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About the Workshop

The assessment of greenhouse gases and air pollutants (indirect GHGs) emitted to and removed
from the atmosphere is high on the political and scientific agendas. Building on the UN climate
process, the international community strives to address the long-term challenge of climate
change collectively and comprehensively, and to take concrete and timely action that proves
sustainable and robust in the future. Under the umbrella of the UN Framework Convention on
Climate Change, mainly developed country parties to the Convention have, since the mid-
1990s, published annual or periodic inventories of emissions and removals, and continued to
do so after the Kyoto Protocol to the Convention ceased in 2012. Policymakers use these
inventories to develop strategies and policies for emission reductions and to track the progress
of those strategies and policies. Where formal commitments to limit emissions exist, regulatory
agencies and corporations rely on emission inventories to establish compliance records.

However, as increasing international concern and cooperation aim at policy-oriented solutions
to the climate change problem, a number of issues circulating around uncertainty have come to
the fore, which were undervalued or left unmentioned at the time of the Kyoto Protocol but
require adequate recognition under a workable and legislated successor agreement. Accounting
and verification of emissions in space and time, compliance with emission reduction
commitments, risk of exceeding future temperature targets, evaluating effects of mitigation
versus adaptation versus intensity of induced impacts at home and elsewhere, and accounting
of traded emission permits are to name but a few.

The 4th International Workshop on Uncertainty in Atmospheric Emissions is jointly organized
by the Systems Research Institute of the Polish Academy of Sciences, the Austrian-based
International Institute for Applied Systems Analysis, and the Lviv Polytechnic National
University. The 4th Uncertainty Workshop follows up and expands on the scope of the earlier
Uncertainty Workshops — the Ist Workshop in 2004 in Warsaw, Poland; the 2nd Workshop in
2007 in Laxenburg, Austria; and the 3 Workshop in 2010 in Lviv, Ukraine.
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level (presumed to represent the accurate estimate), and if so, how fast this stabilization
level is reached.

A common feature of the approaches presented in [1] and [2] is that is that both
methods strived to capture the learning process from one report to another in the
uniform way (ensemble approach). However, if one do not consider revised estimates
of emissions occurred in different years separately, then the learning process one tries
to describe is “contaminated” by structural changes in emissions in different years.

In contrast, our method grasp “pure” learning (unaffected by structural changes)
because we model learning process in consecutive revisions of emissions estimates for
only one fixed year of emissions at a time. But before we explain our approach to
diagnostic learning in detail we first describe the data set we are analysing.

3. The data

We chose to present our method on the case example of Austria as for this country
the temporal evolution of revised CO; emissions estimates is well pronounced. The data
set we are working on has been compiled from the Austria’s National Inventory Reports
(NIRs) submitted to the UNFCCC in the years 2003-2014.

Austria’s CO2 emissions estimates
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Figure 1. Revisions of the Austria’s CO2 emissions estimates (top panel) and time
evolution of ranges of Austria’s CO2 emissions estimates (bottom panel).

It is important to note that our data set may be naturally divided into two parts. Part
I contains revised estimates of emissions in the period 1990-2001. It may be organized
into 11 sequences, with firs one containing revised estimates of emissions occurred in
1990, second one contains estimates of emissions for 1991 and so on. Each of these
sequences consists of estimates published in the years 2003-2014 and thus all of them
have the equal length of 12. As a consequence, all most initial estimates in this part
comes from the NIR published in 2003 (see Figure 2.). Part II containing the rest of the
data (estimates of emissions occurred in the period 2002-2012) can be organized into
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than the most recent one by 0.5% of the most recent estimate, and the range of all
revisions spans from 98.5% to 100.3%. How these estimates change from revision to
revision is shown on the Figure 3. (left).

After normalization of estimates we clearly see that typically the most initial
estimates tend to underestimate emissions, but their subsequent corrections are not
always in the direction of the most recent estimate. The range of revised estimates of
emissions in a given year carries more information about the variability of these
estimates and is a good proxy for the uncertainty of these estimates. Hence, we argue
that analysis of the ranges of emissions estimates suits well the purpose of grasping
diagnostic learning. Our methodology, which we describe in the following section, is
based on this observation.

4. Model of diagnostic learning

4.1. Notation

Let E,,y denotes estimate of emissions in year n revised in yeary, with n = {1990,...,
2012} and y ={n+2,..., Y}, where Y = 2014 is the year of the last revision ( y > n+2
reflects the fact that inventories are published with 2-year delay). We define

Mpy = min{E,, .. ,Eny} and M,,, = max{Ep,, .. ,Eny}. 1)

Then my,, denotes the smallest of the estimates of emissions in year n that were
published in years between y and Y. Similarly M, denotes the biggest of these
estimates. How m,,, and My (normalized by E,, y) change as y —Y can be seen on the
Figure 3. (The lower and upper red lines on the left panel represents evolution of

my990,y/ Ei1990, 2014 and Mjsgn, ,/ E 1990, 2014 for y changing from 2003 to 2014. Similarly,
the lower and upper red lines on the right panel correspond to myg99, y/ E1999, 2014 and
M99,/ E1999, 2014, accordingly.)

4.2. Formal approach to diagnostic learning

As mentioned in section 2. we understand diagnostic leaming as a convergence

Eny 2 Eqsasy — o, 2
where E, is a true but unknown value of emissions that occurred in the year n. In
practice, for each year of emissions n we observe only a few initial elements of sequence
E,y (at most 12 for the Part I of the data). However, if convergence (2) holds and the
most recent estimate E, y is close to the true value E, then we observe that revisions
stabilize around level Eyy. Ten necessarily also mpy, — E,yand M,y — E,yasy— Y.
Both these effects can be seen of Figure 3.

Let us fix a year of emissions n. As revised estimates Ey, may oscillate around level
E, y, the learning process is more apparent in the evolution of m,, and M, since they
converge monotonically to Eyy. The speed of this convergence may be interpreted as
the rate of suppression of oscillations of estimates E,, , and the decrease of the difference
M, - my,y may be regarded as the decrease of uncertainty.

Figure 2. reveals that the upper ranges of emission estimates A, do not vary much
between different years of emissions » and in general are only slightly higher (typically
by less than 0.5%) than the most recent estimates. Therefore it is the evolution of lower
ends of the estimates ranges that reflects the diagnostic learning,.
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samples. Second reason is that all these sequences reflects learning process in the same
period, namely the years 2003-2014. On Figure 4. we present the trends in learning
obtained from model (3) for the years of emissions covered by the Part I of the data,
while Table 1. contains the corresponding learning rates.

4.4. Modeling diagnostic learning revision-wise

In the previous section we applied model (3) to grasp learning in the revised
emissions estimates for each one year of emissions covered by the Part I of the data at
a time. However, if our model of diagnostic learning is a correct one, we should be able
to observe exponential trend in overall improvement of inventories from one revision
to another. We perform such consistency check using the Part IT of the data.

We suspect that the structural changes in emissions cause only minor differences
between learning rates 2, for different years of emissions # (see Hamal [1]). Therefore
it is reasonable to assume that the learning process from revision to revision is uniform
for estimates of emissions across all covered years of emissions 7.

We calculate the average A = 0.5085 of all learning rates /, given in the Table 1. and
interpret it as the approximate uniform learning rate of this overall improvement of all
CO; inventories published in the period 2003-2014.

Provided this hypothesis is true we should then be able to use our model (3) to grasp
diagnostic learning in the Part II of the data. Observe that the lower red line in the Part
IT of the Figure 2. corresponds to normalized lower ends of the ranges of emissions
estimates mnn+2/ Eny for the years of emission covered by Part II of the data (n =
2002,..., 2012). Now, if all m,y/ Esy behave uniformly for all # as y — ¥, then model
(3) and our assumptions yield that

Mnntz
Eny
for all n = {my = 2002, ..., 2014}, where parameter A is the uniform learning rate
describing overall improvement of emissions inventories revision-wise. Thus, if our
model is a correct one, value of 1 calculated as the average of learning rates 1, given in
the Table 1. and the value of 2 obtained directly from the Part II of the data via model
(4) should match. As Table 2. shows, this indeed is the case.

=1- e Ao @

Table 2. Two independent estimates of the uniform learning rate 2

[ as the average of i, from Table 1. 0.5085

2 derived from equation (4) 0.4948

This close agreement of independent estimates of uniform learning rate 1 strongly
indicates that the model of diagnostic learning presented above is correct.

5. Further research plans.

When deriving equation (4) we assumed that the structural changes have negligible
influence on how the learning rates A, changes with . In reality averaging the learning
rates over the years of emissions 7 both explicitly or implicitly (as we have done in case
of estimation of 2 with use of equation (4)) is susceptible to structural changes. In future
we plan to factor structural changes into the methodology presented above.
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