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2. Comparison of the developed inventory map with independent

emission assessments: nighttime lights

2.1 ODIAC and GESAPU emission assessments

Below we present a comparison of the developed GHG spatial inventory with an
independent assessment, that was obtained by combining a worldwide point source database
and satellite observations of the global nightlight distribution; for details see Oda &
Maksyutov, 2011. The ODIAC (Open source Data Inventory of Antropogenic CO, emissions)
data set has been compiled for the whole globe, and Figure 1 presents the map for Poland. It
provides a lkm x lkm annual fossil fuel CO, emission inventory, where source regions
corresponding to human settlements and land transportation are well articulated.
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Figure 1. ODIAC assessment of fossil fuel CO, emissions at the territory of Poland in the
original 1km x 1km grid [Gg CO;]

For comparison, a relevant inventory part of GESAPU assessment comprises Energy
sector, see Figure 2. It should be noted that this emission inventory is prepared for the year
2010, while the presented ODIAC results were compiled for the year 2013.
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Figure 2. GESAPU assessment of fossil fuel CO, emissions at the territory of Poland in
2km x 2km grid [Gg CO;]

2.2 Basic assumptions underlying the two approaches for spatial emission

assessment

Below we compare the basic assumptions used for modelling emissions by the ODIAC
method (Oda & Maksyutov, 2011) and the method used in the GESAPU project.

Table 1. Methodological assumptions: ODIAC versus GESAPU emission data sets

ODIAC

GESAPU

National emission data:

o Estimates of annual national CO,
emissions based on worldwide energy
statistics compiled by the energy
company BP p.l.c., which includes the
consumption of commercially traded
primary fuels (e.g. oil, coal, natural gas)

o The CO; emissions estimated by
calculating the carbon content of the
consumed fuels according to the
methodology specified in the IPPC 1996
guidelines

National emission data:

o Estimates of annual GHG (CO,, CHa,
N,O, SF¢, NMVOC) emissions at the
level of point-, line- and area-type
sources, using national statistical data
about fossil fuel consumption in the
Energy sector as well as activity data in
the Industry, Agriculture, Waste and
LULUCEF sectors at the national, regional
levels, and the level of municipalities

o The GHG emissions estimated using
emission factors in all sectors, and net




o Conversion factors adopted from the
statistics report prepared by IEA (2007)

calorific values in the Energy sector
(national or for point-type sources —
where possible) according to the
methodology specified in the IPPC 2007
guidelines

Point sources (power plants):

o Data (localization, emissions) from the
database CARMA (Carbon Monitoring
and Action, http://carma.org)

o Emissions from cement production not
considered

o Non-land fossil fuel CO, emissions
(marine and aviation) included in the land
emission estimates

Point sources (power plants, metallurgy,
chemicals, cement production, mining etc.):

o Localization of point emission sources
using GoogleEarth; activity data using
disaggregation algorithms from the
lowest as possible level of statistical data
(plant, municipality, region, national
scale)

¢ Emissions from cement production are
considered

« Non-land fossil fuel CO, emissions
(marine and aviation) are not included in
the emission estimates

Non-point sources (industrial, residential,
commercial sections, and daily transportati|

o National emissions approximated by
subtracting the emissions of point sources
from the national total emissions

o The spatial distribution determined using d|
from the satellite nightlight observations
obtained from the US Air Force Defense
Meteorological Satellite Project Operationg
Linescan System (DMSP-OSL) satellites

Non-point sources (area-type sources for
industrial, residential, commercial, city
transport, agriculture, waste, LULUCF sec{
line-type sources for road and railway

transportation):

e Activity data (and emissions) for each sect:
(category of economic activity) are calculal
using disaggregation algorithms from the
lowest as possible level of statistical data
(municipality, region, national scale), and
subtracting the data of point sources;

e Additional specific regional data are used i
disaggregation algorithms, for example,
energy demand for cooking, water and spag
heating in households for disaggregation fq
fuels in the residential sector

« Borders of area sources are defined using
population density map (Gallego, 2010), arf
land cover map (Corine, 2006); line source]
are estimated using national road and railw
maps

Final data integration:

¢ Point sources emissions were placed
directly at exact locations using coordinate
information available in the CARMA
database

o Total emissions from non-point sources

were distributed to 1 km x 1 km pixels

Final data integration:

¢ Emissions assigned to point sources and
segments of line sources are placed
directly at exact locations using
coordinates from GoogleEarth and national
road maps

o Emissions from area- sources are




according to the distribution of nightligh
radiance .

placed at corresponding polygons with
spatial resolution 100m, using land cover
map

o Spatially resolved total greenhouse gas
emissions point-, line-, and area-type
sources are obtained for the 2 km x 2 km
grid. Each cell contains information about
emissions from all sectors/subsectors as
well as total emissions, separately for each
greenhouse gas as well as total in CO,-
equivalent

2.3 Quantitative comparison of emission maps
In order to perform a quantitative comparison, the ODIAC 1 km x 1 km map has been

adjusted to the 2km grid used in GESAPU calculations. The considered 2km grid for the
territory of Poland comprises 79 098 grid cells. The resulting differences between the two
assessments are presented in Figure 3, and further analyzed in a histogram and a boxplot in
Figure 4. The maps showed good agreement, with the majority of differences (over 70 000)
being close to 0. From the histogram it can be noticed that there are more differences below 0
(over 50 000) than above 0 (over 20 000), meaning that the ODIAC assessment tends to report

slightly higher values.
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Figure 3. The difference between GESAPU and ODIAC CO; emissions [Gg CO;]
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Figure 4. Histogram (left) and boxplot (right) of differences

Histogram of Odiac emissions < 50Gg Histogram of Odiac emissions > 50Gg

Frequency
10000 20000 30000 40000 50000
N i L i s
Frequency
200
1




gram of Gesapy < 50Gg of Gesapu > 50Gg

Fraquency
0000 20000 30000 40000 SO000 BO0OO
i ¥ SN S i

- I |
R R SO

T T T T T
[ v 2 30 40

g
g
B
g

Figure 5. Histogram of CO, emissions in both inventories

The histograms in Figure 5 reveal that huge amount of observations (over 60 000) is
below 50Gg, and only the remainder (approx. 400 for ODIAC and 250 for GESAPU)
represent high values up to 20 000Gg, apparently corresponding to point emission sources.
From the scatterplots in Figure 6, particularly the right one of values up to 100Gg, it can be
seen that the agreement among the two inventories is somehow limited. One can partly
attribute this fact to the issue of transformation of ODIAC map from 1km to 2km resolution.
This can be seen in maps for Warsaw agglomeration (Figure 7) and the Silesia region
(Figure 8), where the agreement of the GESAPU results with the original 1km ODIAC map is
visibly much better than with the adjusted 2km map. Also, note the misallocation of point
emission sources in the Warsaw map of ODIAC database. In terms of precise location of
power and electricity stations, the GESAPU study seems to provide more reliable

information.
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Figure 6. Scatterplot of CO; emission values [Gg CO;]
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Figure 7. Fossil fuel CO; emissions in Warsaw agglomeration and its surroundings
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Figure 8. Fossil fuel CO, emissions in the Silesia region



3. Concluding remarks

A review of available approaches to assimilation of independent emission assessments has
been provided. Four groups of methods have been identified, and their basic paradigms and
principles have been reviewed. These are: the satellite observations of nighttime lights, the
observations of *CO, mixing ratios, the inversion of atmospheric measurements, and the flux
tower observations. An analysis of independent sources of information revealed that, at the
present state of availability of observations, only satellite observations of nighttime lights can
be readily used for an independent emission assessment of very high resolution inventory, like
the one developed for Poland within the GESAPU project. Such data has been received from
the ODIAC project. They have been used for a comparison, both in a qualitative and
quantitative manner. Regardless of many identified differences in assumptions taken in both
methods, a good match was obtained for about 90% of around 80 000 grid cells. The major
differences were mainly due to misallocation of some high point sources in the ODIAC data,
and due to errors caused by a mismatch in overlay of both maps.
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