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Abstract. In many felds of research where diflerent gridded spatial
data needs to be processed, the grids do not align properly. This can
be for a multitude of r and it complicates drawing conclusions
and further processing the data; it requires one grid to be transformed
to match the other grid. In this article, we present the first results of a
completely new approach to transforming data that are represented in
one grid, to have it match a given target grid. The approach uses tech-
niques from artificial intclligence and simulates an intclligent reasoning
on how the grid can be transformed, using additionally available infor-
mation to estimate the underlying distribution. The article describes the
algorithm, and results on artificial datascts arc discussed.

1 Introduction

1.1 Problem description

Numerical data that are spatially correlated are often represented in a gridded
format. This means that the map over which the numerical data holds, is divided
using a raster. Each cell of the raster (or grid) is then assigned a value that is
deemed representative for this area. As such, the real world spatial distribution of
the modelled value is approximated using a discrete model. Usually, a regular grid
with rectangular or square cells is used. Data are often supplied from different
sources, and different data are acquired using different technologies. As such,
the data are often represented in incompatible grids: these are grids that have a
different orientation, or different size of grid cells. They are called incompatible,
as it is not possible to directly map data from a cell in one grid, to another cell
in the other grid. However, this is exactly what needs to be done: scientists want
to find correlations between two grids, or assess the influence of one feature
onto another feature (e.g. the concentration of air pollutants to which people
are exposed). One example is the health impact of airborne pollutants, such as
described in [1]. A more complicated example would be judging the benefit of
cycling in a city [2]: cycling is good for your health, as it is physical exercise,
but cycling in a polluted environment may cause more downsides than benefits.
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There is the exposure to exhaust gasses, but also the changed risk and effects
of having an accident, which also needs to be taken into account. Such studies
require pollution data, traffic information, accident statistics, traffic patterns and
many more. All this information is usually not represented in the same format,
and combining the data properly is an issue.

Consider for instance a pollutant that is present over a large area, most
likely in different concentrations at different places. The exact distribution might
not be fully known (e.g. due to a limited number of measuring points) and is
provided as a regular grid with grid cells of e.g. 500m x 500m. Similarly, the
population density can also be provided in a gridded format, but its grid cells
can have a different size, e.g. 100m x 100m, and even be rotated. Determining
which people are exposed to which concentration is a complicated problem, and
requires transforming one grid onto the other one. This is illustrated on figure
1: a 4x4 grid has to be remapped onto a 9x9 grid that is slightly angled. If it
would be known that the data is related to the black line, the distribution in
the 9x9 grid can be better suited, as shown by shaded squares in the examples
(a) and (b). Current methods often result in transformations in which the data
is more spread out, and moves away from the likely underlying distribution. To
overcome this, we present a method that incorporates additional information in
order to perform a better transformation of the data.

(2) (b)

Fig. 1. Example of an input grid (2x2, in bold) that needs to be remapped onto a
target grid (3x3, dotted line). Different additional data are represented by the thick
lines in (a) and (b).

1.2 Current solution methods

Current solution methods all work on the same principle: the grid that needs to
be transformed (this will be called the input grid) is analysed and a distribution
of the underlying data is assumed. Using this assumed underlying distribution,
the data are then remapped to match the grid it will need to be combined with
(this will be the target grid). A short summary of the most common methods
is supplied; for a more detailed overview on different approaches for the map
overlay problem, we refer to [3].

The most commonly used is areal weighting, [4]. In this approach, the amount
of overlap between a gridcell of the input grid and a gridcell of the target grid
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determines the portion of the associated value of the input gridcell that will be
remapped onto the target. Each target gridcell thus gets associated a weighted
sum, where the weights are determined by the amount of overlap with the over-
lapping input gridcells. This approach assumes that the data in each cell of the
input grid are spread uniformly. This assumption however is not always true: in
the case of air pollution, the concentration of some pollutants could be linked
to linear sources e.g. traffic on roads or could be caused by point sources, which
implies that the concentration should be more focussed around the source (tak-
ing into account dispersion of the pollutant using existing dispersion models).
In figure 1, this means that the data of the 4 input grid cells would be spread
out over the 9 target grid cells, not considering the source indicated by the thick
line.

A more refined approach to this is areal smoothing. In this approach, the
data modelled in the input grid is approximated by interpreting the data as a
third dimension, and fitting a smooth surface over it. The assumption here is
that the data modelled by the input grid are showing a smooth distribution over
the whole region of interest. The smooth 3D surface is then resampled using
the target raster. This sampling results in the values that will be associated
with the cells. While allowing for a smooth transition, the method has the same
disadvantage as areal weighting, in that it cannot cope well with local effects
such as point or line sources.

2 Rulebase approach

2.1 A different look at the problem

The main issue with the problem is that the underlying distribution is not known:
the current methods approach the problem by (implicitly) assuming a distribu-
tion. Additional knowledge might however be present to help determine a better
distribution. An example where one dataset can be improved is when different
datasets are fused. In [5], the authors combine different datasets in order to ob-
tain a higher quality dataset. The methodology however is applied on vectorial
data that is tagged (e.g. a region tagged as forest, a region tagged as agricultural
land, etc). After deriving a common ontology, and after combining the different
definitions for regions on the maps, the authors derive a new map that contains
the combined information of both.

Generally, when there is a grid representing data, there might be other knowl-
edge that are known to influence the distribution. In the ongoing example of the
air pollutant, the type of pollutant and its source can provide information on
this. If the particular chemical or particle originates from car exhausts, then
the distribution should more or less match the road network (after correction
for dispersion). Different pollutants might as such have a different underlying
distribution. Such knowledge, makes it possible to make good judgements on
the underlying distribution, as shown in [6]. For every grid cell in the target
grid, the additional knowledge can be considered. This can be by taking amount
over overlap with features of the additional knowledge, the distance to specific
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items, etc. In [7], a detailed description on how an expert would reason about
the redistribution using additional data is presented.

The additional knowledge should only be used to steer the distribution, but
it should not be followed too strongly: if the additional knowledge is from a
different time (e.g. pollution data from 2010, traffic information from 2009), the
correlation is weaker. Following that data too strongly might not even be possible
and thus would either yield no solution, or a solution that obscures real data.
The additional data might also not be the only explanation for the distribution,
other sources might be present but unknown. This again is an argument for not
too strictly adhering to this information.

2.2 Emulating the intelligent reasoning

A fuzzy inference system is a system that uses fuzzy sets to represent data and
evaluates predicates using simple rules and fuzzy matching [8]. Fuzzy sets are
a way of representing uncertain or imprecise information by means of a mem-
bership function ([9], [10]). The membership function indicates the possibility or
membership of each value. Given an adequate domain, such membership func-
tions can be used to represent e.g. linguistic terms such as low: on a domain
[0,100] all values below 10 can the be low (with possibility 1), values above 20
can be considered as not low (represented by possibility 0), and values between
10 and 20 have a linearly decreasing membership from 1 to 0. The fuzzy inference
system has multiple rules of the form:

IF x is <linguistic term> THEN y is <linguistic term>

Here, x is a numerical input variable, y is the output value, and <linguistic
term> is a fuzzy set representation for e.g. high, low or other other possible
value descriptions. There can be multiple input values, combined using logical
operators and and or. The input variable is matched against the linguistic term,
which results in a value in [0,1] that indicates how well the value matches the
term. Based on this, y is assigned a linguistic term in its domain. The term is
represented by a fuzzy set. There are multiple rules in the rulebase, and x can
match multiple rules at the same time, resulting in multiple fuzzy sets for y. All
these results for y are aggregated to a single fuzzy set, which is then subsequently
defuzzified to yield the crisp result. Several algorithms for defuzzification exist,
but for now the most common center of gravity will be used.

In [7], we presented how an inference system can be applied to emulate the
intelligent reasoning. Key to achieving this is defining the rulebase and the pa-
rameters in the rulebase. In order to guarantee that the new distribution still
resembles the input distribution, the redistribution of the data happens locally,
within a single input cell. The target grid is specified completely independent
from the input grid, so first a new grid is computed, the segment grid. This grid
is made up of all the intersections between input and output cells. Each cell in
this grid (for the remainder of this article called segment) will only overlap with
a single cell from the input grid, and with a single cell from the output grid.
Every input cell is completely and exactly covered by a number of segments,
as is every output cell. In the algorithm, the segment grid will be used as the
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new target grid. The problém then becomes a problem of redistributing the data
in an input cell over the contained segments. Subsequently, the segments can
be combined differently to form output cells. To facilitate implementation, the
additional knowledge is also represented as gridded data. Even if the original
knowledge is in a different format (e.g. a road network represented by lines), it
is a straight forward operation to convert this to a grid with a small cell size.

2.3 Parameters and range

In order to make the inference system, it is necessary to define parameters.
These are values that are considered to provide some correlation with an output:
proportional (a high value of the parameter coincides with a high value of the
ideal value), or inverse proportional (a higher value of the parameter coincides
with a lower value of the ideal value). In [11], several candidates for parameters
were proposed. Here, the considered parameters are:

— amount of the auxiliary cell covered by the segment
— amount of the input cell covered by the segment
— amount of the interior of the auxiliary cell covered by the interior of the

segment

These parameters were chosen after running several experiments, as they pro-
vided the best overall results. Consider the first parameter: "amount of the
auxiliary cell covered by the segment”. It is intuitive to state that the more of
the auxiliary cell is covered by this segment, the higher the value of this segment
should be: higher auxiliary value should yield a higher output value. In the rule-
base this could be called aux_overlap, the value would be used in a rule of the
form:

IF aux_overlap is low THEN output is low
IF aux_overlap is medium THEN output is medium
IF aux_overlap is high THEN output is high

The linguistic terms low, medium and high for aux_overlap need to be defined,
which means finding adequate limits for the domain of the aux_overlap value.
When the limits of the domain for the parameter (e.g. aux_overlap) are known,
a number of equally spaced and shaped triangular fuzzy sets are defined over
this domain to define the linguistic terms. The number of triangular fuzzy sets
is chosen for each parameter. The more fuzzy sets are defined on the domain,
the more rules the rulebase will have; this effectively poses a practical limit.
More fuzzy sets should yield more possibilities of distinguishing different values.
The main problem now is determining the domain. In our interpretation, the
domain is defined by the possible values this particular parameter can have for
this segment, thus it varies with each segment. For the relation between segments
and the auxiliary grid, there are several possibilities. In the simplest case, the
segment covers part of an auxiliary cell. The total value of this auxiliary cell can
therefore be considered to be in this segment (e.g. in case of a point source that
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is the source of the entire value), partly in this segment, or not at all in this
segment (e.g., if the value is due to sources outside of this segment - which is
possible as there are other segments overlapping the same cell). The first case
results in the maximum possible value. The last case results in the minimum
possible value, 0 unless one or more auxiliary cells are fully contained inside
the segment, the minimum possible value is then total value of those contained
cells. The weighted value is considered as the value of the parameter that is
verified, and thus is passed as parameter x. The calculation for the range of
other parameters is done similarly.

The range for the value of an output cell is initially unknown, but it is
limited by the total of its containing segments. For each t, the output
range is from 0 to the value of the overlapping input cell - due to the definition
of the segments, there is exactly one. The exact value is obtained using the fuzzy
inference system, resulting in a fuzzy set that is then defuzzified. However, the
values of all segments that form an input cell should sum up to the value of that
input cell. As the fuzzy result for each segment is defuzzified independently, there
is no way to guarantee this. Currently, the defuzzified output is considered as a
proportion of the total value of all segment: the real range does not matter, so
for now the output range for each segment is [0, 100], where 100 is an arbitrarily
chosen value. Once all the segment values are calculated and defuzzified, the
obtained value is interpreted as a relative amount of the total of all values for
segments that overlap this input cell.

2.4 Rulebase construction

The construction of the rulebase at present is fairly rudimentary: after rules that
evaluate the first parameter, the addition of each new parameter multiplies the
number of rules by the number of linguistic terms for that parameter. It makes
every possible combination of each linguistic term for this parameter and the
existing rulebase. In the current examples, three parameters, each represented
to ten linguistic terms, result in a rulebase that has 10% rules. The range of the
output value is expanded with each added parameter: the more parameters say
it should be a large value, the larger the value will be. Afterwards, the output
range will be rescaled to match the true range. This is a simple way of creating
the rulebase, but it results in a very big rulebase in which many rules may never
be matched: contradictions between parameters are present.

3 Experiments

To test the methodology, different datasets were generated: a geometric test
pattern was sampled onto an 12x12 grid (figure 2a) to result the input grid. In
the first three test cases, the grid has to be remapped onto a 25x25 grid; the
optimal solution (obtained by sampling the geometry onto the grid) is shown on
figure 2b, the solution using areal weighting is shown on figure 2c. The fourth
test case requires the remapping onto a 25x25 grid that is at a 20° angle, the
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(a) (b)

Fig. 2. (a) generated input data with grid, (b) ideal solution for target 1, (c) areal
weighting for target 1, (d) ideal solution for target 2, (e) areal weighting solution
for target 2. Darker shades represent higher associated values; but the scale between
different grids does not match. For each grid, black indicates the highest occurring
colour in that grid; the lighter the colour, the lower the associated value.

ideal solution and areal weighting solution are shown on respectively figure 2d
and figure 2e.

All samples were run using the same three chosen parameters from the pre-
vious section; the rulebase system was generated in the same way for all tests,
and used ten linguistic variables defined over the domains of each parameter.

(b)

@ @

Fig. 3. Case 1: low resolution auxiliary data: (a) auxiliary data, (b) result, (c) detail
of the remapping of the input data and case 2: High resolution auxiliary data: (d)
auxiliary data, () result, (f) detail of the remapping of the input data.

The developed methodology uses auxiliary data that has to be provided by
the user. Experiments were run with different data as auxiliary data, but the
auxiliary data was also presented on a grid which was sampled from the same
geometries as the input data: this yields perfect data, which should provide the
best results and allows for the system to be tuned and verified.

In the first test case, 15 x 15 auxiliary grid with the same orientation (figure
3a) is used. The result (figure 3b) clearly reveals more detail than areal weighting
(figure 2c). The second test case uses a 27 x 27 auxiliary grid (figure 3d), and the
result shows even more detail (figure 3e). As input and target are the same, it
should be compared against the same areal weighting result. The redistribution
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of the data in the input cells over the segments are shown on figure 3¢ and figure
3f for both cases: the bold lines show the input grid, the dotted line the output
grid. The segment grid is the irregular grid defined by all these lines. The center
part of the segment grid is enlarged for better visibility. On the segment grids, it
is clear to see how the value of each input cell is redistributed over its segments.
The bencfits of the higher resolution auxiliary data arc cven more visible on this
segment grid. Particularly in the second column of the input, the redistribution
differs as a result of the different auxiliary data, and the higher values are shifted
to the left of those cells. The third test case uses the same target grid, but now

(b) B ()

(@) () ()

Fig. 4. Case 3: low resolution rotated auxiliary data: (a) auxiliary data, (b) result, (c)
detail of the remapping of the input data and Case 4: low resolution rotated auxiliary
data and rotated target: (a) auxiliary data, (b) result, (c) detail of the remapping of
the input data.

employs an auxiliary grid 15 x 15 angled 10°. The fourth test case illustrates the
effects if the 25 x 25 target grid is angled 20°. Particularly the distribution of
the data inside the cells over the segments in interesting, figures 4c and figure
4f.

To derive a more quantified comparison, consider the absolute difference of
the value of a cell in the optimal grid (figure 2b for the first three cases, figure
2d for the fourth case) and the calculated value for the same cell. In table 1,
the average and maximum of these differences arc shown for both the presented
method and for areal weighting. The values for average weighting are the same
for the first three cases, as the input and targets are the same. For the results
of the presented method, all the values of the second case are lower than those
of the first case. This means that the second case has a better result, which is
also visible on the figures (figure 3b vs. figure 3e). For these cases, the presented
method has a lower average difference than areal weighting, but it has a higher
maximum average. In simple terms, this means that there are less errors, but
larger errors occur. This is consistent with the fact that our methods concentrates
the data more, whereas areal weighting tends to smear out the data more over
multiple cells: where the line patterns using areal weighting is just visible as a
blur, the presented method is able to distinguish more of the pattern. In the case
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average difference maximum difference
presented|areal weighting|{presented|areal weighting
case 1| 3.70 3.97 41.62 33.16
case 2| 3.11 3.97 39.74 33.16
case 3| 3.54 3.97 32.86 33.16
case 4| 7.32 7.55 81.00 82.25

Table 1. Properties of the results of the 4 examples.

3 and 4, a low resolution auxiliary grid was used to show that this is enough to
contribute. A 15 x 15 grid does not add that much information over a 12 x 12,
but still enough to provide better results. Case 3 shows that the low resolution
auxiliary grid at an angle performs slightly worse on average, but better on
the maximal difference. In case 4, the values are much higher, as remapping
to an angled grid is a more complicated issue. But the presented method still
outperforms areal weighting. Compared with the areal weighting approach, the
proposed methodology offers better results in remapping the data to the target
grid, even when the auxiliary data has a relatively low resolution. The segment
grids provide the highest resolution, but unfortunately are irregular. Particularly
when input and target are at an angle, the resulting segment grid is not suitable
as final representation. The conversion to the target grid is done by adding up
all segments that together belong to the same grid cell in the target grid. This
effectively lowers the resolution again, which is clearly visible on the figures of
the segment grid. However, it results in the desired format. This final step is
irreversible: it disconnects the result from the original input grid, and by adding
up the values of the segments, the value of an input cell is possibly spread out
over a slightly larger region.

4 Conclusion

The complexity of the presented method is linear with the number of cells in
the segment grid, i.e. the number of cells in the intersection of input and output
grid. Consequently, the method scales quite easily. Furthermore, the calculation
of each segment can be done independently of other segments, implying they can
be computed in parallel. In the above examples, the parameters were manually
chosen by us from a large set of parameters ([11}), based on empirical studies on
many data. Automatically determining the best possible parameters for a given
dataset would improve the applicability. As can be seen on the segmented grids of
all examples, but more-so on figure 4, all calculations are constrained within the
cells of the input grid. The method tries to localize point sources or line sources at
alocal level. Mapping the data from the segments to the target grid has the result
that data of a segment is spread out over a larger area. As such, it may also give
the impression that data are moving out of the original input cells, particularly as
the resulting grid is later most likely interpreted as having a uniform distribution
within the grid cells. The same applies however to other methods, but as the
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intermediate results show higher accuracy, perhaps a different aggregation can be
considered. In the presented approach, each cell from the input grid is divided in
a number of segments, a possibility distribution for the value of each segment is
determined. The value of all segments overlapping an input cell should sum up to
the value of the input cell; to achieve this, the defuzzified results were interpreted
as relative portions, which required an additional rescaling. The results can be
improved by performing a more appropriate defuzzification, and avoiding the
rescaling.

In this article, we presented the first experimental results of a novel way to
transform gridded data. Unlike current methods, the approach uses addition-
ally known information to estimate an underlying distribution. The presented
method uses a fuzzy inference system in order to determine the values of the
grid cells in the target. The results are promising, and further research in both
refining the system and testing it with real world data are foreseen.
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