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Abstract

This report presents a novel approach for allocation of spatially correlated data, such as
emission inventorics, to finer spatial scales, conditional on covariate information observ-
able in a fine grid. Spatial dependence is modelled with the conditional autoregressive
structure introduced into a linear model as a random effect. The maximum likelihood
approach to inference is employed, and the optimal predictors are developed to assess
missing values in a fine grid. The usefulness of the proposed technique is shown for
agricultural sector of GHG inventory in Poland. An example of allocation of livestock
data (a number of horses) from district to municipality level is analysed. The results
indicate that the proposed method outperforms a naive and commonly used approach of
proportional distribution.

Keywords: GHG inventory, agricultural sector, spatial correlation, disaggregation, con-
ditional autoregressive model






Chapter 1

Introduction

Greenhouse gas (GHG) emission inventories serve as a basic tool for verification of in-
ternational treaties aimed at constraing global warming. Despite all their drawbacks
and limitations [14], national GHG inventories provide invaluable information on an-
thropogenic emission sources, and, indirectly, on effectiveness of undertaken emission
abatement measures, Constant efforts of [IPCC community seck to improve the inventory
procedure and to limit underlying uncertainties and imprecision [13].

Although the greenhouse gases directly are not harmful for human health, their spatial
distribution is of great importance. For instance, a network of ecosystem long-term
observation sites is launched across Europe to understand behavior of the global carbon
cycle and greenhouse gas emissions. The activities are conducted within the Integrated
Carbon Observation System infrastructure. Another approach is to develop a spatially
resolved GHG iuventory. All of these efforts open new opportunities for improvement of
emission reduction activities, including among others attribution of sources and sinks.

The present study was conducted as a part of the 7FP Marie Curie Actions project
Geoinformation technologics, spatio-temporal approaches, and full carbon account for im-
proving accuracy of GHG inventories. One of the main aims of the project is to develop
a spatial inventory of GHG for Poland. The task comprises estimation of GHG related
activity data, which need to be spatially resolved in this case, and their corresponding
emission factors. In terms of considered sectors, subsectors and separate emission source
groups, the IPCC guidelines [11] provide relevant methodology, and it is followed through-
out the project. The main GHG emission sectors include energy (fossil fuel burning from
stationary and mobile sources), industry and agriculture.

Development of spatial GHG inventory crucially depends on availability of low res-
olution activity data. In Poland, relevant information needs to be acquired from na-
tional/regional totals. A procedure of allocation into smaller spatial units (like districts,
municipalities and finally 2x2km grid) differs among various emission sectors. Basically,
all the emission sources are categorised as line, area or large point emission sources; fur-
ther steps differ significantly for each gronp. For large point sources, such as power/heat
stations or refinery plants, corresponding emissions are associated directly with a partic-
ular object located in space. Line sources, like roads, railways or pipelines, are usually
analyzed by cutting line objects into sections using respective grids. Area sources com-
prise e.g. agricultural fields, urban arcas as well as highly dense urban transportation
network. In this case, a procedure of spatial allocation depends on methods and tech-




nologies of fossil fuel combustion in a considered sector [2]. A common approach though
is a spatial allocation made in a proportion to some related indicators, i.e. proxy data,
which are available in a finer grid. Tlis solution to a large extent relies on subjective
assumptions, and usually there is no mean for verification of the results obtained.

Within the project Work Package 3, the statistical scaling methods are developed in
order to support the procedure of compiling high resolution activity data. In this report
we propose the method for allocating GHG activity data to finer spatial scales conditional
on covariate inlormaltion, such as land use, observable in a fine grid. The proposition is
suitable for spatially correlated, area emission sources.

The approach resembles to some extent the method of Chow and Lin (1971) |3], origi-
nally proposed for disaggregation of time series based on related, higher frequency series.
Here, a similar methodology is employed to disaggregate spatially correlated data. Re-
garding an assumption on residual covariance, we apply the structure suitable for area
data, i.e. the conditional autoregressive (CAR) model. Although the CAR specification is
typically used in epidemiology [1], it was also successfully applied for modelling air pollu-
tion over space [12], [15]. Compare also |9] for another application of the CAR structure
to model spatial inventory of GHG emissions. The maximum likelihood approach to
inference is employed, and the optimal predictors are developed to assess missing con-
centrations in a fine grid. We demonstrate usefulness of the disaggregation method for
spatially correlated area sources, in particular for agricultural sector.

A part of the methododology described in section 3.1 was already presented in [10].
This contribution extends the basic model for the case of various regression models in
each region (here voivodeship); see section 3.2. Performance of the method for livestock
data in agricultural sector of GHG inventory is presented in chapter 4.




Chapter 4

Results

First, Table 4.1 presents estimation results (parameters with their standard errors) for
models with and without a spatial component, denoted CAR and LM respectively. Note
that B - land use class Arable land turned to be statistically insignificant in this setting.
Introducing spatial CAR structure increases standard error of estimated parameters, as
compared with LM model. However, for assessment of goodness of fit for these models
Table 4.2 should be referred to.

Table 4.1: Maximum likelihood estimates

f CAR LM

Est. Std.Frr. | Est. Std.Err.
BGo | 8525 0.1605 | -6.981 0.0389
B | 3.517 00148 | 1.932 0.0042

B | 0.916 0.0034 | 1.786 0.0010
B. | 3912 0.0055 | 5.032 0.0013
o2 | 0.961 0.4052 | 1.506 0.1202
72| 1.683  0.1569 | - -
p | 0.9889 2.62¢-06| - -

Table 4.2 contains the analysis of residuals (d; = y;—y;, where y} - predicted values) for
considered models. We report the mean squared error mse, the minimum and maximum
values of d; as well as the sample correlation coefficient r between the predicted and
observed values. From here it is obvious that the spatial CAR structure considerably
improve the results obtained with the model of independent errors LM. For comparison,
we also include the results obtained with an allocation done proportionally to population
in municipalities; this approach is called NAIVE. It is a straightforward, commonly used
approach in this area of application. Here we note that the NAIVE approach provides
reasonable results, but CAR model outperforms it in terms of all the reported criteria.
The decrease of the mean squared error is from 3374.4 for NAIVE to 3069.4 for CAR,
which gives 9% improvement.

From the maps of predicted values for the models CAR and NAIVE (Figure 4.1) it is
difficult Lo spot a meaningful dificrence. The map ol residuals (Figure 4.2) and scatterplot
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(Figure 4.3) are slightly more informative.

Next, we considered the models with

Table 4.2: Analysis of residuals (d; = ¥ — y;})

mse min(d;) max(d;) r
CAR 3069.4  -275 469 0.784
LM 5641.2  -357 522 0.555
CAR*  3437.0 -258 512 0.763
LM* 4876.1 -374 546 0.651
CAR** 31249 -256 446 0.783
LM** 44276 -352 472 0.674
NAIVE 33744 475 403 0.766

the models CAR and NAIVE,

Further, considered were the models with varying across regions both the coeflicients
and sets of covariates. Only statistically significant covariates were chosen. Table 4.3
includes regression coefficients along with their standard errors for all the considered
regions (voivodeships), indexed with I. A reference list with voivodship names is included

in the Appendix.

various regression cocfficients in voivodeships

but having the same same set of covariates (8,81, B3 and f4); the models are denoted
CAR* and LM¥*, respectively. Note that the model CAR* gives much worse results than

Table 4.3: Maximum likelihood estimates of the models CAR** and LM**

CAR** LM** CAR¥* LM**
Est. Std.Frr. | Est. Std.Err. | Est. Std.Err. | FEst. Std.Err.
=1 1=2
(l) - = _ - - - - _
il 3.514 0.0528 | 1.289 0.0098 | 5.227 0.0592 | 3.431 0.0099
I
! - - - - - - - -
H 1.593 0.0221 | 2063 0.0060 || 0.588 0.0194 | 1.032 0.0044
B 1.344 0.0322 | 3.049 0.0052 || 4.759 0.0288 | 2.909 0.0048
(c%)?| 1281 1.1759 | 0.559 0.1552 | 1.0905 1.6542 | 0.368 0.1194
-3 1—4
[370 - = - = N - _ -
t123.849 0.0966 | 24.729 0.0331 || -3.349 0.0967 | -2.611 0.0301
L | -1.546  0.0085 | -1.679  0.0033 - - - -
L 4.632 0.0196 | 4.308 0.0043 | 3.056 0.0164 | 2.447 0.0043
i 1.622 0.0187 | 2.119 0.0051 | 6.271 0.0512 | 5.129 0.0150
(e4)?] 0974 22569 | 2.616 0.8273 || 0.852 1.7905 | 0.614  0.2509
1=5 1-6
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Table 4.3: (continued)

CAR** LAM** CAR** LM**
Est. Std.Emr. | Est. Std.Err. Est. Std.Err. | Est. Std.Err.
6.392 0.0678 6.409 0.0272 0.729 0.0407 | -2.221 0.0122
- - - - 1.662  0.0205 | 4.276  0.0066
1.726 0.0253 2.122 0.0117 4.080 0.0199 5.117 0.0062
0.938 1.6488 | 2.0944 0.6463 1.382 2.7181 2.723 0.8835
1-7 =8
2.332 0.0348 4.452 0.0250 3.739 0.0648 3.491 0.0145
- - - - 0.731  0.0438 | 0.489  0.0122
7.698 0.0148 8.459 0.0111 - - - -
1.127 1.4045 | 7.5264 1.749 0.955 2.134 0.640 0.2731
1-9 1-10
0.652 0.0078 0.686 0.0021 0.956 0.0038 0.897 0.0013
2.543 0.0166 1.865 0.0056 - - - -
3.660 0.0157 3.135 0.0039 2.857 0.0101 4.322 0.0035
1.227 1.7052 0.998 0.3080 0.809 2.1353 2.145 0.8106
=11 =12
11.063 0.0655 | 14.421  0.0200 2.562 0.0543 1.170 0.0097
-0.456 0.0045 | -0.625 0.0013 | 0.1315 0.0097 | 0.523 0.0013
5397 0.0163 | 4.034 0.0053 | 2.595 0.0390 | 2.142  0.0069
1.139 1.8027 1.301 0.4602 1.016 2.6822 0.636 0.2182
1=13 1=14
- - - - 16.235 0.0585 | 14.090 0.0318
-0.114 0.0056 | -0.073 0.0021 - - - -
7.445 0.0229 7.368 0.0070 1.569 0.0147 | 3.273 0.0107
0.515 1.7805 1.735 0.6805 0.858 1.1953 3.189 1.0349
=15 1-16
2.367  0.0312 2.001 0.0100 13.159  0.0630 | 10.993 0.0189
0.615 0.0031 0.458 0.0012 - - - -
1.652 0.0095 | 1.793  0.0038 - - - -
- - - - 0.379 0.0237 | -0.160  0.0089
0.627 0.993 1.303 0.3311 || 0.634 1.4092 | 1.018 0.339
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Table 4.3: {continued)

CAR** LM** CAR** LM**
Est. Std.Err. | Est. Std.Err. | Est. Std.Err.| Est. Std.Err.
7 1 1.647 0.1536 - -
17} 0.9913 1.59e¢-06 - -

The reported values of estimated parameters for CAR** and LM** show considerable
differences across the voivodeships, not only in terms of estimated values of regression
coeflicients, but also in terms of their significance. Moreover, from Table 4.2 we note that
this setting (CAR**) provides comparable results to CAR.
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Figure 4.1: Original data in municipalities and predicted values for the models NAIVE
and CAR
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Figure 4.2: Residuals from predicted values for the models NAIVE and CAR

Figure 4.3: Scatterplot of predictions () against observations (y;) for the models NAIVE
(left) and CAR (right)




Chapter 5

Concluding remarks and discussion

The study presents the first attempt to apply the spatial scaling model for the GHG
inventory in Poland. The task was to allocate spatially corrclated data to finer spatial
scales, conditional on covariate information observable in a fine grid. Spatial dependence
is set and it is assummed not to change with the change of grid. It is modelled with the
conditional autoregressive structure introduced into a lincar model as a random effect.
The maximum likelihood approach to inference is employed, and the optimal predictors
are developed to assess missing values in a fine grid. The usefulness of the proposed
technique is shown on an example of allocation of livestock data (a number of horses)
from district to municipality level.

The results of the disaggregation with the proposed procedure were compared with
the allocation proportional to population of municipalities. An improvement over the
naive, proportional approach of 9% in terms of the mean squared error was reported. In
addition, we extended the model to allow for various regression models in regions (bere
voivodeships). Numerous features of the proposed method require further investigation.

The proposed method provided good results for livestock activity data of agricultural
sector. Apart from the reported above study, the approach was also applied in a residen-
tial sector for disaggregation of natural gas consumption in households. In that case, with
disaggregation featured from voivodeships into municipalities, the results turned to be
quite modest. This was partly due to limited spatial correlation of the analysed process
and too large extent of disaggregation. The method is feasible for disaggregation from
districts into municipalities, but not from voivodeships into municipalities.

It should be stressed that the primary asset of the proposed approach is the possibility
to asses significance of considered regression coeflicients, The widely used proportional
distribution of activity data can be based ouly on expert judgements, providing no means
for outcome verification.
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Appendix

Table 5.1: List of voivodships

Voivodship
Dolnoslaskie
Kujawsko-Pomorskie
Lubelskie

Lubuskie

Lodzkie

Malopolskie
Mazowieckie
Opolskie
Podkarpackie
Podlaskie

Pomorskie

Slaskie
Swigtokrzyskie
Warminsko-Mazurskie
Wielkopolskie
Zachodniopomorskie
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