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Abstract

Computational system modeling is full of ambiguous situations, wherein

the designer cannot decide, with precision, what should be the outcome of

the system. In [29], L. Zadeh introduced for the first time the concept of

fuzziness as opposed to crispiness in data sets. When he invented fuzzy sets

together with the underlying theory, Zadeh’s main concern was to reduce

system complexity and provide designer with a new computing paradigm

that allow the to approximate results. Whenever there is uncertainty, fuzzy

logic together with approximate reasoning apply. Fuzzy logic and approxi-

mate reasoning [30, 31] can be used in system modeling and control as well

as data clustering and prediction [23], to name only few appropriate appli-

cations. Furthermore, they can be applied to any discipline such as finance

[6], image processing [35, 9], temperature and pressure control [34, 14],

robot control [11, 24], among many others.

Process control is one of the many applications that took advantage of

the fuzzy logic. Controller are usually embedded into the controller device.

This chapter aims at presenting the development of a reconfigurable efficient

architecture for fuzzy controllers, suitable for embedding. The architecture

is parameterizable so to allows the setup and configuration of the controller

so it can be used for various problem applications.

This chapter describes the hardware implementation of a shell fuzzy

controller based on generic fuzzy logic, allowing the setup and configuration

for various problem situations.
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1 Introduction

The Fuzzy Logic is a subject of great interest in scientific circles, but it is still not

commonly used in industry, as it should be. Eventually, we found some literature

containing practical applications that is being currently used in industry [16, 22]

Fuzzy logic has been used in many of applications, such as expert systems,

computing with words, approximate reasoning, natural language, process control,

robotics, modeling partially open systems, pattern recognition, decision making

and data clustering [20] and [26].

There are many related works that implemented a fuzzy controller on a FPGA,

but most of them present controller designs that are only suitable for a specific

application. Mainly, the designs do not use 32-bit floating-point data [18] [21]

[25] [17] [5]. The floating-point data representation is crucial for the sensibility

of the controller design. In contrast, all the required computation in the proposed

controller are performed by a simple precision floating-point co-processor.

The purpose of the development of a reconfigurable hardware of a shell fuzzy

controller, that can include any number of inputs and outputs as well as any num-

ber of rules, is the possibility of creating a device that can be used more widely

and perhaps spread the concept of fuzzy logic in the industrial final products.

This chapter is divided into three sections. First, in Section 2, we introduce

briefly some concepts of fuzzy controller, which will be useful to follow the de-

scription of the proposed architecture. Then, in Section 3, we describe thoroughly,

the macro-architecture of the fuzzy controller developed. After that, in Section 4,

we give details about the main components included in the macro-architecture.

Subsequently, in Section 5, we show, via simulation snapshots, that the proposed

architecture is functionally operational. Finally, in Section 6, we draw some con-

clusions and point out some new direction for the work in progress.

2 Fuzzy Controllers

Fuzzy control, which directly uses fuzzy rules, is the most important and common

application of the fuzzy theory [27]. Using a procedure originated by E. Mamdani

[15], three steps are followed to design a fuzzy controlled machine:

1. fuzzification or encoding: This step in the fuzzy controller is responsible

of encoding the crisp measured values of the system parameter into a fuzzy

term using the respective membership functions;

2. inference: This step consists of identifying the subset of fuzzy rules that

can be fired, i.e. those with antecedent propositions with truth degree not

zero, and draw the adequate fuzzy conclusions;
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3. defuzzification or decoding: This is the reverse process of fuzzification. It

is responsible of decoding a fuzzy variable and compute its crisp value.

The generic architecture of a fuzzy controller is given in Fig. 1. Its main

components consist of a knowledge repository, the encoder or fuzzification unit,

the decoder or defuzzification unit and the inference engine. The knowledge base

stores two kind of data: the fuzzy rules which are required by the inference engine

to reach the expected results and knowledge about the fuzzy terms together with

their respective membership functions as well as information about the universe of

discourse of each fuzzy variable manipulated within the controller. The encoder

implements the transformation from crisp to fuzzy and the decoder the transfor-

mation from fuzzy to crisp. Of course, the inference engine is the main component

of the controller architecture. It implements the approximate reasoning process.

Figure 1: Generic architecture of fuzzy controllers

2.1 Operation

In order to explain thoroughly how a fuzzy controller operates, we borrow the

famous example of a the inverted pendulum from [3]. The inverted pendulum is

described in Fig. 2. The problem consists of controlling the movement of a pole

on a mobile platform. It can only balance to the right or left.

The linguistic variables are the angle between the platform and the pendulum

([-30◦, 30◦]), the angular velocity of this angle ([-15,15]) and the speed of the

platform ([-3, 3]). The first two variables are the controller input while the third

one is the expected controller output. The fuzzy terms for each of the identified

245

ENGINE 

ENCODER "EPOSITOR-, DECODER 

SENSORS - DEVICE - ACTUATORS 



Figure 2: Inverted Pendulum

variables are given in Table 1. The membership functions of the controller lin-

guistic fuzzy terms angle, velocity and speed are given in Fig. 3, Fig. 4 and Fig. 5

respectively.

Table 1: Fuzzy variable and corresponding linguistic terms

angle – A velocity – V speed – S

n-large n-high n-fast

n-small n-low n-slow

insignificant null still

p-small p-low p-slow

p-large p-high p-fast

Figure 3: Fuzzy representation of membership function µangle
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Figure 4: Fuzzy representation of membership function µvelocity

Figure 5: Fuzzy representation of membership function µspeed

The collection of the fuzzy rules, which is used to control the pendulum, is

given in a tabular form in Table 2. The controller rules are generally designed by

an expert to achieve optimal control. For instance, the third entry in the third row

reads as the rule stated in (1) while the second entry of the fourth row reads as the

rule stated in (2).

if angle is insignificant ∧ velocity is null then speed is still (1)

if angle is p-small ∧ velocity is n-low then speed is still (2)

Now, we show how to apply the rules of Table 2 for specific measures of the

linguistic variables angle and velocity. Assume that the value read for variable

angle is 6◦ and that for variable velocity is −1. The values of the membership

functions for variable angle are µinsignificant(6) = 0.4 and µp-small(6) = 0.6 while

for variable velocity µnull(−1) = 0.2 and µn-low(−1) = 0.8. These points are

marked on the graphs of Fig. 6.
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Table 2: Fuzzy rules of the controller

rules n-large n-small insignificant p-small p-large

n-high – – n-fast – –

n-low – – n-slow still –

null n-fast n-slow still p-slow p-fast

p-low – still p-slow – –

p-high – p-fast – – –

(a) actual angle

(b) actual velocity

Figure 6: Membership reading for the actual values of variable angle and velocity
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The rules that applies are those that have their degree of truth different from

zero. So we conclude that all rules with antecedent involving the linguistic terms

insignificant and/or p-small and null and/or n-low should be fired. From Table 2,

we can identify that the rules that should be used are those whose consequent is

framed. The four rules are also listed below in (3).

if (angle is insignificant) ∧ (velocity is null) then speed is still
if (angle is insignificant) ∧ (velocity is n-low) then speed is n-slow
if (angle is p-small) ∧ (velocity is n-low) then speed is still
if (angle is p-small) ∧ (velocity is null) then speed is p-slow

(3)

Using Mamdani’s definition of the implication operator [15], we can apply he

rules in (3). The application of the selected rules yields the fuzzy sets described

in Fig. 2.1, Fig. 8, Fig. 9 and Fig. 10. Always the minimum cut is used.

Figure 7: Representation of the result of application of the first rule in (3)

Figure 8: Representation of the result of application of the second rule in (3)
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Figure 9: Representation of the result of application of the third rule in (3)

Figure 10: Representation of the result of application of the fourth rule in (3)

As the first and third rule in the selected rules yield the same consequent, i.e.

still, we can combine them using an or-operator and therefore, the maximum cut

is retained. This is depicted in Fig. 11.

Figure 11: Combining the results of application of the first and third rule in (3)

The defuzzification of the obtained result is a very sensitive task. It depends

on the nature of the process being controlled. There are several techniques for
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obtaining a crisp value from a fuzzy set. However, the commonly used techniques

are of two kind and are given below. Each of these techniques is illustrated in

Fig. 12.

Figure 12: Composing the results of all fired rules

• the composite moments or centroid, which computes the crisp measure u as

the abscissa of the center of gravity of the obtained fuzzy set. This compu-

tation for defuzzification is described in (4);

u =

∑

i µ(xi)xi
∑

i µ(xi)
(4)

• the composite maximum, which is based on the values of the fuzzy set with

the highest degree of truth. The composite maximum technique may use:

– average maximum, which is the average of all the values that have

the highest membership degree in the obtained fuzzy set; The com-

putation for defuzzification is described in (5), wherein N represents

the number of points with maximum membership degree in the fuzzy

sets;

u =

∑

i {x| µ(x) = max(xi)}

N
(5)

– first maximum, which is the smallest value that has the highest mem-

bership degree in the obtained fuzzy set; The computation for defuzzi-

fication is described in (6);

u = {x| µ(x) = max(xi) ∧ ∀xi, x < xi} (6)

– last maximum, which is the biggest value that has the highest degree

of truth in the yield fuzzy set; The computation for defuzzification is

described in (7).

u = {x| µ(x) = max(xi) ∧ ∀xi, x > xi} (7)
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3 The Proposed Macro-architecture

The macro-architecture of the proposed fuzzy controller consists of three main

units: (i) the fuzzification unit (FU), which is responsible for translating the in-

put values of the system into fuzzy terms using the respective membership func-

tions. This unit has as many Fuzzy blocks as required in fuzzy system model

that is being implemented, i.e. one for each input variable; (ii) the inference unit

Inference, which checks all the included fuzzy rules, verifying which mem-

bership function applies, and if any is so, generating its value and thus identifying

the membership functions to be used in the sequel; (iii) the defuzzification unit

(DU), which is responsible for translating the fuzzy terms back so as to compute

the crisp value of the fuzzy controller output. The defuzzification unit includes

as many Defuzzy blocks as required by the fuzzy system model that is being

implemented, i.e. one for each output variable. The block diagram of the pro-

posed macro-architecture is shown in the Fig. 13, wherein N and M represent the

number of input and output variables, respectively.

Fuzzy

2

1

…
N

MF MEM

2

1

…
N

MF

2

1

…
N

Defuzzy

2

1

…
M

Inference

Controller

Sensor N

Sensor 2

Sensor 1
Output M

Output 2

Output 1

Rules

Data MF N

Data MF 2

Data MF 1

…

……

…

…

…

Figure 13: Macro-architecture of the designed fuzzy controller

Note that, besides the main units, the macro-architecture also includes a com-

ponent that allows to compute the membership function characteristics, which are

used by both the fuzzification and defuzzification units. This component will be
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called membership function unit (MFU). It includes as many MF blocks as required

input variable of the fuzzy model. Note that all the membership function-related

data are stored in the membership function memory, called MF MEM. This mem-

ory is formed by as many memory segments as required input variables, i.e. one

for each membership function used. The rules used by the inference unit are stored

in a read-only memory block, called Rules. Component Controller, which

in the sequel may be called main controller, imposes the necessary sequencing

and/or the simultaneity of the required steps of the fuzzy controller via a concur-

rent finite state machine. More details on this are given subsequently.

The proposed fuzzy controller is designed to be generic and parametric, so it

allows configuring the number of input and output variables, the number of lin-

guistic terms used to model the membership functions and the number of inference

rules, so as the fuzzy system model that is being implemented can fit in. Allowing

the configuration of these parameters makes it possible, as well as easy, to adjust

the controller design to any desired problem. Summing up, the main parameters

of the controller are:

• N : The number of input variables and hence that of the included Fuzzy

blocks;

• M : The number of output variables and hence that of Defuzzy blocks;

• P : The number of rules and thus the number of words in the rule base

Rules;

• Q: The number of linguistic terms per membership functions used to model

the input and output variables of the fuzzy system. Note that for the current

implementation, we kept this parameter constant for all inputs and outputs.

However, this can be easily altered so as to allow different models for dis-

tinct membership function.

As it can be seen in the Fig. 14, at configuration time, all the membership func-

tions used by the controller are computed and stored in the respective MF MEM

segment of the membership function memory. All the computed data will be

readily available to be used by the pertinent Fuzzy and/or Defuzzy block in

the fuzzification and defuzzification unit, respectively. Note that this configura-

tion step is done only once. During the operation step, the fuzzy controller iter-

ates the required steps, triggering the Fuzzy blocks then Inference unit then

Defuzzy blocks in sequence. After that, it waits for a new set of input data to

be read by the system sensors and thus arrive at the Fuzzy blocks input ports.

The finite state machines that control the Fuzzy blocks all run in parallel, so do
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those that control the Defuzzy blocks. Therefore, we use the Statechart descrip-

tion language [13] to express the hierarchical and concurrent aspects of the state

machine of the overall operation of the main controller.

start

MF 1 MF 2 MF N…

Fuzzy 1 Fuzzy 2 Fuzzy N…

Defuzzy 1 Defuzzy 2 Defuzzy N…

Inference

Figure 14: Hierarchy and concurrency of the main controller’s state machine

In the following sections of this chapter, more light will be shed on the internal

micro-architecture of the proposed design as well as the control used therein.

4 Micro-architecture of the Functional Units

In this section, we describe the micro-architecture of the main components, in-

cluded in the macro-architecture of Fig. 13. These are the functional unit respon-

sible for the computation of the member function (MF), including the memory-

based component (MF MEM), the basic component responsible for the fuzzifi-

cation process (Fuzzy), the component that implements the inference process

(Inference) using the available rule base (Rules) and the basic component

that handles the defuzzification process (Defuzzy).

In general, all blocks that perform floating-point computations include an FPU

unit, which performs the main mathematical operations with simple precision (32

bits) [4]. The operations needed are addition, subtraction, multiplication and di-

vision.
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4.1 Membership function unit

A membership function is viewed as a set of linguistic terms, each of which is

defined by two straight lines. In the proposed design, the triangular shape is used

to represent linguistic terms. Nevertheless, it is possible to adjust the design as to

accept other used shapes such as trapezes and sigmoid. Fig. 15 shows a generic

example of membership function with Q linguistic terms, wherein the horizontal

axis x represents the controller’s input, probably read from a sensor, and the ver-

tical axis y represents the truth degree associated with the linguistic terms. This is

a real value, between 0 and 1, handled as a simple precision floating-point number

of 32 bits.

Linguistic terms of triangular membership function are completely defined by

MaxPoint and Range , as illustrated Fig. 15.

Linguistic

Term 0

Linguistic

Term 1
Linguistic

Term 2
Linguistic

Term Q

MaxPoint

Range

x

y

1

0

Figure 15: Membership function of Q linguistic terms

The MF block is designed to compute the values of any variable x, according

to (8) of the two straight lines, that represent the linguistic term of the membership

function. The required basic data that completely define these shapes need to be

identified.

y = ax+ b (8)

The input data of the MF block are MaxPoint and Range for each straight line

used to define the linguistic terms of the membership function. The block utilizes

them and pre-compute coefficients a and b accordingly and stored them in the

membership function memory segments. Three cases are possible: the leftmost

linguistic term (see linguistic term 0 in Fig. 15); An in-between linguistic term

(see linguistic term 1 and 2 in Fig. 15); and finally, the rightmost linguistic term
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(see linguistic term Q in Fig. 15). The computation of a and b of the straight lines

of the leftmost, middle and rightmost linguistic terms are defined as in (9), (10)

and (11), respectively.

µl(x)=































1, if x ≤ MaxPoint

− 1
Range

× x+ MaxPoint
Range

+ 1, if MaxPoint > x

≥ MaxPoint +Range

0, otherwise

(9)

µm =







































1
Range

× x− MaxPoint −Range
Range

, if MaxPoint −Range < x

≤ MaxPoint

− 1
Range

× x+ MaxPoint
Range

+ 1, if MaxPoint > x

≥ MaxPoint +Range

0, otherwise

(10)

µr(x) =































1
Range

× x− MaxPoint −Range
Range

, if MaxPoint −Range < x

≤ MaxPoint

1, if x > MaxPoint

0, otherwise

(11)

The micro-architecture of the membership function blocks MF is shown in

Fig. 16. It uses a floating-point unit to perform the required mathematical opera-

tions. The obtained results are then stored in the MF MEM segments.

An MF block includes a controller that is implemented as a finite state machine

whose state transition diagram is shown in Fig. 17. The FSM is optimized so as

to include a minimum number of states. It allows to synchronize the setting up

of all the linguistic terms, necessary to the complete definition of the membership

function for each input variable.

In the following, we sketch how the membership function block works. When

and MF block receives the enable command from the main controller, the state ma-

chine of Fig. 17 transits from state start to test step, where it checks whether this

stage is the first or the last straight line calculation of the membership function.

If this is the case, there is no need to do anything else, because the first and last

straight lines are constants, as it can be seen in Fig. 15. Therefore, the result of

FPU block is ignored and the FSM goes to state fpu result. Otherwise, i.e. if this
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FPU

MaxPoint

-1

1

Range

Controller

S
ta
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O
P

Ready

Min

Max

a

b

write

3

address

MEM MF

Q

Figure 16: The micro-architecture of the membership function block

start

fpu_result

result

test_step
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fpu_load fpu_exec

Enable = 1

fpu ready = 0

Last calc = 1

L
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t 
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=
 0

Enable = 0
First or last

calc = 0

Figure 17: Membership function block state machine
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is not the first or last straight line, the FSM transits to state fpu load, wherein the

values of MaxPoint and Range to be used are loaded. After that, state fpu exec

is entered, wherein the MF block awaits the FPU block to reach the desired result.

As soon as it does, the FSM goes to state fpu result, where the result is registered.

Note that for each linguistic term, the MF block needs to compute four results as

it will detailed later on in Section 4.2. Hence, if the computed results is not the

fourth, the FSM enters state test step, and iterates the process once again. When-

ever all the four results are dully computed and stored, the state machine goes to

state mf wr where it issues the write command to MF MEM segment. The MF block

iterates the same process until the last line values are written into the respective

MF MEM block. Once this is done, the FSM transits to state result where it issues

the finished signal and goes back to state start and waits for a new configuration

stage, if any.

4.2 Membership function memory

As explained earlier, this memory block responds to write commands received

from the MF block and read commands issued by the FU. Each word of this mem-

ory holds four data that allows the complete computation of the truth degree of a

given linguistic term. The four-fold memory word contains:

• min: minimum limit of the straight line;

• max: maximum limit of the straight line;

• a: angular coefficient of the straight line;

• b: linear coefficient of the straight line;

So, every time that the MF block requests a memory write, this memory block

register these values at an address, that represents the order number of the line

within all the line that need to be processed, starting from zero. This block also

allows the configuration of the number of lines that can be registered in the mem-

ory, which will depend on parameter Q, which determines the number of linguistic

terms per membership function.

4.3 Fuzzification unit

The main purpose of the fuzzification unit consists of translating the input values,

returned by some sensors, to linguistic terms and respective truth degrees. This is

done using the data that define the membership functions, which are stored in the
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MF MEM segments. Recall that for each input variable of the fuzzy system, there

is a Fuzzy block associated with it.

The Fuzzy block performs the necessary computation to obtain the fuzzy

version the input value. The computation consists of a comparison that may, in

most cases, be followed by a multiplication then an addition, depending on the

comparison result. This is repeated Q times for all the linguistic terms included in

the membership function of the input variable under consideration. The Fuzzy

block micro-architecture is shown in Fig. 18. It includes a Comparator that

determines in which linguistic term range the input value falls, 2 sets of Q flip-

flops to hold the result of the comparison. Their contents identify which linguistic

terms are actually active. Note that more than one linguistic term may become

active for the same given input variable. There are 2 sets because every linguistic

term is represented by two straight lines. The Fuzzy block also includes an FPU

block that is responsible for both the multiplication and addition. The obtained

results for the 2 straight lines modeling the linguistic term are kept in two distinct

32-bit registers. These are the truth degrees once it is delivered by the FPU. The

block includes 2 sets of 32-bit registers, namely TuFP 1 and TuFP 2, one for

each linguistic term modeling the membership function of the input variable.

…
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Controller

Comparator

MF MEM

min

max

address

read

Sensor input

CompEn

a

b

start

ready

OP

FF2
1

2

…
Q

EnF Q

EnF 2
EnF 1

TuFP 1
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uF Q

uF 2

uF 1
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…

…

FF1
1

2

…
Q

…

1
2

Q

Q

2
1

1

Sensor input in range

Figure 18: Fuzzy block micro-architecture

The input of a Fuzzy block are the characteristics of the linguistic terms of

the membership function associated with the input variable under consideration.

These characteristics are a, b, min and max stored in MF MEM segment corre-
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sponding to the input variable, as explained in Section 4.2. The output of a Fuzzy

block are: signal EnFi, for i = 1 . . . Q bits, i.e. one for each included linguistic

term and signal uFi, for i = 1 . . . Q 32-bit floating-point values, each of which

represents the truth degree of the corresponding linguistic term. Note that linguis-

tic terms that do not apply have 0 as a truth degree. When bit EnFi is activated,

this indicates that linguistic term number i of the membership function is valid

with truth degree uFi 6= 0. Recall that the truth degree is the product of a and

input value read by the sensor augmented by b.
Fig. 19 illustrates the dynamics imposed by the finite state machine that con-

trols the Fuzzy block operation. As soon as a read request is sent to a MF MEM

segment, the addressed memory word, containing the characteristics of the mem-

bership function, is returned to the Fuzzy block. The minimum and maximum

values are used to check whether the input variable is within the linguistic term

range, and if so, the subsequent computation of the associated truth degree is trig-

gered. Otherwise, 0 is returned as a results.

start

fpu_result

result

mf_rd

fpu_load fpu_exec

Enable = 1

Fpu_ready = 0

EnMF = 0

mf_comp mf_comp_result

Last multiply

calc= 1

Enable = 0

add calc ended = 1

Figure 19: The transition diagram of the fuzzification controller state machine

In the following, we give an overview on how the Fuzzy block operates.

When this block receives the enable command from the main controller (see

Fig. 13), allowing it to run, the the block controlling FSM transits from state

start to state mf rd, and triggers the MF MEM read command. Once the memory

word is received, the FSM enters state mf comp, where, using the minimum and

maximum values, which represent the boundaries of the straight line associated
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with the linguistic term, triggers Comparator to perform the required compar-

isons to check whether the sensor input is within the boundaries of the linguistic

term. Then, it shifts to state mf comp result, where it checks the result of the

comparison. As every linguistic term has two lines, each result are stored in the

flip-flops FF1 and FF2, as depicted in Fig. 19. When the comparison fails, i.e. in-

put value is out if the prescribed range, the FSM goes directly to state fpu result,

and otherwise it shifts to state fpu load to load the values to the suite of multiply-

and-add, according to equation 8, shifting to fpu exec. Then, the control goes to

state fpu result to register the obtained truth degree and after that returns to state

fpu load. The FSM iterates this process until there is no a calculation left to do.

Whenever, the FSM enters state fpu result and there still some truth degrees to

be computed, it shifts to mf rd to wait for a new memory word to be processed.

Otherwise, i.e. the last straight line is being handled, then the FSM goes to state

result instead, and issues the end signal to the main controller, returns to state start

and waits for the next cycle.

Every EnFi, for i = 1 . . . Q output signal is or-disjunction of the bits, regis-

tered by flip-flops FF1 and FF2. On the other hand, every truth degree uFi, for

i = 1 . . . Q is the content of one of registers TuFP 1 and TuFP 2 depending on

the bit value registered in flip-flops FF1 and FF2. Note that truth degree uFi will

only be used in the subsequent inference stage if and only if EnFi = 1.

4.4 Inference unit

The inference unit main purpose is to identify, for each one of the output variables

of the fuzzy controller, the linguistic terms that are active as well as computing the

associated truth degrees. It does so using the result of the fuzzification unit and

the set of predefined rules that are stored in Rules. This is the most complicated

unit in the design due to the reconfigurability characteristics of the controller, as

it is explained in the remaining of this section.

Before describing the details of the inference unit, let us first introduce the

structure used to format the rules of the fuzzy system. As illustrated in Section

2, a rule R has two defining parts: a premise P and a consequent C as described

in (12), wherein Ii, for i = 1 . . . N are the input variables and T Ii

k for k =
1 . . . Q are the linguistic terms associated to it, Oj , for j = 1 . . .M are the output

variables and T
Oj

k for ℓ = 1 . . . Q are the linguistic terms associated with it.

Note that in general the number of linguistic terms is distinct from one variable

to another. However, in this work, we assume, without loss of generality, that all

the variables, both of input and output, are modeled using the same number of

linguistic terms Q. A rule may check only few of of the N input variables of the
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fuzzy model, and it may also, enable only few of the model output variables.

R : P ⇒ C, where for j, k, ℓ = 0 . . . Q :

P is I0 = T I0

j ∧ I1 = T I1

k ∧ · · · ∧ IN−1 = T
IN−1

ℓ

C is O0 = T O0

j ∧ O1 = T O1

k ∧ · · · ∧ ON−1 = T
ON−1

ℓ

(12)

The rule base memory Rules has a word size that allows to store one rule.

All the rules of the model have the same structure. They include all the input

output variables. When a variable is not checked or inferred, the all the linguistic

terms are checked off. The binary format of a rule as it is handled in the design is

depicted in Fig. 4.4. It includes Q bits for each input and output variables, one bit

for every allowed linguistic term. Hence, a rule occupies a total of (N +M)×Q
bits.

The rule base memory Rules has P rules and thus will have P × (N+M)×
Q bits. A request to read Rules at some address will deliver the whole rule.

The bits of the premise of are used, first of all, to check whether the rule under

consideration can be fired, and if so, to trigger the computation of the truth degrees

of the associated the consequent linguistic terms of the checked output variables.

Figure 20: Inference rule format

A given rule fires when signal EnFi, as delivered by the FU, for every checked

of linguistic term of every input variable of the premise part of the rule under con-

sideration is set. Furthermore, every linguistic term of any output variable that is

checked in the consequent part of a fired rule need to be reported to the defuzzi-

fication unit FU. Notes that there are at most M , one for each output variable.

Besides this, FU needs also to receive the truth degree for each of these checked

terms.

The truth degree of an output variable linguistic term is the smallest truth

degree, considering all those associated with the input variable linguistic terms in

the premise part of the fired rule. When the same output variable linguistic term

appears on two or more fired rules, the highest truth degree is used. Thus this done
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Figure 21: Inference block micro-architecture

considering all the rules that fires.Recall that the truth degree of the input variable

linguistic terms are provided by the FU.

Fig. 21 shows the micro-architecture of the Inference block. Its inputs

consist of the Q flags EnFi, for i = 1 . . . Q and the corresponding Q truth degrees

uFi, for i = 1 . . . Q, which are the resulting output of FU, as described in Section

4.3. Its outputs are a set of M Q-bit signals EnDi, for i = 1 . . .M , that identify

the linguistic terms that were inferred and their respective truth degrees uDi, for

i = 1 . . .M , which are signals of Q×32 bits. The AND gate determines wither the

current rule can be fired. The M ANDQbits components is a simply AND-arrays,

is described in Fig. 22(a). In this design, the process of min-max inference is used.

So, components Minimum and Maximum return the smallest of N floats and the

highest of M floats, respectively. Their internal structure is given in Fig. 22(b)

and Fig. 22(c), respectively. Note that initially the input is compared with 1.0 and

after that with the minimum selected so far. Similarly, constant 0.0 is instead.

The Inference includes three memory blocks: the rule base Rules, a truth

degree memory MEM floats and a bit memory MEM bits. Their respective

structure are shown in Fig. 23(a) and Fig. 23(b). A write request of MEMbits or

MEMfloats stores a row, i.e. M × Q or M × Q × 32 bits, respectively, while

a read request releases P × M and P × M × 32 bits. Assume that the ith rule

of Rules has fired. So, the data stored in ith row of MEMbits consists of the

consequent part of that rule, and otherwise, all the bits are reset. Similarly, the

data stored in ith row of MEMfloats consists of the obtained minimum truth

263

' ••••••••••••••••••••••••••••••••••••••••••••••••••••• J 



RuleFired

…

LTO 1
LT 1

LT 2

LT Q

LTO 2

LTO Q

(a) ANDQbits

uFV N

…

Comparator

Acc

Controller

Enable

1.0 Output

uFV 2

uFV 1

(b) Minimum

…

Comparator

Acc

Controller

Enable

0.0 Output

uFT P

uFT 2

uFT 1

(c) Maximum

Figure 22: Internal structure of the auxiliary components: selection of the conse-

quent part of the fired rule, the minimum and maximum truth degrees
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degree for that rule duplicated in all columns where a linguistic term is checked

in the rule consequent.

As we can see in the Fig. 24, the state machine was also optimized to have the

minimum number of states possible. This was done bearing in mind as to allow

the reconfiguration of the number of the linguistic terms of the membership func-

tions, rules, input output variables. Basically, there are two loops in the control

imposed by the FSM. The first loop allows reading the rules one after the other

and identifying the minimum of the associated truth degrees. The results of each

iteration are stored in a given row of MEMfloats. The second loop uses the con-

tent of MEMfloats column after column to identify the maximize truth degree

for all linguistic terms that are associated with more than one.

readrule test_emptyrule rule_exec

rule_result

mf_loadmf_exec

mf_result

start

Enable = 1

Enable = 0

result

Empty rule = 0

Figure 24: The transition diagram of the inference controller state machine

In the following we sketch how the operation of the inference block is con-

trolled. When the Inference block receives the enable command from the

main controller allowing it to run, the state machine transits from state start to

state readrule, where a specified rule to be executed is selected and read from

memory Rules. Then, the control shifts to state test emptyrule, where the rule

loaded is checked whether it is empty. If so, the FSM goes to state rule result.

Otherwise, it enters state rule exec. As shown in Fig. 21, the information of the

rule premise is dispatched so as to control the operation of the two set of multi-

plexers. Note that there is two multiplexer for each input variable: one the flags

and the other for the truth degrees. In state rule exec, for each fired rule, the

ANDQbits and Minimum operates simultaneously and the obtained results are

stored in MEMbits and MEMfloats respectively. In the latter, before writing
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occurs, the results go through the set of M demultiplexers in order to associate

the selected smallest truth degree to each and every one of the linguistic terms of

the consequent part of the rule under consideration. The so far described process

is iterated for all existing rule in the rule base. So, if the handled rule is not the

last, state readrule is entered again and the precess is repeated. Otherwise, i.e.,

the last rule was processed, the FSM goes to state mf load where the second loop

initiates. In this state, the truth degrees of the same linguistic term of all rules are

read from MEMfloats so as to provide the input to the Maximum component,

which operates as soon as the FSM enters state mf exec. This process is iterated

Q times, which allows for the processing of the content of MEMfloats. After

that, state mf result is entered to shift the result in the shift register at the end of

the chain in Fig. 24. IF there are still M columns to handle, the FSM shifts back

to state mf load. Otherwise, it enters to state result, generating the end signal to

the main controller and going back to state start to wait for the next cycle.

4.5 Defuzzification unit

The defuzzification unit main purpose is to compute the crisp value of the output

variables, given the fuzzy linguistic terms and their corresponding truth values, as

identified and computed by the inference unit. The centroid, as defined in (13), is

used to perform the defuzzification process. Recall that uDi for i = 1 . . . Q are

the truth degrees of the linguistic terms associated with the output variable Oi.

This method computes the geometric center of the output membership function,

considering the activated linguistic terms received from the inference block to-

gether with their respective truth degrees. The computation is done according to

the steps of Algorithm 1.

Oi =

Q
∑

j=0
uDi

j ×MaxPoint ij

Q
∑

j=0
uDi

j

(13)

Fig. 26 shows the state transition diagram of the FSM that controls the Defuzzy

block operation. Hereafter we sketch the main steps of this control. When this

block receives the enable command from the main controller allowing it to run,

the FSM goes from state start to state test empty, where the possibility of all pos-

sible linguistic terms are not enabled. If so, the FSM enters state result, which

allows the Defuzzy to return 0 as output result. In this case, it goes immediately

to state fpu result, because there is nothing to compute. Otherwise, i.e if at least

one linguistic term for the output variable that is being processed is set, then the
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Algorithm 1 Steps for the computation of the centroid of output Oi

Require: bits EnDj
i , j = 1 . . . Q and and floats uDj

i , j = 1 . . . Q for output

variable Oi;

R1 ⇐ 0;

if EnD = 00 . . . 0 then

for j := 1 to Q do

if EnDi
j = 1 then

R2 ⇐ uDi
j ×MaxPoint ij ;

R1 ⇐ R1 +R2;

end if

end for

R2 ⇐ 0;

for j := 1 to Q do

if EnDi
j = 1 then

R2 ⇐ R2 + uDi
j ;

end if

end for

R1 ⇐ R1/R2;

end ifreturn R1;

FSM goes to fpu load, where the control enables that the values of the specific

computation to be loaded and thereafter goes to state fpu exec, where the compu-

tation described in Algorithm 1 is executed. (For the sake of clarity, the details

of the necessary three operations are omitted in this description.) Once the com-

putation performed one iteration is completed, the FSM shifts to state fpu result,

where it checks whether all EnDi and respective uDi for i = 1 . . . Q have been

considered. If not, the FSM goes back to state test empty and iterate repeats the

same process. Otherwise, the result is readily registered and available in register

R1 and so, the FSM enters state result, generating the main controller’s output

value and the issuing a done signal and the block becomes ready again to operate

from the start.

5 Simulation Results

The proposed design for the fuzzy controller was modeled using VHDL [19].

The functional simulation of the obtained model was done using ModelSim from

Mentor Graphics [28]. Needless to point out that many controller configurations

267



FPU

Controller

…
…

MaxPoint 1

… s
ta

rt

re
a
d
y

O
P

3

Output

uD Q

uD 2

uD 1

MaxPoint 2

MaxPoint Q

TR1

TR2

EnD
Q

2

Figure 25: Defuzzification block micro-architecture

start

fpu_result

result

test_empty fpu_load fpu_exec

EnDi = 1Enable = 1

fpu_ready = 0

A
ll 

E
n
D

i
=

 0

Enable = 0

Figure 26: Transition diagram for state machine that controls the defuzzification

process

268

------------------! 



were simulated and all performed correctly, delivering the right results according

to the fuzzy model used.

For validation and completeness sake, we show, in the remaining of this sec-

tion, some snapshots of the simulation of the main stages of the fuzzy controller:

fuzzification, inference and defuzzification. This is done for the same example of

the pendulum, used in Section 2. Recall that that the fuzzy controller requires 2

input variables, which are A (angle) and V (velocity), and a single output variable

S (speed). All variables are modeled using 5 linguistic terms. (Refer to Fig. 3,

Fig. 4 and Fig. 5 for details about the membership functions of these variables.)

The rule base includes 11 among 25 possible rules, as shown in Table 2.

The control situation, we show in the simulation snapshots is related to the

case wherein A = 6 and V = −1. For the sake of clarity, this case is the same

reported in Section 2. The controller took 430 clock cycles to execute all the com-

putation to the membership function while the fuzzification, inference followed

by the defuzzification process lasted 651 clock cycles. Of course, if the number

of rules or linguistic terms of the membership functions increase, this duty cycle

will also increase accordingly. The clock cycle is defined by the floating-point

unit used IP [4], which can run at a frequency of 100 MHz.

Fig. 27 shows the first snapshot of the simulation process of the fuzzification

process of the input values while Fig. 28 shows the second and last snapshots of

the simulation. This shows a simulated test of the fuzzification block configured

with 5 linguistic terms, so after the membership function block has completed,

all data are stored in the MF MEM segments. Once the input value is ready in

signal SensorInput, signal EnFuzzy enables the fuzzification process. Signal

MFAddr indicates in the address of the straight line characteristics (a, b, min
and max) of the linguistic term in the membership function memory MF MEM.

Observe that signal inRange goes high when MFAddr is 5 and 6, which cor-

respond to right-hand side straight line of linguistic term insignificant of A
and the left-hand side straight line of V (see Fig. 3). Signal EnF for variable

A is 00100 (see Fig. 27) when straight line number 5 is checked and 01100 (see

Fig. 28) when number 6 is checked. All calculations are done using the FPU

block, which receives its inputs via signals fpuInput1, fpuInput2 and the code

of the operation that must be performed via signal fpu op at that moment. The ac-

tual operation execution starts when signal fpu start is triggered and ends when

flag fpu ready comes. Observe that the the FPU performed two operations (1

multiplication and 1 addition/subtraction) for each selected straight line. The out-

put of FPU is shown in signal fpuOutput. Using Hexadecimal, the first truth

degree computed is 3ECCCCCC and the second is 3F19999A, which correspond

exactly to 0.39999998 ≈ 0.4 and 0.6. The current state of the fuzzification FSM
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{{F... {{FF800000} {C1A00000} {00000000} {3F800000}} {{C1A00000} {C1200000} {BDCCCCCD} {BF800000}} {{C1A00000} {C1200000}...
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start ... ... ... f... ... ... ... f... ... ... ... f... ... ... ... f... ... ... ... f... ... ... ... f... fpu_exec f... f... fpu_exec f... ...
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(0) {FF800000} {C1A00000} {00000000} {3F800000}
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(4) {C1200000} {00000000} {3DCCCCCD} {3F800000}

(5) {00000000} {41200000} {BDCCCCCD} {3F800000}

(6) {00000000} {41200000} {3DCCCCCD} {80000000}

(7) {41200000} {41A00000} {BDCCCCCD} {40000000}

(8) {41200000} {41A00000} {3DCCCCCD} {BF800000}

(9) {X... {41A00000} {7F800000} {00000000} {3F800000}

MainState mf_exec f... fuzzy_exec

SensorInput 40C00000

EnFuzzy

FuzzyState start ... ... ... f... ... ... ... f... ... ... ... f... ... ... ... f... ... ... ... f... ... ... ... f... fpu_exec f... f... fpu_exec f... ...

MFAddr 0 1 2 3 4 5 6

inRange

fpuInput1 00000000 40C00000 BF19999A

fpuInput2 00000000 BDCCCCCD 3F800000

fpu_op 000 010 000

fpu_start

fpu_ready

fpuOutput 00000000 XXXXXXXX XXXXXXXX BF... BF19999A 40BC... ... ... ... ... 3ECC...

EnF 00000 00100

uF 0000000000000000000000000000000000000000 00...

FuzzyOK

Figure 27: Simulated operation of the fuzzification block – Snapshot 1

fuzzy_exec i... inf...

40C00000

fpu_exec f... ... ... ... f... fpu_exec f... f... fpu_exec f... ... ... ... f... ... ... ... f... ... ... ... f... r... start
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BF19999A 40C00000 3F19999A

3F800000 3DCCCCCD 80000000

000 010 000

40BC... ... ... ... ... 3ECCCCCC BF19999A ... 3E99999A ... ... 3F19999A 40C33333 ... 3F19999A

00100 01100

00000000000000000000... 00000000000000003ECCCCCC0000000000000000 000000003F19999A3ECCCCCC0000000000000000

clock

MainState fuzzy_exec i... inf...

SensorInput 40C00000

EnFuzzy

FuzzyState fpu_exec f... ... ... ... f... fpu_exec f... f... fpu_exec f... ... ... ... f... ... ... ... f... ... ... ... f... r... start

MFAddr 5 6 7 8 9 10 0

inRange

fpuInput1 BF19999A 40C00000 3F19999A

fpuInput2 3F800000 3DCCCCCD 80000000

fpu_op 000 010 000

fpu_start

fpu_ready

fpuOutput 40BC... ... ... ... ... 3ECCCCCC BF19999A ... 3E99999A ... ... 3F19999A 40C33333 ... 3F19999A

EnF 00100 01100

uF 00000000000000000000... 00000000000000003ECCCCCC0000000000000000 000000003F19999A3ECCCCCC0000000000000000

FuzzyOK

Figure 28: Simulated operation of the fuzzification block – Snapshot 2

is represented by the signal FuzzyState while that of the overall fuzzy controller

is represented by MainState.

The snapshots of the fuzzification process regarding the input variable V has

been omitted. Recall that this process runs simultaneously with the one regarding

variable A. For variable V straight lines 3 and 4 would be used and the corre-

sponding truth degrees are 3F4CCCCD and 3E4CCCCD, which correspond ex-

actly to 0.8 and 0.2, respectively. Note that the signal EnF for variable V would

be 01100. The reader can verify this in Fig. 29, which shows the beginning of the

simulation snapshot of the inference process. It utilizes 11 from the 25 possible

rules. It draws its input from 2 fuzzification blocks and deliver its results to 2

defuzzification blocs. Fig. 30 and Fig. 31 show the second and third (and last)

snapshots. Observe that signal Rules shows the configuration of the premise

and consequent parts of the rules that will be used in the inference process. Signal

EnInf enables the inference process. Signals EnF and uF are the result of the
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EnD 00000
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Figure 29: Simulated operation of the inference block – Snapshot 1
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Figure 30: Simulated operation of the inference block – Snapshot 2
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Figure 31: Simulated operation of the inference block – Snapshot 3
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2 fuzzification processes. The current state of the inference FSM is represented

by the signal InfState while that of the overall fuzzy controller is, as before,

represented by MainState. Signal RuleAddr samples the rule number that is

being checked. Observing signal RuleF ired, note that rules 1, 2, 5 and 6 fire.

Value 3F800000 is constant 1 used as one of the input of the Minimum block in

the first iteration. The truth degrees obtained by this block when are 3F4CCCCD,

3F4CCCCD, 3ECCCCCC then 3F19999A (i.e. 0.2, 0.2, 0.4 then 0.6) as shown

in signal MinOutput. These truth degrees are obtained for rule 1, 2, 5 and 6

(see signal RuleF ired) respectively. After getting the minimum truth degree for

each fired rule, it is necessary to compute the maximum truth degree associated

with each linguistic term, as enabled by signal EnMaxExec (see Fig. 31). When

3ECCCCCC and 3F4CCCCD are compared, the output result is 3ECCCCCC. For

the other two truth degrees, the linguistic term was inferred by only one rule. The

final result of the inference process is given in signal EnD wherein 3 linguistic

terms were inferred with truth degrees as shown in signal uD of Fig. 31.

Fig. 32 shows the first snapshot of the defuzzification process, configured

to work with 5 linguistic terms while Fig. 33 shows the second and last snap-

shot of the simulation. Signal EnDefuzzy enables the process. So, it starts

the computation of the crisp value of the output variable, based on the identi-

fied fuzzy linguistic terms checked and their respective truth degrees. it does

so using the FPU block, which, as in the fuzzification process, receives its in-

put values in signals fpuInput1 and fpuInput2 and the operation that should

execute in signal fpu op. The operation execution start is can be identified by

a pulse in signal fpu start and the end occurs when a pulse appears on sig-

nal fpu ready. For instance, in Fig. 32, the first operation is a multiplication

of truth degree 3E4CCCCD = 0.2 by MaxPoint BF800000 = −1 as shown in

signals fpuInput1 and fpuInput2 respectively. After the operation is com-

pleted the result is BE4CCCCD = −0.2, as shown in signal fpuOutput. The

current state of the FSM is represented by signal DefuzzyState while that of

the overall fuzzy controller is, as before, represented by MainState. For this

example, the MaxPoints are 40000000 = 2.0, 3F800000 = 1.0, 00000000

=0.0, BF800000 = −1.0 and C0000000 = −2.0, as it can be seen in signal

MaxPOints of Fig. 32. The weighted sum would then be 1.0× 0.6 + (−1.0)×
0.2 = 0.4 and the sum of all truth degrees are 0.2 + 0.4 + 0.6 = 1.2. In Fig. 33,

observe that the controller final output is the result of the division of 3ECCCCCE

= 0, 40000004 by 3F99999A = 1.2, i.e. 3EAAAAAB = 0.33333334, which is the

crisp value of output variable S given by the fuzzy controller in response to input

values A = 6 and V = −1. The infinitesimal and thus harmless difference in the

final digit is due to the simple floating-point precision representation.
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Figure 32: Simulated operation of the defuzzification block – Snapshot 1
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ControllerOutput XXXXXXXX 3EAAAAAB

Figure 33: Simulated operation of the defuzzification block – Snapshot 2

The proposed design has some constraints to guarantee the delivery of correct

results: The minimal number of linguistic terms in the membership function must

be at least 2, which is the case in any fuzzy model. Each linguistic term will

always be represented by an isosceles triangle, as the range is set to be the same

to both sides at the membership function, as seen in Fig. 15. Nevertheless, the

maximum amount of rules is not pre-determined, so the expert can use any number

of rules that can be accommodated within the reconfigurable device.

6 Conclusions

The proposed design for fuzzy controllers is a applicable to almost any applica-

tions in the industry that do not have a prescribed solution. The proposed ar-

chitecture is parametric so that any number of inputs, outputs and rules can be

accommodate with no extra effort.

The next steps in the design of this controller are the design synthesis into a

reconfigurable device, such as FPGAs and the evaluation of the required area as

well as the operation frequency. This will allow us to assess the performance of

any given application, wherein the fuzzy controller, proposed in this chapter, is

used. Also, we intend to investigate the generalization of the design so that to

allow the use of trapezoidal and sigmoid the membership functions.
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[9] Franke, K., Köppen, M. and Nickolay, B., Fuzzy image processing by using

Dubois and Prade fuzzy norm, In Proceedings of 15th International Confer-

ence on Pattern Recognition, Barcelona, Spain, pp. 518–521, 2000.

274



[10] Fox, J., Towards a reconciliation of fuzzy logic and standard logic, Interna-

tional Journal of Man-Machine Studies, vol. 15, pp. 213–220, 1981.

[11] Ghidary, S., Hattori, M., Tadokoro, S. and Takamori, T., Multi-modal hu-

man robot interaction for map generation. Proceedings of IEEE International

Conference on Intelligent Robots and Systems, pp. 2246–2251, 2001.

[12] Haack, S., Do we need fuzzy logic?, International Journal of Man-Machine

Studies, vol. 11, pp. 437–445, 1979.

[13] Harel, D., A Visual Formalism for Complex Systems, Science of Computer

Programming , pp. 231-274, 1987.

[14] Magdalena, L. and Velasco, J.R., Fuzzy Rule-Based Controllers that Learn

by Evolving their Knowledge Base, In Herrera F. and Verdegay J.L. (Eds.),

Genetic Algorithms and Soft Computing, Physica-Verlag, pp. 172–201,

1996.

[15] Mamdani, E. H. and Assilian, S., An experiment in linguistic synthesis of

fuzzy controllers, International Journal of Man-Machine Studies, no. 7, pp.

1–13, 1975.

[16] Mamdani, E. e Pappis, C., A fuzzy logic controller for a traffic intersection,

IEEE Trans. on Systems, Man and Cybernetics 22 (6):1414-24, 1977

[17] Masmoudi N., Hachicha M., Kamoun L., Hardware Design of Pro-

grammable Fuzzy Controller on FPGA, Laboratory of Computer Science

and Industrial Electronic of Sfax.

[18] McKenna, M. and Wilamowski, B., Implementing a Fuzzy System on a Field

Programmable Gate Array Fuzzy Sets and Systems, University of Wyoming

and University of Idaho.

[19] Navabi, Z., VHDL: Analysis and Modeling of Digital Systems, McGraw

Hill, Second Edition, 1998.

[20] Nedjah, N., Mourelle, L.M., Fuzzy Systems Engineering, Advanced Studies

in Fuzziness and Soft Computing, Springer, vol. 181, 2005.

[21] Poorani, S., Urmila Priya, T.V.S., Udaya K. and Renganarayanan, S., FPGA

based Fuzzy Logic Controllers for Electric Vehicle, Journal of the Institution

of Engineers, Singapore, vol. 45, no. 5 2005.

275



[22] Rachel, F. M. (2006), Proposta de um controlador automático de trens uti-
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