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Abstract 

The proposed GN model presents the functioning of the Nonlinear 

Autoregressive Network with Exogenous Inputs (NARX). This is the one 

of the recurrent dynamic neural networks with feedback connection with 

several layers. Instead of other types neural network now we are 

describing the process during the time.   

Keywords: nonlinear autoregressive network with exogenous inputs, 

generalized nets. 

1 Introduction 

In a series of papers the process of functioning and the results of the work of 

different types of neural networks are described, modelled in terms of 

generalized nets [3, 4, 8-11]. 

According to [23], neural networks can be classified into dynamic and static 

categories. Static (feedforward) networks have no feedback elements and carry 

no delays; the output is calculated directly from the input through feedforward 

connections. In dynamic networks, the output depends not only on the current 

input to the network, but also on the current or previous inputs, outputs, or the 

states of the network. The training of dynamic networks is very similar to the 

training of static feedforward networks, Dynamic networks can be divided into 

two categories: those that have only feedforward connections, and those that 

have feedback, or recurrent, connections. 
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The dynamic network has memory. Its response at any given time depends 

not only on the current input, but on the history of the input sequence. If the 

network does not have any feedback connections, then only a finite amount of 

records in the history will affect the response. 

Dynamic networks are generally more powerful than static networks 

(although somewhat more difficult to train) [16]. Dynamic networks can be 

used for prediction in financial markets [18], channel equalization in 

communication systems [19], phase detection in power systems, sorting [20], 

fault detection [21], speech recognition and even the prediction of protein 

structure in genetics [22]. A discussion of many more dynamic network 

applications can be found in [23]. One principal application of dynamic neural 

networks is found in control systems. Dynamic networks are also well suited for 

filtering.   

One of the dynamic kinds of neural networks is the Nonlinear 

Autoregressive Network with Exogenous Inputs (NARX), illustrated on Fig. 1. 

 

 

 

Figure 1: NARX neutral network 

 

 

The definition equation for the NARX is  

 

y(t) =f(y(t -1), y( t- 2),…, y( t-ny), u(t – 1), u(t – 2),…, u(t – nu)) (1) 

 

where the next value of the dependent output signal y(t) is regressed on previous 

values of the output signal and previous values of an independent (exogenous) 

input signal. 

p 

TDL 

Y '------- _____ / '------- _____ / 
y y 

Input Layer 1 Layer 2 
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2 A GN-model 

All definitions related to the concept generalized net (GN) are taken from [1,2]. 

The GN, describing the process of the work of the Nonlinear Autoregressive 

Network with Exogenous Inputs, is shown on Fig. 2. 

 

 
 

Figure 2: GN model of the NARX 

 

Initially the following tokens enter in the GN: 

- in place I  - 
1
-token with initial characteristic 

1

0
x )t(I ; 

- in place 11W
S  – 1

-token with initial characteristic 
1

0

x 1w , where W

11
 is 

a matrix with weight coefficient in first layer of the NARX); 

- in place 13W
S  – 3

-token with initial characteristic 3

0x
13w , where W

13
 

is a matrix with weight coefficient in feedback of the first layer of the 

NARX); 

- in place 1b
S  - 1

-token with initial characteristic 
1

0
x b

1
, where b

1
 is a 

matrix with biases of the first layer of the NARX);
 

- in place 1F
S - one 1

-token with initial characteristic 
1

0
x = transfer 

function; 

- in place 2W
S  – 2

-token with initial characteristic 

Zm, z, z, z, z, 
S,1 

Sw2 
o-

Prm 
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RSSS

R

R

WWW

WWW

WWW

Wx

,2,1,

,22,21,2

,12,11,1

2

0
............

...

...

2


 

  

 where W
2
 - matrix with weight coefficient for second  layer of the NARX; 

- in place 2b
S  - 2

-token with initial characteristic 
2

0

x b

2
; where b

2
 is a 

matrix with biases of the second layer of the NARX; 

- in place 2F
S  - one 2

-token with initial characteristic using “Transfer 

function”; 

 

The GN is presented by a set of transitions: 

А= { ZTD1, ZTD2, Z1, Z2, Z3, Z4}, 

where transitions describe the following processes: 

 

 ZTD1 – Preparing the input vector P
1
 from the I(t); 

 ZTD2 – Preparing the feedback; 

 Z1 – Calculating influence of the first layer of the MPL (n
1
);  

 Z2 – Calculating the output of the first layer of the MPL (a
1
); 

 Z3 – Calculating influence of the second layer of the MPL (n
2
);  

 Z
4
 – Calculating the output of the second layer of the MPL (a

2
). 

 

Transitions of the GN-model have the following forms. 

 

,),(,},,{},,{ 11111 1  TDTDTDPTDTD PIRPSPIZ  

where: 

TrueWP

TrueFalseI

PS
R

PPTD

TDP
TD

TD
1

1

1

,1

1

1  , 

where  

 

1
1 P,PTD

W = “In place PTD1 there exists 
kx  “. 
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The -tokens obtain characteristics, as follows: 

 

)t(Ix 
0 ; 

)t(I),t(Ix 11  ; 

…… (2) 

)kt(I),...,t(I),t(Ixk 111 
 ; 

)kt(I),kt(I),...,t(I),t(Ixk  11  

,),(,},,{},,{ 221222212  TDaTDTDFBTDaTD PSRPSPSZ  

where 

TrueWP

TrueFalseS

PS
R

FBTD SPTD

a

TDFB

TD

,2

21

2

2

2


, 

where  

FBTD SPW ,2
= “There is a token in place PTD2”. 

The -tokens obtain characteristics according to (2). 

 

,},,{},,,,,{ 11 111113111 RSSSSSSSZ
WpnWpbWWP

  

,)),(),,,(( 1113111 
WpbWWP
SSSSS  

where 

FalseTrueS

FalseTrueS

TrueFalseS

TrueFalseS

TrueFalseS

SS
R

Wp

b

W

W

p

Wpn

1

1

13

11

1

11

1 

, 

 

Tokens   1
,  1

  3 
and  1 merge into the 1

-token in place 1Wp
S .  

,),(,},{},,{ 11111 22 
FnaFn
SSRSSSZ  

where 

TrueS

TrueS

S
R

F

n

a

1

1

1

2  , 

Tokens  1
 and  1

 merge into the 1
-token according to [5].  
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,)),(),,((,},,{},,,,{ 2221222221 33 
WpbWaWpnWpbWa
SSSSRSSSSSSZ  

 

where 

FalseTrueS

FalseTrueS

TrueFalseS

TrueFalseS

SS
R

Wp

b

W

a

Wpn

2

2

2

1

22

3 

, 

 

Tokens   1
,  2

 and  2
  merge into the 2

-token according to [5].  

 

,),,(,},,,{},,,{ 41441414 2221122  SSSRSSSSSSZ
FnaaFn

 

where 

FalseWWS

TrueFalseFalseS

TrueFalseFalseS

SSS
R

aSaS

F

n

aa

21
41

2
41

2

2

212

,,41

41

4 

, 

where 

 

2
41 a,S

W  = 21
41 a,S

W  = “The value is calculated “. 

Tokens 2
 and 2

 union into the 2
-token, using [5].  

 

3 Conclusion 

The dynamic neural networks have different structures and properties. The 

proposed GN model present work of the Nonlinear Autoregressive Network 

with Exogenous Inputs (NARX). This is the one of the recurrent dynamic neural 

networks with feedback connection with several layers. Instead of other types 

neural network now we are describing the process during the time. 

This paper is one of the series of papers that describe neural networks in 

terms of generalized nets.   
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