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About the Workshop 

The assessment of greenhouse gases and air pollutants (indirect GHGs) emitted to and removed 
from the atmosphere is high on the political and scientific agendas. Building on the UN climate 
process, the intemational community strives to address the long-term challenge of climate 
change collectively and comprehensively, and to take concrete and timely action that proves 
sustainable and robust in the future . Under the umbrella of the UN Framework Convention on 
Climate Change, mainly developed country parties to the Convention have, since the mid-
1990s, published annual or periodic inventories of emissions and removals, and continued to 
do so after the Kyoto Protocol to the Convention ceased in 2012. Policymakers use these 
inventories to develop strategies and policies for emission reductions and to track the progress 
of those strategies and policies. Where forma! commitments to limit emissions exist, regulatory 
agencies and corporations rely on emission inventories to establish compliance records. 

However, as increasing intemational concem and cooperation aim at policy-oriented solutions 
to the climate change problem, a number of issues circulating around uncertainty have come to 
the fore , which were undervalued or left unmentioned at the time of the Kyoto Protocol but 
require adequate recognition under a workable and legislated successor agreement. Accounting 
and verification of emissions in space and time, compliance with emission reduction 
commitments, risk of exceeding future temperature targets, evaluating effects of mitigation 
versus adaptation versus intensity of induced impacts at home and elsewhere, and accounting 
oftraded emission permits are to name but a few. 

The 4th International Workshop on Uncertainty in Atmospheric Emissions is jointly organized 
by the Systems Research Institute of the Polish Academy of Sciences, the Austrian-based 
International Institute for Applied Systems Analysis, and the Lviv Polytechnic National 
University . The 4th Uncertainty Workshop follows up and expands on the scope of the earlier 
Uncertainty Workshops - the 1st Workshop in 2004 in Warsaw, Poland; the 2nd Workshop in 
2007 in Laxenburg, Austria; and the 3rdWorkshop in 2010 in Lviv, Ukraine. 
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Assessing the improvement of greenhouse gases inventories: can we 
capture diagnostic learning? 

Piotr Żebrowski, Matthias Jonas, Elena Rovenskaya 

International Institute for Applied Systems Analysis, Advanced Systems Analysis Program, 
Laxenburg, Austria 

Piotr.Zebrowski@iiasa.ac. at 

Abstract 

Our study aims at modelling the diagnostic learning understood as a graduał improvement 
of the quality of greenhouse inventories. We quantify this improvement by the speed of 
convergence of consecutive revisions of emissions estimates to the most recently published 
ones, which we assume to be close to the true ernissions values. On the example of Austria's 
National Inventory Reports we show that the diagnostic learning process exhibits exponential 
dynarnics. 

Keywords: Greenhouse gas ernissions, revisions of ernissions inventories, learning, 
uncertainty of emissions estimates 

1. Introduction 

Signatories to the United Nations Framework Convention on Climate Change 
(UNFCCC) are obliged to submit annual inventories of their greenhouse gas (GHG) 
emissions, together with revisions of historical emission estimates. Previous estimates 
are recalculated whenever errors in inventories were identified and corrected, new data 
sources were taken into account or new accounting methodologies were employed. 
Therefore, consecutive revisions of emissions estimates from previous years are 
thought to reflect the advancement of knowledge in constructing GHG inventories, 
while the most recent estimates are considered to be accurate. But can we detect this 
learning process in the historical data of GHG emissions reported to the UNFCCC? 

In this work we show on the example of Austria's GHG inventories that indeed we 
can observe and model the improvement ofGHG emission inventories. 

2. Diagnostic learning 

By diagnostic learning we call the process of graduał improvements in the quality of 
GHG emissions inventories. This "improvement of quality" we understand as the 
advancement ofknowledge, which is reflected by the increase ofaccuracy (reduction 
of bias) and/or precision (reduction of standard deviation) of emissions estimates. 

Several attempts have been made to grasp the diagnostic learning in a quantitative 
way. In Hamal's work [1] the notion oftotal uncertaintywas used. The total uncertainty 
combines inaccuracy (in relative terms) between the most recent and the most initial 
estimates of emissions, with the imprecisions of these estimates (Jack of precision). 
Another approach is to analyze the convergence of sequences of estimates reported in 
the consecutive National lnventory Reports as has been done in Nahorski et. al. [2] . 

In Marland et. al. [3] learning was understood as a convergence ofrevised estimates 
of emissions towards the more accurate ones. In our work we follow this line of thinking 
and investigate whether the consecutive revisions of estimates stabilize around certain 
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Jevel (presumed to represent the accurate estimate), and ifso, how fast this stabilization 
level is reached. 

A common feature of the approaches presented in [I] and [2] is that is that both 
methods strived to capture the learning process from one report to another in the 
uniform way (ensemble approach). However, if one do not consider revised estimates 
of emissions occurred in different years separately, then the learning process one tries 
to describe is "contaminated" by structural changes in emissions in different years. 

In contras!, our method grasp "pure" learning (unaffected by structural changes) 
because we model learning process in consecutive revisions of emissions estimates for 
only one fixed year of emissions at a time. But before we explain our approach to 
diagnostic learning in detail we first describe the data set we are analysing. 

3. The data 

We chose to present our method on the case example of Austria as for this country 
the tempora! evolution ofrevised CO2 emissions estimates is well pronounced. The data 
set we are working on has been compiled from the Austria' s National Inventory Reports 
(NIRs) submitted to the UNFCCC in the years 2003-2014. 
! Austrla 's C02 emlsslons estlmates 
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Figure 1. Revisions of the Austria's CO2 emissions estimates (top panel) and time 
evolution ofranges of Austria's CO2 emissions estimates (bottom panel). 

It is important to note that our data set may be naturally divided into two parts. Part 
I contains revised estimates of emissions in the period 1990-200 I. It may be organized 
inio 11 sequences, with firs one containing revised estimates of emissions occurred in 
1990, second one contains estimates of emissions for I 99 I and so on. Each of these 
sequences consists ofestimates published in the years 2003-2014 and thus all of them 
have the equal length of 12. As a consequence, all most initial estimates in this part 
comes from the NIR published in 2003 (see Figure 2.). Part II containing the rest of the 
data ( estimates of emissions occurred in the period 2002-2012) can be organized inio 
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another 11 sequences in the same way as the part I. The only difference is that all these 
sequences are of different lengths. The first one, containing estimates of emissions in 
year 2002, is of the length 11 and the last one has only one element , that is the only 
available estimate of emissions in year 2012 published in the year 2014. 

Figure 1. shows that revised emissions estimates differ slightly revision-wise but 
clearly follow the emissions path published most recently. However, for each year of 
emission the revised estimates may behave erratic and in generał do not approach the 
most recent one (assumed to be correct) in the strictly monotonie way. It is also difficult 
to compare in absolute terms the changes in estimates of emissions that occurred in 
different years. Thus, in order to see a clearer picture, we assume the most recent 
estimates as a reference level and work with relative differences of estimates 
normalized estimates (i .e., values of estimates divided by the most recent ones). 
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Figure 2. Austria' s CO2 emissions estimates normalized by the most recent estimates. 
For the most initial estimates line the year of estimate ' s publications is 

marked. 
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Figure 3. Time evolution ofrevised estimates of Austria's C02 emissions in the year 
1990 (left panel) and 1999 (right panel). 

Figure 2. presents the data after normalization transformation and should be 
interpreted as follows : for example, initial estimate of the emissions in 1999 were tower 
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than the most recent one by 0.5% of the most recent estimate, and the range of all 
revisions spans from 98.5% to 100.3%. How these estimates change from revision to 
revision is shown on the Figure 3. (left). 

After normalization of estimates we clearly see that typically the most initial 
estimates tend to underestimate emissions, but their subsequent corrections are not 
always in the direction of the most recent estimate. The range of revised estimates of 
emissions in a given year carries more information about the variability of these 
estimates and is a good proxy for the uncertainty of these estimates. Hence, we argue 
that analysis of the ranges of emissions estimates suits well the purpose of grasping 
diagnostic learning. Our methodology, which we describe in the following section, is 
based on this observation. 

4. Model of diagnostic learning 

4.1. Notation 

Let En.y denotes estimate of emissions in year n revised in year y, with n = {1990, .. . , 
2012} and y ={n+2, ... , Y}, where Y = 2014 is the year of the last revision ( y 2'. n+2 
retlects the fact that inventories are published with 2-year delay). We define 

171.n,y = min{En,y, ... ,En,Y} and Mn,y = max{En,y, .. . ,En,d- (1) 
Then mn.y denotes the smallest of the estimates of emissions in year n that were 

published in years between y and Y. Similarly Mn.y denotes the biggest of these 
estimates. How mn.y and Mn,y (normalized by En. r) change as y -> Y can be seen on the 
Figure 3. (The !ower and upper red lines on the left panel represents evolution of 

m 1990.yl E 199o. 2014 and M l99o.yl E 199o. 2014 for y changing from 2003 to 2014. Similarly, 
the !ower and upper red lines on the right panel correspond to m/999,yl E1999, 2014 and 
M 1999.yl E1999. 20u, accordingly.) 

4.2. Forma! approach to diagnostic learning 

As mentioned in section 2. we understand diagnostic learning as a convergence 
En,y -> En asy -> oo, (2) 

where En is a true but unknown value of emissions that occurred in the year n. In 
practice, for each year of emissions n we observe only a few initial elements of sequence 
En.y (at most 12 for the Part I of the data). However, if convergence (2) holds and the 
most recent estimate En. r is close to the true value En then we observe that revisions En.y 
stabilize around level En.r. Ten necessarily also mn.y-> En.r and Mn.y -> En.Y asy -> Y. 
Both these effects can be seen ofFigure 3. 

Let us fix a year of emissions n. As revised estimates En.y may oscillate around level 
En.Y, the learning process is more apparent in the evolution of mn.y and Mn.y since they 
converge monotonically to En. r. The speed of this convergence may be interpreted as 
the rate of suppression of oscillations of estimates En.y and the decrease of the difference 
Mn.y - mn.y may be regarded as the decrease ofuncertainty. 

Figure 2. reveals that the upper ranges of emission estimates Mn.y do not vary much 
between different years of emissions n and in generał are only slightly higher (typically 
by less than 0.5%) than the most recent estimates. Therefore it is the evolution of !ower 
ends of the estimates ranges that retlects the diagnostic learning. 
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4.3. Modeling diagnostic learning in revisions of emission estimates for each 
year of emissions separately. 

Figure 3. suggests that for each fixed year of emissions n lower end of estimate's 
range mn,y approaches level En,Y more rapidly at the beginning and gradually slows 
down and stabilizes as y -+ Y. Therefore, for each fixed n, it is natura! to choose the 
exponential dynamics as a model of time evolution ofmn,y asy -+ Y, namely 

mn,y = 1 - Cne-An ( y-n-2) (3) 
En,Y 

fory = {yo, ... , Y} , where yo~ n + 2 is the yearof publication of the most initial available 
estimate of emissions in the year n. The parameter An is the interpreted as the learning 
rate in the period between yo and Y. 

1:::~:.:-d•1t~SVJ1 
XOł Dl6 DII xno 201 2 X"11, 

1~ ~~d••IDrtB1 
DM Dl6 DE :ino 2012 201 , 

l~ ==-·•-1•I 1~ ~="•• tir.mJ1 
XOł Dl!i DII :ano 201 2 201 , XOł Dl6 DIII 2DIO Xl'l2 201 4 

Figure 4. Exponential trends of evolution of !ower ends of emissions estimates 
ranges. 

Table 1. Values of learning obtained via formula (3) 

Year of 1990 1991 1992 1993 1994 1995 
emissions n 

Learning 0.6251 0.6210 0.5954 0.5043 0.4722 0.4425 
rateln 
Year of 1996 1997 1998 1999 2000 2001 

emissions n 

Learning 0.4815 0.5405 0.5147 0.4786 0.3761 0.4497 
rate ln 

We apply the model (3) to each sequence in the Part I of the data (that is to revisions 
of emissions for years n = l 990, ... , 2001 , that were published between years y o=2003 
and Y = 2014). The reason for this choice is two-fold. Firstly, all sequences in Part I are 
of equal length which ensures that the of the trend fit is comparable for all considered 
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samples. Second reason is that all these sequences reflects learning process in the same 
period, namely the years 2003-2014. On Figure 4. we present the trends in learning 
obtained from model (3) for the years of emissions covered by the Part I of the data, 
while Table 1. contains the corresponding learning rates. 

4.4. Modeling diagnostic learning revision-wise 

In the previous section we applied model (3) to grasp learning in the revised 
emissions estimates for each one year of emissions covered by the Part I of the data at 
a time. However, if our model of diagnostic learning is a correct one, we should be able 
to observe exponential trend in overall improvement of inventories from one revision 
to another. We perform such consistency check using the Part II of the data. 

We suspect that the structural changes in emissions cause only minor differences 
between learning rates },n for different years of emissions n (see Hamal [l]). Therefore 
it is reasonable to assume that the learning process from revision to revision is uniform 
for estimates of emissions across all covered years of emissions n. 

We calculate the average / , = 0.5085 of all learning rates },n given in the Table 1. and 
interpret it as the approximate uniform learning rate of this overall improvement of all 
CO2 inventories published in the period 2003-2014. 

Provided this hypothesis is true we should then be able to use our model (3) to grasp 
diagnostic learning in the Part II of the data. Observe that the lower red line in the Part 
II of the Figure 2. corresponds to normalized tower ends of the ranges of emissions 
estimates m n,n+2 I En,Y for the years of emission covered by Part II of the data (n = 
2002, ... , 2012). Now, if all mn,yl En,Y behave uniformly for all n asy-+ Y, then model 
(3) and our assumptions yield that 

mn,n+z = l _ Ce - X (n - n 0 ) (4) 
En,Y 

for all n= {no = 2002, ... , 2014} , where parameter 1, is the uniform learning rate 
describing overall improvement of emissions inventories revision-wise. Thus, if our 
model is a correct one, value of 1, calculated as the average oflearning rates },n given in 
the Table 1. and the value of 1, obtained directly from the Part II of the data via model 
(4) should match. As Table 2. shows, this indeed is the case. 

Table 2. Two independent estimates of the uniform learning rate 1, 

J. as the avera e of An from Table 1. 0.5085 
J. derived from e uation 4 0.4948 

This close agreement of independent estimates of uniform learning rate 1, strongly 
indicates that the model of diagnostic learning presented above is correct. 

5. Further research plans. 

When deriving equation (4) we assumed that the structural changes have negligible 
influence on how the learning rates },n changes with n. In reality averaging the learning 
rates over the years of emissions n both explicitly or implicitly (as we have done in case 
ofestimation oQ with use ofequation (4)) is susceptible to structural changes. In future 
we plan to factor structural changes into the methodology presented above. 
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