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1 . Introduction

In mechanical and structural systems the knowledge of all possible solutions is crucial for safety and reliabil-
ity. Due to nonlinearity, for the same set of parameters more then one stable solution may exist [?, ?]. This
phenomenon is called multistability. As an example, we point out the classical tuned mass absorber [?]. This
device is well known and widely used to absorb energy and mitigate unwanted vibrations. However, the best
damping ability is achieved in the neighbourhood of the multistability zone [?, ?]. Among all coexisting solu-
tions only one mitigates oscillations effectively. Practically, in nonlinear dynamical systems with more then one
degree of freedom it is impossible to find all existing solutions without huge effort and using classical methods
of analytical and numerical investigation. That is why we use here a new method basing on the idea of basin
stability [?].

2 . Model of systems and resuluts

The example is a system with a Duffing oscillator and a tuned mass absorber presented in Figure ??. The main
body consists of mass M fixed to the ground with nonlinear spring (hardening characteristic k1 + k2y

2) and
a viscous damper (damping coefficient c1). The main mass is forced externally by a harmonic excitation with
amplitude F and frequency ω. The absorber is modelled as a mathematical pendulum with length l and mass
m. A small viscous damping is present in the pivot of the pendulum.
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Figure 1: The model of the first considered system.

The dimensionless equations are as follows:

(1)
ẍ− abγ̈ sin γ − abγ̇2 cos γ + x+ αx3 + d1ẋ = f cosµτ,

γ̈ − 1
b ẍ sin γ + sin γ + d2γ̇ = 0,

where µ is the frequency of the external forcing and we consider it as controlling parameter. The dimensionless
parameters have the following values: f = 0.5, a = 0.091, b = 3.33, α = 0.031, d1 = 0.132 and d2 = 0.02.

We focus on three solutions. First is 2 : 1 periodic oscilations, second is solution where pendulum is in hanging
down postion (HDP) and third is 1 : 1 rotations (for details see [?, ?]). In Figure ?? we show the probability
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of reaching the three aforementioned solutions obtained using basin stability method. The initial conditions
are random numbers drawn from the following ranges: x0 ∈ [−2, 2], ẋ0 ∈ [−2, 2], γ0 ∈ [−π, π] and
γ̇0 ∈ [−2.0, 2.0]. The frequency of excitation is within a range µ ∈ [0, 3.0]. We take 15 equally spaced subsets
of µ and in each subset we calculate the probability of reaching a given solution. For each subset we calculate
1000 trials each time drawing initial conditions of the system and a value of µ from the appropriate range. Then
we plot the dot in the middle of the subset which indicate the probability of reaching a given solution in each
considered range. Lines that connect the dots are shown just to emphasize the tendency.

In Figure ?? we mark the probability of reaching the 2 : 1 resonance using blue dots. As we expected, for
µ < 1.4 and µ > 2.2 the solution does not exist for details see [?]). In the range µ ∈ [1.4, 2.2] the maximum
value of probability p(2 : 1) = 0.971 is reached in the subset µ ∈ [1.8, 2.0] and outside that range the
probability decreases. A similar analysis is performed for HDP. The values of probability is indicated by the
red dots. As one can see for µ < 0.8, µ ∈ [1.2, 1.4] and µ ∈ [2.6, 2.8], the HDP is the only existing solution.
The rapid decrease close to µ ≈ 1.0 indicates the 1 : 1 resonance and the presence of other coexisting solutions
in this range (see [?]). In the range µ ∈ [1.2, 1.4] the probability p(HDP) = 1.0 which corresponds to a
border between solutions born from 1 : 1 and 2 : 1 resonance. Hence, up to µ = 2.0 the probability of the
HDP solution is a mirror refection of p(2 : 1). Finally, for µ > 2.0 the third considered solution comes in and
we start to observe an increase of probability of the rotating solution S(µ, HDP) as shown in Figure ??(b).
However, the chance of reaching the rotating solution remains small and never exceeds p(1 : 1) = 8× 10−2.
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Figure 2: Probability of reaching given solutions in system giben by Eq. (1).

3 . Conclusions

The presented method let us detect solutions in nonlinear dynamical systems. It is robust and can be used not
only for mechanical and structural systems but also for any system given by differential equations where the
knowledge about existing solutions is crucial.
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