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Numerical Experiments with Various 
N onsmooth Optimization Methods 

MARKO M. MAKELA 

University of Jyvaskyla, Departrrtent of Mathematics 
Seminaarinkatu 15, SF-40100 Jyviiskyla, Finland 

.Abstract, There exiat continuoualy growing interest in nonsmooth_optimization 
methods in recent yeara. The aim of thia paper u to present the results 
of nunierical experiment.s with two main classes of nonsmooth programming 
methods. We have teeted Kiwiel's linearization metb.ods and Lema.rechal 's bundle 
methods. As test problems we used well-known test problems from litterature: 
Crescent, Sb.or's problem, Equil a.nd lli-contioned LP. In addttion we tested two 
different kind of optima! control problems: Contad and Stefan, which have been 
studied in University of Jyviskyla. Some corollartee following from the presented 
results are included. In generał we can state, that Kiwiel's methods seem to be 
more reliablc and demand lesa computer resourcc than bundle methods. 

1. lNTRODUCTJON 

One of the most important stages in decision making process is the mathematical 
modelling of natural phenomena. by using sotne mathema.tical tools . The 
basie idea of mathematica.l modelling is to simulate same na.tura! process with 
computer. By simulation it is possible to predict the behavior of the phenomenon 
or to learn how best to get the desired ou tcome. 

Amazingly often the mathema.tical model can be formulated as a nonlinear 
optimization problem 

(1.1) minimize J{z) subjectto F;(x)śO for i=l, .. . ,m, 

over all ;z: E R" . If the problem functions f and F; are continuously differentia.ble, 
then the problem (1.1) is said to be smooth . The most eflicient methods and 
algorithms are generated for the smooth versions of the optimization problem 
( 1.1) . These classical algorithms use gradient information of the problem 
functions and a.re often based on an iterative process . Given a starting point 
.x 1 E IR" , a.n iterative method constructs a sequence (x;) in R" that is intended 
to converge to the required solution. The basie algoritl1m for solving the problem 
( 1.1) is as follows. 
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Algorithm 1.1. 

Step O: (Jnitialization). Set k = l and find a starting point z1 in IR". 

Step 1: (Direction finding) . Find a descent direction d1; for/ which is feasible 
for G at z1:. In other words, find d„ E Rn. and e > O such that · 

(1.2) /(1:1; +td1,) < /(z1:) and 1:1; + td1: E G for all t E (0,c:]. 

Step e: (Stopping criterion); If z1: is close enough to the required solution then 
stop. i 

Step 9: (Line search). Find a step length t1: E (O,e]such that 

(1.3) t,. = argmin{/(z1: + td1;) I t E (O,e]} and 1:1; + t„d1; E G . 

Step ,t: ( Updating). Set z1:·+1 = 2:1, + t1:d1:, increase k by 1 and go to Step 1. 

For smooth problems Step 1 usually is accomplished with the use of gradient 
information. However in practice we often get into the situation when the 
problem (1.1) is nonsmooth, because nature need not behave smoothly. Then 
we cannot directly use the metho<!_s which need gradient information while the 
usual methods which do not need gradients are often not eflicient enough. The 
easiest way to solve the ptoblem is to generate a smooth approximation problem 
whicli can Qe ·solved by classical methods. This howe,ver causes more difliculties 
in the form of approximation errors, which can be Cl!-tastrophic. 

Another approach is to use the results of nonsmooth analysis, replacing the 
gradients by subgradients and subdifferentials: This approach requires, however, 
that we know the whole subdifferential at every point. In practice this is often 
too big a requirement and we have to be content with one subgradient at each 
point. 

For these reasons much research has been done during the last two decades 
to produce new efficient methods ,f0r n'onsmooth optimization. These methods 
mainly follows the generał ideas of algorithm 1.1 but the nonsmoothness requires 
additional work at almośt every step. The first an.cl hardest problem is in Step 1, 
to generate the descent direction for the objective function. In smooth analysis 
the direction opposite of the gradient is locally the steepest descent. For an 
arbitrary &ubgradient this is not true anymore and the direction opposite of a 
subgradient need not eve)l be one of descent. The next difliculty is the line search 
operation in Step 3. In smooth methods the best way to do this is to use some 
efficient univariate optimization method, which in generał needs derivatives and 
so is not suitable for nonsmooth optimization. Smooth polynomial interpolation 
is an efficient method which needs no derivatives, but for nonsmooth functions 
the approximation may be too rough. Also, the stopping criterion is not elear 
any more. 

' \ 
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2. DERIVATION OF THE METHODS 

· At the moment the most promising methods for nonsmoóth optimization can 
be divided into two main classes: linea.rization methods and bundle metbods. 
The essential difference between these meth~ds is in the way· they handle the , 
subgradient -information to generate the descent direction in Step 1 of algorithm 
1.1. In what follows we give a short deriva.tion of these two method classes and · 
how they genera.te the descent direction. For simplifying the presentation we · 
restrict our development.. to the convex unconstrained case. We suppose-.that 
we can evaluate one !lUbgra,dient { E lJ/(z) and the function value /(z) at each 
point z in Rn. · We denote by ( •, •} and li; li, respeetively ., the usual inner product 
and norm in real Euclidian space Rn . For convex: functions the suhdifferential 
a.t the point y is defined by 

(2.1) ' fJ/(y) = {{ E R" I /(z)~ J(y) +{{,z -y) for all z ER"}. 

The elements { E lJ / are called subgradients. 

2.1 Linearization Method. 

The main idea in linearization method is to form a piece'wise linear a.pproxima­
tion to the objective function using the linearizations.generated by subgradients 
at different points. This approximation is naturally ·easier to handle . and the 
desenct direction- for it ,can 'be found as a solution of a quadratic optimization 
problem. After this we can a.pply the result, which teHs that tbis direction is 
descent a.lso for the origina.l objeetive function. · 

It is known from convex analysis (see (9)) that the convex furiction / has at each 
point z E Rn a representation ' 

(2.2) f(z)_=max{/(v)+({,,z-y) I{ E lJf(y), ye Rn} 
•'-. 

and by using the linea.rizations 

(2.3) 
fe(:r:) = /(v) + ({,z - 11) 

we· get the representa~ion 

(2.4) 

for a.li z E R" and 

for all z E R" , 

for all ze Rn. 

It can be proofed that a descent direction for line!U'ization i, is a descent 
direction also,for /. Notice however, that (or tbe representation (2.4) we need 
the whole subdifferentia.1 lJ/(y). For this reason we can't use linearizations (2.3) 
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as such, but we will construct approximate versions of them as follows. We 
suppose that also besides in addition· the current iteration point :r:1: we have some 
auxiliary points Y; in Rn and subgradients e; in fJ f (Y;) for. j E J 1:, where the 
index set J 1: is a nonempty subset of the set { l, . .. , k} . Theo the approximate 
versions of (2 .3) can be defined by •, 

(2.5) 
/;(:r:) =/(;(z)= /(y;) + (e; , :r:-11;) 

/li:(:r:) = max{/;(z) I j EJ,.}. 

for all j E J1,: and 

This approximation function /li: is now a suitable pie~ewise linear approximation 
to the objective function / , which can be used in practice. Our aim now: is to 
find a descent direction for fi: . To quarantee the uniqness of the solution we mie. 
a regul~izing penalty term ½lldll2 and so we get the problem 

which is equivalent to find the multipliers >.; for j E J1: such that they solve the 
quadratic dual problem 

(2.7) 

minimize ½li L A;e;ll2, - "I:, 1>-;ff 
;e1. ;eJ. 

subject to · 'I:,>.;= 1 , and >..; 2:: O for all j EJ-,,, 
;o. 

where /J = J;(z1,:) for j = 1 , .. . , l: and then the direction d1,: = .!.. L;o. >.Je; .. 

2.2 Bundle Method. 

The guiding principle behind btmdle methods is to use· the theory of ,­
subdifferen,tials, which areenlargements of the conventional subdifferentials. The 
same sqbgradients at different points as before are now collected at one point 
and the convex hull of this subgradient bundle is taken as an approximating 
, -sub differentia! at this point. Then we can make use of the result that the best 
subgradient of the subdifferential minimizes the norm. This subgradient can 
also be found as a ·solution of a. -certain quadratic optimization problem whitji 
resembles considerably the one in the linearization method. 

It is known from convex analysis (śee [91) that .the convex function f has the 
directional derivate /'(z; d) at :r: E Rn in each direction d E Rn , where 

(2.8) f (z; d) = lim /(z+ td) - /(z). 
c tlO t 
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This directional derivative is a measure for the descent we can expect along 
:,; + td. This lead/I to the descent direction finding problem 

(2.9) 
minimize /'(z; ,;l) 
subject to lldll :5 L · 

The additional constraint lldll :5 1 in (2.9) becomes necessary, since /'(z;·) is 
positively homogenous. By using the identity ·. 

(2.10) /'(z;d)=max{({,d) le E 8/(z)} 

we rewrite (2.9) in the form 

(2.11) min max {{,d}. 
_ 1140$1 (E8J(20) 

· Bence, by a well-known M~nimax Theorern, this is equivalent to 

(2.12) max min {{ d). 
(E8J(20) llclll:5:1 , 

For given e E 8/(r) the S()}ution of the latter minimizing problem is d = -{/11{11, 
so we have 

(2.13) 

Hence, for solving (2.9) we have to study the minimum-norm problem (which is 
uniquely solvable since of(z) is a nonempty closed convex set) 

(2.14) 

Notice, thaHor the representation (2.14) we need again the whole subdifferential 
of(z) ·and fot this reason we ha.ve to a.pproximate it somehow. The bundle 
methods a.re ba.sed on the theory of €-subdifferentials, which in convex case is 
defined for € > O by 

(2.15) 8r/(y) = {e E Rn I /(z) ~ f(y) +({,z -y) - ~ for all z ER"} . 

Notice, that for € == O this coincides with the ordinary subdifferential. By using 
the same linearizations /; as before we define the bundle Gk(€) at the itera.tion 
point z„ as follows 

(2.16) G1,(€) = {e ER" I€= I:>..;{;, I: ).;of $ €, >.; ~ o, L >.; = 1}, 
;o. ieJ. ;Ei. 
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where a} = /(zł:) - ff is the linearization error. It is easy to prove that Gt(e) 
is a convex compact set a.nd Gł:(e) C 8.f(zł:). Now we replace 8/(zt) by the 

· bundle Gł:(e:) in (2.H) and we get the problem . 

(2 .17) min 11e11, 
EeG.(e) 

which can be rnodified in the form 

(2.18) minimize . ½llell2 over all e E Gł:(e:). 

.T.his is equivalent to find the multipliers >.; for j E J-,, such that they solve the 
quadratic dual problem ł . - . 

minimize ½li E >-;e;ll2 

jEJ• ~ 

subject to E >-;=i, 
- (2.19) jEJ• 

· E >.-a~< E-,, · 1 1 - _ 

jEJ• 

and >.- > o 
1 -

for all j E Jł: 

and then the direction d-,, = - L;eJ,. >.je;. 

3 . . Nu~n1:RICAL EXAMPI,,ES FROM LITTERATURE 

This chapter is devoted for testing themethods presented in previous chapters in 
practice. The main idea is to compare the line3:rization methods with the bundle 
methods. For each test problem we choose a suitable algorithm of both method 
classes. All -the algorithms were implemented in FOIITRAN on a VAX 8600 
computer with the relative accuracy of 10-15 in double precision (sixteen-digits 
precision) . To solve the quadratic linearly consirained smooth optimization 
problem in direction finding of all the algorithms we used the algorithm E04NAF · 
from N AG-subroutine library. 11 · 

The following algorithms were used: 

Linearization Methods. 

SUCOUC 7 the SUbgradient met-hod for COnvex UnCónstrained optimization 
.i . -

SSCOLC - the Special -Subgradient method for COnvex Linearly Constrained 
optimization · 

SLNCUC ,- the method with Subgradient Locality measure for NqnConvex 
UnConstrained optimization 

SSNCLC - the Special method with Subgradient locality measure for NonCon­
v~x Linearly Cpnstrained optimization. 

/ 
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Btindle Methods. 

BUCOUC"- the BUndle me~hod for COnvex UnConstrained optimization 

BLNCUC - the Bundle method with subgradient Locality measure for .Non-
, . Convex UnConstrained optimiz~tion · • 

M2FC1 ~ the bundle algorithm due to Lemarechal. 

Otber Methods. 

E04VC - the sequential quadratic programming algorithm from NAG-
subroutine library (for smooth optimizat.ion). 

The following abbreviations will be used: 

it 

nf 

CPU 
(3.1) stop 

z 
/(z) 

liz - .z•II 

3.1 Crescent. 

the number of iterations 

the number of function and subgradient 'calls 

the CPU time in seconds 

the iteration termination reason 

the finał solution 

the finał value of the objective function 

the norm of error. 

The first test problem is to 

(3.2) mmuruze /(z)= max {g1(z), g2(z)} over all z= (z1,z2) E IR2, 

where 

(3.3) 

This is the test· problem 2.4 of Ki wiei [2] ąnd the second problem of Kiwiel 
[3] . The objective function is highly nonconvex and has narrow crescent-shaped 
level sets which force algorithms to make very ·short steps. It is easy to see tha.i 
the optimum point is z• = (0,0), where /(z 0 ) = O. The subgradient can ht 
calcula.te~ by 

when g1(z) > 92(x) 

when u1{z) = g2(x) 

when 91(z) < 92(z). 
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• Our starting point .r1 = (-1 ,5, 2) has /(x1 ) : = 4.25. In _spite of tlie noncoovex 
objective function, we tested also the algorithms SUCOUC and BUCOUC, which 
seem to work .well in tbis case. T he rcsults for various algorithms are given in · 
Table 3.1. . . 

. 

Algoritlun . it nf CPU XJ X2 f(x) 
sucouc 4 9 O.IO o.o 0:0 o.o 

SLNcuq 7 23 0. 10 o.o -3.112·10- 6 3.112-10-6 

SLNCUC 10 2!) 0 .12 o.o -2.469-10'- 12 2.469-10- 12 

DUCOUC 6 19 0.10 o.o -7.894-l_o-" 7.900·10- 4 

IlLNCUC 11 ,49 0.13 o.o -5.315·10-S 5.315·10-S 

IlLNCUC 11 49 0.13 o.o -5.315·10-S 5.315·10-S 

Table 3.1 

In Figure· 3.2 we see the generation of the solution path of algorithm SUCOUC. 
The paths of the other algorithms were nearly same; there occurred only a bit · 
differences nearby the solut.ion point. 

3.2 Shor. 

"1 
o 

~ 
, ...... ~ - - ....... - --~~ ........ ~ ~-~ --1 

-1.5 -0.5 0.5 t.5 • 

. ·F lgure 3.2 · 

The Shor's test problem (test problem 2.1 of K~wiel [2]) is to 

. (3.5) minimize /(.r)=max{gi(z)li=l, .. : ,10} overall .rER5, · 
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'where 

5 

(3.6) g;(z) = b; I)z; -A;; )2, for i=l, ... ,l~. 
j:1 

The matrix· A and the vector b are defined by 

(3.7) 
T 0 1 2 4 2 2 1 (

o 2 1 1 a o 1 

A= 0112001 
· O 3 2 2 · 1 L 1 

~ - ~ ~-)' . 

2 1 O • 
1 O O 

.b = (1.0,ó.O, 10.0, 2.0,4.0,3.0, 1.7,2.5, 6.0,3.5). 

The problem (3.ó) is convex and the optima! solution is 

(3.St· z• = (1.1243_4, 0.97945, 1.47770, 0.92023, 1 .12429), 

where J(z*) =' 22.60016. We used the starting point z 1 = (O, O, O, O, 1), where 
/(z1 ) = 80. The results for various algorithms for the accuracy parameter 
c = 10-6 are given in Tables 3.3 and 3.4 

Algorithm z1 z2 . Z3 %4 Z5 

z• 1.12434 0.97945 1.47770 0.92023 1.12429 

sucouc 1.1,2433 0.97945 1.47760 0.92023 1.12428 

SLNCUC 1.12436 0.97946 1.47770 0.92025 1.12429 

BUCOUC . . 1.12437 0.97946 1.47773 0.92025 1.12429 

BLNCUC . 1.12664 0.97932 1.48158 0.92275 1.12410 

Table 3.3 

Algorithm it nf CPU . 11:z: - z~II /(:z:) . 

sucouc 44 83 2.70 1.010·10-4 22.60016255 

SLNCUG 29 76 1.30 3.000·10-5 22.60016220 

BUCOUC 35 177 3.90 4.796-10-5 22.60016259 

BLNCUC 27 127 3.40 5.172•10-3 22.60028332 

Table 3.4 

3.3 Equil. 

The next test problem is the problem number 3 of Lemarechal and Miffiin [6]. 
This problem is a nonconvex min-max formula.tion of an economic equilibrium 
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problem and it is to 

(3.9) 

' where · 

(3.10) 

minimize /(z)= max {/.(z) I i= 1, ... , 8} • 
·s 

subjectto Ez;=l · and z;~0 for • j=l, ... ,8, 
j=l 

5 . ( ""'I: · /i z)= ~k · for . i= 1, .. . ,8, 

The data is given by • •· 

C 
1.0 0.1 ct:1 5.0 0.1 0.1 6.0) . 0.1 10.0 0.1 0.1 5.0 0.1 0.1 0.1 

W= ~0.1 9.0 10.0 0.1 4.0 0.1 7.0 O.I 
0.1 0.1 0.1 IO.O 0.1 3.0 0.1 0.1 

. 0.1 0.1 0.1 0.1 0.1 0.1 0.1 Il.O, 

(3.11) 
-

co 1.0 1.0 1,0 1.0 1.0 1.0 LO) 2.0 0.8 1.0 0.5 1.0 1.0 1.0 1.0 
A = 1.0 1.2 0.8 1.2 1.6 ·2.0 0.6 0.1 

2.0 0.1 0.6 2.0 1.0 1.0 1.0 2.0 
1.2 1.2 0.8 1.0 1.2 0.1 3.0 4.0 

d. = (0.5, 1.2, 0.8, 2.0, 1.5). 

If we write the linear constraints in 1fórrri Cz~ b we get 

1 1 1 1. 1 1 1 1 
-1 -1 -1 -1 -1 -1 -1 -1 
-1 o o o o o o o 

o -1 o o o o o o 
C= 

o . o -1 o o o o o 
(3.12) o o o -1 o o o o 

o o o o -1 o o o 
o o o o o .:..1. o o 
o o o o o O. ··-1 o 
o o O . o o o o .,..1 

b = (1, -1; O, O, O, O, O, O, O, O). 
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' we· used a sta.rting point z; = 0.125 for all j = 1, .. . , 8. By Leina.rechal and 
MifHin [6] the optima! solution z• is a point nea.r . 

(3.13) z= (0.27, 0.03, 0.06, 0.09, 0.07, 0.31, 0.10, 0.07) 

and we have J(x*) = O. The main difficulty in this-p~bletn is the fact that ijt 
doesn't satisfy the Slater constraint qualification (see [2]). 

One way to solve this difficulty is to transform this linearly constrained 
problem to unconstrained problem by using a ·projected subgradient (see [6] 
p. 160). To solve this new unconstrained problem we· can use the algorithms for 
unconstrained optimization. The results for accuracy parameter E -= 10-4 are 
given in Tables 3.5 and 3.6. · 

SSCOLC SSNCLC sucouc SLNCUC BUCOUC . BLNCUC 

Z1 0.27123571 0.27123609 0.27123531 0.28098236 0.27318287 0.27122362 

z2., 0.02956531 0.02956520 0.02956531 0.03062800 0.02977756 0.02956627 

Z3 0.06293780 0.06293779 0.06293780 0.06520004 0.06338961 0.06293961 
Z,4' 0.09309016 0,09309012 0.09309019 0.09643621 0.09375841 0.09310999 

Z5 0.06723419 0.06723416 0.06723420 0.06965085 0.06771687 0.06724069 

Z5 0.30590078 0.30590061 0.30590110 0.31689668 0.30809711 0.30587857 

Z7 0.10436453 0.10436454 0.10436454 0.10811583 0.10511379 0.10436640 

Zs 0.06567152 0.06567148 0.06567154 0.06803202 0.06614302 0.06567485 

Table 3.5 

Algorithm it nf CPU /(z) 

SSCOLC 72 823 14.80 3.612:10-7 

SSNCLC 101 323 22.50 7.110·10- 5 

sucouc 47 333 4.00 4.821 ;10-5 

SLNCUC 39 119 3.40 2·,519.10-5 

BUCOUC ; 61 523 7.70 7.854•10-6 

BLNCUC 36 353 5.70 2,93g:10-4 

Tahle.3.6 

3.4 Ill-conditioned- LP. 

The next problem is a test problem 2.3 of Kiwiel [2] . It is fine_ar programming 
problem 

(3.14) 
minimize /(z)= (c, z) 

·. subject to Az, ~ b and z; ~ O for j = 1, ... , 15, 
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(3.15) 
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1 
A ·· --,, - i+ j for i,j = 1, ... ,15, 

15 

b, = LA.; for i= 1, .. . ,15,. 
j=l 

. . -1 . 
c; = l + i - b; for i = 1, .... , 15. 

This problem is ill-conditioned, since the matrix A is essentially a section of the 
Hilbert matrix. We used a starting point ZJ = O for all j = 1, ... , 15 and the · 

'optimal solution xj = 1 for all j::;: 1, ... , 15, where /(z•)=. _.20.0420. The main 
difliculty in this problem is the great number of eonstraints. For this reason it 
proved to be better to solve this linearly constrained problem by minimizing the 

: exact penalty fun,ction 

(3.16) /(z)= (c,x) +pF(z)+ 

li .-

over all z E R16 , where ·p = 2n = 30 is the penalty coeflicient. The results for 
accuracy parametet c = 10-s are given in Tables 3.7 and 3.8. 

Algorithm it nf CPU llz - z•II /(z) 
sucouc 34 41 3.20 4.099-10-2 -20.04197718 

SLNCUC 33 65 4.30 4.080,10-2 -20.04197729 

BUCOUC 66 252 4.40 ).159-10- 2 . -20 .,04197569 

BLNCUC 74 295 9.50 ' ·1.288·10-1 -20.04081915 

Table 3.7 
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sucouc SLNCUC BUCOUC · BLNCUC 

z1 0.99658489 0.99661376 0.99655763 1.03073079 

ą:2 1.01621615 1.01608719 1.81664715 0.94494244 · 
-· 

Z3 0.99300648 0.99306986 0.99242187 · 0.96362071 

Z4 0.98595504 0.98604655 0.98540523 0.99431275 

Z5 0.98971496 0.98976632 0.98957233 1.01816946 . 

-Z6 0.9972:1803 0.997241-83 0.99748536 1.03236845 

Z7 1.00453217 1.00450193 1.00502555 1.03795150 . 

Zs 1.00976917 1.00972174 l.01035199 1.03669554 

Z9 1.012307'/4 1.01225740 1.01284939 1.03026966 

ZtO 1.01209942 1.01205663 1.01250321 1.02004348 

Z11 1.00936681 1.00933851 1.00956676 .· 1.00708600 

.:i:12 1.00443696 1.00442733 1.00439174 0.99221369 

Z13 0.99765832 0.99766952 0.99734514 .0.97604379 

Z14 0.98936154 0.98939436 0.98877106 0.95904057 

Z15 0.97984316 0.97989743 0.97897546 0.94155207 

Table 3.8 

4. NUMERICAL EXAMPLES FROM 0PTIMAL CONTROL 

In addition we tested two different kind of optima! contro! problems: Contact 
and Stefan, which have been studied in University of Jyvaskylii. 

4.1 Contact. 

In th.is example we are going to test three computer codes in solving a test 
problem. The codes are: the sequential quadratic programming '_algorithm 
E04VCE for smootp nonlinear optimization from NAG-subroutine library due 
to Gill et al. , the bundle algorithm M2FC1 due to Lemarechal ani our own 
algoritąm SUCOUC. · 

We consider the following finite dimensional optima! control problem 

(4. 1) 
-

. minimJ.ze {E(u, x(u)) = E1(z(u)) + E2(u)}, 
uE IR 

wherę :z:(u) is given as the solution of the vari?tional inequality 

(4.2) z(u)EJ( : (Az(u),y-x(u)):::::(/(u),y-:z:(u)) for all y E I<. 
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Here A is a symmetric, positive definite, n X n matrix, / : IRm -+ Rn and 
K = ;.-. E IR" I Xi ?: ci} nonernpty closed convex set. 

The problem (4.1) ca.n be viewed as the discret'izationoffor example the following 
infinite dimensional optima.I control problem 

(4.3) minimize{E(u)= f(y(u)-ip)dz+i_ { u2 d:i:}, 
ueu ln ~ Jo 

I . 

where y( u) is given by 

(4.4) y E k : Io y(u)' (v' -y(u)') dz?:. L f(u)(v--y(u)) dx for all v E k. 

Here i( = •{v E HJ(rl) I v ?: tp almost everywhere in n}, U is a Banach space 
and / : U -+ L2(0). 

This is the model of an elastic string whic.h is deflected by the force u. The string 
cannot. overpass the obstacle tp. The aim is to maximize the contact between 
the string and an obstacle with minimum total force. 

The problem (4.1) is neither smooth nor convex. In generał case, where the 
cost function is defined implicitly by the state inequality, the computation of 
subgradient is almost impossible. However in our special case this can be dane 
by using a special algorithm (see [8]) . 

' . 
We have chosen n= m = 10, /(u)= u, c = (""."3,-3, .. . ,-3) and 

(4.5) { 
::..1, li - il= 1 

· Ai,; = 2, i= j . 

O, otherwise. 

1; 
The problem can be thought as the discretization of the problem ( 4.3) with FEM 
(Finite Element Method) or FD (Finite Differences) methods with O = (O, 12) 
and h = 1. The state and adjoint inequalities are solved tising the successive 
overrelaxation method with projection. '1:'he iteration is stopped when 

(4.6) L lzf+1 - z~I :s; c5(E lzf+ll), 
i i 

where c5 > O is a tolerance pa.rameter given by the user. The set of active indices 
i = la U I, is determined by 

(4.7) 
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Note, that we don't know the exact solution. In our first example the tolerance 
•parameter values were e = 10-5 a.nd 6 = 10-6 • The starting point was chosen 
to be u1 = O. The results for various algorithms are given inTables 4.1 and 4.2. 

Algorithm l!l 1J2 U3 U4 - U5 

E04VCE -1.0067 -0.9966 -0.0125 -0.0082 .0 .-0239 

M2FC1 -'0.9998 -1.0000 -Q.0003 -0.0000 -0:0002 

.. . sucouc -0.9987 -0.9991 -0.0013 -0.0015 -0.0016 

Algorithm U6 tJ7 · us . t19 : . U10 . 

'. E04VCE -0.0239 -0.0082 -0.0125 -0.9966 -1.0067 

M2FC1 -0.0002 -0.0000 -0,0002 -1.0000 -0.9998 

sucouc -0.0016 -0.0015 -O.OOi3 
, 

-0.9991 -0.9987 

Table 4.1 

Algorithm it nf stop E(u). 

E04VCE 17 70 fail . 4.000844 

M2FC1 23 53 o.k . . 3.999997 

sucouc 9 18 o.k. 4.000007 

Table 4.2 

In the second example we t,ake t = ć = 10-6 and the starting point 

u1 = (-3,0,0,0,0,0,0,0,0,-3). 

At this point I= I •. It-is easy to verify that xj(u1 ;ei) =/; xj(u1 ;-ei) for all i 
and j, where ei denotes the i:th coordinate vector. Therefore the cost functional 
is also nondifferentiable at u1. The results for various algorithms are .given in 
Tables 4.3 and 4.4. 

Algorithm -U1 U2 U3 U4 U5 

E04VCE · -0.9934 -1.0033 -0.0317 -0.0368 -0.0214 

M2FCI -0.9999 -1.0000 -0.0002 -0.0002 -0.0002 ., 
sucouc -1:0013 -0.9990 -0.0007 -0.0001 -0.0002 

Algorithm U6 U7 'lig U9 U10 

E04VCE -0.0007 -0.0227 -0.0389 -1.0039 -0.9913 

M2FC1 -0.0002 -0.0002 -0.0002 -1.0000 -0.9999 
sucouc -0.0002 -0.0001 -0.0007 :o.9990 -1.0013 

Tąble 4.3 
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Algorithm it nf stop E(u) 

.E04VCE 24 109 fail 4.002490 

M2FC1 12. 34 o.k. ~.999999 _· 
sucouc 15 36 o.k. 4.000003 

'L- ' Table 4.4 

. . . . 

In .the last e~ample the state problem is solved inaccurately- i.e . . we put 6 = e = 
10-4 and the starting point is u1 = O. The results for this example are given in 
Tables 4.5 and 4.6. . 

Algoritbm Ut u2 tJ3 tJ4 

E04VCE -0.9554 -0.9280 -0.0749 -0.0026 

M2FC1 -0.9986 -1.0006 .:.0.0021 ~0.0127 

sucouc -0.9975 ~0 .9950 -0.0077 -0.0002 

Algorithm us U7 Uf u·9 

E04VCE -0.0028 -0.0026 -0.0749 ·-0.9280 

M2FC1 · -0.0136 -0.0127 -0.0021 -1.0006 

sucouc -0.0002 -0 .0002 -0.0077 -0.9950 

Table 4.5 . 

Algorithm 

E04VCE 

M2FC1 

sucouc 

it uf stop 

9 30 fail 
-
9 67 fail 

6 17 o.k. 

, Table 4.6 
tJ • 

E(u) 

4.012631 

4.001035 

4.000059 

U5 

-0.0028 

-0.0136 

-0.0002 

Uto . 

-0.9554 

-0.9985 

-0.9974 

As we can see thę special algorithms for nonsrnootłi' problems are well suited for 
nurnerical solution of crintrol problems. However standard software for smooth 
problems can also be used with c~ution if one has not nonsmooth software 
available o~ one is satisfied with modest accuracy. ·Due to the quadratic· part iii 

I • • 

the cost functional one cannot expect in the control variables more than half of 
the correct digits in the value of .the cost functional. 

4.2 Stęfan. 

The second optimal ~ntrol problem is so called Stefan two-phase problem, which 
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is the following boundary ·control problem . . 

(4.8) minimize F(u) = fT {. -2111y(.r,t)- ·Yd(.r,t)lli•(n) + ~2 llu(z, t)lli•(r)} dt 
ue u.. }0 . . 

subject to , 
{J . 
-{} v(z,t) -Ay(.r,t) = f(z,t) in Q 

t ' 

(4.9) 
v(z, t) E ,B(y(.r,t)) . in Q 
{J 

{Jny(z,t) = u(z,t) in E 

v(z, O)= v0 (z) in '2, 

where T = 1, O = (O, 1) x (O, 1), r = 8'2, Q = r x {O, T} is. a cylinder with 
. lateral face E, A = io, Uad·= R, Yd = O and the functions are defined by 

(4.10) 

{

y when y < O 

/3~y) = . [0,2] · when y = O 

. .• 4y+ 2 when y > O 

, · { 8(2e-21 -1) when z~+ z~~ e-21 

J(z,t) = 
2(2e-21 - 2) when . z~+ .r~ :5 e- 21 

v0 = /3(1/) 

· { Zi + Z~ -' 1 
yo(.r) = . 

2(z~ +z~ -1) 

when 

when 

z~+ z~< 1 

z~+ z~> 1 

and the starting point is given by 

(4.11) u1 = u(z; O) = { ~ on the axes, 

on the parallels to the axes. 

After discretization by FEM we get the nonsmooth unconstrained convex 
optimization problem, which dimension is n = 308 (see [5]) . We don't know 
the exact solution but note, that the optima! value of the cost function F 
is a strict positive value nearby O. This problem were computed by three 
algorithm: M2FC1 · (Lemarechal), SUCOUC and BUCOUC. The numerical 
results for ac~uracy parameter c = 10-3 are given in Table 4.7. 

_ Algorithm it uf CPU F(u) 

M2FC1 7 21 154.50 0.2320173 

sucouc 9 9 35.30 0.3268202 

BlJCOUC . 6 11 47.50 0.2646014 

Table 4.7 



- 165 -

5. CONCLUSIONS 

Due to these test problems we can do some conclusions. If we compare these two 
method classes we can say, that the linearization methods. were clearly better: 
they worked more reliable and demanded in generał less computer resource. 
However, in some problems bundle merthods needed less iterations, but they 
seemed always need more function calls and CPU tiµie. ~. 

If we compare single algorithms we can l,°ecommend the algorithm SLNCUC. 
In the optimal control problems· our methods needed less resources than the 
bundle algorithm M2FC1 due to Lemarechal. As a summary we can state that 
the special algorithms for nonsmooth optimization workcd bet ter than the N AG­
routine E04VC for sm?Oth optimization. 

; ' 
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