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Chapter 1

Introduction

The renewable encrgy sources developed rapidly over recent years. Produc-
tion of the energy by many of them is, however, very volatile. This is one
reason why the idea of dispersing the sources, within the power grid, is be-
lieved to be economically profitable. It is essentially connected with the
prosumer concept [34], that is an cntity that not only purchases energy, but
can also produce and export it to the power grid. With such configuration
there appears need for new, ellicient, and rcliable management systems.

Traditional encrgy management systems with centralized structure fail
to provide wcll-suited solution to rccent distribution gencration concepts.
This is caused mainly by the traditional system assumption of unidirectional
flow of encrgy, from the distribution companies to the loads, located in the
leaves of the distribution grid. Gencration of cnergy inside the distributed
grid rins this assumption, as the energy flows bidirectionally. Thns, need
for a ncw management systems appears [27]. A microgrid can be treated as
an aggregated prosumer, which consumes or produces energy. Prosumer-like
networks are mainly energy self-sufficient and may work in a so-called island
opcration mode, but periodically they may buy or scll energy from or to the
higher level grid (distribution nctwork).

Efficiency of these subnetworks depends mainly on the power balancing
systems. As generators are dispersed in the grid, the idea of a decentralized
management system arises as a natural solution. Recently, decentralization
of decisions in computer networks is realized more and more often by multi-
agent systems [28]. This paradigm is also applied in the energy management
system considered in this paper. Agents are associated with devices, like
power sourcces, loads, and cnergy storages. They have their own knowledge
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6 CHAPTER 1. INTRODUCTION

and individual goals defined. Agents commmmicate with otliers in order to
cnsure sccurity of the energy supply, and to reduce (minimize) unplanned
shortages or surpluses. Thus, both sides, the supply and the load devices,
take part in resolving imbalances of the cnergy. This forms a distributed
cnergy management system.

The developed multi-agent system aims to balance the differences in short
time intervals. Agent-basced Power Balancing System for the Microgrids fol-
lows the idca given in [20, 21]. The deviations arc caused by unpredictable
level of dispersed, renewable sources of energy, and by variations of the actual
demand.

An auction is a well-suited solution to solve the problem with decen-
tralized, autonomous parties that tend to realize only its own goals. As in
the actual trading, particular cntitics can rcach sub-optimal allocation of
the goods in the competitive environment, cven without the assumption of
the shared knowledge. Thus, in the Agent-based Power Balancing System
for the Microgrids, the bargaining of the unbalanced cnergy is performed
to minimize differences between actual energy production and consumption.
As short rcaction time as possible is looked for to suppress imbalance, and
to lower the costs borne by devices owner. Thus, a quick auction type has
been chosen, viz. the reverse one-side auction. The goal of the paper is
to discuss application of this auction algorithm and to present results of its
implecmentation in a simulated microgrid.




Chapter 4

Generators of supply and demand

4.1 Introduction

Countries arc strongly supporting installation of new ecological clectricity
sources to stop the global warming by decreasing emission of greenhouse gases
to the atmosphere. Poland is a country that bases its energy production on
the coal (over 98%), but the changes arc visible - in the end of 2012 there
were wind farms for totally 2189 MW, which is an incrcase of more than
36,9% in comparison with the previous year [32]. The drawback of the green
cnergy is the unpredictability of its production due to weather changeability.
This poses a challenge for Encrgy Management Systems (EMS), that have
to compensate for sudden changes.

During crecation and testing of an EMS it is necessary to simulate its runs
for longer periods and multiple instances, in order to gather statistically sig-
nificant information on time and accuracy of balancing the energy. Both the
consumption and weather conditions have to be simulated. Available mete-
orological data arc usually insufficient for such simulations. Considering a
rather short period of mecasurements of weather data, a method for gener-
ating artificial weather data was necessary. A hootstrap [9] is a method for
simulating ‘artificial’ data set by resampling original data and to create an
arbitrary number of new data, whose statistical distribution arc similar to the
original ones. The main problems spotted in early tries of using this method
to generate time serics were lack of continuity between the parts of data and
inability of rccreating long-range trends and dependences. The Matched-
Block Bootstrap (MABB) method proposed in [10], and later deseribed in
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28 CHAPTER 4. GENERATORS OF SUPPLY AND DEMAND

{7) introduced matching the blocks (a picce of time serics of certain length)
to sclect the consceutive block in the new series. [29, 15] introduced the k-
nearcst neighbor bootstrap, where blocks from the k best matching years arc
sawpled randomly. In work [31] proposed to nse squared differences of the
last values in the blocks as a matching factor, which influences probability of
choosing the block. In the present article we propose to use a fitness propor-
tionate sclection method (also known as roulctte wheel) [6] to choose blocks
for creating the simulated data. It is a non-paramctric and computationally
non-demanding method to create input data of required length, using a lim-
ited numbecr of original data. Rcsults of application of the new method to
real data arc included.

Simulators of consumed cnergy described in the Kterature arc usually
simple as main effort is channeled toward creating management systeins for
the next generation of clectric networks. They usually are based on general
profiles collected from few devices. Each device has its own profile of energy
requircment that varics in time. The amount of energy used by given equip-
ment can be measured, but the general, statistical data of how frequently
and how long pcople usc devices are missing. Attempts have been done to
nieasure the average amounts of power that different groups of consumers
use during longer period. A report about the energy usage in Spain 1] is the
most complete in that field (in [33] the short summary of the [1) in English
is presented). Due to huge differences in culture, climate and wealth of the
regions, the results of such research cannot be directly used in simulation
of grids in different geographical locations, making the ability to simulate
systetns in defined localizations diffienlt.

4.2 Supply simulation

Data sets The data sets were obtained from LAB-EL Elektronika Labora-
toryjna [14], a producer of weather parameters measuring equipment, which
has a metcorological station near Warsaw, in Central Poland. Out of many
parameters measured, particularly interesting for this study werc the irradi-
ance, temperature and wind speed.
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Figure 4.1: Example of measured sun irradiation during few days in Junc
2010.

4.2.1 Generator architecture

The MABB is used to create new time series from the existing onc. It is
expected that they should have similar statistical properties as real measurc-
ments. The method concatenates blocks (which are pieces of time serics of
certain length) to create a new series of data of required length. Weather
time scries are subscquent measurcments with time indication. These types
of data are continuous in time. To keep the connection between the cou-
calenated pairs, the joining points should be as close as possible, so blocks
with similar values at the end and beginning should be chosen with higher
probability. A sample of original and bootstrapped time scries is presented
in Fig. 4.2. The upper time scries of wind speed data is the original one and
the lower is a scries made of concatenated parts from the upper one. Equal
length blocks are taken.

4.2.2 Determining block length

Choosing the proper length of blocks is important. It is strongly related to the
tvpe of time series that is considered. The matched block bootstrap method
requires fixed time period blocks to be chosen fromn different years, that will
be later on concatenated together to create artificial wind speed data of the
required length. In a literature the short-term wind speed forecasting for
wind reaches from 1 to 10 hours ahead [38]. This gives the boundaries to the




30 CHAPTER 4. GENERATORS OF SUPPLY AND DEMAND

Wind speed [m/s]

azes s wes oy oo oo aas s 005 273

Wind spesd (m/s]

Figure 4.2: Example of original data (upper) and generated by bootstrap
(lower).

search for the optimal length of time period used in the proposcd method.
The autocorrelations of data were calculated for a munber of different periods.
The outcome was that the loss of corrclation riscs with the time shift, so the
period length of 5 hours has been arbitrary chosen. The corrclation values
between 5 hour blocks are presented in Fig. 4.4 The matching factor (called
also a "featurc" in literature) of blocks is defined as the squarcd difference
between the end of the blocks at the same time of a year:

dig = (rie — 732)? (41)

where ¢ and j arc the numbcrs of the ycar, and r;; and r;, are the last valucs
in the blocks from the ycars ¢ and j, respectively.
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Figure 4.3: The schema of the Matched block bootstrap presented on wind
example. The upper time scries is the sample of wind speed data, the lower
is a bootstrapped time series.

It is different with the irradiance data. Data of irradiance are time series
with clear eycles of 24 hours. The most intuitive approach was Lo define a
block as a 24 honr period starting from 0:00 and finishing at 23:59. The
problem is that valucs near to the end and beginning of the block have
always value 0. That makes the methods of matching consecutive blocks by
similarities of the end parls obsolete and equivalent to the random draw with
nniform distribution. The matching factor is therefore definied as the value
of correlation between irradiance sequences in two subsequent days of the
same year, calculated as ensemble estimates. This correlation is also used
as a probability of taking thc next day from the same year in the selection
method with the inversion operation, described in the next section. The
correlation estimates between subsequent days is presented in Fig. 4.5.
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Figure 4.4: The correlation between blocks of 5-hour length for wind data.

4.2.3 Fitness proportionate sclection

The MABB mecthod implemented for the purpose of this rescarch is a modi-
fication of the one described in [31]. The idea in their paper s to choose the
next block oub of k nearest neighboring blocks, as proposed by [15]. How-
ever, Lall & Sharma used cqual probabilities for the choice, while the former
authors usc uneven probabilitics, dependent on a match of the blocks. Our
idea is to nsc the Gfuess proportionate scleetion for choosiug the subscquent
blocks oul of the candidates from all years, The method groups the time
series by month, day and time. Each year of real measurcments is treated as
a separate source data. The next block is chosen from the set of blocks with
Lhe same time stamp.

The fituess proportionate sclection wethod {often called the roulette
wheel) was introduced as a genelic operator for choosing individuals for
creation of a sct of descendants in genetic algorithms. It assigns a prob-
ability to each individual considering its value of a so-called fitness function,
which in our case will be connccted with the matching factor. The better
the match of the individual, the higher is its probability to be chosen. The
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Figure 4.5: Estimates of correlations between two subsequent days for solar
irradiance, averaged over all available years (from 2004 to 2012); to increase
readability smoothed values of correlation are also presented.

sum of probabilities of choosing all individuals has to be equal to 1, which
requires a normalization of the fitness function values. The main feature of
the roulette wheel is that even the least fitted individuals have still a small
chance of being chosen. This gives better variability to create a series of
fairly well matching blocks. This is a desired feature in the generation of
time series data, as a small amount of unusual weather conditions improves
relevance of testing cases, and therefore its statistical properties in the prob-
ability distribution tails. To create the weather generator, two funetions were
proposed for transforming the matching factor (smaller factor value means
better matching) into a fitness function (higher value means better fitness).
One is using the inversion operation, the other is using a fuzzy set negation
operation, where the factor is normalized and subtracted from 1. In both
cases it is then normalized to the [0,1] range. The squared difference is taken
as the matching factor. The methods are described in more details in the
following subsections.
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Figure 4.6: Examples of fitness proportionate selection with inversion opera-
tor for irradiance for a) 10 Jan 2011 and b) 10 June 2011. Segments represent
the probability of choosing the block from a given year

4.2.4 Fitness proportionate selection with inversion op-
eration

The smaller the squared difference between the blocks ends d;;, the higher
the probability of choosing the block should be. In the first selection method
the following operation is applied:

1
—, di;#0 4.2
7 dij # (42)

To get probabilities, these values have to be normalized to the range [0,1].
The normalized values are denoted as p; ;:

__Di;
% =%Dy

Each value represents the probability of choosing the j-th block as the suc-
cession of the i-th one. The smaller the difference d;; is, the biggest the
probability p; ; of choosing the block as a succession. Examples of the sam-
ple fitness proportionate selections with the inversion operation are presented
in 4.6.

Fitness proportionate selection with the inversion operation has a major
drawback, The difference between consecutive blocks from the same year is
always 0, and cannot be inversed. To solve this problem, the decision is done

D,'__.,'=

(4.3)
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in two steps. The first step of the decision is, if to continue with the next
block from the same year or not. The probability of choosing the block from
the same year is defined by the absolute value of correlation between the
currently chosen block and the successive one. The answer yes terminates
the procedure. If the answer is no, then in the sccond step the inversion
sclection procedure is applied without the successive block from the same
year. If the difference between the blocks is less than or equal to 0.1 (the
accuracy of the measurements), the value D; ; = 10 is chosen.

4.2.5 Fitness proportionate selection with negation op-
eration
To avoid problems with undefined values, another fitness proportionate se-

lection, with negation opcration, is introduced. In this method the squared
difference between blocks is transformed according to the following equation:

_ 1 dy
N is the number of possible choices of blocks. The values n; ; are normalized
to the range [0, 1]. Each normalized valuc is the probability for choosing the
block from a given ycar (dcnoted as 7). In this case the decision is taken in
one stage. An cxample of an outcome of this method is presented in 4.7. This
sclection rule gives more even distribution of probabilitics that the previous
one.

4.2.6 Irradiance generator

Irradiance is the power of clectromagnctic radiation per unit area incident on
a surface. The irradiance was measured using meter LB-900 [14]. The sensor
is equipped with photodiode sensitive to visible light. Data arc available for
9 full years (from 2004 till 2012), in a 10 minute interval. Exemplary sun
irradiance for a few days in Junc 2010 are depicted in Fig. 1, where the
changeability of the solar powcr measured by the sensor can be seen. Cloud
cover is an important factor that influences the amount of sun radiation
reaching the ground level. The influence of clondiness is big and clondy days
can be in the vicinity of sunny ones, which makes the irradiance modeling
not that straightforward. Unfortunately, therc are very scarce data about the
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Figure 4.7: Examples of fitness proportionate selection with negation op-
eration for irradiance for a) 10 Jan 2011 and b) 10 June 2011. Segments
represent the probability of choosing the block from a given year.

type and dynamics of clouds that could be used for modeling purposes. Due
to the fact that clouds move and have different transparency, there is lack
of mathematical methods for irradiance simulation. In [25] the irradiance is
forecasted using the Weather Research and Forecast (WRF) model, where
radiation interactions with air, steam, clouds and climate profiles of ozone
and aerosols are considered. The location described in the article is the
Atacama Desert, where the influence of clouds and humidity is extremely
limited. In this article we use the data about the irradiance measured directly,
so no model for cloud cover is necessary.

Temperature is an important factor for photovoltaic panels efficiency. A
change of temperature has a small, but still visible impact on the electricity
production of the panel. A difference in temperature of 60 degrees Celsius
(from -25 to +35) makes a difference of 500W in produced power for 15kW
panels, presented in Fig. 4.8. For comparison, the change of irradiance
Liecessary to cause a similar effect is 30 W/m?. The dynamic of temperature
changes is slow and shows very strong seasonality, with averages similar in
different years. Taking into account its small impact on panel production
and visible seasonality of the data, it was decided not to include the strict
dependence on the temperature in the generator, and use only the average
temperature for the considered day of the year.
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Figure 4.8: Change in production of clectric power by the photovoltaic panel

in dilferent temperature.

Gencrated data of solar irradiance statistics arc depicted in 4.9. The
sample mean, standard deviation, skewness, autocorrelations and histogram
are close to their counterparts from real values.

Mean | Median | Autocorrelation | Skewness | Std. deviation
Inversion | 189.2 118.7 0.958 1.03 190.0
Negation | 190. 120.2 0.956 1.05 190.8
Real mcasurcments | 192.0 | 119.1 0.954 1.09 195.0

4.2.7 Wind speed generator

For the wind speed the statistics are presented in 4.10. The statistics for
the generated and real data arc very close. Comparison of frequency of wind
speed valucs demonstrated that gencrated time scries tend to be less extreme
than the original one. As can be scen in 4.11 the wind speeds between 0.4 to 5
m/s tend to be cqually frequent for all methods, but the wind speeds greater
than 11 m/s appcarced with much smaller probability using inversion selection
method and did not appear at all in ncgation selection method. Because
such values appear cxtremely rarely (few times in all rcal time serics) it is
not invalidating the method and does not influence the statistical qualities
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Figure 4.9: Cowparison of medians, sutocorrelation coeflicients aud skewness
of the original and synthesized irradiance, with cxclusion of zero values of
irradiance.

of the methods. The results indicate that choice of the selection method is
not very important. Inversion operation creates time serics that have slightly
better statistical qualitics, but have a tendency to continue with the same
year, if the correlation between the conscculive blocks in some time of the
year is high. The negation operation chooses the blocks from diflerent vears
more often. The method using negation operation is crealing more typical
and averaged time series, but the extremes still appear.

The amount of produced c¢nergy by a windmill depends on the wind
speed, the size of the blades and the efficiency of the wind turbine. The
required start-up wind speed for the turbine used in our study is 3 m/s, and
the optimal wind speed is 11 m/s. The oblained datn on the wind speed were
available over 10 years, from 2002 te 2012, Wind docs not change much be-
tween the 10-minute periods, in 19% of the measurements the wind docs not
change, in 21% it changes by 0.1 m/s. In rare cases the changes might reach
even 1.2 m/s, which shows that although the wind is blowing with morc or less
constant speed, some sudden changes can huppen. Central Poland is not a
very windy region. Most of the time the speed of wind is between 2 and 4 m/s.
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Figure 4.10: Statistics of generated wind speeds as compared with the real

data statistics.

Mean | Median | Autocorrelation | Skewness | Std. deviation
Inversion | 2.59 2.30 0.95 0.94 1.52
Negation | 2.56 2.30 0.93 0.90 1.51
Real measurements | 2.60 2.30 0.96 0.98 1.57

4.2.8 Water flow generator

Research about water flow are extremely important as the water can become
great destructive force so its level and dynamic should be monitored. There
are a lot of publication about water forecasting and modeling of rivers and
water reservoirs. Here the small poer source is considered go we focues on
small river. For the requirements of the project the smal river in the vinciity
of Warsaw was chosen: Swider. Swider is a river in Masovia and a tributary
to the Vistula. It is a river of length about 89 km with average water flow
of 4,86 m(3)/s. Data were obtained from Institute of Geophysics, Polish
Academy of Sciences. Data are form 48 years, from 1961 to 2009, one per
day, indicating the amount of water flowing via the river.
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Figure 4.11: Proportion of occurrences of wind speeds in two generated and
real measurement sequences.

Mean | Median | Autocorrelation | Skewness | Std. deviation
Inversion | 4.39 2.85 0.88 7.58 6.23
Negation | 4.30 272 0.87 7.38 5.76
Real measurements | 4.25 2.84 0.91 7.28 5.56

4.2.9 Conclusions

Testing is a crucial element of implementation of any computer program.
It is particularly important for the multiagent systems that are simulating
independent behaviors of the agents and should work continuously for longer
time period. Energy management systems are dealing with all type of energy
sources and power consuming devices. Many of them have certain work
cycles, which depend on the time of the year, the day of a week, or the hour
of a day. To perform such extensive testing, the problem of lack of frequent
enough weather data is faced. The described generator provides data that
include randomness and can produce series of any length. The advantage of
this method is its simplicity, fast computation and good statistical properties.
The main disadvantage is its high dependence on the amount of available
measured data and their representativeness.
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Figure 4.13: The percentiles and variance of the amount of water flowing
throug the river Swider.

4.3 Power consumption simulator

Power production has to cover demand and has to compensate for power
loses — this balance is crucial for the operation of the networks. If we look
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from the point of view of high voltage networks the problem can be solved on
the level of automatic sensors that would measure certain parameters of the
current. On this level the aggregation of consumers and producers is such
that only the major imbalances are considered.

When the only sources of power were huge electric power plants man-
agement of power in the network was relatively easy. The flow of energy
was mainly unidirectional and the power production was centralized, which
made it easier to manage the power production. But the constantly growing
demand for power forced network to undergo constant modernization. When
demand was rising, the prices went up; they increased even more when the
world became aware of the ecological problems, in which energy producing
sector has its part. Introducing more ecological solutions lead to fragmenta-
tion of power sources which requires more advanced power balancing systems.

The undergoing changes are not just in the area of energy production.
Increasing prices and ecological awareness changed the way that people think
about consuming energy. The energy usage is now an important factor that
influences the purchase of new appliances, it is partly due to clear labeling
of the average energy usage. The technology of production of most of daily
use devices is evolving toward more energy saving solutions, like for example
incandescent light bulbs are being replaced by the fluorescent lamps and by
light-emitting diode lamps (LED).

With the development of smart grids the ideas for optimizing energy
consumption went even further: to ensure the stable current parameters
and rational prices for power the consumers have to actively take part in
managing the energy usage. Demand Side Management (DSM) emerged as
a new interdisciplinary research area. DSM considers some main issues as:
couvince people to take part in energy optimization, find the best way to
communicate them the current status of the network, develop apphances
that would be optimizing power without the human intervention.

First issue is about showing people the future problems and make them
realize that they can make a difference. But such actions would require
adjusting peoples lifestyle to the current situation. If there is a peak of
demand, the more people agree to shift their energy consumption (by e.g.
not switching home appliances or postponing their lunch) the cheaper and
easier would be to cope with peak effects (usually additional power sources
have to be switched on just to cover short term demand increase). Second
problem is the communication of the network status: how the users know
that there is a deficit of power? The most popular way of informing people
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is by presenting them prices. When there is peak of consumption the price
of cnergy is high and it is lower when there is an cxcess of energy. That idea
was behind introducing peak and off-peak tariffs.

To simplify the consumption management there is an idea to create in-
telligent apphiances that would be proctively delaying or modifying their
opcration cycles to reduce the power peak. Such devices exist (e.g. washing
machines of Miele), but they are still very unpopular due to: lack of trust of
people (they do not like the feeling that somcthing is happening outside of
their knowledge), high prices and service unavailability in the network (power
grid is not yet scnding signal to the appliances).

The greatest obstacle of DSM technologics is the lack of preparation of
legislation that would allow introducing: rctail market, clear rules about
cxchange of information from smart grid, simpler rules of installation micro
sources (both renewable and not-renewable), ctc.

The problem of demand management, is extremely important as the con-
sumption control and forecast facilitates the power balancing. The context of
this work is developing intelligent Energy Management System (EMS) tor the
rescarch and conference center. The center is the group of few buildings that
have connected different power sources |26, 37, 24, 22]. The EMS iucludes
different modules as short-time balaucing, planner, model of the network,
models of the devices, cte. To test the implemented system of power balanc-
ing it was necessary to create a simulation of the operation of the rescarch
and conference center which implies simulating power demand in frequent
intervals for cach node of the network. Simulation of encrgy consumption
is more complex, because there is usually a large number of hetcrogencous
loads considered. Conswmers cau be cousidered at different aggregation lev-
cls: from models of single devices, to nodes of the network, whole buildings
and bigger structurcs, as arcas and citics.

In a houschold, small microgrids or singlc buildings it is most common to
consider single devices, as oven or microwave |33}. Data about their power
usage can be measured, which gives cxact information about the dynamic
of changes, but considering the large numbers of devices of the same type,
broad testing is required to derive the gencric usage of some appliances. The
authors of this work were unable to find any studies about the characteristic
powcer usage of basic devices. An exception here is a computer, its power
usage can be mcasured on-linc using simple software. In larger networks, at
levels of groups of Louses, general profiles are used (e.g. in [35]). In large
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networks profiles are grouped by sectors. such as comunercial, residential.
industrial.

For sowe purposes the gencral profiles are sullicient. c.g. in [36] they
are used to verify the design of the network. The application had to be
made to test the designed system of conference and science center to identify
possible overloads or violation of constraints. For that purposc only cigh-
teen exemplary load-flow calculations were designated, with 19 profiles for
different categories of loads. Authors of [36] parametrized test by: season
(summer/winter), hour (from 11 am. to 1 p.m.), type of the day (week-
day ‘holiday), weather conditions (windless and sunless day ‘windy and sunny
day), demand (maximum or minimum) and the state of cnergy storage units
(OFF /charge/discharge). Such parameters combined with power profiles
were sufficient to cover all extreme situations, like e.g. extremely high con-
sumption with no produection from renewable sources. The tests confirmed
that the network was well designed and there is no threat of overload. But
such load profiles are not good enough to test the dynamic behavior of the mi-
crogrid: values of a profile are 1-hour averages. o there are only 24 different
load valucs for a day.

Profiles [or a big group of consumers can be casily derived. as any ont-
standing or uncommon behaviors tend to be compensated by cach other, so
they do not vary very rapidly. On country scale, they can be casily obtained
from large power producers. Profiles show cycles of daily and weekly changes
that reflect the human activities. Night is usually the time of lower energy
nsage, and peak usage is around late afternoon. Weckends and holidays
are introducing disturbances to the working day cycles. Moreover, scasonal
differences arc visible, caused by different demands: changes in the outer
tempcratures (e.g. large amount of power is used for air-conditioning), long
holiday seasons and changes in labor structure [1].

By contrast, in microgrids, cach consumer has a relatively larger influence
on the profile than in large grids: a 4kW induction cooking plate will not be
visible in profile on the regional level, but can dominate the energy usage in a
single houschold. When a single domestic device can make a change its switch
on and off time is visible in the power nusage. Averaging power consumption
is such situation introduce imbalances, because the usage is changing very
dynamically and the most effective would be controlling changes in real time.
Thus, profiles are not sufficient for microgrid simulation purposes, because
their resolution is usually too small (every hour or half an hour).
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The most comprehensive rescarch about the structurc of encrgy usage has
been done in Spain [1]. Uscrs presented in the report are divided in 5 groups:
residential, commercial, touristic, large consumers and others, with the total
contribution of power usage 20%, 6%, 0.5%, 25%, and 48.5%, respcctivcly.
These values might differ among regions and countries and depend on the
method of categorization. The authors emphasize the big differences in the
cuergy usage between user groups, as for example houscholds, tourist facilitics
or companies. Other factors that influence the amount aud structure of power
usage arc c.g. seasons of the year (in casc of Spain there are 2: summer and
winter, but it may differ in other climatic zones), days of week, times of day,
months, holiday distributions, structure of labor and cconomic situation. It
demonstrates the dificulty to obtain one reliable description of consumer
structure cven within small arca.

The EMS considered in this work governs a relatively small microgrid.
The maximum necessary load docs not exceed 900 kW. In this situation, &
room where a computer lesson takes place can usc casily 4.5 kW, which can
be visible in overall balance. Such lessons can be planned and cntered to
the Planner (sce 3.3.2) that would inform cnergy management system about
an increase in power. Power usage of computers in a room, projcctor, air
conditioning and lights arc gathered and their average power usage is placed
in the schedule for a specific time with a duration of e.g. 1.5 hour. The
important thing to remember is that Planncr plans cnergy for the rooms,
but one roowm can be connected to few different nodes: one node wonld be
light, other computers and other general use sockets.

For the Short-Time Balancing System (sec 3.3.3), the cxccution of the
task "computer lesson" would mean the increasc of power on two nodes of
network, the one that would power the computers (which is reserved, i.c. the
node has priority in receiving power) and the other for lights and additional
cquipment. That means that two agents would "scnsc" the increase of power
usage and start the balancing procedure.

The goal was to creatc a load simulation device that would consider the
information from Planner (scheduling in which locations the increase of power
is cxpected), but also simulate the general operation of the devices in micro-
grids (e.g. lights in the corridor, air-conditioning) and simulate randomized
behavior of people (e.g. switching on and off computers, making coffee). Be-
canse Planner and Short-Time Balancing System are operating on different
levels the simulator has to operate on the level of single device, and have
information to which node device belongs and in which location it is.
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Figure 4.14: A diagram of ditferent possible descriptions of energy consmup-
tion.

Simulating the power usage of cach device gives much higher accuracy,
makes the simulation less abstract and gives possibility to base the model
on existing devices, whose parameters might be measured or [ound in the
literature. In [34] a detailed analysis of representative office environiment was
conducted to test the model designed. 500 electrical devices were identified,
mostly user dependent.

4.3.1 Description of consumer behaviour

The modcling of users behavior regarding the use of electric equipment is the
most diffienlt part of simulation. It is due to a number of factors:

o therc is a great variety in peoples’ actions due to personal differences,
habits, location, time, ete. - research made in one place location will
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be not useful in others. This forces to make research on a larger scale
and more detailed considering the social group, place and time.

e people do not like to be interrogated  questions about how they usc
clectric cquipment during the day would reveal their daily activities, in
such case it is unlikely to obtain honest and cxact replics,

behavior of people might be extrenely erratic  group of people might
have a tight schedule, but their detailed actions will be different each
day, that suggest a probabilistic or fuzzy modcls of such actions,

e constant evolution — the change of technology is extremely fast, even
when the people behavior is predictable, the devices their use arc con-
stantly being modernized, which for devices as washing machincs or
fridges is a mater of years, in the arca as computers and cell phoncs
might be a matter of year or two, the point is that once described sct
of devices might change in few months and for sure it will change in
few years. Only the trend of that change can be gencrally anticipated.

Devices consume power because people placed them there, switched them
on and use them. The load simulator, in reality, trics to mimic the patterns of
human behaviour. 1t caunot model the whole complexity of human reasoning,
but can derive general patterns and statistical distribution of certain human
actions.

4.3.2 Concept of the simulator

The simulator is designed to generate load data for cach node for a certain
period of time, with a given start date and a time. Generated data are stored
as test scenarios which allows to repeat the test with different configuration
of sources. The schema of the system is prescnted in Fig. 4.15.

Data that have to be available for the simulator consists of the schedule
made by the Scheduler, the list of nodes with information how many and
what type of devices arc connected to them, the mapping between devices,
nodes localizations {e.g. rooms), the profiles of nodes and individual devices
that are connected to a node, and the rules for devices without profiles. The
outcome of the simulator arc power valucs aggregated for each consumption
nodes of the network, with the sampling frequency delined by a parameter.
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Schedule (from | Simulator r-
Scheduler) X: period of time;
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Case(profile): p=profileGenerate(X);
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Figure 4.15: Concept of the Simulator of consumption with data sources,
outcome and general description of the algorithm.

The simulator processes each node separately in order of their numbering.
It queries all the devices connected to the node and then generates for each
device the load for the requested time period. Then it sums up all power
consumptions of the loads connected to the node, at each sampling time.
Each device is processed depending on the type of the device, and the load
is generated from the profile or from the rule. The most important factor is
the date and the time, as both rules and profiles are parametrized by them.

The devices have defined their type, which defines a way of generating
the consumption. The types are:

o Profiles

e Probability profiles

o Rules

e Combined rules with short profiles

Generating methods are described in following sections.
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4.3.3 Profiles

Usage of cuergy by some devices can be described as a profile, which is an
approximation of a Mnction of energy usage of the device. Device profiles
arc made to represent energy usage by a device during a certain time period.
Such profiles come from real measurements and are applicable for the devices
(or group of devices) that have stable and defined work cycles. Examples may
be a dishwasher, a fridge or a freezer. Profiles are also reliable when there
arc many small consumers of cnergy, for example light bulbs. In this case
a single device has little influence on the overall power consumption and
multiple small deviations tend to level the usage.

Profiles define the average, typical behavior and are not suitable to de-
scribe events that happen with low frequency or of extreme power usage.
For example, the profile of a coffee machine is repeatable and can be mea-
sured, but the information of how often and when users make coffees has to
be derived from statistical behavior. Simulators based on profiles encounter
troubles to represent small variability in the generated data, even when ran-
dom disturbances are introduced.

Simulator might increase the diversity of generated data by using multiple
profiles for a single device, e.g. there might be 10 profiles for a computer.
It can be switched on for 1 hour or for 24 hours, might be used for cnergy
demanding calculations or might be in a slecp mode for most of the time.
This approach would require a large number of different profiles that would
represent certain cases and still would not show all pessible combinations.

Each device in the microgrid is connected to the node of the network.
Nodes group devices according to their function and location in the building.
These profiles were used for calenlations of power flow in the network and
to calculatc possible violation of power constraints in the initial stage of
designing the grid. The power consuming nodes were initially divided to
general 17 categorics:

e air condition in the rooms (1)
e ventilation in the rooms (2)
o preparation of the meals (3)

o powering of the clevators (4)

cxternal lighting of the buildings (5)
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Figure 4.16: Examples of profiles for chosen categories of devices,

interior lighting of the buildings (6)

teleinformatic cquipment of the buildings {7)

*

other consumers (8)

¢ powcr feed of boilers (9)
s power feed of circulation purnps (10}

power feed of cafe ecquipment (11)

power feed of hydrophore (12)

power feed of waste water pumps (13)

power feed of meteorological station (14)

power feed of heat pumps(15)

power feed of the buildings {16)

s power feed of science experiments (17)

During development of the system new categories were added:
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e power feed by single hotel room (20)
e power feed by double hotel room (21)
e power feed by empty hotel room (22)

The categories had defined daily proliles, which assigned the percentage of
power use by the node with hour of the day, example of the profiles are
presented in Fig. 4.16.

The list of categories was made for the defined system, but can be casily
expanded if needed. General profiles are useful when considered very regular
power feeds or ones that arc a sum of power feed of devices that require rel-
atively small power, like for example light bulbs. That is why for gencration
profiles arc used for such categories as heat pumps, meteorological station
or lighting. Categories like other consumers or preparation of meals are too
gencral to be fully useful. The main limitation of the profiles is that they
have defined one value per hour, which is not frequently enough if the quasi
real time processing is considered. Also lack of information about the vari-
ance within the hour period makes it difficult to add some randomization in
the profile.

Using of the profile is very simple, the algorithm just chooses the proper
value from the profile based on hour of the day, adds some small valne to
randomizc the power usage and returns the usage.

4.3.4 Probability profiles

Profiles are very suitable, and adequate to represent devices which are de-
pendent on time of the day (c.g. light, ventilation). When device shows
big variance i Lhe operating time profiles become imprecise and not use-
fnl. The main exawple for device that cannot be described by the profile
is a computer, it is a device that if once switched on usually stays on for
a long time, even when it is not used. This is due to: long starting and
stopping time; the long time needed of switching on and off the programs
that are nceded during work; and the falsc assumption that the components
of the computer get used more quickly during the switch on and off phase
[3]. When computer is not occupicd by the tasks it can enter an idle mode,
in which it uscs around onc third of the average power consumption. Uscrs
tend to switch on the computer when they cotne to work and switch it off in
the afternoon when they go home, but some group of people would schedule
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Figure 4.17: Examples of probability profiles for switching on and off of the
device.

time consuming operations for night time and then do not switch computer
at all. During short brakes at work people often do not bother to switch off
the monitor or printer, not mentioning the computer.

For such devices some other way of describing power consumption had to
be defined. We propose here describing one device with probability profiles:
in this case the profile is not showing the total power consumption at certain
time of the day, but the probability of switching the device on and off. For
each case of device at least two profiles are needed: one for switching on the
device and one for switching it off. Example of the profiles for a device is
presented in Fig. 4.17, it shows that at 4 pm this device can be switched
on with 5% probability (if at the time it is inactive) and will be switched off
with 20% probability (if it is active).

There might be multiple profiles for a single type of device represent-
ing different possible behaviors, but each device have to have one pair for
probability profiles (if it is described using this category). In the beginning
program reads the profiles from database, then calculates which part of the
profile apply to the current time (in general sitnation profile can be defined
for shorter periods of time than 1 hour). Then, a random value is generated
and, depending of the state of the device, this value is compared to the value
of probability of switching on or off of the device. If the device is on and
stays on, the value of it energy consumption is changed by adding or sub-
tracting some value from the last state (or average state if the device was
just switched on), this value takes values from Gaussian distribution.

The example of working generator for one chosen node is presented in
Fig. 4.18. It is the node that has 12 computers and one projector connected
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Figure 4.18: Examples of probability profiles for node 189.

to it. Computers are defined by 5 pairs of probability profiles. Consumption
of projector is defined by the mile.

4.3.5 Roules

The power consumnption of devices that do not have typical profiles and are
not working for long time have to be described differently. An example of
such device is microwave, it is switched on for short moments, maximum few
times a day, usually in the afternoon or evening. The method of describing
that behavior may be a probability distribution of switching on the device.
That mecans describing loads by a sct of rules. This type of description
is introduced in [I] according to the Spanish bchavioral data. The work
of appliances hke dishwashers, ovens, ctc. is described by the probability
of their operating in a certain time. For cxample, an clectric kitchen (a
stove) is mainly used around 9:00, 13:00, and 21:00 hours with the respective
probability around 20% at the 21 o’clock, 10% at the 13 o’clock, and 2% at
the 9 o’clock [1](page 100). To simulatc the consumption data some random
gencrators has to be used to ensure that cachh generation will be different,
but that the average operation time is within some defined limits. User has
to be able to define that the microwave operates by average twice a day from
10:00 to 16:00 and on average it is heating up food for 2 minutes.
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This type of description might be giving large variability in consumption
generation, but this is the expected behavior. Obtaining such rules require
detailed studies on a large cnongh sammple. which is diffienlt and costly to
conduct. The advantage of using such approach is that, by increasing the
certainty of the behavior, the rule can be casily adjusted .

Rule is defined by the set of parameters:

o duration — a valne describing the average duration of the active period
of given device,

e timne from  carliest time of the day that the device can start working,
e time to — latest time of the day that the device should stop working,

amount amount of power that device uscs during the activily period.

o nmmnber of times  a valne deseribe how many times the device is active
in a given time frame,

deviation of time — deviation of the switch on time of the device,

deviation of amonnt - deviation of the amonnt of power the device use,

deviation of duration — deviation of the length of the active time of the
device,

deviation of munber of times — deviation of the number of times the
device is switched on during given time frame.

The example of the simulation using rules is presented in Fig. 4.19. To
this node are connected just four projectors that are defined by the same
rule:

e duration:120 [min];
e time from:09:00:00,

o time t0:17:00:00,

amount:0.1,

e number of times:5,
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Figure 4.19;: Examples of simulated power consumption for node 124.

e deviation of time:20 [min],

e deviation of amount:0.1,

¢ deviation of duration:20 |min),
e deviation of number of times:2.

The valucs for the presented example are input by the common scnse, as
unfortunately no research has jet been made about the frequency of using
the projectors.

Algorithm of gencrating such data has one major comphcation: the device
might be switched on multiple times, but the periods of switching on should
not overlap. In this example we would like that projector is switched on for
two hours, we can imagine the situation when it has to be on for 240 min,
or 250 min, but we would not like to sce it on for 30 minutes. That is why
we prefer that the time periods in which the projector is switched on are
not overlapping. To recalize that requirement the algorithm uses heuristic
algorithm of choosing the time period, the time period when the device is
active is called activation period. The outline of the algorithm of simulating
the devices power consumption from the rule is presented in Alg. 1. The most
interesting part of it is the function correctQOverlap, which is in more detail
shown in Alg. 2. Method itcrates through all the sct activation periods
and checks for overlaps, if the overlap is found it randomly choscs if the
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chosen time should be shifted backward in time or forward. Shifting mecans
moving the chosen start time of the device in such a way that it starts
immediately after the overlapping activation period (in case of forward shift)
or that it cnds immediately before the activation period starts (in casc of
backward shift). The trick is that cach time the shift is made the activation
period counter is reseted to initial value, which forces the program to check
from the beginning for overlaps. This algorithm uses random shifting and
is not guarantecd to simulate requested number of activation periods, but it
prevents overlap and does not distribute the activation periods which would
look artificial.

Algorithm 1 ruleGenerate()
: Create empty profile
: Find rule for this device
: Draw number that indicates how many operation cycles has the device
: for i =0 ; ¢ < numberOfTimes ; i+ + do
duration =chooscDuration()
chosentime = chooscTime()
chosentime — correctOverlap()
addToProfile(duration. chosentime)
end for

R RNDD AN

4.3.6 Combined rules with short profiles

The requirement was that the simulator developed should be as general as
possible, to be able to simulate the operation of most cxisting devices. That
can be obtained by combining the ideas of rules and profiles. The example
of such description for devices connected to one node is presented in Fig.
4.14. For devices described by a profile. such as a fridge or a freezer, the
profile is used. Devices that are activated by a person and controlled by
person’s actions, are described by rules. Devices that would benefit from
both are appliances that are operated by human, but if they are switched
on they have some fixed operation cycle. Example of such situation is a
coffee machine: user choses the time to switch it on, but the cyele of coffee
making is almost the same for all types of coffees. Rules define a probability
of starting an action at certain time. When a device is active, the simulator
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Algorithm 2 correctOverlap()

1: counter —0
2: for j=0;j<i;j++do

3:  if counter>n then
4 return null: {It is not possible to find time period when device will
be switched on.}

5:  end if

6:

7:  if chosentime overlaps with previously chosen operation times then
8: if randomBoolecan —— truc then

9: chosentime — ShiftForward()
10: if chosentime outside of the time limits then

11: chosentime — ShiftBackward()

12: end if

13: else

14: chosentime — ShiftBackward()

15: if choscntime outside of the time limits then

16: chosentime — ShiftForward ()

17: end if

18: end if

19: counter | +; j—-1;
20 end if
21: end for

22: return choscntime
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Figurc 4.20: Examples of simulated power consumption for node 152,

generates consumption data according to ils profile. A rale has the same set
of paramctors as in section 4.3.5.

Profiles are by defanlt short and unlike in rules fron section 4.3.3 they
arc described as a list of pairs: minute of change and value. The minutes are
representing a moment of change: first minute is alwavs 0 and the next entry
is showing how many minutes later the change in power occurs. Value rep-
resents the percentage of the maximum power usage of the device. Example
of the generated profile for node 152 is presented in Fig. 4.20, to this node 4
printers are connected, which have defined rules and prolfiles.

4.3.7 Conclusion

Testing is an important step in developing EMS, cspecially when systems
work in a microgrid environment, where small changes in load have a big
impact on overall balance. To have statistically significant data about mi-
crogrid operation, a large number of long-term tests has to be made. A real
infrastructure for testing purposes is often not available. Detailed profiles of
energy usage of devices can be measured, but they do not refleet the way
people use devices. User behaviour is very varied and influenced by many
factors. Simulator of cnergy consumption has to mimic this behaviour with
all its imprecisencss and unpredictabilities, which requires using probabilis-
tic distribution combined with fixed profiles. Prescnted energy consumption
simulator requires rules and profiles that deline device's behaviour. Based on
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that it creates time series of cnergy consumption aggregated per node, which
is a tool for EMS testing.

It is clear that inore efforts should be made to cxamine the nature of
different encrgy consmmers to obtain the statistical distribution of loads con-
sidering different social and envirommnental factors. That would also help
to find where energy is wasted and how to avoid it. The next stage of the
research is exhaustive testing of the EMS and then connceting it to real
devices.
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Chapter 6

Conclusion

Impressive changes in electricity grid structures have been initiated by the
cmergence of new technologies, the new regulations to fight against the global
warming, increasing demand for the secure supply of encrgy and rising prices
of clectricity. Thesc changes gravitate toward development of renewable en-
crgy sources, prosumers and microgrids. Recent rescarch results indicate that
it is possible to create an energy self-sufficient comimunity, that can be even
selling surpluscs of cnergy. The encrgy produced by rencwable sources is,
however, volatile, as it depends on changing mcteorological conditions. Also
the consumption of the encrgy in microgrids is proportionally much more
volatile than in bigger grids. The problems caused by uncertain produc-
tion and consumption can be overcome by using the computer bascd Energy
Management Systems.

In this work, a modular distributcd EMS is prescnted. The novelty of
the solution presented is first of all in the complex treatment of the problewn.
It includes two modules dealing with balancing the power produced and
consumed in the microgrid. One module solves in advance the task scheduling
problem, in order to find a suboptimal way of shifting the loads to be possibly
covered by the cnergy produced within the microgrid. The sccond module
balances the power in the rcal time by activating both the generation and the
load side of the microgrid. For this, it uscs the multi-agent tcchnology. Thus,
both production and consumption of the energy in the grid sclf-adapt to the
changing cnergy nceds and supply. The reaction of the real-time system is
accelerated by using short time forccasts of generation and demand of encrgy.

The main aim of the system is to optimizc (gencralized) costs of exploiting
the clectric energy in a Research and Education Center, which is simulated

67
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with a considerable high accuracy to allow for testing the EMS operation. As
compared to the simple reduction of the energy bought, caused by straight
exploitation of the rencwable cnergy sources, apphcation of the EMS pro-
vides savings due to making long-term deals with external power grid, which
is cheaper in comparison to trading on the balancing (spot) market, and
then possibly precisely following the contracted power frajectory, in spite
of disturbances resulted from randomness in generation and demand of en-
crgy. In all decision making stages soft suboptimal algorithms are applied,
as metaheuristic or multi-agent ones.

Although a Rescarch and Educational Center is considered in the paper,
the claborated system and methodology is of a general character. Many
solutions are opened and can be easily redefined. So, it can be applied as
well for other grids.

To test the system the insolation, wind speed, water level and consump-
tion simulators had to be designed and implemented. For weather data some
specific requirements had to be met: data had to be adeguate to the location
of the microgrid and had to be calculated fast for long time (more than a
year). For this purpose the Matched-Block Bootstrap was used. It is a fairly
simple and fast method that generates data that have satisfying statistical
propertics.

Simulating power consumption proved to he more complex and much less
researched problem than wcather simulation. The most common method
of describing the consumption are 24-hour or longer profiles, which is not.
enough for system that should balance continuous changes in power levels.
Consumption simulator offers different, adjusted to the type of a device, ways
of describing the hehavior: profiles, probability profiles, rles and combina-
tion of rules with short profiles.

There are many aspects that were not yet studied in this work, like short
term predictions, trading with external network, demand side management,
island mode operation and many others. Thesc are very interesting aspects
of smart grids and very important ones. Up to now the rescarch were blocked
by lack of testing cquipment and inaccessibility to existing smart grid instal-
lations.
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