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Chapter 2 

Neural networks 

Artificial neural networks have several practical applications. One of them is the 
approximating some mapping [15], [4], [5]. We can generate such artificial neu­
ral network, which for some input vector calculates the appropriate output vector. 
The most commonly used networks to approximate some mappings are feedfor­
ward neural networks and Elman's neural networks. In this paper we use feedfor­
ward neural networks and Elman's neural networks to approximate some inverse 
mapping which for given input vector calculates the locations of hole. 

2.1 Inverse mapping 

Let us consider the interior sub-domain w. In w we have some fixed number of 
holes (1, 2 or 3). Each of holes is a circle with some small fixed radius. Let us 
consider, without loss of generality, that we have one hole in w. We assume that 
the center of this hole is defined as (x 1 , x 2 ). Our aim is to calculate the location 
of the hole inside w based of the solution of the differential equation. 

Let us consider mapping g1 : IR2 -+ IR7 , 

where 
(x1 , x2)- location of one hole in wand 
a0 , a 1 , b1 , a 2 , b2 , a3 , b3 - coefficients in the Fourier series expansion function u( a), 
a E (0, 21r). 
Coefficients of the Fourier series depends on the solution of the differential equa­
tion and thus the location of the hole. 
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Using mapping 91 we can calculate vector (a0, a1, b1, a2, b2, a3, b3) but we need 
to do the inverse procedure. It means that we must consider the mapping that for 
vector ( a0, a1 , b1, a2, b2, a3, b3) calculates the location of the hole (x 1, x2). To this 
end we consider the inverse mapping. 

Let us consider the inverse mapping defined as f = 911. It means that -;, 

f(ao , a1 , b1 , a2 , b2 , a3,b3) = [x1,x2] -

Mapping f for coefficients of the Fourier series ca]culates the location of the hole ! 

inw. 
From the mathematical point of view, the inverse mapping 911 is difficult to 

evaluate. Jn this case we can use artificial neural networks to determine the inverse 
of mapping. We use the artificial neural networks to approximate mapping f. To 
solve this problem we use the feedforward and Elman's neural networks. 

2.2 Learning set 

To realize an approximation procedure of inverse mapping we must create an ar­
tificial neural network. This network has the following topology. The network 
has the input vector consisting of seven oeficients, each of which corresponds to 
one coefficient of the vector a0, a1, b1 , a2, b2, a3, b3. The network has a one hidden 
layer consisting of four neurons. In addition, the network has a two neurons in 
the output layer corresponding to the values x1 , x2• Additionally, Elman 's net­
work has four neurons in the context layer. Due to kind of the problem we use 
sigmoidal activation function for each of the layers. 

After generating the network we must relise a learning procedure. We use the 
Levenberg-Marquard learning procedure. To realise the learning procedure we 
need a learning set. Let N be a size of learning set L = { P, T}, where Pisa set 
of patterns defined as 

p = {Pi, · · · , P N} 

such that 
Pi = [pi, ... , p;] = [ao , a1 , bi, a2 , b2 , a3, b3] 

for i = 1, ... , N and Tisa set of targets defined as 

such that 
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for i = 1, .. . , N. For all i = 1, ... , Np.. is a vector of coefficients of the Fourier 
series and t ; is location of hole. 

In order to generate the learning set that contains N elements we generate a 
random hole in the w N times. Next for each hole we consider the differential 
equation and then we solve them. We use the solution of the differential equation 
on 8w to generate Fourier series, whose the first seven coefficients are the val­
ues vector of mapping 91 . We define the values of mapping 91 as arguments of 
mapping f and arguments of mapping 91 as values of mapping f and we obtain 
elements of learning set. 

For our learning set we realize learning procedure using the Levenberg­
Marquard method. After that we obtain the learned neural network. This network 
for the vector of coefficients of the Fourier series calculates location of hole. 

2.3 Numerical results 

Here we present some results from numerical computations. We use Matlab envi­
ronment. The size of learning set is 1000 elements and the size of testing set is 50 
elements. Jn Fig.2.3 we present an architecture of the network given by Matlab. In 
Fig.2.3 and 2.3 we have the result of training performance and values of gradient, 
respectively. Fig.2.3 present the fitness of results to the target. 

Neural N etwork 

Algorithms 

Training: L~enberg•Marquardt (tr~ir.lm) 
Pfflormance: Mean Squared Error {m!'ieJ 
Calculations: MEX 

Progress 

Epoc.h: 0 

Time: 0,01 ,15 
1000 

Performance: 0.159 0,000100 

Gradient: 0.116 1.00e-20 

Mu: 0.00100 i====1=.00=•=·1=1====l 1.00e:+10 
Validation Checks: 0 0 6 

Figure 2.1: Architecture of the Matlab network 
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Best Training Performance Is 0.0010847 at epoch 1000 
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Figure 2.2: Training performance 

Figure 2.3 : Values of the gradient 

2.4 The case of several holes 

Let us consider mapping g2 : IR4 --+ IR7 , 

where 
(x}, x~)- location of the first hole in w, 
(x? , xD- location of the second hole in wand 
a0 , a 1 , b1 , a 2 , b2 , a3 , b3 - coefficients in the Fourier series expansion function u(a), 
a E [O, 21r) . Coefficients of the Fourier series depends on the solution of the 
differential equation and thus the location of two holes. 
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Figure 2.4: Fitness to target 
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Using mapping 92 we can calculate vector (a0 , a 1 , b1 , a 2 , b2 , a3 , b3 ) but we need 
to do the inverse procedure. It means that we must consider the mapping that for 
vector (a0 , a1 , b1 , a2, b2, a3 , b3 ) calculates the location of two holes (xL x~, xf , x~) ­
To this end we consider the inverse mapping. 

Let us consider the inverse mapping defined as f = 921. Tt means that 

Mapping f for coefficients of the Fourier series calculates the location of two 
holes in w. 

In the same way we define the case of three holes. 

2.5 Conclusion 

In this paper we use artificial neural networks as an approximator of some map­
ping which for vector of coefficients of the Fourier series calculates location of 
one, two or three holes. The problems considered in the paper, especially those 
including several holes, are quite difficult because the voids which we want to lo­
calize are screened from the observation. They are contained in w, while the goal 
functional is computed on D. As a result, the goal functionals are not very sen­
sitive to the changes of the configuration and this impedes the use of algorithms 
based on gradients (shape derivatives). 
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