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ON THE ADJUSTMENT PROBLEM IN 
COMBINATORIAL OPTIMIZATION 

Marek Libura 
Systems Research Institute, Polish Academy of Sciences 
Newelska 6, 01-447 Warszawa, <libum@ibspan.waw.pl> 

Abstract:In this paper we introduce the adjustment problem cor­
responding to the generic combinatorial optimization problem. It 
consists in finding less costly perturbations of weights in the origi­
nal problem, which guarantee that the optimal solution of the per­
turbed problem belongs to the specified subset of feasible solutions. 
We study properties of the adjustment problem an its relations to 
standard inverse problem in combinatorial optimization. 

Keywords: combinatorial optimization, adjustment problem, in­
verse problems, sensitivity analysis. 

1. Introduction 

Let E = { e1, ... , en} be an arbitrary finite set called the ground 
set. For any subset F ~ E, ~(F) = (6(F), ... , ~n(F)f E {O, l}n 
denotes the characteristic vector of F, i.e., ~i ( F) = Lei E Fl, i = 
1, . .. , n, where for any sentence Q, L Ql = 1 if and only if the logical 
value of Q is truth. 

Let w : Rn x 2E • R denote the real valued function, which we 
will call the weight Junction. In this paper we assume, that for F ~ E 

w(c, F) = cT · ~(F), (1) 

where c E Rn is a vector of the so-called weights of elements of the 
ground set. 
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For a family of subsets g ~ 2E and c E Rn let 

µ(c,9) = min{w(c,F): FE 9}, 

with standard convention that for arbitrary vector c E Rn, µ(c, 9) = oo 
if g = 0. 

Given the weight vector c E Rn and a family F ~ 2E of the 
so-called feasible subsets (Jeasible solutions), the generic combinatorial 
optimization problem is defined as follows: 

Find F* EF such that w(c, F*) = µ(c, F). 

In this paper we will use also a more standard notation for the 
combinatoria.l optimization problem: 

min w(c,F). 
FEf 

(P) 

Sometimes it is required to find not only a single set F* satisfying 
the condition w(c, F*) = µ(c, F), but the family of all such sets. Given 
F ~ 2E and c E Rn, we will denote this family by D(c,F), and we will 
call any of its element an optimal solution of the problem (P). 

For F ~ E and arbitrary family g ~ F we will define the set S(Q) 
of all weight vectors, for which any solution belonging to g is an optimal 
solution of the problem (P). Namely, 

S(y) = {c E Rn: w(c,F) = µ(c,F) for any FE 9}. 

The set of vectors S(9) is called the optimality region with respect 
to the family g. 

The optimality region with respect to the family of feasible solu­
tions generalizes in a natural way the notion of so called stability region 
with respect to a single solution F 0 EF e.g.: (Greenberg 1998, Libura 
1996, Libura et al. 1998, Sotskov et al. 1995). 

It is well known that for any F 0 EF the stability region S( {F0 }) 

is a polyhedral convex cone in Rn. This implies that also an optimality 
region with respect to the family g forms a polyhedral convex cone in 
Rn, which is simply an intersection of stability regions with respect to 
all solutions belonging to the family Q. 
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Most of discrete optimization problems can be stated in the above 
form or - at least - reformulated as problem (P). In this paper we will 
use as an example the following combinatorial optimization problem: 

Example 
Consider the symmetric undirected graph G shown in Figure 1. Let E 
be the set of all edges of the graph G, i.e. , E = { e1, ... , e7}, and let T 
denote the set of all spanning trees in the graph G. From the theorem by 
Kirchhoff (e.g. Graham et al. 1995) it is easy to calculate that ITI = 21. 
Figure 2 presents all the spanning trees belonging to T. 

Fig. 1. Graph G = (V, E) from the Example. 

Assume now that in the formulation of the combinatorial opti­
mization problem (P) we take F = T and c = c0 = (4, 4, 1, 5, 3, 7, 8f. 
Thus, we are faced with a well known (e.g. Nemhauser and Woolsey 
1988) minimum spanning tree problem on the graph G with lengths of 
edges given by the vector c0 • This problem has a single optimal solution 
F* = {e1,e3,e5,e5}, so we have D(c0 , F) = {F*} and w(c0 ,F*) = 15. 

o 

2. The adjustment problem 

Consider the combinatorial optimization problem (P) stated for 
F ~ 2E and c0 E Rn 

min w(c0 , F). 
FE:F 

(2) 

Given an arbitrary subset of feasible solutions F ~ F, a set of 
vectors of weights C ~ Rn , and a real valued function f : Rn x Rn ---t R, 
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w(c O ,T5 ) = 23 

w(c 0 ,T7 ) = 18 w(c 0 ,T8 ) = 15 w(c 0 ,T9 ) = 16 

w(c O ,~0 ) = 20 w(c 0 ,T11 ) = 19 w(c 0 ,T12 ) =20 

w(c 0 ,T13 ) = 24 W (C O
, ~ 4 ) = 17 

w(c 0 ,T16 ) = 19 w(c O ,T17 ) = 20 W(C 0 ,T18 ) = 24 

w(c 0 ,T19 ) = 16 w(c O ,T20 ) = 17 w(c O ,T 21 ) = 21 

Fig. 2. All spanning trees in the graph G and its weights for c = c0 • 
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we define the adjustment problem related to problem (2) in the following 
form: 

Find c* E C such that 

f(c*,c 0 ) = min{f(c,c0 ): c EC} 

and 
µ(c*,:F) = µ(c*,:F). 

We can shortly denote the adjustment problem as follows: 

min f(c, c0 ) 

cEC 

µ(c, :F) = µ(c, :F). 
(3) 

Let a(:F) denote the optimal value of the problem (3); we will call 
this value the adjustment cost related to the subset :F. 

The adjustment problem may be interpreted in the following way: 

For a given combinatorial optimization problem (P) and an initial 
vector of weights c0 we want to find a new vector of weights c*, belonging 
to a specified set C, and such that same optimal solution of the problem 
(P) modified in this way, belongs to the set :F. Moreover, we want to 
minimize the adjustment cost equal to f ( c*, c0 ). 

The set C in the formulation of the adjustment problem is called 
the restriction set and the function f is called the cost Junction. Fre­
quently, 

f(c, c0 ) = Ile - c0 łl, 

where li · li denotes some norm in Rn. Moreover, typically C = Rn or 
C = R+. The subset :F of the family of feasible solutions :F is called the 
required solutions set. 

One can interpret the adjustment problem as an optimization 
problem consisting in finding the „cheapest" (measured by the value 
of cost function) and admissible (i.e., belonging to the set C) perturba­
tion of the original vector of weights, which guarantees that the solution 
of the original problem becomes a solution of the restricted problem with 
the feasible set :F. 
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Observe that when the restriction set C contains a vector of weights 
ce in which all components are equal to zero, then the adjustment prob­
lem (3) has a feasible solution ce. This follows simply from the fact 
that in this case all feasible solutions of the problem (P) have the same 
weight. In particular, a solution of the adjustment problem always exists 
if C = Rn or C = R7+. 

Example ( continued) 
We will formulate an example of the adjustment problem related 

to the minimum spanning tree problem defined for the graph G shown in 
Figure 1. Let us take, as before, F = T and c = c0 = ( 4, 4, 1, 5, 3, 7, sf. 
Thus, the initial combinatorial optimization problem (P) is stated as 
follows: 

min w(c0 , F). 
FET 

(4) 

Assume now that we are interested in such a solution of the prob­
lem ( 4) which is not only a spanning tree, but also forms a path in 
the graph G. This means that we are looking for a solution which is a 
Hamiltonian path in G. Denote by rl the set of all Hamiltonian paths in 
G. Obviously, rl s;;; T. In our very small example it is easy to see from 
Figure 2, that rl = {T3, Ts, T5, T1, Tg, T10, Tu, T13, T14, T21} (spanning 
trees belonging to this subset are distinguished in Figure 2). 

Our goal is to make the least costly adjustment of the initial weight 
vector c0 , which would guarantee that the solution of the modified prob­
lem ( 4) is a Hamiltonian path in G. 

Assume that the cost of an adjustment is measured by the li norm 
in R 7 and that C = R 7. Thus we have the following adjustment problem 
related to the minimum spanning tree problem ( 4): 

7 

min L lc(ei) - c0 (ei)I (5) 
i=l 

µ(c, rl) = µ(c, T). 

We will show later that this problem has the following optimal solution: 

c* = ( 4, 4, 1, 5, 3, 8, sf. 
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7 
We have f(c*,c 0 ) = I: ic*(ei) - c0 (ei)I = 1. Thus, the optimal value of 

i=l 
the adjustment problem is equal to 1. Comparing the initial vector of 
weights c0 and a solution c* of the problem (5) it is easy to see that it is 
enough to adjust the initial vector of weights c0 = ( 4, 4, 1, 5, 3, 7, 8)T by 
increasing the weight c0 ( e5) by 1 in order to guarantee that the optimal 
solution of the modified minimum spanning tree problem becomes a 
Hamiltonian path in the graph G. 

o 

The adjustment problem is closely related to so-called inverse 
problem, which attracts recently significant attention e.g.: (Burton 1992, 
Burton and Toint 1994, Cai et al. 1999, Sokkalingam et al. 1999, Xu 
and Zhang 1995, Zhang and Cai 1998, Zhang and Ma 1999). 

3. The adjustment problem and the inverse problem 

Given the combinatorial optimization problem (P) we will define 
the inverse optimization problem (I) in the following generał form: 

For c0 E Rn, f : Rn X Rn -+ R, P ~ :F and C ~ Rn, 
find c* E Rn such that 

c* E arg min f(c, c0 ) 

CE S(:P) nc. 
(I) 

As before, the function f in the statement -of the problem (I) is 
called the cost Junction. The family of subsets P is called the reference 
solutions set and the vector c0 - the reference weight vector. The set C 
is called the restrictions region. 

The inverse optimization problem may be interpreted as follows: 

For an initial combinatorial optimization problem (P) we want to 
find a weight vector c*, belonging to the restrictions region C, for which 
any solution from the reference set P is optimal in the problem (P) 
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and, moreover, the cost of changing weights vedor from the reference 
value c0 to c*, measured by the cost function f, is minimum. 

Thus, the only difference in statements of the inverse problem and 
the adjustment problem is that in the inverse problem we require that 
all solutions belonging to reference solutions set became optimal after 
changes of weights, whereas in the adjustment problem we require that 
at least one solution from this set becomes the optimal one. 

If the set F'" contains a single element, i.e., F'" = {F0 }, then the 
inverse problem is stated as follows: 

min J(c,c0 ) 

c E S({F0 }) nC. (6) 

Assume now that the initial data of the inverse problem are fixed, 
i.e., the initial vector of weights c0 , the function f as well as the set C 
are given. 

Let i(F0 ) denote the optimal value of the problem (6). We will 
call this value the inverse cost with respect to the feasible solution F 0 • 

The inverse cost is simply the minimum adjustment cost necessary to 
make the feasible solution F 0 an optimal solution of the problem (P). 

lt is now easy to see that the adjustment cost related to an arbi­
trary subset :Fis equal to the minimum of the inverse costs with respect 
to all solutions belonging to the set :F, i.e., 

a(:F) = min{i(F) : FE :F}. 

This fact gives, in principle, the way of solving the adjustment 
problem through solving a sequence of the inverse problems for all ele­
ments of the set :F. In such a 'bru te force' solution one could incorporate 
sim ple bounds for the optimal value of the inverse problem. Such bounds 
can be derived for various functions J. 

In the following we will consider the most typical formulation of 
the inverse problem. Namely we will assume that the adjustment cost 
is measured by li norm and that the restriction set C is taken as Rn. 
Observe that in this case for FE :F, 

w(c0 ,F) - µ(c0 ,:F) O i(F) O llc0 1ł1 1 
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and if, moreover, !FI is the same for any FE :F then 

i(F) O u(c0 ), 

where u( c0 ) denotes li distance of the vector c0 from the line c( ei) = 
const, i= 1, ... ,n. 

4. Optimality conditions 

It is easy to see that both described problems: the adjustment 
problem and the inverse problem, are closely related to the optimality 
condition for the initial combinatorial optimization problem. In fact, 
this is also the reason for difficulty of solving these problems, because 
such optimality conditions are rather seldom available in combinatorial 
optimization (Libura 1996). 

Assume for simplicity that C = an. Then, the inverse problem (I) 
is stated as follows: 

min f(c, c0 ) 

CE S(:P). 

(7) 

The set S(P) in the formulation of the above problem is an iter­
section of stability regions S( { F}) with respect to all solutions F E F". 

For some combinatorial optimization problems we can provide a 
complete description of the cone S ( { F}) and this leads to efficient algo­
rithms for corresponding inverse optimization problems. 

However, in generał, the only available optimality conditions are 
the so-called trivial optimality conditions (Libura 1996). One can hardly 
expect that these optimality conditions might lead to efficient algorithms 
for the inverse or adjustment problems, but they are useful in under­
standing some properties of the problems. 

We will state below the trivial optimality conditions with respect 
to some specified feasible solution F 0 in the context of the simplest 
inverse optimization problem (6) assuming that C = an. 

Let for FE :F, I'= {i: ei E F 0 \ F} and I"= {i: ei EF\ F 0 }. Then 
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S(F0 ) { R n . . - o ,+ ,- ,+ ,- > O . - 1 c E . Ci - ci + ui - ui , ui , ui _ , i - , ... , n, 

iEl' iEI" iEl" iEl' 

for any FE F\ {F0 } }. 

If the cost function f(c, c0 ) is given by the li norm in Rn, then 
the objective function in (7) can be simply expressed with introduced 
above variables 8;, t:, i = 1, ... , n . N amely, we have 

n 

J(c, c0 ) = I:(8; + 8;). (9) 
i=l 

Thus, the inverse optimization problem may be, in principle, for­
mulated as a (large) linear programming problem. We will illustrate this 
possibility on the following example. 

Example (continued) Consider again the minimum spanning tree 
problem defined for graph G shown on Figure 1. Appendix contains a 
Mathematica program, which generates linear programming problem for 
calculating the inverse cost for any spanning tree belonging to the set 
T 

All spanning trees in gra.ph G are given explicitly in table T by the 
incidence vectors of corresponding subsets of edges. Vector c0 denotes 
an initial vector of weights. 

First, the set of spanning trees is sorted according to nondecreasing 
weights and a table S of sorted weights is produced. Then, for any 
spanning tree the linear programming problem defined by matrix constr 
and right-hand-side vector rhs, corresponding to inequalities (8) and the 
objective function (9) is solved. Last line calculates the vector inv of 
inverse costs for all spanning trees, sorted according to nondecreasing 
weights. 

In Figure 3 optimal solutions of inverse problems for all spanning 
trees in G are shown. Each row of the table contains values of the 
perturbations 8;, 8;, i = 1, ... , 7, for weights of graph edges, which 
correspond to the minimum inverse costs . 

ni Below, the vector inv of all minimum inverse costs is given: 
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8+ 
1 

8+ 
2 

8+ 
3 

8+ 
4 

8+ 
5 

8+ 
6 

8+ 
7 

8-
1 

8-
2 

8-
3 

8-
4 

8-
5 

8-
6 

8-
7 

Ts o o o o o o o o o o o o o o 
T1 o o o o 1 o o o o o o o o o 
Tg o o o o o 1 o o o o o o o o 
T19 1 o o o o o o o o o o o o o 
T2 o o o o 1 1 o o o o o o o o 
T5 o o o o 1 o o o o o 1 o o o 
T14 1 o o o 1 o o o o o o o o o 
T20 1 o o o o 1 o o o o o o o o 
T3 o o o 3 o o o o o o o o o o 
T1 o o o o 1 1 o o o o 1 o o o 
T1s 1 o o o 1 1 o o o o o o o o 
T4 o o 3 o o 1 o o o o o o o o 
Tn o o 3 o o o o o o o 1 o o o 
T15 1 o 3 o o o o o o o o o o o 
T10 o o o o 1 o o o o o o o 3 4 

T12 o o 3 o o 1 o o o o 1 o o o 
T11 1 o 3 o o 1 o o o o o o o o 
T21 1 1 o o 2 o o o o o o o 2 3 

Ts o o 6 o 4 o o o o o 1 o o 1 

T13 o o 6 o 4 o o o o o o o o 1 
Tl8 1 o 6 o 4 o o o o o o o o 1 

Fig. 3. Solutions of the inverse problems for all spanning trees from the Exam-
ple. 
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inv = (O, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 4, 4, 4, 8, 5, 5, 9, 11, 12, 12) . 

Observe that the spanning trees are ordered accordihg to the non­
increasing weights and that there is no corresponding monotonicity in 
the corresponding inverse costs. 

The minimum inverse cost, corresponding to the tree, which forms 
also a Hamiltonian path, gives the optimal solution of the adjustment 
problem. In this example this minimum value is equal to 1 and it is 
achieved for the tree Tg. 

o 

5. Conclusions 

In this paper we introduced the adjustment problem related to 
the generic combinatorial optimization problem. It can be regarded as 
a generalization of the standard inverse problem. But the structure 
of feasible solutions sets for both problems is quite different. Instead 
of rather simple convex set in the case of inverse problem, we are faceci 
with disjunctive feasible solutions set in the case of adjustment problem, 
which may lead to its significant difficulty. 

6. Appendix 

T= { {1,1,1,0,0,1,0},{1,1, 1,0,0,0,1},{1,1,0,0,0,1,1}, 
{1,1,0,1,0,0,1},{1,1,0,0,1,1,0},{1,1,0, 1,0,1,0}, 
{1,1,0,0,1,0,1},{1,0,1,0,1,1,0},{1,0,1,0,1,0,1}, 
{1,0,1, 0,0,1,1},{1,0,0,1,1,1,0},{1,0,0, 1,1,0,1}, 
{1,0,0,1,0,1,1},{0,1,1,1,0,1,0},{0,1,1, 1,0,0,1}, 
{0,1,0,1,1,1,0},{0,1,0,1,1,0,1},{0,1,0,1,0,1,1}, 
{0,0,1,1,1,1,0},{0,0,1,1,1,0,1},{0,0,1,1,0, 1,1}} 

c0 = {4,4,1,5,3,7,8}; 

S = Sort[T, OrderedQ[{Inner[Times, #1, cl, lnner[Times, #2, cl}]&] ; 

w= Table[Inner[Times, S[[i]], cl, {i, 1, 21}]; 

b = Table[Table[w[[i]] - w[[j]], {j, 21}], {i, 21}]; 

A= Table[Table[Join[(l - S[[i]])S[[j]] - S[[i]](l - S[[j]]), 
- (1 - S[[i]])S[[j]] + S[[i]](l - S[[j]])], {j, 1, 21}], {i, 1, 21}]; 
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Inv = Table[constr = Delete[A[[i]], i]; rhs = Delete[b[[i]], i]; 
LinearProgramming[{l, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, constr, rhs], 
{i,1,21}]; 

inv = Apply[Plus, Inv, {1}] 
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