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FUZZY DYNAMIC PROGRAMMING: 
A BRIEF INTRODUCTION AND SURVEY 

Janusz Kacprzyk 
Systems Research Institute, Polish Academy of Sciences 

ul. Newelska 6, 01-441 Warsaw, <kacprzyk@ibspan.waw.pl> 

Abstract: We briefiy present basie aspeets of fuzzy dynamie pro­
gramming that is an effeetive tool for dealing with fuzzy multistage 
deeision making and optimization problems. We diseuss eases of 
deterministie, stoehastie, and fuzzy state transitions, and of the 
fixed and speeified, implieitly given, fuzzy, and infinite termina­
tion time. We briefiy mention same mare relevant applieations. 

Keywords: multistage deeision making under fuzziness, multi­
stage optimization under fuzziness, fuzzy dynamie programming, 
fuzzy set, fuzzy system. 

1. lntroduction 

A convenient generał model to deal wi th decision making ( con­
trol) problems in which both dynamics and fuzziness jointly occur is the 
model of multistage decision making (control) under fuzziness - or fuzzy 
multistage decision making (control), for short - that has been proposed 
in Bellman and Zadeh's (1970) seminal paper, and then considerably ex­
tended by many authors; Kacprzyk's books (1983b, 1983c, 1997, 2001) 
provide here a full account of the area. 

Dynamie programming was extended to the fuzzy case very early 
(Chang 1969, Bellman and Zadeh 1970). For reviews, (e.g., Esogbue 
and Bellman 1984, Esogbue, Fedrizzi and Kacprzyk 1988, Esogbue and 
Kacprzyk 1998, Kacprzyk 1994, Kacprzyk and Esogbue 1996, etc.), and 
four books by Kacprzyk (1983b, 1983c, 1997, 2001). The purpose of 
this paper is to provide a short and readable survey of fuzzy dynamie 
programming which would include a review of main problem classes, 
foundations, developments, and more relevant applications. 
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Fig. 1. Fuzzy goal, fuzzy constraint, fuzzy decision, and the optima! (maximiz­
ing) decision 

2. Multistage decision making under fuzziness 

Virtually all works related to decision making under fuzziness, including 
the multistage decision making case, have as a point of departure the 
Bellman and Zadeh 's (1970) framework. Its basie elements are: a fuzzy 
goal G in X, a fuzzy constraint C in X, and a fuzzy decision D in X; X 
is a (nonfuzzy) space of options ( alternatives, variants, decisions, .. . ) . 

This approach may well be illustrated as in Figure 1. Suppose 
that the fuzzy goal G is "x should be much more than 6" and the fuzzy 
constraint C is "x should be about 5", and both are defined as fuzzy 
sets with piecewise linear membership functions, for simplicity. The 
fuzzy constraint C = "about 6" is understood as: the numbers between 
5 and 7 are certainly about 6, those between 2 and 5, and 7 and 10 
are about 6 to some extent (between O and 1), and those below 2 and 
above 10 are certainly not about 6; and similarly for the fuzzy goal 
G = "much more than 6". Notice that this interpretation is clearly 
implied by an aspiration-level-based attitude which is convenient in our 
context. 

Notice that if f : X-+ R is a conventional objective (performance) 
function, then µc(x) = f(x)f( ) is a plausible choice provided that 

SUPxEX X 

O i= supxEX f(x) < oo; thus, the above framework may be viewed as a 
generalization of the conventional ( nonfuzzy) one. 
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The goal is clearly to 

"satisfy C and attain G" 

which lea.ds to the fuzzy decision 

µD(x) = µc(x) I\ µc(x), \/xinX (1) 

that yields the "goodness" of an x E X as a solution to the decision 
making problem considered: from 1 for definitely good (perfect) to O 
for definitely bad ( una.ccepta.ble), through all intermedia te values. The 
"a I\ b = min( a, b)" operation is commonly used and is assumed through­
out this pa.per, though it may be repla.ced by, e.g., a t-norm, weighted 
average or any suitable operation (Kacprzyk 1983b, 1983c, 1997, 2001). 

In Figure 1, the membership function of the (min-type) fuzzy de­
cision is given in heavy line for 5 • x • 10;. The cases x < 5 and 
x > 10 are impossible since µD(x) = O. The value of µD(x) E [O, 1] may 
be meant as the degree of satisfaction from the choice of a particular 
x E X, from O for full dissatisfaction (impossibility of x) to 1 for full 
satisfaction, though all intermediate values; thus , the higher the value 
of µn(x), the higher the satisfaction from x. 

As an optima.I (nonfuzzy) solution to this problem, usually an 
x E X such that 

µn(x*) = sup µn(x) = sup(µc(x) /\ µc(x)) (2) 
xEX xEX 

is a natura.I choice. Notice that in Figure 1 µn(x) < 1 which indicates 
some discrepancy between C and G. 

In the case of multiple fuzzy constraints and fuzzy goals, suppose 
that the fuzzy constraint Cis defined as a fuzzy set in X = { x }, and the 
fuzzy goa.l G is defined as a fuzzy set in Y = {y}. Moreover, suppose 
that a function f : X ---+ Y, y = f ( x), is known. Typically, X and Y 
may be sets of decisions and their outcomes, respectively. 

Now, the induced fuzzy goal G' in X generated by the given fuzzy 
goal G in Y is defined as 

µc,(x) = µc[f(x)], for each x E X. (3) 

Notice that by introducing the induced fuzzy goal, both G' and 
C are defined as fuzzy sets in the same spa.ce X, which is evidently a 
prerequisite. 
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And naw the (min-type) fuzzy decision is 

µv(x) = µc,(x) /\µc(x) = µc[f(x)] /\µc(x), for each x E X.(4) 

Thus, if we have n fuzzy constraints defined in X, C1, ... , Cn, m 
fuzzy goals defined in Y, G1 , ... , Gm, and a function y = f(x), then the 
(min-type) fuzzy decision is 

µv(x) = µc1 [f(x)] /\ ... /\ µcJJ(x)]/\ 

/\µc1(x) I\ ... I\ µc,n(x) 

for each x EX. 

(5) 

The above framework can be extended to the multistage decision 
making case. 

2.1. Multistage decision making ( control) under fuzziness in 
Bellman and Zadeh's setting 

The dynamics of the problem considered is equated with a deter­
ministic dynamie system described by a state transition equation 

Xt+l = f(Xt, Ut), t = 0, 1,... (6) 

where Xt,Xt+1 EX= {x} = {s1,---,sn} are the states (equated with 
outputs) at time (stage) t and t + 1, respectively, and u EU= {u}= 
{ c1 , ... , cm} is the decision ( control or input) at t; the state and decision 
spaces, X and U, are assumed finite. 

The essence of multistage decision making under fuzziness may 
then be depicted as in Figure 2. We start from an initial state at stage 
(time) t = O, xo, make a decision at t = O, uo , attain a state at time 
t = 1, x1, make a decision u 1 , .... Finally, being at stage t = N - l in 
state XN-l we make decision UN-l and attain the finał state XN-

The state transitions from state Xt to Xt+1 under decision Ut are 
given by (6), the the consecutive decisions applied Ut are subjected to 
fuzzy constraints et' and on the states attained, Xt+1' fuzzy goals ct+l 
are imposed, t = O, 1, ... , N - 1. 

The fuzzy decision is 

µv(uo, ... , UN-1 I xo) = 
µ&(uo) I\ µc1(x1) I\ µcN-1(uN_i) I\ µcN(XN) = 
N-1 
I\ [µct(ut) I\ µci+1(xt+1)] 
t=O 
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co C l CN-1 

D D D 
Uo 111 11N - I 
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system system system 

Xo s Xi s Xz XN - 1 s XN 

D D D D 
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t =O t = I t = 2 t=N - I I= N 

Fig. 2. Multistage decision making under fuzziness 

where xo E X is an initia.l state, the xt's are given by (6), N is some 
termination time. 

We seek an optimal sequence of decisions (controls) u0, . .. , uj,,,_1 
such t hat 

µv(uo, . . . , uiv- 1 I xo) = 
max [µ~( uo) A µa1 (x1) A µcN- 1 ( UN-1) A µGN (xN )] = 

UQ, ... ,UN-1 

N-1 
max /\ [µct(Ut) A µGt+ 1(xt+1)] . 

UO,···,UN - 1 t=O 
(8) 

Often , also here, if not otherwise specified, at each stage t fuzzy 
constraints are given, µco (uo), .. . , µcN-1 (uN-d, and a fuzzy goal, µGN (xN ), 
is only imposed on the finał state x N . Then 

µv(uo, ... , UN-1 I xo) = 
= µ~(uo) (\ · · · (\ µcN- 1(UN-1) (\ µGN(XN) (9) 

and the problem is to find u0, .. . , uj,,,_1 such that 

µv(uo, . . . 'uj,,,_l I xo) = 
= max [µ~(uo) A ... A µcN-1(uN- 1) AµcN(xN) ]. (10) 

UQ , ... ,UN-1 

T his generał problem formulation may be a starting point for nu­
merous extensions. A convenient classification of problem classes is here 
with respect to (Kacprzyk 1983b, 1983c, 1997, 2001): 
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• the type of the termination time: fixed and specified in advance, 
fuzzy, implicitly given (by entering a termination set of states), 
and infinite, 

• the type of the dynamie system: deterministic, stochastic, and 
fuzzy, 

and in virtually all cases a dynamic-programming-type algorithm can 
be devised. 

3. Fuzzy dynamie programming for multistage decision 
making with a fixed and specified termination time 

This case is basie and will be discussed in more detail. 

3. 1. The case of a deterministic dynamie system 

A deterministic system is described by its state transition equa­
tion (6), i.e . Xt+ l = f(xt,ut);xt,Xt+l EX = {s1, .. ,,sn},ut EU= 
{ci , ... , cm}; t = O, 1, ... , N - 1; xo E X is the initial state, and N < oo 
is a fixed and specified termination time (planning horizon). 

The fuzzy constraints are µco ( uo), ... , µcN-1 ( u N-1) and the fuzzy 
goa,l is µGN ( x N) . The fuzzy decision is 

µv(uo, ... , UN-1 I xo) = 

and the problem is to find Uo, ... , UN-1 such that 

µv(uo, .. -,uN-1 I xo) = 

(11) 

= max [µco(uo) I\ ... I\ µcN-1 ( UN-1) I\ µGN (xN )] (12) 
UQ, ... ,UN-1 

It is easy to see that the structure of (12) makes the use of dynamie 
programming scheme possible, and the set of recurrence equations is 

{ µGN~i( X!!._-i) = ~axuN~i~~~-i(UN-i) (\ µcN- i+1 (XN-i+1)] (13) 
XN-i+l - f(xN- i, UN-i), i - 1, ... , N 

where µcN- i ( .) is a fuzzy goal at t = N - i induced by a fuzzy goal at 
t=N-i+l. 

106 



Fuzzy Dynamie Programming A Brief Introduction And Survey 

An optimal sequence of decisions sought , Uo, ... , UN-1, is given 
by the successive maximizing values of UN-i in (13). The solution, 
u;, is usua.lly given by an · optimal policy a; : X --+ U, such that 
u; = a;(xt), t = O, 1, ... , N - 1, i.e. relating an optimal decision to the 
current state. 

3.2. The case of a stochastic dynamie system 

The stochastic system is assumed to be a Markov chain described 
by a conditional proba.bility 

p(Xt+i I Xt, Ut) 

such that Xt,Xt+l EX= {s1, ---,sn}, Ut EU= {c1,---,cm}, 
xo E X is an initial state, t = O, 1, .. . , N - 1, and N < oo is a fixed and 
specified termination time. 

There are the following two problem formulations: 

• due to Bellman and Zadeh (1970): find an optimal sequence of 
decisions Uo, .. . , UN-1 to maximize the probability of attainment 
of the fuzzy goal subject to the fuzzy constraints, i.e. 

µD(Uo, · · ·, UN-1 I xo) = 
max [µco(uo) I\ ... I\ µcN-1(uN_i) I\ 

uo, ... ,ttN-1 

/\EµcN (xN )] (14) 

where the fuzzy goal is viewed as a fuzzy event in X whose (non­
fuzzy) probability is (Zadeh 1968) 

EµcN(xN) = L p(xN I XN-1,uN-1) · µcN(xN) (15) 
XNEX 

• due to Kacprzyk and Staniewski (1980): find an optimal sequence 
of decisions Uo, ... , UN-1 to maximize the expectation of the fuzzy 
decision's membership function, i.e. 

µD(uo, · · ·, UN-1 I xo) = 
max E[µco (uo) I\ . . . I\ µcN-1 (uN-1) I\ 

UQ, ... ,UN-1 

/\µcN(XN)] (16) 
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and these formulations are clearly not equivalent. 

3.2.1. Bellman and Zadeh's approach 

Since the structure of (14) is similar to that of (12), we obtain the 
set of fuzzy dynamie programming recurrence equations as 

{ 
µcN-i(XN-i) = maxuN_JµcN-i(UN-i) I\ EµcN-i+i(XN-i+I)] 

EµcN-i+1(XN-i+I) = LxN-i+1EXP(XN-i+I I XN-I,UN-I)x (17) 
x µcN-i+1 (xN-i+I); i= 1, ... , N 

and we consecutively obtain uN-i or, in fact, optimal policies aN-i such 
that uN-i = aN-i(XN-i),i = 1, ... , N. 

3.2.2. Kacprzyk and Staniewski's approach 

To salve problem (16), we first introduce a sequence of functions 
hi: X x xj=Iu ~ [O, 1] and 9j: X x x{:}:;u ~ [O, 1]; i= o, 1, ... ,N; 
j = 1, . .. , N - 1; such that 

hN(XN, uo,,.,, UN-I) = µco( uo) (\ · · · (\ µcN-1 ( UN-I)/\ 
/\µD(uo, ... ,uN-I I xo) 

9k(xk, uo, ... , uk) = Li~I hk+I (si, uo, .. . , uk) p(si I Xk, uk) (18) 
hk(xk, uo, ... , Uk-I) = maxuk 9k(xk, uo, ... , uk) 

ho(xo) = maxu0 go(xo, uo). 

Basically, if the consecutive decisions and states are uo, .. . , Uj and 
xo, . .. , Xj, respectively, then 9j is the expected value of µD(. I xo) pro­
vided that the next decisions are optimal, i.e . uj+I, ... , uN-I · 

As showu in Kacprzyk and Staniewski (1980), Kacprzyk (1983b, 
19983c, 1997, 2001) there exist functions wk : X x xtI U ~ U such 
that hk(xk, uo, ... , Uk-I) = 9k(xk, uo, ... , Uk-I, wk(xk, uo, ... , uk-I)). 

Then, due to Kacprzyk and Staniewski (1980), an optimal policy 
sought, a;, t = O, 1, ... , N - 1, is given by 

ao = wo(xo) 
ai(xo, XI)= WI(XI, aa(xo)) 

(19) 
aN-I (xo, ... , XN-I) = 

= WN-I(XN-I, bN_2(xo,,,,, XN-2, · · ·, ba(xo)) · · .) 
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and it depends now not only on the current state but also on the tra­
jectory. The solution of this formulation is evidently more difficult than 
of that due to Bellman and Zadeh. 

3.3. The case of a fuzzy dynamie system 

Now the system is fuzzy and is described by a fuzzy state transi­
tions equation 

t = o, 1, ... (20) 

where Xt, Xt+1 are fuzzy states at time (stage) t and t + 1, and Ut is a 
fuzzy decision at t, chara.cterized by µxt (xt), µxt+i (xt+1), and µut ( Ut), 
respectively; (20) is equivalent to a conditioned fuzzy set µxt+i (xt+I I 
Xt, Ut) (Kacprzyk 1983b, 1983c, 1997, 2001). 

Baldwin and Pilsworth (1982) proposed here a dynamie program­
ming scheme. First, for each t = O, 1, ... , N - 1 a fuzzy relation 
µRt(ut,Xt+1) = µct(ut) I\ µct+1(xt+1) is constructed. The degree to 
which Ut and Xt+l satisfy et and Gt+1 is 

µr(ut, µRt(Ut, Xt+I), Xt+1) = 
max[(µut ( ut) I\ µet (ut)) /\ max(µxt+i (xt+1) /\ 

Ut Xt+l 

/\µQt+l (Xt+1))]. (21) 

Then, they obtain the following set of recurrence equations (Kacprzyk 
1983b, 1983c, 199~ 2001) 

/-LcN (XN) = maxxN [µxN (xN) /\ µGN (xN )] 

1-LcN-i(XN_i) = maxuN-d(maxuN-i (µuN_;(UN-i)/\ 

I\ µcN-i(UN-d) I\ 1-LaN-i+1(XN-i+i)l (22) 

µxN-i+l (xN-i+I) = maxXN_;[max„N-i (µuN- i (UN-i)/\ 

I\ µxN-;+i (xN-i+I I XN-i, uN-i)] I\ µxN-i(XN-i)) 
i=l, ... ,N-1. 

In principle, this may be solved, though a prohibitive difficulty is 
that 1-LcN-i(XN-i) must be specified for all the possible XN-i's, and the 
maximization is to proceed over all the possible U N-i's. As the number 
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of both of them may be very high (theoretically infinite), Baldwin and 
Pilsworth (1982) predefine some (sufficiently small) number of reference 
(standard) fuzzy states and fuzzy decisions. Then, they redefine their 
problem formulation in terms of the reference fuzzy states and fuzzy 
decisions to finally make (22) solvable. 

Experience with Baldwin and Pilsworth's (1982) approach is often 
discouraging (Zimmermann, 1987) and an earlier and simple branch­
and-bound approach by Kacprzyk (1979) may be a better choice. 

4. Fuzzy dynamie programming for multistage decision 
making with a fuzzy termination time 

Very often it may be more adequate to assume a fuzzy termination 
time as mare or less 5 years, a couple of days, .... This idea appeared 
in Fung and Fu (1977) and Kacprzyk (1977). 

Let R = {O, 1, ... , K - 1, K, K + 1, ... , N} be the set of decision 
ma.king stages. At each t E R we have a fuzzy constraint µet (Ut), and 
a fuzzy goal µcv ( Xv), v E R, is imposed on the finał state. The fuzzy 
termination time is given by µr( v ), v E R, which can be viewed as a 
degree of how preferable v is as the termination time. 

The fuzzy decision is now (Kacprzyk 1977, 1978b, c) 

µD(uo, ... , Uv-l / xo) µco(uo) I\,,, I\ µcv-1(uv_i) I\ 

/\µr(v). µcv(xv) (23) 

and we seek an optimal termination time v* and an optimal se­
quence of decisions Uo, ... 'u;._l such that 

µD(Uo, .. · ui--1 / xo) = 
max [µco(uo) I\ ... I\ µcv-1(uv-1) I\ 

V,UQ, ... ,Uu-1 

/\µr(v) · µcv(xv)]. (24) 

Problem (24) may be solved using Kacprzyk's (1977, 1978b) and 
Stein's (1980) approaches which will now be briefly presented below. 
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In Kacprzyk's (1977, 1978c) formulation the set of possible termi­
nation times is {v ER: µr(v) > O}= {K,K + 1, ... , N} s;;; R , hence an 
optimal sequence of decisions is u0, ... , u'k_2 , u'k_1, ... , u;._1 . 

The part u K - 1 , u i<, ... , u;. _ 1 is determined by sol ving 

{ 
µGv~i (x~-i, v) ~ max~v-i [µcv-i ( Uv-i) I\ µav-i+I (Xv-i+l, v)] 
Xv-i+l - f (xv-i, Uv-i) 
i= 1, ... , v - i+ 1; v = K, K + 1, ... , N - 1 

where µav(Xv,v) = µr(v)µa v(xv)-

(25) 

An optimal termination time v* is then found by the maximizing 
V In 

(26) 

The part u0, ... , u'k_2 is then determined by solving 

{ µGK-i-l (xK-i-l) = maxuK-i-l [µcK-i- l (uK-i-l) I\ µGK- i (XK-i)] (27) 
XK-i = f(XK-i-l,UK-i-l);i = 1, ... ,K -1 

Stein (1980) presented a computationally more efficient dynamie 
programming approach whose idea is as follows. At t = N - i, i E 

{1, ... ,N - 1}, we can either stop and attain /.knN-i(XN-i) = µr(N -
i) µG N- i(XN-i) , or apply UN-i and attain µcN -;(UN-i (UN-i) I\ 
µGN-i+1 (xN-i+1). The better alternative should evidently be chosen, 
and this is repeated for t = N - i - 1, N - i - 2, ... , O. The set of 
recurrence equations is therefore 

{ 
µGN- i (XN-i) = µG (XN-i)I\ 

. I\ ~axuN-i_[µ~-~-: (_u_N_:::-i) I\ µGN-i+l (xN-i+I)] 
XN-i+l - f(XN-i, UN-i), i - 1, 2, ... , N 

(28) 

and a.n optimal termination time is such a t 
terminating decision, u;._1 , occurs, i.e ., when 

N - i at which the 

Using a similar reasining, we can formulate and solve the case with 
a fuzzy termination time and a stochastic system (Kacprzyk 1978b, c, 
1983b, 1983c, 1997, 2001 , and Stein 1980). 
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A dynamie programming scheme for the case of a fuzzy termina­
tion time and a fuzzy system can be obtained by first fixing some (finite 
and relatively small) number of reference fuzzy states (and possibly de­
cisions), and obtaining an auxiliary approximate system whose state 
transitions are of a deterministic system type (Section 3.3 or Kacprzyk 
1983b and Kacprzyk and Staniewski 1982). Then, Kacprzyk's or Stein's 
approach can be employed. In many cases, however, a simple Kacprzyk's 
(1983b) branch-and-bound algorithm is a better choice. 

This concludes in fact our analysis of fuzzy dynamie programming. 
Now, for completeness, we will sketch the two other problem classes: 
with an implicit and infinite termination time for which some iterative 
algorithms are a.vailable. 

5. Multistage decision making with an implicitly specified 
termination time 

The process terminates now when the state enters for the first 
time the termination set of states W= {sp+l, Sp+2, ... , sn} C X. The 
problem is to determine an optima! sequence of decisions u0, ... , ~-l 

such that 

µD(uó,--·,u~_1 I xo) = 
max [µc(uo I xo) I\ - - - I\ µc(uN-l I xN-1) I\ 

uo, ... ,uN-1 

/\µciv(xN)] (30) 

where xo, ... ,xN-l EX\ W, and xN EW; we seek an optima! statio­
nary strategy in fact. 

The solution of (30) may proceed by using: 

• Bellman and Zadeh's (1970) iterative approach, 

• Komolov's et et al. (1979) graph-theoretic approach, and 

• Kacprzyk's (1978a, b) branch-and-bound approach, 

and the first one is somehow related to dynamie programming. For 
details we refer the reader to, e.g., Kacprzyk's (1983b, 1996) books. 
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6. Multistage decision making with an infinite termina­
tion time 

This case may well represent problems of a low variability or 
meant to maintain some level of activity. Fuzzy multistage decision mak­
ing problem with an infinite termination time was first formulated and 
solved by Kacprzyk and Staniewski (1982, 1983) - see also Ka-cprzyk's 
(1983b, 1983c, 1997, 2001) books. 

that 

For the deterministic dynamie system (6), the fuzzy decision is 

µv(uo, u1, ... I xo) = 
µc(uo I xo) /\ µc(xi) /\ µc(u1 I x1) /\ µc(x2) /\ ... = 

N 

lim /\ [µc(ut I xt) /\ µc(xt+1)]. 
N-;oo t=O 

(31) 

We seek an optimal stationary strategy a~ (a*,a*, ... ) such 

µv(a~ I xo) = maxµv(a= I xo) = 
acx:, 

N 

= max lim /\ [µc(a(xt) I Xt) /\ µc(xt+1)]. 
acx:, N-;oo t=O 

(32) 

As shown in Kacprzyk and Staniewski (1983), problem (32) may 
be solved in a finite number of steps by a policy iteration algorithm, 
with a step-by-step improvement of stationary policies. 

A policy iteration type algorithm was also proposed for the sto­
chastic system (the most challenging case!) by Kacprzyk, Safteruk and 
Staniewski (1981), and for a fuzzy system by Kacprzyk and Staniewski 
(1982). 

7. Applications of fuzzy dynamie programming: a short 
survey 

These applications fall into two main categories: 
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• applications related to more generał (standard) problems, 

• applications related to more specific problems. 

In the first group, we should first mention a pioneering work on a 
generał resource allocation problem with fuzzy goaJs and constraints by 
Esogbue and Ramesh (1970). 

Another problem class of a universal relevance is data clustering, 
and the application of fuzzy dynamie programming was proposed here by 
Esogbue (1986), and Esogbue and Bellman (1981). Moreover, there are 
here workd related to some mathematical programming problems. Hus­
sein and Abo-Sinna (1993) apply a hybrid fuzzy dynamie programming 
approach to determine a set of efficient solutions of the multiobjective 
mathematical programming problem. Narshima Sastry, Tiwari, and Sas­
try (1993), on the other hand, solved a generalized multiple goal fuzzy 
control ( optimization) problem by using fuzzy dynamie programming. 

In the second group, we should mention, first, Esogbue's (1983) 
work on a generał research and development (R&D) control problem 

· in which some limited funds are to be optimally used to attain certain 
goals distributed over time. Needless to say that this problem may be a 
prototype for a much wider class. 

Second, in a series of papers, Kacprzyk and Straszak (1981, 1982a, 
b, 1984) proposed a fuzzy dynamie programming model for determining 
socioeconomic regional development strategies which take into account 
limited resources, requirements on the effectiveness and stability of de­
velopment, some objective and subjective aspects, etc. 

Relevant medical applications have been proposed, and one should 
mention here, e.g., Esogbue and Elder's (1986) work on a fuzzy dynamie 
programming model of medical diagnosis and Esogbue's (1985) approach 
to intra-operative anesthesia adminstrations; in fact, Esogbue's (1983) 
work on R&D is much concerned with the cancer research appropriation 
process, too. 

One of most fruitful research areas have been various aspects of 
energy systems. We should first of all mention Su and Hsu (1991) who 
applied fuzzy dynamie programming to the unit commitment of a power 
system, and practically implemented the results obtained for Taiwan's 
power system. 

Huang, Lin and Huang (1992) presented a fuzzy dynamie pro­
gramming model for the determination of an optima! schedule for the 
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outage starting times of power generators for maintenance over the one 
year planning horizon for a Taiwanese power company. 

Sugianto and Mielczarski (1995a, b, 1996) considered the opti­
mization of a spare parts inventory in a power generation plant by bal­
ancing requirements on power availability and reduction of spare parts' 
costs. 

Water resources systems were another relevant field of applica­
tions. Already in Esogbue and Bellman (1981) an application to the 
analysis of water resouces related data was presented. Esogbue and 
Ahipo (1982a, b) considered some effectiveness measures in water re­
sources planning. Esogbue, Theologidu and Guo (1992) presented an 
application to flood control. 

In chemical engineering Kra.sławski, Górak and Vogenpohl (1989) 
proposed an application of fuzzy dynamie programming to the deter­
mination of destillation sequence (sequence of destillation columns) for 
a mixture of some number of components. An important problem of 
determining a best itinerary for the transportation of hazardous waste 
loads ovex a given road structure was considered by Klein (1991) tak-

. ing into account safety of the road segments and intersections, distance, 
driving difficulty, dangers related to population density, etc. 

Yuan and Wu (1991) proposed an a.pplication of fuzzy dynamie 
programming to real-time control of a transportation system in a flexi­
ble manufacturing system, more particularly involving the so-called au­
tonomous guided vehicles (AGVs) which are driverless, programmable 
vehicles that can move around the factory. 

This concludes our brief analysis of main applications of fuzzy 
dynamie programming in widely perceived operations research related 
areas. For details on them, as well as on applications in other fields we 
refer the interested reader to Kacprzyk's book (1997). 

8. Concluding remarks 

We presented a short and readable survey of basie elements and 
applications of fuzzy dynamie programming. We hope this exposition 
will be useful for users from diverse areas who may be interested in 
applications of fuzzy dynamie programming as we witness an increase 
of interest in this topie in recent years. For a recent state of the art we 
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refer the reders to two last Kacprzyk's books (1997, 2001). 
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