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About the Workshop 

The assessment of greenhouse gases and air pollutants (indirect GHGs) emitted to and removed 
from the atmosphere is high on the political and scientific agendas. Building on the UN climate 
process, the intemational community strives to address the long-term challenge of climate 
change collectively and comprehensively, and to take concrete and timely action that proves 
sustainable and robust in the future . Under the umbrella of the UN Framework Convention on 
Climate Change, mainly developed country parties to the Convention have, since the mid-
1990s, published annual or periodic inventories of emissions and removals, and continued to 
do so after the Kyoto Protocol to the Convention ceased in 2012. Policymakers use these 
inventories to develop strategies and policies for emission reductions and to track the progress 
of those strategies and policies. Where forma! commitments to limit emissions exist, regulatory 
agencies and corporations rely on emission inventories to establish compliance records. 

However, as increasing intemational concem and cooperation aim at policy-oriented solutions 
to the climate change problem, a number of issues circulating around uncertainty have come to 
the fore , which were undervalued or left unmentioned at the time of the Kyoto Protocol but 
require adequate recognition under a workable and legislated successor agreement. Accounting 
and verification of emissions in space and time, compliance with emission reduction 
commitments, risk of exceeding future temperature targets, evaluating effects of mitigation 
versus adaptation versus intensity of induced impacts at home and elsewhere, and accounting 
oftraded emission permits are to name but a few. 

The 4th International Workshop on Uncertainty in Atmospheric Emissions is jointly organized 
by the Systems Research Institute of the Polish Academy of Sciences, the Austrian-based 
International Institute for Applied Systems Analysis, and the Lviv Polytechnic National 
University . The 4th Uncertainty Workshop follows up and expands on the scope of the earlier 
Uncertainty Workshops - the 1st Workshop in 2004 in Warsaw, Poland; the 2nd Workshop in 
2007 in Laxenburg, Austria; and the 3rdWorkshop in 2010 in Lviv, Ukraine. 
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Abstract 

Quantification of CO, emissions at fine spatial scales is advantageous for many 
environmental, physical, and socio-economic analyzes; in principle it can be easily 
integrated with other data in gridded format. It is especially important for better assessment 
of carbon cycle and climate change. Some possibilities exist for incorporation of the 
additional knowledge to improve the results and their uncertainty. There is, for example, a 
constant progress in assessment of loca! emissions from observations done in the 
atmosphere. This information can possibly help in improving disaggregated emission 
estimates. This paper discusses these questions and outline possibility of using these 
additional knowledge for improving estimation of emissions in fine scales. 

Keywords: Greenhouse gases emissions, spatially resolved data, disaggregation, integration 
of multi-model results 

1. Introduction 

This paper is meant as a discussion paper which attempts to overview the research 
results that can be used in improving spatial gridded GHG estimates at a fine resolution 
by using existing or possible to obtain information coming from different sources. This 
problem is intrinsically connected with uncertainties of the used information, as it is 
quite intuitionally evident that a more sure information should be more credited in 
integration of knowledge than a less sure one, and therefore the former should be more 
weighted in the finał result than the latter. 

Quantification of GHG emissions at fine spatial scales is advantageous for many 
environmental, physical, and socio-economic analyzes; in principle, it can be easily 
integrated with other data in a gridded format. This is especially important for improved 
assessment of carbon and other chemical component cycles and climate change. To 
better understand the transport of different pollutants atrnospheric dispersion models 
are used. This way influence of emissions can be confronted with the atrnospheric 
concentration measurements. In this modelling two factors are considered to be mainly 
responsible for modelling errors: emission accuracy and meteorology. This is the reason 
for a battle for high accuracy gridded emission estimates. 

In some applications, of particular importance are estimations of fossil fuel CO2 
fluxes , which are used to quantitatively estimate CO2 sources and sinks, see e.g. [5]. A 
few institutions gather data on emissions from fossil fuels at national levels, like the US 
Department of Energy Carbon Dioxide lnformation Analysis Center (CDIAC) [6, 50] ; 
the International Energy Agency (IEA) [35] . IPCC gathers data from national GHG 
inventories within the Kyoto Protocol agreement and its continuation [36]. British 
Petroleum company compiles energy statistics [7] that can be conveniently used for 
estimation of national CO2 emissions. These datasets have been used for estimating 
global sources and sinks on a regional (e.g. continental) scale, [2, 11 , 29, 59, 63, 64]. 
Their resolution is, however, too small to be directly useful for very fine emission grids. 
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Much less data are available on emissions in the below-national scales. Some 
countries publish data for provinces, but their scale is stili too rough compared with 
other contemporary studies, like those presented in the sequel. Spatial disaggregation 
of emissions introduces additional uncertainty to a developed inventory. This is why 
the option of using additional information to reduce this uncertainty is of great interes!. 

A common approach to disaggregation of emissions is a usage of proxy data, which 
are most often areas of fine grids or population therein. However, independent estimates 
of GHG fluxes , like inverse modeling or eddy covariance, provide opportunity to 
incorporate additional knowledge and provide more comprehensive spatial 
quantification of carbon budget. Evidently, there is a mismatch between distinct 
approaches to estimation of fluxes . In generał, there are two kinds of estimates: it can 
be either accounting of emissions (bottom-up) or by measuring concentrations of C02 
and inferring about original emission fluxes (top-down). Merging such datasets is a 
challenging task due to incomplete accounting and uncertainties underlying each of the 
methods. Moreover, one should take inio account various spatial scales and different 
scarcity of data. This paper outlines severa! methods, discusses advantages and 
limitations ofusing them for improving inventory emission estimates in fine scales, and 
review methods used for combining uncertain data sets, highlighting the issues related 
to spatial dimension of the task. 

2. Disaggregation based on proxy data 

2.1. Basic research stream 
Disaggregation methods for obtaining high-resolution em1ss1ons typically use 

proxy data available in finer scales. The most straightforward approach to estimate data 
in a fine scale is to disaggregate national emissions proportionally to gridded population 
information, see e.g. [l , 55, 67) or in some cases proportionally to the area. Another 
proxy data are the satellite observations ofnighttime lights [16, 17). Direct use ofthese 
proxy data does not allow for very fine resolutions, as emissions from some sources, 
like power plants, do not correlate well with proxies. That is why Oda and Maksyutov 
[53) extracted emissions from point sources before disaggregating the non-point 
emissions proportionally to the nightlight distribution, and integrated them again to 
obtain 1km x 1km emission data. Rayner et al. [61) used a modified Kaya identity, in 
which emissions are modeled as a product of population density, per capita economic 
activity, energy intensity of economy, and carbon intensity of energy to predict 
emissions from severa! sectors, namely energy, manufacturing, transport (broken to 
land, sea, and air emissions). 

A very high resolution of emission cadasters (2km x 2km grid) was obtained for 
Poland within the 7th FP GESAPU project [24). It resulted from a detailed analysis of 
information from various sources, published by governmental and research agencies, 
as well as energy or industry plants ( e.g. taking part in emission trading scheme ); the 
analysis was followed by disaggregation on activity levels and precise modeling, see 
[8, 9). At present, this approach to disaggregation seems to provide the best results. 
Nevertheless, the relevant procedure, like gathering data from numerous sources and 
publications or individual disaggregation of multitude of variables, requires immense 
input of human work, so this approach is as far suitable rather only for regions of a 
country or a few countries. 

The GESAPU approach allows for rath er straightforward assessment of uncertainty 
of disaggregated data, following the IPCC guidelines Tier 1 ( error propagation) or Tier 
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2 (Monte Carlo method) methodology ([37, 38]. Again, Bun et al. [9] and 
accompanying papers ([12, 13, 30, 71] provide details of the analysis. As well, it is 
based on individual examination of all sources and sinks. Hogue et al. (31] discuss 
problems of doing similar analysis using existing global databases. Oda et al. (54] 
proposes a method of calculating uncertainty parameters. This method will be 
mentioned in the sequel. 

2.2. Extensions 
An intrinsic possibility is to use more than one proxy data for disaggregation. This 

can be done using linear regression function. The problem is to estimate its parameters, 
as no data for the fine resolution grid are given usually. Using data from other regions 
is questionable. Ghosh et al. (25] calculated the correlation between the nighttime lights 
and the Vulcan data [28] compiled for USA with the resolution 10km x 10km, and then 
used this correlation to calculate disaggregated emissions for other countries, but this 
approach did not provide satisfactory results. An ad-hoc method was proposed to 
improve this approach. 

A method to use regression function, in a more generał context of spatially 
autocorrelated data, was proposed in (32]. Its idea is to estimate the regression function 
parameters for the coarse grid and use them in the regression function for the fine grid. 
This method works well when the coarse and fine grid cell areas differ not more than a 
few to a dozen times ([32, 34 ]). But its range of applicability depends very much on the 
similarity of correlations on different area scales. 

This methods enables automatic calculation ofuncertainty distribution arising from 
statistical inference, see [33]. 
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Figure 1. Predicted (y') versus observed (y) values 

Figure 1 presents scatterplots of predicted values versus observations for original 
ammonia data in 5km x 5km grid as well as the values disaggregated from 10km x 
10km grid. For the disaggregation from lOkmxlOkm to 5kmx5km grids, the mean 
square error (MSE) was 0.064 (conditional autocorrelation (CAR) model) and 0.186 
(regression). Although introduction ofspatial dependence evidently improved accuracy 
ofprediction, the linear reggression method gives pretty good match. 

A problem with using regression function is in estimating zero emissions, i.e . . 
emissions ( or activities) for the cells where they do not exist. This problem, known also 
under the name semicontinuous variables, clumped-at-zero or zero-inflated data, can 
also happen in the disaggregation proportional to one proxy variable, but it is more 
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acute for the multivariable case. In this problem a variable has a continuous probability 
distribution for positive values and a nonzero probability mass at zero. Simple cutting 
off of the negative values is perhaps operative, but scientifically not well justified. Min 
& Agresti [52] discuss this problem and review methods of dealing with it. They will 
be not discussed here. 

3. Other sources of information 

3.1. Atmospheric observations 

Two kind of observations can be of value to constrain inventory estimates and 
perhaps improve their accuracies. One is measurement of the specific gas concentration 
or mixing ratio. An example can be found in [75]. The problem is to partition the 
estimated atmospheric load obtained possibly from subtracting a background 
concentration, to emission sources. This is typically done using the inversion methods 
to estimate C02 fluxes. For this, the Bayes estimator is generally applied ([18, 68]). To 
use the inversion method, the function which relates emission with concentration 
( footprints) is needed. It is typically computed using the atrnospheric dispersion models 
and is finally of the linear form 

Yobs = Hx + 1P (1) 
where Yobs is an m-vector of the measured atmospheric concentrations (mixing ratios) 
in the receptor points, in space and time, above the background value, x is an n-vector 
of fluxes ( emissions) from sources in the region considered, and H is the matrix that 
relates emissions in sources to the measurements. The elements of them x n matrix H 
are computed using a transport model. lt is assumed that they are constant in the 
considered time period, which may be a rough approximation. 1/J is an m-vector of 
uncertainties of the relation (10); it is modeled as a random variable with the Gaussian 
distribution 

p(l/J) = [(2rrr detcyr1 exp{-½wTCy11/J} (2) 

The real fluxes are unknown but it is assumed that uncertain information on fluxes Xprior 
is given, so that 

X = Xprior + {J (3) 
where again, the uncertainty is modeled as a random vector with the Gaussian 
distribution, independent on p(l/J) , 

p(łJ) = [(2rrrdetCx]- 1 exp{-½ {JTC;1łJ} (4) 

Using the Bayes theory the conditional probability p(xlYob,) is given by 

P(xly ) = PCYobslX)p(x) (5) 
obs PCYobs) 

It is proportional to 

p(X\Yob,) - exp {-¼ [ (Yobs - Hxf c;; 1 (yobs - Hx) + (x - Xpriol c;1 (x - Xprior)]} (6) 

After some manipulations the value x which maximizes the above conditional 
probability is obtained which gives the Bayes estimator of the fluxes 

X= Xprior + (HTC/H+c;tflHTCyl(Yobs - HXprior) (7) 
The statistical uncertainty of the Bayesian estimator can be calculated as a covariance 
matrix 

(8) 
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The estimate x is the sum of the prior estimate plus a correction, which depends on the 
deviation of observations from their predicted values. This correction improves the 
initial estimate oftluxes (e.g. obtained from disaggregation of the inventory estimates). 
The expression (8) informs us that the errors of the improved estimates (the values on 
the diagonal of(\) are not bigger (and very likely smaller) than the errors of the a priori 
estimate. 

To use the above expressions, one has to know estimates of the covariance matrices 
C\ and Cy. This issue is discussed in numerous papers, e.g. [45, 57, 63]. Various 
methods of finding appropriate values have been proposed; very often diagonal 
matrices have been used. Exponential decay of covariance values, both in space and/or · 
time, has been found to match the reality better. Michalak et al. [51] develop a 
maximum likelihood method for estimating the covariance parameters. The likelihood 
function is formulated and the Cramer-Rao bound is derived. 

The idea to use the likelihood function approach has been also used in the so-called 
geostatistical inverse modelling [27]. In this setting, instead ofusing prior information, 
emissions are modelled as linear combinations of trends. More advanced modelling of 
the fluxes has been proposed in the so-called assimilation data method proposed by 
Kaminski et al. [39], and then used e.g. in [60]. In this method, amore thorough model 
of emissions from the biosphere is included. 

The above expressions have been used mostly in tlux inversion studies. Ciais et al. 
[14] provide various comments on practical applications ofthis sort ofmethods. Peylin 
et al. [57] use them for estimating monthly European CO2 tluxes and report 60% 
reduction of errors. Rivier et al. [63] apply them for estimating monthly tluxes of CO2 
from the biosphere and ocean for the global and European scale. The Bayesian estimate 
errors are reduced therein by 76% for the western and southem Europe, and by 56% for 
the central Europe. Lauvaux et al. [45) give inversion results for a 300km x 300km 
region in the South-West of France near Bordeaux with the 8km x 8km resolution of 
CO2 tluxes, reporting about 50% error reduction. Continuous measurements were taken 
in two towers, and two aircrafts measuring CO2 were used. Thompson et al. [70] 
estimated the N2O tluxes in the western and central Europe. With only one in-situ 
measurement point used for inversion, they obtained between 30% and 60% error 
reduction for Germany. 

The idea of atmospheric inversion methods is very generał, and it can be used for 
improving estimates given any additional information in a suitable form. Atmospheric 
measurements are rather rare in space, so it may be difficult to obtain significant 
improvement for a very fine spatial grid for large areas. However, using loca! 
measurements and fine gridded a priori data the good resolutions can be achieved. For 
example, Gałkowski [21] obtained this way emission estimates with the resolution of 
few kilometers using measurements performed the stations in Kraków, and at Kasprowy 
Wierch located on a mountain in Polish Tatras (1989 m a.s.l.) some 100 km south of 
Kraków. This resolution is only a few times coarser than the very fine resolutions of 1-
2 km, which have been obtained by using inventory data and disaggregation based on 
proxies. 

Atmospheric inversion methods seem nowadays to be the most important 
approaches used to constrain estimates of emission fluxes from the biosphere. 

3.2. Measurements of tracers 
Measurement of tracers connected with emissions helps to identify better the 

tluxes. The most important tracer is 14C isotope. The 14C isotope is produced by cosmic 
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radiation in the upper atmosphere, and then it is transported down and absorbed by 
living organisms. The 14C isotope decays in time of a few hundred years (its half-life 
equals approximately 5700 years), white the fossil fuels come from organisms which 
lived million to hundred million years ago. Intensive burning of the fossil fuels dilutes 
the atrnospheric concentration of the 14C isotope [66) . This way (a lack of) 14C isotope 
may be used as a tracer of fossil fuel originated CO2 emissions, and the rate of dilution 
can be used to assess local/regional/ glob al emissions of foss il fuel CO2. 

The 14C isotope has not been the only tracer of CO2 emissions considered. Also, 
SF6 and CO have been investigated [22, 47, 72), but 14C has been found to be the most 
useful and directly available. Lopez et al. [49) used additional tracers of CO, NOx, and 
13CO2, besides that of 14CO2, to estimate relative fossil fuel (from liquid and gas 
combustion) and biosphere fossil fuel (from biofuels, human and plant respiration) CO2 
in Paris, and got good agreement. 

Estimation of the fossil fuel CO2 basically comes from two mass balance equations, 
for CO2 and 14C (or 14CO2), which are presented in the concentration form (or, more 
often, in the mixing ratio form; the mixing ratio s is defined as s = Pel Pa , where Pe is 
a CO2 density and Pa is the air density) 

cot· = co~s + co~ + co~io + co;lher 
14cobs = 14cbg + J4c" + 14cbio + ]4c01her 

(9) 

(10) 

where the superscripts stand for, respectively, the observed (0b') m1xmg ratio, 
background (b8) mixing ratio - without the loca! fossil fuel emission, fossil fuel (ff) 
mixing ratio, biosphere (photosynthesis and heterotrophic respiration) component (bio), 
and other components, like those coming from buming ofbiomass, nuclear industry or 
ocean (0th0'). The 14C isotope is typically measured as a relative difference between the 
(13C corrected) sample and absolute rate [ 40, 65) 

(14c) ('4c) 
814C= c ob, - C abs 

(l~C) 
•bs 

(11) 

where the absolute (,bs) value is the absolute radiocarbon standard (1.176-10·12 

mol 14C/molC), related to oxalic acid activity. Equation ( 11) is usually expressed in per 
mili (%o) and written as 

8 14c = [C~1b, -1] · 1000 [% J 
(l~C) OO 

,bs 

(12) 

After some transformation the following finał equation can be obtained 

ól4CobsC02bs = 8 14CbgCQ~g + 8 14CffCOf + ól4CbioCQ~io + 8 14CotherCQ2ther (13) 

From (9), the concentration of one component can be calculated and inserted to (13). 
The choice of the eliminated component depends in principle on possibility of 
measuring the values in the equations, and the case considered. For example, having 
eliminated CO2bs, the equation for cof is found as follows 

(t,.1•cobs _ ,114cbg) ·CObg (łl14Cobs _ ,11•cbio) ·CObio (łl14Cobs _ ,1Hcothe,}coothu 
corr 2 + 2 + 2 

2 ,114Cff _ ,114Cobs t,14Cff _ t,14C°bs t,14Cff _ t,14Cobs 

As the concentration (and mixing ratio) of 14C in the fossil fuel CO2 is equal to O, then 
from (11) we have 8 14Cff = -1000. It is often assumed that CO2th0' = O, particularly 
when a site is far from other sources. Other assumptions may be appropriate for the area 

142 



4th International Workshop on Uncertainty in Atmospheric Emissions 
-----------------------

considered, as this methodology can be applied to the studies of different scales, ranging 
from the global ones to small-scale. 

Various authors discuss assumptions and assess underlying uncertainties. Turnbull 
et al. [73] present a systematic discussion and quantify uncertainties using modelling 
and the above equations. 

Another important aspect is the choice oflocation for measurements of background 
values. Since the measurements are usually taken for long time periods, the background 
values are taken from observations at high-altitude sites. In Europe, commonly used 
background observations come from the High Alpine Research station Jungfraujoch at 
3450 m a.s.l. in the Swiss Alps. Other !ocal sites considered in Europe are the Vermunt 
station in Austria (1800 m a.s.l.) and the Schauinsland in Germany (1205 m a.s.1.). In 
Poland, there is an observation site at Kasprowy Wierch (1989 m a.s.l.) in the High 
Tatra Mountains, which can be used as a regional reference station [ 44]. Tumbull et al. 
[73] estimate differences of 1-3 %o due to the choice of a background site. 

The resolution of cor determination depends, first of all, on a spatial distribution 
of ti14Cffmeasurements. The ti14Cff measuring observation stations are rather scarce. 
For instance, in 2008 there were only 10 measurement sites in Europe [56] . Much better 
spatial resolution can be obtained using measurements in plant materials, like com 
leaves, rice, grape wine ethanol, grass, tree leaves, and tree rings. Most of them allow 
only for annual estimation, so measurements have to be done for many years to get 
longer time series. Only wine ethanol and tree rings enable historical records. This way 
Palstra et al. [56] was able to measure 14C in 165 different wines from 32 different 
regions in 9 different European countries. The measurements were compared with those 
obtained from a regional atrnospheric transport model, predicting fossil fuel CO2 with 
the resolution 55km x 55km, with a good compatibility. Riley et al. [62] used 
measurements from winter annual grasses collected at 128 sites across Califomia, USA, 
to model transport of fossil fuel CO2 by using a regional transport model with the 
resolution 36km x 36km. These resolutions are stili not high enough to be directly 
useful in very fine gridded cells and need to be disaggregated for this or used for 
improving estimates in coarser grid. 

3.3. Direct local measurements of fluxes 
The fluxes can be also measured. The fluxes from big chimneys are actually 

estimated with qui te good accuracy. But also fluxes coming from the biosphere or urban 
environment can be measured using severa! methods. Observations from the flux towers 
are taken above the plant canopies, and use the so-called eddy covariance method. The 
basie idea of the eddy covariance can be found in [10]. Foken & Wichura [19] discuss 
the connected errors. Other possible measurements use chamber system, see an example 
in [75], to measure fluxes coming from the soi!. 

The flux tower observations could be a perfect way to provide very high resolution 
emission fluxes from the biosphere both in space and time provided that a net of flux 
towers is dense enough. Unfortunately, flux towers are rather scarce. Even over the 
large area of USA and Canada, only 36 flux tower observations are reported [58] . Their 
use can be therefore rather considered in the future , when more flux towers are 
constructed. At present, they are used mainly for an assessment ofbiosphere emission 
models, see [3] or [58] . 

When using loca! flux measurements, particularly coming from the soi!, some 
problems may arise with high spatial variability of the obtained results For example, 
Gałkowski [21] reports three times difference between measurements ofnitrous oxide 
fluxes from the soi! in a distance of few meters. 
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To be useful in estimation of areał data, the point measurements have to be 
interpolated. Geostatistical methods, like Kriging [15, 23], are usually applied. It is, 
however, suitable only for homogeneous fields. Bayesian melding [20] is a method that 
can cope with usual inhomogeneity of pollution fields, see e.g. [48]. These methods 
have been developed to include time dependence, [ 4, 46]. 

4. Combining multi-model estimates 

There are many different ways to combine results of models. Three groups are 
distinguished in this paper, although the authors do not claim that they cover all 
published methods. 

Averaging. Simple averages, see e.g. Oda (2015), can be quite efficient. Weighted 
averages 

_ L;W;X; 
x=---

L;W; 
perform usually better, but the weights w; have to be defined in them. Usual method of 
determining weights from the historical differences between the model output and 
observations cannot be used, as observations of real emission values do not exist. The 
situation is a bit similar to combining models in climate projections, see [ 41, 69] for 
review of the methods used there. As the models use projections for the future, both the 
discrepancies of the model output from the ensemble mean in the current time and in 
the future are considered there. For example, in reliability ensemble average method 
proposed in [26] the weights are calculated as the product of two terms inversely 
proportional to the absolute values of these discrepancies. Adaptation to emission 
models could use only one discrepancy. The calculations can follow iteratively. 

Bayesian approach. The Bayesian methodology proposed in the atmospheric 
inversion may be applied for combining model results, which give independent 
information complementing each other. In this case, the following function has to be 
minimized 

T ] = (yobs - x)7 Cyl(yobs - x) + (x - Xprior) C;l(x - Xprior) (14) 
where Yobs is the vector of the emission estimates from the first model and Xprior is the 
vector of estimates from the second one. The solution of the minimization problem is 

X= Xprior + (c;;1+C~1 r1c;1(Yobs - Xprior) = Xprior + Cx(Cy+Cxr1(Yobs - Xprior) (15) 
and the estimate of the improved estimate covariance matrix takes the form 

Cx = (Cy1 + c;1 r 1 = Cx - Cx(Cx + Cyr1 cx (16) 
Particularly simple computations are obtained for diagonal covariance matrices Cx and 
Cy, In this case the above formulae read 

X·= X· · + ~(y- - X· · ) . 1 (17) l l,pnor Ctt,x+Cii,y l,Obs l,pnor , L = , ... , n 

C;;x = ~ = cii,xcii,y , i= 1, ... , n (18) 
' cu,x + cu,y cu,x+cu,y 

lt is readily seen that Ć:;;,x $ cu,x and cu,x $ C;;,y- This procedure can be generalized to 
more than two models. 

Joint probability distribution approach. This approach has been proposed by 
Kryazhimsky [42] . In his approach no weighting is used. He operates on the joint 
probability distribution (multivariable distribution) obtained as the product of the 
distributions of individual distributions under assumption of their independence, as in 
the bivariate case 
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p(x,y) = p(x)p(y) 
although the method can be applied to a higher multivariate distribution as well. In 
opposition to the two previously mentioned ones, this approach has been as yet not 
extensively evaluated in practical applications. lt was used in [ 43] for combining 
estimates of net primary production of forest obtained from two models. 

5. Finał remarks 

A preliminary review of possibilities of using additional knowledge to improve 
fine gridded estimates of GHG emissions is presented. Besides the mentioned above, 
there may be stili more information that can help in better estimation of gridded 
emissions, but not dealt with in the paper. Different constraints on !ocal emission (like 
Jack of specific sources in the cells) can be possibly used in obtaining better accuracy. 
There may be, for example, independent emission assessments done on part of 
considered regions. Also some common sense knowledge can be used. One of important 
problems connected with integration of different knowledge is mismatch of the grids 
used in different studies, often spotted in real applications. These problems are 
discussed (74], who also presents an approach based on artificial intelligence methods 
to solve them. Many practical difficulties are also pointed to in (31] . 

A basie question is how much all additional knowledge can improve the estimates 
obtained by using proxy variables. This probably will depend on specific case. Not 
much can be probably expected in the case of industrial emissions, particularly of the 
carbon dioxide gas. However, for such emissions like nitrous oxide, N2O, from the 
biosphere, which is very poorly estimated by present techniques, introduction of, say, 
atrnospheric inversion methods can perhaps give a considerable improvement. These 
questions can be solved only by investigations of specific cases. This makes the area 
for interesting research projects. 
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