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9 Search Engines - Retrieval Techniques 

9.1 Introduction 

Below, we analyse the most common search engines beginning from the simplest 
one based on low-level features, through engines including annotations and ending 
with engines attempting to use semantic matching. In each case we describe the 
search method, we emphasize goals to which the engine is dedicated and we 
conclude with a presentation of pros and cons. 

Search engines are constructed to fulfil particular criteria which we have 
described in sect. 2.2. The discussion of these issues will determine which 
matching mechanism listed below is recommended as more efficient than the 
others. For instance, if the user wants to find one object in many pictures, e.g. a 
face in an airport video, they will need a different mechanism than the user who 
only orders their collection of holidays photos, etc. 

Hence, the currently predominant engine categories listed below are based on 
[213]: 

low-level features and local similarities; 

search by metadata; 

global similarities; 

using object ontology to define high-level concepts, 

bag-of-visual-words (Bo VW), stemming from text analysis, 

object retrieval using SIFT and its modification methods, 

relevance feedback (RF) into a retrieval loop for continuous learning about 

users' intentions, 

generating a semantic template (ST) to support high-level image retrieval, 

making use of both the visual content of images and the textual infor­

mation obtained from the Web for WWW (the Web) image retrieval, 

combining visual properties of selected objects ( or a set ofrelevant visual 

features), spatial or temporal relationships of graphical objects [155], 

[214], with semantic properties [215], [213], 

convolutional neural network (CNN) and deep learning. 
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All the below-described search engines had to be tested, as a result of which 
many classified, indexed or annotated reference image databases were developed 
(see sect. 7.2). 

9.2 Visualization and Browsing of Image Databases 

Image browsing systems [216] attempt to provide the user with an intuitive 
interface, displaying at once many images as thumbnails in order to harness the 
cognitive power of the human mind to recognize and comprehend an image in a 
second. Interaction with a traditional QBE system can often lead to confusion and 
frustration on the part of the users, which was confirmed in the study by Rodden 
and Wood [217]. 

Fig. 9.1 DB browsing based on visnal similarity [218]. 

Browsing systems give a useful alternative to QBE, providing an overview of 
the database to the user, which allows for intuitive navigation throughout the 
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system. This is particularly the case when images are arranged according to 
mutual similarity, as has been shown in [219], where a random arrangement of 
images was compared with a visualisation which positioned images according to 
their visual similarities, i.e. where images that are visually similar to each other 
are located close to one another in the visualisation space [220]. The user can then 
focus on regions of the visualisations that they are attracted to or believe will 
harbour a particular concept they have in mind. Browsing such visualisations can 
increase the rate ofretrieval. 

For image database browsing, the mapping-based visualization is a typical 
mechanism which shows the potential relationships within the DB. In order to 
visualize these high-dimensional features, we have to map them down to 2D on a 
computer screen. 

A variety of methods have been devised in order to visualise images: 

• Principal Component Analysis (PCA) which is the simplest dimensionality
reduction approach, working in a linear manner ( cf. sect. 5 .5).

• Multi-Dimensional Scaling (MDS) in turn preserves the original distances in a
high dimensional space, calculating a similarity matrix which describes all pair­
wise distances between objects in the original space and next it projects them to
the low-dimensional space. Based on the similarity matrix, the 'stress' measure
can be formulated as follows [220]:

(9.1) 

where oij 
is the original distance between objects i and), and 8ij is the distance

in the low-dimensional space. Rubner et al. [12] who employed MDS based on 
colour signatures of images and the earth mover's distance (EMD) was able to 
create a representation of the high-dimensional feature space using MDS, 
placing image thumbnails at the co-ordinates derived by the algorithm, see Fig. 
9.1. 

• Fast Map is an alternative dimensionality reduction technique devised by
Faloutsos and Lin [221]. Fast Map reduces high-dimensional spaces down to a
linear 2D or 3D space. The algorithm, having a linear complexity O(kn), selects
two pivot objects, an arbitrary image and its furthest possible neighbour. All
points are mapped to the line that connects the two pivots.
Later Santos et al. [222] applied the Fast Map to their CBIR system and
introduced/introducing the user's modifications of control point positions. This
aimed to reduce the semantic gap by pointing out the similarity and diversity
among images in human understanding. Their system stored the user's search
space modification in the standard CBIR structure.

• Clustering-based visualization. Content-based clustering uses extracted feature
vectors in order to group perceptually similar images together (see Fig. 9.2).
The advantage of this approach is that no metadata or prior annotation is
required in order to arrange images in this manner, although image features or
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similarity measures which do not model human perception well, can create 
groupings that may potentially make it difficult for a user to intuitively browse 
an image database. 

Fig. 9.2 A content-based image clustering method for public image repositories [223]. 

• Graph-based visualization utilizes links between images to construct a graph
where the nodes of the graph are the images, and the edges form the links
between similar images. Links can be established through a variety of means
including visual similarity between images, or shared keyword annotations, for
instance the Pathfinder network [224], see Fig. 9.3. The graph-based
visualization appears to be less common because it is typically quadratic in
complexity, and therefore can only be computed off-line in order to allow for
real-time browsing.

Fig. 9.3 Pathfinder networks of images organized by colour histogram [224]. 

j 

j 

1 
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• Self-Organizing Maps (SOM) [216], [225] is a specific kind of artificial neural
network (ANN) which is trained to perform feature extraction and visualization
without any supervised signal, simply from the input of raw data. Using an
input layer of neurons (see Fig. 9.4), the feature vectors are computed and
assigned to best matching units (BMUs). Each unit has the same dimension and
is associated with the feature vector computed from the samples in the dataset.
A learning rule is typically defined as a process in which the new value
w;(s +1) is computed iteratively from the old one w;(s) and the new data item
x(s), which looks as follows:

W; (s +I)= W; (s) + a(s) h (/,i, s) [x(s) -W; (s)] (9.2) 

where: s is the current iteration, x(s) is a set of input vectors, ( is the index of 
the winning neuron, w;(s) is a weight vector of node u, h(/,i, s) is a 
neighbourhood function modifying the weights around the BMU in the 2D 
map, i.e. around the winner neuron in step s, a(s)E (0,1) the monotonically 
decreasing learning rate. 
A spectacular example can be observed in astronomy [226] where solar radio 
spectrograms coming from the records of three solar radio spectrometers are 
investigated in Zurich. Even though the information they contain - the radio 
spectrum between 0.1 and 4 GHz collected over two decades - is not spatial, 
they are visualized as images, showing the intensity of the radio emission as a 
function of time and frequency. 

input grid 

Fig. 9.4 Schematic representation of the SOM ANN architecture. 

The SOM was applied to generate local indexing features from images. The 
input space of the SOM was the region space. A sample of randomly selected 
regions was taken from all the available images used by a map to learn the 
point distribution in the region space. Each region was associated with a 
reaction of a single cell of the map during training. The reactions were summed 
up into a 'total map' that showed all the reactions associated with a specific 
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image. Then the indexing features were defined as the cells of the map, and 
their values corresponded to the number of times a cell reacted. 

The production of indexing features with SOMs was attractive because: 

The SOM classified the image regions depending on their shape and 
colour. 
The SOM used actual data distribution to determine classification. 
The learning of the distribution in the region space by the SOM can rely on 
a large number ofregions. 

The SOM package used in the Csillaghy's work was developed by 
Kohonen's group [225]. The tuning parameters of the SOM have been 
determined experimentally [226]. 

9.3 Information Retrieval Based on Low-level Features 

Image I can be modelled as a function O of the raw image file D, its features F, 
and representations R. The image model is described below and is also shown in 
Fig. 9.5: 

I = O(D,F,R) (9.3) 

where D is the raw image data, for instance, an image file, F ={J;}, j = 1, ... , J is a 
set of low-level image features, such as colour, shape, texture, etc, Rj = {rjk}, 

k = 1, ... , K.i is a set of representations for a given feature J;, e.g. the colour 
histogram and colour moments are representations of the colour feature. Each 
representation rjk is a vector consisting of multiple components, i.e.: 

(9.4) 

where Ljl, is the length of the vector rjk· 

This image model has three abstract information levels ( data, feature, 
representation), increasing informative granularity. Furthermore, different weights 
( U at the data level, Ji; at the feature level and Hj1c at the representation level) exist 
to reflect a particular entity's importance of its level. 

In order to compare the distance between two images, we need to define the 
retrieval model. The image model O(D,F,R), together with a set of distance 
measures, specifies the retrieval model. Hence, we measure the distance at three 
levels: image - query <J>(), features 8() and representations 'F(). Let rmjk be the jkth 

representation vector for the mth image in the database, where m = 1, ... , Mand M
is the total number of images in the DB. Let qjl" j = 1, ... , J, k 

= 1, ... , K.i be the 
query vector for the jk1h representation. The retrieval process is illustrated in 
Fig. 9.5 and can be described as follows. 
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First, we initialize the values of the weights U, TI; and �k- The distance 
between image and a query in terms ofthejkth representation is: 

(9.5) 

m = I, ... , M,j = I, ... , J, k = I, ... , f0 

where dm (I'Jk) denotes the distance between the mth image and the query in terms 
ofrepresentationjk. Then, the distance between the image and the query in terms 
offeaturej is: 

(9.6) 

Then, the overall distance is: 

(9.7) 

The images in the DB are ordered by their overall distances to the query (dm)­
The N most similar ones are returned to the user, where N is the number of images 
the user wants to retrieve. 

According to the user's preferences, the system dynamically updates the 
weights U, TI; and Wik· For the Euclidean distance among the feature vector Y. Rui 
and Th. Hhuang [227] suggested that the computed weight should be wjk = _.!:_ 

rrjk 

which is one over standard deviation. 
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9.3.1 Scale-Invariant Feature Transform SIFT 

The detection and description of local image features can help in object 
recognition. The SIFT features are local and based on the appearance of the object 

at particular interest points, and are invariant to image scale and rotation. They are 
also resistant to changes in illumination, noise, and minor changes in viewpoint. In 
addition to these properties, they are highly distinctive, relatively easy to extract 
and allow for correct object identification with a low probability of mismatch. 
They are relatively easy to match against a (large) database of local features but 
high dimensionality can be an issue, and generally probabilistic algorithms such as 
k-d trees with best bin first search are used. Object description by a set of SIFT
features is also robust to partial occlusion; as few as three SIFT features from an
object are enough to compute its location and pose.

An object is recognized in a new image by individually comparing each feature 
from the query to an image from a database and finding candidate matching 
features based on the Euclidean distance of their feature vectors. From the full set 
of matches, subsets of key points that agree on the object and its location, scale, 
and orientation in a query are identified to filter out good matches. Consistent 
clusters are determined by using an efficient hash table implementation of the 
generalized Hough transform. Each cluster of 3 or more features that agree on an 
object and its pose is then subject to further detailed model verification and 
subsequently outliers are discarded. Finally, the probability that a particular set of 
features indicates the presence of an object is computed through the Bayesian 
probability analysis, given the accuracy of the fit and number of probable false 
matches. Object matches that pass all these tests can be identified as correct with 
high confidence. 

Fig. 9.6 Point-to-point correspondence found by the SIFT descriptors. 

This property suggested that this method retrieves all images containing a 

specific object, even in a large scale image dataset, when that object is given as a 

query by example (QBE). 

Hence, SIFT needs the query-by-example, but in some situations it may be 

difficult to provide, for instance, when we have an image in our mind but it is 
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difficult to find it as QBE and additionally, we do not need the whole collection of 

similar images. 

SIFT's additional advantage is the fact that it solved the problem of searching 

for disparity, independently of the issue of epipolar lines in stereovision. The 

example of point-to-point correspondence is presented in Fig. 9.6. 

9.4 Object Ontology to Define High-level Concepts 

Generally speaking, ontologies define the concepts and relationships used to 
describe and represent an area of knowledge. Ontology gives the ability to model 
the semantics contained in images, such as objects or events. It provides, in a 
formal way, mutual understanding in a specific domain between humans and 
computers. Hence, ontology represents knowledge in a hierarchical structure 
which is used to describe and organize an image collection and it also shows the 
relation between these images. 

In the early approaches high-level concepts were described using the 
intermediate-level descriptors of the object's ontology. These descriptors were 
automatically mapped from the low-level features calculated for each region in the 
database, thus allowing the association of high-level concepts and potentially 
relevant image regions [228]. Later, ontology was employed to spatial 
relationships in images such as connectivity, disjoint, meet, adjacency, overlap, 
cover, or inside. But the image was divided into 3x3, 5x5 or 9x9 windows instead 
of separate objects [229]. 

For ontological DBs the Web Ontology Languages (OWL), as a family of 
knowledge representation languages, have been constructed for authoring 
ontologies characterized by formal semantics. 

An example of a search engine for multimedia has been proposed by 
Doulaverakis [230] and the system architecture is illustrated in Fig. 9.7. Here the 
user initiates a query by providing a QBE. This is depicted as case A in Fig. 9.7 
and comprises three steps. In the first step (IA) the content-based search is 
completed by analysing the provided multimedia content (i.e. performing the 
segmentation, extracting the low-level MPEG-7 descriptors and evaluating the 
distance between the prototype and the other figures stored in the multimedia 
database). The second step (2A) takes into account the metadata (which are 
mapped to the relevant ontologies) of the highest ranked results. For instance, the 
system may detect the highest ranked results in terms of visual similarity. Based 
on this information, an ontology-based query is formulated internally in the search 
engine, which links the knowledge base and enriches the result set with 
multimedia content that is close semantically to the initial content-based results 
(3A). 

Eventually, the response returned to the user covers a wider range of items of 
interest, thus facilitating the browsing through the collection and shifting the 
burden of composing queries to the system instead of the user. The reverse process 
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is equally interesting (case B in Fig. 9.7). Here, the initial query is a combination 
of terms defined in the ontology, e.g. 'Artefacts from the 1 st century BC'. The 
knowledge base storing the ontology returns the items that fall into that category, 
as the first step (lB). The second step (2B) involves the extraction and clustering 
of the low-level multimedia features of this initial set, which is followed by 
multimedia retrieval, leading to the final step (3B). 

Final 
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® 

Fig. 9.7 A hybrid ontology and content-based search engine architecture follows [230]. 

At present, applications use some separate ontologies. For example, Allani et al. 

[231] defined an image content ontology De with a set of image concepts, a meta­

data ontology Dm addressed surrounding textual information about an image and a

visual feature ontology OF (see Fig. 9.8) with a set of low-level image features.

When a query image is introduced, image annotation is processed in order to

extract concepts and use them to select relevant features to apply during the

retrieval process. Query images are classified given their content into 6 classes.

On each class of query images 7 retrieval strategies are performed given feature

categories.

Ontology is also a method for organizing extra large-scale image collections, 
like the ImageNet dataset, created at Stanford University [232]. 

There are some advantages of ontology: 

• its application bridges the semantic gap;

• there is a special language for the user to ask a question;
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• ontology-based algorithms are easy to design and are suitable for applications
with simple semantic features.

The disadvantage is the necessity of preparing a special DB and annotating the
introduction. 

Fig. 9.8 Visual feature ontology [231]. 

9.5 Bag of Visual Words (BoVW) 

A simple approach to classifying images is to treat them as a collection of regions, 
describing only their appearance and ignoring their spatial structure which is very 
important in image representation. Similar models have been successfully used in 
the text community to analyse documents and are known as 'bag-of-words' 
models, since each document is represented by a distribution over fixed 
vocabulary. Using such a representation, methods, such as the probabilistic latent 
semantic analysis (pLSA) [233] and the latent Dirichlet allocation (LDA) [234] 
extract coherent topics within document collections in an unsupervised manner. 

Some time ago, Fei-Fei and Perona [235] and Sivic et al. [236] applied such 
methods to the visual domain using [233] and [234] in their algorithm. 

They modelled an image as a collection of local patches which are detected by 
a sliding grid and random sampling of scales. Each patch was represented by a 
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code-word from a large vocabulary of code-words sorted in descending order 
according to the size of their membership and representing simple orientations and 
illumination patterns. By learning they achieved a model that best represents the 
distribution of these code-words in each category of scenes. In the recognition 
process they identified all the code-words in the unknown image. The training and 
testing process is presented in Fig. 9.9 in a symbolic way. 

1 
«er ,,. 

l 

l 
{);: 

. ... :,-_.. 

Fig. 9.9 Flow chart of the algorithm follows [235]. 

They found the category model that matched best the distribution of the code­
words of the particular image. Their model was based on a principled probabilistic 
approach to learn automatically the distribution of code-words and the 
intermediate-level themes treated as texture descriptions. 

It is a method used not only for image retrieval but also for video analysis in 
order to recognize human actions. Bautista-Ballester et al. [237] applied a BoVW 
together with a multichannel SVM to the recognition of contextual information. 
The main goal of this method is to introduce object information relevant to the 
action into the BoVW-based representation of action. Each video contains one 
action, and one object per action is detected. The method selected one example 
image of each object per video and used this image to find the object along the 
whole video by matching a set of points previously extracted from the frame and 
the example image. 

Concerning the combination of features, six different descriptors are combined 
for three different pieces of contextual information, namely, 'people' (the 
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histogram of optical flow (HOF) and the histogram of oriented gradient 
(HOG3D)), 'objects' (HOF and HOG), and 'scene' (GIST and colour histograms). 
Their combination is accomplished using a multiple MIL approach, which is a 
concatenation of bag representations and classified with an LrRegularized Linear 
SVM. Information describing the object involved in an action uses a BoVW-based 
action recognition approach. At first, a set of points belonging to the object is 
detected by matching these points to an instance of the object. This process also 
labels the bounding boxes, which are later used to compute a new codebook - the 
dictionary employed to compute the relative frequencies in a Bo VW description-, 
and the information about the objects in the actions is preserved in consequence. 
Afterwards, such a codebook is employed to encode the video frames computing a 
BoVW description. Finally, both sources of information, motion and context are 
combined by means of a multikernel SVM. 

An advantage of the Bo VW model is that it is applicable in the case of complex 
indoor and outdoor images [23 8]. One of the notorious disadvantages of Bo W is 
that it ignores the spatial relationships among the patches, which are very 
important in image representation. Additionally, the system needs the preparation 
of codebooks, classes and Bayesian hierarchical models or an SVM classifier for 
each class. 
[2016_62] 

9.6 Relevance Feedback (RF) 

Relevance feedback [239], [29], [32] is an interactive technique based on feedback 
information between a user and a search engine by requiring the user to label 
semantically similar or dissimilar images with the query image, which are treat as 
positive and negative samples, respectively. During the last decade, various RF 
techniques have been proposed to involve the user in the loop to enhance the 
performance of CBIR [29], [32], [31]. 

Large modern DBs actively employ user's interaction for relevance feedback 
(RF). This is an interactive technique based on feedback information between the 
user and a search engine in which the user labels semantically similar or dissimilar 
images with a query image, which is treated as positive and negative samples, 
respectively. Images labelled in this way are incorporated into a training set. The 
general architecture of such systems is presented in Fig. 9 .10. 

A more precisely labelled training set boosts algorithms to build a wider 
boundary between cluster features. For this purpose either Support Vector 
Machine (SVM) is applied to estimate the density of positive feedbacks or 
regarding the RF as a strict two-class on-line classification problem or 
discriminant analysis is used to find a low dimensional subspace of the feature 
space, so that positive feedbacks and negative feedbacks (which we can see in a 
relevance feedback in Fig. 9.10) are well separated after projecting onto subspace. 
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During the last decade, various RF techniques have been proposed to involve 
the user in the loop to enhance the performance of CBIR [240], [241]. For 
example, Rui and Huang [227] suggest that for each of the retrieved images, the 
user provides a degree-of-relevance score, according to the user's feedback, such 
that the adjusted query q1k and the weights U, Vj and T,Jl_j" ( cf. (9.7)) better match the
user's information needs. The user may use a special scroll bars to interactively 
introduce values of weights which is a more effective mechanism that only binary 
distinction (as it is illustrated in Fig. 9.10). 
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Fig. 9.10 CBIR architecture with the relevance feedback (RF) mechanism. 

Whether a retrieval model can update its weights it can better distinguish the 
interactive approach from the isolated approach in which all the weights are 
fixed. Because of the fixed parameters, this approach models the user's 
information needs and perception subjectivity less effectively. For the interactive 
approach weights and query vectors are dynamically updated via relevance 
feedback which improves the efficiency of the system. 

Whereas, for instance, L. Zhang et al [29] propose a framework of subspace 
learning when the training images are associated with only similar and dissimilar 
pairwise constraints, i.e., Conjunctive Patches Subspace Leaming (CPSL) with 
side information, to explicitly exploit the user's historical feedback log data. It 
means that they minimize the distances between samples with similar pairwise 
constraints and to maximize the distances between samples with dissimilar 
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pairwise constraints simultaneously. Samples are whole images for which 
neighbourhood is calculated as locally linear embedding (LLE) [242]. 

An option of RF is the adaptive technique based on the ostensive model of 
developing information needs proposed by J. Urban [239]. 

Generally, an advantage of RF approach is the fact that the system can start 
with a limited number of samples because the user will provide next labelled 
samples. RF has been proved to be effective in boosting image retrieval accuracy. 
The disadvantage is that most current systems requires about several iterations 
before it converges to a stable performance level, but users are usually impatient 
and may give up after two or three tries. 

9.7 Semantic Template 

In [243] Chang et al. introduced the idea of the semantic visual template (SVT) to 
link low-level image features to high-level concepts for video retrieval. A visual 
template is a set of icons or example scenes or objects denoting a personalized 
view of concepts such as meetings, sunsets, etc. The feature vectors of these 
example scenes or objects are extracted for the query process. To generate SVTs, 
the user first defines the template for a specific concept by specifying the objects 
and their spatial and temporal constraints, the weights assigned to each feature of 
each object. This initial query scenario is put to the system. Through the 
interaction with users, the system finally converges to a small set of exemplar 
queries that 'best' match (maximize the recall) the concept in the user's mind. 

Firstly, the user submits a query image with a concept representing the image. 
After several iterations, the system returns some relevant images to the user. The 
feature centroids of these images are calculated and used as the representation of 
the query concept. Then the ST is defined as ST = {C,F, W} with C the query 
concept, F the centroid feature obtained, and Wbeing the weight applied to feature 
vectors [244]. During the retrieval process, once the user submits a query concept, 
the system can find a corresponding ST, and use the corresponding F and W to 
find similar images. 

A disadvantage of this system is the necessity of possessing a big lexical 
database [245]. 

9.8 WWW Image Retrieval 

Image search is based on comparison of metadata associated with the image as 
keywords, text, etc. and it is obtained a set of images sorted by relevance. The 
metadata associated with each image can reference the title of the image, format, 
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colour, etc. and can be generated manually or automatically. This metadata 
generation process is called audio-visual indexing. 

WWW search engines exploit the evidence from both the HTML text and 
visual features of images and develop two independent classifiers based on text 
and visual image features, respectively. The URL ofan image file often has a clear 
hierarchical structure, including some information about the image, such as image 
category. In addition, the HTML document also contains some useful information 
in the image title, ALT-tag, the descriptive text surrounding the image, hyperlinks, 
etc. 

However, the disadvantage is the fact that the retrieval precision is poor and as 
a result the user has to go through the entire list to find the desired images. This is 
a time-consuming process which always contains multiple topics which are mixed 
together. To improve the Web image retrieval performance, researchers are 
making an effort to fuse the evidence from textual information and visual image 
contents. 

For example, Rasiwasia at al. proposed a combination of a query-by-visual­
example (QBVE) with a query-by-semantic-example (QBSE) based on the 
probability of existance of a visual level represented as a set of feature vectors and 
the probability of a semantic concept by which an image is annotated. By using 
the Bayes rule and a similarity function based on methods measuring the distance 
between two probability distributions (such as the Kullback-Leibler Divergence, 
Jensen-Shannon Divergence, correlation, etc ), they retrieve images most similar to 
the semantic signature [186]. 

On the other hand Wang et al. combine the visual features of images with the 
signatures received from the visual semantic space. For each relevant keyword, a 
semantic signature of the image is extracted by computing the visual similarities 
between the image and the reference classes of the keyword using the earlier 
trained classifiers. The reference classes form the basis of the semantic space of 
the keyword. If an image has N relevant keywords, then it has N semantic 
signatures to be computed and stored oflline [187]. 

An advantage of the Web image retrieval is that some additional information 
on the Web is available to facilitate semantic-based image retrieval. 

9.9 Hybrid Semantic Strategy 

In this section, we address the information flow and the search engine in the 
hybrid sematic system (HSS). Fig. 9.11 presents a complex approach to our CBIR 
system whose particular elements have been described in detail in previous 
chapters. Here, we can analyse the information flow from introducing a new 
image up to the results displayed to the user. As it has been mentioned in the 
concept of the HSS (sect. 2.4), the system consists of several blocks. The 
separation of particular functions among applications, as shown in Fig. 9 .11, is not 
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self-evident, which is why the information flow in our CBIR system is explained 
below. In a graphical way this flow is illustrated in Fig. 9.12. 
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Fig. 9.11 The full structure of our hybrid semantic CBIR system. 

Classifying 
unit 

All the image content analysis is carried out by Matlab, but it is not a sequential 
process. Firstly, a new image is segmented (compare sect. 4.2.4 and sect. 3.3.1) 
and output parameters of this segmentation are sent to Oracle and stored in the 
database ( compare sect. 7.4). This procedure is implemented with the support of 
the following Matlab Toolboxes: Image Processing, Statistics and Wavelet. Data 
Base Toolbox suppmis the communication between Matlab and Oracle. The low­
level feature vectors are stored in the OBIEKT table in the DB. 

Secondly, the stored parameters pertaining to the DB are transferred to the 
classifying unit ( compare sect. 5.3) for object classification and later 
identification. 
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Fig. 9.12 Information flow in our hybrid semantic CBIR system. 
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In order to find the similarity of all the above-mentioned parameters describing 
the object, its feature vector has to be compared with those stored in the pattern 
library (cf. (5.17)). In the classification unit the list of classes is prepared in a 
semantic way, which means that everything is designed for the user to operate the 
query-answer process in the most natural and evident way. People tend to attribute 
a designation to the objects they can see. Ifwe can see a triangular object, we shall 
more frequently classify it as a roof than other parts of a house, whereas a dark 
rectangular object will be usually recognized as a window. The part of the 
identification process which attributes the objects is based on artificial intelligence 
algorithms and soft computing. This process is implemented in the classification 
module of the system (see sect. 5.3). 

The next stage involves the system for asking-answering user's queries. For 
this purpose the user's interface ( compare sect. 8.2) cooperates with the matching 
engine. 

The matching engine for the HSS carries out three different kinds of 
comparisons. First of all, the comparison concerns the asymmetric signature as it 
has been described in detail in sect. 6.4 (cf. (6.9) and (6.10)). 

If the maximum component of (6.10) is bigger than a given threshold (a 
parameter of the search engine), then image h is rejected, i.e., not considered 
further in the process of answering query l

q
. Otherwise, we proceed to the next 

step and we find the spatial similarity simpcv (9.8) of images l
q 

and h, based on 
the Euclidean, City block or Mahalanobis distance between their PCVs as: 

3 

simPcvU
q
,Ib)=l- L)PCV

b; -PCV
q
;)2 

i=l 

(9.8) 

This comparison takes into account the spatial information which is very 
important and rather rarely considered in other systems. The most evident example 
is the comparison of two mirror images - they have equal numbers of objects and 
exactly the same objects. Only the spatial information provides the distinction 
between them. 

If the similarity (9.8) is smaller than the threshold (a parameter of the query), 
then image h is rejected. The order of steps (6.10) and (9.8) can be reversed 
because they are the global parameters and hence can be selected by the user. 

Next, we proceed to the final step, namely, we compare the similarity of the 
objects representing both images l

q 
and lb. For each object o

q
; present in the 

representation of the query lq, we find the most similar object obJ of the same class, 
i.e. L

q
; = LbJ· If there is no object obJ of the class L

q
;, then sim06 ( O

q
;, ob) = 0.

Otherwise, similarity sim06 (o
q
;,ob) between objects of the same class is computed

as follows:

sim0b
(o

q;,ob)=l- I_(Fo
q;/-Fq,J/)

2 

I 

(9.9) 
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where I is the index of feature vectors F0 used to represent an object. In order to 
find this similarity, we have to eliminate recursively the pairs of the most similar 
objects from the process of further comparison. This elimination protects us 
against matching two or more objects from one image with only one object from 
the other. The idea is shown in Fig. 9.13, where without this elimination objects 
O

q 1 and O
q2 would be matched to the object Ob2 • This process, described by 

Mucha and Sankowski [246], is realized according to the Hungarian algorithm for 
the assignment problem implemented by Munkres. 

Fig. 9.13 The method for object comparison, where Iq- query and h - an image from the DB. 

Thus, we obtain the vector of similarities between query I
q 

and image lb : 

(9.10) 

where n is the number of objects present in the representation of Iq. In order to 
compare images h with the query I

q
, we compute the sum of sim0b (oqb ob) and 

then use the natural order of the numbers. Therefore, the image his listed as the 
first in the answer to the query I

q
, for which the sum of similarities is the highest. 

Fig. 9 .14 presents the main elements of the search engine interface with 
reference images which are present in the CBIR system. The main (middle) 
window displays the query signature and PCV, and below it the user is able to set 
threshold values for the signature, PCV and object similarity. At this stage of 
system verification it is useful to have these thresholds and metrics at hand. In the 
final internet version these parameters will be invisible to the user, or limited to 
the best ranges. The lower half of the window is dedicated to matching results. In 
the top left of the figure we can see a user designed query comprising elements 
whose numbers are listed in the signature line. Below the query there is a box with 
a query miniature, a graph showing the centroids of query components and, further 
below, there is a 3D plot with PCV components. In the bottom centre windows 
there are two elements of the same class ( e.g. a roof) and we calculate their 
similarity. On the right side there is a box which is an example of PCA for an 
image from the DB. The user introduces thresholds to calculate each kind of 
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similarity. For the optimal assigned thresholds a maximum of 11 best matched 
images from our DB are presented by the search engine. 
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Fig. 9.14 A main concept of the hybrid search engine. 

The strong point of our system, as the results will show below, is its semantic 
context which limits the semantic gap by taking into account middle-level 
features, such as objects, their numbers and spatial locations in an image. 
Additionally, we offer the user the GUI to compose their query by which we 
eliminate the necessity oflooking for a QBE. 

9.9.1 Retrieval Results 

In this section, we conduct experiments on the colour images generated by the 
user-designed query (UDQ), full images taken from our DB and we will compare 
our results with another academic CBIR system and the Google image search 
engine. All images are in the JPG format but in different sizes. Only in order to 
roughly compare our system's answer to the query, we used SSIM (Universal 
image similarity index) proposed by Wang and Bovik [247], being aware that it is 
not fully adequate to present our search engine ranking. SSIM is based on the 
computation of three constituents, namely the luminance, contrast and structural 
component, which are relatively independent. In the case of a big difference of 
images the components can be negative which may result in a negative index. 
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Although there are different sizes of matched images, all of them are resized to 
the query resolution. 

Even though we mentioned two most frequently used measurements evaluated 
the performance of the system, namely, recall ( cf. (2.2)) and precision ( cf. (2.1 )), 
below we present the results in the form of images not as graphs, because for the 
three-stepped search engine there is not one similarity measure. It means that there 
is not a unique answer if that particular image belongs to the positive condition or 
negative condition set in a confusion matrix. 

9.9.1.1 Results for User Designed Query 

A query is generated by the UDQ interface and its size depends on the user's 
decision, as well as the number of elements (patches). The search engine displays 
a maximum of 11 best matched images from the DB. Although the user designed 
few details, the search results are quite acceptable (see Table 9.1 and Table 9.2). 

Table 9.1 The retrieval results obtained for two different PCV similarities calculated based on: 

(1) the Euclidean distance, (2) the City block distance (for thresholds: signature = 17, PCV = 3.5,

object = 0.9) attributed to the universal image similarity index.
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Table 9.2 The retrieval results obtained for PCV similarity calculated based on the City block 

distance (for thresholds: signature = 20, PCV = 4, object = 0.9) attributed to the universal 

similarity image index. 
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9.9.1.2 Results for Full Image 

Applying the UDQ is not obligatory. The user can choose their QBE from among 
the images of the DB if they find an image suitable for their aim. Then the 
matching results are presented in Table 9.3. 

Table 9.3 The retrieval results obtained for PCV similarity calculated based on the Euclidean 
distauce attributed to the universal similarity image index when. 
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9.9.1.3 Comparison to Another Academic CBIR System 

We decided to compare our results with the Curvelet Lab system which is based 
on the Fast Discrete Curvelet Transform (FDCT), developed at Caltech and 
Stanford University [248] as a specific transform based on the FFT. The FDCT is, 
among others, dedicated to post-processing applications, such as extracting 
patterns from large digital images, detecting features embedded in very noisy 
images. The Curvelet Lab system additionally offers image retrieval, based on 
such transforms as: DCT (Discrete Cosine Transform), LBP (Local Binary 
Pattern), colour and combine. Fig. 9. 15 and Fig. 9.16 present the results obtained 
for a joint set of images, meaning ours and Curvelet Lab system's. 

Fig. 9. 15 An example of the Curvelet Lab system retrieval for our query. (Efficiency according 
to Curvelet Lab system). 

9.9.1.4 Comparison with the Google Image Search Engine 

We also decided to compare our results with the Google image search engine. We 
have opted for this comparison because these systems match images without 
annotations, which has been the most important condition. Systems using 
annotations belong to quite a different category while our focus is on pure image 
matching. Results are presented in Table 9.4: 
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Fig. 9.16 An example of the Curvelet Lab system retrieval for our query. (Efficiency according 
to Curvelet Lab system). 

Table 9.4 The retrieval results obtained with using the Google image search engine for two our 
queries attributed to the universal similarity image index. 
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9.9.1.5 Results for SIFT Method 

We have opted for the comparison images retrieved by our search engine 

(presented in Table 9.1) with images retrieved by the SIFT method (presented in 

Table 9.5) because both systems match images without annotations, which has 

been the most important condition. Systems using annotations belong to quite a 

different category while our focus is on pure image matching. 
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Table 9 .5 The retrieval results received based on the SIFT method. 

9.lODeep Learning (DL)

Deep learning (DL) is a set of algorithms that attempt to model high level 

abstractions in data, for instance, images. Some data representations are better 

than others at simplifying the learning task ( e.g., face recognition). One of the 

promises of deep learning is replacing handicrafted features with efficient 

algorithms for unsupervised or semi-supervised feature learning and hierarchical 

feature extraction. Research in this area attempts to create models from large-scale 

unlabelled data. These works are inspired by advances in neuroscience, especially 

in the functioning of the brain. Various DL architectures, such as deep neural 

networks, convolutional deep neural networks, deep belief networks and recurrent 

neural networks have been applied in image processing. DL in the context of 

artificial neural networks was introduced by Igor Aizenberg and colleagues in 

2000 [249]. In sect. 5.4 we have mentioned how the convolution neural network is 

built. 

DL algorithms are based on distributed representations and exploit the idea of 
hierarchical explanatory factors where higher level, more abstract concepts are 
learned from the lower level ones. These architectures are often constructed with a 
greedy layer-by-layer method. 

Wan et al. [40] proposed a deep learning framework for CBIR, which consists 
of two stages: (i) training a deep learning model in an architecture ofCNNs from a 
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large collection of training data (ILSVRC-2012); and (ii) applying the trained 
deep model, based on the basics of CNNs, to learning feature representations of 
CBIR tasks in a new domain. For feature representation they used three schemes: 
(i) direct, (ii) refining by similarity learning, and (iii) refining by model retraining.

The great advantage of deep learning is its capability to deal with large scale
image retrieval tasks and it is considered one of the most powerful techniques in 
AI. It seems to have a great potential when we deal with a big classification or 
retrieval task comprising of even over a million images or video scenes. Certainly, 
DL will dynamically develop in the nearest future. 

The disadvantage of deep CNNs is the fact that they require a huge amount of 
data samples to train networks efficiently. Although many benchmarks manage to 
create abundant samples to be used for training, they lack efficiency when trying 
to train CNNs to their full potential [249]. Additionally, today's models push the 
limits of hardware capacity, can take weeks to train, and are carefully fine-tuned 
for that last push to achieve state-of-the-art results. While deep models distinguish 
themselves by being able to learn high level abstract representations from data 
alone, they are prone to having many minute detail parameters. Those parameters 
can be manually set with reasonable effort for decent results, but must be carefully 
considered to push the model to its limits [250]. 

Recently, research has been made into the stability of CNN through different 
techniques [251]. The point is how far a CNN trained on noisy images might 
incorrectly classify the next images. 
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