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About the Workshop 

The assessment of greenhouse gases and air pollutants (indirect GHGs) emitted to and removed 
from the atmosphere is high on the political and scientific agendas. Building on the UN climate 
process, the intemational community strives to address the long-term challenge of climate 
change collectively and comprehensively, and to take concrete and timely action that proves 
sustainable and robust in the future . Under the umbrella of the UN Framework Convention on 
Climate Change, mainly developed country parties to the Convention have, since the mid-
1990s, published annual or periodic inventories of emissions and removals, and continued to 
do so after the Kyoto Protocol to the Convention ceased in 2012. Policymakers use these 
inventories to develop strategies and policies for emission reductions and to track the progress 
of those strategies and policies. Where forma! commitments to limit emissions exist, regulatory 
agencies and corporations rely on emission inventories to establish compliance records. 

However, as increasing intemational concem and cooperation aim at policy-oriented solutions 
to the climate change problem, a number of issues circulating around uncertainty have come to 
the fore , which were undervalued or left unmentioned at the time of the Kyoto Protocol but 
require adequate recognition under a workable and legislated successor agreement. Accounting 
and verification of emissions in space and time, compliance with emission reduction 
commitments, risk of exceeding future temperature targets, evaluating effects of mitigation 
versus adaptation versus intensity of induced impacts at home and elsewhere, and accounting 
oftraded emission permits are to name but a few. 

The 4th International Workshop on Uncertainty in Atmospheric Emissions is jointly organized 
by the Systems Research Institute of the Polish Academy of Sciences, the Austrian-based 
International Institute for Applied Systems Analysis, and the Lviv Polytechnic National 
University . The 4th Uncertainty Workshop follows up and expands on the scope of the earlier 
Uncertainty Workshops - the 1st Workshop in 2004 in Warsaw, Poland; the 2nd Workshop in 
2007 in Laxenburg, Austria; and the 3rdWorkshop in 2010 in Lviv, Ukraine. 
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Abstract 

This report presents a novel approach for allocation of spatially correlated data, such as 
emission inventories, into fin er spatial scal es conditional on co varia te inforrnation observab le 
in a fine grid. Spatial dependence is modelled with the conditional autoregressive structure 
introduced into a linear model as a random effect. The maximum likelihood approach to 
inference is employed, and the optima! predictors are developed to assess missing values in a 
fine grid. The usefulness of the proposed technique is shown for agricultural sector of GHG 
inventory in Poland. An example of allocation of livestock data (a number of horses) from 
district to municipality level is analysed. The results indicate that the proposed method 
outperforrns a naive and commonly used approach of proportional distribution. 

Keywords: GHG inventory, agricultural sector, spatial correlation, disaggregation, conditional 
autoregressive model 

1. lntroduction 

Spatially resolved inventories of greenhouse gases (GHG) contribute valuable 
information for an assessment of carbon sources and sinks. Various authors point out 
that a regional or loca! formulation improves accuracy of the assessment. Quality of 
these inventories is subject to various conditions; particularly, it depends on availability 
of high resolution activity data. 

In case of national GHG inventories, relevant information about low resolution 
activity data needs to be acquired from national/regional totals. A procedure of 
allocation into smaller spatial units (like districts, municipalities, and finally 2x2km 
grid cells) differs among various emission sectors. Basically, all the emission sources 
are categorised as line, area or large point emission sources; further steps differ 
significantly for each group. Area sources comprise e.g. agricultural fields, urban areas 
as well as highly dense urban transportation network. In this case, a procedure of spatial 
allocation depends on methods and technologies of fossil fuel combustion in a 
considered sector [1]. A common approach though, is a spatial allocation made in a 
proportion to some related indicators that are available in a finer grid. 

In this study, the statistical scaling method is developed in order to support the 
procedure of compiling high resolution activity data. We propose the method for 
allocating GHG activity data to finer spatial scales, conditional on covariate 
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information, such as land use, observable in a fine grid. The proposition is suitable for 
spatially correlated, area emission sources. . 

Regarding an assumption on residua! covariance, we apply the structure smtable for 
area data, i.e. the conditional autoregressive (CAR) model. Although the . CAR 
specification is typically used in epidemiology [2], it was also successfully apphed for 
modelling air pollution over space [3]. We demonstrate usefulness of the proposed 
technique for the agricultural sector ofGHG national inventory in Poland. The_ex~ple 
considers an allocation of livestock data (a number of horses) from d1str1ct to 
municipality level. 

A part of the methododology described in section 3.1 was already presented in [4]. 
This contribution extends the basie model for the case of various regression models in 
each region (here voivodeship); see section 3.2. Performance of the method for 
livestock data in agricultural sector of GHG inventory is presented in section 4. 

2. Inventory livestock dataset 

Considered is a livestock dataset (cattle, pigs, horses, poultry, etc.) for the territory 
of Poland, based on the agricultural census 2010, and available from the Central 
Statistical Office of Poland - Loca! Data Bank [5]. The goal is to allocate relevant 
livestock arnounts from districts (powiaty) to municipalities (gminy) . 

1n particular, for horses the data are available also in municipalities, and this fact 
enables us to verify the proposed disaggregation method. Therefore, in what follows 
we consider the task of disaggregation of number of horses reported for 314 districts 
into 2171 municipalities, taking advantage of covariate information observable for 
municipalities. Only rura! municipalities are considered in the study. 

As explanatory variables we use population density (denoted x1) and land use 
information. For the latter, the CORINE Land Cover map, available from the European 
Environment Agency [6], was employed. For each rura! municipality we calculate the 
area of agricultural classes, which may be related to livestock farming. Three CORINE 
classes were considered (the CORINE class numbers are given in brackets): 

- Arabie land (2.1 ); denoted x2 

- Pastures (2.3); denoted X3 

- Heterogeneous agricultural areas (2.4); denoted x4. 
The results of the disaggregation with the proposed procedure are further compared 

with the results of allocation proportional to population of municipalities. This naive 
approach, however, gave rise for a modification of the basie version of the method. 
Narnely, we account for the fact that a relationship of farmed livestock with available 
covariates is diversified across the country - we allow for various regression models for 
regions. 1n this case study, we treat 16 voivodeships (województwa) as regions. 

3. The disaggregation framework 

3.1 The basie model 

First, the model is specified on a level ofjine grid. Let Y; denote a random variable 
associated with an unknown value of interes! y; defined at each cell i for i=l, .. . ,n of a 
fine grid (n denotes the overall number of cells in a fine grid). The random variables Y; 
are assumed to follow the Gaussian distribution with the mean µ; and variance a; 

Yilµi~Gau(µi, a;) 
Given the values µ; and a;, the random variables Y; are assumed independent. The mean 

µ = {µ;}r=l represents the true process underlying emissions, and the (unknown) 
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observations are related to this process through a measurement error with the variance 
at The approach to modeling µ; expresses an assumption that available covariates 
explain part of the spatial pattem, and the remaining part is captured through a spatial 
dependence. The CAR scheme fellows an assumption of similar random effects in 
adjacent cells, and it is given through the specification of full conditional distribution 
functions ofµ; for i = I , .. . ,n 

µ; 1µ-i ~ Gau (xr p + p L;=l :ij (µj - xJ P), ; 2 
) 

j,;,i <+ <+ 

where µ_; denotes all elements inµ butµ;, W;j are the adjacency weights (wij = 1 ifj 
is a neighbour of i and O otherwise, also w;; = O); W;+ = Lj wij is the number of 
neighbours of an area i; xf P is a regression component with proxy information 
available for area i and a respective vector of regression coefficients; r 2 is a variance 
parameter. Thus, the mean of the conditional distribution µ;jµ_; consists of the 
regression part and the second summand, which is proportional to the average values 
ofremainders µj - xJ p for neighbouring sites (i.e. when W;j = 1). The proportion is 
calibrated with the param eter p, reflecting strength of a spatial association. 
Furthermore, the variance of the conditional distribution µ;jµ_; is inversely 
proportional to a number ofneighbours W;+ -

The joint distribution of the process µ is the following (for the derivation see [2]) 
µ ~ Gattn(Xp, r 2 (D - pW)- 1 ) (1) 

where Dis an n x n diagonal matrix with W;+ on the diagonal; and W is an n x n matrix 
with adjacency weights wij· Equivalently, we can write (1) as 

µ = xp + E, E ~ Gaun(O,fi) (2) 
with n= r2 (D - pwr1 . 

The model for a coarse grid of ( aggregated) observed data is obtained by 
multiplication of (2) with the N x n aggregation matrix C, where N is a number of 
observations in a coarse grid 

Cµ = cxp + CE, CE~ Gattn(O, cncT) (3) 
The aggregation matrix C consists of O's and l ' s, indicating which cells have to be 
aligned together. The random variable A= Cµ is treated as the mean process for 
variables Z = {Z;}f=i associated with observations z = {z;}f=i of the aggregated model 
(in a coarse grid) 

Zll ~ GauN(A, a}IN) 
Also at this level, the underlying process A is related to Z through a measurement error 
with variance aj . 

Model parameters p, aJ, r 2 and p are estimated with the maximum likelihood 
method based on the joint unconditional distribution of observed random variables Z 

Z~GauN(cxp, a"jIN + cncT) (4) 
The log likelihood function associated with (4) is formulated, and the analytical 
derivation is limited to the regression coefficients p; further maximization of the profile 
log likelihood is performed numerically. 

As to the prediction of missing values in a fine grid, the underlying mean process µ 
is of our primary interest. The predictors optima! in terms of the mean squared error are 
given by the conditional expected value E(µlz). The joint distribution of (µ,Z) is 

[i] ~Gattn+N([{fp].[~ a"jINnf~ncT]) (5) 

The distribution (5) yields both the predictor E(µjz) and its error Var(µjz) 
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E(µlz) = xp + ncr(a}IN + cficTf1[z - cxp] 
Var(µlz) = fi- ficT(u;IN + cficT)-1 cfi 

The standard errors of parameter estimators are calculated with the Fisher 
information matrix based on the log likelihood function, see [7]. 

3.2 A modification: various regression models in regions 

Next, we adjust the model to reflect possibly diversified regression c_omponent 
across regions. In the considered study of national GHG mventory, we will analyse 
various regression models for 16 voivodeships indexed with / = 1, ... ,L. Then, all n 
municipalities are associated with their corresponding voivodeship /, and Jet n1 denote 
a number of municipalities in a region /. 

To accommodate the modification, consider a błock diagonal matrix of covariates 
x', where each błock corresponds to a region/= 1, ... ,L and contains covariates only 
for municipalities of this region 

___ l __ .5i.i1 _________ X~·-+--+------I 

x· = 
1 xfi 

B' o 

Also a vector of regression coefficients has to be modified into P*, comprising separate 
sets of regression coefficients for each region ( see above ), and the process µ is redefmed 
asµ= x•p• + E, E - Gaun(O,fi) . To complete the setting, variance parameters u;,1 

and uJ,1 are introduced for each region l=l, ... ,L. 

4. Results 

First, Table 1 presents the estimation results (parameters with their standard errors) 
for the models with and without a spatial component, denoted CAR and LM 
respectively. Note that in this setting the variable P2 (land use class Arabie land) turned 
out to be statistically insignificant. lntroduction of the spatial CAR structure increased 
the standard error of estimated parameters, as compared with LM model. However, for 
an assessment of goodness of fit for these models Table 2 should be referred to. 

Table 1. Maximum likelihood estimates. 

CAR LM 
Estimate Std. Error Estimate Std. Error 

Po 8.525 0.1605 -6.981 0.0389 
P1 3.517 0.0148 1.932 0.0042 
P2 - - - -
p3 0.916 0.0034 1.786 0.0010 
p4 3.912 0.0055 5.032 0.0013 
u; 0.961 0.4052 1.506 0.1202 
rz 1.683 0.1569 - -
p 0.9889 2.62e-06 - -

Table 2 contains the analysis ofresiduals (d; = y; - y/, where y/- predicted values) 
for the considered models. We report the mean squared error mse, the minimum and 
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maximum values of d; as well as the sample correlation coefficient r between the 
predicted and observed values. From here, it is obvious that the spatial CAR structure 
considerably improves the results obtained with the model of independent errors LM. 
For comparison, we also include the results obtained with the allocation proportional to 
population in municipalities; this setting is called NAIVE. It is a straightforward and 
commonly used approach in this area of application. Here we note thai the NAIVE 
approach provides reasonable results, but the CAR model outperforms it in terms of all 
the reported criteria. The decrease of the mean squared error is from 3374.4 for NAIVE 
to 3069.4 for CAR, which gives 9% improvement. From the maps ofpredicted values 
for the models CAR and NAIVE (Figure I), it is difficult to spot a meaningful 
difference. 

Table 2. Analysis ofresiduals (d; = y; - y;") . 

mse min(d;) max(d;) r 
CAR 3069.4 -275 469 0.784 
LM 5641.2 -357 522 0.555 
NAIVE 3374.4 -475 403 0.766 
CAR* 3437.0 -258 512 0.763 
LM* 4876.1 -374 546 0.651 
CAR** 3124.9 -256 446 0.783 
LM** 4427.6 -352 472 0.674 

DATA Model CAR 

Model NAIVE 

Figure 1. Original data in municipalities as well as predicted values for the models 
NAIVE and CAR. 

29 



4th International Workshop on Uncertainty in Atrnospheric Ernissions 

Next, we considered the models with various regression coefficients in regions 
(voivodeships) but having the same set of covari~tes (Po,/]}, P1, _p4); the models are 
denoted CAR* and LM*, respectively, for the spatlal and non-spatlal approaches. Note 
that the model CAR* gives much worse results than the models CAR and NAIVE. 

Further considered were the models (CAR** and LM**) where, both, the 
coefficien~ as well as sets of covariates vary across the regions. Only the statistically 
significant covariates were chosen. Due to a Jack of space, we do not provide here the 
table with the regression coefficients and their standard errors for all the considered 
regions. We only report that the values of estimated parameters for CAR** and LM** 
showed considerable differences across the voivodeships, not only in terms of the 
estimated values, but also in terms oftheir significance. From Table 2 we note that this 
setting (CAR**) provides the results comparable to that of CAR. 

5. Concluding remarks 

The study presents the first attempt to apply the spatial scaling model for the GHG 
inventory in Poland. The task was to allocate spatially correlated data to finer spatial 
scales, conditional on covariate information observable in a fine grid. The results of the 
disaggregation with the proposed procedure were compared with the allocation 
proportional to population; an improvement of 9% in terms of the mean squared error 
was reported. The model was extended to allow for various regression covariates in 
regions (here voivodeships). Numerous features of the method require further 
investigation. 

The proposed method provided good results for livestock activity data of agricultural 
sector. Apart from the study reported above, the approach was also applied to a 
residential sector for disaggregation of natura) gas consumption in households. In that 
case, with disaggregation featured from voivodeships to municipalities, the results 
tumed out to be qui te modest. This was partly due to a limited spatial correlation of the 
analysed process, and too large extent of disaggregation. The method is feasible for 
disaggregation from districts to municipalities, but not from voivodeships to 
municipalities. 
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