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4 Object Detection 

4.1 Introduction 

To acquire a region-based signature, a key step is to segment images. Reliable 
segmentation is especially critical for characterizing shapes within images. While 
there is no denying that achieving good segmentation is a major step toward image 
understanding, some of the issues plaguing current techniques are computational 
complexity, reliability of good segmentation, and acceptable segmentation quality 
assessment methods. 

There are many different methods of image segmentation. One approach extracts 
a central object from a mono-chromatic background, for example, based on 
morphological operations by Chen et al. [120], or based on the curvature shape by 
Abbassi et al. [100], and by Sze [101]. The latter approach segments multi-object 
images, which is most challenging. 

Based on the features described in Chapter 3, the objects from an image can 
also be extracted. For instance, the clustering of local feature vectors based on a 
histogram is a widely used method to segment images. Therefore, below we 
present some of the most standard algorithms and we conclude by showing our 
approach to image segmentation and describing the set of features which we 
selected to construct the feature vector for each segment. 

4.2 Object Segmentation Based on Colour 

4.2.1 K-means Algorithm 

Definition 4.1. (K-means) 

LetXbe a data set (for example a raster image) such as XmnE X. We have an initial 
k means of partition P={C1,C2, ... ,C1} of X, which satisfies the following 
conditions: 
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1. /\ V x
,,m 

E CJ; 
x11111eX CjeP 

Intuitively, each data point is assigned to a cluster whose centroid is the 
nearest, for example, in the Euclidean distance terms. Therefore, the criterion that 
is used in order to achieve such an assignment is the following: 

c M N 2 

f(P, U) == IIIII x,,," -vcA 
J=1 m=l n=l 

(4.1) 

where: V
e

. - are cluster centroids C
1 

for)= l, ... ,c, U = {Ve. } - the vector of 
J J 

all centroids. 
We find the minimal value of function/for a given data set and the number of 

clusters k. The algorithm searches for the true cluster centres by iterating the
following two steps: 

1. Calculating the current partition based on the current clusters
2. Modifying the current clusters by minimizing the within-cluster sum of squares

objective.

We applied the K-means algorithm for our RGB images, but the results were
highly dissatisfying. The results are presented in Fig. 4.1 for two numbers of 
clusters. 

K=5 K=12 

Fig. 4.1 Example of application of the K-means algorithm to the image from Fig. 2.6. 
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4.2.2 Fuzzy C-means Algorithm 

The fuzzy C-means (FCM) clustering [121] generalizes the hard K-means 
algorithm to allow points to partially belong to multiple clusters. In the case of 
image segmentation, an image X of size MxN and L grey levels is a data set. The 
degree to which each image point X111n E X belongs to a cluster Cj is partially 
defmed by a membership function O s µc (xmn ) s 1 ,  where j = l, ... ,c; m = 1, ... , M

j 

and n = 1, ... , N. A membership function should be constructed in the following 
way: 

(4.2) 

There are MxN such sums, and 

(4.3) 

Optimal fuzzy c-partitioning of X are taken as local minima of the objective 
function, denoted as/x. 

minlfx(P, U)} 
p 

The objective function has to incorporate fuzzy membership degrees into the 
clusters and an additional parameter q, introduced as a weight exponent in the 
fuzzy membership. Hence, we receive the following objective function: 

where: 

c M N 

fx(P, U) = 
LLL)µc/Xmn )F(xmn -vc)2
J=l m=l n=1 

U = { Ve } - the vector of all centroids, where j = l, ... ,c, 
.I 

P- is a set of fuzzy partitions of the points Xmn between Cj ,
q > 1 - the fuzzy membership degree.

(4.4) 

We assume the Euclidean metrics and function (4.4) to be positive. The larger q
results in smaller membership values µc . and thus, the fuzzier clusters. In the limit 

j 

q➔ 1, the membership functions µc converge to 1, which implies a crisp 
j 

partitioning. Like hard K-means, the fuzzy C-means clustering tries to find a good 
partition { Cj}, minimizing function fx (P, U). Additionally, the fuzzy algorithm 
needs to search for membership functions µc . that minimize fx(P, U). In order to 

J 

accomplish both objectives, a necessary condition for the local minimum offx has 
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to be obtained fromfx(P, U). Basically, the partial derivatives offx(P, U) have to 
be equal to O. 

cJfx(P, U) _ ( ]q-1�f ( )2 _ 0 ,,. h d -q[µc1 x,,111) L,L, x,,,n -Vc1 - 1or eac j
µCj m=I n=l 

Hence, we calculate Ve for each}, where 1 -S.j -5. c:.I 

M N 

LLµc/x,,,n t x,,m 
m=l n=l Vc

j = M N 

LLµc1 (Xmn )q 

m=l n=l 

Next, comparing two derivatives ( 4.5) and ( 4.6) for j * i, we obtain: 

From condition ( 4.2) we obtain: 

(4.5) 

(4.6) 

(4.7) 

(4.8) 

(4.9) 

( 4.10) 

Based on the equations (4.7) and (4.10), we can specify the FCM algorithm 
which updates the centroids and the membership functions iteratively, until the 
termination criterion is satisfied, as follows: 
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Step 1: Randomly initialize centroids V = { V
e1 

, V
e

, , ... ,V
ee}.

Step 2: Make V.-V''.

Step 3: Calculate the membership functions from ( 4.10). 
Step 4: Update centroids V

e 
in V according to (4.7). 

) 

Step 5: Calculate the distance between the old and new centroids 
C 

2 

E= �(vt -vcJ 
i=l 

Step 6: If E > Ethen go to Step 2. 
Step 7: If E -s:; E then output the final result. 

In 1990 Bezdek proved the convergence of the PCM algorithm for q > 1 [122]. 

4.2.3Mean Shift 

Mean shift is a procedure for locating the maxima of a density function given 
discrete data sampled from that function [123]. It is useful in detecting the modes 
of this density [123]. This is an iterative method, and we start with an initial 
estimate. Let a kernel function be given. This function determines the weight of 
nearby points for re-estimation of the mean. Typically, the Gaussian kernel of the 
distance to the current estimate is used, [K(x;-x)] = eC-cllx;~xlll_ The weighted mean 
of the density determined in the window by K is: 

) 
Lx EN(x) K(:c; - x)xi 

n1(x. =

1 

,r 

Lx,EN(x) h (x, - :r) 

where N(x) is the neighbourhood ofx, a set of points for which K (x) f. 0. 

( 4.11) 

The mean-shift algorithm now sets x.-m(x), and repeats the estimation until 
converges. 

4.2.4 The Colour Approach to the Hybrid Semantic System 

The first stage in our work was the survey and selection of an appropriate 
algorithm which would separate, based on low-level features, the graphical 
segments from images to offer them later to the user. The above-mentioned 
algorithms described colour distribution in the whole image, which means that 
they do not serve our purpose best. 

Next, we began with two well-known clustering algorithms: the K-means 
clustering [124], [125], and developed later, the fuzzy C-means clustering 
algorithm (PCM) [122]. In our case, we found clusters in the 3D colour space 
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RGB. The search for data sets, which is conducted by those algorithms, is based 
on the distance from the cluster centroid which evaluates the accuracy of a 
partition. It means that each datum belongs to exactly one cluster of the partition. 

We expected that clustering would isolate different image elements according 
to colours. Unfortunately, the results were dissatisfying. After examining point 
distribution in the colour space, it turned out that points created one tight set 
located very close to a diagonal, similar for nearly all the images we analyzed. In 
Fig. 4.2 such a shape (red point cloud) is exemplified only in the RGB space, 
omitting point distribution (x, y) in the image. 

Consequently, when we used the K-means algorithm, we obtained 
segmentation whose only criterion was the brightness of pixels because the 
centroids were located approximately on the diagonal. 

300. 

200,. 

100 

0 
0 

A r 100 '
\: 

� :
200'\ 1 : 

'\__�-green 300 - ' 50 
0 

m 

100 

red 

Fig. 4.2 The way of labelling the set of pixels. Regions I, II, III show pixel brightness and the 
biggest value of the triple (R,G,B) determines its colour. 

These results forced us to work out a new algorithm which uses colour 
information about a single point to a greater extent. With the aim of labelling a 
pixel we found the biggest value from the triple (R,G,B) and we defined it as a 
cluster colour. In this way, we obtained three segments - red, green and blue. 
Additionally, points with equal values ofRGB were labelled as grey. Tentatively, 
it was accepted, but for better results each colour was divided into three shades as 
three regions (I, II, III) which determine point brightness. The idea of 
segmentation is illustrated in Fig. 4.2. The radius r of the dividing sphere was 
counted in the Euclidean measure, namely: 
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✓ R;,ax + G� + B�axr=�------- (4.1) 

Generally, Rmax = Gmax = Bmax ::; 255 because full saturation of colours is rare. 
Moreover, we added three segments: black, grey and white for pixels, where 
R=G=B or was not exactly equal according to their region (I, II, III). We assumed 
that 'not exactly equal' meant that IR - GI < cr and IR - BI< cr, where 10 < cr < 15. 
Having done this, we obtained images segmented into 12 clusters. We called this 
algorithm 'colour one'. 

Fig. 4.2 presents the colour space of the image shown in Fig. 2., divided into 12 
clusters, using the above-described algorithm. In Fig. 4.3 a) we can see that the 
image is divided into objects with dominant colours so each main ROB layer is 
visible separately. For better illustration, we present in Fig. 4.3 b) objects 
segmented from Fig. 2. in their average colours. Average colour k

av 
is understand 

as an average value of each colour component summed up separately for each 
object kav = {rav, gav, bav}, 

Fig. 4.3 c) illustrates the red layer divided into three brightness regions. 
Segmented elements are visible in Fig. 4.3 d), e) and 1). There can be 50 to 500 
elements separated from an image depending on image size. The smallest are 
neglected in further analysis, for instance in classification. 
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e) 

Fig. 4.3 a) 12 cluster segmentation of Fig. 2. obtained by using the 'colour' algorithm, b) 
segmented objects presented in their average colours, c) the red layer consisted of three 
brightness regions, d), e) and f) extracted objects in natural colour: chimney, sky and railing, 
respectively. 

The additional advantage of our approach is the fact that it is very fast because 
it uses only operations of comparison for each pixel, with no multiplication or 
square, as it is necessary for the K-means algorithm. As a result, our color 
algorithm is tenfold faster than the K-means algorithm. Moreover, it should be 
pointed out that the bigger the image, the greater the difference between the 
calculation time of both algorithms. 

4.3 Object Segmentation Based on Texture 

In the case of textured objects the LBP operator, introduced by Ojala et al. in 2002 
[65], can be applied to object segmentation (see subsect. 3.3.1). Fig. 4.4 presents a 
texture mosaic composed of five textures from outdoor scenes, such as those 
frequently encountered in satellite images. 

Fig. 4.4 Texture mosaic segmentation based on LBP (65]. 
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Fig. 4.5 Natural scene segmentation based on the texture according to the LBP [65]. 

Later this operator was applied to segment natural scenes as we see in Fig. 4.5. 
Acharyya and Kundu [126] applied an orthogonal and linear phase M-band 

wavelet transform to decompose an image into MxM channels. Various 
combinations of these bandpass sections were taken to obtain different scales and 
orientations in the frequency plane. Texture features are obtained by subjecting 
each bandpass section to a nonlinear transformation and computing the measure of 
energy in a window around each pixel of the filtered texture images. Unsupervised 
texture segmentation was obtained by a simple K-means clustering. 

Another attempt at automatic texture segmentation, i.e. without any a priori 
knowledge of either the type of textures or the number of textures in the image 
was taken by Faizal et al. [89]. As it has been mentioned in subsect. 3.3. B the 
method used a modified discrete wavelet frame (DWF) decomposition to extract 
important features from an image before a mean shift algorithm is used together 
with a fuzzy C-means (FCM) clustering to cluster or segment the image into 
different texture regions. The proposed algorithm has the advantage of high 
accuracy while low computational costs. 

4.4 Object Segmentation Based on Shape 

The idea behind the Curvature Scale Space (CSS) representation [100] is that the 
contour can be represented by set of points where the contour curvature changes, 
as well as curvature fragments between these points. For each point in the contour, 
it is possible to compute the curvature of the contour at that point, based on the 

neighboring points; a point whose two closest neighbours have different curvature 
values is considered a curvature change. In fact, not all curvature changes are 
needed to compute the CSS representation, but only those where the curvature 
goes from a positive to a negative value or vice-versa. When it happens, the 
curvature values have to go necessarily through zero and therefore these changes 
are called zero-crossings of the curvature, as illustrated in Fig. 4.6. As for the 
average curvature between two of these zero-crossings, it basically corresponds to 
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the angle difference between the tangents to the contour at these two points 
divided by the arc length joining these two points. 

Negatiw. 

cu1-Yature 

Fig. 4.6 Zero-crossings of the curvature. 

/ 

;· 
Zero-crossings 

PositiYe 

curvature 

A different approach was represented by Latecki and Lakamper [127] who 
described shape as line segments for silhouette presentation. To reduce the 
influence of digitization noise, as well as segmentation errors, the shapes are 
simplified to a set of segments and their length function normalized with respect 
to the total length of the whole contour. 

Goh and Chan presented a part-based shape descriptor that incorporates both 
the description of the general shape form of each subpart, as well as the local 
boundary perturbation (boundary texture) [128]. A shape is decomposed into 
subparts along segmented sections of the extracted shape axes and each part is 
described by two 1-D histograms derived from the local gradient vector field. The 
shape part descriptor, associated with each subpart of an object, is a saliency 
measure which weighs its visual significance based on the proportion of the 
overall shape region to the subpart. 

The shape description is used in most applications, for examples, archeological 

ones. In this case, decoration patterns are described by Xu and Liu [129] as a 
closed contour set. The contour of a 2D object is a simple closed curve and the 
area enclosed by the curve is topologically homeomorphic to a disk. It has also 
been assumed that the centroid of the curve has been moved to the origin of the 
2D coordinate system. A contour L is described by the function z(t) = (x(t), y(t)), 

0 :St< I which is the arc-length parameterization. 

4.5 Object Segmentation Based on Local Features 

Mutch and Lowe [130] modified the model of Serre, Wolf, and Poggio [131] by 
applying Gabor filters at all positions and scales; then feature complexity and 



77 

position/scale invariance were built up by alternating template matching and max 
pooling operations. Images were reduced to feature vectors, which were then 
classified by an SVM. Features are computed hierarchically in five layers: an 
initial image layer and four subsequent layers, each built from the previous by 
alternating template matching and max pooling operations (see Fig. 4.7). 

Image layer - the image is converted to grayscale and the shorter edge is scaled 
down to 140 pixels while maintaining the aspect ratio. Next an image pyramid of 
10 scales is created, each a factor of 2 114 smaller than the last (using bicubic 
interpolation). 

C2 Laver 

S2 Layer 

Cl Layer 

81 Layer 

Image 

Laver 

t) 

i 

h r2 ... rd] 
d feature 
responses 

9� _ ...... [r1 r2 ... rc1]
� rlfeature 
22 22 respons0! 

l ':.:�::�
ll

�- 4 orientations 
� per location " I "

0 

i 
130 

,.[o�=�J 
4 orientations 
per location 

1 pixel 
per location 

Fig. 4.7 Feature computation in the base model. Each layer has units covering three spatial 
dimensions (x/y/scale ), and at each 3D location, an additional dimension of feature type. The 
image layer has only one type of pixels, layers S 1 and C 1 have 4 types, and the upper layers have 
d (many) types per location. Each layer is computed from the previous one by applying template 
matching or max pooling filters [130]. 
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Gabor filter (SI) layer - is computed from the image layer by centering 2D 
Gabor filters with 4 orientations at each possible position and scale ( compare Fig. 

3.5). 
Local invariance (Cl) layer - pools nearby S 1 units ( of the same orientation) to 

create position and scale invariance over larger local regions, and as a result can 
also subsample S 1 to reduce the number of lQx 10 units across in position and 2 
units deep in scale. 

Intermediate feature (S2) layer. At every position and scale in the Cl layer, 
authors performed template matches between the patch of C 1 units centred at that 
position/scale and each of d prototype patches. These prototype patches represent 
the intermediate-level features of the model. 

Global invariance (C2) layer. Finally a d-dimensional vector was created, each 
element of which is the maximum response ( anywhere in the image) to one of the 
model's d prototype patches. At this point, all position and scale information has 
been removed, i.e. we have a "bag of features". 

4.6 Image Data Representation for the Hybrid Semantic System 

Having described the methods for obtaining the most basic features, we can 
present in detail all low-level features which characterize segments in our DB 
(compare Fig. 3.16 in subsect. 3.4.4.). 

As we specified it in subsect. 4.2.3 after segmentation each object is assigned 
its: 

• Average colour kav, is the values of the red, green and blue components
summed up for all the pixels belonging to an object, and divided into the
number of object pixels:

(4.2) 

• Texture T
p 

divided into eight parameters: two ranges for the minimal and
maximal horizontal texture components h and two others for the vertical one v.

T 
= [ hmin1,2; hmax1,2] 

p [ V min1,2 ; V max1,2 ] 
(4.3) 

• Area A calculated as a sum of pixels constituting an object.
• Convex area Ac is the number of pixels in the smallest convex polygon that

can contain the object.
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• Bounding box is the smallest rectangle containing the object. b;(x,y), i=l, ... ,4
are the coordinates of the rectangle corners.

• Major axis length miong and minor axis length mshort are the lengths measured
in pixels of the major and minor axes of the ellipse, respectively. The Fig. 4.8
illustrates the axes and orientation a of the ellipse.

• Orientation of the ellipse is the angle a between the horizontal dotted line and
the major axis.

• Centroid C(xc , Ye) is the mass centre of the object.
• Eccentricity e is the ratio of the distance between the foci of the ellipse and its

major axis length. The eccentricity of the ellipse has the same second moment
as the object.

• Euler number E is equal to the number of objects in the region minus the
number of holes in those objects.

• Inertia moments µ00 - µu defined as (3.31).
• Zernike moments 200 - 233 defined as (3.32).
• Solidity sis the ratio of the area to the convex area s=AIAc.

Fig. 4.8 The left side shows an image region and its corresponding ellipse. The right side shows 

the same ellipse with the solid lines as the axes, the dots on the major axis as foci and the 

orientation which is the angle a between the horizontal dotted line and the major axis. 

All features, as well as extracted images of graphical objects, are stored in the 
DB (see Chapter 6). 

Generally, the data structure used in pattern recognition especially image 
recognition systems in particular are of two types: object data vectors and 
relational data. 

Object data is the asset of numerical vectors as Y = {y 1 ,y2, ... ,yn}, where y; is a 
feature vector in the p-dimensional measurement space Qy. An ;th object, 
i=l,2, ... ,n, has vector y; as its numerical representation, where Yu = ffi.,h. , . . .  ,/4}, 
where q - the number of features/attributes. Relational data is a set of n2 numerical 
relationships {r

u
} between pairs of objects ou . In other words, ru represents the 

extent to which ;th and/h objects are related in the sense of some relationship p,

for instance, binary. If the objects that are pairwise related by p are called 
P = {p1,P2 , .. ·,Pn}, thenp:PxP➔Iffi.. 
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In the context of our feature selection, we construct a feature vector y 
containing the set offeatures, where: y={fi,h , ... ,fq}={kav, Tp 

,A, Ac , ... ,E} for each 
object oi, in our particular case q=45: 

y(kav) 

y(Tp) 

y = 
y(A) 

y(E) 

y(J;) 

y(fz) 

y(J;) (4.4) 

This feature vector is further used for object classification (see Chapter 5 Sect. 
3) and image retrieval (see Chapter 9 Sect. 9).
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