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5 Object Recognition 

5.1 Introduction 

Object recognition is a process of identifying a specific object contained in an 
image. The goal of object recognition is to detect objects in images using different 
models and identify these selected objects by classifying them. Additionally, of 
interest is how these objects are located relative to each other in the image. 

As we have mentioned above, in the first stage of CBIR construction we are 
interested in the recognition of objects segmented in the pre-processing. At 
present, there are tendencies to use different methods to separate foreground 
objects from the monolithic background, beginning from separate colour and 
texture regions, as it was presented by Li and Shapiro in [132], through the use of 
wavelets [133] to morphological operations [120]. 

In the case of more complicated images, there is a need to recognize the 

foreground objects, sometimes overlapped by others which are found against 

puzzling, multi-object background, as we can see in Fig. 2.6. Obviously, such 

images are more challenging and the recognition process forces us to use different 

methods to obtain proper classification. 

The semantic approach to images, and particularly object recognition, requires 

image/object classification. Moreover, extracting semantically coherent 

regions/objects is in itself very challenging. Probabilistic representations can 

potentially provide an alternative to the above-mentioned methods, allowing for 

rich descriptions with limited parametrization. 

5.2 Object Classification 

Image classification has often been treated as a pre-processing step for speeding­
up image retrieval in large databases and improving accuracy. This problem is 
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crucial for multimedia information retrieval in general, and for image retrieval in 
particular. Usually, the classification problem can be defined as follows: 

Definition 5.1. (Object classification) 

Let Q be a complete set of objects which we want to automatically recognize. 
Then we want to define a division into k separate classes c1, ... ,ck. It means that 
there must be a division function 8, such as: 

8:Q�L = {l, ... ,k} (5.1) 

which assigns each object from the set Q to a particular class. We do not know the 

assignment rules, the only thing we know is the Q subset that we call the learning 

or training subset. 

There are a number of standard classification methods in use, such as: k-NN 
[134], SVM [135], NaYve Bayes (NB) classifier [136], neural network [137], and 
others [13 8]. Having surveyed these methods, we started our classification from 
the simplest algorithm, namely, the similarity to the pattern which compares the 
features of a classified object with the set of pattern features which define classes. 

Object classification is so important in the context of CBIR because it is used 

for several purposes, for example [139]: 

1. to compare whole images. Specifically, an algorithm which describes a spatial
object location needs classified objects.

2. to help the user form a query in the GUI. The user forms a query choosing
graphical objects semantically collected in groups.

3. to compare image objects coming from the same class as a stage in the image
retrieval process.

Generally, the classical classification algorithms have been adapted to image
recognition. While supervised classification is more systematic, the availability of 
comprehensive training data is often scarce. In particular, the veracity of "ground 
truth" in image data itself is a subjective question. 

5.2.1 Object Similarity/Dissimilarity Metrics 

Definition .5.2. (Metrics Properties) 

Generally, when we analyse a metric space we assume by default that four basic 
conditions are satisfied: 

• Non-negativity: d(x,y) 2:0;
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• Identity: d(x,y) = 0 <=> x =y; 
• Symmetry: d(x,y) = d(y,x); (5.2) 
• Triangle inequality: d(x,y) + d(y,z) 2- d(x,z) for any points x,y,z of the set.

These conditions express our common notions of distance. For example, the
distance between distinct points is positive and the distance from point A to B is 
equal to the distance from B to A.

We may also need to find the distance between two vectors, namely, feature 
vectors. Then, in a normed vector space (X, 11·11) we can define a metric onXby 

d(x,y) = llx-yll (5.3) 

A metric defined in such a way is translation invariant and homogeneous. The 
most widely used similarity measure is the Euclidean measure. It can be applied to 
measure the distance between two points or between two feature vectors. 

Object similarity can be seen as a region-based similarity (compare sect. 3.8), 
where each object is described by its own feature vector. 

The simplest approach to object similarity/dissimilarity is the comparison of 
feature vectors of two objects. In the context of object recognition, we are more 
interested in object classification than in plain object comparison. However, the 
most common approach is the comparison of two object feature vectors x and y 
using, for instance, the Euclidean (5.1) or Minkowski (5.3) metric. In fact, each 
feature in a vector is compared individually and then combined. This is a strong 
hypothesis whose main advantage is allowing parallel processing of all the 
features and simplifying the comparison operations by reducing the 
dimensionality of the comparison to be carried out. 

This hypothesis can be best verified for the features of the same nature, i.e. 
when the distributions of values are of the same nature. In reality, it is difficult to 
build a global distance or similarity measure in a unitary space. In fact, the first 
step to do so is the normalization of the ranges of all features to [0,1]. As a final 
step, the n-dimensional vector is summarized into a scalar in order to sort the 
images of the database and find the more similar ones. 

Many measures exist for quantitative variables, mostly constructed in an 
additive way after counting the differences for each variable separately. The basic 
metrics useful for our purpose are presented in Table 5 .1: 

Table 5.1 Dissimilarity Metrics for Quantitative Data in �m . 

Metric name Dissimilarity d(x,y) No. 

Euclidean ✓cx-y)T (x-y) (5.1) 
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Weighted Euclidean jcx-y)Tdiag(wf)(x-y) (5.2) 

e. m 

Minkowski 
P L Ix; -ydP, p � 1, p =t- 2 (5.3) 
'\ i=l 

Mahalanobis .J(x-y)T C-1(x-y) (5.4) 

C is covariance matrix 

m 

City block L Ix; -yd (5.5) 
i=1 

Max norm max; Ix; -Yi I (5.6) 

5.2.2 Decision Trees 

In the construction of decision trees [140] a measure of discrimination is used 
in order to rank attributes and select the best one. The construction of a decision 
tree is equivalent to a restriction of the whole set of attributes which describes the 
data to a set of pertinent attributes. Each vertex of a binary tree is associated with 
an attribute [ 141]. 

From the more formal point of view, a decision tree represents a function that 
takes as input a vector of attribute values and returns a single output value as a 
'decision'. We consider a list of attributes of our objects {x 1,x2, . . .  ,xr } and classes 
C = { c 1, ••. , c1c}. A learning subset contains examples associated with both values 
of the attributes and a class [140]. 

Inductive learning regarding a given domain is based on a set of examples. 
Each example is a case already solved or completely known. It is associated with a 
pair [ description, class] where the description is a set of pairs [ attribute, value] 
which, in turn is the available knowledge. The class of the example is the decision 
( or category, or solution ... ) associated with the given description. Such a set of 
examples is called a training set. Samples considered as examples can be taken 
from a database, with their attributes and classes as descriptors of each case. The 
aim of the inductive process is to find a general rule to determine the relation 
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between values of attributes and classes in C. The inductive method is based here 
on a decision tree from the learning subset. 

'a�uoi 

�nt on�u 

!/ \irn e 

i;ront �omu 

podmur ra, 
lfn J\ug1 

Fig. 5.1 Example of a decision tree pruned to the 7'h leveL We omitted the feature values in 
nodes for the clarity of the figure. 

The decision tree construction methods are based on the hypothesis that the 
value for the class is equally distributed. Thus, we have to balance the number of 
objects of each class by randomly selecting a subset of the whole development 
dataset because the process of tree construction is very sensitive to the lack of 
representation of certain important attributes of the minority class or imbalanced 
classes. 

Each attribute x
1 

can be either symbolic, numerical, or fuzzy. In our case, 
attributes are numerical: real and complex. Hence, there exist many constructions 
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depending on attribute types and class assigned methods, i.e. many kinds of 
decision trees (DT) [142], [143], [144]: symbolic DT, binary DT [145], fuzzy DT 
[146], etc. 

5.2.3 Nai've Bayes (NB) classifier 

NaYve Bayes (NB) is a simple technique for constructing classifiers: models that 
assign class labels to problem instances, represented as vectors of feature values, 
where the class labels are drawn from some finite set. It is not a single algorithm 
for training such classifiers, but a family of algorithms based on a common 
principle: all NB classifiers assume that the value of a particular feature is 
independent of the value of any other feature, given the class variable. An NB 
classifier considers each of these features to contribute independently to the 
probability, regardless of any possible correlations between them. 

An advantage of the NB is the fact that it only requires a small amount of 
training data to estimate the parameters necessary for classification. For some 
types of probability models, NB classifiers can be trained very efficiently in a 
supervised learning setting [136]. 

In many practical applications, including image processing, parameter 
estimation for NB models uses the method of maximum likelihood; in other 
words, one can work with the NaYve Bayes model without accepting Bayesian 
probability or using any Bayesian methods. 

Generally, the NB is a conditional probability model: given a problem instance 
to be classified, represented by a vector x = (x1, •.• , Xn) representing some n

features (independent variables); it assigns to this instance probabilities: 

(5.7) 

for each of M possible classes. Using Bayes' theorem, the conditional probability 
can be decomposed as: 

(C I ) = p(Cm)p(xJCm)
p 111 X 

p(X) 
(5.8) 

In practice, there is interest only in the numerator of that fraction, because the 
denominator does not depend on C and the values of the features are given, so that 
the denominator is effectively constant. From the definition of conditional 
probability we know that: 

p(Cm I X1, • .. , Xn) = p(C111)P(X1, ... , Xn I Cm) 

Assuming conditional independence of each feature: 

(5.9) 
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(5.10) 

n 

0( p(Cm) n p(xi I Cm) 
i=l 

Based on this assumption, a classification can be constructed where the 
function that assigns a class labelj) = Cm for some m looks as follows: 

n 

y = arg max p (Cm) n p(xd Cm) 
mE{l, ... ,M} 

i=l 

(5.11) 

Despite the fact that the far-reaching independence assumptions are often 
inaccurate, the Naive Bayes classifier has several properties that make it 
surprisingly useful in practice [147]. In particular, the decoupling of the class 
conditional feature distributions means that each distribution can be independently 
estimated as a one-dimensional distribution. This helps to alleviate problems 
deriving from the curse of dimensionality, namely high-dimensional space of data 
sets which scale exponentially with the increase of the feature number [148]. 

5.2.4 Support Vector Machine (SVM) 

Support Vector Machine (SVM) is a non-probabilistic binary linear classifier 
introduced by Cortes and Vapnik [135] in 1995. An SVM model is a 
representation of samples as points in a space, mapped so that the examples of the 
separate categories are divided by a clear gap that is as wide as possible [149]. 
New examples are then mapped into the same space and predicted to belong to a 
categ01y based on whichever side of the gap they fall on. 

The SVM constructs a hyperplane or a set of hyperplanes in a high- or infinite­
dimensional space, which can be used for classification. Intuitively, good 
separation is achieved by the hyperplane that has the largest distance to the nearest 
training-data point of any class (the so-called functional margin), since in general 
the larger the margin the lower the generalization error of the classifier. 

For easy visualization, the case of a 2D input space can be considered. Data are 
linearly separable and there are many different hyperplanes that can perform 
separately (Fig. 5.2). Actually, for XE ne, the separation is performed by 'planes' 
w 1 x1 + w2 x2 + b = 0, which is the decision boundary. 

There are many functions that can be used to find the optimal separating 
function without knowing us the underlying probability distribution. In the case of 
a classification of linearly separable data, the idea is as follows: among all the 
hyperplanes that minimize the training error (i.e, empirical risk) find the one with 
the largest margin M. 
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y 
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."'- X _,,., 
'---..... 
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class II 

Maximium 
margine 

X 

Fig. 5.2 The optimal hyperplane and margins M for an SVM trained with samples from two 

classes. The samples on the margin are called support vectors. 

By using given training examples, during the learning stage, the SVM finds 
parameters w = [w 1 w2 ••• wnf and b of a discriminant or decision function 
d(x,w,b): 

11 

d(x,w, b)=wr 
x+b= LW;X; +b, 

i=l 

(5.12) 

where: x, WE lffi.11
, and the scalar b is called a bias. The dashed separation lines in 

Fig. 5.2 represent the line that follows from d(x,w, b) = 0. 
We can notice that the hyperplane is in the canonical form with respect to 

training data XE X. If 

minlwrx+ bi =l 
XjEX 

(5.13) 

and if the canonical hyperplane has a maximum margin M then this hyperplane is 
located in the middle of M. From the geometric properties the margin can be 

2 
described as M = 

II wll 
where: ]]w]] = ✓wr w = ✓� w} . If llwll is minimal, Mis a 

maximum. 
SVMs belong to a family of generalized linear classifiers. Their special 

property is that they simultaneously minimize the empirical classification error 
and maximize the geometric margin; hence they are also known as maximum 
margin classifiers. 
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5.2.5 Fuzzy Rule-Based Classifier (FRBC) 

The Fuzzy Rule-Based Classifier FRBC uses fuzzy sets for reasoning and has 
been introduced by Ishibuchi [150]. 

Definition 5.3. (Fuzzy RulesBased Classifier -Ishibuchi [150]) 

Let us consider an M-class classification problem in an n-dimensional 
normalized hyper-cube [0,l]". For this instance, fuzzy rules of the following type 
are used: 

Rule R
q 

: If x 1 is Aq1 and ... and Xn is Aq
n then Class L

q 
with CF

q 
, (5 .14) 

where R
q 

is the label of the lh fuzzy rule, x = (x1, .. ,,xn) is an n-dimensional 
feature vector, A

qi is an antecedent fuzzy set (i = 1, ... ,n), L
q 

is a class label, CFq is 
a real number in the unit interval [0, 1] which represents a rule weight. The rule 
weight can be specified in a heuristic manner or it can be adjusted, e.g., by a 
learning algorithm introduced by Ishibuchi et al. [151], [152]. 

The n-dimensional vector A
q 

= (A
q1, ... , A

q
n) is used to represent the antecedent 

part of the fuzzy rule R
q 

in (5.14) in a concise manner. 
A set of fuzzy rules S of the type shown in ( 5 .14) forms a fuzzy rule-based 

classifier. When an n-dimensional vector Xp = (x
p 1, ... ,X

pn) is presented to S, first the 
compatibility grade of x

P 
with the antecedent part A

q 
of each fuzzy rule R

q 
in S is 

calculated as the product operator 
µA 

(xp) = µA 1 
(Xp1) x ... x µA (Xpn) for R

q 
E S (5.15) 

q q qn 

where µAq; (.) is the membership function of A
qi · Then a single winner rule Rwcx

v) 

is identified for Xp as follows: 
w(x

p
) = argmax{CFq x µA (xp) I Rq ES}, 

q 
q 

where w(x
p
) denotes the rule index of the winner rule for Xp, 

(5.16) 

The vector Xp is classified by the single winner rule Rw(x
p) belonging to the

respective class. If there is no fuzzy rule with a positive compatibility grade of Xp 
(i.e., if xP is not covered by any fuzzy rules in FC), the classification of xP is 
rejected. The classification of Xp is also rejected if multiple fuzzy rules with 
different consequent classes have the same maximum value on the right-hand side 
of (5.16). In this case, x

P 
is on the classification boundary between different 

classes. We use the single winner-based fuzzy reasoning method in (5.16) for 
pattern classification. 

An ideal theoretical example of a simple three-class, two-dimensional pattern 
classification problem with 20 patterns from each class is considered by Ishibuchi 
and Nojima [150]. There three linguistic values (small, medium and large) are 
used as antecedent fuzzy sets for each of the two attributes, and 3 x3 fuzzy rules 
are generated. 

FC: fuzzy rule-based classifier with nine fuzzy rules [150] 
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R 1 : If x 1 is small and x2 is small then Class2 with 1.0, 
R2 : If x 1 is small and x2 is medium then Class2 with 1.0, 
R3 : If x 1 is small and x2 is large then Classl with 1.0, 
R4: Ifx 1 is medium and x2 is small then Class2 with 1.0, 
R5 : If x 1 is medium and x2 is medium then Class2 with 1.0, 
R6: If x 1 is medium and x2 is large then Class 1 with 1.0, 
R7 : If x 1 is large and x2 is small then Class3 with 1.0, 
R8: If x 1 is large and x2 is medium then Class3 with 1.0, 
R9: Ifx1 is large and x2 is large then Class3 with 1.0. 

@ Class 1 □ Class 2 I:::.. Class 3 

0.0 1.0 

Fig. 5.3 An ideal example of a fuzzy rule-based classifier FC followed by Ishibuchi and Nojima 

[150]. 

5.3 Object Classification for the Hybrid Semantic System 

For the Hybrid Semantic System we have to classify objects in order to: 

1. use particular classes as patterns. We store these data in DB to use them in
CBIR algoritluns.

2. specify a spatial object location in our system. In our system spatial object
location in an image is used as the global feature. The object's mutual spatial
relationship is calculated based on the algorithm adopted from the concept of

principal component analysis (PCA), proposed by Chang and Wu [14] and later
modified by Guru and Punitha [15], to determine the first principal component
vectors (PCVs) (details in sect. 5.5).
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3. to help the user ask a query in GUI. The user chooses for a query graphical
objects semantically collected in groups.

4. compare image objects coming from the same class as a stage in the image
retrieval process (see details in sect. 9.9).

Thus, the feature vector y (cf. (4.4)) is used for object classification. So far,
four classifiers on two levels have been implemented in this system. At the first 
level, we have implemented three classifiers, namely similarity to pattern, decision 
tree and Naive Bayes. We have known that there is no universal classifier or even 
special dedicated classifier for such a challenging problem as image recognition. 
In the light of all of the above, we decided to apply four classifiers, each based on 
a different mechanism to decrease classification errors. 

Additionally, a fuzzy rule-based classifier (FRBC) [153], [154] is used in order 
to identify the most ambiguous objects. According to Ishibuchi, this classifier 
decides which of the three classes a new element belongs to. These three classes 
are taken from the three above-listed classifiers. 

We are aware of the fact that there can always exist some elements which are 
misclassified, but their number has been significantly minimised by means of a 
two-level classification. 

We have to classify objects in order to use them in a spatial object location 
algorithm and to offer the user a classified group of objects. 

5.3.1 Similarity to pattern 

The basic approach to classification is the comparison of an object feature vector y 
to the previously prepared patterns Pk for each class. Patterns can be created in 
different ways. The simplest method is the calculation of the average value of each 
vector component. The designed classes/ patterns should attribute objects in 
accordance with human perception to M semantic classes. The subsets of the most 
representative objects are used to define particular class are also used as learning 
subsets. In order to compare the object vector with a pattern we apply the 
Euclidean metric, where p=2 and Minkowski metric, where p=3:

I' 

d(y,Pk ) = L;lk(yi )Jy(yi )- Pk (Y1 t (5.17) 
i=l 

where: k - pattern or class number, 1 :::; i :::; r. All pattern vectors are normalized. A 
new object is classified to a class for which dis the minimum [155], [42]. 

We also assume weights ;k(i) for all pattern features where: i is the number of 
feature, 1 :::; i:::; r. Weights for real features are the coefficients of variation 
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(5.18) 

in order to reflect the dispersion of each feature in the subset selected as a pattern 
(where CJ - standard deviation and x - mean value for each feature). However, 
Zemike's moments are complex features, hence to obtain the real weight we apply 
the formula [139]. 

i; (i) =
2 2 

(J" Re + (J" Im 
-2 -2 

XRe + XIm 
(5.19) 

where standard deviations and means are calculated separately for real and 
imaginary parts of complex moments. 

For all predefined classes we have created a class (pattern) library (also stored 
in the DB (see Chapter 6)) which contains information about pattern types, feature 
weights and objects belonging to learning subsets [11]. 

We decided to classify separately objects with and without texture to reduce the 
misclassification between these two groups. This division diminishes the number 
of classification errors resulting from the fact that the patterns for non-textured 
objects give smaller values d because eight texture components are equal to 0. 

The methods used to find a similarity/dissimilarity among images or objects are 
insufficient because an assignment to a particular class aggregates some 
information, hence these metrics are not distinctive enough. 

5.3.2 Decision Tree - Example of Implementation 

As it was carefully explained in subsect 5.2.2 the construction of decision trees 
differs from finding similarities with a measure of discrimination ranks attributes 
and select the best one. We construct our trees using the Matlab function 
Classification Tree.fit (training_set,classes). 

In order to avoid high error rates resulting from as many as 40 classes we use 
the hierarchical method. The more general division is created by dividing the 
whole data set into five clusters applying k-means clustering. The most numerous 
classes of each cluster constituting a meta-class are assigned to five decision trees, 
which results in 8 classes for each one. 

The second stage of the method, after constructing the trees, is the 
classification of a new object on the basis of its values of the feature vector. This 
stage is also realized by the Matlab function predict(tree,X_new). 
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5.3.3 FRBC - Example of Implementation 

In multi-class systems, such as ours, an FRBC can be used as a second level 
classifier which has a decisive role in the ambiguous classification at the first 
level. It means that when an object has not been classified unequivocally to the 
same class by similarity to pattern metrics, decision trees, NB classifiers at the 
first stage, the FRBC is applied and it decides definitely about the object class. 

The theoretical method presented by Ishibuchi does not answer the question 
how to construct membership functions for the crisp, real data, especially those 
corresponding to linguistic values. Hamilton and Stashuk [156] gave a suggestion 
for the construction of membership functions based on the standardized residual 
analysis but they applied it to continuous data. 

However, we solved this problem calculating the mean value x and standard 

deviation a for the elements of each of the three classes suggested by the classfi­
ers of the first level. The membership function of each class is constructed as a 

trapezoidal function (see Fig. 5.4), where points b and c are in the ±a/2 distance 

from the mean value x, and the basis points a and dare ±a distant from the mean 
value [51]. 

Fig. S.4 Exemplification of a membership function calculated on the basis of statistical class 
parameters. 

Then, we divide the ranges of features x 1 and x2 into three equal intervals. 
Next, we compare the mean value of a particular class to correspondent intervals. 

The effect is visible in Fig. 5.5 for the horizontal and vertical axes. 

Table S.2 Classification boundaries for a fuzzy rule-based classifier. 

Large S1L2➔fu M1L2➔R,, L1L2➔R9 
Medium S1M2➔R2 M1M2➔Rs L1M2➔Rs 

X2 
Small S1S2➔R1 M1S2➔Ri L1S2➔R1 

Small Medium Larf(e 

X1 

In each case, the fuzzy rule-based classifier is constructed automatically by 
matching the membership function related to the proper linguistic value, resulting 

in the right class for each rule. Table 5.2 resembles the arrangement of rules to 
feature ranges. The classifier FC2 corresponds to the example seen in Fig. 5.5: 

FC2 : fuzzy rule-based classifier with nine fuzzy rules 

R1 : If x 1 is small and x2 is small then non-defined with 1.0, 

R2 : If x 1 is small and x2 is medium then balcony with 1.0, 
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R3: If x 1 is small and x2 is large then arc with 1.0, 

R4: If x 1 is medium and x2 is small then non-defined with 1.0, 

R5: lfx1 is medium and x2 is medium then balcony with 1.0, 

R6: lfx1 is medium and x2 is large then non-defined with 1.0, 

R7 : If x1 is large and x2 is small then pillar with 1.0, 

R8: If x 1 is large and x2 is medium then non-defined with 1.0, 

R9: If x 1 is large and x2 is large then non-defined with 1.0. 

The winner is the rule for which the product operator is maximum ( cf. ( 5 .15)), 
as follows: 

The fuzzy rule-based classifier is stable, irrespective of attribute selection. 
Hence, we treat it as a "decisive voice" in the case of differences between 
similarity to pattern metrics, decision tree and NB classifications. 

Object class 381 

arc 

OK 

The most distinguished parameters 

Mernbershrp runchons 

Fig. 5.5 Classification example [51]. The new element marked by the full green square is recog­
nized as an arc among classes: arc, pillar and balcony. Membership functions are represented by 
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solid colour lines and linguistic intervals are drawn in dashed lines. In this case, x1 is orientation 
and x2 the real part of Zernike's moment. 
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Fig. 5.6 Classification example [51). The new element marked by the full green square is recog­

nized as an arc among classes: arc, pillar and balcony. Membership functions are represented by 

solid colour lines and linguistic intervals are drawn in dashed lines. In this case, x1 is area and x2 

the real part of Zemike' s moment. 

5.4 Convolutional Neural Networks 

The recently developed method for the classification of large image collections 
appears to be the deep learning based on convolutional neural networks (CNN). 
Generally, neural networks (NNs) have been used for image classification since 
80s, for instance, the Hopfield NN. 
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Deep neural networks (DNN) and convolutional neural networks (CNN), first
introduced in 2006, are artificial neural networks (ANN) with multiple hidden
layers of units between the input and output layers and which can model complex
non-linear relationships. 

Because ConvNets are designed to process data that come in the form of
multiple arrays, they at once have been applied to a colour image composed of
three 2D arrays containing pixel intensities in the three colour channels [157]. 

One very efficient property of convolutional layers is that they are easily
organisable. We can 'feed' the output of one convolutional layer into another.
With each layer, the network can detect higher-level, more abstract features. 

yo

Fig. 5.7 The simplest 2D segment of a CNN. For each patch of samples - neurons X[o,1J (for pixels 
in image), A computes features [158]. 

The output in terms of inputs can be presented as:

Yo,o 
= A (xa,o X1,o) (5.20)

Xo ,1 X1,1 

in the simplest case which can be seen in Fig. 5.7, and more generally, as:

(5.21)

The architecture ofa typical ConvNet (see Fig. 5.10) is structured as a series of
stages. The first few stages are composed of two types of layers: convolutional
layers and pooling layers, as Fig. 5.8 depicts. Convolutional layers are often
interweaved with pooling layers. In particular, there is a kind of layer called a
max-pooling layer that is extremely popular. A max-pooling layer takes the
maximum of features over small units of a previous layer. The output tells us if a
feature was present in a region of the previous layer, but not precisely where.
Max-pooling layers are a kind of a 'zoom-out'. They allow later convolutional
layers to work on larger sections of the data, because a small patch after the
pooling layer corresponds to a much larger patch before it. 

l 

1 

l 

] 

1 

] 

j 
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Fig. 5.8 A - convolutional layer, B - pooling layer. 

Units in a convolutional layer are organized in feature maps, within which each 
unit is connected to local patches in the feature maps of the previous layer through 
a set of weights called a filter bank. The result of this local weighted sum is then 
passed through a non-linearity, such as a rectified linear unit (ReLU) - which is 
shown in Fig. 5.10. The introduction ofa ReLU in 2012 by A. Krizhevsky et al. 
[159] was a breakthrough in applying CNN to computer vision. ReLU is a layer
of neurons that uses the non-saturating activation function, for example hyperbolic
tangent: f(x) = tanh(x),f(x) = ltanh(x)I, or the sigmoidal function: f(x) = (l+e-xr1 .
The advantage of these functions is their fast action without a significant loss of
general accuracy. Krizhevsky et al. used GPUs to train very large image
collections with lots of image categories (for instance, ImageNet, compare
sect. 7.2).

All units in a feature map share the same filter bank. Different feature maps in 
a layer use different filter banks. The reason for this architecture is twofold: 

• first, in array data, such as images, local groups of values are often highly
correlated, forming distinctive local motifs that are easily detected;

• second, the local statistics of images and other signals are invariant to location.

Mathematically, the filtering operation performed by a feature map is a discrete
convolution, hence the name. 

Although the role of the convolutional layer is to detect local conjunctions of 
features from the previous layer, the role of the pooling layer is to merge 
semantically similar features into one. Because of the relative positions of the 
features forming a motif, reliably detecting the motif can be done by the coarse­
graining position of each feature, Fig. 5.9. A typical pooling unit computes the 
maximum ofa local patch of units in one feature map (or in a few feature maps). 



98 

Fig. 5.9 The three colour components RGB (red, green, blue) (bottom right) of the image of a 

dog are the inputs to a typical convolutional network. Information flows bottom up, with lower­

level features acting as oriented edge detectors, and a score is computed for each image class in 

output [157]. The outputs of each layer (horizontally) are the inputs to the next layer. Each 
rectangular image is a feature map corresponding to the output for one of the learned features, 

detected in each of the image positions. 

Neighbouring pooling units take input from patches that are shifted by more 
than one row or column, thereby reducing the dimension of the representation and 
creating an invariance to small shifts and distortions. Two or three stages of 
convolution, non-linearity and pooling are stacked, followed by more 
convolutional and fully-connected (FC) layers. Back-propagating gradients 
through a ConvNet is as simple as through a regular, deep network, allowing all 
the weights in all the filter banks to be trained. 

lnpul Image. 

1hi: newlratu,e mapi1 t/lrnext ii1pur 

�Flower 
•Cup 

- ,-Car 
•'free 

Fig. 5.10 General scheme of the deep learning classification process. The top flow presents a 
CNN training to perform an image classification task where the output of each convolved image 
is used as the input to the next layer. The bottom scheme shows the proper classification process 
(FC - Fully Connected layer) [160]. 
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Now CNNs are used to classify the biggest image collections where many 
layers of information processing stages in hierarchical architectures are exploited 
for pattern classification and for feature or representation learning. The deep 
learning as such lies in the intersections of several research areas, including neural 
networks, graphical modelling, optimization, pattern recognition, and signal 
processing, etc. [ 40]. 

5.5 Spatial Relationship of Graphical Objects for the Hybrid 

Semantic System 

It is easy for the user to recognize visually spatial object location but the system 
supports full automatic identification based on rules for location of graphical 
elements, which is a challenging task. In the light of global features presented in 
sect. 3.8, the spatial object relationship has not been mentioned, but from the 
human perception it is an important issue. For example, a question arises: if two 
images consisting of a set of these same objects, but are organized in another 
location, for instance, in a mirror symmetry are similar or not. 

Let us assume that we analyse a house image. Then, for instance, an object 
which is categorized as a window cannot be located over an object which is 
categorized as a chimney. For this example, rules of location mean that all 
architectural objects must be inside the bounding box of a house. For the image of 
a Caribbean beach, an object which is categorized as a palm cannot grow in the 
middle of the sea, and so on. 

In the system designed by Jaworska [ 42], spatial object location in an image is 
used as the global feature. For this purpose, the mutual position of all objects is 
checked. Moreover, object location reduces the differences between high-level 
semantic concepts perceived by humans and low-level features interpreted by 
computers. 

An image I; is interpreted as a set ofn objects o
u composing it: 

(5.22) 

Each object o
u 

is characterized by a unique identifier and a set of features 
discussed earlier (cf. subsect. 4.6). This set of features includes a centroid 
Cu = (xu, Yu) and a label L

u 
indicating the class of an object ou (such as window, 

door, etc.), identified in the process described in section 5.3. Let us assume that 
there are, in total, Jvf classes of the objects recognized in the database. For 
convenience, the classes of the objects are numbered and thus L/s are just IDs of 
classes. 

Formally, let I be an image consisting of n objects and k be the number of 
different classes of these objects, k '.S A1, because usually there are some objects of 
the same type in the image, for example, there can be four windows in a house. 

Now, let Cp and Cq be two object centroids with Lp<L
q
, located at the 

maximum distance from each other in the image, i.e., 
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dist(Cp,Cq
)= max{dist(C;,C;) \ti,jE{l,2, ... ,k} and L;-::f.LJ} (5.23) 

where: <list(•) is the Euclidean distance between two centroids ( see Fig. 5 .11 
middle subplots). The line joining the most distant centroids is the line of 
reference and its direction from centroid Cp to Cq is the direction of reference for 
computed angles 0;J between other centroids. This way of computing angles makes 
the method invariant to image rotation. 

Thus, the mutual location of two objects in the image is described in relation to 
the line of reference by triples (L;, LJ, 0u) (see Fig. 5.11 middle subplots). Hence, 
there are T = m (m-1 )/2 numbers of triples, generated to logically represent an 
image consisting of m objects. Let S be a set of all triples, then we apply the 
concept of principal component analysis (PCA) proposed by Chang and Wu [161] 
and later modified by Guru and Punitha [162] to determine the first principal 
component vectors (PCVs). 

First, a matrix of observations X3xN where each triple is one observation is 
constructed based on a set of observations S. Next, the mean value u of each 
variable is calculated, and the deviation from the mean vector u is subtracted in 
order to generate matrix B=X-ul, where 1 - vector of all ls. In the next step, the 
covariance matrix C3x3 is found from the outer product of matrix B by itself as: 

C = ]E. [B@B]= !E [B B*]=l/N [B B*]. (5.24) 

where: ]E. is the expected value operator, @ is the outer product operator, and * is 
the conjugate transpose operator. Eventually, eigenvectors, which diagonalise the 
covariance matrix C, are found as follows: 

v-
1 

CV=D (5.25) 

where: D is the diagonal matrix of the eigenvalues of C. Vectors V are our three 
principal components. 

For further analysis we use the first nine coefficients of the PCV which are the 
'spatial components' of the representation ofan image hand are denoted PCV;. 
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Fig. 5.11 The main stages of the PCV applied to determine the unique object spatial location in 

an image [52]. 

Fig. 5.11 presents the most important stages in the determination of spatial 
object location: from the presentation of the original image (top), through the 
object centroid locations ( colours indicate particular classes) (middle subplot), to 
the 3D subplot of the principal components (bottom). 
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