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m and it is to

minimize f(z) = max {fi(z)|i=1,...,8}
. _

subject to 3 z;=1 and z; >0 for j=1,...,8,
j=1

o ” 5
R =0 for i=1,...,8,
k=1
)= ((,4,.. i1 Wesi)

dy 8 . 1—ds
Z5" Lj=a Akz; )

—Wg.' for k= 1'2"

ES

30 1.0 01 0.1 50 01 01 6.0
01 100 01 0.1 50 01 01 0.1
W=1]01 9.0 100 0.1 40 01 70 0.1
_k‘o.l 0.1 0.1 100 0.1 30 01 0.1
01 01 01 0.1 01 01 01 110
10 1.0 1.0 1,0 1.0 1.0 1.0 1.0
20 08 10 05 1.0 1.0 1.0 1.0
A=110 12 08 12 1.6 20 06 0.1
20 01 06 20 1.0 1.0 1.0 20
12 12 08 1.0 1.2 0.1 3.0 4.0

d= (0.5, 1.2, 0.8, 2.0, 1.5).

ata is given by

write the linear constraints in form Cz < b we get

/ 1 1 1 1 1 1 1 1
! -1 -1 -1 -1 -1 -1 -1 -1
-1 0 0 0 0 0 0 0
0 -1 0 0 0 . 0 0 0
C'= 0 0 -1 0 0 0 0 0
0 o 0 -1 O 0 0 0
0 0 0 0 -1 0 0 0
0 0 0 0 0 -L 0 o
0 0 0 0 0 0 -1 0
\o 0 0 0 0o o o -1/.
b= (11 —li 0: 0, 01 07 0» 05 0’ 0)
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Here A is a symmetric, positive definite, n x n matrix, f : R™ — R"™ and
K =+ €R"|z > ¢} nonempty closed convex set.

The problem (4.1) can be vi 1 as the discretization of for example the following
infinite dimensional optimal control problem

(4.3) ‘ nﬁgzrtl}ize {E(u) = /n(y(u) —p)dz + % /; u® dz}, .

/

where y(u) is given by

(44) ye K : -/n y(u)'(v’—y(u)’) dz 2 /nf(u)(v—-y(u)) dz forall veK.

Here K = {ve HY(Q)|v> ¢ almost everywhere in 2}, U is a Banach space
and f: U — L%Q).

This is the model of an elastic string wluch is deflected by the force u. The string
cannot overpass the obstacle ¢. The aim is to maximize the contact between
the string and an obstacle with minimum total force.

The problem (4.1) is neither smooth nor convex. In general case, where the
cost function is defined implicitly by the state inequality, the computation of
subgradient is almost impossible. However in our special case this can be dcne
by using a special algorithm (see [8])

We have chosen n = m = 10, f(u) = u, ¢ = (-3,-3,...,-3) and
-1, ji—-jl=1
(45) A,"j = 2, i=j

0, otherwise.
The problem can be thought as the discretization of the problem (4.3) with F]
(Finite Element Method) or FD (Finite Diflerences) methods with 2 = (0,12)

and A = 1. The state and adjoint inequalities are solved using the successive
overrelaxation method with projection. The iteration is stc

(4.6) | Sl —apr < s (3,

where 6 > 0 is a tolerance parameter given by the user. The set of active indices
I = I, U1, is determined by

(4.7) el iff |z — e < 8zl






Algorithm | it | nf | stop E(u)
E04VCE |24 1109] fail |. 4.002490
M2FC1 |1 34| o.k. | 3.999999 -
sucouC | 1536 o.k. | 4.000003

Table 4.4 o

In the last example the st.at.eiproblem is solved mu;curat.ely ie.weput §=¢=
10~* and the starting point is u! = 0. The results for thxs example are glven in
Ta.bles 4.5 and 4.6.

_ﬂgorlthm u; ug ug us usg
E04VCE |-0.95541-0.9280]-0.0749}-0.0026|-0.0028
M2FC1 |-0.9986}-1.0006-0.0021}-0.0127|-0.0136
SUCQUC |-0.9975}-0.9950(-0.0077]-0.00021-0.0002

Algorithm| ug uz s § ug U0
E04VCE/ -0.0028|-0.0026|-0.0749}-0.9280}-0.9554
M2FC1 }-0.0136{-0.0127-0.0021}-1.0006|-0.9985
SUCOUC |-0.0002]-0.0002|-0.0077]-0.9950|-0.9974

. Table 4.5
Algorithm | it | nf | stop E(u)
EQ4VCE | 9 |30 fail | 4.012631
; . - M2FC1 | 9 | 67| fail | 4.001035
al SUCOUC | 6 |17 o.k. | 4.000059
n ' "’..[‘al.)le 4.6

3

As we can see the special algori
numerical solution of control pi
problems can also be used wi
available or one is satisfied witl
the cost functional one cannot «
the correct digits in the value o

4.2 Stefan.

The second optimal control problem is so ca... 1 Stefan two-phase préblem, which
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5. CONCLUSIONS

Due to these test problems we can do some conclusions. If we compare these two
method classes we can say, that the linearization methods were clearly better:
they worked more reliable and demanded in general less computer resource.
However, in some problems bundle merthods needed less iterations, but they
seemed always need more function calls and CPU time.

If we compare single algorithms we can recommend the algorithm SLNCUC.
In the optimal control problems our methods needed less resources than the
bundle algorithm M2FC1 due to Lemarechal. As a summary we can state that
the special algorithms for nonsmooth optimization worked better than the NAG-
routine E04VC for smooth optimization. :
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