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Abstract 

The map overlay problem occurs when mismatched gridded data needs to be combined; the 
problem consists of determining which portion of grid cells in one grid relate to partly 
overlapping cells of the target grid This problem contains inherent uncertainty, but is an 
important and necessary first step in analysing and combining data; any improvement in 
achieving a more accurate relation between the grids will positively impact the subsequent 
analysis and conclusions. Here, a novel approach using techniques from fuzzy control and 
artificial intelligence is presented to provide a new methodology. The method uses a fuzzy 
inference system to decide how data represented in one grid can be distributed over another 
grid using additionally available knowledge; thus mimicking the higher reasoning a human 
would use to consider the problem. 

Keywords: map overlay, gridded data, fuzzy processing. 

1. Introduction 

In order to compare different countries, the FCCC requires a single national value per 
country for e.g. CO2 emissions that stem from fossil-fuel burning. The authors in Boychuk 
and Bun (this issue); Jonas and Nilsson (2007) explain that for countries with good emission 
statistics, the national fossil-fuel CO2 emissions are believed to exhibit a relative uncertainty 
of about +/- 5% (95% Cl), but that a sub-national approach can differ considerably (i.e., the 
+/- 5 % for the 95% CI does not hold any more). This is due to uncertainty at various levels, 
both uncertainty inherently present in the data, but also uncertainty introduced by processing 
and pre-processing the data. The International Workshop Series on Uncertainty in GHG 
Emission lnventories focuses on both the presence and on techniques on understanding, 
modelling and decreasing these uncertainties (Bun et al, 2007; Bun et al ., 2010, Jonas et al., 
2010). The sub-national data are usually obtained through the analysis of data coming from 
different sources, processed and combined into a national value, but the way the data are 
processed has a big impact on the introduced uncertainty and consequently on the results. To 
eliminate the inter-country uncertainty, uniform and well-tested methodology should be used 
when building on sub-national emission approaches. However, even when using the same 
methodology, the uncertainty introduced by the processing of data is dependent on the source 
formats of the data, and how it behaves under subsequent processing. The solution to this is 
either obtaining data in a more similar way, to malce all data compatible, but with most 
infrastructures in place, changes to this are unlikely to happen. The altemative is to pre­
process the data so that the data exhibit a similar behaviour under the subsequent processing. 
The data are often represented in a gridded format, yet often different grids (e.g. CO2 

emissions and land use) are incompatible. By transforming them to compatible, matching 
grids, the processing should yield more consistent results. 



This article presents a novel approach to pre-process data, to transform the data ( e.g. 
emission data) so that it is better suited to be combined with other data (e.g. land use) while at 
the same time keeping the uncertainty and errors introduced by this transformation to a 
minimum. As such, this methodology is at a very low level in the processing chain, but any 
decrease in uncertainty at such a low level should provide far more reliable results at the end 
of the processing and thus allow for more accurate analysis and comparison. 

Commonly, data relating to different topics come from different sources: land use data 
can be provided by one source, emission data from another source, population data is again 
obtained elsewhere. Usually, the data are provided in a gridded format (Rigaux et al., 2002, 
Shekhar and Chawla, 2003), which means that the map (or the region ofinterest) is overlayed 
with a grid dividing the map in different cells. In the case of a rectangular grid, each grid cell 
will be a rectangle or a square. With each cell, a numeric value is associated; which is 
deemed to be representative for the cell. The cell is however the smallest item for which there 
is data: the value associated with the cell can be the accumulation of data of 100 different 
points in the cell , or one single point in the cell , several line sources, ... ; there is no difference 
in appearance between these cells and no way of knowing this once the data is presented in 
the grid format. This is illustrated on Figure l(a). There are however severa] problems with 
the data, particularly when the data need to be combined. As the data are obtained from 
different sources, the format in which they are provided can differ: the grids could not line up 
properly, the size of the grid cells can be different, the grids could be rotated compared to one 
another, etc; as illustrated on Figure I (b )-( e ). This makes it difficult to relate data that is on 
different grids to each other and thus introduces uncertainty or errors. Additionally, not all 
data is complete, and cells of the grid may be without data. 

This article does not concem any specific data analysis, nor conclusions that directly 
relate to climate change, but it introduces a novel solution method to transform a grid to 
match a different grid, a process that is used in many climate related studies. The proposed 
methodology makes use of data analysis, geometrie matching and mathematical connections 
to solve format mismatches, it does not consider higher concepts that relate to the meaning of 
the data (e.g. using ontologies to match differently labelled data, as in (Duckham and 
Worboys, 2005)). The proposed methodology is stili in very early stage, and as such the 
examples showu are quite simple but prototype implementation and experiments on small 
samples show promising results. The methodology is expected to be able to cope with 
uncertainties and missing information, but focus at this moment is on developing the basie 
workings of the method. In Section 2, the map overlay problem along with current solution 
methods will be described. A reasoning about the problem and the possible use of added 
knowledge is also covered here. Section 3 considers how the intuitive approach can be 
simulated using techniques from artificial intelligence; it briefly introduces the necessary 
concepts (fuzzy set theory, fuzzy inference system) that will be used further. and describes 
the new methodology. In Section 4, the methodology is applied on some examples and 
directions for future research are listed. Section 5 summarizes the article and contains 
conclusions. 

2. The map overlay problem 

2.1 Problem description 

Spatially correlated numerical data are often represented by means of a data grid. This 
grid basically divides the map ( or the region of interest) in a number of cells. These cells are 
commonly equal in size and shape (regular grid) and most commonly are rectangles or 
squares. Each cell is considered to be atomie in the sense that it is not divided in smaller 



parts, and contains aggregated information for the area covered by the cell. With each cell, a 
numeric value is associated that is deemed representative for the cell. lf we consider the 
example of the presence of a greenhouse gas, then the value associated with the cell indicates 
the amount of this particular gas in that particular cell. In reality, this amount may be evenly 
spread over the entire cell or it may be concentrated in a very small part of the cell; but as the 
cells are the smallest object considered, there is no way to differentiate between them. This is 
illustrated on Figure l(a). 
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Figure I. Different data distributions within a grid cell thai rcsult in the same value for the grid cell are 
sbown in (a). The examples are: a single point source ofvalue 100, two point sources ofvalue 50, a line 
source of value 100 and an area source of value 100. Each of these arc such tbat they are in one gridcell, 
whicb tben bas the value 100. Wben viewing the gridcell, it is not known what the underlying distribution 
is. Different incompatible grids arc showu in (b)-(e): a relative shift (b), a different gridsize (c), a different 
orientation (d) and a combination (e). 

Commonly, data from different sources need to be combined to draw conclusions: for 
instance, relating the measured concentrations of a particular gas in the atmosphere to the 
land use would require data from both concentrations and land use. While both data can be 
represented as gridded data, the grids used often don '! match: not only can there be a 
difference in cell sizes and shapes, but one grid can also be rotated compared to the other 
grid, translated, or any combination of these. This is a common problem with many data in 
literature, called the map overlay problem; the data are then said to be incompatible; some 
examples are shown on Figure l(b)-(e). 

To make these different datasets compatible, it is necessary to transform one of the 
grids to match the layout of the other grid: it needs to have the same number of grid cells, 
oriented in the same way, so that there is a I: I mapping of each cell in one grid to a cell in 
the other grid The map overlay problem concems finding a such a mapping: it considers an 



input grid which contains data and an target grid that provides the new grid structure on 
which the input grid needs to be mapped. As mentioned before, nothing is known at a scale 
smaller than the cells; which makes the mapping one grid to another a very difficult problem. 
Consider the simple example on Figure 2(a). 

(a) (b) 

(c) (d) 
Figure 2. Examples to explain the problem: (a) Problem illustration: remapping grid A onto grid B, (b) 
Areał weighting: the value of each output cell is determined by the amount of overlap, (c) Areał 
smoothing: the value of each output cell is determined resampling a smooth surface that is futed over the 
input data, (d) lntelligent reasoning using additional data: grid C supplies information on the 
distribution, which can be used to determine values in the output grid. 

Remapping the values of the gridcells of the inputgrid A to the output grid Bis done by 
determining the values of x/ in these formulas: 

f(B,) = x!f(A,) 

f(B2) = x;f(A,) 

f(B3 ) = x;f(A,) + x;J(A,) 

= (1-x,' -x;)f(A,)+(l-x;-x;)f(A2) 

f(B,) = x;f(A2 ) 

f(Bs) = x;f(A2) 

Where in x{, the index i refers to the cell number in the output grid, and j refers to the 

cell number in the input grid. This can be generalized as: 
f(B,) = ~:>; f(A1 ) = ~:X( f(A;) 

11A1r,JJ;,,i,0 

with constraints that 



Vj,I:X! =I 

White this looks straight forward, the problem is finding the values ofx(. In more 

complicated examples, it is obvious that more than two grid cells can contribute to the value 
of a new grid cell. From the example on Figure 2(a), it can also be seen that there is no single 
solution: there are d.itferent possible values for B1 and B2 , as long as their sum is constant. 

The key to resampling the original grid to the new grid, is figuring out the true 
d.istribution of the data; thus going into further detail than the grid cells otfer. Most current 
solution methods either assume a d.istribution of the data or aiJn to estiJnate the distribution of 
the data, and resample in order to match the new grid. The output grid is specified by the 
user; the initial map overlay problem concerns transforming the input grid to this grid. The 
proposed method uses an add.itional grid, also specified by the user, to help transform the 
input grid, but the grid specification ( cell size, orientation) does not have to match either 
input or output and does not change the output format. The add.itional grid should contain 
data that has a knowa and established correlation to the input data. The grid on which the data 
is provided does not have to match either input or output grids; however, the finer the grid, 
the better the results for transforming the input grid. 

2.2 Current solution methods 

Transforming one grid to another grid is comparable to determining what the first grid 
would be if it were represented by using the same grid cells as the second grid. In Iiterature, 
there exists a number of solution methods. The gridcells as showu in Figure 2(a) will be used 
to explain the most common methods, for a more detailed overview we refer to (Gotway, 
2002). In the example used, the input grid A contains three cells, the output grid B contains 
eight cells. 

2.2.1 Areał weighting 

The siJnplest and most commonly used method is areal weighting. It uses the portion of 
overlap of the grid cell to determine what portion of its associated numerical value will be 
considered in the new grid. This approach is very easy and straightforward. The result of 
areal weighting is illustrated on Figure 2(b ). This means that the values of x( are determined 

by the surface area S: 
f(B1 ) = S(B1 )f(A1) 

f(B,) = S(B, )f(A1 ) 

f(B3 ) = S(B3 n A1)f(A1 ) + S(B3 r, A2 )f(A2 ) 

f(B4 ) = S(B4 )/(A,) 

Basically, in this approach, it is assumed that the data in the cell are evenly distributed 
throughout the cell and that all cells are considered to be completely independent of one 
another. Resampling can be done over any grid without difficulties. In some situations, this 
may indeed be the case or at least a close enough assumption to justify using it. The spread of 
a gas in the atmosphere in the absence of extreme sources is an example of this. However, 
when the associated numeric data is the result of a small number of extreme sources in the 
grid cell (e.g. a factory), then this approach may lead to either an over- or an underestimate in 
the new grid cell, depending on whether or not the factory is in the overlapping area. 



2.2.2 Spatial smoothing 

Spatial smoothing is a more complicated approach than areał weighting. Rather than 
assume that the data is evenly spread out over a cell, the distribution of the data within a cell 
is dependent on neighbouring cells. 

This is achieved by considering the grid in three dimensions, with the third dimension 
representing the associated data. In spatial smoothing methods, a smooth three-dimensional 
surface is fitted over this grid, as illustrated on Figure 2(c), after which the smooth surfaced is 
sampled using the target grid. This method therefore does not assume that the data modelled 
by the grid is evenl y distributed over each cell, but assumes a smooth distribution over the 
region of interest: if the value of a cell is high, one expects higher values closer to it in the 
surrounding cells. In many situations, this method is more accurate than the previous method, 
but is still unable to cope with data that in reality is concentrated in a small area of the cell. 
This is for instance the case when modelling air pollution, and a single factory is responsible 
for the value that will be associated with the grid cell in which it is contained (a point source): 
the presence of a point source in one cell does not imply sources close to it in neighbouring 
cells (in some urban planning schemes, it might even be the opposite, to avoid placing too 
many point sources too close to each other). 

2.2.3 Regression methods 

In regression methods, a relation between both grids is examined, and pattems of 
overlap are established. Different methods exists, based on the way the pattems are 
established. (Flowerdew and Green, 1994) determine zones, which are then used to establish 
a relation. This is then combined with an assumption of the distribution of the data (e.g. 
Poisson) in order to determine values for the incompatible zones. Several underlying 
theoretical models can be used, but all regression methods require key assumptions that 
normally are not part of the data and cannot be verified using the data. These assumptions 
mainiy concem the distribution of the data, e.g. if the data is distributed in a Poisson or 
binomial distribution. 

2.3 Using additional knowledge 

2.3.1 Data fusion 

The described problem to some extent resembles the problem described in (Duckham 
and Worboys, 2005). Both the problem and solution are however is completely different: the 
authors in (Duckham and Worboys, 2005) combine different datasets that relate to the same 
area of interest in order to create a new dataset that has the combined information of both 
source data sets. This combined information can be richer or have a higher accuracy. Their 
approach however is not intended for numerical data, but for labelled information. The 
different datasets can use a different schema (set oflabels) to describe regions in the region of 
interest (the example uses land coverage and land use terms). As the labels are not always 
fully compatible, the authors propose a method of linking both schemas with a common 
ontology, and obtaining geometrie intersections if the labelled regions do not match. The 
authors in (Fritz and Lee, 2005) tackle the data fusion problem using a different approach. An 
expert supplies input regarding the assigned labels in different datasets; this knowledge is 
then modelled and matched using a fuzzy agreement. This allows the labels in different sets 
to be compared and combined properly. 

While both these approach are also using multiple datasets, the type of data processed 
and the goal of the processing is quite different from what is presented in this article. In the 
aforementioned data fusion approaches, the goal is the combine annotations and labels added 



in different datasets by different people. Th.is is not numerical information, but e.g. true land 
use information. The datasets are also not represented by grids but by vectorial maps. 

2.3.2 Intuitive approach to grid remapping 

The methods mentioned in Section 2.2 work on gridded data and transform the grid 
without any possibility to use additional data that might be available, and where some key 
assumptions regarding data distribution are implied within the methods. While at first it 
seems that the only knowledge available is the input grid, it is very likely that there is 
additional knowledge. Consider for instance an input grid that represents CO2 concentrations 
on a course grid. From other research, the correlation between CO2 levels and traffic is 
known. Th.is means that we can use this known correlation to improve the CO2 data set we 
have by using traffic information that is also available for the same region. Of course, the 
correlation between the input and additional datasets should be known beforehand, as this is a 
key assumption of the method. When this correlation is known, this information can be used 
to transform the grid that represents CO2 emissions to a grid with different cell size or with 
different orientation. 

The presented method allows for additional data to be taken into account when 
resampling the data to a new grid. Suppose additional data, which relates to the data in the 
input grid is available in a grid containing 5 cells as shown on figure 5. 

Based on the values in the additional grid C, it is possible to guide the distribution of 
the values modelled on grid A to the new grid B. A low value in a cell of grid C suggests that 
the values in the overlapping cells of the output grid should also be lower. 

By strictly interpreting this additional grid, it is possible to intuitively derive a simple 
distribution: proportional values for f(Bj) , f(B,), f(B4 ), f (B5 ) . The strict interpretation 

means that the cells in the output grid B should have a value that is proportional to both the 
input grid A and the auxiliary grid C. In many situations however, this cannot be achieved, as 
data in grids can be slightly contradictory, a consequence of the fact that grids are 
approximations of the real situation. lt is often not possible to derive a distribution when 
interpreting the related data grid too strict; but it is possible to derive a distribution that is stili 
consistent with the input grid, and to some extent follows the related grid C. The related grid 
is thus on1y used to help deterrnine the original, unknown distribution. Obviously, the grid 
used to help in transforming the data should contain a well established known relation to the 
input data If the relationship between input grid and auxiliary grid are under investigation, 
any usage of the auxiliary grid in transforming the input grid may distort conclusions on the 
relationship between both grids. 

To come to an intuitive solution consider cell B1. To derive the f(B3 ), it is necessary 

to look at the grids A and C in the area around B1. The cells that are ofinterest are A, and A2. 
Both have the same value, so they will not provide much information. On the other hand, the 
cell C2 that overlaps 81 has a very low value (/(C2 ) =O), whereas its neighbouring cells 

have high values ( /( C1) = f ( C3 ) = 100 ). As the data in grid C are known to be related to the 

data in A, we can conclude that the data of grid A for this region should be more spread 
towards the neighbouring cells of 83, so the value /(83 ) should be low. 

Consider 84. Again, the values of the overlapping cells in A are the same, so this will 
not influence the result. But the overlapping cell of grid C, C3 has a high value. The 
neighbouring cells of C3 have a low value. This basically implies that the distribution of A 
over the cells in 8 should also be I ower in the proximity of cell C3• 



Finally, consider Bs. Here, the values of the overlapping cells in A are different: 
f(A2 ) = 100, / (AJ= O. The distribution of the data in grid C tell us thai in Bs, the value 

should be !ower: no contribution from A3, and C3 has a much higher value than C4• 

The use of additional information, in this example a single grid, can for sure contribute 
to obtaining a distribution thai is stili consistent with the input grid, but at the same time takes 
inio account added available knowledge. From the examples though, it can be seen thai it is 
not always possible to find a unique solution, implying there is stili some uncertainty on the 
accuracy of the newly obtained grid. 

The above example only uses a proportional or inverse proportional relationship 
between cells. This relationship is however only considered at a )ocal scale, meaning thai 
high and low for both input grid and additional grid are defined for the location under 
consideration, independent of the definition of other locations. As such, the connection 
between the input grid and the additional grid is not quantitatively verified, but only relative 
values are considered which makes the approach not dependent on linearity or non-linearity. 
By considering different mies, it is even possible to model different connections, e.g. : if a 
value is high or a value is low, then the output value should be high. The ultimate goal is to 
allow multiple additional data layers, and allow for different possible combination (e.g. high 
value in one and low value in another can yield a result that might well be the same as low 
value in one and high value in the other. On the other hand, also considering the more 
quantitative connection between the layers, can also provide better results. Both these aspects 
are part of future research. 

3. Using intelligent techniques 

3.1 lntroduction to fuzzy sets and fuzzy inference 

3.1.1 Fuzzy sets 

Fuzzy set theory was introduced by Zadeh in (Zadeh, 1965) as an extension of classical 
set theory. In a classic set theory, an object either belongs to a set or it does not belong the 
set. In fuzzy set theory, the objects are assigned a membership grade in the range [O, 1] to 
express the relation of the object to the set. These membership grades can have different 
interpretations (Dubois and Prade, 1999): a veristic interpretation means that all the objects 
belong to some extent to the set, with the membership grade indicating the extent; whereas a 
possibilistic interpretation means there is doubt on which elements belong, now the 
membership grade is expressing the possibility that an element belongs to the set. Lastly, it is 
also possible for the membership grades to represent degrees of truth. In (Dubois and Prade, 
1999) it was shown that all other interpretations can be traced back to one of these three. The 
forma] definition of a fuzzy set A in a universe U is given below 

A= {(x,A, (x) I x Eu)} 
lts membership functionµ ;i (x) is 

µ ;i :U • [0,1] 

x~µ;i(x) 

Various operations on fuzzy sets are possible: intersection and union are defined by 
means of functions that work on the membership grades, called respectively t-norms and t­
conorms. Any function that satisfies specific criteria is at-norm, respectively t-conorm and 
can be used to calculate intersection or union (Klir and Yuan, 1995; Zimmerman, 1999). 
Commonly used t-norms and t-conorms are the Zadeh-min-max norms, which use minimum 



as the intersection and the maximum as the union (other examples are limited sum and 
product, Lukasiewicz norm, ... ). 

Fuzzy sets can be defined ·over any domain, but of particular interest here are fuzzy sets 
over the numerical domain, called fuzzy numbers: the membership function represents 
uncertainty about a numeric value. The fuzzy set must be convex and normalized (some 
authors also clairn the support must be bounded, but this property is not strictly necessary) 
(Klir and Yuan, 1995). Using Zadeh's extension principle (Zadeh, 1965), it is possible to 
define mathematical operators on such fuzzy numbers (addition, multiplication, etc.). Fuzzy 
sets can also be used to represent linguistic terms, such as "high", "low"; this allows one to 
determine which numbers are considered high in a given context. Linguistic modifiers also 
exist and are usually a function thai alters the membership function for the term it is 
associated with, allowing for an interpretation of the words like "very" and Somewhat". 

Finally, it is necessary to make a distinction between an inclusive and an exclusive 
interpretation: are values that match "very high" stili considered to be "high"? In real world, 
people could say about a person: "he is not tall, he is very tall", which is an exclusive 
interpretation: "very tall" does not imply "tall". The main difficulty when using fuzzy sets is 
the definition of the membership functions: why are the fuzzy sets and membership grades 
chosen as they are, and on what information this choice is based. 

3.1.2 Fuzzy inference system 

A fuzzy inference system is a system that uses a rulebase and fuzzy set theory to come 
to solutions for given (numeric) problems (Mendel, 2001; Klir and Yuan, 1995). The rulebase 
consists offuzzy premises and conclusions; it is comprised a set ofrules that are of the form 

if x is A, then y is B 
'-.r-' '------r----' 
pn.:mise conclusm n 

Here "x is A" is the premise and ''.Y is B" is the conclusion; x andy are values, with x the 
input value and y the output value. Both are commonly represented by fuzzy sets, even 
though x usually is a crisp value ( crisp means not fuzzy). In the rule, A and B are labels, such 
as "high" or "low", also represented by fuzzy sets as described above. 

The "is" in the premise of the rules is a fuzzy match: this will return a value indicating 
how well the value x matches with label A. As all the rules are evaluated and the values are 
fuzzy, it is typical that more than one rule can match: a value x can be classified as "high" to 
some extent and at the same time as "low" to much lesser extent. All the rules thai match will 
play a part in determining the outcome, but of course the !ower the extent to which a rule 
matches, the less important its contribution will be. lt is possible to combine premises using 
logical operators (and, or, xor) to yield more complex rules. As multiple rules match, y 
should be assigned multiple values by different rules: all these values are aggregated using a 
fuzzy aggregator to yield one single fuzzy value. For each rule, the extent to which the 
premise matches impacts the value thai is assigned to y. 

The "is" in the conclusion is a basie assignment and will assign y with a fuzzy set that 
matches the label B. lt is important to note that x and y can be from totally different domains, 
a classic example from fuzzy control is "if temperature is high, then cooling fan speed is 
high". 

While the output of the inference system is a fuzzy set, in practise the output will be 
used to make a decision and as such needs to a crisp value. To derive a crisp value 
( defuzzification), different operators exist. The centroid calculation is the most commonly 
used; it retums the centre of the area under the membership function. 



3.2 Defining the inference system 

The parameters for the used inference system are derived from generated sample cases, 
for which an optima! solution is knowu. The relations between the found parameters and the 
optima! solution are then reflected in the created mies. Due to the more technical nature of 
this explanation, and the strict page limitation, the detailed explanation of the procedure is 
available as supplementary materiał in (Online Resource I). 

Appendix I contains the details of how the infercr1ce system is defined. Appendix 2 
goes into further details of the parameters, while Appendix 3 covers the automatic selection 
of the best parameters for a given input. 

4. Experiments 

4.1 Descriptio n of the results 

In this section, results of the methodology applied on the example in Figure 2( d) for 
severa! inputs will be showu and discussed. The input grid A has three grid cells, the output 
grid B contains eight grid cells, but does not exactly overlap with A and the auxiliary grid C 
has five grid cells and overlaps full with grid A. lt is obvious that the grids are not aligned 
properly. 

Table 1 holds the data for the inputgrid, the auxiliary grid; and the computed output 
grid. The first three cases have a distribution of the input data such that j(A1) =f(A2 ) =I00 and 

f(A 3)=0; the last three cases have the input distribution such that j(A1) =f(A 3) =I00 and 

f(A 2 ) = O. ln each of the cases, a ditferent distribution of the auxiliary grid was considered, 
as showu on Table 1. Figure 3 otfers a graphic view ofeach of the cases. For each case, the 
grid cells are showu; the surface area of the circles is representative for the values associated 
with the grid cells. Consequently, the sum of the areas of the circles in grid B equals the sum 
of the areas in grid A. There is no quantitative relation assumed between the auxiliary grid B 
and the grid A, it is just assumed that high values in B are an indication for high values in A. 

Table I. Overview of the cases used in the simulations. The grid layout is illustrated on Figure 2(d), these 
results are graphically illustrated on Figure 3. 

input gridA auxiliary grid C output grid B 
case 1 100 100 o 100 100 100 o o 25 50 52 27 46 o o o 
case 2 100 100 o 100 100 o o o 25 50 57 23 46 o o o 
case 3 100 100 o 100 o o 100 o 29 50 44 23 54 o o o 
case 4 100 o 100 100 o o o 100 29 50 21 o o 26 37 37 
case 5 100 o 100 100 100 o o 100 25 50 25 o o 26 37 37 
case 6 100 o 100 o 100 o o 100 21 50 29 o o 26 37 37 

The behaviour of the methodology under the ditferent cases is clearly illustrated in 
Figure 3. 

Consider output cell B2. From (Online Resource 1), the considered cells that play a part 
are: A, (proportionally), C, and C2 (proportionally), A2 (inverse proportionally). In all six 
cases, the value assigned to B2 is the same. The reason is that, while the values of the 
involved cells ditfer (C2 changes value), the locally computed definition for the fuzzy sets 
defining low and high for the auxiliary grid also modifies. They modify in such a way, that 
the ditfering input is cancelled out. ln the system, there is no difference between a value of 
for example 100 when low is defined as O and high is defi.ned as 100, and a value of for 
example 200 when low is defined as O and high is defined as 200. 



Cell BJ shows a much bigger variation. The cells involved in determining the output 
value are A1 and A2 (proportionally), C2 (proportionally), C1 and CJ (inverse proportionally). 
In case 1, the proportional and inverse proportional data almost cancels out, resulting in a 
value close to SO. In case 2, the value for CJ is much smaller than in case 1, which results in 
the Iarger value of 57 for B3• ln case 3, the value of C2 is decreased, and as it is has a 
proportional relation to BJ, the value for BJ is again decreased. It is smaller than in case I, as 
the higher value of CJ causes a higher value in 8 5, which compensates. The difference in 
cases 4 to 6 are explained by the change in the proportional and inverse proportional data 
from the auxiliary grid: in case 4 there is more inverse proportional than proportional (the 
value of C1 is greater than the value of C2), in case S they are equal, and in case 6 the 
proportional value is greater than the inverse proportional. 
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Figure 3. Ulustrations for the different cases from Table I: A is the input grid, B is the output grid and C 
the auxiliary grid. The gridcells are drawn above each other for visibility purposes, but should cover each 
other as shown on Figure 2(d). The size of the circles reflects the relative value of the associated cell (a 
small circle is showu for O values, for illustration purposes). 

Cell B4 is influenced by A2 (proportional), CJ (proportional), C2 and C4 (inverse 
proportional). The first case have a grealer value than cases 2 and 3, as CJ has a much higher 
value. The second and third cases result in the same value, as the change in the auxiliary grid 
also changes the definition for high, causing the change in values to be nullified. The value O 
in the last 3 cases is due to the overlapping input field having O as associated value. 

Cell 85 is determined by A2 (proportional), CJ and C4 (proportional), AJ (inverse 
proportional) and C2. The first two cases are the same, as the definitions for high for the 



auxiliary grid is changed also. Case 3 shows a higher value, as there is more proportional 
contribution from C4. 

The cells B6, B7 and Bs can be considered together. They all are O in the first 3 cases, as 
the overlapping input field has O. In cases 4,5 and 6, the latter two have higher values, which 
is the expected behaviour due to the values ofC4 and C5. 

4.2 Observations of the methodology 

From the cases on Figure 3, it can be seen that the goal of using an auxiliary grid to 
guide the new distribution yields some interesting results. In general, the methodology does 
not yield contradictory effects: the output grid fully complies with the input grid. Compared 
to the traditional approaches (e.g. areał weighting, which would provide the same result for 
all first three cases, and the same result for all last three cases, it is elear that the additional 
data has an effect on the result. 

The distribution in the output grid to some extent follows the auxiliary grid, but there 
are some exceptions. In the last three cases, the results look consistent and as expected: larger 
values where the auxiliary grid overlaps, smaller values elsewhere. In the first two cases, the 
larger value of cell B5 stands out. This is mainly explained by the fact that B5 fully overlaps 
with A2, and by the fact that the values of cells considered in the auxiliary grid cancel each 
other out, or the definition of high for the auxiliary values changes to yield this effect. 
Similarly, the value of B3 in case 3 stands out as counter intuitive, but with a value of 44 it 
stili is quite a lot smaller than in cases I (52) and 2 (57), which is consistent with the desired 
result. A similar observation can be made for cell B6 in the last three cases: its value is 
perhaps higher than would be desired based on the auxiliary grid, but stili the values for the 
cells that overlap with the cells of the auxiliary grid that have higher values also have higher 
values than 86. 

The results appear to reach the desired goals, but stili further testing and development 
of the methodology is required. 

4.3 Future developments 

The presented approach is a first concept and prototype implementation of a new 
methodology that shows promising results, and as such justifies further research. The 
prototype allows us to experirnent and see how the system behaves and derive why it behaves 
like that. The outcome of the fuzzy inference system is dependent on a large number of 
parameters. 

First, there are the parameters that concem the geometrical aspects of the problems, the 
definition of the cells that are considered to have an influence on a given output cell. This not 
only concems choosing which cells will take part in determining the value for the output cell, 
but also determining the behaviour (proportional or inverse proportional) and adding weights 
to the cells to decrease their influence ( e.g. if the distance becomes too great to be relevant). 
In the current implementation, no quantitative relationship between auxiliary and input grid is 
assumed, meaning that the quantitative relation between input grid and additional grid is only 
considered for the vicinity of a cell. A quantitative relation on a bigger scale can however be 
used to derive how big the impact of the auxiliary cell should be, and as such should provide 
better results. This is however not a trivial step, as too tight a relationship may cause too 
narrow constraints and consequently prevent the system from reaching a good solution when 
data is contradictory or missing. 

Second, there are the parameters that define the rulebase: this is not only the number of 
rules, but also the definition of the rules themselves and weights assigned to the rules. At 
present, the number of rules was derived from all possible combinations of values of cells 
that play a part. It is however possible to limit the rules and for instance consider a fixed 



number ofrules that are detennined automatically by means oftraining data. The full impact 
ofthis is quite difficult to estimate at this time though. Each of the rules can also be assigned 
a weight, and at present, lower weights were assigned to contradicting rules. In the examples 
in this article, this yielded little impact, as the data used in the input was not really 
contradictory. This parameter may become more important when confronting the system with 
real world data and missing data. 

Last, there are the parameters that relate to the fuzzy sets used and their definitions. 
This includes the definitions of the fuzzy sets that represent high, low; the definitions of 
minimal and maxima! values that are used in these fuzzy sets and the number of sets that are 
considered for both input and output. Also, the definitions of minimum and maximum of the 
domain (explained in (Online Resource 1)) can be improved: the current definitions limit 
possible input sets too much. 

Appendix 4 expands on the experiments presented here, and uses bigger, gridded data 
that are processed using the presented technique and the quality of the processing is 
evaluated. 

5. Conclusion 

In this article, a completely novel approach to the map overlay problem was presented. 
The described methodology is in very early stage, but shows interesting results. Rather than 
assuming a distribution of the data, knowledge from extemal data that are known to relate to 
the input data are used to find amore optima! distribution of the data after transfonnation to a 
new grid. The methodology uses concepts from fuzzy set theory and algorithms from 
artificial intelligence in order to mimie reasoning about the input data. The results show that 
in simple cases, the methodology achieves the pre-set goal, but additional testing and fine 
tuning is necessary. The current prototype should allow for the processing of larger datasets. 
The next step is to generate artificial but large scale data, in order to fine tune the workings of 
the methodology using a fully controlled environment and to assess the performance; both in 
accuracy and processing speed. 
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