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3 Image Representations 

3.1 Introduction. Forms of Image Representation 

With regard to computers, an image can be represented in different forms. The 
two most frequently used types use at present are vector and raster images. Vector 
graphics, generated as geometric shapes by mathematical equations, can be scaled, 
rotated, moved, or otherwise manipulated to any degree without any loss of 
quality, and displayed or printed at whatever resolution is available on a monitor 
or printer. An example of a vector image is shown in Fig. 3 .1 a) as a line image 
and in Fig. 3.1 b) as a colour one. In turn, raster graphics is made up of pixels, 
each of a different colour, arranged to display an image. A major difference is that 
raster image pixels do not retain their appearance as size increases, when you blow 
a photograph up, it becomes blurry for this reason. These two representations can 
be compared in Fig. 3.1 c) vector zoom and d) raster zoom. 

Here, we analyse visual information so, first of all, we have to explain how we 
understand the notion of image. 

Definition 3.1 (image) 

An image is a two dimensional function/: R2 ➔ R such as/(x,y) describing 
the intensity at the position (x,y). For digital images J, we have a pixel array J:

[a,b] x [c,d] ➔ [0,1]. Colour images consist of three colour components:

lr
(x,y)

l 
J: (x,y) = g(x,y) 

b(x,y) 
(3.1) 

Generally, we analyse and store in the DB raster images, but in some cases we 
use vector images, for example, as a prompt for the user in the GUI (see Fig. 3.2), 
where we exploit the easy zooming ( details in Chapter 8). 
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Fig. 3.1 Two most often used image representations: raster and vector; a) vector representation, 
b) vector with colour filling, c) close-up of the vector representation, d) close-up of the raster

representation.
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Fig. 3.2 Example of a vector image - used as a prompt in the GUI. 
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3.2 Visual Feature Descriptors 

Feature extraction is a process of selecting a map of the form X=f(Y), by which a 
sample y=[y1 ,y2, ... ,y

q
] in a q-dimensional measurement space Qy is transformed 

into a point x=[x1, x2, • • •  , Xq•] in a q '-dimensional feature space nx, where q '<q. 
This task is realized to generate the optimal characteristics necessary for the 
process of recognition and reduce the dimensionality of space Qy in order to apply 
effective computable algorithms of classification. We understand the space Qy as a 
model which we construct based on a subset of selected variables. 

The exact definition of feature often depends on the problem or the type of 
application. Feature detection is low-level image processing because it operates on 
the level of pixels and is the easiest to extract by the computer system. As a matter 
of fact, all CBIR systems use the feature detection level, some concentrate on one 
feature, for instance, colour or shape, others use their combination, but only the 
more advanced move further to semantic retrieval. 

Below we present the most commonly used algorithms which are also useful in 
search engine construction. We would like to present a wide range of methods as a 
background for our content-based image retrieval system. 

To begin with, we describe our approach to colour segmentation as the first 
point in constructing our CBIR system which, step by step, will be presented 
throughout this book. 

3.3 Colour Information 

Colour is a commonly used feature because its layout in the image is the key 
information, whereas the simpler systems extract only global features from the 
colour image. The more advanced ones use colour information about regions or 
separate segments [34]. 

Each pixel of the image can be represented as a point in a 3D colour space. 
Many colour spaces for image retrieval, including RGB, Munsell, CIE L *a*b *, 
CIE L*u*v*, HSV are used depending on the aims and the method of image 
acquisition. 

Colour information gives the opportunity to construct such descriptors as: 

• colour moments (mean, variance and skewness) [56], [17] help to describe
colour distribution in the whole image, which is the basis for many CBIR
retrieval processes, Nevertheless, they do not give spatial information about
pixels;

• the colour histogram is easy to compute and invariant in terms of scaling and
rotation, however, it also fails to provide spatial information about pixels, so
many images have similar histograms;

• the colour coherence vector (CCV) [57] is constructed based on the colour
histogram. In this case, each histogram bin, a separate one for each colour, is
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partitioned into two parts: coherent if it belongs to a large uniformly-coloured 
region, and incoherent in the opposite case. It means that two pixels a and a' 

are coherent if they belong to region C, such that a,a' E C and there exists a 
path in C between a and a'. For the image, the CCV is defined as the vector 
[(a1,,B1), (a2,,B2), ... ,(aN,,BN)], where a; denotes the number of coherent pixels of 

the ;th colour bin, whereas ,BN denotes the number of coherent pixels. The 
additional spatial information included in the CCV improves the results of 
retrieval in comparison to the simple colour histogram. 

• the colour correlogram, also called a second-order histogram, describes the
spatial correlation of pairs of colours. A colour correlogram is a table indexed
by colour pairs, where the kth entry for (i,j) specifies the probability of finding a
pixel of colour j at a distance r from a pixel of colour i in the image. The colour
correlograms for all sets of colours are rather large, therefore, a simplified
version is an auto-correlogram which is a spatial relationship only between
points of identical colour.

In our approach, we omitted the colour description globally. We only used
colour information, specifically RGB colour space, to segment separate objects 

from an image (in details see sec. 4.2). 

3.3 Texture Information 

Texture is one of the most important visual cues to identify homogeneous regions 
[ 5 8]. The goal of texture classification is to identify each uniform texture region, 
whereas the goal of texture segmentation is to obtain the boundary map and 
further separate regions characterized by different textures. 

For our purpose, the key operation is segmentation, in a nutshell, we can 
assume that image texture is an attribute representing the spatial arrangement of 
grey or colour levels of the pixels in a region [59]. Hence, the intensity variations 
in an image, characterizing texture, generally reflect physical variations in the real 
scene. To model these variations the following issues need to be addressed: 

• pixel colour value in a spatial neighbourhood;

• spatial distributions of these values;

• their resolution or scale;

• the unrecognizability of separate primitive objects in a texture region.

Basically, texture representation methods can be classified into four categories:
structural, statistical, fractal [60] and transformational [34] as it can be seen in Fig. 
3 .. The first category of methods can be divided into morphological operators and 
adjacency graphs presenting texture as structural primitives and their placement 
rules. The primitive can be as simple as a single pixel that can take a grey value, 
but it is usually a collection of pixels. The placement rule is defined by a tree 
grammar. A texture is then viewed as a string in the language defined by the 
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grammar whose terminal symbols are the texture primitives. An advantage of this 
method is that it can be used for texture generation, as well as texture analysis. 
The patterns generated by the tree grammars can also be regarded as ideal textures 
in Zucker's model [61]. They are more effective when we have a regular texture. 

Texture describing methods 

structural fractal 
-� 

graphs morphological 
I operator j I 

tree Voronoi 
grammar neighbourhood 

statistical 
methods 

co-occurrence matrices 

autocorrelation function 

•local Binary Pattern

• Tamura feature

Wold decomposition

Markov random fields

Gibbs random fields

Fig. 3.3 The categories of texture describing methods. 

transformation 
domain 

FFT (Fourier 
Power Spectrum) 

Gabor transform 

wavelets 
(multiresolution 
filtering) 

Another example is Voronoi features [62], which were proposed because the 
local spatial distributions of tokens are reflected in the shapes of V oronoi 
polygons. Many of the perceptually significant characteristics of a token's 
environment are manifest in the geometric properties of Voronoi neighbourhoods. 
In order to apply geometrical methods to grey level images, we only need to first 
extract tokens from images. 

The statistical methods describe texture by statistical distribution of image 
intensity. There are numerous statistical texture representations: 

co-occurrence matrices. Spatial grey level co-occurrence estimates image 
properties related to second-order statistics. Haralick [63] suggested the use of 
the GxG grey level co-occurrence matrix Pd for a displacement vector 
d = (dx,dy), defined as follows: the entry (i,j) of Pd is the number of 
occurrences of the pair of grey levels i and j which are a distance d apart. 
Formally, it is given as: 

Pd (i,j) = l{((x,y), (t,v)) : I(x,y) = i, I(t,v) = J}I (3.2) 

where (x,y),(t,v) ENxN, (t,v) = (x+dx, y+dy), and 1-1 is the cardinality ofa set. 
Based on this matrix some useful texture features can be described, such as: 
energy, entropy, contrast, homogeneity or correlation. 
Autocorrelation function - can be used to assess the amount of regularity as 
well as the fineness - coarseness of the texture in the image. Formally, the 
autocorrelation function of an image I(x,y) is defined as follows: 



I.i=oL�=ol(u, v)I(u + x, v + y) 
a-(x,y) 

= N N 2 Lu=o Lv=D I (u, v) 
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(3.3) 

Local Binary Pattern (LBP) operator [64] is, originally, based on a 3x3 pixel 
neighbourhood (see the example sub-table in Table 3.1). Image pixels in each
neighbourhood of a pixel (i,j) are exchanged into a binary threshold map 
where 1 is for a pixel larger than the central pixel and O where the values are 
less than the central one (see the threshold sub-table in Table 3.1). The values
of the pixels in the threshold map are multiplied by the weights given to the 
corresponding pixels. The weights are the power of 2 where the number of 
neighbourhood is the exponent (see the weights sub-table in Table 3.1).
Finally, the values of the eight weighted pixels are summed to obtain one 
factor (the result can be seen in Table 3.1). The LBP histogram computed
over a region is used as a texture description. Because of the LBP design, it is 
invariant under any monotonic grey scale transformation and provides 
information about the spatial structure of the local image texture. Due to its 

3x3 window operation, however, feature distributions may be sensitive to 
geometric distortion. This operator was extended later [65] for 
neighbourhoods of different sizes, for instance, circular neighbourhood and 
bilinear interpolation of non-integer pixel values. 

Table 3.1 Computation of Local Binary Pattern (LBP). 

Example Threshold Weights Result 

8 5 2 1 0 0 1 2 4 1 0 0 

7 6 1 1 X 0 8 X 16 8 X 0 

9 13 7 1 1 1 32 64 128 32 64 128 

LBP = 1+8+32+64+128=233 

The original LBP operator was defined to only deal with the spatial 
information. Later, it was extended to a spatiotemporal representation for 
dynamic texture analysis. For this purpose, the so-called Volume Local 

Binary Pattern (VLBP) operator was proposed [66]. 

Tamura feature; Tamura et al. [67] considered six basic textural features: 

• coarseness - relates to distances of notable spatial variations of grey levels,
that is, implicitly, to the size of the primitive elements forming the texture.

• contrast - measures how grey levels vary in the image and to what extent
their distribution is biased to black or white. The second-order and
normalised fourth-order central moments of the grey level histogram are
used to define the contrast.

• directionality - measured the distribution of oriented local edges against
their directional angles using the Sobel edge detector (for details see
sec. 3.4.1).

• line-likeness - is defined as an average coincidence of the edge directions.
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• regularity - is defined as the normalised sum of the standard deviations of
the corresponding above-mentioned feature.

• roughness - feature is given by simply summing the coarseness and
contrast measures.

Wold decomposition, [68], [59] provides three different components to 
describe texture: harmonic, evanescent, and non-deterministic, corresponding 
to periodicity, directionality, and randomness introduced by his predecessors. 
Periodic textures have a strong harmonic component, highly directional 
textures have a strong evanescent component, and less structured textures 
tend to have a stronger non-deterministic component. The deterministic 
periodicity of the image is analysed using the autocorrelation function. The 
corresponding Wold feature set consists of the frequencies and the 
magnitudes of harmonic spectral peaks ( e.g. the largest peaks). The 
nondetenninistic (random) components of the image are modelled with the 
multiresolution simultaneous autoregressive (MR-SAR) process. The retrieval 
uses matching of the harmonic peaks and the distances between the MR-SAR 
parameters. The similarity measure involves a weighted ordering based on the 
confidence level in the query pattern regularity. 
Markov random fields [69]. Random field models consider an image as a 2D 
array ofrandom scalars (grey values) or vectors ( colours). In other words, the 
signal at each pixel location is a random variable. Each type of texture is 
characterised by a joint probability distribution of signals that accounts for 
spatial inter-dependence, or interaction among the signals. The interacting 
pixel pairs are usually called neighbours, and a random field texture model is 
characterized by the geometric structure and quantitative strength of 
interactions among the neighbours. If pixel interactions are assumed 
translation invariant, the interaction structure is given by a set N of 
characteristic neighbours of each pixel. This results in the Markov random 
field model where the conditional probability of signals in each pixel (i,j) 
depends only on the signals in the neighbourhood {(i+m, j+n): (m,n) from the 
setN}. 
Gibbs random fields (GRF). This theory is borrowed from Gibbs principal 
ensembles of statistical thermodynamics. We move from particles to pixels 
and still analyse potential and energy functions. Hence, GRF assigns a 
probability mass function to the entire lattice: 

P(X = x) = 
½exp [- L E(c;)], Vx ED.

CiEC 

(3.4) 

where Z is a normalizing constant known as the partition function and E(c;) is 
the energy function. 
For texture analysis, general generic Gibbs random field models with multiple 
pairwise pixel interactions allow to relate the desired neighbourhood to a set 
of most 'energetic' pairs of the neighbours. A Gibbs distribution is usually 
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defined with respect to cliques, i.e. proper subgraphs of a neighbourhood 
graph on the lattice. A clique is a particular spatial configuration of pixels, in 
which all its members are statistically dependent on each other. Then the 
interaction structure itself and relative frequency distributions of signal co­
occurrences in the selected pixel pairs can serve as texture features. 

Many natural surfaces have a statistical quality ofroughness and self-similarity 
at different scales. Fractals are very useful and have become popular in modelling 
these properties in image processing but scale variations can have a great impact 
on the imaged appearance of a texture. Self-similarity across scales in fractal 
geometry is a crucial concept. The fractal dimension gives a measure of the 
roughness of a surface. 

Fractal-based texture analysis was introduced by Pentland in 1984 [70]. To 
apply the fractal model to an image surface, we need to assume that: the intensity 
random function I(x) is a fractal Brownian function and the fractal dimension of a 
fractal Brownian function is invariant over transformations of scale1

• In order to 
obtain the fractalness of an image, Pentland introduced the description of the 
image change Af = J(x +!'.ix) - J(x) with scale as follows ( eq. (5) [70]): 

(3.5) 

where: E([Lif11x[) is the expected value of the change in intensity Af over distance 
!'.ix, His the Hurst exponent [71 ], [72]. Equation (3 .5) is the mutual relation of the 
image intensities expressed in a statistical way. 

We can assume that K = E([Af11x -il), hence we obtain in the above equation 
E([Afl) = K [[i:ix[( By applying log to both sides we have 

log E([LiJ) = log K + H log [li:ix[[. (3.6) 

The Hurst exponent H can be obtained by using the linear least-squares 
regression to estimate the slope of the grey-level difference GD (k) versus k in a 
log-log scale over the interval le =[l ,s ], s - the maximum value, where: 

1 Following Mandelbrot [276] the increments of a random function (X(t,w ); -oo < t < oo} are 
said to be self-similar with parameter H?. 0 if for any h > 0 and any moment to 

{X(to+r,w)-X(to,w)} � {h-H[X(to+hr,w)-X(to,w)]}. 

If X(t0, w) has self-similarity and stationary increments and is mean square continuous, then 
0:C:H< 1 there is a constant V such that 

E [X(t0+r,w)-X(t0,w)]2 = V, w. 

For images, following Pentland [70], instead of time t we speak about spatial dimension x, so we 
have E[I(x+fu:) -J(x)]2 = V fu:

2H
.
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r:=1L�,:-f-1II(x,y) -I(x,y + k)I GD(k)= 
2N(N-k-l) 

+ 

r:,:-f-
1 L�=1II(x,y) -I(x + k,y)I

+-------------2N(N-k-l) 

(3.7) 

The fractal dimension FD can be derived from the relation FD=3-H. The 
approximation error of the regression line fit should be determined to prove that 
the analyzed texture is fractal, and thus be efficiently described using fractal 
measures. A small value of the fractal dimension FD implies that a large value of 
the Hurst exponent H represents fine texture, while a large FD, implying a smaller 
H value, corresponds to coarse texture [73]. 

Recently, texture descriptors have been based on transformational models. Let 
us recall the basic notions of the unitary transform. A general linear operation on 
the input image I(x,y) results in an MxN output image U(m,n) which is defined by: 

K-1]-1
U(m,n) = L L I(x,y)O(x,y;m,n) (3.8) 

X=0 y=0 

where: O(x, y; m, n) is the operator kernel. 
Based on this universal rule we can chronologically describe the most useful 

and therefore the most common transformational methods: 

• Fourier power spectra and Fast Fourier Transform (FFT) [74]. For image
function I(x, y) we compute its Fourier transform as:

1 �� {-Zrri } 
F(u,v) =NL LI(x,y)exp �(xu+yv) (3.9) 

x=0 y=0 

where (u, v) are the spatial frequencies and the quantity IF(u, v)l2 is defined as 
the power spectrum which, in fact, is the modulus of a complex number. In the 
image terms the energy distribution of the power spectrum reflects the 
periodical structure of a texture, whereas the directional nature of the texture is 
reflected in the direction distribution of energy in the power spectrum. Frankly 
speaking, the limitation at high frequencies is the image resolution. 

• The Gabor transform [75], [76]. The Fourier transformation is an analysis of
the global frequency content in the signal. Many applications require the
analysis to be localized in the spatial domain. This is usually handled by
introducing spatial dependency into the Fourier analysis. The classical way is
using the windowed Fourier transform. Considering one dimension, the
windowed Fourier transformation of a sinusoidal wave fu

0
(x) = 

e iuox 

(illustrates in Fig. 3.4) is defined as: F (u) = 2:m5 (u - u0), where J is the Dirac
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function. Then its energy is spread over the frequency interval in the 
neighbourhood of a u0 : 
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Fig. 3.4 Gabor function, where a) the real part of the function and b) the imaginary part of the 
function [79]. 

When the 2D window function w(r) is Gaussian, 
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1 _ .i:._ 
w(r) = --e zu2 ; 

2nCJ2 

rZ
= 

xZ + yZ

the transform becomes a 2D Gabor transform [77], [78]:

1 { [
(x - Xo)2 (y - Yo) 2]} •c G(x,y) = ---exp -n z + z . e' uox+voy) 

2nCJx(J
y CJx CJy 

(3.10) 

(3 .11)

where (x0 ,y0) is the centre of the receptive window in the spatial domain and
(u0,v0) is the optimal spatial frequency of the filter in the frequency domain. a,
and o;, are the standard deviations of the elliptical Gaussian along x and y. The
2D Gabor function is thus a product of an elliptical Gaussian and a complex
plane wave. 

The 2D Gabor function consists of a sinusoidal plane wave of a certain
frequency and orientation modulated by a Gaussian envelope given by: 

{ 1 [xz yz ]} 
g(x,y) = exp -- 2 + 2 cos(2nw0 (x cos0 + y sin0))

2 (Jx CJy 
(3.12)

where w0 and 0 are the frequency and phase of the sinusoidal wave,
respectively. Then a set of Gabor filters can be obtained by appropriate
dilations and rotations of g(x,y) for angles 0 = mi, n = O,I, ... , K-I (see Fig.

K 

3.5). In this case, the Gabor transform of an image I(x,y) is defined as: 

for which: µ,, = JIWn(x,y)I dxdy

(3.13)

(3.14)

(3.15)

where µ ,, is the mean and o-,, is the standard deviation of the magnitude of
W,, (x,y) for a particular orientation, where n denotes the specific subband. 
The texture analyzers based on 2D Gabor functions offer a strong correlation 
with the actual human segmentation and respective visual field profiles. 
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Fig. 3.5 Examples of 2D Gabor functions for particular angles 0 = "ff, where K is the number of 
orientations. The outside windows present 2D Gabor filters, where K = 9. The central contours 
correspond to the half-peak magnitude of the filter responses in the set of Gabor filters with the 
upper and lower centre frequency of interest: w1, = 0.4 and w, = 0.05, respectively, six 
orientations (K = 6), and four scales (S = 4), followed by [80].

• The wavelet transformations are a big group of methods focused on the
multiresolution analysis concept. Generally, the structures to be recognized
differ significantly in size. Hence, it is impossible to define a priori an optimal
resolution for image analysis. Burt [81] and Crowley [82] have each introduced
pyramidal implementation to compute image details in different resolutions. A
multiresolution analysis (MRA) yields a scale-invariant interpretation of the
image. A multiresolution representation provides a simple hierarchical
framework for interpreting the image information. In different resolutions,
details of an image generally characterize different physical structures of the
scene; in a coarse resolution, these details correspond to larger structures
represented by 'big' image components.

The idea of wavelets is based on a basic function called a wavelet (3 .16) with
two parameters: one - s, characterizing the scale, the other one - u, indicating
the position of the function, introduced instead of the sinusoidal basic function
with one parameter w in the Fourier transform.

1 ( X -U) 
1/Jsu(x)= {51/J -5-

(3.16) 
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Hence, the lD continuous wavelet transform is the projection of an/(x) signal, 
in the L2(R), onto the function family {lf/,u, s > 0, uER} generated from the 
single function lf/ by translation and dilation: 

+oo ___ _ 

[W,pf](s,u)=<ifisuJ>= s-½ J vi(:
u

)f(x)dx (3.17) 

t f{x) 

t Pv.
1 
f(x) 

• Py/(x) 

Fig. 3.6 A function f(x) and its projection onto two consecutive levels V1 and Vo of the 
multiresolution analysis [83]. 

The idea of this method is presented in Fig. 3.6. 
The redundancy of the continuous wavelet transform (3 .17) can be cleared by 
discretizing both the scale factor s and the translation u. Then, we need a 
dyadic scale space, s=2.i and u=k with j,kEZ where Z is an integer. The 
fragment of the orthogonal basis with levels from v_3 to v_7 for Symmlet 
wavelets can be seen in Fig. 3.7. 
The theory of multiresolution signal decomposition was developed by Mallat 
[84], [85] and Meyer [86] and thus the paradigm for constructing wavelets was 
established. Polish mathematicians were also involved in this analysis [87]. 
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Some SS Symmlets at Various Scales and Locations 
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Fig. 3.7 An example of the dyadic Symmlet wavelets. A scale j and location k are presented for 
each wavelet 1/fJ,k on the right side [79]. 

The reel part of the Gabor wavelet 
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Fig. 3.8 The real and imaginary parts of the Gabor wavelet for (5 =2 and cv=3 which are 'larger' 
than the example of the subset shown in Fig. 3.5 [79]. 

Many different wavelets have been introduced over the years, some of them are 
real and some others are complex. The Gabor wavelet (see Fig. 3.8) is an 
example of a function in the complex domain. Each ellipse from Fig. 3.5 
represents the frequency support of a dyadic wavelet $:j . This support size is 
propmiional to 2-j and its position rotates when K is modified. 
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Fig. 3.9 A texture classifier flow chart based on the Gabor wavelet transfonnation (follows [80], 
[88]). 

The discrete Gabor wavelet transform (GWT), for example, is applied in 
texture recognition and segmentation. Sebe and Lew [80] prepared an efficient 
method based on GWT parameters, such as µ and CY to be used as the texture 
feature vector. Fig. 3.9 presents four different grey texture representatives (top 
left) and the organization of wavelet image coefficients dj,k,1 == (/, 1/Ji,k,l) [88]. 
The dotted lines show the direction of details (top right). In the bottom left 
square we can see a wavelet transform for texture images, whereas in the 
bottom right square we can see the organization of GWT coefficients ( cf. (3 .14) 
and (3.15)) that constitute feature vector/= {µn,<Yn }. 
At the same time, Faizal and Fausi [89] also used the DWT decomposition 
scheme and they noticed that the DWT of image MxM gave as a result 
(3K+ 1) x M2 coefficients. Based on this fact, they transformed wavelet 
coefficients to the 3D domain where they looked for clusters whose centroids 
characterized a texture. 
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3.3.1 The Texture Approach to the Hybrid Semantic System 

One of the reasons why so many kinds of wavelets were introduced in the 

previous section was to apply them to shape description. Our aim was to describe 

precisely the surface shape of an image function and we found out that the 'shape' 

of different wavelets corresponds more or less with the surface shape of the 

analysed image function. We should mention that from the shape matching point 

of view, one of the most important features of 2D wavelets is their detail 

directionality which is shown in Fig. 3.10 a) (called by Mallat as coefficients 

[88]). Thanks to this fact the convolution of wavelet and image element results in 

maximum values for concurrent element shapes (compare Fig. 3.9). 

This wavelet property was applied by Jaworska [22], in order to describe the 

shape and size of the geometrical architectural texture. These parameters are 

different ones than those defined by Sebe and Lew or Faizal and Fausi in the 

previous subsection. We used the simplest wavelets, namely, the Haar wavelets 

which best fit a geometrical texture. 

If we compute the convolution of an image consisting of regular tiles or bricks 

and vertical and horizontal details, we obtain a 2D transform whose maximum 

values are placed in the connection spots among these tiles or bricks. One 

dimension example of wavelet coefficients obtained from the convolution 

horizontal details and the 100th line of image segment is shown in Fig. 3.10 b).

Having computed horizontal details, we have measured separately distances 
between maxima (shown in Fig. 3.10 c)) and between minima for each column of 
this matrix (shown in Fig. 3.10 d)). In this way, we created a 2D distance map in 
one direction for the analysed object. Repeating this procedure for vertical details, 
we obtained the second 2D distance map for the other direction. Based on 2D 
FWT maps of the object, texture is parametrised calculating the change 
distributions in the horizontal and vertical direction, respectively (see Fig. 3.10 g) 
and h)). 

b) 

c) d) 
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e) f) 
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Fig. 3.10 Distance maps of texture calculated based on the 2D FWT with Haar wavelets. a) The 

disposition of wavelet image coefficients d j' where j is a multiresolution level, and aj is an 

approximation atj level. b) Horizontal wavelet coefficients presented along the 100th column of 
the image transform (for the Haar wavelet, where j = 1). c) Cross-section through the 100°' 
column of the distance map for positive horizontal wavelet coefficients. d) Cross-section through 
the 100th column of the distance map for negative horizontal wavelet coefficients. e) Original 
image of a roof segment (the segment was separated from the whole image based on our colour 
algorithm (cf. subsect. 4.2.3). f) The red component of the original image. g) Distance map for 
negative horizontal wavelet coefficients cHl. h) Distance map for negative vertical wavelet 
coefficients c VI [ 49]. 

As a result of the above described algorithm, we obtain two ranges for the 
horizontal texture object components hand two others for the vertical one v.

(3.18) 
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3.4 Edge Detection 

We understand an edge as a discontinuity in the image brightness which helps us 
to identify curved lines - edges separated segments. Therefore, in an ideal case, 
the result of applying an edge detector to an image may lead to a set of connected 
curves that indicate the boundaries of objects, the boundaries of surface markings, 
as well as curves that correspond to discontinuities in surface orientation. 

Generally, to detect edges we have to assume an image model in which 
discontinuities of image brightness are likely to correspond to: 

• discontinuities in depth;
• discontinuities in surface orientation;
• changes in material properties;
• variations in scene illumination.

The edge or contour can be defined as a parametric curve, polygon, or B-spline,
but this can cause problems with the description of non-uniformed topological 
objects. 

The method presented below covers grey images, because edge detection for 
colour images is more complicated. If a pixel falls on the boundary of an object in 
an image, then its neighbourhood is a zone of grey-level transition. Edge detection 
operators examine each pixel neighbourhood, and quantify the slope, as well as 
the direction, of the grey level transition. 

There are several methods to do this, for example: 

• thresholding [90]
• watershed algorithm [91];
• gradient methods;
• active contours;
• Hough transform;
• fuzzy thresholding [92];

3.4.1 Gradient Methods 

In gradient methods we treat the slope and direction of a potential edge as the 
magnitude and direction of the gradient vector, respectively, we apply the second 
derivative of the intensity of a 2D image function I(x,y), namely, the Laplacian: 

2 a
2 

a
2 

V I(x,y) =-2 I(x,y)+-? J(x,y) 
ax ay- (3 .19) 



44 

The Laplacian is a linear, shift-invariant operator and its transfer function is 
equal to zero at the origin of a frequency space. Fig. 3.11 presents an example of 
edges and both derivatives. 

Fig. 3.11. The kind of edges (at the top), the first derivative of the edges (in the middle), the 
second derivative of the edges (at the bottom). 

At present, for the discrete image version, most methods are based on 
convolution with a set of directional derivative masks M - filters: 

H(m,n) = LLI(i,j) M(m-i,n-j) 
i j 

(3.20) 

(3.21) 

where the exemplary masks M[3x3J, for a discrete Laplacian H(m,n) are shown in

Table 3.2. 

Table 3.2 Laplacian convolution kernels. 

0 -1 0 
-1 4 -1 
0 -1 0 

-1 -1 -1
-1 8 -1 
-1 -1 -1 

The other well-known edge operators are suggested by: Sobel [93], Prewitt [94] 
and Kirsch [90]. In all of them each pixel in the image is convolved with both 
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kernels. One kernel responds maximally to a generally vertical edge and the other
to a horizontal edge. The maximum value of the two convolutions is taken as the
output value for that pixel. The kernels for the Sobel edge operator are shown in
Table 3.3, whereas their results are presented in Fig. 3.12 c). 

Table 3.3 The Sobel convolution kernels.
-1 0 

-2 0 2 

-1 0 1 

2 1 

0 0 0 

-1 -2 -1 

The kernels for the Prewitt edge operator are shown in Table 3.4.

Table 3.4 Prewitt convolution kernels
-1 0 

-1 0 

-1 0 

1 1 

0 0 0 

-1 -1 -1

The Canny edge detector [95] is known to many as the optimal one for a
number of reasons; the first and most obvious being its low error rate. It is
important that edges presented in images should not be missing and that there are
no responses to non-edges. The second reason is that the edge points are well
localized, while the third that there is only one response to a single edge. 

In the Canny algorithm the Gaussian filter, based on the 5x5 mask, is used to
smooth the image because the larger the Gaussian mask, the lower the detector's
rate of sensitivity to noise. Next, the Sobel operator is applied to estimate the
gradient Gx in the x-direction and Gy in the y-direction. The magnitude, the so­
called edge strength of the gradient is thus approximated, using the formula: 

I G I= I Gx I+ I Gy I (3.22)

Then we find the edge direction

0 = arctan (:) (3.23)

See the result of the Canny edge operator applying to one segmented colour
layer in Fig. 3.12 d). 

We also use this algorithm to create contour map for the whole image as it is
seen in Fig. 3.2. 
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a) b) 

Sobel edges for cluster 5 Canny edges for cluster 2 

c) d) 

Fig. 3.12 An example of edge detection. a) the original image, b) a layer segmented by 

clustering, c) an example of the Sobel method for the layer from b), d) an example of the Canny 
method for the layer from b). 

3.4.2Boundary Tracking by Active Contours 

In contrast to gradient-based representation, where the boundaries are detected 
based on the pixel intensity, the parametric model of active contours leads to the 
energy minimization problem. 

Definition 3.2. (active contours) 

Formally, let p be a metric (for instance the Euclidean metric) in R
2 and 

K(x0, £) = { XE R
2

: p (x0,x) < £} be a sphere with the centre x0E R
2 and radius £< 0. 

A set c � R2 is a contour if and only ifthere exists a function/ R2 ➔ R, such as: 

c={xE R2
: V /\ /(x1 );::::Q,1,J(x2 )<0}. 

e>O x
1 

,x2EK(x0 ,e) 
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Active contours, or snakes, are computer-generated curves that move within 
images to find object boundaries [96]. A traditional snake is a parametric curve 

[x(p)] 
. . 

C(p) = , where pE [O, 1 ], that moves through the spatial domam Q of an 
y(p) 

image J(x,y). A snake, which we call the gradient vector flow (GVF) snake, begins 
with the calculation of a field of forces, called the GVF forces, over the image 
domain. 

J(C) = Einl (C) + E,xt (C) (3.24) 

The external energy function Eext is derived from the image so it moves towards 
the image contour: 

E,x, = f P(C(p)) dp = -v'P(C(p)) (3.25) 

where P(x,y) is a convolution of image J(x,y) (seen as a line) with a 2D Gaussian 
function G cr(x,y) with a standard deviation o; as follows: 

P(x,y) =-I v'Gcr(x,y)* I(x,y) I 2 (3.26) 

The internal energy E;,,1 controls the snake like a physical object resistant to 
both stretching and bending, towards the image boundaries: 

(3.27) 

where the first derivative C'(p) models stretching and elasticity, whereas the 
second derivative C"(p) models bending and rigidity, where a and /3 are weight 
parameters. 

A snake that minimizes J( C) must satisfy the Euler equation: 

aC"(p)-/JC""(p)- v'P(C(p)) = 0 (3.28) 

that can be viewed as a force balance equation 

(3.29) 

where: F;,,, = a C"(p)-/JC'"'(p) and F;_:'/ =-v'Eext· 

The GVF forces create the gradient ofan image edge map (see Fig. 3.13). 
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Fig. 3.13 A gradient vector flow (GVF) field for a U-shaped object. These vectors will pull an 
active contour towards the object boundary. (Follows: Active Contours, Deformable Models, 
and Gradient Vector Flow Chenyang Xu and Jerry L. Prince web page: 
http://www.iacl.ece.jhu.edu/static/gyf7) 

In comparison with the classical edge detection techniques, snakes have 
multiple advantages: 

• They produce closed and smooth object boundaries.

• They autonomously and adaptively search for the minimum state.

• External image forces act upon the snake in an intuitive manner.

• Incorporating Gaussian smoothing in the image energy function introduces
scale sensitivity.

But they also have some key drawbacks:

• They are sensitive to local minima states.

• Minute features are often ignored during energy minimization over the entire
contour.

• Their accuracy depends on the convergence policy.

3.4.3 Hough Transform 

The classical Hough transform was concerned with the identification of lines in 
the image, but later the Hough transform was extended to identify the positions of 
arbitrary shapes, most commonly circles or ellipses. 

The simplest variant of the Hough transform is used to detect of straight lines. 
In general, the straight line y = mx + b can be represented as a point (b,m) in the 
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parameter space. However, vertical lines pose a problem. Instead, Duda and Hart 
[97] propose the polar coordinate representation of a line:

p = x cos0+ y sin0, (3.30) 

where p is the distance from the origin to the closest point on the straight line, and 

0 is the angle between the x axis and the line connecting the origin with that 
closest point (see Fig. 3 .14). 

Fig. 3.14 Left: The original image. Right: Lines (green) found by the Hough transform. 

Each point in image generates the sinusoid in Hough space (Fig. 3 .15), and 

each point along this sinusoid corresponds to the p -0 values for a single line 
passing through the original point. 
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Fig. 3.15 The Hough transform space. White sinusoids represents lines visible in Fig. 3.14. 
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The Hough space is an accumulator space which means that it sums up the 
votes of many pixels in the image, and points in Hough space that have a large 
total vote are then interpreted as indicating the corresponding alignment on the 
real space image. To construct the Hough transform, every point present in the 
real-space image casts its votes into the Hough space for each of the lines that can 
possibly pass through it. 

3.5 Shape Information 

Shape extraction is a non-trivial operation, but shape-based methods are 
particularly challenging due to the intrinsic difficulties in dealing with shape 
location and recognition. Nevertheless, there is no doubt that shape is one of the 
basic features describing image content, hence, we define the key properties of 
shape: 

• identifiability: shapes which are found perceptually similar by humans have the
same/analogous features that are different from the others;

• translation, rotation, scale and affine invariance;

• the location, the rotation and the scaling changes of the shape must not affect
the extracted features;

• occultation invariance: when some parts of a shape are occulted by other
objects, the feature of the remaining part must not change compared to the
original shape.

• statistically independent of two features. This represents compactness of the
representation.

• reliability: as long as one deals with the same pattern, the extracted features
must remain the same.

Shape description can be generally divided into two kinds of methods: contour­
based and region-based. Under each kind, the methods are further divided into a 
structural and global approach based on whether the shape is represented as a 
whole or by segments (primitives). The whole breakdown is shown in Fig. 3.16. 

Contour shape techniques only exploit shape boundary information. Zhu et al. 
[98] use salient contours, extracted from bottom-up contour grouping, as tokens
for image-model shape matching. Shape matching with contours instead of
isolated edges has several advantages. Long salient contours are more distinctive,
which leads to efficiency of the search as well as the accuracy of shape matching.
Furthermore, an accidental alignment causing false positive detections is removed
by requiring the entire contour to match whole objects.
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Fig. 3.16 Shape describing methods [99]. 
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Boundary-based methods such as [100] represent shapes by the locations of the 
maxima of its curvature scale space (CSS) image. Shapes are smoothed by 
selecting the appropriate scale and then matched by shifting the CSS contours so 
that the major maxima of one image overlap that of the other [101]. The shape 
boundaries are approximated using planar curves and are progressively simplified 
through discrete curve evolution based on a novel relevance measure [100]. The 
weakness of the boundary-based approach is that it does not represent the interior 
of the shape [102] and is, therefore, very sensitive to spatial reconfigurations of 
parts and local boundary perturbations. 

In region-based techniques, all the pixels within a shape region are taken into 
account to obtain the shape representation. Common region based methods use 
moment descriptors to describe shapes [103]. Other region based methods include 
the grid method, shape matrix, convex hull and media axis. 

3.5.1 The Shape Approach to the Hybrid Semantic System 

According to the shape descriptors presented above our approach belongs to the 
region-based group of methods (see Fig. 3.16). Generally, we define shape 
descriptors for separated segments. The method used to find these segments is 
introduced in section 4.2.3. 

Assuming that we have segments described as a set of pixels, we can apply two 
types of moments: moments of inertia and Zernike moments. The former are very 
efficient as shape descriptors and can be calculated as: 
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µpq = L L (x - x)P (y - y)q I(x, y), 
X y 

p, q 
=

0,1,2 

where p and q are the number of moments, x and y are segment centroids. 
The second most efficient kind of descriptors is Zernike moments [104]. 

Definition 3.3 (Zernike moments) 

(3.31) 

Zernike moments are a set of complex polynomials {Vpq (x,y)} which form a 
complete orthogonal set over the unit disk of x2 + y2 :::; 1. Hence, the definition of 
2D Zernike moments with p1h order with repetition q for intensity image I(x,y) of 
the image is described as: 

Z pq= p + l ff v* (x,y)I(x,y)dxdy 
7[ 

pq 
x2 +y2 5:l 

where: v* (x,y) = V
1
, -q(x,y). pq 

(3.32) 

(3 33) 

Generally, the first 10 Zernike moments, i.e. those from Z00 to Z33, are 
sufficient as a shape feature (see Fig. 3.17). The scale invariance is obtained 
by/thanks to normalization of Z00 by the total number of image pixels. 

Fig. 3.17 The first Zernike base functions (followed Wikipedia). 
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Characteristic features of Zemike moments are: (i) invariance to rotation only; 
(ii) the translation invariance is achieved by the location of the original image
centroid in the centre of the coordinates, (iii) the scale invariance is obtained by 
normalizing Z00 by the total number of image pixels. 

Although the Zernike moment descriptor has a robust performance, it has 
several shortcomings. First, the kernel of Zernike moments is complex to 
compute, and the shape has to be normalized into a unit disk before deriving the 
moment features. Second, the radial features and circular features captured by 
Zernike moments are not consistent, one is in the spatial domain and the other is in 
the spectral domain. It does not allow multi-resolution analysis of a shape in a 
radial direction. Third, the circular spectral features are not captured evenly at 
each order, which can result in a loss of significant features which are useful for 
shape description. 

To overcome these shortcomings, a generic Fourier descriptor (GFD) has been 
proposed by Zhang and Lu [99]. The GFD is acquired by applying a 2D Fourier 
transform on a polar-raster P F: 

PF =II J(r, ea exp [2rrj Gip+ 
2
;

i 
(fJ )]

r i 

(3.34) 

where: 0 :S r < R and � = i(2w'T); 0 :S i < T; 0 :S p < R, 0 :S (fJ < T. R and Tare the 
radial frequency resolution and angular frequency resolution, respectively. The 
normalized coefficients are the GFD. The similarity between two shapes is 
measured by the city block distance between their GFDs. 

It has been found that methods operating within the spatial domain suffer from 
two main drawbacks: noise sensitivity and a high dimension of the feature vector. 
The problems can be solved in four ways: histogram, moments, scale space and 
spectral transforms. 

3.6 Local Feature Descriptors 

Local feature descriptors represent a group of methods which allow the user to 
find local image structures in a repeatable way and to encode them in a 
representation that is invariant to a range of image transformations, such as 
translation, rotation, scaling, and affine deformation. The purpose of introducing 
local feature descriptors is to provide a representation that enables the user to 
efficiently match local structures of images. For this objective, the feature 
extractors must fulfil three important criteria: 

1. The feature extraction process should be repeatable and precise, so that the
same features are extracted on two images showing the same object. 

2. At the same time, the features should be distinctive, so that different image
structures can be held apart from each other. 
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3. Proper feature descriptors should be resistant to accidental variance of features
and invariant to scaling and rotation of image.

Herein, we present a group of seven local feature descriptors developed
recently. Their general advantage is high precision in matching the required 
object, but their drawback is long running time and the necessity to provide a 
query-by-example. 

3.6.1 Scale-Invariant Feature Transform (SIFT) 

The scale-invariant feature transform (SIFT) was introduced by Lowe [24], [23] to 
identify objects in two images, even if these objects were cluttered or under partial 
occlusion, because the SIFT feature descriptor is invariant to uniform scaling and 
orientation. In like manner, it is partially invariant to affine distortion and 
illumination changes. 

The algorithm starts from key-points detection in order to identify locations and 
scales that can be repeatedly assigned under differing views of the same object. 
Key-point locations are defined as maxima and minima of the difference of the 

Gaussians G(x,y, OJ applied in a scale-space to a series of smoothed and resampled 
images. 

L(x,y, a-) = G(x,y, a-) * I(x,y) (3.35) 

where L(x,y, OJ is the product of a convolution. This difference of Gaussians is 
calculated for two nearby scales with k factor: 

D(x,y, a-) = L(x,y, kOJ - L(x,y, a-) (3.36) 

The scale-space extrema detection produces too many key-point candidates, so 
at first, for each candidate key-point, interpolation of nearby data is used to 
accurately determine its position. The interpolation is done using the quadratic 
Taylor expansion of the difference-of-Gaussian scale-space function, D with the 
candidate key-point as the origin. This Taylor expansion is given by: 

for x = (x,y, a-/. 

aDT 
1 8 2D 

D(x) = D +- x+-xr -x 
ax 2 ax2 

(3.37) 

Low contrast candidate points and edge response points along an edge are 
discarded. Dominant orientations are assigned to localized key-points. These steps 
ensure that the key-points are more stable for matching and recognition. The SIFT 
descriptors robust to local affine distortion are then obtained by considering pixels 
around a radius of the key location, blurring and resampling of local image 
orientation planes. 
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The next step is the orientation assignment when each key-point is assigned
one or more orientations based on local image gradient directions. First, the
Gaussian-smoothed image L(x,y, OJ at the key-point's scale CY is taken so that all
computations are performed in a scale-invariant manner. For an image sample
L(x,y) at scale o; the gradient magnitude m(x,y) and orientation 0(x,y) are
precomputed using pixel differences: 

m(x, y) = -J (L(x + 1, y) - L(x - 1, y))2 + (L(x, y + 1) - L(x, y - 1))2 (3.38)

(L(x,y + 1) - L(x,y- 1))0(x,y) = arctan L(x + l,y) _ L(x - l,y) 

assuming that 'v'(x,y) in the neighbourhood (x0,y0). 

-+ t 

; ,L

= 

0 ➔ l' t "- ◄- ,; t ,. 2TT 

(3.39)

Fig. 3.18 The gradient magnitude and orientation at each point of a 4x4 set of samples ( on the 
left) which are accumulated into orientation histograms with 8 bins each (in the middle). The 
key-points descriptor summarizes the contents over 4x4 subregions, as shown on the right, with 
the length of each arrow corresponding to the sum of the gradient magnitudes near that direction 

within the region. Peaks in the orientation histogram correspond to dominant directions of local 
gradients. 

The SIFT key samples generated at a larger scale are given twice the weight of
those at a smaller scale. This means that the larger scale is in effect able to filter
the most likely neighbours for the smaller scale. This also improves recognition
performance by giving more weight to the least-noisy scale. To avoid the problem
of boundary effects in bin assignment, each key-point match votes for the 2 closest
bins in each dimension, giving a total of 16 entries for each hypothesis and further
broadening the pose range. 

Hough transform (as it has been described in subsect. 3.4.3, cf. (3.30)) is used
to cluster reliable model hypotheses to search for keys that agree upon a particular
model pose. When feature clusters are found to vote for the same pose of an
object, the probability of the interpretation being correct is much higher than for
any single feature. An entry in a hash table is created predicting the model
location, orientation, and scale from the match hypothesis. The hash table is
searched to identify all clusters of at least 3 entries in a bin, and the bins are sorted
into decreasing order of size. 

Each identified cluster is then subject to a verification procedure in which a
linear least squares solution is performed for the parameters of the affine
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transformation relating the model to the image. The affine transformation of a 
model point [x y]T to an image point [u vr can be written as below: 

[�] = [ :� :: l l; J + l t J (3.40) 

where the model translation is [tx ty]
T and the affine rotation, scale, and stretch are 

represented by the parameters m 1 , m2, m3 and m4 . In order to find the 
transformation parameters the equation (3.40) can be reformulated to group the 
unknowns into a column vector. 

[ox y O O 1 

0 X Y 0 (3 .41) 

This equation presents a single match, but any number of further matches can 
be added, with each match contributing two more rows to the first and last matrix. 
At least 3 matches are needed to provide a solution. We can write this linear 
system as 

Ax"" b (3.42) 

where A is a known n-by-p matrix (n > p), x is an unknown p-dimensional 
parameter vector, and b is a known n-dimensional measurement vector. Therefore, 
the minimizing vector x is a solution of the normal equation. 

(3.43) 

hence, we obtain: 

(3.44) 

which minimizes the sum of the squares of the distances from the projected model 
locations to the corresponding image locations. 

3. 6.2 RootSIFT

SIFT was originally designed, by Lowe [23], to be used with the Euclidean 
distance, but since there is a histogram comparison, Arandjelovic and Zisserman 
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[105] introduced alternative histogram distance measures, namely the Hellinger
kernel.

The Hellinger kernel for two L1 normalized histograms, x and y (i.e. If x; = 1 
and x

i 
2". 0), is defined as follows: 

n 

H(x,y)= L/xY; 
i=l 

where n is a number of vector with unit Euclidean norm such as: llxlb = 1. 

(3.45) 

The RootSIFT application slightly increases the average precision of retrieval. 

3. 6.3 Rotation-Invariant Generalization of SIFT (RIFT)

RIFT is a rotation-invariant variant of the SIFT method dedicated to texture 
images where the notion of orientation is difficult to define. The RlFT descriptor 
is constructed using circular normalized patches divided into concentric rings of 
equal width and within each ring a gradient orientation histogram is computed 
[106], [55]. To maintain rotation invariance, the orientation is measured at each 
point relative to the direction pointing outward from the center (see Fig. 3 .19). 

When the size of the Laplacian-of-Gaussian (LoG) kernel matches with the size 
of a blob-like structure, the response attains an extremum: 

(3.46) 

The LoG kernel can therefore be interpreted as a matching filter. 

Fig. 3.19 Scale invariant interest point detection: (Top) Initial multi-scale Harris points (selected 
manually) corresponding to one local structure [106]. 
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3.6.4Fisher Vector (FV) 

The Fisher kernel has been proposed, in the context of measuring the amount of 
information that an observable random variable X carries about an unknown 
parameter ), of a distribution that models X. Formally, it is the variance of the 
score, or the expected value of the observed information. From the theory of 
information we know that the entropy of a random value Vis: 

H(V) = -Ip(v) log(p(v)) (3.47) 

In the context of image retrieval the FV are usually £2 -normalized since, as 
proved it Perronnin et al. [107] this is a way to eliminate the fact that distinct 
images contain different amounts of image-specific inf01mation. The Fisher 
Vector is applied to non-binary local features, using the Gaussian Mixture Model 
to represent the average distributionp(X IJ). 

For sample X = {x1 , t = l, ... ,T} of observations, which is a set of T local 
descriptors extracted from an image and p(X IJ) represents a probability density 
function with ,1, parameters, the gradient v',i of the log-likelihood describes the 
contribution of the parameters to the generation process [107]: 

G(Xlil) =
T

V" logp(Xll) (3.48) 

The dimensionality of this vector depends only on the number of parameters A, 
not on the number of patches T. 

Further, this approach has been moved to an image classification, where the 
Fisher kernel K method is to derive a function that measures the similarity 
between two sets of data X and Y, such as the sets of local descriptors extracted 
from two images. The idea is to characterize a signal with a gradient vector 
derived from a probability density function (pdf) which models the generation 
process of the signal [108]. 

K(X,Y) = G'(Xjl) F-\J) G(YJJ) (3.49) 

where Fisher information matrix: F-1(J)=L'(J)L(J). 
This representation can then be used as input to a discriminative classier. For 

the problem of image categorization the input signals are images. Perronnin and 
Dance proposed to use, as a generative model the Gaussian Mixture Models 
(GMM) which approximates the distribution oflow-level features in images, i.e. a 
visual vocabulary. 

Krapac and Segvic proposed in [109] to use large FVs to object location on 
video images. They detect multiple objects on complex backgrounds, for instance, 
road signs. 



59 

3.6.5 Vectors of Locally Aggregated Descriptors (VLAD) 

The VLAD method analyzes the local descriptors contained in an image to create 
statistical summaries that still preserve the effectiveness of local descriptors and 
allow treating them as global descriptors [110]. These image descriptors were 
designed to be very low dimensional (e.g. 16 bytes per image). 

This method encodes a set of local feature descriptors F = (x1 , . . .  , xk), extracted 
from an image treated as a codebook with k visual words, using a dictionary based 
on a clustering method, such as GMM or k-means clustering. Each local descriptor 
x
j 

is then associated with its nearest centroid NN(x
j
) = µ;. 

(3.50) 

where i =l, ... , k is the index of visual word (k - number of centroids) and 
j =1, ... ,d is the local descriptor component. Hence, the whole image 
representation dimension is D = k x d. 

For each cluster, the residual vectors (i.e. the difference between the centroid 
and the associated descriptors) are accumulated and the sum of the residual is 
concatenated into a single vector V = [v[ ... vD, Next, vector v is normalised by 
v:=v/llvllz and the Euclidean distance is sufficient to compare two VLADs. 

3.6.6. Features from accelerated segment test (FAST) 

FAST is a corner detection method, introduced by Rosten and Drummond in 2006 
[111], which could be used to extract feature points and later used to track and 
map objects [112]. A FAST corner detector uses a circle of 16 pixels (a 
Bresenham circle of r =3) to classify whether a candidate point p is actually a 
corner. Each pixel in the circle is labelled from integer number 1 to 16 clockwise. 
For a set of N contiguous pixels, if the pixels in the circle are all brighter than the 
intensity of candidate pixel p ( denoted by Ip), plus a threshold value t, or all darker 
than the intensity of candidate pixel p, minus threshold value t, then p is classified 
as a corner. The conditions can be written as: 

1. A set of N contiguous pixels S, 'ii x E S, the intensity ofx denoted by Ux) can be
f, > Ip +t;

2. A set of N contiguous pixels S, 'ii x E S, r, < I
p - t;

So when either of the two conditions is met, candidate p can be classified as a
corner. There is a tradeoff between selecting N, the number of contiguous pixels 
and the threshold value t. Then, N is usually selected as 12. A high-speed test 
method could be applied to exclude non-corner points. 

Generally, the FAST detector is employed to find objects in video frames 
because of its effectiveness. 
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3.6. 70riented FAST and Rotated BRIEF (ORB) 

ORB is basically a fusion of the FAST key-point detector and a BRIEF descriptor 
with many modifications to enhance the performance introduced by Rublee et al. 
[113] in 2011. First, it uses FAST to find key-points, then apply the Harris [114]
corner measure to find top N points among them. It also uses a pyramid to produce 
multiscale-features. 

In order to compute orientation, they found moments of order p and q, such as: 

mpq = LLxPy'IJ(x,y), p,q=0,1,2 
X y 

d . , 'd C __ (m10
, 

mo1). an mtens1ty centr01 s: 
moo moo 

(3.51) 

Then, a vector OC from the corner's center, 0, to the centroid, can be 
constructed. The orientation of the patch then simply is: 

0 = atan2(m01,m10), (3.52) 

where atan2 is the arctangent function with two arguments. In order to improve 
the rotation invariance of this measure authors made sure that moments are 
computed with x and y remaining within a circular region of radius r. They 
empirically selected r to be the patch size, so that that x and y run from [-r, r].

Next, the Binary Robust Independent Elementary Features (BRIEF) descriptor 
is used for a simple binary test T between pixels in a smoothed image patch p, as 
follows: 

{ 1: p(x) < p(y)r(p; x, y) := 0: p(x) ;::: p(y) (3.53) 

where p(x) is the intensity of p at a point x. The feature is defined as a vector of n
binary tests: 

fn(p): = L z i-lr(p;xi ,YD (3.54) 
1,;i,;;n 

The test pairs of x and y are selected by Gaussian distribution around the centre 
of the patch or PCA for good discrimination. As tests for typical frames of size 
640x480 proved, the ORB descriptor gives significant time decreasing. 
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The Moving Picture Experts Group (MPEG) [115] is a working group of 
authorities that was formed by ISO and IEC to set standards for audio and video 

compression and transmission. The MPEG-7 is a multimedia content description 
interface that uses XML to store metadata, and can be attached to the timecode in 
order to tag particular events. The description of the standard can be found in 
[116]. 

The main elements of the MPEG-7 standard are: 

• Descriptors (D) that define the syntax and the semantics of each feature
(metadata element);

• Description Schemes (DS) that specify the structure and semantics of the
relationships between their components which may be both descriptors and
description schemes;

• A Description Definition Language (DDL) to define the syntax of the MPEG-7
Description Tools and to allow the creation of new description schemes and,

possibly, descriptors and to allow the extension and modification of existing
description schemes;

The above-mentioned tools deal with binarization, synchronization, transport
and storage of descriptors (see Fig. 3.20) [117]. 

MPEG-7 Visual Description Tools consist of basic structures and descriptors 
that cover the following basic visual features: color, texture, shape, motion, 
localization, and face recognition. Each category consists of elementary and 

sophisticated descriptors. 
MPEG-7 Multimedia Description Schemes (DSs) are metadata structures for 

describing and annotating audio-visual (AV) content. The DSs provide a 
standardized way of describing in XML the important concepts related to AV 
content description and content management in order to facilitate searching, 

indexing, filtering, and access. The DSs are defined using the MPEG-7 
Description Definition Language (DDL), which is based on the XML Schema 
language, and are instantiated as documents or streams. The resulting descriptions 
can be expressed in a textual form (i.e., human readable XML for editing, 

searching, filtering) or compressed binary form (i.e., for storage or transmission). 
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Fig. 3.20 Relations between different tools and the elaboration process ofMPEG 7 [117]. 

3.8 Global Versus Local Comparison of Features 

A feature is defined to capture a certain visual property of an image, either 
globally for the entire image or locally for a small group of pixels. So far, we have 
described local features i,e. related to the most basic structure of images, such as 
pixels. To reduce computation, an image may be divided into small, non­
overlapping structures like lines, pixel neighbourhoods, subsets of pixels or 
patterns, and later the features are computed individually for every structure. The 
features are still local because of the small block size, but the amount of 
computation is radically reduced in comparison with that needed for obtaining 
features around every pixel. 

In turn, global features capture the overall characteristics of an image. The 
advantage of global extraction is its high speed for both extracting features and 
computing similarity. 

Both global and local features can be represented as a feature vector. There is 
one global feature for an image as well as many feature vectors x, y with local 
features, also for this image, additionally, to each feature its weight c;(i) can be 
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attributed. Then the Euclidean distance, measuring the distance between x and y 
vector, can be calculated as: 

ds = J(x-y)Tdiag(�t)(x-y) (3.55) 

Generally, a histogram was widely used as a global feature because it is very 
fast to compute and easy to compare with another histogram. A histogram can 
then be treated as a k-dimensional vector (fi,fi, ... ,ft), whereji is the frequency of 
the I th bin. We assume that two distributions (two images) have two histograms 
H0(i) and H1 (i) with O<i<n bins each. 

We can, for example, compare histograms based on the Minkowski distance 
(withp=3): 

1 

dL/Ho, H1) = [t I Ho (i) -H1 (i) I P r 

colox 
fX(qU'.l'lt'/ 

Fig. 3.21 Histogram intersection. 

(3.56) 

colox 

This kind of distance is very sensitive to even small shifts because the same 
bars must be compared with each other. 

The histogram intersection [118] is widely used because of its ability to handle 
partial matches when the areas of the two histograms (the sum over all the bins 
(3.57)) are different (see Fig. 3.21). It is shown by Swain and Ballard [118] that 
when the areas of the two histograms are equal, the histogram intersection is 
equivalent to the (normalized) L 1 distance. 

(3.57) 

When the feature vector represents relative frequency distribution ( e.g., a 
normalised grey level co-occurrence histogram), for example, texture features, the 
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dissimilarity can also be measured by the relative entropy, or Kullback-Leibler 
(K-L) divergence. Let D1 denote the divergence between two distributions, H0(i)
and H1 (i), which is based on vector quantization. Then: 

(3.58) 

This dissimilarity measure is asymmetric and does not represent a distance 
because the triangle inequality is not satisfied. The symmetric distance is obtained 
by averaging H0 and H1 [119]. In histogram notation we can describe this distance 
as: 

(3.59) 

H C)+H C) 
where: m; = 0 

' 
1 

' • Additionally, the K-L divergence is sensitive to histogram
2 

binning. 
In 1998 Rubner et al. [12] introduced the Earth Mover's Distance (EMD) 

which was understood as the minimal cost that must be paid to transform one 
distribution (histogram) into the other, where there is a distance d;J (between bin i 
and j) and is meant as the distance between the basic features that are aggregated 
into the histogram. Computing the EMD is based on a solution to the well-known 
transportation problem. 

Given two histograms H; and�' the EMD is: 

min "- -(f,- -d- -) 
f· . L,i,J i,J i,J 

l,J 

for the following constraints: [i,j ::::: 0, Lj 
fi

J 
::::;; H;; L i [i,j 

::::;; � ; 

(3.60) 

where: fi.,j denotes the flow which allows us to move some amount of 'mass' from 
H; to � and vice versa; the flow cannot be higher than neither H; nor � and the 
last constraint describes the maximum mass possible to move. 
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Fig. 3.22 Transport of 'mass' from EiJ to H;. 

The EMD naturally extends the notion of a distance between individual 
elements to that of a distance between sets, or distributions, of elements. The 

advantages of the EMD over previous definitions of distribution distances are 
significant. 

If the ground distance is a metric and the total weights of two signatures are 
equal, the EMD is a true metric, which allows endowing image spaces with a 
metric structure. 

3.8 From Features to Signature 

Generally, a signature describes the image information (also known as a global 
image descriptor) and it can also be seen as a mathematical function. The principal 
purpose of this function is to extract from a large image data structure. 

The objective is that computed signatures enable us to determine similarities 
(i.e have matching features) between images that represent, for instance, the same 
scene but captured from different points of view. It means that most of the visual 
applications required that two images with high perceptual similarities have 
resembling signatures. 

Signature generation functions can be roughly classified in three main groups, 
depending on the input data used to generate the global descriptor: 

1. Appearance-based: the signature is calculated from texture, colour information,
transformations in the frequency space or matrix factorizations
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2. Feature-based: the signature is calculated from the image key-points and their
descriptors like those used in the SIFT, RIFT, etc.

3. Region-based: the signature is defined on the distance between sets of vectors,
which is not as obvious as defining distance between single vectors.

A signature {s
j = (mj; wmj)} can represent a set of feature clusters, where a

cluster is represented by its mean ( or mode) m
j, and by the fraction wmj of pixels 

that belong to that cluster, 1:S: j ::; n, where n depicts the complexity of the 
particular image and the representative mj is a d-dimensional vector. In general, 
vector quantization algorithms can be used for the clustering, as long as they are 
applied on every image independently, and they adjust the number of clusters to 
the complexities of individual images. On this assumption, a histogram {hj} can 
be viewed as a signature {s

j
= (mj; wmj)} in which/11 cluster maps the point m1

with the central value in bin j of the histogram, and then w1 
is equal to h1, which 

better represents the image content. 

Image 
approach 

Feature vector.-

Mathematical 
formulation 

--

--+ Single vector�cc-------

; ---

Region-based--+----- -- Sets of vectors+�::::::_=:-/ 
l ,,,,,,,., 
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I
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Fig. 3.23 Different types of image similarity measure and their mathematical formulations. 

Additionally, the global signature based on the image histogram can be seen as: 
{(z�,f{), ... ,(z�JD}, where// is the percentage of x;/s grouped into cluster l, 

and z{ is a bin's location. The collection of pixels (i, }) for which x;J 's are in the
same cluster forms a relatively homogeneous region because the common cluster 
forces closeness between the visual features in x;/s. 

As shown in Fig. 3.23, similarity computation can be performed with feature 
vectors, region-based signature, object-based signature, or summarized local 
features. 
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