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Abstract 

Type-2 fuzzy sets are used for modeling uncertainty and imprecision 
in a better way. These type-2 fuzzy sets were originally presented by 
Zadeh in 1975 and are essentially “fuzzy fuzzy” sets where the fuzzy 
degree of membership is a type-1 fuzzy set. The new concepts were 
introduced by Mendel and Liang allowing the characterization of a type-2 
fuzzy set with an upper membership function and a lower membership 
function; and these two functions can be represented each by a type-1 
fuzzy set membership function. The interval between these two functions 
represents the footprint of uncertainty (FOU), which is used to 
characterize a type-2 fuzzy set. 
Keywords: interval type-2 fuzzy logic, type-2 fuzzy models, high order 
fuzzy sets. 

1 Introduction 

On the past decade, fuzzy systems have displaced conventional technology in 
different scientific and system engineering applications, especially in pattern 
recognition and control systems. The same fuzzy technology, in approximation 
reasoning form, is resurging also in the information technology, where it is now 
giving support to decision making and expert systems with powerful reasoning 
capacity and a limited quantity of rules. 

The fuzzy sets were presented by L.A. Zadeh in 1965 [10,11,12] to 
process/manipulate data and information affected by unprobabilistic 
uncertainty/imprecision. These were designed to mathematically represent the 
vagueness and uncertainty of linguistic problems; thereby obtaining formal 
tools to work with intrinsic imprecision in different type of problems; it is 
considered a generalization of the classic set theory. 



Intelligent Systems based on fuzzy logic are fundamental tools for nonlinear 
complex system modeling. The fuzzy sets and fuzzy logic are the base for fuzzy 
systems, where their objective has been to model how the brain manipulates 
inexact information [4]. 

Type-2 fuzzy sets are used for modeling uncertainty and imprecision in a 
better way. These type-2 fuzzy sets were originally presented by Zadeh in 1975 
and are essentially “fuzzy fuzzy” sets where the fuzzy degree of membership is 
a type-1 fuzzy set [5, 13].  The new concepts were introduced by Mendel and 
Liang [6, 7] allowing the characterization of a type-2 fuzzy set with a superior 
membership function and an inferior membership function; these two functions 
can be represented each one by a type-1 fuzzy set membership function.  The 
interval between these two functions represents the footprint of uncertainty 
(FOU), which is used to characterize a type-2 fuzzy set. 

The uncertainty is the imperfection of knowledge about the natural process 
or natural state.  The statistical uncertainty is the randomness or error that 
comes from different sources as we use it in a statistical methodology. There are 
different sources of uncertainty in the evaluation and calculus process.  The five 
types of uncertainty that emerge from the imprecise knowledge natural state are: 

• Measurement uncertainty. It is the error on observed quantities. 
• Process uncertainty.  It is the dynamic randomness. 
• Model uncertainty.  It is the wrong specification of the model structure. 
• Estimate uncertainty.  It is the one that can appear from any of the previous 

uncertainties or a combination of them, and it is called inexactness and 
imprecision. 

• Implementation uncertainty. It is the consequence of the variability that 
results from sorting politics, i.e. incapacity to reach the exact strategic 
objective. 

2 Interval type-2 fuzzy set theory 

A type-2 fuzzy set [5,15] expresses the non-deterministic truth degree with 
imprecision and uncertainty for an element that belongs to a set.  A type-2 fuzzy 

set denoted by , is characterized by a type-2 membership function A�� ( , )
A

x uμ �� , 

where x∈X, u ∈ u
xJ ⊆ [0,1] and 0 ( , ) 1

A
x u≤ ≤μ ��  defined in equation (1). 
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An example of a type-2 membership function constructed in the IT2FLS 
toolbox was composed by a Pi primary and a Gbell secondary type-1 
membership functions, these are depicted in Fig.1.  
 

 
Figure 1: FOU for Type-2 Membership Functions 

 

If A��   is continuous it is denoted in equation (2). 

[0,1]

( ) / /
u
x

x
x X u J

A f u u x
∈ ∈ ⊆

⎧ ⎫⎡ ⎤⎪ ⎪= ⎢ ⎥⎨ ⎬
⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

∫ ∫��             (2) 

where denotes the union of x and u. If ∫ ∫ A��  is discrete then it is denoted by 

equation (3). 

1 1
( ) / ( ) / /

i

i

MN

x ik ik iA
x X i k

A x x f u u x
∈ = =

⎧ ⎫⎡ ⎤⎧ ⎫⎪ ⎪ ⎪ ⎢= =⎨ ⎬ ⎨
⎢ ⎥⎪ ⎪

⎪⎥ ⎬
⎪ ⎪⎩ ⎭ ⎣ ⎦⎩ ⎭

∑ ∑ ∑μ ��
��             (3) 

where denotes the union of  x and u. ∑∑
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If ( ) 1, [ , ] [0,1]u u
x x xf u u J J= ∀ ∈ ⊆ , the type-2 membership function 

( , )
A

x uμ ��  is expressed by one type-1 inferior membership function, ( )u
x AJ xμ≡  

and one type-1 superior, ( )u
x AJ x≡ μ  (Fig. 2),  then it is called an interval 

type-2 fuzzy set [6] denoted by equations (4) and (5). 
 

( ), ,1 | ,
[ ( ), ( )] [0,1A A

x u x X
A

u x x

⎧ ∀ ∈⎪= ⎨ ∀ ∈ ⊆⎪⎩ μ μ� �

��
]
          (4) 

or 

[ , ] [0,1]

[ ( ), ( )] [0,1]

1 / /

1 / /

u u
x x

A A

x X u J J

x X u x x

A u

u x

∈ ∈ ⊆

∈ ∈ ⊆

⎧ ⎫⎡ ⎤
⎪ ⎪⎢ ⎥= ⎨ ⎬⎢ ⎥⎪ ⎪⎢ ⎥⎣ ⎦⎩ ⎭
⎧ ⎫⎡ ⎤
⎪ ⎪⎢ ⎥= ⎨ ⎬⎢ ⎥⎪ ⎪⎢ ⎥⎣ ⎦⎩ ⎭

∫ ∫

∫ ∫
μ μ� �

�� x

                   (5) 

If  is a type-2 fuzzy Singleton, the membership function is defined by 
equation (6). 

A��

1/1 '
( )

1 / 0 'A

si x x
x

si x x
=⎧

= ⎨ ≠⎩
μ ��                        (6) 

 
Figure 2: FOU for Gbell Primary Interval Type-2 Membership Functions 
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We can apply some operators to the fuzzy sets, or we can make some 
operations between them [7,8,13].  When we apply an operator to one fuzzy set 
we obtain another fuzzy set; by the same manner when we combine an 
operation with two or more sets we obtain another fuzzy set.  If we have two 
type-2 fuzzy subsets identified by the letters A��  and B�� , associated to a linguistic 
variable, we can define three basic operations: complement, union and 
intersection (Table 1). 

 
Table 1. Interval Type-2 Fuzzy Set Operations. 

NAME OPERATOR OPERATION 

Union  = join A�� B =�� { (
A

x X

)x
∈
∫ μ��  ( )/ }

B
x xμ��  

( ) ( )( ) ( )[ , ]

1 / /

B x B xA x A xx X

x
∈ ∈ ∨ ∨

⎧ ⎫⎡ ⎤
⎪ ⎪⎢ ⎥= ⎨ ⎬⎢ ⎥
⎪ ⎪⎢ ⎥⎣ ⎦⎩ ⎭
∫ ∫

α μ μ μ μ

α
� � � �

 

Intersection = meet A�� B =�� { (
A

x X

)x
∈
∫ μ�� ( )/ }

B
x xμ��  

( ) ( )( ) ( )[ , ]

1/ /
B x B xA x A xx X

x
∈ ∈ ∧ ∧

⎧ ⎫⎡ ⎤
⎪ ⎪⎢ ⎥=⎨ ⎬⎢ ⎥
⎪ ⎪⎢ ⎥⎣ ⎦⎩ ⎭
∫ ∫

α μ μ μ μ

α
� � � �

 

Negation ¬  

[1 ( ),1 ( )]

( ) /

1/ /
A A

A
x X

x X x x

A x x

x
α μ μ

μ

α
� �

��
��

¬
∈

∈ ∈ − −

⎧ ⎫⎪ ⎪¬ = ⎨ ⎬
⎪ ⎪⎩ ⎭
⎧ ⎫⎡ ⎤
⎪ ⎪⎢ ⎥= ⎨ ⎬⎢ ⎥⎪ ⎪⎢ ⎥⎣ ⎦⎩ ⎭

∫

∫ ∫

 
 

The human knowledge is expressed in fuzzy rule terms with the next 
syntax:  

IF <fuzzy proposition> THEN <fuzzy proposition>. 
 
The fuzzy propositions are divided in two types, the first one is named 

atomic: x is A, where x is a linguistic variable and A is a linguistic value; the 
second one is called compounded: x is A AND y is B OR z is NOT C,  this is 
a compounded atomic fuzzy proposition with the “AND”, “OR” and “NOT” 
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connectors, representing fuzzy intersection, union and complement respectively. 
The compounded fuzzy propositions are fuzzy relationships. The membership 
function of the rule IF-THEN is a fuzzy relation determined by a fuzzy 
implication operator.  The fuzzy rules combine one or more fuzzy sets of entry, 
called antecedent, and are associated with one output fuzzy set, called 
consequents. The Fuzzy Sets of the antecedent are associated by fuzzy operators 
AND, OR, NOT and linguistic modifiers.  The fuzzy rules permit expressing the 
available knowledge about the relationship between antecedent and 
consequents. To express this knowledge completely we normally have several 
rules, grouped to form what it is known a rule base, that is, a set of rules that 
express the known relationships between antecedent and consequents.  The 
fuzzy rules are basically IF <Antecedent> THEN <Consequent> and expresses 
a fuzzy relationship or proposition. 

In fuzzy logic the reasoning is imprecise, it is approximated, that means that 
we can infer from one rule a conclusion even if the antecedent doesn’t comply 
completely. We can count on two basic inference methods between rules and 
inference laws, Generalized Modus Ponens (GMP) [5,6,13,14] and Generalized 
Modus Tollens (GMT), that represent the extensions or generalizations of 
classic reasoning. The GMP inference method is known as direct reasoning and 
is resumed as: 

 
Rule          IF x is A THEN y is B 
Fact      x is A’ 

         _____________________________________ 
Conclusion     yes B’ 

 
Where A, A’, B and B’ are fuzzy sets of any kind. This relationship is 

expressed as    . Fig. 3 shows an example of Interval Type-2 
direct reasoning with Interval Type-2 Fuzzy Inputs. 

B ' = A' o( A → B)

An Inference Fuzzy System is a rule base system that uses fuzzy logic, 
instead of Boolean logic utilized in data analysis [3, 7, 13]. Its basic structure 
includes four components (Fig. 4): 

 
• Fuzzifier. Translates inputs (real values) to fuzzy values. 
• Inference System. Applies a fuzzy reasoning mechanism to obtain a fuzzy 

output. 
• Type Defuzzifier/Reducer. The defuzzifier traduces one output to precise 

values; the type reducer transforms a Type-2 Set into a Type-1 Fuzzy Set. 
• Knowledge Base. Contains a set of fuzzy rules, and a membership functions 

set known as the database. 
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Figure 3: Interval Type-2 Fuzzy Reasoning 

 

 
Figure 4: Type-2 Inference Fuzzy System Structure 

 
The decision process is a task that identifies parameters by the inference 

system using the rules of the rule base data.  These fuzzy rules define the 
connection between the input and output fuzzy variables.  A fuzzy rule has the 
form:  IF <Antecedent> THEN <Consequent>, where antecedent is a compound 
fuzzy logic expression of one or more simple fuzzy expressions connected with 
fuzzy operators; and the consequent is an expression that assigns fuzzy values to 
output variables.  The inference system evaluates all the rules of the rule base 
and combines the weights of the consequents of all relevant rules in one fuzzy 
set using the aggregate operation.  This operation is analog in fuzzy logic to the 
S-norm operator. 
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Fuzzy modeling is a task for parameter identification in a fuzzy inference 

system to obtain an adequate behavior. A fuzzy model with the direct view is 
constructed with the knowledge of an expert. This task becomes more difficult 
when the available knowledge is incomplete or when space is a problem, then 
the use of automatic views are recommended for the fuzzy model. It can be 
considered different point of views for fuzzy modeling, based on neural 
networks, genetic algorithms and hybrid methods. The selection of relevant 
variables and adequate rules is critical for generating a good system. One of the 
biggest problems occurring in fuzzy modeling is dimensionality, that is, when 
the computational requirements grow exponentially in relation of the quantity of 
variables. 

3 Interval type-2 fuzzy system design 

The Mamdani and Takagi-Sugeno-Kang (TSK) Interval Type-2 Fuzzy 
Inference Models [1] and the design of Interval Type-2 membership functions 
and operators are implemented in the IT2FLS Toolbox (Interval Type-2 Fuzzy 
Logic Systems) reused from the Matlab® commercial Fuzzy Logic Toolbox [3]. 

The Interval Type-2 Fuzzy Inference Systems (IT2FIS) structure is the 
MATLAB object that contains all the interval type-2 fuzzy inference system 
information. This structure is stored inside each GUI tool. Access functions 
such as getifistype2 and setifistype2 make it easy to examine this structure. 

The implementation of the IT2FLS GUI is analogous to the GUI used for 
Type-1 FLS in the Matlab® Fuzzy Logic Toolbox, thus permitting the 
experienced user to adapt easily to the use of IT2FLS GUI.  Figures 5 and 6 
show the main screen of the Interval Type-2 Fuzzy Inference Systems Structure 
Editor called IT2FIS (Interval Type-2 Fuzzy Inference Systems). 

The Mamdani  IT2FIS, is designed with n inputs, m outputs and r rules. 
The kth rule with interval type-2 fuzzy antecedents , interval type-

2 fuzzy consequent  and interval type-2 fuzzy facts  are 

inferred as a direct reasoning [1, 7]. The evaluation of this type of reasoning is 
as follows: 

,, ,{
k ik i i lA μ�� ∈ }

}
,, ,{

k jk j j lC σ�� ∈ '
iA��

 

36 



 
Figure 5: IT2FIS Editor 

 

 
Figure 6:  Interval Type-2 MF’s Editor 
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'��
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'
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"
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The defuzzification of the interval type-2 fuzzy aggregated output set  is: '
jC��

'ˆ 2( ( ), ' ')
j

j C
y idefuzztype y typejμ ��=

'
iA��

 where type is the name of the defuzzification 

technique. If  are interval type-2 fuzzy singletons then: 
 

"
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The IT2FIS de Takagi-Sugeno-Kang system is designed with n inputs, m 

outputs and r rules. The kth rule with interval type-2 fuzzy antecedents 
, interval type-1 fuzzy set are used for the consequents sets, 

,, ,{
k ik i i lA μ�� ∈

, 0,

n
k

j k j
i

}

,
1

k
i j if xθ ⋅θ

=
= +∑  and real facts are inferred as a direct reasoning [9, 10]. 

The evaluation of this reasoning is: 

39 



 
[ , ]k kkα α α= = i=1

n [
,

ˆ( )]
k i

iA
xμ ��  

     
, ,1 1

ˆ* ( ) , * ( )
k i k i

n n

iA Ai i
xμ μ� �� �

� �
= =

⎡ ⎤⎛ ⎞ ⎛= ⎢ ⎜ ⎟ ⎜
⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

ˆix ⎞
⎥⎟                                                   (16) 

where [ , ]k kα α α= k  is the firing set of the interval type-1 fuzzy antecedent of 
the kth rule. 

, 0, ,
1

ˆ
n

k k
j k j i j i

i
f xθ θ

=
= + ⋅∑   

where , ,[ ,l r
j k j k j k, ]f f f=

, ,[ ,k k
i j i j i jc sθ = −

 is a real function of the interval consequents of the 

kth rule. If  , where  is the center and , , ,
k k k

i j i jc s+ ] 0,...,i∀ = n ,
k
i jc

,
k
i js  denotes the spread, then , ,l r

j k j k,f f  is expressed as: 

, , 0, ,
1 1

n n
l k k k

j k i j i j i j i j
i i

0,
kf c x c s x s

= =
= ⋅ + − ⋅ −∑ ∑  

, , 0, ,
1 1

n n
r k k k

0,
k

j k i j i j i j i
i i

jf c x c s x s
= =

= ⋅ + + ⋅ +∑ ∑                                         (17) 

With the Karnik and Mendel algorithm [10] the l and are evaluated 
to obtain the FIS output variables, these are expressed as 
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There are also other methods to obtain the previous upper and lower values 
of the output variables, which include approximate methods based on genetic 
algorithms or neural networks [1, 2]. 

4 Experimental results 

The experimental results are devoted to show comparisons in the system’s 
response in a feedback controller when using a type-1 FLC or a type-2 FLC. A 
set of five experiments is described in this section. The first two experiments 
were performed in ideal conditions, i.e., without any kind of disturbance.  In the 
last three experiments, Gaussian noise was added to the feedback loop with the 
purpose of simulating, in a global way, the effects of uncertainty from several 
sources. The complete system was simulated in Matlab, and the controller was 
designed to follow the input as closely as possible. The plant is a nonlinear 
system modeled with equation: 
 

( ) ( ) ( ) ( ) ( ) (0.2 3 0.07 2 0.9 1 0.05 1 0.5 2y i y i y i y i u i u i= ⋅ − ⋅ − + ⋅ − + ⋅ − + ⋅ − )          (19) 

To illustrate the dynamics of the system, two different inputs are applied, 
first the input of equation: 

Going back to the control problem, this system given by equation (19) was 
used in Figure 1, under the name of plant or process, in this figure we can see 
that the controller’s output is applied directly to the plant’s input.  Since we are 
interested in comparing the performance between type-1 and type-2 FLC 
systems, the controller was tested in two ways:  

 
1. One is considering the system as ideal, i.e., not introducing in the modules 

of the control system any source of uncertainty (experiments 1 and 2). 
2.  The other one is simulating the effects of uncertain modules (subsystems) 

response introducing some uncertainty (experiments 3, 4 and 5). 
 

For both cases, the system’s output is directly connected to the summing 
junction, but in the second case, the uncertainty was simulated introducing 
random noise with normal distribution.  We added noise to the system’s output 
y(i) using the Matlab’s function “randn”, which generates random numbers with 
Gaussian distribution. The signal and the added noise in turn, were obtained 
with the programmer’s expression (22), the result y(i) was introduced to the 
summing junction of the controller system. Note that in expression (20) we are 
using the value 0.05, for experiments 3 and 4, but in the set of tests for 
experiment 5, we varied this value to obtain different SNR values. 
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( ) ( ) 0.05y i y i randn= + ⋅                                                              (20) 
 

The system was tested using as input, a unit step sequence free of noise, 
.  For evaluating the system’s response and comparing between type 1 and 

type 2 fuzzy controllers, the performance criteria of Integral of Squared Error 
(ISE), Integral of Absolute Value of Error (IAE), and Integral of Time per 
Absolute Value of Error (ITAE) were used.  In Table 3, we summarize the 
values obtained in an ideal system for each criterion considering 400 units of 
time.  For calculating ITAE a sampling time of sec. was considered. In 
Experiment 5, we tested the systems, type-1 and type-2 FLCs, introducing 
different values of noise , this was done by modifying the signal to noise ratio 
SNR [22], 

( )r i

1.0=sT

η

2

2
signal

noise

s P
SNR

Pη
= =∑
∑

                                                                    (21) 

 
Because many signals have a very wide dynamic range, SNRs are usually 

expressed in terms of the logarithmic decibel scale, SNR(db), 
 

10( ) 10 log signal

noise

P
SNR db

P
⎛

= ⎜⎜
⎝ ⎠

⎞
⎟⎟                                                            (22) 

 
In Table 4, we show, for different values of SNR(db), the behavior of the 

errors ISE, IAE, ITAE for type-1 and type-2 FLCs.  In all the cases the results 
for type-2 FLC are better than type-1 FLC. In the type-1 FLC, Gaussian 
membership functions (Gaussian MFs) for the inputs and for the output were 
used.  A Gaussian MF is specified by two parameters {c,σ}: 

 
21

2( )
x c

A x e σμ
−⎛ ⎞− ⎜ ⎟

⎝ ⎠=                                                                             (23) 
 
c represents the MFs center and σ determines the MFs standard deviation.  

For each of the inputs of the type-1 FLC, three Gaussian MFs were defined 
as: negative, zero, positive. The universe of discourse for these membership 
functions is in the range [-10 10]. For the output of the type-1 FLC, we have 
five Gaussian MFs: NG, N, Z, P and PG. Table 1 illustrates the characteristics 
of the MFs of the inputs and output of the type-1 FLC. 
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Table 1. Characteristics of the Inputs and Output of the Type-1 FLC 
Variable Term Center  c Standard deviation 

σ  
 

Input  e
negative -10 4.2466 

zero 0 4.2466 
positive 10 4.2466 

 
Input  eΔ

Negative -10 4.2466 
Zero 0 4.2466 

positive 10 4.2466 
 

Output cde  
 

NG -10 2.1233 
N -5 2.1233 
Z 0 2.1233 
P 5 2.1233 

PG 10 2.1233 
 

In experiments 2, 4, and 5, for the type-2 FLC, as in type-1 FLC, we also 
selected Gaussian MFs for the inputs and for the output, but in this case we have 
interval type-2 Gaussian MFs with a fixed center, c, and an uncertain standard 
deviation,σ , i.e.,  

 
21

2( )
x c

A x e σμ
−⎛ ⎞− ⎜ ⎟

⎝ ⎠=                                                                              (24) 
 

In terms of the upper and lower membership functions, we have for ( )A xμ , 
 
         )x;,c(N)x( 2A~ σμ =            (25) 
 

and for the lower membership function )(~ xAμ , 
 
        )x;,c(N)x( 1A~

σμ =              (26) 
 

where ( ) ≡x,,cN 2σ

2

2

cx
2
1

e
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −−
σ , and ( ) ≡x,,cN 1σ

2

1

cx
2
1

e
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −−
σ , [18]. Hence, in the 

type-2 FLC, for each input we defined three-interval type-2 fuzzy Gaussian 
MFs: negative, zero, positive in the interval [-10 10], as illustrated in Figures 7 
and 8.  For computing the output we have five interval type-2 fuzzy Gaussian 
MFs, which are NG, N, Z, P and PG, in the interval [-10 10], as can be seen in 
Figure 9. Table 2 shows the characteristics of the inputs and output of the type-2 
FLC. 
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Figure 7:  Input membership functions for the type-2 FLC e

 
Figure 8:  Input membership functions for the type-2 FLC eΔ

 

 
Figure 9:  Output membership functions for the type-2 FLC cde

 

44 

negative positive 

negative positive 

-8 -6 -4 -2 O 10 
delta-e 



Table 2. Input and Output Parameters of the Type-2 FLC. 
Variable Term Center c  Standard deviation 

1σ  
Standard deviation 

2σ  
 
Input e  

negative -10 5.2466 3.2466 
zero 0 5.2466 3.2466 

positive 10 5.2466 3.2466 
 

Input  eΔ
Negative -10 5.2466 3.2466 

Zero 0 5.2466 3.2466 
positive 10 5.2466 3.2466 

 
Output 

 cde
 

NG -10 2.6233 1.6233 
N -5 2.6233 1.6233 
Z 0 2.6233 1.6233 
P 5 2.6233 1.6233 

PG 10 2.6233 1.6233 
 
 
Experiment 1: Simulation of an ideal system with a type-1 FLC.  

In this experiment, uncertainty data was not added to the system, and the 
system response produced a settling time of about 140 units of time; i.e., the 
system tends to stabilize with time and the output will follow accurately the 
input.  In Table 3, we listed the values of ISE, IAE, and ITAE for this 
experiment.  
 

Table 3. Performance Criteria for Type-1 and Type-2 Fuzzy Controllers 
for 20 db Signal to Noise Ratio (After  200 Samples) 

Performance
Criteria 

Type-1 FLC Type-2 FLC 
Ideal 

System 
Syst. with 
uncertainty 

Ideal 
System 

Syst. with 
uncertainty 

ISE 7.65 19.4 6.8 18.3 
IAE 17.68 49.5 16.4 44.8 

ITAE 62.46 444.2 56.39 402.9 
 
 
Experiment 2: Simulation of an ideal system using the type-2 FLC.   

Here, the same test conditions of Experiment 1 were used, but in this case, 
we implemented the controller’s algorithm with type-2 fuzzy logic. The 
corresponding performance criteria are listed in Table 3, and we can observe 
that using a type-2 FLC we obtained the lower errors. 
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Experiment 3: System with uncertainty using a type-1 FLC.  
In this case, equation (25) was used to simulate the effects of uncertainty 

introduced to the system by transducers, amplifiers, and any other element that 
in real world applications affects expected values.  In this experiment the noise 
level was simulated in the range of 20 db of SNR ratio.   
 
Experiment 4: System with uncertainty using a type-2 FLC. 

In this experiment, uncertainty was introduced in the system, in the same 
way as in Experiment 3.  In this case, a type-2 FLC was used and the results 
obtained with a type-1 FLC (Experiment 3) were improved. 
 
Experiment 5.  Varying the Signal to Noise Ratio (SNR) in type-1 and type-2 
FLCs.  

To test the robustness of the type-1 and type-2 FLCs, we repeated 
experiments 3 and 4 giving different noise levels, going from 30 db to 8 db of 
SNR ratio in each experiment.  In Table 4, we summarized the values for ISE, 
IAE, and ITAE considering 200 units of time with a Psignal of 22.98 db in all 
cases.  As it can be seen in Table 4, in presence of different noise levels, the 
behavior of type-2 FLC is in general better than type-1 FLC. 

 
Table 4. Behavior of Type-1 and Type-2 Fuzzy Logic Controllers after 
Variation of Signal to Noise Ratio (Values Obtained for 200 Samples) 

Noise variation Type-1  FLC Type-2 FLC 
SNR 
(db) 

SNR SumNoise SumNoise ISE IAE ITAE ISE IAE ITAE 

  8    6.4 187.42 22.72 321.1 198.1 2234.1 299.4 194.1 2023.1 
10  10.05 119.2 20.762 178.1 148.4 1599.4 168.7 142.2 1413.5 
12  15.86 75.56 18.783 104.7 114.5 1193.8 102.1 108.8 1057.7 
14  25.13 47.702 16.785 64.1 90.5 915.5 63.7 84.8 814.6 
16  39.88 30.062 14.78 40.9 72.8 710.9 40.6 67.3 637.8 
18  63.21 18.967 12.78 27.4 59.6 559.1 26.6 54.2 504.4 
20 100.04 11.984 10.78 19.4 49.5 444.2 18.3 44.8 402.9 
22 158.54  7.56  8.78 14.7 42 356.9 13.2 37.8 324.6 
24 251.3  4.77  6.78 11.9 36.2 289 10.3 32.5 264.2 
26 398.2  3.01  4.78 10.1 31.9 236.7 8.5 28.6 217.3 
28 631.5  1.89  2.78  9.1 28.5 196.3 7.5 25.5 180.7 
30 1008  1.19  0.78 8.5 25.9 164.9 7 23.3 152.6 
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5 Conclusions 

We have presented in this paper the basic concepts of interval type-2 fuzzy 
logic. Also, the use of a toolbox for type-2 fuzzy logic, developed by our group, 
to apply the theory in solving real-world problems is illustrated. Simulation 
results in intelligent control show the feasibility of the approach. Future researh 
work includes applying interval type-2 fuzzy logic to other applications areas, 
and also considering generalized or non-singleton type-2 fuzzy sets. 
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