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Abstract. Geographically correlated data are often represented in a
gridded format: a grid that covers the region of interest divides the map
in cells, and a value is associated with each cell of this grid. This is for
instance the case for land use information, air pollution data, etc. The
value is considered representative for the entire grid cell, but the grid cell
is considered to be the smallest unit. Grids often need to be combined
to perform data analysis, and in general do not line up nicely (known as
the map overlay problem). In traditional methods, data are considered to
be spread uniformly or following some other mathematical distribution
over the grid cell, which often is too crude an approximation of the real
situation. Treating a cell in such a way immediately introduces errors
that are carried on and possibly amplified during subsequent analysis.
In general, the problem can be reduced to the problem of remapping
data that is presented on one grid onto another grid. To perform this
remapping, a novel approach using a fuzzy rulebase has been developed.
In this article, the parameters this method are discussed and determined.
This discussion gives better insight in the data that is needed to deter-
mine the rulebase, which is a first step to an optimization of the rulebase
parameters.

1 Introduction

1.1 Problem description

Many spatially correlated data, such as air pollution, land use, etc. are presented
to the researchers as gridded data. This means that the region of interest of the
geographical map is overlaid with a — commonly rectangular — grid, dividing
the region of interest in a number of cells [1], [2]. Data are associated with each
of those cells, and represent the value of this cell.

This is the first problem: the cells give a discrete representation of the real
world; a large area source over the area of a cell would be aggregated to a single
value for the cell and would look the same as a cell that contains single point
with a high value. Some examples of this are on figure 1. The second problem
stems from the fact that data are gathered from different sources, and as such
can be provided on incompatible grids: grids can use different cell sizes and can



2 J. Verstraete

have a different orientation. To combine data, or draw conclusions on the relation
between different data, it is necessary to first transform them to the same grid.
This is however a non-trivial problem, as the underlying (real world) data is not
obvious from the gridded data. Providing an adequate and accurate remapping
of one grid to another grid will support all research that is dependent on the
combination of gridded data; this includes research regarding climatic change,
land use, pollution, and various other socio-economic fields.
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Fig. 1. Example showing the different sources that yield a similar grid cell: single point
source, two point sources, line source and area source.

Current solution methods make simple assumptions about the data distri-
butions, or assume distributions that may or may not be correct. In [3], we
presented a method that is novel from two points of view: first, it uses data that
is known to be related in order to steer how the data will be remapped on a new
grid, and second it makes use of a fuzzy processing engine to achieve the goal.
The method is explained more elaborately in [4], in this article attention will go
to the parameters. First, the current solution methods will be briefly explained.
The next section (2) briefly summarizes the new methodology and implemen-
tation introduced in [4]. The core of this article is in Section 3, where different
choices of parameters are considered and their impact investigated. After this,
conclusions are drawn.

1.2 Current solution methods

The general outline of the current solution methods is described below. For a
more detailed overview, we refer to [5] and [6]. Current solution methods use the
input grid A, and attempt to remap this to a target grid B. In this section, A
and B are notations for grids with grid cells A;, i : 0..m respectively Bj,j : 0..n.
The notation f is used for the function that maps gridcells to their associated
value. Typically, the value of a grid cell B; in the target grid B is determined
by the values in the grid A of those cells A; that overlap cell B;. Mapping grid
A to grid B using the overlapping cells means finding values a:f such that:

JB) =3 i) = 3 lf(4) )

i|A:NB;#0
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The output should still adhere to the input, meaning that the data distribution
over the original grid should still hold. As such, this puts a constraint on the
values z.
VALY wl=1 ®)
i

Areal weighting In areal weighting, the input grid is overlaid with the target
grid. For each grid cell, the amount a cell in the input grid overlaps with the cell
in the target grid, determines the portion of the value of the cell in the input
grid that is assigned to the target grid. As such, z] can be defined as followed:

o = S(A: N B;)/S(4:) ®

where S is the notation for the surface area.

Consequently, it is assumed that the data associated with a grid cell is spread
uniformly over the area of the cell. While this can be the case for some data,
it results in big errors when this is not the case (e.g. point sources). Due to its
simplicity though, this method is most commonly used.

Spatial smoothing Spatial smoothing is slightly more advanced than areal weight-
ing: data associated with the cells are first represented as a third dimension. A
smooth surface is then fitted over this three dimensional data. Lastly, the smooth
surface is sampled using the output grid. While this in general performs better
than areal weighting, the method has problems differentiating different point
sources that are too close (i.e. within one cell or in neighbouring cells). The
added step of fitting a smooth surface makes this method less efficient from a
computational point of view.

Spatial regression There are different approaches that use spatial regression, but
the principle is the same in all of them. The overlap of the input grid and data
in the target grid are examined and patterns are extracted. These patters are
then used in combination with an underlying assumption of the distribution of
the data in order to optimize the resampling. This method is quite complex to
calculate, and some assumptions regarding the data are made. In general, it is
not known whether these assumptions hold and if they can be made, nor if the
relations have real world relevance.

2 Rule base approach

2.1 Reasoning with added knowledge

The key difference between our new methodology and existing methodologies, is
that additional data is used in order to steer the resampling of the input grid.
For many data, there can be other data that is known to be related and that can
be used. One example could be the resampling of a grid with concentrations for
some pollutant that is known to relate to traffic: information of the road network
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can then be used to further optimize the adapting the input grid to another
grid format. This auxiliary data should be used as a guideline, but cannot be
followed too strictly: not all values in the input grid could be attributed to known
features in the auxiliary grid. As a result, there can seem to be contradictions
and the remapping may not necessarily be performed uniquely. Consider the
example on figurc 2a. The input grid A has quite large cells; the target grid C
has smaller cells. In general, the grids do not have to overlap as nicely as they do
in the example. This however facilitates the methodology and if necessary, the
intersection between A and C is considered as the new intermediary target grid.
The auxiliary grid B has very small cells (as we assume that it stems e.g. from
vectorial data that represents a road network). The data from grid A should be
resampled such that most data appears in the vicinity of the overlaying road
network. Intuitively, some simple relations regarding the value of a cell z in the
output can be observed:

— it is very likely proportional with the input cell in A that overlaps with cell
T

— it is very likely is proportional with the auxiliary cell in B that overlaps with
cell z

Many other relations can be observed; in [4], a fuzzy inference system was de-
veloped to mimic an intelligent reasoning of this problem. In section 2.2, the
method will be briefly described.

2.2 Fuzzy Inference System

Description A fuzzy inference system is a technology often used in fuzzy control
that allows to derive values based on a set of of inputs, reflecting an artificial
intelligent behaviour ([7], [8]). This is done by a set of rules of the form

"if z is A, then yis B ”
W_. w—/
premise conclusion

Here "z is A” is the premise and "y is B” is the conclusion; z is the input value
and and y the output value. These values can be both crisp or fuzzy, but in
general will be crisp. The terms A and B are linguistic terms represented by a
fuzzy sets, commonly representing concepts such as high or low. The is in the
premise is a fuzzy comparator that determines how well z satisfies A, commonly
resulting the membership grade A has for the value z. The is in the conclusion is
an assignment, and assigns y the fuzzy set B. As multiple rules can match (z can
be high and very high at the same time but to a different extent), y should be
assigned multiple values by different rules: all these values are aggregated using
a fuzzy aggregator to result in one single fuzzy value. The fuzzy output value
is finally defuzzified to obtain a crisp result. Key issues to making the rulebase
work are the definition of the rules, and the definition of the fuzzy sets used in
the different rules.
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Parameters and rulebase In [4], the output grid was determined by aggre-
gating a grid with smaller cells: the intersection of the input grid and the output
grid. This was done to make it easier to satisfy an important constraint: the
value of an input cell contributes different output cells, but the sum of all its
contributions should add up to the value of the input cell. By defining the out-
put segments, this constraint is easier to maintain in the end result. In the very
last step, the different segments that overlap with an output cell are combined.
Using on this segment grid, four parameters that were considered to influence
the output value were determined. The first two parameters were obtained by
considering only the values of overlapping cells of the input and auxiliary grids
(formulas 4, 5). The third parameter was obtained by considering the values of
the input cells that overlap the same output cell as the segment, but not the one
containing the segment (formula 6). The fourth parameter was obtained by con-
sidering the auxiliary cells that overlap the same input cell as the segment, but
not the auxiliary cell that contains it (formula 7). Following the simple reasoning
that a higher overlapping input or auxiliary value should yield a higher result,
the first two are considered to be proportional to the output value. Similarly,
the latter two are considered to be inverse proportional. For a segment z, these
parameters are:

parf o f(A;)|Ai€ ANZNA; #0 (4)
pary « f(B;)|B; e BAzNB; £0 (5)
. 1S F(A)A; € ANIC; € C: AiNC; #0
parg Aanj#ﬂAznAiiﬁ ! ®
l/zf(B.)lB‘ EB/\HAJ‘ EA:BgﬂAj 950 (7)

z
PATE X NznA; #O0AzNB; =0

Next, it was necessary to determine when these parameters should be considered
high, and when they should be considered low. For this, a very simple approach
was used: the minimum and maximum of respectively input and auxiliary related
parameters were considered as the limits

The rule was determined manually in an intuitive way. The four parame-
ters described above were considered, each parameter was given three possible
fuzzy sets (low, medium and high, evenly distributed between minimum and
maximum), and all possible combinations were generated. Assuming that each
value is equally important, the impact of an increase/decrease of each value is
the same. The lowest possible value for the output is when both proportionally
related variables are low and the two that carry an inverse proportional relation
are high; and vice versa. This all combined yielded nine possible fuzzy sets for
the output. The output value was then scaled to represent the fraction of the
input segment value that will be assigned to the segment.

Results The system as described shows promising results but also suffers some
shortcomings. The first shortcoming can be seen from the experiments: while the
desired effect is there, it still appears too weak to be considered very valuable.
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Furthermore, there are some strange effects that can be seen. Both these things
can either be explained by either the simple rulebase used, or the parameters
at hand. The second shortcoming is the fact that there is no control over the
strength of the effect. In later stages, it should be possible to specify multiple
auxiliary grids, and indicate which one has a bigger impact. At the moment,
there is no way of indicating the strength of the offect for a single grid.

3 Discussion of parameters

3.1 Current

When considering the parameters as defined in 2.2, it is obvious that each param-
eter either equals the maximum, or the minimum, so each parameter effectively
has only 2 possible values. Furthermore, from their definition, two parameters
will always be the minimum, and two always the maximum. This means that
from a possible 42 parameter combinations, there only are 22 possible combina-
tions, which is due to the choice of minimum and maximum values. Interestingly,
the current parameters completely ignore any mathematical connection between
values in the auxiliary grid and values in the input grid: it just considers high
and low predicates, and these are local concepts. For some segment x, high can
be a value of e.g. 100, where for another it can be a value of 1000. This currently
unused information can also provide more information in steering the remapping.
At the moment, no distance measures are included: data from all neighbours are
aggregated. A spatial aspect to indicate where higher or lower data occurs should
improve the result. Lastly, the result of the remapping is not necessarily unique.
As fuzzy sets are employed, it may be possible to supply multiple outputs with
possibilities rather than an arbitrary chosen output. These different parameters
will be discussed using examples.

3.2 Data study

Overlapping data Consider the data on figures 2a and 2b. In these simplified
examples, the input grid consists of a single cell, the auxiliary grid consists of
10 cells that together completely overlap the input cell. The target grid consists
of 4 output cells, that together overlap the same area as the input and auxiliary
grids. The grids are represented below each other but overlap the same area.
It is assumed that the data around these cells has completely no impact. The
desired result is represented as a graph, which serves purely as an illustration.
Two possible outcomes are shown, but the strength of the pulling effect (i.e. how
wide the base below each peak is) is an additional degree of freedom that will be
discussed later. The graph gives rise to the values in the output cells C;, which
at this point are estimates purely for illustration purposes. These are the results
that we would like to obtain.

As mentioned, the input grid is first remapped to a grid which is obtained
from the intersection of input and output grids. As such, the situation where a
single output cell overlaps with multiple input cells cannot occur.
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Fig. 2. Example cases for the case study. Cases (a) and (b) are used to show how
auxiliary cells should influence the output, cases (c) and (d) are used to show how the
input cells that neighbour the overlapping input cell influence the output.

Input The overlapping input value for all involved cells C; is 100, as it is the
same for all, it cannot contribute to the distribution of the data.

Augziliary The overlapping auxiliary value for all involved cells C; varies. In
2a, C) is the only cell that overlaps with By, and as a result should get the
highest value. The cells neighbouring C; should get lower values, but as C; is
closer to By than Cp,it is expected to have a higher value. The values should
decrease as cells are located further from the auxiliary cell. This can be achieved
by considering the distance to the closest cell in B that has a high value, this
distance is expressed as the number of cells of grid B between B, and the cell C;.

cell|Co C C; Cs
input{100 100 100 100
auxiliary (0 100 0 0
distance to B4|1.5 contains 0 2.5
expected 1(10 50 35 20
expected 2|0 80 20 0
distance to B4|medium contains very close far
expected 1[lowest highest medium low
ted 2|lowest highest low lowest

Table 1. Example and expected values for the examples in figure 2a

From this, a proportional relation between auxiliary grid and result is ob-
served, while greater distances decrease the influence of the proportional relation.
Instead of using numerical values, linguistic terms can be used, which gives the
bottom section of table 1. The issues with defining the fuzzy sets to represent the
linguistic terms will be covered in section 3.2. For now, it can be observed that
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altering the definition of a linguistic term (closeby, far, ...) would allow some
modification of the strength of the pulling effect.

In 2b, two overlapping auxiliary cells have an associated value. As a result,
distances to both should be considered. The results are summarized in table 2.

cell|Co Cy Ca Cs

input{100 100 100 100
auxiliary(100 100 100 0
per 50% 50% 100% -

distance to Balintersect intersect rather close very far
+ closest + closest

distance to Bs|far close contains very close|
expected 1(high low highest lowest
expected 2|high low highest lowest

Table 2. Example and expected values for the examples in figure 2b

Neighbouring data

Input Consider the data on figurc 2¢ and 2d: 2 input cclls arc considered, each
has 10 overlapping auxiliary cells and the data should be remapped on 8 output
cells. Again, it is assumed that the data around these cells has completely no
impact, and the notations are the same as above. The only auxiliary cell that
has a value is By. In figure 2¢c, the overlapping input value for cells Cy and C is
100, for C and Cj it is 0; in figure 2d, these numbers are respectively 100 and
50.

The situation in figurc 2c implics that there is no influcnce of the neighbour-
ing auxiliary cell By to input cell A;, which in turn implies that the pulling effect
should be quite strong (if a symmetrical effect is present). While the situation
in 2d at first seems to indicate that the auxiliary grid B is not fully related to
grid A, this is not necessarily the case. The data from grid B can have a wider
impact, which reaches outside of the overlapping gridcell of A, as illustrated by
the graph.

cell|Co C1 Ca Cs
auxiliary(0 100 0 [1]
distance A, |far close - -

distance Aol- - close far
fig 1c|0  high 0 0

fig 1d|low high medium low

Table 3. Example and expected values for the examples in figure 2c and 2d
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This situation illustrates that the value of an input cell should influence the
value of output cells that are close to it. The effect impacts the strength of the
pulling effect, rather than a direct correlation to a specific value. The value of
the output cell therefore has to depends on the distance to the neighbouring
input cell.

Augziliary To illustrate the influence of auxiliary cells that are close to the exam-
ined output cell, consider the examples in figure 3. As before, the assumptions
are the same and the grids are as defined on figure 3.

A )
,"’ . __— \y o
® ®

Fig. 3. Example cases for the case study, (a) and (b) are used to show the influence of
auxiliary cells that overlap the neighbouring input cell.

In figure 3a, the grid cells with a higher value in the auxiliary grids are located
too far apart to have an effect (this of course depends on the desired strength
of the pulling effect, as shown with the solid line and dashed line). In figure 3b,
the auxiliary cells are much closer together. The cells output cells that are close
to both should get a higher value than before.

This example already illustrates the next issue. In figure 3, cell C3 is the
only cell that overlaps Ag and an auxiliary cell that has a value (Bg). However,
in input cell A;, the cell By, overlaps with two output cells(Cy, Cs). As such,
it is intuitive that the highest value of those is lower than that of Cjs. In table
4, this means that both interpretations of high should be different: high in the
context of Ag is not high in the context of A;. This can be achieved through an
appropriate definition of the fuzzy sets.

Defining fuzzy sets In Section 3.2, the transition from numbers to linguistic
terms was made, without really considering the modelling of this. One thing
to consider is how many fuzzy sets will be defined for each variable. This is
important from a computational point of view: a larger number tends to increase
the number of rules in the rulebase, but also should provide a better distribution
of the result. This is however a relatively easy thing to adjust, and we chose to
determine this such that the rulebase is still kept relatively small for performance
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cellCo Ci C; Cs |Cs Cs Cs Cr
aux(0 100 0 O 0 0 100 0
dist. to[very very far far

Bislfar far
dist. to far very very
By far far

fig 2allow high med low [low med high low
aux(0 O 100 100 {100 0 0 O
dist. to[very far far very

Bya|far close
dist. to close far far very
Bg far

fig2b[0 0 low high |med high low 0
Table 4. Example and expected values for the examples in figure 3

reasons. Using more powerful hardware would allow us to increase the number of
sets for the different parameters, but to illustrate the workability of the methods,
3-5 sets for each variable such suffice. A more important aspect is the range: what
is the lower limit, and what is the upper limit. There are several options on how
to define the limits, these will be illustrated using figure 4.

Fig. 4. Example to illustrate possible definitions for the limits of the fuzzy sets.

A first option is to determine high and low values considering the overlap with
the input cells. For the input cells themselves, these values are straight forward.
For the values of the auxiliary grid, the overlap is checked. If an auxiliary cell
overlaps partly with an input cell, its value is not added to generate the lower
limit, but is added to result in the upper limit. Table 5 shows the result for the
lowest and highest input values of the example, the low and high limits for the
auxiliary grid for each input cell, as well as the smallest and largest auxiliary
overlap that occurs globally.

The second option is to look from the point of view of overlap with the
output cell. The methodology is the same as before, with an overlapping cell
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cell| Ag Ay Az
global input low| 30 (As)
global input high| 100 (Ao)
local aux low|3 1 1
local aux high(4 3 2
global aux low[1 (from A3)
global aux high(4 (from Ao)
Table 5. Different range definitions over the input cells

not contributing to the lower limit, but only to the upper limit. The results are
summarized in table 6

celllCo Ci C2 C3|C4 Cs Cs Cr
global aux low| 0 (from Cy)
global aux high 3 (from Co)
local input low|0 0 00 0 0O
local input high(100 100 150 50 [50 80 30 30
localauxlow(2 0 1 1 (0 1 0 O
local aux high3 1 1 10 1 1 1
Table 6. Different range definitions over the output cells

The first approach has the benefit of staying close to the concept of the
input grid that will be remapped, the downside to this is that one extreme value
will immediately result in the other values being more averaged. This is clear
when considering the cells that overlap A;. The value of the auxiliary grid that
overlaps output cell C3 would be classified as low: it is value 1 in a range [0,3],
even though it is the highest possible value for this input cell. This in turn will
mean that the effect of the rulebase will not be very strong. On the other hand,
the calculation provides for a nice scale on which other data that relates to the
input cell can be mapped, this includes neighbouring auxiliary data as mentioned
before.

The second approach has the benefit of being more closely related to the
output cell considered, but has the downside of possibly narrowing down the
intervals too much. For cells C, through Cs, the local auxiliary low limits and
high limits are equal. As such, they don’t provide that much useful information.
It also requires different ranges to be applicd for neighbouring data, which is not
straight forward to combine.

Further study is still required on which range definitions would prove to be
most useful. A different use can also be considered: the local auxiliary range
from the table 6 is a range-estimate for the output cell, which can for instance
serve as a first approximation or as verification.
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Mathematical connection and constraint One aspect that was only briefly
covered in the above discussion was a true mathematical connection between
input grid and auxiliary grid. In most of the examples, the auxiliary grid was
considered in quite a binary way (black or white, road or no road). In reality,
this grid will also contain quantitative information (size of the road, amount of
roads present), which should also be taken into account. The table entries so far
were either 0 or 100. In figure 2d, an example of a different value is shown, and
the impact is different. In figure 4, a different scale for the auxiliary grid is used.
This illustrates that the absolute value of the auxiliary is not important, but only
the relative value. However, if the auxiliary grid is closely linked to the input
grid, the mathematical correlation between both grids can be exploited further.
To determine the correlation, the whole grid (or several regions of interest) can
be used; using the whole area in figure 4 yields that a value of 190 in the input
grid relates to a value of 7 in the auxiliary grid. Or that 1 cell in the auxiliary
grid reflects an input value of about 180/7=25.7. Such information can also aid
the remapping of the input grid to the output grid, but only if the auxiliary grid
has a strong correlation.There is also a possibility to consider the correlation at
a local level rather than globally.

The mathematical correlation can be used to decrease the number of param-
eters: rather than considering the values of input and output, it is also possible
to consider the ratio of both. This would allow us to eliminate one par ter,
thus simplifying the rulebase (which in turn might allow us to dcfinc a larger
number of fuzzy sets that define the parameter).

Another mathematical restriction to be considered is: how far is input data
allowed to migrate? One criterion we enforce is the output grid should result
in the input grid when resampled using areal weighting. While this restriction
seems very natural as the data is still exactly the same as in the original input
grid, it docs impact the possible approaches. In figurc 4, this means that

1o} = £(Go) + £1(C0) + 3£(C)
FAr) = 37(Ca) + F'(Ca) + F'(Ca) + 3(Co)
FAz) = 5F'(Ce) + F'(Ce) + (Cr)

where f is the function the returns the value value with cells of grid A and
f' the function that returns the associated values for grid C. This restriction
is important for the final interpretation of the output of the rulebase, and if
compliance with it is not guaranteed, values should be rescaled. At the moment,
this restriction is imposed, but research is ongoing whether the constraint can
also be valid when a different resampling method would be used. Still, even
without this restriction, there still is the constraint that the total value of grid
C should equal to total value of grid A, which — as it requires data of the
whole grid — may even be a more difficult constraint to impose than the local
restriction.
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4 Conclusion

In this article, the parameters used in [4] were examined, additional parameters
were determined and their influence on the output result was observed. Different
parameters have been examined, and can be classified in parameters that exhibit
a proportional behaviour, and parameters that exhibit an inverse proportional
behaviour. The value of an output cell is proportional to the value of the over-
lapping input cells en overlapping auxiliary cells. It can be proportional to the
value of neighbouring input and auxiliary cells, but in this situation the distance
matter. If the output cell is close to the neighbouring data, the influence appears
to exhibit some proportional behaviour. The value is inverse proportional to the
value of neighbouring input cells and neighbouring output cells, but only of they
are located far enough.

Local overlapping data can provide limits for the defining fuzzy sets, and for
the output values in general (section 3.2). Additional mathematical correlation
can also provide more information, but should only be used when there as a
strong correlation between auxiliary data and input data.

Future work will go towards developing different rulebases with the newly
defined parameters, in order to compare the performance and to find optimal
parameters (or cases in which some parameters are more desirable than others).
Under consideration also is an automatic determination in real time of the pa-
rameters that would be best suited for the current problem being solved, but
this requires a deeper insight in both the parameters and methodologies to derive
them. A last part of the future research is outputting the possibility distribu-
tion of candidate values rather than a single crisp output value. The big issue is
that the distributions of neighbouring cells are correlated, however, outputting
the possibility distribution along with a single defuzzified value provides more
information on how certain the crisp value is. The possibility distribution also
allows the ambiguity regarding the value to be resolved using algorithms that
are more advanced than simple defuzzification or possibly using additional or
expert knowledge.
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