemical (mixture) energy. 
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According to (1.2), (1.3), the separable form of fv implies the separable forms of the 
volumetric parts of e, TJ and cp: 

ev = e, + ew + eo, 

TJV =TJ•+ TJW + TJo, 

cv = c. + ew + co, 

with the corresponding contributions corresponding to J., W and J0 • 

(2.2) 

8.2.1. Thermal energy. The most commonly used example of J. is associated with 
constant thermal specific heat c, = const > O. It is given by (see, e.g., [20, Chap. 4.4], 
[55]) 

0 -f,(0) = -c,0ln 01 + c,0 + c (2.3) 

with positive constants c,, 01 , and some constant c immaterial from the point of view of 
I differential equations. According to (1.2), (1.3), the entropy, the internal energy and the 
J specific heat corresponding to (2.3) are 

1 
0 

TJ• ( 0) = - f .,e = c. In 01 , 

e.(0) = J. + 017. = c.0 + c, (2.4) 

c. = e.,0 • 

Referring to Fabrizio, Giorgi, and Morro [55], we complement the above example by 
comments concering the thermal specific heat. 

According to the Debye theory the thermal heat is a function of the ratio 0 / 0 D, with 
J 0D denoting the Debye temperature, namely 

c.(0) = cD(0/0D), c> o, 
where D(·) is the Debye Junction. It is defined by 

1/f. 

D(~) = e J x 3 dx - l . 
o expx-1 4~(exp½-1) 

The Debye temperature 0 D is a characteristic property of a given materiał. 
The assumption of a constant specific heat - known as Dulong-Petit law - is relevant 

for su:fficiently high temperatures 0 » 0 D. 

As 0 is much smaller than 0D, one may use the approximation 

c,(0) = co03 , eo> O, (2.5) 

which is known as the Debye law. 
Correspondingly J., TJ• and e. take then the form 

J.(0) = - 1
1
2co04, TJ•(0) = ico03 , 

1 4 
e.(0) = 4co0 . (2.6) 

At very low temperatures, the electronic contribution to the specific heat is significant 
and results in a linear term, so that 

c.(0)=co03 +c10, co,c1>O. (2.7) 
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When the linear term becomes predominant, that is when one may use the approximation 

c,(0) = c10, c1 > O, (2.8) 

then 

77,(0) = c10, (2.9) 

Let us note that the examples (2.6) and (2.9) relevant at low temperatures, are consistent 
with the third law of thermodynamics 

77.(0) -+ O as 0-+ O. (2.10) 

8.2.2. Elastic energy. An example of elastic energy W(F, X, 0) for phase separation in 
a binary a- b alloy in case of infinitesimal deformations is (see, e.g., [48], [16], [78], [79]): 

1 
W(e(u)x, 0) = 2(e(u) - g(x,0)) · A(x,0)(e(u) - €(X, 0)), (2.11) 

where e( u) = (v'u+ VuT)/2 is the infinitesimal strain tensor, A(x, 0) is the fourth order 
elasticity tensor (in generał depending on x and 0 because of different elastic and thermal 
properties of the phases), and €(X, 0) is the eigenstrain tensor accounting for different 
thermal expansions of the phases. 

Tensors A(x, 0) and i::(X, 0) are defined by 

A(x, 0) = (1 - z(x, 0) )Aa + z(x, 0)Ab, 

i::(X, 0) = (0 - 0R)[(l - z(x, 0))aa + z(x, 0)ab], 
(2.12) 

where Aa, Ab are constant elasticity tensors (stiffness matrices) of phases a, b, aa and 
ab are the matrices of thermal expansion coefficients of these phases, 0R is a reference 
temperature, and z(x, 0) is so called shape function given by 

Xa(0) - X 
z(x, 0) = Xa(0) - Xb(0)" (2.13) 

It interpolates, between temperature-dependent equilibrium (binodal) concentrations 
Xa(0) and Xb(0) of the a - b phase diagram. The nonlinear dependence of the elastic 
energy W on 0 gives rise to the corresponding interna! energy ew(s(u), X, 0), the entropy 
7)w(s( u), X, 0) and the specific heat ew (s( u), X, 0) contributions. 

8.2.3. Chemical (mixture) energy. We give now typical examples of the volumetric 
free energies for binary mixtures. 

8.2.3.1. The regular solution model (see Cahn and Hilliard [34)). Let x denote the mole 
fraction of one of two components in a binary system, so that X is subject to the constraint 
O < x < 1. According to the regular solution theory the free energy of a (uniform) mixture 
is given by 

fo(X, 0) = kB0[x mx + (1 - X) ln(l - X)]+ WeX(l - X), (2.14) 

wheree kB is the Boltzmann's constant, for simplicity assumed kB = 1, and We is a positive 
parameter related to molecular interactions. 

The term -kB[xlnx + (1- x) ln(l - x)] corresponds to the configurational entropy 
per molecule and wex(l - x) is the enthalpy of mixing of a two-component mixture. 
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Taking into account that 
0 

fo,xx. = x(l _ x) - 2we, 

. j :ec::::x~\~u!h::: ::::::i~t~:~:~/~i~:i~:,s:~1:~:~ ~: :ew: ;; i:h:o!::v:~::g~h~~ 

phase separation may occur. Equivalently, phase separation may occur if 0 < 0c := We/2. 
I We note that the entropy, internal energy and the specific heat associated with free 

. j energy (2.14) are given by 

'f]o = -kB[xlnx + (1- X) ln(l - x)J, eo= WeX(l - X), Co= 0. (2.15) 

. ) 8.2.3.2. The Flory-Huggins model {69}. The model describes a binary mixture ofpolymer 
molecules of different types j, each consisting of Nj segments. Let Xi > O be the volume 
fraction of segments of type j, so that x1 + x 2 = 1. Let the order parameter be x := x1, 
so that O < x < 1 and x 2 = 1 - X· According to the Flory theory, see [69, Chap. 12, 31, 
64], the mixture part of the free energy of such a system has the form 

[ X 1-x ] fo(x, 0) = kB0 Ni Inx + M ln(l - x) + w(x, 0)x(l - x), (2.16) 

where for simplicity we assume the Boltzmann's constant kB = 1. The negative of 
, I the term in the square parenthesis in (2.16) corresponds to configurational entropy per 

J molecule, and the second term accounts for intersegmental interactions. The parameter w 

(traditionally denoted by x), called the Flory-Huggins interaction parameter, is in generał 
postulated in the form (see e.g., [43, Chap 3], [44], [13], [119]) 

j W(X, 0) = We + 0wl) (X), (2.17) 

where the subindices e and 'f/ indicate the energetic and entropie contributions, respec
tively. The standard case is We = const > O and w'1 = const 2::: O. For other empirical 
formulas We and w'1(x) we refer e.g., to [119, Chap. 3], [13]. 

We note that setting N 1 = 1 the free energy (2.16) describes polymer-solvent mixture 
with X = X1 being the volume fraction of the solvent. 

It is worth noting that for w = We = const > O, the Flory-Huggins free energy (2.16) 
has the same qualitative features as the regular solution model in the Cahn-Hilliard 
theory. In particular, in the symmetric case N1 = N2 = N, there exists a critical value 
Wcrit := 20 / N such that for w < Wcrit, f o is strictly convex in X so that the mixture is 
entirely miscible. For w> Wcrit, Jo takes on the double-well form so that phase separation 
may occur. 

Let us note that the entropy, the internal energy and the specific heat corresponding 
to model (2.16), (2.17) are given by 

[ X 1-x ] 
'f/O = -kB N1 lnx + N2 ln(l - x) - wl)(x)x(l - x), 

(2.18) 
eo= WeX(l - x), Co= o. 



110 8. Examples of thermodynamic potentials 

8.2.3.3. The Landau and the Devonshire models. Such models have the form of the 
polynomia.ls 

m 

fo(x, 0) = !*(0) + L aj(0)x1, m EN, 
j=l 

(2.19) 

with X E ( -oo, +oo). They a.rise by expa.nding the free energy f in X at a value Xe for 
0 nea.r 0e, where (Xe, 0e) is a critica.l point, i.e., such a point where a bifurca.tion for the 
set of extrema. of Jo ( cha.racterized by the condition 8 fol Bx = O) a.rises. 

The cla.ssica.l Landa.u model of a free energy describing second order pha.se transitions 
is given by (see Landa.u and Lifshitz [93, Chap 14]) 

(2.20) 

with positive consta.nts 0:1, 0:2 and a critica.l temperature 0e. 

A cha.racteristic fea.ture of (2.20) as a model of a second order temperature driven 
pha.se transition at 0 = 0e is tha.t the coefficient in front of x2 cha.nges sign at 0 = 0e. For 
0 > 0e, f a.tta.ins a unique minimum at X= O, and for 0 < 0e there a.re two symmetric 
la.terał minima which continuously a.pproa.ch zero as 0 /' 0e. 

The Devonshite free energy has been origina.lly introduced in [46] for ferroelectric 
ma.teria.ls and a.pplied for sha.pe memory a.lloys by Falk [56], [57], [58], [59], [60], [61]. It 
has the form of a sixth order polynomia.l 

(2.21) 

with positive consta.nts a1, a2, a3. The function Jo(-, 0) ma.y ha.ve up to three minima: the 
central minimum at x = O, representing the high temperature pha.se, and two symmetric 
la.terał minima corresponding to the two va.ria.nts of the low temperature phase. 

In the case of (2.21) the set of extrema. cha.nges discontinuously in 0 which reflects a first 
order phase transition, for more deta.ils we refer to [57], and to the monograph by Brokate 
and Sprekels [20]. 

The free energy (2.21) with a2 = O and x = c - ½, where c denotes concentration of 
of one of the two components, tha.t is 

(2.22) 

with a1, as > O, has been used in [106], [107] as a phenomenologica.l model for pha.se 
sepa.ra.tion in some solid solutions. 

For numerica.l simula.tion of the nonisotherma.l Ca.hn-Hillia.rd model with such volumetric 
free energy we refer to [7]. 

For completness we note tha.t the entropy, the interna.l energy a.nd the specific hea.t 
associa.ted with the Landa.u model (2.20) a.re 

7/0 = -f*,0 - a1x2, 

eo= J. - 0f*,0 - a10ex4 + a2x4, 

Co= -0f*,00, 

(2.23) 
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whereas that associated with the Devonshire model (2.21) are 

T/0 = - f *,0 - a1x2, 

eo= f* - 0f*,0 - a10cx2 - a2x4 + 0!3X6 , Co= -0!*,00· 
(2.24) 

In the next sections we present gradient type free energies associated with the wen
known phase transition models. 

I 8.3. The Caginalp free energy (see, e.g., [23], [25]). The Caginalp free energy 
J density is expressed in terms of an order parameter x and the temperature u which is 

scaled so that u = O is the planar melting temperature. In the context of solid-liquid phase 
transitions the value x = -1 is assumed to represent the low temperature phase (solid) 
while x = 1 the high temperatue phase (liquid). In this sense x is rather a "disorder" 
parameter than an "order" parameter. The free energy is expressed in the fonowing 
Landau-Ginzburg form 

1 1 
f(x, Dx,u) = -;,1P(x) - 2,ux + 2Ę21Dxl 2 , (3.1) 

where 

'lj;(x) = ~(x2 -1)2 (3.2) 

is a prototype double-wen potential which may be generalized to other forms with similar 

l qualitative properties, i.e., symmetric double-wen potential with minima at ±1. The 
parameter ~ represents a length scale and a measure of the microscopic bonding, and a is 

· · a measure of the depth of the double wen (x2 - 1 )2 • In terms of macroscopic properties, 
c := ~a112 is the interface thickness and O" := ¾~a-½ is the interface tension, see [23], 

[25]. 

8.4. The Penrose-Fife free energy [129], [130]. A generał form of the Penrose-Fife 
free energy density is given by (c.f., [129, e.g. (3.2)]) 

1 
f(x,Dx,0) = fv(x,0) + 2u01Dxl 2 (4.1) 

where fv is the volumetric part 

(4.2) 

with smooth functions f*, v*, fi, h, and u is a positive constant. A typical form of 
fv(·, T) is that of a double-well potential having exactly two distinct minima. 
The corresponding expressions for the entropy, the internal energy and the specific heat 
are 

( 1 2 
TJ(x,Dx,0) = -f*,0v* x) - fi(x)- 2u1Dxl , 

e(x,Dx, 0) = (f* - 0f*,0)v*(x) + h(x), (4.3) 

C = C* = -0f*,00v*(x). 
A typical example considered by Penrose and Fife is the mean-field theory of Ising fer
romagnets. In this case the order parameter x represents the fraction of lattice sites at 
which spins are pointing "up". Hence, the physicany meaningful values of x are confined 
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to the interval [O, l]. The corresponding functions v*, f*, fi, h have then the form: J 
v*(x) = const (equal zero if lattice vibrations are ignored), 

0 
f*(0) = -c*0 ln 01 + c*0 + c, J 

(4.4) 
fi(x) = kB[xlnx + (1- x) ln(l - x)l, 

h(x)=-ax2 +bx+c 

with physical positive constants c*, 01 , kB, a, constants b, c and c of arbitrary sign; c* 

stands for the thermal specific heat, kB is the Boltzmann's constant, and fi (x) is the 
negative of the so-caned configurational entropy per site. 

Another example considered in [129], [130] concerns liquid-solid phase transition. Let 
us assume that the order parameter x E [-1, 1] and x = -1 represents the low tempera
ture phase (solid) while x = 1 represents the high temperature phase (liquid). 
In such case x = (1 + x)/2 with x E [O, 1] is the concentation of the liquid phase. 

A relevant expression for the volumetric free energy is 

where 

fv(x, 0) = !*(0) + ( 1- :J (-ax2 + bx + c) + 4:c (x2 - 1)2 , 

= f*(0)v*(x) + 0fi(x) + h(x), 

0 
f*(0) = -c*0ln 0c + c*0, v*(x) = 1, 

fi(x) = -~(-ax2 + bx + c) + ~(x2 -1)2 
0c 40c 

h(x) = -ax2 + bx + c, 

(4.5) 

(4.6) 

with 0c > O, a> O, b, c some physical constants, 0c denoting a transition temperature. 
The corresponding expressions for the volumetric parts of the entropy and the internal 
energy are 

( 0 1 ( 2 1 ( 2 )2 
'f/V X, 0) = c. ln 0c + 0c -ax + bx + c) - 40c X - 1 , (4.7) 
ev(x, 0) = c*0 - ax2 + bx + c. 

A characteristic feature of the free energy ( 4.5) is that when 0 = 0c, fv considered as 
a function of x has a double-wen form with two equal minima at x = ±1. Consequently, it 
is possible for two phases to coexist in equilibrium at this temperature, one with x = -1 
and the other with x = 1. The quadratic polynomial in ( 4.5) 

'lj;(x) = ł(x2 -1)2 (4.8) 

is a prototype double-wen potential. The form ( 4.8) can be replaced by any other double
wen function with two equal minima. 
At temperatures 0-/= 0c, the free energy fv(·,0) given by (4.5) can have either one local 
minimum or two. When it has two minima, then if b-/= O, the two minima have different 
free energies and therefore cannot coexist in equilibrium. Thus 0c is the unique tem
perature of phase equilibrium. Such situation is typical for melting transitions ( at fixed 

] 

j 
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pressure). On the other hand if b = O the two minima are equal and so a two-phase equilib
rium is possible over the entire range oftemperatures for which fv(·,0) has two minima. 
Such situation appears, for example, in a ferromagnet in zero magnetic field (see [130]). 

The latent heat L is the difference in internal energy between the two phases when 
they are in thermodynamic equilibrium with one another. It is therefore 

L = ev(l,0c) - ev(-l,0c) = 2b, (4.9) 

acording to the convention that the mare disordered phase x = l has the higher energy. 
Thus, if b =/= O then there is latent heat at 0c, and if b = O then there is no latent heat 
over a range of temperatures. 

8.5. The Flory-Huggins-de Gennes free energy. The Flory-Huggins-de Gennes 
(FHdG) free energy describes phase separation in binary polymer mixtures. For a binary 
mixture ofpolymer molecules oftype i= 1, 2, each consisting of Ni segments, respectively, 
the FHdG free energy of mixing per lattice site has the Landau-Ginzburg form, see de 
Gennes [43], [44] 

fFHdG(X, Vx,0) = fo(x,0) + ix(x,0)[Vx[2, (5.1) 

where x E [O, 1] is the order parameter, i.e., the volume fraction x = x1 of component 1 
under incompressibility condition, x1 + x2 = 1, and 0 > O is the absolute temperature. 
The first term in (5.1) is the Flory-Huggins volumetric free enrgy given by (2.16). For 
simplicity we assume that the Boltzmann's constant kB = l. 

The second term in (5.1) is the interfacial energy with the coefficient x made up of 
the energetic and the entropie contributions 

X(X, 0) =Xe+ 0x1J(X), (5.2) 

The energetic contribution Xe > O is due to interaction between different molecules in 
the mixture whereas the entropie one x1J > O is due to the connectivity of the segments 
within a polymer molecule. From different dirivations, e.g., in [43], [44], it follows that 

1 2 2 
Xe= 3(R91 + R92 )we, 

( ) 1 ( 2 2 ) 1 ( R~l R~2 ) 
:x1J X = 3 R91 + R92 w1J + 3 N1x + N2(l - x) ' 

(5.3) 

where R~, = Nwf /6. The formulas (5.3) involve two characteristic polymer quantites: 
R9, - the mean radius of gyration of i-th molecule, and O"i - the size of segments in i-th 
molecule (lattice constant), which in three dimensional case are connected by the latter 
equation. 

According to de Gennes [44, Note on page 4762] for most polymer-polymer mixtures, 
Xe is small in comparison with x1J, and therefore can be neglected. On the other hand, 
the other literature indicates that both Xe and :x1J should be taken into account. For mare 
detailed references we refer to [127]. 

Finally, let us note that in polymer mixtures - in contrast to small molecular ones 
- the gradient term introduces an infinite energy penalty near the pure phases x = O 
and x = l. 
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8.6. Standard examples of isotropic dissipation potentials. We present now some 
standard examples of the dissipation potentia! D(X; w) arising in phase-fi.eld models. 

We recall that in case of conserved, phase-fi.eld model the sets of thermodynamic 
forces X and state variables w are given by (see Subsection 7.5.1) 

X= (n~,D~,x,t), W= (F,DF,x,Dx,D 2x,0,~), µ= ~- (6.1) 

In case of nonconserved phase-fi.led model (see Subsection 7.6.1) 

X= (~,D~,x,t), w= (F,DF,x,Dx,D2x,0), (6.2) 

For simplicity, let us assume the splitting 

D(X;w) = D1 (~;w) +D2 ( D~;w) +D3 ( D~;w) +V4(X,t;w), (6.3) 

and restrict ourselves to the situation near thermodynamical equilibrium with potentials 
Dk, k = 1, 2, 3, 4, being of the second degree of homogeneity in the variables µ = j, 
Dµ = D1, D½ and X,t, which represent the rescaled chemical potentia!, the gradient 
of the rescaled chemical potentia!, the gradient of the inverse temperature and time 
derivative of the order parameter, respectively. 
The potential D1 corresponds to a nonconserved order parameter dynamics whereas V 2 

to a conserved one; w stands for the set of state variables. 
The simplest examples are 

D1=½a(~)\ D2=½Mln~j 2
, (6.4) 

where a and M are positive coeffi.cients, a represents a relaxation coeffi.cient and M 
diffusional mobility. Actually, according to (7.6.2)2, the potentia! 1)1 yields the following 
production term 

(6.5) 

Consequently, equation (7.6.1)2 (with T = O) provides the well-known relaxation law for 
the nonconserved order parameter 

. µ o x= -ae, a> . 

According to (7.5.2)2 the potential 1)2 yields the known law for the mass flux 

jd = -D2,Dp, = -D2,D(µ/0) = -MD~, M > o, 
and the corressponding diffusion equation (cf. (7.5.1)2 with T = O) 

l?ox-V-(Mv~) =0. 

(6.6) 

(6.7) 

(6.8) 

The potentia! 1)3 corresponds to the heat conduction. A typical example which governs 
the isotropic Fourier law is 

1 1 I 1
1

2 
1)3 = 2klDlog0l2 = 2k02 De ) (6.9) 

J 

] 

i 
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where k > O is the heat conductivity coefficient. Then, according to (7.5.2)3 

d 2 1 
q = v3,D(l/0) = k0 De = -kD0, k > o. (6.10) 

Finally, the potentia! 1)4 corresponds to viscous diffusive effects. The simplest example is 

1 2 
V4 = 2f3X,t, (6.11) 

where (3 > O is a viscosity coefficient. By (7.5.2)4 such potentia! yields the following law 

ad = V4,x., = f3X,t, (3 > 0. (6.12) 

Finally we remark that the presented examples of dissipation potentials can be 
straightforword extended to anisotropic situations with nonconstant tensor-valued co
efficients. 



9. Well-known phase-field models with conserved order 
parameter. Relation to model ( P F)0 

9.1. The Penrose-Fife model. 

9.1.1. General model equations. The Penrose-Fife models [129] with conserved and 
nonconserved order parameters have been derived by means of variational arguments. 
Elastic effects have been suppressed. The derivation is based on the internal energy e as 
an independent thermal variable and the entropy density 

ii(x, Dx, e) = iiv(x, e) - ix1Dxl 2 

as the corresponding thermodynamic potential. 

(1.1) 

The coefficient x in (1.1) is assumed to be a positive constant (see assumption on x 1 in 
[129, eq. (2.12)]). 

This assumption together with the additional requirement that the internal energy 
density eis independent of the order parameter gradient Dx (see [129, eq. (2.10)]) plays 
a significant role in the Penrose-Fife variational arguments. 

In case of conserved order parameter the Penrose-Fife model has the form of the 
following system (see [129, eq. (2.17), (2.19), (2.10), (2.11)]): 

Xt +V· ( mv!:) = o, 
et+V· (kv!1) =0, 

(1.2) 

where m, kare positive coefficients that may depend on x and one, and Jij/Jx, Jij/óe 
are the variational derivatives of ij with respect to x and e, respectively. By (1.1), they 
are given by 

Jij - V - - ( ) b,, óX = T/,x. - · T/,Dx = T/V,x X, e + x X, 

r 
ó: = iiv,e(X, e). 

(1.3) 

The underlying postulate in the Penrose-Fife derivation is that the free energy density 
f and the entropy density ij are both concave in absolute temperature 0 and internal 
energy e, respectively, and that they obey the Legendre transform relations generalized 
to the situation of the additional dependence of the free energy and entropy densities on 
the order parameter gradient. On account of the transform relations, equations (1.3) are 

[116] 
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expressed in the form (see, [129, eg. (2.13), (2.14) and (2.12)]): 

r5ii 1 
óX = 0(-fv,x(X, 0) + x0!::,x), 

óii 1 
óe 0' 

where 

1 I 2 f(x, Dx, 0) = fv(x, 0) + 2x0 Dxl , x= const > O, 
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(1.4) 

(1.5) 

is the corresponding free energy density. Consequently, the Penrose-Fife model (1.1), (1.2) 
expressed in terms of absolute temperature 0 becomes 

Xt+'v· [mvG(-fv,x+x0!::,x))] =0, 

et+'v· (kv1) =O, 

(1.6) 

where the interna! energy e is related to the free energy f by the thermodynamic relation 
(see [129, eq. (2.8)]) 

8(! /0) 
e = 8(1/0)" 

The equation (1.7) is equivalent to (see Lemma 3.1) 

e=f-0f,0. 

Hence, for the free energy (1.5) we have 

e = ev(x,0) = fv(x,0)- fv,e(x,0). 

(1.7) 

(1.8) 

(1.9) 

A remarkable property of the Penrose-Fife model is that its underlying free energy density 
(1.5) has gradient term being a linear function of temperature 0. 

In terminology used in the present work this means it is of the entropie type, and conse
quently yields the interna! energy e independent of Dx. 

9.1.2. Model equations for separable free energy. In the development of their 
theory Penrose-Fife [129] have considered system (1.6) in case of the some special ther
modynamic functions. More precisely, let us recall the Penrose-Fife free energy density 
[129, eq. (8.4.1)-(8.4.2)] 

1 
f(x, Dx, 0) = fv(x, 0) + 2x01Dxl 2 (1.10) 

with 

fv(x, 0) = J.(0)v.(x) + 0fi(x) + h(x), 

where J., fi, h, v. are smooth functions of their arguments, and J. is strictly con
cave. Then, by the thermodynamic relations (see Lemma 3.1), the corresponding internal 
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energy and entropy densities are 

e(x,Dx,0) = (f*(0)-0J;(0))v*(x) + h(x) = ev(x,0), 
1 

rJ(x,Dx,0) = -(f;(0)v*(x) + fi(x))- 2u[Dx[2 

1 2 = w(x, 0) - -u[Dx[ . 
2 

(1.11) 

Thus, in the Penrose-Fife model the internal energy density is purely volumetric (inde
pendent of order parameter gradient Dx) and the entropy density contains the whole 
gradient term - u[Dx[ 2 /2. 
On account of (1.10), (1.11), the Penrose-Fife model (1.6) specializes to the form (cf., 
[129, eq. (3.8) and conserved version of eq. (3.6)]): 

Xt+V· [mv(- 1*t)v~(x)-f{(x)- 1~~x) +u~x)] =0, 

Cv(X, 0)0t + [(!*(0) - 0 J; (0))v~ (x) + f~(x)]Xt +V. ( kV 1) = o, 
(1.12) 

where 

is the specific heat at constant volume. 

9.1.3. Relation to conserved phase-fi.eld model (PF) 0 • Let us note that introducing 
the quantity 

µ- ·= !!:_ = 8(! /0) = f,x. _V. ( f,Dx.) 
. 0 óX 0 0 ' 

which for free energy f given by (1.5) equals to 

_ fv,x. ~ µ= -0--u X, 

the generał Penrose-Fife model (1.6) can be expressed in the form 

Xt - V· (mVµ)= O, 

_ ó(f /0) 
µ=--rx, 

et+v-(kv1) =O, 

where e = ev(x, 0) is related to f by (1.9). 

(1.13) 

(1.14) 

Consequently, one can see that Penrose-Fife model (1.6) has the structure of the 
conserved phase-field system (PF)e with suppressed elastic effects (see (7.5.8)) in the 
following special case: 

f = f (x, Dx, 0) given by (1.5), 

e = ev(X, 0) given by (1.9) 

(lo = 1, T = O, g = O, he = O, 

-jd = mDµ, qd = kD1, ad= O, 

(1.15) 

l 
l 

J 

1 
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J 
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with positive coefficients m = m(x, 0), k = k(x, 0). 
The corresponding dissipation potential is 

(1.16) 

thus refers to a situation near the thermodynamic equilibrium. 

According to the classification in Section 7.4, the conserved Penrose-Fife model (1.6) can 
be regarded as the intersection of examples (PF) 0 (i) and (PF)e (ii) presented there. 
More precisely, it represents the model with no extra energy term but with the extra 
entropy term 

I he= e,Dx = O and hr,= -TJ,Dx = ¼t,Dx = uDx. (1.17) 

By (7.4.5), the solutions of the Penrose-Fife model (1.6) (and its equivalent version (1.14)) 
satisfy the entropy inequality 

(1.18) 

with the modified entropy fl.ux 

d d 1 
W= W - Xt'T/,Dx = W + Xt7/,Dx, (1.19) 

where 
d ·d 1 d 1 1 w = -P,J + 0ą = mµDµ + k0D 0, 

and the entropy production density 

(1.20) 

9.1.4. Application of the duality relations. To see more connections with the 
Penrose-Fife theory, and at the same time to underline the role of the duality relations 
presented in Section 3.5, we shall describe here in more detail the transform relations be
tween the original energy form (1.2) and the temperature form (1.6) of the Penrose-Fife 
model. 

By virtue of Lemma 3.3, for a given entropy density fJ = ~(X, Dx, e) which is a concave 
function of internal energy e (in consistency with the convention in Chapter 3 we write 
e = e), the following identities hold true 

where 

~(x, Dx, e) + J(x, Dx, 19-) = 19-e, 

~,e:(x, Dx, e) = 19-, 
(1.21) 

are the inverse temperature and the rescaled free energy which is concave in 19- ( equiva
lently, f is concave in 0). 
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Moreover, by Lemma 3.8, we have 

-ty_(x,Dx,e) = J,x.(x,Dx,?J), 

- ~,Dx.(X, Dx, e) = J,nx.(X, Dx, 19), 

ó~ ( 2 - - r5J 2 - óX x,Dx,D x,e,De) = óX(x,Dx,D x,?J,D'/J), 

where e, De and '/J, D'/J are related by the formulas 

e = e(x, Dx, ?J), 

e,i = e,x.(x, Dx, ?J)x,i + e,nx.(x, Dx, ?J) · Dx,i 
+ e,o(x, Dx, '/J)'/J,i. 

(1.22) 

(1.23) 

For the Penrose-Fife free energy density (1.5) the corresponding rescaled free energy 
density is 

. ·( 1) c/>(x, Dx, ?J) = ?J f x, Dx, ~ 

= '/Jfv( X,¼)+ ~u1Dxl2 -

(1.24) 

Then, by thermodynamic Gibbs relation (3.2.3)2, the internal energy e, expressed as 
a function of inverse temperature '/J, is given by 

e(x, Dx, ?J) = J,D(x, Dx, ?J) 

= fv (X,¼) - ¼tv,(1/D) (X,¼), (1.25) 

or equivalently, in terms of absolute temperature 0 = l/'/J, 

e(x, Dx, 0) = e( x, Dx, 1) 
= fv(x,0)- 0fv,e(x,0) = ev(x,0). 

Besides, by thermodynamic relation (3.2.3)i, the entropy density expressed as a function 
of '/J is 

fi(x, Dx, ?J) = -J(x, Dx, ?J) + ?Je(x, Dx, ?J) 

( 1) 1 2 = -fv,(1/D) X,~ - 2x1Dxl , 
(1.26) 

or equivalently in terms of 0, 

fi(x, Dx, 0) = fi ( x, Dx, 1) 
1 2 = -fv,e(x, 0) - 2x1Dxl 

= TJV(x,0)- !u1Dxl2 -
2 

This confirms the Penrose-Fife expressions (1.11) with purely volumetric internal energy 
e and gradient type entropy 71. Let us note that in such a case, according to formulas 

j 

I 
j 

j 
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(1.23), the transfomation between interna! energy e and the inverse temperatue 1J does 
not involve Dx, and the transformation between De and D1:J does not involve D 2x. 

By (1.1) (with e = e) and (1.21)2 we have 

Mi _ "" c5e ='f/,e =v. (1.27) 

Thus, in view of relations (1.22)3 and (1.27), one can see that the Penrose-Fife model in 
energy form (1.2) (with e = e) transforms into the following temperature form 

Xt - V· (mvc5cp) = O 
c5x ' (1.2s) 

et+ V· (k"vrJ) = O, 

where e = e(x, Dx, rJ) is related to cp = J(x, Dx, rJ) via the relation e = c/J,,9. Clearly, 
for cp given by (1.24), system (1.28) yields exactly the temperature form (1.6) of the 
Penrose-Fife model. 

9.2. Phase-field model with the rescaled free energy. 

9.2.1. Model equation. A conserved phase-field model based on the rescaled free en
ergy cp = J(x, Dx, 1/0) = f(x, Dx, 0)/0 has been introduced and studied in a line of 
papers by H. W. Alt and the author [5], [6], [7], [8]. 
The basis of the model is the Landau-Ginzburg theory of phase transitions and the 
nonequilibrium thermodynamics. The arguments of the derivation are different than those 
used by Penrose and Fife [129]. The main difference is that the interna! energy density 
e is not required to be independent of the order parameter gradient Dx. Except this 
assumption, the resulting system has the same structure as the Penrose-Fife model. 

The key idea behind the construction of the model with the rescaled free energy con
sists in a generalization of the classical Cahn-Hilliard definition (see [34]) of the chemical 
potentia! associated with the gradient type free energy density f = f(x, Dx) at constant 
temperature 

c5f 
µ := c5x = f,x - V · f,Dx (2.1) 

to the nonisothermal situation. The generalization involves a rescaled chemical potentia! 
jJ, defined by 

p, := !!:_ = c5(f /0) = f,x _V. (f,Dx). 
0 c5x 0 0 

(2.2) 

The equation (2.2) has been rigorously justified in [10]. It is also recovered in Chapter 6 
of the present work. The corresponding model has the form 

Xt - "v · (zn VP, + łi2V~) = o, 

- c5(f I 8) (2.3) µ=Jx°, 

et+"v· (z21"vP,+l22V~) =g, 
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where the internal energy e = e(x, Dx, 0) is related to the free energy f = f(x, Dx, 0) 
by the relation e = f - 0 f,e, and the coe:fficients lik= fik(X, Jl, 0), i, k = 1, 2, are assumed 
to satisfy the conditions 

(2.4) 

We underline that on the contrary to the Penrose--Fife model, in (2.3) the internal energy 
e = e(x, Dx, 0) may depend on Dx. This is a significant extension. 

9.2.2. Relation to the conserved phase-field model (PF)e. One can see that model 
(2.3) with the rescaled free energy has the structure of the conserved phase-field system 
(PF)e (ii) with suppressed elastic effects (see (7.5.7)) in the following special case: 

f = i(x,Dx,0), e = e(x,Dx,0) = f-0f,e, 

/20 = 1, T = 0, 

he = O and h'f/ = ¼ f,Dx., 

- jd = lnDP, + łi2D¼, 
(2.5) 

d 1 
q = bDP, + bD0, 

with coe:fficients lik = lik(X, Jl, 0), i, k = 1, 2, satisfying (2.4). We note that with such 
linear form of jd and qd in Dp, and D} model (2.3) is restricted to the situation near 
the thermodynamic equilibrium. 

Moreover, recalling (1.17), let us note that like in the Penrose-Fife model the extra energy 
term he= O, but since e,nx =J. O, the extra entropy term h'fl = }f,Dx. =ft -rJ,Dx· 

On account of (7.4.10), the solutions of model (2.3) satisfy the entropy inequality 

with the modified entropy flux 

where 

d 1 
W= W + Xt 0f,Dx., 

..;c,d = -p,jd+ !qd 
0 

Due to assumption (2.4) the entropy production density o- satifies 

9.2.3. Remarks. 

D - ·d Dl d 
o-=- µ-1 + e·q 

= [~tJ · u~~ ~::J [~tJ ~ 0· 

(2.6) 

(2.7) 

(2.8) 

REMARK 9.1. The issue of the existence of solutions to model (2.3) as well as numerical 
results have been addressed in [7], [8]. Differently than in the Penrose-Fife free energy 

j 
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(1.5) it has been assumed there that the free energy is given by 

1 2 
f(x,Dx,0) = fv(x,0) + 2x1Dx[, x= const > O, (2.9) 

that is it is the sum of the volumetric part and the gradient part of the energetic type 
(independent of 0). 
Then the corresponding internal energy and entropy densities are 

1 2 
e(x,Dx,0) = ev(x,0) + 2x1Dx[ , 

(2.10) 
'f!(x, Dx, 0) = w(x, 0) 

with 

ev = fv - 0fv,0, 'f/v = -fv,0-

Thus, in this case - on the contrary to (1.5) and (1.10) - the entropy density is purely 
volumetric and the internal energy density contains the whole gradient term x1Dxl2 /2. 
For (2.9) system (2.3) turns into the form 

J Xt-V·(l11V7i+li2V1)=o, 

?i= fv,x~X, 0) - V. ( jVx), (2.11) 

(ev(x, 0) + ~x[Vx[2 )t +V· (z21 V?i + b2V1) = g. 

This system, complemented by initial and boundary conditions, has been studied in [8]. 
The analysis there indicates that essential difficulties come from the presence of the 
gradient term x1Vx[ 2 /2 in energy equation (2.11)3 and the singularity of the coefficient 
x/0 in equation (2.11)2. 

Let us also note that for system (2.11) the extra energy and entropy terms are equal 
to 

1 1 
h'T/ = -f D = -xDx. 0 ' X 0 (2.12) 

REMARK 9.2. Model (2.3) with the rescaled free energy has been generalized by A. Morro 
[109] by accounting for additional mass balance equation with nonzero mass production, 
free energy density f = J(g, X, Dx, 0), and the macroscopic motion of the body in the 
spatial description. 

9.3. The Caginalp model. The Caginalp phase-field model, originally derived for so
lidification problems with nonconserved order parameter [23], has been also extended to 
problems with a conserved order parameter [24], [26]. The corresponding model is ex
pressed in terms of an order parameter x and the temperature u which is scaled so that 
·u = O is the planar melting temperature. The value x = -1 is assumed to represent 
the low temperature phase (solid) and x = 1 the high temperature phase (liquid). The 
underlying Landau-Ginzburg free energy density is given by (8.3.1)-(8.3.2). The model 
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equations have the form (see [26]) 

TXt + ell [e!:lx- (~'l/J'(x) - 2u)] = 0, 
L 

CUt + 2xt - k!:lu = O, 

(3.1) 

where the parameter ~ represents a length scale and a measure of the microscopic bonding, 
T = ae is a relaxation time with a denoting the microscopic relaxations scaling. The 
nonmonotone function 'tp1 (x) = (x3 - x) /2 is the derivative of the prototype double-well 
potential 'l/J(x) = (x2 - 1)2 /8. This potential can be generalized to other forms with 
similar qualitative properties, i.e,, symmetric, double-well potential with minima at ±1. 
The parameter a is a measure of the depth of the double well 'l/J(x)/a. The positive · .l 
parameters c, kand L represent respectively the specific heat, the thermal conductivity . 
and the latent heat of phase transition. 

The equation (3.l)i is derived from the free energy (8.3.1) according to the dynamical 
equation 

(3.2) 

which in a common terminology due to Hohenberg and Halperin [87] is referred to as 

Model B. 
Equation (3.1)2 represents the energy balance relevant near the phase transition temper
ature 0c. 

9.3.1. Links to the Penrose-Fife model. System (3.1) can be viewed as a linearized 
version of the Penrose-Fife model ( 1.12) corresponding to the free energy density ( compare 
(8.4.1)-(8.4.2)) 

1 
f(x, Dx, 0) = !*(0) + 0fi(x) + h(x) + 2x01Dxl 2, x = const > o, (3.3) 

with 
0 

f*(0) = -c*0ln 0c + c*0, 

L L 
fi(x) = - 20c X+ 4a0c't/;(x), 

(3.4) 

The internal energy, the entropy and the specific heat corresponding to (3.3), (3.4) are 

L 
e(x, 0) = c*0 + 2x, 

0 L L l 2 (3 5) 
'TJ(X, Dx, 0) = c* ln 0c + 20c X - 4a0c 'lf(x) - zxlDxl , . 

c(x,0) = c*. 

Inserting formulas (3.4) into (1.12) and letting m = const, k = k02 , where k is a positive 
constant, one gets 

[ L I L (1 1 )] Xt + m!:l x!:lx - -'l/J (x) - - - - - = O, 
4a0c 2 0 0c 

L -
c0t + 2xt - k!:l0 = O, 

(3.6) 

j 

j 
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where '1/;'(x) = (x3 - x)/2 and C = c* = const > o. 
Let 

0- 0c 
'U'---.- 0c (3.7) 

denote a small deviation from the cirtical temperature 0c. After linearization of equation 
(3.6)i around 0c by replacing the term 

!:_ (! -~) w1'th - .!:_u 
2 0 0c 20c ' 

system (3.6) takes on the Caginalp's form 

where the coeflicients 

aext + e.i2x - Li [~7/J'(x) - 2u] = o, 
L -

CUt + zXt - k.iu = o, 

e ·- 40cX 
.- L and 

1 
a=

mx 

are related to the length scale and the relaxation scaling, respectively. 

(3.8) 

9.4. The Falk's model based on entropy as independent thermal variable. 
F. Falk in [62] has set up a class of phase-field models for fluid mixtures in the frame 
of irreversible thermodynamics. The models generalize the Cahn-Hilliard theory to the 
multicomponent mixtures in the presence of heat conduction and macroscopic motion. 
The models are based on the entropy as an independent thermal variable and the interna! 
energy as a thermodynamic potentia!. They are characterized by the presence of the extra 
entropy flux. 

The Falk model, confined to the situation of a two-component system at rest, turns 
out to have the structure of the model with the rescaled free energy (2.3) (in the case 
li2 = l21 = o, (!o = 1, and nonzero external supplies T =I= o, g =I= O) 

Xt +V. jd = T, 

µ := ~ = f,/ _ V . ( f,~x), (4.1) 

with the mass and energy fluxes jd, qd satisfying the dissipation inequality 

't'7 ·d 't'71 d 
- V jl • J + V 0 • q 2: Q. (4.2) 

For more explicit comparison with Falk's model, let us formulate system (4.1) in 
terms of the entropy 'f/ as the independent thermal variable and the interna! energy 
e = ~(X, Dx, ry), expressed as a function of the entropy, as a thermodynamic potentia!. 
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To this purpose we apply the thermodynamic relations (see (3.5.6)2, (3.8.1)2,3,4) 

0 = e,r)l 

f,x = e,x, f,Dx = e,Dx, 

which allow to transform system (4.1) into the form 

Xt +V. jd = T, 

__ e,X " (e,Dx) µ--;:--v· --- , 
e,17 e,17 

et+'v·qd=g 

with jd, qd satisfying (4.2). 

Je 
Jx' 

(4.3) 

(4.4) 

We indicate show now that system (4.4) satisfies the entropy equation and inequality 
the same as derivied in [62]. To this purpose let us multiply equation (4.4)i by -p,, 
equation (4.4)2 by Xt, and equation (4.4)3 by 1/e,17 , and then summ up the resulting 
expressions to get the following equality 

1 - (- ) - - •d e,x e,Dx 
- W+ -=-9 = -µV· J - -::-Xt + Xt V· ---

e,17 e,17 e,17 

(- _ " _ ) 1 1 " d + e,xXt + e,Dx · v Xt + e,17 TJt -=- + -=- v · ą 
e,17 e,17 

( ·d 1 d eDx) = T/t +V· - iJ,J + -;;-q + Xt-~-
e,17 e,17 

" ·d " 1 d +vP,·J -v-;;-·q. 
e,'7 

This provides the entropy inequality 

- ·d 1 d - 1 
T/t+'v·W=-'vµ·J +'v-;;-·q -µT+-;;-g 

e,17 e,17 
1 

2:: -P,T+-;;-g, 
e,'7 

with the entropy flux 
•d 1 d e Dx 

iI! = -jj,J + -;;-q + Xt--;:;--· 
e,17 e,17 

Using the identities (4.3), the fact that p, = ?J-, and the equality 

Xt = -V ,jd, 

which is valid in the case T = O, the flux W can be expressed as 

W= _!!:._jd + !ąd _(V. jd) f,Dx 
0 0 0 . 

(4.5) 

(4.6) 

(4.7) 

(4.8) 

(4.9) 

Equation ( 4.6) with the flux w in the form ( 4.9) is identical to that derived by Falk: (see 
[62, eq. (2.25)] for a body at rest, v = O). 

J 

] 
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We remark that according to Falk's notion, in the case of gradient-type internal en
ergy e = i(x, Dx, 17), the quantity e,x. is called the chemical potential whereas e,nx. the 
hyperpotential. 

· j 9.5. The nonisothermal phase separation models based on a microforce bal
ance. Applying the Fried and Gurtin concept of a microforce balance (see [72], [73], [74], 

l [75], [83]), A. Miranville and G. Schimperna [104] have derived a class of nonisothermal 
. Cahn-Hilliard models with the modified energy equation and the standard entropy equa-

tion. The authors generalize the energy equation by accounting for the rate of working 
due to a microstress, like in the Fried-Gurtin theory [72]. The Miranville-Schimperna 
model has the structure of the conserved phase-field system (PF) 0 with suppressed elas
tic effects and {20 = l in the case including extra energy term he = f,Dx. and no extra 
entropy term h'TJ = O (see (7.5.7) with f = f(x, Dx, 0), {20 = 1, he= f,Dx. and jd, qd, ad .1 given by (7.5.5)): 

Xt -'v-(L„'v!!:.+L· 'v!+l· Xt) =T JJ 0 Jq 0 Ja ' 

µ l µ l 
7j = 7/f,x. - 'v · f,Dx_) + laj · 'v 7j + laq · 'v O + laaXt, (5.1) 

et+ 'v. ( Lqj 'v~ + Lqq 'v i+ ląaXt - xd,Dx.) = g, 

where the matrices L 33 , L3ą, Ląj, Ląą, the vectors lja, laj, laą, ląa and the scalar laa 

J satisfy the inequality (7.5.6). 

According to (7.4.18) the scheme (5.1) is consistent with the entropy equation and 
inequality 

µ ·d l d d µ l 
1Jt+'v•'if!=-'v0·J +'\70-q +xta -0T+0g 

µ l 
> --T+-g 
- 0 0 ' 

where the entropy flux has the standard form 

µ ·d l d 'if! = --J +-q 0 0 . 

(5.2) 

(5.3) 

System (5.1) is the same as the Miranville-Schimperna model with kinetic effects (see 
[104, eq. (3.8)-(3.10)]). 

Assuming that the viscous (kinetic) effects in representation (7.5.5) of jd, qd, ad are 
neglected, i.e., 

- jd = L33 D~ + L3ąDi, 
d µ l 

q = Lą3D0 + LąąD0 , (5.4) 

ad= 0, 
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system (5.1) reduces to 

Xt - V · (L ··V!!:_ + L · V!) = T JJ 0 Ją 0 ' 

µ = f,x - V · f,nx, (5.5) 

et+'v· (Ląj'v~+Ląą'v~-xtf,nx) =g. 

System (5.5) is the same as the Miranville-Schimperna model with kinetic effects not 
taken into account (see [104, eq. (2.23)-(2.26)]). 

9.6. The Cahn-Hilliard-de Gennes and generalized Penrose-Fife models for 
polymer phase separation. The models of this group have been discussed in detail 
in [127]. They are governed by the Flory-Huggins-de Gennes (FHdG) free energy density 
presented in Section 8.5. In case of constant temperature the classical Cahn-Hilliard 
model can be directly generalized to degenerate singular Cahn-Hilliard-de Gennes model 
describing isothermal phase separation in a binary polymer mixture. 

Since the gradient term in the FHdG free energy is made up of energetic and entropie 
contributions the corresponding thermodynamically consistent model for nonisothermal 
phase separation in polymer mixtures, set up in [127], has the structure of model (P F) 0 

with suppressed elastic effects and Qo = 1 in the case including extra energy and extra 
entropy terms 

he = e,nx, h'TJ = rJ,Dx, he+ 0h'TJ = f,Dx• (6.1) 

The model reads as follows (see [127, eq. (2.3), (2.17)]) 

Xt - V· ( Ljj'v~ + Lją V~+ liaXt) = O, 

µ f,x " (f,nx) ,,1 l ,,µ l „1 l 0 = 0 - v · - 0- + e,nx · v 0 + aj · v 7j + aq · v 0 + aaXt, (6.2) 

Ct +V· ( Lqj'v~ + Lqq'v~ + ląaXt - XtC,Dx) = g, 

where the matrices Ljj, Lją, Ląj, Ląą, the vectors lja, laj, laą, ląa and the scalar laa 
satisfy the inequality (7.5.6). We remind that in this model the free energy fis given by 
the FHdG form 

!FHdG(X, Dx, 0) = fo(x, 0) +~(Xe+ 0x'T)(x))IDxl2, (6.3) 

where Jo is the Flory-Huggins mixture free energy given by (8.2.16), Xe a positive constant 
and the coefficient x'TJ(x), which is singular in X, is given by (8.5.3). 
Here it is of interest to note that in polymer mixtures - in contrast to small molecular 
ones - the gradient term in (6.3) introduces an infinite energy penalty near the pure 
phases. 
On account of (7.4.5) the solutions of (6.2) satisfy the entropy inequality 

( d ) µ ·d 1 d d g g 
rJt + V · '1! - XtrJ,Dx = -V 7j · J + V 0 · ą + Xta + e ~ e 

with the entropy flux involving extra term -Xtr/,Dx· 

J 

l 

] 
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9. 7. Isothermal Cahn-Hilliard system coupled with elasticity. In this section 
we compare the conserved scheme (PF)e with suppressed thermal effects presented in 
Subsection 7.5.4, with the analogous models introduced in a line of papers by E. Fried 
and M. E. Gurtin [72], [73], [75], [83]. They have developed a thermodynamical theory 
of phase transitions based on a microforce balance in addition to the basie balance laws 
and a mechanical version of the second law. Parallel to that theory, M. Fremond [70], 
[71] have proposed a theory based on microscopic motions as a tool of modelling various 
phase transitions, specifically shape memory and damage problems. Despite of different 
ideas Fremond's approach bears some resemblance to the Fried-Gurtin theory. 

9.7.1. Model equations. Let us recall the conserved model (7.5.8) with suppressed 
thermal effects, () = 1, Qo = 1, and with the quantities jd and ad given by (see (7.5.14)) 

- jd = LjjDµ + ljaX,t, 

ad= laj · Dµ + laaX,t· 
(7.1) 

Here the moduli, the matrix Ljj, the vectors lja, laj and the scalar laa, may depend on 
the variables 

z= Zele=1 = {F,DF,x,Dx,D2 x,µ,Dµ,x,t}, 

and are consistent with the inequality (see (7.5.15)) 

[Dµ] . [Lzp llja] [Dµ] :2: O for all variables Z. 
X,t Ja aa X,t 

The corresponding system of equations is (see (7.5.9) with eo= 1 and (7.1)): 

ii, - 'v · f,F(F, X, 'vx) = b, 

X - 'v · (Ljj 'v µ + ljaX) = T, 

µ = !,x(F, X, 'vx) - 'v · f,vx(F, X, 'vx) + laj · 'v µ + laaX· 

(7.2) 

(7.3) 

(7.4) 

System (7.4) is supplemented by the inequality (7.3) and the frame invariance restrictions 
discussed in Subsection 6.1.2. 

On account of (7.5.16), the solutions of (7.4) satisfy the free energy inequality 

j - S · F + 'v · (µjd - xf,Dx) = -(J' + µT ~ µT, (7.5) 

w here the stress S = f ,F. 

For later comparison with Gurtin's theory we note that multiplying equation (7.4)2 
byµ and subtracting the result from inequality (7.5), the latter becomes 

j- S · F - (V· f,Dx + µ)x- f,Dx · 'vx + jd · 'vµ = -(J' ~ o. (7.6) 

Moreover, recalling Section 7.3, let us formulate system (7.4) under assumption of in
finitesimal deformations 

u - 'v · f,c:(c(u), X, 'vx) = b, 

X - 'v · (Ljj 'v µ + ljaX) = T, (7.7) 

µ = f,x(c(u), X, 'vx) - 'v · f,vx(c(u), X, 'vx) + laj · 'v µ + laaX, 

where f = J(c(u),x,Dx) and the quantities Ljj, lja, laj, laa, possibly depending on 

zl = {c,Dc,x,Dx,D2x,µ,Dµ,x,t}, 
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are consistent with the inequality (7.3) for all variables Z 1• J 
We shall indicate that systems (7.4) and (7.7) coincide with that derived by the Fried

Gurtin theory. In particular, our differential equation for the chemical potential (negative 
of the multiplier associated with the balance law for the order parameter) turns out to J 
be identical with the Fried-Gurtin microforce balance. 

9. 7.2. Links to the Gurtin model. To see in detail the connections between the 
presented multipliers-based approach and the microforce balance approach to the Cahn
Hilliard model with elasticity, we recall here the main postulates of Gurtin's theory [83]. 
We use our notation with the following correspondences to the notation of [83]: 

x {=}(!order parameter, j {=} h mass flux, 
T {=} m external mass supply, 
lja {=} a, laj {=} b corss-coupling terms, 
Ljj {=} A mobility tensor, A{=} C elasticity tensor, 
f {=} 'I/; free energy. 

The other notation is the same. Moreover, in [83] the following additional fields are 
considered as primitive quantities: 

e - microstress ( vector)' 
7r - internal microforce (scalar), 
'Y - external microfoce (scalar). 

The postulates in [83] are the following: 

( G 1) The unknowns are the fields u, x and µ. 
(G2) The underlying laws are: the linear momentum balance in quasi-stationary approx
imation 

-V•S=b, (7.8) 

the angular momentum balance 
(7.9) 

the mass balance 

x+v •i =T, (7.10) 

and the microforce balance 

V · e + 1r + 'Y = O. (7.11) 

Here and in what follows all derivatives are materiał (Lagrangian). 
(G3) The second law is assumed in the form of the dissipation inequality (see [83, eq. 
( 4.6)]) 

j + v. (-sr u+ µj - xe) ::::: u. b + µT + x'Y, 
which in view of (7.8)-(7.11) is equivalent to (see [83, eq. (4.7)]) 

j- S · F + (n- µ)x- e · Vx + j · Vµ ::C:: O. 

(G4) The set of constitutive variables (in the case without kinetics) is 

Zo := {F,x,Dx,µ,Dµ} 

(7.12) 

(7.13) 

J 

] 

j 
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and constitutive equations are (see [83, eq. ( 4.8)]) 

f = f(Zo), S = S(Zo), j = J(Zo), e = ł(Zo), 1r = 1r(Zo), (7.14) 

l (G5) The constitutive equations are invariant under changes in observer, i.e., under trans-
. formations 

1 ---+ 1, s---+ Qs, i ---+i, e ---+ e, 
(F,x,Dx,µ,dµ) • (QF,x,Dx,µ,Dµ) 

for all orthogonal tensors Q. This leads to the restrictions 

f(Zo) = f(Zo), S(Zo) = FS(Zo), 3(Zo) = 3(Zo), 

. j with 

ł(Zo) = ł(Zo), 1r(Zo) = 1r(Zo) 
(7.15) 

Zo := {C,x,Dx,µ,Dµ}, C = FTF. 

We add that restircted relations (7.15) are not used in the generał development of the 
theory in [83] which is simpler in terms of the deformation gradient F (see also Remark 
2.3). We outline the main results proved in [83]: 
• The compatibility of constitutive equations (7.14) with dissipation inequality (7.13) 
implies the following restrictions 

f = i(F,x,Dx), s = B(F,x,Dx) = f,F(F,x,Dx), 

e = ł(F,x,Dx) = f,nx(F,x,Dx), 

7r = 1r(F, X, Dx, µ) = µ - f,x(F, X, Dx), 

j = -LjjDµ 

with tensor Ljj = Ljj(Zo) consistent with the inequality 

Dµ · LjjDµ ~ O for all variables Zo, 

(7.16) 

(7.17) 

• Balance laws (7.8)-(7.11) together with relations (7.16), (7.17) yield the system (see 
[83, eq. (4.15)]) 

- V· f,F(F, X, Vx) = b, 

x-v-(LjjVµ)=T, 

µ - f,x(F, X, Vx) +V· f,nx(F, X, Vx) + 'Y = O. 

(7.18) 

We note that this system is identical with (7.4) provided ii= O, laj = lja = O, laa = "( = 
O, and the set Z replaced by Za. 
• The considerations in [83, Sec. 3.4, 4.1] allow to deduce that the inclusion of the kinetics 
in the constitutive variables, that is replacement of the set Z 0 in (G4) by 

leads to relations (7.16), and 

Z1 := {F,x,Dx,µ,Dµ,x,t}, (7.19) 

7r = µ - f,x(F, X, Dx) + 7rdis, 

j = -(LjjDµ + ljaX,t), 

7rdis = -(laj · Dµ + laaX,t), 

(7.20) 
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where 7rdis represents the dissipative part of the internal microforce, and the quantities 
L 33 = L33 (Z1), lja = Z3a(Z1), laj = Za3(Z1), laa = laa(Z1) are consitent with the 
inequality (7.3) for all variables Z 1. Then balance laws (7.8)-(7.11) together with relations 
(7.16), (7.20) yield the system which is identical with our system (7.4) if ii= O, 'Y = O 
and the set Z1 in place of Z. 

We summarize the comparison of the presented results by the following conclusions: 
• The generalized Cahn-Hilliard models with elasticity obtained by two approaches have 
the same structure. The only difference is the set of state variables which is Z given by 
(7.2) in our model and Z 1 given by (7.19) in the Gurtin model. 

• The term f,nx(F, X, Vx) in differentia! equation (7.4)3 for the chemical potentia! cor
responds to the microstress while the termµ - f,x(F, X, Vx) to the internal microforce. 

• The quantity -ad = -(laj · Dµ + laaX,t) in our model corresponds to the dissipative 
part of the internal microforce in Gurtin's model. 

• The free energy inequality (7.6) coincides with the microforce balance (7.11) (with 
'Y = O) and the dissipation inequality (7.13) postulated in [83]. 

• Our postulate of treating the multiplier ( equal to the negative of the chemical potentia!) 
as an independent variable corresponds go Gurtin's postulate of an additional balance law 
for the microforce. The differential equations for the chemical potentia! and the microforce 
balance are identical. 

• Under assumption of infinitesimal deformations and ii= O, our system (7.7) coincides 
with that given in [83, Sec. 4.4]. In sucha case the relevant form of the free energy is (see 
Subsection 8.2.2) 

1 
f(e(u),x,Dx) = W(e(u),x) +'lj!(x) + 2u1Dxl 2 , u> o, (7.21) 

where 
1 

W(e(u),x) = 2(e(u) - e(x)) · A(x)(e(u) - e(x)) 

is the elastic energy, A(x) = (A1ki(x)) is the fourth order elasticity tensor, e(x) 
(ei1(x)) is the symmetric eigenstrain tensor, and 'lj!(x) is a double-well potentia! whose 
wells define the phases, with the standard form 

1 
'lj!(x) = 2x2(1- x) 2 . 

J 

J 

l 
1 

1 

J 

J 



10. Well-known phase-field models with nonconserved order 
parameter. Relation to model (P F) 0 

10.1. The Penrose-Fife model. 

10.1.1. General model equations. The Penrose-Fife model with nonconserved order 
parameter has been derived by similar variational arguments as that with the conserved 
order parameter. The derivation is based on the interna! energy e as an idependent 
thermal variable and the entropy density (9.1.1) as the corresponding thermodynamic 
potentia!. It is important that the coefficient x in (9.1.1) is assumed to be a positive 
constant. The model has the form of the following system (see [129, eq. (2.15), (2.19), 
(2.10), (2.11)]): 

517 
Xt = l 5x' 

et+V· (kv~:) =0 
(1.1) 

with positive coefficients l, k which may depend on x and one. In (1.1), 517/5x and 517/5e 
are the variational derivatives of 17 with respect to x and e, respectively. For entropy 
potentia! (9.1.1) they are 

517 _ ( ) ,. 
5x = 1]V,x X, e + XL..l.X, 

5-
5: = 17V,e(X, e). 

(1.2) 

As in the conserved case, with the use of the transform relations, equations (1.2) are 
expressed in the form 

5i7 1 
5x = 0(-fv,x(x,0)+xfJl:.x), 

517 l 
(1.3) 

5e 0' 
where 

1 2 
f(x, Dx, 0) = fv(x, 0) + 2x01Dxl , x = const > O, (1.4) 

is the corresponding free energy density. 

We point out again that this free energy is of the entropie type (with gradient term 
being a linear function of 0), and consequently yields the interna! energy 

a(J/0) . 
e = a(l/0) = fv(x,0) - 0fv,e(x,0) =: ev(x,0) (1.5) 

[133] 
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independent of Dx. In result, the Penrose-Fife model (1.1) expressed in terms of 0 takes 
the form 

1 
Xt = l0(-fv,x. + x0flx), 

et+v-(kv}) =O. 
(1.6) 

] 

1 
10.1.2. Relation to nonconserved phase-field model (PF)e- Let us now introduce 
the quantity (rescaled chemical potential) ·.1 

µ- ·= !!:._ = 6(!/0) = f,x. -V· (f,Dx.) (1.7) 
· 0 6x 0 0 ' 

which for free energy f given by (1.4) equals to 

- !V,x_ A 
µ= -0- -xux. 

Then the nonconserved Penrose-Fife model (1.6) can be expressed as 

Xt + lp, = O, 

_ 6(! /0) 
µ=~, 

et + V · (kV¼) = O, 

(1.8) 

(1.9) 

where e = ev(X, 0) is related to f by (1.5). Thus, we see that the Penrose-Fife model j 
(1.6) has the structure of the nonconserved phase-field system (PF)e with suppressed 
elastic effects (see (7.6.7)) in the following special case: 

f = f(x,Dx,0) given by (1.4), 

e = ev(X, 0) given by (1.5), 

{20 = 1, T = O, g = O, he = O, (1.lO) 

1 
- rd = lp,, qd = kD0, ad= O, 

with positive coefficients l = l(x, 0), k = k(x, 0). The corresponding dissipation potential 
is quadratic in (p,, D}) 

(1.11) 

thus refers to a situation near the thermodynamic equilibrium. In conclusion, according 
to the classification in Section 7.4, the nonconserved Penrose-Fife model (1.6) can be 
regarded as the intersection of examples (PF)e (i) and (PF)e (ii) given there. More 
precisely, it represents the model with no extra energy term but with the extra entropy 
term 

he= e,Dx. = O and h'f/ = -7/,Dx. = }f,Dx. = xDx. (1.12) 

Recalling (7.4.5), we see that solutions of model (1.6) (and its equivalent version (1.9)) 
satisfy the entropy inequality 

(1.13) 
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with the modified entropy flux 

d d 1 
'1'! = '1'! - XtT/,Dx = '1'! + Xtr/,nx, (1.14) 

where 

The entropy production density is 

1 I 1 l2 
u= -p,rd + De · qd = lp,2 + k De ~ O. (1.15) 

10.1.3. The Penrose-Fife model for liquid-solid phase transitions. Links to the 
I Caginalp's model. For liquid-solid phase transitions Penrose and Fife [129], [130] have 
J proposed the free energy of the form (1.4) with fv(x, 0) given by (8.4.5)~(8.4.6). For such 

free energy system (1.6) becomes (see [130, eq. (6), (7)]): 

Xt - lx~x+ l [ (¼- ;J (-2ax+ b) + :c 'lj,'(x)] = O, 

Cv0t + (-2ax+ b)xt + 'v · (k'v¼) = o, 
(1.16) 

where 

Cv = c*, 'lj,'(x) = x 3 - X· 

For a comparison with the standard phase-field model is it of interest to recall here 
the main conclusions from the Penrose-Fife study [130] of the effect of various choices of 
the parameters a and bin model (1.16). 

Case I. a = O, b = O. 
There is no coupling between the order parameter and temperature fields. The order 
parameter obeys the Allen-Cahn equation and the temperature obeys the heat equation. 

Case II. a i- O, b = O 
There is no latent heat (see (8.4.9)), so the model describes a second order phase transi
tion. 

Case III. a = O, b > O 
In this case defining the quantity 

0- 0c 
'U=~, (1.17) 

linearizing equation (1.16) around 0c by replacing ¼-ł with -t,, and moreover assuming 

k = k02 (1.18) 

with k = const > O, system (1.16) with a= O becomes 

axt - ~X+ ; 2 ('lj,'(x) - bu)= O, 
(1.19) 

CvUt + bxt - k~u = o, 
where 

1 
a= lx' 
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System represents the standard phase-field model for nonconserved order parameter, 
known as Caginalp 's model. The quantity L = 2b is the latent heat of phase transition 
(see (8.4.9)). 

Case IV. a -# O, b > O 

A linearization of equation (1.16)i around Be and assumption (1.18) lead to the system 

axt - ~X+ }2 [7j,1 (x) + u(2ax - b )] = O, 
c, (1.20) 

CvUt - (2ax - b)xt - k~x = o. 
This system extends the standard phase-field model by an extra term involving 2ax in 
each equation. A detailed analysis of the motion of phase boundaries in all four of these 
cases is given in Fife and Penrose [66]. 

It should be underlined that the Cagina.lp model (1.19) was established prior to the 
original Penrose-Fife model. As a matter of fact it was just the lack of a proper ther
modynamic setting of model (1.19) that gave rise in the neintieth of the last century 
to a number of so-called thermodynamically consistent models of phase transitions, in 
particular models by Penrose and Fife [129], [130], [66], Alt and the author [5], [6], [7], 
[9], [10], Wang et al. [145]. 

Let us mention that thermodynamically consistent phase transition models with mod
ified entropy flux have been proposed by Wang et al.[145], Fabrizio-Giorgi-Morro [53]. 
The models in [53] admit variable mass density and thereby are applicable also to phase 
transitions at constant pressure. The authors [53] specify thermodynamic functions and 
resulting differential equations for solid-fluid transition at constant pressure. 

10.2. The Fried-Gurtin phase-field model based on microforce balance. In this 
section we compare the nonconserved phase-field scheme ( P F) 0 with suppressed elastic 
ef:fects, presented in Subsection 7.6.2, with the analogous model introduced by Fried and 
Gurtin [72] on a basis of a microforce balance. 

10.2.1. Model equations. Let us consider system (7.6.7) with the extra energy term 

he= f,Dx, and Qo = 1: 

Xt - rd = T, 

!!_= f,x -'V· (f,Dx) +fD .'iJ!+ad e e e ,x e ' 
et+ V· (qd - xtf,Dx) = g, 

where e = f - 0 f,0, f = J(x, Dx, 0), and rd, qd, ad admit representation (7.6.4). 

(2.1) 

For a comparision with the Fried-Gurtin model we introduce the following simplifying 
assumption: 

lrq = lqr = O, lra = lar = O, (2.2) 

and 

lrr > O, ląa] [D½] 
laa X,t 

~ o, (2.3) 
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where lrr, Ląą, ląa, laą, laa are constitutive moduli possibly dependent on the variables 
X, Dx, D 2x, 0, D}, X,t· Then 

(2.4) 

so that system (2.1) becomes 
µ 

Xt + lrre = T, 

µ 1 1 
0 = 0(!,X - V· f,Dx) + laq · V 0 + laaXt, (2.5) 

et+ V· [Ląą V 1 + (ląa - f,nx)Xt] = g. 

j Upon eliminating 7i- and writing the energy equation (2.5)3 in temperature form (see 
(7.2.3)), we get 

where 

Xt + lrr [1u,x - V· f,Dx) + laą · v1 + laaXt] = T, 

cv0t + (f - 0f,o),xXt + (f - 0f,o),Dx · Vxt 

+V· [Ląą'v1+(ląa-f,Dx)Xt] =g, 

Cv = -0f,oo(x,Dx,0) 

is the specific heat at constant volume. 
Further, with the help of the notation 

/3 = 0(i~r + laa) > O, 

K= Ląą 
02 ' 

system (2.6) may be expressed in the form 

b = -ląa, 

f3Xt + f,x - V· f,Dx + k · V0 = 'F, 

0 
'F=T-l ' 

rr 

cv0t - V· [KV0 + bxt] - 0f,oxXt - 0f,onx · Vxt 

+ U,x - V· f,nx)xt = g. 

(2.6) 

(2.7) 

(2.8) 

We shall indicate that system (2.8) coincides with that derived by Fried and Gurtin 
on the basis of a microforce balance (see [72, eq. (3.19)]). Before doing this let us point 
out a special case of system (2.8) with omitted cross-coupling terms k = b = O (i.e., 
laą = ląa = O) and 'f = g = O. 
Then, after replacing in (2.8)2 the term f,x - V· f,Dx by its value given by (2.8)i, we get 

f3Xt = -U,x - V· f,nx), 

cv0t - V· (KV0) = 0f,oxXt + 0f,oDx · Vxt + /3x;. 
(2.9) 
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Here we remark that this system, introduced by Fried and Gurtin (see [72, eq. (3.21)]), 
has the same structure as models due to Miranville and Schimperna, as well as due to 
Fremond (see Sections 10.2.3 and 10.3). 

10.2.2. Links to the Fried-Gurtin model. For a more detailed comparison with the 
Fried-Gurtin model we outline first the main results of their theory based on a microforce 
balance. We use our notation with the following correspondences to the notation of [72]: 

x ++ <p order parameter, f ++ 'I/; free energy, 
e ++ c internal energy, 0 ++ ,(} absolute temperature, 
qd ++ q heat flux (dissipative), 
g ++ r external heat supply. 

The other notation is the same. Moreover, in [72] the following additional fields are 
considered as primitive quantities: 

e - microstress ( vector), 
re - internal microforce (scalar), 
'Y - external microforce. 

The postulates in [72] are: 

(FG 1) The unknowns are the fields x and 0. 
(FG2) The underlying laws are: the microforce balance (i.e., a balance for interactions at 
a microscopic level) 

V · e +re+ 'Y = O, (2.10) 

and the energy balance 
(2.11) 

(FG3) The second law is assumed in the local form of the Clausius-Duhem inequality 

qd g 
'f/t +V· 0 2: 0. (2.12) 

It is seen that the entropy flux has the classical form while the energy flux is modified by 
an additional working term -xtf On account of (2.10) and the thermodynamic relation 
f = e - 0'f/, the equivalent forms of (2.11) and (2.12) are (see [72, eq. (3.6), (3.7)]): 

et+ V· qd - e · "ilXt + rext = g, (2.13) 

and 
qd -'70 

ft +'f/0t -e · Vxt +rext + - 0- ~ O. 

(FG4) The set of constitutive variables is 

z= {x,Dx,0,D0,x,t}, 

and the constitutive equations are (see [72, eq. (3.8)]) 

j = f (Z), 'f) = f/(Z), qd = <l(z), e = e(z), re= 1r(Z). 

The main results proved in [72] are as follows: 

(2.14) 

(2.15) 

j 
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• The compatibility of constitutive equations (2.15) with dissipation inequality (2.14) 
implies the relations 

f = !(x,Dx,e), TJ= -f,0(x,Dx,0), 

~ = f,nx(x,Dx,0), 

and the inequality (see [72, eq. (3.11)]) 

qd(z) · D0 
0 + [f,x(X, Dx, 0) + 1r(Z)]X,t ::=; O 

for all variables Z. 
• The inequality (2.17) yields representations (see [72, eq. (3.12), (3.13)]) 

qd = -KD0 - bX,t, 

1r = - f,x - k · D0 - f3X,t, 

(2.16) 

(2.17) 

(2.18) 

in which the matrix K, the vectors b, k and the scalar (3, that may depend on the 
variables Z, satisfy 

[D0] . [~te b/0] [D0] :2: O 
X,t f3 X,t 

(2.19) 

for all variables Z. 
The functions 

1req(x,Dx,0) = -f,x(x,Dx,0), 

7rnoneą(Z) = -k(Z) · D0 - (3(Z)X,t 
(2.20) 

represent the equlibrium and the nonequilibrium parts of the internal microforce 

7f = 1feq + 1fnoneq• 

• Balance laws (2.10) and (2.11) together with relations (2.16), (2.18) yield the system 
(see [72, eq. (3.19)]): 

f3Xt = -f,x +V· f,nx - k · °\70 + 'Y, 

cv0t - V· [KV0 + bxt] - 0f,oxXt - 0f,0nx · Vxt 

+ U,x - V· f,nx -'Y)Xt = 9, 

(2.21) 

where Cv = -0f,00 is the specific heat at constant volume, and K, k, b, (3 satisfy the 
inequality (2.19). 

A comparison of systems (2.8) and (2.21) indicates that Fried-Gurtin model based 
on a microforce balance has the same structure as our nonconserved phase-field model 
(PF)o with suppressed elastic effects in the case of the standard entropy flux and the 
energy flux modified by the extra term -x,tf,Dx· In the Fried-Gurtin theory the term 
f,nx(X, Dx, 0) represents the microstress while the term f,x(X, Dx, 0) corresponds to the 
equilibrium part of the internal microforce. 

10.2.3. The Miranville-Schimperna models based on a microforce balance. 
Continuing the Fried-Gurtin program of modelling phase transitions on a basis of a 
microforce balance Miranville and Schimperna [104], [105] have developed and studied 
mathematically nonisothermal Cahn-Hilliard and Allen-Cahn models. In this section we 
focus on their results concerning the Allen-Cahn model and on the links to our model 
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(PF)e. In particular, the system (4.7)-(4.8) in [104] coincides with the system (2.5) 
rewritten, upon eliminating µ/0 in the form 

- 1 1 1 
f3Xt + laą · V 7j + 0 f,x. - 0 V · f,Dx. = O, 

et+ V· ( Lqqv'i + ląa'Xt - f,Dx.Xt) = O, 
(2.22) 

where 
- 1 

/3 = -l + laa, 
rr 

the constitutive moduli the matrix Ląą, the vectors laą, ląa and the scalars lrr > O, 
laa may depend on the variables {x,Dx,D 2 x_,0,D},X,t} and satisfy the definiteness 
condition (2.3). This condition is equivalent to the dissipation inequality (4.4) in [104]. 

By suitable choice of the parameters i}, Ląą, laą, ląa and specifying the form of the 
free energy one can obtain from (2.22) various forms of PDE's specialized to particular 
phase transitions. 

In [105] system (2.22) has been studied from the point of view of the existence and 
uniqueness of solutions in the following special case: 

laq = lqa = O, 

Ląą = 02I, 
- f3 
f3 = 0, f3 = const > O, 

and the free energy density with gradient term of energetic type 

f (x, Dx, 0) = -co02 + c( 0 - 0c)X2 + 'lj;(x) + i 1Dxl2 ' 

where co, c, 0c, u are positive constants and 'lj;(x) is a double-well potential. 

(2.23) 

(2.24) 

Let us note that in this case the corresponding expressions for the internal energy and 
entropy are 

e(x, Dx, 0) = co02 - c0cx2 + 'lj;(x) + i1Dxl2 , 

11(x, Dx, 0) = 2co0 - cx2 • 

The corresponding specific heat is a linear function of temperature 

Cv = e,e = 2co0, 

(2.25) 

(2.26) 

on the contrary to the standard example with the thermal energy f * ( 0) = -c*0 ln 0 which 
yields constant thermal specific heat Cv = c* > O. 

The assumption (2.26) is motivated by mathematical reasons ensuring the existence 
of global in time solutions. In the case (2.23), (2.24) system (2.22) reduces to 

f3Xt - x~x + 'lj;'(x) = -2c(0 - 0c)X, 
(2.27) 

After replacing the term -u~x which appears as the last one on the left-hand side of 
(2.27)2 by its value given in (2.27)i, system (2.27) becomes 

f3Xt - x~x + 'lj;'(x) = -2c(0 - 0c)x, 

co(02 )t - ~0 = 2c0xxt + f3x;. 
(2.28) 

j 



10.3. Fremond's models based on microscopic motions 141 

This system, defined on n x (O, T), has been analysed in [105] with the initial conditions 

xlt=O = Xo, 0lt=O = 0o in n, 
and boundary conditions 

n·Vx=O, n-V0-no(0-0r)=O on Sx(O,T), 

where Xo, 0o are given data and no > O, 0r > O are given constants. 
System (2.28) with more generał form of the term c0 (02 )t has been recently analysed in 
[76]. 

Let us remark that for the free energy of the form 

(2.29) 

with positive constants c.., c, 0c, x, and 1/; being a double-well potential, system (2.22) J with laą = ląa = O leads to (compare (2.9)) 

f3Xt - xb.x + 1/J'(x) = -c(0 - 0c), 

c*0t +V• (LąąV0) = c0xt + f3x;, 

where (3 = ~0. System (2.30) with 

Ląą = k02 I, k = const > O, i.e., with qd = -k°\70, 

(2.30) 

(2.31) 

j has the form of some models proposed by M. Fremond for irreversible phase transitions, 
studied mathematically e.g., in [41], [99]. 

j 

REMARK 10.1. Nonconserved phase-field model with the extra energy flux has been re
cently introduced by Benzoni-Gavage et al. [12] in the context of solid-liquid phase tran
sitions. It has been analyzed there from the point of view of local well-posedness and 
characterization of sharp interface limits by formal asymptotic analysis. 

10.3. Fremond's models based on microscopic motions. In this section we shall 
show that our nonconserved phase-field system (PF)0 with suppressed elastic effects (see 

I (7.6.7)), with extra energy term he= f,nx is consistent with a smooth version of phase 
, transition models proposed by M. Fremond in the frame of his theory based on microscopic 

motions, see [70], also [17]. It is important to mention that Fremond's approach bears 
strong resemblance to the Fried-Gurtin theory based on a microforce balance. Both are 
essentially two-scales approaches founded on balance laws on macro- and micro-scales. 

The Fremond's approach is more generał, however, in the sense of admitting nons
mooth thermodynamic functions. Thus, it may be applied to a very wide class of phase 
transitions, including irreversible phase changes (like solidification of glu) and problems 
with internal constraints. 

10.3.1. Comparison with Fremond's model. Within our framework we can compare 
only with a smooth version of Fremond's models. Let us consider nonconserved system 
(PF)0 with suppressed elastic effects (see (7.6.7) with f = f(x,Dx,0), eo= 1) with 
the extra energy term he = f,Dx, and the constitutive relations for -rd, qd, ad with 



142 10. Well-known phase-field models with conserved order parameter .... 

neglegted all off-diagonal elements, i.e., 

lrq = lqr = lqa = laq = O, lra = lar = laa = O, 

and 

lrr = lrr(X, 0) > o, Lqq = kl, k = k(x, 0) > o. 
Then, by (7.6.4), 

d - 1 d 
q =kD0, a =0, 

so that the corresponding dissipation potential is 

1 (µ) 2 l-1 11 2 
1J = 2Zrr 7f + 2k D 0 

In view of (3.1), (3.2), system (7.6.7) (with T = g = O) reduces to 
µ 

Xt + lrr7f = O, 

µ f X 1 
0 = 0 - 0':;J. f,Dx, 

et+ V. (kvi- f,DxXt) = o. 
Hence, upon eliminating 1, we have 

- 1 1 
f3Xt + 0f,x - 0V · f,Dx = 0, 

et+ V. (kvi- f,DxXt) = o, 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

where ~ = 1/lrr > O. The eąuivalent form of (3.5) expressed in terms of temperature is 
( compare (2.6)) 

f3Xt = -U,x - V· f,Dx), 

c„0t +V· (kvi) = 0f,exXt + 0f,enx · Vxt - U,x -V· f,nx)Xt, 
(3.6) 

where 
(3 = ~0 = 0/lrr > O, c,, = -0f,00(x,Dx, 0). 

Replacing the term U,x - V · f,nx) in (3.6)2 by its value given by (3.6)i we arrive at 
the system with the same structure as (2.9), i.e., 

f3Xt = -U,x - V· f,nx), 

c„0t +V· ( kV i) = 0f,exXt + 0f,enx · Vxt + f3x;. 
(3.7) 

Following Fremond's theory, let us assume the free energy in the form, see e.g. Bon
fanti, Fremond, and Luterotti [18, e.g. (1.3)] 

L X 
f(x,Dx,0) = -c*0ln0- 0c (0- 0c)x+ '1/J(x) + 21Dxl2 , (3.8) 

where '1/J(x) = ¼(x2 -1)2 is the standard double-well potential, and c*, L, 0c, x are posi
tive constants representing the thermal specific heat at constant volume the latent heat, 

J 

] 

j 

1 

1 

-j 
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the critical temperature and the interfacial parameter, respectively. The corresponding 
expressions for the internal energy and the entropy are 

e = f-0!,0 = c*0 +Lx+ 'lf;(x) + ilDxl2 , 

L 
T/ = -f,0 = c*(ln0+ 1) + Be X· 

. l In addition to (3.8) let us assume that 

f3 = const > O, k = k02 with k = const > O. 

Then system (3.7) becomes 

f3Xt - x~x = ~ (0 - 0c) - 'lf;'(x), 

L 2 
Cv0t - k~0 + 0c 0xt = f3Xt, 

where 

'lf;'(x) = x3 - X and Cv = c* = const > o. 

(3.9) 

(3.10) 

(3.11) 

j This system represents a simple version of Fremond's model restricted to the situation of 
no internal constraints, i.e., a smooth free energy, and a reversible phase transition, i.e., 
no constraint on the sign of Xt· 

REMARK 10.2. It is of interest to point out the difference between the Fremond free 
energy (3.8) and that by Penrose and Fife (see (8.4.1), (8.4.5), (8.4.6)). In the Fremond's 
free energy the terms characteristic for phase transitions, i.e., the double-well potential 
'if;(x) and the gradient term f 1Dxl2 are of energetic type (independent of temperature), 
thus contributing only to the internal energy. This is on the contrary to the Penrose-Fife 
free energy where the last mentioned terms are of entropie type, i.e., they are linear 
functions of temperature, thus contribute only to the entropy. 

10.3.2. Nonsmooth version ofFremond's model. In case of the internal constraint 
X E [O, 1] the Fremond model postulates the free energy of the form (see e.g., [41, eq. 
(1.5)]) 

(3.12) 

where positive constants c*, L, 0c, x stand for the thermal specific heat, the latent 
heat, the transition temperature, and the interfacial parameter, respectively. The function 
I[o,l] (x), accounting for the constraint x E [O, 1] is the indicator function of the convex 
set [O, 1] c llł, defined by 

{ 
OifxE[0,1] 

I[o,i](X) = +oo if X~ [O, l]. (3.13) 

Let us note that the indicator function I[o,l] (x) in the nonsmooth free energy (3.12) 
replaces the double-well potential 'lf;(x) in the smooth energy (3.8). 

Consequently, substituting ( formally) 'lf;' (x) in equation (3.11 )i by the subgradient of the 
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indicator function 

{ 
(-oo,O] if X= O, 

8I[o,1J(X) = O if O< X< 1 

[O, +oo) if X= 1, 

(3.14) 

system (3.11) becomes 

(3.15) 

where 

( E 8I[o,1J(x). 

System (3.15) is an example of a nonsmooth Fremond-type model accounting for the 
internal constraints. 

Various nonsmooth Fremond's models relevant for irreversible phase transitions have 
been analysed mathematically by many authors, e.g., [17], [41], [18], [99], [95] [132]. 

10.3.3. Basic principles of Fremond's theory. For amore detailed comparison we 
recall briefly the derivation of systm (3.11) within Fremond's theory (see [17]). 
The underlying hypotheses of Fremond's theory are the principle of virtual power and 
the postulate that the microscopic movements give rise to macroscopic effects. 

From the virtual power principle it follows that the microscopic differential equation 
of motion (in case of neglected microscopic accelerations) is 

v7 · H - B + A = O, (3.16) 

where H is a microscopic energy flux vector, B is an interior microscopic force, and A 
represents an external source of microscopic work. 

The energy balance equation is modified by terms taking into account the power of 
the microscopic movements due to the interior forces B and H: 

(3.17) 

The constitutive laws for e, q, B and H are governed by the free energy f and the 
pseudo-potential of dissipation <I>. 

The free energy f is given by 

( L 1 ( 2 )2 X [ 2 fx,Dx,0)=-c.0ln0- 0/0-0c)X+ 4 x -1 + 2 Dx[, (3.18) 

and the pseudo-potential of dissipation <I> by 

<I>(0,n0,x,t) = %x% + ;01n012 , (3.19) 

where /3 > O is a coeffi.cient related to the evolution of the interface and k > O is the heat 
conductivity coefficient. 

The constitutive laws for B, H and ą are given by 

B = f,x + <I>,x,, H = f,nx, q = -0<I>,ne- (3.20) 

j 

J 

I 
] 

ł 

1 



10.4. The Umantsev model 

The internal energy e is related to the free energy f by the Gibbs relation 

e = f + 017 = f - 0 f,0 · 

For f and <I> given by (3.18), (3.19) this yields 

B = - ~ (0 - 0c) + X3 - X+ ,Bx,t, 

H = :uDx, q = -kD0, 

1 2 2 u 9 
e = c.0 +Lx+ 4(x - l) + 2 1Dxi~. 
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(3.21) 

(3.22) 

Equations (3.16) (with A= O), (3.17) together with constitutive laws (3.22) yield system 
(3.11). 

We add that in [18] more generał classes of models accounting for microscopic accel
erations were considered. In such a case equation (3.16) is replaced by 

QXtt - V · H + B - A = O (3.23) 

where Q is the mass density. 

REMARK 10.3. The Fremond microscopic balance (3.16) with constitutive laws (3.20) 
yields the equation identical to that resulting from the Fried-Gurtin microforce balance 
(2.10) with constitutive laws (2.16)2 and (2.18)2 with k = O (compare equations (3.11) 
and (2.21)). 

We add also that in view of the equality 

µ l 
- - --xt (3.24) 
0 - lrr ' 

which follows from equation (2.5)i with T = O, our dissipation potentia] (3.3) can be 
expressed as 

1 2 k 2 
V= 2lrr X,t + 204 ID01 . (3.25) 

Thus for an appropriate choice of the coefficients lrr and k it becomes identical with 
Fremond's pseudo-potentia1 of dissipation (3.19). 

REMARK 10.4. A recent direction in the study of phase-field models is related to tak
ing into account nonlocal interaction phenomena whose physical relevance was already 
described in the pioneering papers by van der Waals [144], and Cahn and Hilliard [34]. 
However, only recently both isothermal and nonisothermal models containing nonlocal 
terms have been analysed in a systematic way, see, e.g., Krejci, Rocca and Sprekels [92] 
and the references there. 

10.4. The Umantsev model. On a basis of physical and thermodynamical consid
erations, A. Umantsev and co-authors [141], [139], [143], [140], [142] have worked out a 
thermodynamic relations for dynamics of phase transitio n in a nonlocal medium described 
by a nonconserved order parameter and temperature. 

The model is based on the Lqandau-Ginzburg free energy density (we use our nota
tion) 

Ą 1 2 
f = f (x, Dx, 0) = fv(x, 0) + 2:ulDxl , :u= const > O, (4.1) 
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with volumetric energy fv and gradient term of energetic type (i.e., independent of 
temperature). The corresponding internal energy and entrooy densities are 

e = f - 0f,e = ev(x, 0) + ~xlDx:11, ev = fv - 0fv,e, 

TJ= -f,e = -fv,e(x:,0). 

The resulting system has the following form (see [143, eq. (3.1), 3.2)]) 

f3Xt = -U,x. - x.6.x), 

cv0t - V· (kV0) + (ev,x. - x.6.x:)xt = O, 

(4.2) 

(4.3) 

where 1/ (3 > O is the coefficient determining the characteristic time of relaxation, k > O 
is the heat conductivity coefficient, and c,., = -0 f,ee is the specific heat. 

Since 

ev,x. = f,x. - 0 !,ex., 

equation ( 4.3)2 can be written as 

c,.,0t - V · (kV0) = 0 f,ex.Xt - U,x. - x.6.x)Xt· (4.4) 

After replacing the term U,x. - x.6.x:) in (4.4) by its value given by (4.3)i we arrive at 
the system 

f3Xt = -U,x. - x.6.x:), 

cv0t - V· (kV0) = 0 f,ex.Xt + (3:x;;_ 
(4.5) 

this system has the same structure as (2.9) and (3. 7) simplified by the condition f,eDx. = O 
( due to the fact that free energy ( 4.1) is of energetic type). 

We remark that in the above mentioned papers by Umantsev et al. not only the 
study of dynamics of phase transition kinetics is is performed but also numerical anal
ysis including all stages of phase transformations in materials, nucleation, growth and 
coarsening. 

l 
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