

Hningy. $\cdot \frac{053 \text { id }}{50}$ palke 1 华.
$2+8$

$$
\left\{17^{101}\right.
$$

$4-8$
Q.H.L
k $66 / 52$ worothe lods.
b. 110.6 .14

THE ROTIFERA;

 ORWHEEL-ANIMALCULES.

BY
C. T. HUDSON, LL.D. Cantab.

ASSISTED BY
P. H. GOSSE, F.R.S.

WITH ILLUSTRATIONS.

IN TWO VOLUMES.

TEXT.

LONDON:
LONGMANS, GREEN, AND CO.
1886.

Cæcam mihi in cunctis fidem haberii haud postulo; id tantum optans, ut continua indagatione ac studio mea aliquando confirmentur, aut me a vero aberrasse demonstretur. Perscrutatoris vel exactissimi, et quamvis summam adhibeat, attentionem fugere aliquando quædam pessunt; et casus nonnunquam fortuito nobis offert, quæ intensissima sæpe cura frustra quæsivimus.-J. Baster.

C'est dans les livres de la Nature, qu'on doit lire, quand on veut travailler sur l'Histoire Naturelle; mais on ne peut pas y lire, quand on veut. Il faut des lieux, des saisons et des circonstances favorables pour faire des observations nécessaires. Quelques fois a la vérité on peut aider à faire naitre des circonstances heureuses, mais plus souvent il faut que le hazard noms serve.-RÉamur.

THE R(OTIFERA.

VOLUME I.

PRINTED BY spottiswoode and co., new-istreet square LONDON

THE ROTIFERA;
 OR
 WHEEL-ANIMALCULES,

BOTH BRITISH AND FOREIGN.

BY
C. T. HUDSON, LL.D. Cantab., F.R.S. ASSISTED BY

P. H. GOSSE, F.R.S.

IN TWO VOLUMES, WITH SUPPLEMENT.

VOLUNE I.

WITH ILLUSTRATIONS.

LONDON :
LONGMANS, GREEN, AND CO.
and new york : 15 East 16^{mm} Street.
1889.

Alll rights reserved.

Cæcam mihi in cunctis fidem haberi haud postulo; id tantum optans, ut continua indagatione ae studio mea aliquando confirmentur, aut me a vero aberrasse demonstretur. Perscrutatoris vel exactissimi, et quamvis summam adhibeat, attentionem fugere aliquando quædam possunt; et casus nonnunquam fortuito nobis offert, quæ intensissima sæpe cura frustra quæsivimus.-J. Baster.

C'est dans les livres de la Nature, qu'on doit lire, quand on veut travailler sur l'Histoire Naturelle; mais on ne peut pas y lire, quand on veut. Il faut des lieux, des saisons et des circonstances favorables pour faire des observations nécessaires. Quelques fois à la vérité on peut aider à faire naitre des circonstances heureuses, mais plus souvent il faut que le hazard nous serve.-Réaumur.

PREFACE.

Nearly fifty years have passed, since Ehrenberg's successful invasion of the unseen world was made known by the publication of his noble work, Die Infusionsthierchen; and twenty-five since Dr. Arlidge's edition of Pritchard's excellent History of Infusoria brought together, in a convenient form, the results of the long and patient observation of many investigators.

Meanwhile memoirs on various species of Rotifera, as well as the number of species themselves, kept slowly increasing; and, what is of greater moment, the prolonged study of these interesting atoms, by several acute observers, has made clear some of the perplexing difficulties in their structure, and swept away many mistakes both of observation and inference.

Under these circumstances the authors of this work believed that such a book as the present was much wanted; and they hoped that their prolonged study of the Rotifera (continued, in the case of each author, almost daily, for upwards of thirty years), as well as their invariable habit of drawing from life all that they had observed, would enable them, by means of their long acemmulated stores of drawings and notes, to meet this want.

They venture to think, from the manner in which, so far, the book has been received, that this belief and hope have both been justified; and in confirmation of the favourable opinions of it that have already been expressed, would point out (they trust with pardonable pride) that this work contains more than 120 species which were unrecognized when Dr. Arlidge wrote; that nearly the whole of these have been added to science by the authors themselves; that about eighty of these new species, chiefly among the Ploima, have been found by one of the authors during the last fifteen months; and that the other by the discovery, among other remarkable forms, of Pedalion mirum, has put beyond question the fact that the Rotifera, in one point at least, are closely linked to the Arthropoda.

The thirty coloured plates have been divided nearly equally between the two colleagues ; the small uncoloured plates A, B, C are by Dr. Hudson. The figures in plate D are taken from various sources; but in every case, both here and in the coloured plates, the original authority has been indicated ; the initials G or H being attached to those figures which have been drawn from the life by Mr. Gosse or Dr. Hudson. Mr. Gosse's independent portions of the text are always inclosed in square brackets [], and marked at the end with his initials, P.H.G.: the portions not so marked are by Dr. Hudson, including the first four chapters.

Throughout the whole of the work Dr. Hudson has had the invaluable assistance of Mr. Gosse's MS. notes, and of his close and constant revision of the proofs.

The hearty thanks of the authors are due to Mr. Frank Crisp, one of the secretaries of the Royal Microscopical Society, and editor of its Journal, for the great service that he has rendered them by forwarding early notices of all the pamphlets and papers published on the subject: anyone who is, or has been, engaged in a task similar to this will know what time and labour have thus been spared, by his thoughtful kindness.

They are, too, greatly indebted to numerous kind correspondents for living specimens, often obtained with no little expenditure of time and trouble, and for the records of their observations on them ; as well as for valuable preparations of rare species, which could not be sent alive: to these correspondents the authors tender their grateful thanks. In each case where the speeimen was new or rare the name of the place in which it was found, and (when permitted) the name also of the finder, has been added to the deseription. They wish, however, to make special mention of how much they owe to Miss Saunders of Cheltenham, Miss Davies of Woolston, Dr. F. Collins, and Mr. John Hood of Dundee, for their constant kindness in sending a profuse number of specimens of many species, some of which were of unusual interest.

It is so natural to recommend one's own favourite pursuit that the recommendation often carries but little weight; and yet there is much to be said in favour of the study of the Rotifera, that cannot be gainsaid. They are to be found almost everywhere ; they cost nothing; they require neither expensive lenses nor an elaborate apparatus ; they tempt us to explore the country, and to take pleasant walks; they are beautiful themselves; and they suggest all kinds of difficult questions on life and being. Moreover there is happily still a great store of scientific ignorance concerning them, thus leaving an ample field for fresh discoveries.

Nor is this all. The study of these animated specks (in which teeth, stomach, muscles, and even a brain lie hidden in the compass of an invisible mote) irresistibly leads the mind to the contemplation of Him, whose almighty hand is as visible in an atom of this animated dust, as it is in the myriad sparkles of the starlit heavens.

CONTENTS

or
THE FIRSTVOLUME.

CHAPTER I.
TAGE
NTRRODUCTION

CHAPTER II.

HISTORY OF THE LITERATURE CONCERNING THE ROTIFERA . . 15
CHAPTER III.
ON THE CLASSIFICATION OF THE ROTIFERA 25

CHAPTER IV.
ON THE HAUNTS AND HABITS OF THE ROTIFERA . . . 35

CHAPTER V.
RHIZOTA, (FLOSCULAKLADE) 43

CHAPTER VI.

RHIZOTA; (3ELICERTADE) 67

CHAPTER VII.

bdelloida 95

CHAPTER VIII.

ploima, (L-Lohicati) 117

THE ROTIFERA.

CHAPTER I.

INTRODUCTION.

Contemplatio Nature pregustus est voluptatis cælestis, constans animi gaudium, perfectique ejus solatii initium, summusque felicitatis humanæ apex. Cum Anima hujus particeps fuerit, ex gravi quasi sopore excitata, in luce ambulat, sui ipsius obliviscens, in cælesti, ut ita dicam, terra, inque terrestri ccelo.-J. Baster.

Inest in explicatione Naturæ, insatiabilis quædam e cognoscendis rebus Voluptas, in qua una, confectis rebus necessariis, vacui negotiis, honeste ac liberaliter possumus vivere.-Cicero, De Finibus, lib. iv. cap. 5.

CHAPTER 1.

INTRODUCTION.

On the Somersetshire side of the Avon, and not far from Clifton, is a little combe, at the bottom of which lies an old fish-pond.

Its slopes are covered with plantations of beech and fir, so as to shelter the pond on three sides, and yet leave it open to the soft south-western breezes, and to the afternoon sun. At the head of the combe wells up a clear spring, which sends a thread of water, trickling through a bed of osiers, into the upper end of the pond. A stout stone wall has been drawn across the combe from side to side, so as to dam up the stream; and there is a gap in one corner, through which the overflow finds its way, in a miniature cascade, down into the lower plantation.

The pond's smooth surface is prettily diapered with the green leaves of many a water-plant, and with the sharp images of three famous beeches growing close to its edge : but to a naturalist's eye the old wall is the more charming object. Time has crumbled away the mortar near the water's edge, and made a thousand nooks and crannies; which, densely clothed with alga, are the haunts of myriads of living creatures.

If we approach the pond by the gamekeeper's path from the cottage above, we shall pass through the plantation, and come unseen right on to the corner of the wall ; so that one quiet step will enable us to see at a glance its whole surface, without disturbing any living thing that may be there.

Far off at the upper end a water hen is leading her little brood among the willows; on the fallen trunk of an old beech, lying half-way across the pond, a vole is sitting erect, rubbing his right ear ; and the splash of a beech husk just at our feet tells of a squirrel, who is dining somewhere in the leafy crown above us.

But see! the water rat has spied us out, and is making straight for lis hole in the bank, while the ripple above him is the only thing that tells of his silent flight. The water hen has long ago got under cover, and the squirrel drops no more husks. It is a true 'Silent Pool,' and without a sign of life.

But if, retaining sense and sight, we could shrink into living atoms and plunge under the water, of what a world of wonders should we then form part! We should find this fairy kingdom peopled with the strangest creatures:-creatures that swim with their hair, that have ruby eyes blazing deep in their necks, with telescopic limbs that now are withdrawn wholly within their bodies and now stretched out to many times their own length. Here are some riding at anchor, moored by delicate threads spun out from their toes; and there are others flashing by in glass armour, bristling with sharp spikes or ornamented with bosses and flowing curves; while, fastened to a green stem, is an animal convolvulus that by some invisible power draws a never-ceasing stream of victims into its gaping cup, and tears them to death with hooked jaws deep down within its body.

Close by it, on the same stem, is something that looks like a filmy heart's-ease. A curious wheelwork rans round its four outspread petals; and a chain of minute things, living and dead, is winding in and out of their curves into a gulf at the back of the
flower. What happens to them there we cannot see ; for round the stem is raised a tube of golden-brown balls, all regularly piled on each other. Some creature dashes by, and like a flash the flower vanishes within its tube.

We sink still lower, and now see on the bottom slow-gliding lumps of jelly that thrust a shapeless arm out where they will, and, grasping their prey with these chance limbs, wrap themselves round their food to get a meal; for they creep without feet, seize without hands, eat without mouths, and digest without stomachs.

Time and space, however, would fail me to tell of all the marvels of the world beneath the waters. They would sound like the wild fancies of a child's fairy tale, and yet they are all literally true; and, moreover, nearly all of them are true of that rotiferous world which it is my purpose to describe.

But it will be naturally asked by those of my readers to whom the subject is new, "What is a Rotiferon? " and no doubt one would say that a book about Rotifera ought to begin at the beginning, and define precisely what a Rotiforon is.

Precise definition is, however, in such a case, quite out of the question; for, though it is easy enough to define the typical form of a natural group of animals, or even to include in the definition forms that must be placed not far off from the central one, yet in the ambitious attempt to frame a definition that shall include many families, we find (as we get farther away from the typical form) that one by one all the positive statements are disappearing from our definition; and at last we have nothing left but the mere shell of a proposition, with everything worth the stating struck out of it.

The Rotifera, then, are small aquatic animals varying from $\frac{1}{8}$ to $\frac{80}{8}$ of an inch in length, and deriving their name from a wheel-like appearance produced by fine circlets of hairs seated on the front of their heads. A few species are marine; but the great majority known to us belong to fresh water, and are to be found in ditches, ponds, reservoirs, lakes, and slowly running streams, sometimes attached to the leaves and stems of water plants, sometimes creeping on the algre, sometimes swimming freely through the water. Althongh the greater number of the genera resemble each other in the chief features of their internal organization, so as to form a very natural group of animals, yet there are several aberrant forms which would render it a dificicult matter to include them all in one precise definition,

This indeed could be done only by introducing so many qualifications and exceptions to every statement, that the portrait would be rendered too vague for any reader but one already familiar with the whole subject.

Of the greater number, however, it is enough to say:
(1) That they swim by means of hairs on the front of their heads.
(2) That they possess a simple stomach and intestine ; and peouliar jaws.
(3) That they have muscles which are sometimes striated, and which often pass freely through the cavity of the body.
(4) That they have a well-developed vascular system.
(5) That their nervous system consists of one ganglion, with nerve threads radiating to their organs of sense.
(6) That they are diœecious ; have ova of two kinds ; and do not pass through any distinet metamorphosis.

Though the above six statements are precise enough, and in the main true, yet it will be as well for those, who are not versed in the subject, to pass them over for the present, and first to master the structure of some one typical Rotiferon; as, when this has been done, the general conception of a Rotiferon will be easily grasped, and the variations from the type readily followed and understood.

For this purpose I have selected Brachionus rubens, whose figure is given much magnified in P1. A, fig. 1. The genus Brachionus is to be met with almost everywhere. It is hardly possible in summer to take a dip of water from a garden-pond, or to gather the alga from its walls, without bringing up some specimen of the genus, Brachionus rubens is a fairly common species. It is comparatively a large handsome
animal, very suitable for the purpose of description, and one which bears the temporary captivity of a compressorium remarkably well.

The Female.

Fig, 1, Pl. A, represents the dorsal aspect of the female of this Brachionus, and fig. 2 the upper part of the ventral aspect. The drawings are from life ; but the outlines of the various organs have been made unnaturally sharp and distinct, for the sake of clearness. The dorsal and ventral surfaces may be distinguished from each other in the great majority of the Rotifera by the following considerations:

First, as to the dorsal surface :
(1) It is arched (fig. 5).
(2) The stomach (fig. 1, s) passes down it ; between it and the ovary (fig. 1, oy).
(8) The cloaca (fig. 1, ol) is on it ; in the median line.
(4) There is almost invariably one antenna (fig. 1, a) (or a coalesced pair) on it; placed anteriorly on the median line.
(5) The eye or eyes (fig. 1, e) are towards the dorsal surface.
(6) In swimming over objects the Rotiferon keeps the dorsal side upwards.

Secondly, as to the ventral surface (fig. 2) :
(1) It is comparatively flat.
(2) The entrance to the mouth lies on it (figs. 2, 5, bf).
(8) The ovary is placed close to it (fig. 2, 5, oy).

In the case of those Rotifera whose dorsal and ventral surfaces have much the same contour, the above considerations present points of difference enough to decide between the two. ${ }^{1}$
B. rubens is inclosed in a case or lorica (figs. 3, 4, 5) which is both hard and transparent. The internal structure can be readily seen through it; and, by suffering the animal to dry on a glass slip, and then dropping on it a solution of caustic potash, the softer portions of the body may be dissolved away, and the lorica left unharned.

It will then be seen to be closed above and below, with an opening at each end, like the shell of a tortoise. From the front opening the head is protruded, and from the hind the pseudopodium or foot (fig. 1, f).

The lorica has a glassy shining surface, and is armed with six short sharp spines in front, of which the central pair is the longest. Four of them are distinctly on the dorsal surface ; but the outmost pair belongs as it were to both surfaces, being on the edge where they meet.

The front edge of the ventral surface (the mental edge as it is sometimes termed) ${ }^{2}$ is hollowed out symmetrically into graceful curves (fig. 4).

The lorica widens from the front backwards, till, at about two-thirds of its length, it reaches its maximum breadth; and is then rounded off by two ogee curves that are separated, by a square noteh on the dorsal surface, but by a nearly circular one on the ventral. In consequence, it is often said that the lorica has two blumt spines behind on the dorsal surface; but this is somewhat misleading, as these so-called spines are merely the sides of the excavation. Strong ridges from each of the four central front spines run down about one-third of the dorsal surface (fig. 8), and still longer ridges mark the ventral surface with sweeping curves (fig. 4).

The median portion of the lorica is by far the deepest, and in it the internal organs mainly lie. The dorsal surface of the lorica slopes upwards from the head to its line of greatest width (fig. 5), and then abruptly falls to meet the under surface ; the whole lorica thinning off there into closely approaching plates, through the excavation in which the foot can pass. Each side, too, of the median portion of the lorica thins off in a similar manner ; so that the dorsal and ventral surfaces meet everywhere (except at the head) in a sharp edge.

[^0]The head is shaped somewhat like a truncated cone, with the larger end forward; posteriorly it is studded with several small rounded lobes ; while from its anterior surface rise three fleshy protuberances, crowned with stout vibrating hairs called styles.

Each side of the front of the head, or corona, ${ }^{1}$ is rounded into a nearly circular lobe, and along the rim of each lobe runs an mbbroken row of smaller vibrating hairs, called cilia, which are continued so as to meet each other on the dorsal surface. It is by means of this apparatus that Brachionus both swims and procures its food.

As the head is seldom withdrawn into the lorica for more than a moment or two, and as the cilia begin to play the instant it is protruded, Brachionus would have been condemned to almost perpetual motion if it had not been for the foot. This organ is provided at its extremity with two pincer- like processes, or toes (fig. 1, t); which, however, do not pinch, but which can adhere even to glass by means of a viscid secretion that flows through their tips.

The foot-glands (fig. 1, fg), which secrete this substance, are two elub-shaped organs running down the whole length of the foot. They are to be met with in nearly all the Rotifera.

The cilia, which are set closely round the edge of the corona, lash the water with such fury that it is impossible usually to follow the action of any individual cilium; bnt, by selecting an animal whose corona is close to the covering glass of the live box, some spot can often be found where the action of the cllia is checked by their striling against the glass; and, under these circumstances, it is easy to understand their action. Each cilium lashes sharply downwards (like a whip) on the corona, and then rises gradually into its place again, to repeat the action continuously, so long as the corona is expanded. As, however, the cilia do not do this simultaneonsly, but in turn, one after the other, in very rapid succession, those that can be seen together at any given moment are in every phase, from complete extension to complete depression; thus giving rise to various wavelike illusory appearances, according to the illumination, and also to the plane on which the objective is brought to focus. One of the most common of these appearances is that of a toothed wheel, which is so well imitated by the Philodinada, that early observers thought such wheels existed, and drew them like the escapement-wheel of a watch. ${ }^{2}$

If a little carmine be mixed with the water, two beatifal coloured spirals will be produced by the action of the ciliary wreaths, one on each side of the head leading down to the buccal funnel. The orifice of the buccal funnel, or, as it will be termed, the buccal orifice, lies in a niche on the ventral surface; it is fringed by the ciliary wreath, which here dips down on either side of the corona, and passes round the V-shaped opening of the buccal funnel (fig. 2, bf) -that is, of the passage leading from the niche to the mastax. The atoms brought by the ciliary currents pass down the buccal fumnel, which itself is lined with cilia; and, if minterrapted, enter the mastax (figs. 1, 2, mx), a muscular bulb containing the trophi (fig. 1, ti) or teeth. Butit is not every atom whirled down the buccal funnel that is suffered to reach the mastax ; for there are two lip-like processes (fig. 2, tp) rising from the mastax, which can be seen every now and then thrust up and down the buccal funnel; and which by closing prevent the passage of morsels that are not to the Rotiferon's taste. The sudden check, produced by the lips on the inflowing current, always sweeps out of the buccal funnel whatever the animal desiros to reject; and a constant stream of rejected particles may be seen issuing from the buccal funnel midway between the spirals caused by the corona.

The Mastax.

The mastax (figs. 1, 2, $m x$; fig. 6) is the muscular covering of the jaws or trophi. It has thick walls, and is slightly three-lobed, each lobe investing one of the three principal parts of which the trophi consist. There is an opening in front towards the ventral surface at the bottom of the buccal funnel, whose walls here merge into those of

[^1]the mastax ; and there is a postorior opening towards the dorsal surface, just above the esophagus.

The contained hard parts, or trophi, consist of two hammer-like bodies, the mallei (fig. 6, ms ; fig. 9), and of a third anvil-piece called the incus (fig. 6, is). Each malleus has for its head or uncus (figs. 6, 7, 9, us) a piece which, when spread out by pressure, is like a comb with five unequal teeth (fig. $8, u s$), but which, under ordinary circumstances, is much curved, so as to bring the teeth close together.

The handle of each of these hammers is a single stout piece called the manubrium (figs. 6, 7, 8, 9, mm). The anvil or incus roughly resembles a triangular prism, of which one end (the dorsal one) has been tapered to a point (fig. 10). It is divided into two equal pieces, the rami (figs. 6, 7, rs), by a cut from the dorsal to the ventral surface, so as to leave them just attached to each other at the bottom of the broader end. The two rami rest there on what looks like a stem, the fulcrum (figs. 6, 7, fm), but which viewed laterally is seen to be a slender plate (fig. $10, \mathrm{fm}$).

Muscles, springing from the walls of the mastax, are attached to various parts of the mallei and rami, and act so as to cause the unci to approach and recede from each other. But each uncus is fastened to the corresponding ramus ; and, in consequence, as the mallei recede the rami are opened, and when the mallei approach each other the rami are closed. ${ }^{1}$

From these arrangements it results that all the food which falls from the buecal funnel into the mastax, is first torn by the sharp points of the unci and then crushed between the opposing surfaces of the rami. On passing the rami, the food enters at once into the cesophagus.

The Esophagus.

The asophagus (fig. $2, \infty$) is a short tube, with thick walls, connecting the mastax with the stomach. The thickness of the walls may be readily seen by feeding Brachionus with carmine, and watching the stream of coloured particles trickle through the csophagus into the stomach. Their course, in a narrow central line, shows clearly the small dimensions of the passage.

There is always an appearance of water flowing through the cesophagus, even when the animal has withdrawn its head into the lorica, and when of course the action of the ciliary wreath has ceased. This appearance seems to be due to minute cilia lining the œsophagus, which by their joint rhythmical action give rise to illusory waves much larger than any real waves could bo. That this explanation is not a mere guess will be shown farther on in the case of the Floscules.

The Glands.

Seated near the top of the mastax, and on either side of the buccal funnel, are two clear vesicular organs ; which are possibly salivary glands (fig. 2, sg), and are unusually large in Brachionus. They consist of two or three lobes on either side, and are best seen from the ventral side, as the buccal funnel enters the mastax, a little below the summit, on that side.

There is a pair of glands called the gastric glands (figs. 1, 2, gg) placed at the anterior end of the stomach, and on either side of it. They exhibit cells with central nuclei imbedded in a granular substance. Each has a long, wide, nucleated duct connecting it with the upper end of the stomach. They probably perform the function of a rudimentary liver, and possibly cause, by their secretion, the peculiar yellowbrown colour which is so frequently met with in the stomach. The foot-glands have already been described in p. 6 .

The Stomach and Intestine.

The stomach (figs. $1,2, s$) is a simple sack, with thick cellular walls, which are frequently

[^2]studded with what appear to be bright yellow oil-globules. It is divided by an invagination at its lower third into an upper portion, the true stomach, and a lower which may be considered to be a short intestine (fig. 1, i). This lower portion frequently lies transversely to the longer axis of the stomach. Both are thickly ciliated ou the inner surface, but the cilia of the intestine are larger, and more readily seen.

When a portion of digested food has been transferred from the stomach to the intestine, it is kept slowly revolvingby the cilia, till it is suddenly expelled through the cloaca (fig. 1, cl). The intestine is connected with the cloaca by a short and very dilatable tube or reetum (fig. 1, r), and ends (as has been already said) on the dorsal surface, in the median line, just at the commencement of the foot. The rectum also is ciliated, so that the whole of the alimentary tract from the top of the buccal funnel down to the cloaca, with the exception perhaps of the passage through the mastax, is lined with cilia.

The Vasoular System.

At the right of the intestine (viewed dorsally), and just under fhe line of the lorica's greatest width, lies the contractile vesicle (fig. 1,cv). This is a delicate bladder which ulternately dilates and contracts, and with some regularity.

The contraction is produced by fine muscular threads, which ramify in its walls, and cause it to empty its contents through a duct into the cloaca. Its distension is most probably due to the fluid poured into it by two looped and twisted tabes (fig. 1, lc), which may be seen passing to it, one on each side of the body down from the head.

This is, however, a much disputed question, which will be discussed fully in another place, along with the probable function of the whole apparatus.

The tubes appear to be surrounded with a granular floccose material, which here and there dilates into irregular masses. Attached to the tubes on each side, at tolerably regular intervals, are five little tag-like bodies (fig. $1, v t$), in which a flickering motion may be constantly seen, sometimes presenting the appearance of a waving cilium. There is much difference of opinion about the true structure of these tags-the vibratile tags, as they are termed-but it is probable that their office is to direct the perivisceral fluid into the tubes, and along them into the contractile vesicle, whence it is driven at intervals through the cloaea.

The Muscles.

The dorsal museles are shown in fig. 8 , and the ventral in fig. 4 . From the posterior dorsal surface of the head, on each side of the cephalie ganglion, and close to it, a stont muscle (fig. 8, 1, 1) slopes backward towards the dorsal surface, and is attached by a broad base to the lining membrane of the lorica. Outside this pair is a second (fig, 8, 2,2 , similarly attached, and rumning rather obliqnely underneath the first pair, but not quite so stout. A similar pair (fig. 4, 4, 4) is attached to the posterior ventral surfice of the head, and to the liming of the ventral surface of the lorica. The united action of these three pairs of muscles withdraws the head into the lorica.

When it is so withdrawn, a pair of diverging muscular threads (not given in the figure) can be seen fixed to the lorica, just below its central notch, with their other ends fastened to the head. These evidently oppose the action of the three other pairs (figs. 3, 1, 1, 2, 2, 4, 4, 4) and help to draw out the head again. They are assisted in this by a further pair of muscles (also omitted from figs. 8 and 4), each of which is fastened at one end to the base of one of the outermost anterior spines, and at the other to a side lobe of the head.

But the principal part in driving out both the head and the foot is borne by transverse muscles, which are attached to the lorica at the side, and are closely applied throughout their length to the soft organs of the body. Their sudden contraction compresses the perivisceral fluid, and so forces out the retracted head or foot. Nothing could be
more effective than this hydrostatic pressure ; and under it the retracted foot darts out of the lorica with amazing swiftness.

When the head is protruded, and the cilia are all in full play, Brachionus may often be seen to move its head, without withdrawing it, first to one side and then to the other, depressing the side lobes alternately. This action is effected by two pairs of short muscles (figs. 8, 4, 3, 3), one on each side, attached to the lorica at about one-third of its length from the front, and at their anterior ends inserted into the side lobes.

Just as the muscles attached to the dorsal surface control the action of the head, so do the majority of those of the ventral surface give its various motions to the foot. They are six in all. First, two central museles, closely parallel (fig. 4, 5, 5), and each divided into two branches at its upper end, run from nearly the middle of the lorica down to the bottom of the foot, where they appear to be attached each to one of the toes. Next, two slighter ones (fig. 4, 6, 6), which pass up from the base of the toes, one on each side of the foot, and then diverge right and left from the central pair to points on the lorica about half-way between the median line and its edge. Besides these, there is, attached to the upper end of the foot and on each side of it, a muscle (fig. $4,7,7$) which diverges still farther from the median line, and is fastened not far from the margin. All these six ean act together, so as to draw the foot suddenly within the lorica; while, by contracting some and relaxing others, the animal can whisk the foot about, or, if the toes be adherent to any substance, can shake its whole body vigorously from side to side - a favourite action.

The Nervous System and Organs of Sense.

The nervous system is represented by a bean-shaped cephalic ganglion (figs. 11, 1, gn) seated within the head on its dorsal side. Its substance is marked with what appear to be the hexagonal boundaries of cells. It is two-lobed posteriorly, and on the niehe between the lobes lies the crinson eye (fig. 11, e).

The pigment is distinctly curved round both sides of the niche so as to lie on each lobe, and to give rise to the notion that the eye may really represent a pair fused into one. I have not detected in this Rotiferon the clear spherical lens which is so plainly visible in some of the others. ${ }^{1}$ Attached to the upper portion of the cephalie ganglion on the dorsal side is a conical and very flexible tube (fig. 1, a), whose broad base rests on the ganglion, and whose free end passes through the sinus in the lorica between the two longest spines. This is the dorsal antenna. A bulb armed with motionless sete completely closes the orifice of the tube; and is so attached to its rim, that when this bulb is withdrawn by the contraction of a muscular thread fastened to its base, the tube is drawn down also by being infolded like the finger of a glove (fig. 15).

There are two other setigerous bodies, close to the dorsul surface of the loriea, and with the setre protruding through the surface. They are near the margin on each side, a little above the line of greatest breadth (fig. 1, a^{\prime}). They are rocket-shaped structures, the cylindrical heads earrying on their blunt, rounded, outer ends, radiating setw; and giving off, from their inner and pointed ends, cords which can be traced but a little way below the surface.

But the list of the tactile organs of Brachionus is not yet exhausted. From the two spaces on the dorsal side of the corona lying between the three large setigerous prominences (fig. 1, sp) rise two papilla, each bearing a long and very flexible style (fig. 1, ts). A similar style (fig. $2, t^{\prime} s^{\prime}$) is placed on the ventral side, just within the rim of each ciliary circlet; and another pair on the top of the central prominence. The whole six are very mobile; and, from the way in which they seem to be used to explore in all directions, there is little doubt that they are organs of touch.

[^3]
The Reproductive System.

The reproductive system of the female is only too conspicuous; as the presence of a large ovary (figs. 1, 2, oy), and of one or two opaque ova in different stages of growth. frequently obscures the sight of the other organs.

The ovary is studded with large and rather irregularly shaped germs (figs, 1, 2, g) ; and the ova (fig. 1, om), so long as they are within the body, are dark, granular, and homogeneous. The ovary opens doubtless by an oviduct into the cloaca, but this I have not been able to see. This is the arrangement that exists in other cases wherever I have seen the oviduct. The mature ovum is expelled very quickly; and the egg often remains attached to the animal by a thread till the young escapes by rupturing the shell (if it may be so termed) in which it is inclosed. If, however, a Brachionzs, with two or three eggs attached, be held in the compressorium, it will frequently free itself by pushing with its foot against the eggs, and so breaking the threads.

The Egg.

Of the eggs and their development it is unnecessary here to say more than that B. rubens has two kinds of female eggs, nearly of the same size ; of which the one has a smooth, transparent, membranous covering or shell, while the other has a thick opaque shell, ornamented with hemispherical knobs. The former is the ordinary "summer" egg, and the latter the so-called "lasting," "winter," or "ephippial" egg. In shape, too, the ephippial egg differs from the ordinary female one. It is much bigger at one end than the other, and at the smaller end there is a projecting neck and cover (fig, 16).

The male eggs are smooth and semi-transparent like the ordinary female egg; but are somewhat rounder in shupe, and barely half the size. They ocour, too, in larger clusters; for while it is usual to see only two or three smooth female eggs, or one ephippial egg, attached to the mother, no fewer than eight or ten male eggs may be seen carried about together.

The Mate.

The young female Brachionus when hatched resembles its mother; but the young male is a widely different animal (figs. 18, 14). It is about one-third of the length of the adult female's lorica, and it has neither lorica, mastax, jaws, nor stomach.

The head bears a simple circle of long cilia, and there is a red eye on a cepholic gamglion placed just as it is in the female. The vascular system, with its tortuous canals, vibratile tags, and contractile vesicle, is also present; and the foot is furnished with the usual pair of glands ; but of a nutritive system there is not the slightest vestige.

Nearly half the body is oceupied by a great sperm-sack (figs. 19, 14, ss), in which under favourable circumstances the spermatozoa themselves may be seen in motion. The sperm-sack ends in a short protrusile tube, the penis (figs, 18, 14, p), ciliated at the end, and placed just above the foot.

In the larger and more transparent mules of other genera-notably in that of Asplanctuna Ebbesbornii-there are special muscles for drawing back the protruded penis ; and, though I have failed to see these in the male of B. rubens, it probably possesses a similar structure.

This strangely unfurnished ereature leads a brief life of restless energy, now darting from place to place, so swiftly that the eye can scarcely follow it, and now whirling round as if anchored by its curved foot and penis.

It often circles round the female, attaching itself now here, now there, and forcing its companion to waltz round and round with it, from the top of the phial to the bottom. With animals so active and so small it is difficult to be certain of having seen actual

[^4]coitus, but Mr. Gosse had this good fortune in the case of a closely allied species, B. pala. He says:
"I collected about a dozen females, half-grown and adult, and placed with them two lively males that had been hatched during the night. I directed my attention principally to one of these, as I could not watch them both. It soon came near one of the females, when it seemed to become animated by a sort of frenzy; describing with excessive rapidity a circle, of which its head formed the circumference and its foot the centre. The extremities were incurved in the direction of its circular movement. After a while it left off, and began to play about the body of a female, moving over and round the lorica, while she whisked about the foot, as if to lay hold of him; at length she drew in her foot, and that of the male appeared to adhere to it; and I distinetly saw the thick penis presented to the cloaca, and for a moment inserted about half its own length ; then it was instantly drawn out, and the male began his frenzied gyrations again." ${ }^{1}$

It is obvious, even from the brief account here given, that several highly interesting questions arise concerning the reproductive system of the Rotifera. For instance, in what respects, besides outward form and covering, do the ephippial eggs differ from the smooth female eggs? and what leads to their production?

What part, if any, does the male play in these differences? and how is it that one female produces none but male, while another has none but female eggs ?

Again, why are the males of so strange a structure? and why do they appear only for a short time during the year? and is their appearance due to external causes, or are they the inevitable completion of a cycle of reproductive changes?

Unfortunately it is much easier to ask these questions than to answer them. The observations that have been made on these points are but scanty; and, to some extent, contradictory; and the difficulties in the way of persistent investigation are by no means slight.

[^5]
CHAPTER II.

THE HISTORY OF THE LITERATURE CONCERNING THE ROTIFERA.

Multum egerunt, qui ante nos fuerunt, sed non peregerunt. Multum adhue restat operis, multumque restabit; nec ulli, nato post mille secula, precludetur occasio aliquid adhuc adjiciend.-SENECA, Epist. lxiv.

Cæterum nullius in verba jurans, aliorum inventa consarcinare haud institui; quæ ipse quæsivi, reperi, debitaque attentione et patientia repetitis vicibus, diversoque tempore annorum serie observavi, propono.-O. F. Müller, Verm. Terrest. et Fluv. præf.

CHAPTER II.

THE HISTORY OF THE LITERATURE CONCERNING THE ROTIFERA.

It is nearly 200 years since Mr. JOHN HARRIS, F.R.S., Rector of Winchelsea, published in the "Philosophical Transactions" 1 the following " Microscopical Observations" on a drop of some rain water which " had stood in a gallipot in his window" for about two months:
"I saw here an animal like a large maggot, which could contract itself up into a spherical figure, and then stretch itself out again; the end of its tail appeared with a forceps like that of an earwig; I could plainly see it open and shut its mouth, from whence air-bubbles would be frequently discharged. Of them I could number about four or five, and they seemed to be busy with their mouths as if in feeding."

This description is but vague; and yet it is very probable that the animal which the rector found in his gallipot was a Rotifer: and if so, this is the earliest notice that we have of the class.

A few years later, in 1708, LEUWENHOEK published, in the same "Transactions," ${ }^{2}$ an account of some animalcules, living in sheaths, that he had found at Delft, on green weed brought by the flooding of the Maes from Delft Haven. These little creatures were almost certainly Limnias ceratophylli. Leuwenhoek gives figures of one, and notices its bearing " two wheels thick set with teeth as the wheel of a watch." In a later paper ${ }^{3}$ in the "Philosophical Transactions" he gives a much better account of Limnias, with greatly improved figures. He states that when the two wheels are viewed frontally they are seen to be continuous and to form but one; and he adds a figure (Pl. B, 4) of the corona so seen, and notices that the ciliary waves run right round the whole wreath in the same direction.

Leuwenhoek next describes an animal " that has a receptacle or little house composed of round bubbles," and furnished with "surprising wheelwork " of four parts, three of which only were shown in his figure, "the fourth being almost hid from sight." One glance at the figure of the animal (Pl. B, 1), and at its corona (Pl. B, 2), shows us that he has had Melicerta ringens under his microscope.

His next paper ${ }^{4}$ on the same Botiferon is pleasant reading; for it vividly recalls the shoek of delighted surprise with which every naturalist first enters into the enchanted world beneath the waters.
"I took notice," he says, " of the surprising figure of an animalculum, fixed in a little scabbard or sheath, fastened to some of the small green weeds found in ditches of water. And, as often as I viewed these animalcula and showed them to others, we could not satisfy ourselves with looking on such surprising objects; and the more because we could not conceive how so strange a motion, as they all had, could be performed; as also what should be the use of such a motion." Leuwenhoek also relates how Melicerta makes its tube pellet by pellet; and this is his account of it. "I viewed one of these animalcula a good while together ; and observed, several times, one after another, that when the animaloulum thrusts its body out of the sheath or case, and that the

[^6]wheel-like or indented particles moved in a circle, at the same time out of a clear and transparent place a little round particle appeared, which, without nicely viewing, conld hardly be perceived; which particle growing larger, moved with great swiftness as it were about its own axis, and continued without any alteration in its place, till the animalculum had drawn part of its body back into its sheuth; in doing which it placed the said round particle on the edge of its sheath, which thus became augmented with a round globule; and whereas the animalculum had placed the said globule on the east part of its sheath, another time it fixed it on the south or north side ; by which means the sheath was regnlarly increased on all sides."

Of course this is but a rough sketch of the machinery and actions of the famous tubemaker; but it is a vigorous one, and true to the life as far as it goes.

With equal truth and vigour does Leuwenhoek describe, in the same paper, the transformations of Philodina roscola; - that creature, whose powers of lying dormunt for rotiferous ages, and of then coming to life again, have made it as iamous as the "Seven Sleepers."

To anyone with a sense of humour it must be delightful to read the following paragraphs of Leuwenhoek's paper; and then to reflect how his discoveries have been repeatedly re-discovered; and how again and again they have been challenged, confirmed, forgotten, and once more discovered. In fact, the Philodine has been the canse of a dispute which has all the marvellous propertios of the Rotiferon itself. For it periodically goes to sleep and revives again, just as P. roscola does; but with a difference. The Rotiferon, when it awakes after its long sleep, takes up its life at the point where it Jeft it off; and ultimately "gives up its murmuring breath " after an existence of three or four years; but the dispute concerning it invariably begins again both de novo and de ovo; and having already lasted, with periodical intermissions, for nearly 200 years, evidently bids fair to last for 200 years more ; as it has only a short time ago awakened once more, as fresh and as vigorous as ever, and found its way into our daily papers.
"I discovered," says Leuwenhoek, "several animalcula that protruded two wheels out of the fore-part of their body as they swim, or go on the sides of the glass. . . . This sort I found, in great numbers, in the gutter water which had stagnated some days in the small pits or cavities of the lead. . . . In October 1702, I caused the dirt of the gutters, when quite dry, to be gathered together, and taking a small quantity of it, I put it into a paper on my desk; since which time I have often taken a little of it, and poured on it boiled wator after it had stood still till it was cold, that I might obviate any objection that should be made, as if there were living creatures in that water. These animalcula, when the water runs off or dries away, contract their bodies into a globular or oval figure. . . . In the month of September I put a great many of the last-mentioned animalcula into a wide glass tube, which presently placed themselves on the sides of the glass; wherempor, pouring off the water, I then observed that several of the animaleula, to the number of eighteen or nineteen, lay by each other in a space of coarse sand; all of which, when there remained no more water, closed themselves up in a globular figure. Some of these unimalcula wero so strongly dried up that one could see the wrinkles in them, and they were of a reddish colour; a few others were so transparent, as if they had been little glass balls, that, if you held them up between your eye and the light, you might move your fingers behind them, and see the motion through their bodies. After these animulcula had lain thus dried up a day or two, in an oval or globular form, I poured some water into the glass tube; whereupon they presently sank to the bottom, and after the space of about half an hour began to open and extend their bodies, and, getting clear of the glass, to swim about the water. . . . In the month of October, before the dirt of the leaden gutter was quite dried up, I took a handful of it, and laid it on a glazed earthen dish in order to preserve it. . . Upwards of twenty-one months after, I took some of this dry stuff und infused it, both in cold water that had been boiled, and in rain water newly fallen; whereupon the animals began to show themselves in great numbers."

The only points of this much vexed question that Leuwenhoek passes over are:
(i) how the Rotiferon, when drawn up into a ball, resists the persistent baking of a summer's sun on the honsetop, or the long drought of twenty-one months on the naturalist's desk, without parting with its own internal moisture ; and (ii) why only eighteen or nineteen of his Rotifera (those near the coarse sand) succeeded in rolling themselves up and surviving, while the rest perished. ${ }^{1}$

The investigations thus worthily begun by Leuwenhoek were carried on with much spirit by many other observers ; and, during the hondred and thirty-five years that elapsed before the publication of Ehrenberg's famous work, "Die Infusionsthierchen," no fewer than sixty of Ehrenberg's species, contained in thirty of his genera, were entered on the list of known Rotifera.

I have arranged the more striking forms of these in the following table, which classifies them under the heads of some of the families into which I have divided the Rotifera; ${ }^{2}$ and I have added the names and dates of their discoverers; it will be thus seen how wide a ground had been covered by the early naturalists, since more than half the families have representatives in the table.

A List of some of the Rotifera discovered before 1888.

It will be seen that the names of Eichhorn and Müller occur much more frequently than that of any other observer in this list, and their works on the Rotifera deserve, 1 think, a special notice.

JOHANN CONRAD EICHHORN was the pastor of St. Catharine's church at Danzig, and his book on the "Natural History of the Smallest Aquatic Animals "3 was published in 1781. Though small, it is a most interesting work. He gives figures and descriptions of about a dozen Rotifera that can be identified, including Stephanoceros, Floscularia, Melicerta, Triarthra, Dinocharis, Actinurus, Euchlanis, and Pterodina; and of most of his species he was the discoverer.

His enthusiasm is delightful. "I have devoted myself," he says, "to this invisible world, which yields itself to our ken only under the magnifying glass; and I have, for cleven years, spent my leisure moments on it, so far as my professional duties would permit, in order to know God in His smallest and invisible works ; and I have found Him very great therein. Not the great works only, those vast heavenly bodies-

[^7]not those huge animals, on earth as well as in sea, who can scarcely drag the weight of their frames-not theso alone declare the glory of the Almighty. No the smallest also show, just as distinetly, the perfections of their Creator. Yea! one may gay, these even more than those! A great church clock is certainly a wonderfal machine, but a pocket watch-a watch in a ring-is yet more so, and conduces to the greater fame and glory of its maker."

His description of his chief discovery, that of his Crown Polyp (Stephanocoros Eichhornii) is very amusing. "I found," he says, " this extraordinary and marvellously formed animal first in 1761, on July 20, on a water plant, which had been standing some weeks in water. Isaw that there was something on the plant which was quite unlonown to me. I moved the glass, in order to see if it was something alive, and if it would draw itself together, which happened, to my delight; therefore I examined it through a lens, but it appeared to me, through this, just like an orange flower which was not yet closed, but which now drew itself together, and now outspread itsolf. All this stirred up in mo a great desire to see this new animal under the glass, but that required skill to get it out, as the glass vessel in which it was, was nearly an ell high, and this animal was right at the bottom. I tried first with the quill of a feather to bring it to the top, but it was continually lost to the eye by shutting itself up. At last I succeeded with a little wire hook in drawing out the plant on which it obviously was, and as soon as I could reach it with the scissors I snipped off a tiny stem, and that brought me out the whole animal unharmed. I placed it at once under the magnifying glass, and saw this matchless creature as it is shown in the engraving." What a pleasant picture this is of the grave pastor fishing away with a quill pen to fetch up Stephanoceros from the bottom of a glass beaker a yord and a quarter high !

About the same time as Eichhorn, flourished the great Danish naturalist, OTH0 FREDERIC MÜLLER. He was an excellent botanist and zoologist, and published works on many subjects. He wrote on the Flora and Fauna of Denmark, on Fungi, on the Hydrachne, and on Fresh-water and Marine Worms ; but his chief delight was in the Infusoria, and his posthumous work, "Animalcula Infusoria Fluviatilia et Marina, \&e." 1786, was the first that brought this new lingdom to the knowledge of the naturalist.

The "Animaloula Infusoria" contains the descriptions and figures of about fifty Rotifera, among which are Lacinularia, Hydatina, Scaridium, Triarthra, Brachionks, Anurea, Pterodina, Euchlanis, Dinocharis, Stephanops, and Mastigocerca. More than half of Müller's species were new when published; and his figures, taken from life, are beautifully drawn on copper by himself. Of course there is a great lack of detail in the drawings of the internal structure of the animals, but they are an immense advance on those of Eichhorn, the outlines being usually both spirited and faithful.

Müller's text, too, is as good as his figures. It is the work not only of a naturalist, but of a thoughtful and learned man ; and both the "Animalcula Infusoria" and his previous work, "Vermium Terrestrium et Fluviatilium," abound with admirable and striking passages. In the latter, he thas begins his dissertation on the Infusoria: "The world of the invisible, a world shut to our ancestors, was first entered about a hundred yeara ago. It breeds monsters of unheard-of form and manner of life, it abounds in miraeles as much as do the remote Indies ; but is explored with lesser peril, for it lies everywhere at our very feet, and is not sought out for gold.
" Each was explored with great slaughter of its inhabitants; the one often resisted by wasting the lives of its aggressors, the other had no defence but patience.
"This we owe to the needle, which joined two hemispheres together; that to the lens, which images alike the solar spots and the infusoria, the widest apart of all things.
"In this interval what indeed is great, what little? Man: for he thinks and suffers."
L. JOBLOT'styles himself, "Professeur Royal en Mathématiques, de l'Académie Royale de Peinture et Sculpture, demeurant sur le Quay de l'Horloge du Palais, an gros Raisin."

[^8]His book, published in 1718, consists of two parts. In the first he deseribes various forms of mieroscope, and the best way of using them; in the second he details, from his diary, the results of a series of experiments made with infusions of various plants and substances. The list of his infusions is long and curious. He tried pepper, roses, rhubarb and seana, maize, violots, mushrooms, hay, raspberry stalks, celery, knapweed, fennel, straw, marigolds, melons, tea, oak bark, \&c. \&e., and even found an animalcule that,-

> for saving charges,

A peeled sliced onion eats, and tipples verjuice.
He scoffs at the notion that living animals could be produced by the putrefaction of anything, and is confident that the infusion of each substance produces its own peculiar animals. He supposes that eggs are laid on these substances "by a countless number of very little animals that fly or swim in the air close to the ground," and who "let fall their eggs and little ones as they course backwards and forwards in the air," particularly in the spots where they were stopped by the vapours escaping from their fayourite plants.

He was the first to discover the genus Brachionus (B. pala and B, amphiceros), and he found in his infusions various species of the genus Rotifer (probably R. vulgaris and R. citrinus) as well as, possibly, a Lepadella and a Monostyla,

His figures are grotesque enough ; and he damaged his reputation as a sober naturalist by sketching a six-legged creature with "tout le dessus de son corps couvert d'un bean masque bien formé, de figure humaine, parfaitement bien fait." A fierce moustachioed face it is, and, as Joblot adds, "couronné d'une coêffure singulièro." His names for the animals are as odd as his figures : he has "top-knots," " bagpipes," "dandies," "tortoises," "kidneys," and even " crowned and bearded pomegranates "-the last strange title being given to his new discoveries, the Brachioni.

In spite of all these absurdities his written descriptions are often vivid and accurate, and he is a shrewd observer. For instance, he notices how oleverly the Rotifera swim without jostling each other; and he coucludes that " though we cannot see them, they must have eyes, and those very good ones." He describes the restless movement of Brachionus swaying from side to side as it thrusts about its long foot, and observes that " there are some females who carry only one egg, some that carry two, and some as many as six, which, however, is not common; and when there are so many eggs they are smaller in size than they are when they are fewer."

It is thas clear, both from his description and his figure, that this first discoverer of Brachionus pala had already lighted on a female carrying a cluster of male eggs. Again, he discerns the difference, in size and colour, between Rotifer vulgaris and R. citrinus; and describes their leech-like movements, their telescopic joints, and their constantly moving jaws. I need bardly add that he considers the latter to be the heart.

His comments on his discoveries are as characteristic as his figures and theories. We have seen the Danish naturalist exulting in the human intellect which, armed with one simple weapon, attacks alike the distant planets and the invisible infusoria; and finding even greater reason for his pride in the very weakness and ills that flesh is heir to. The Prussian pastor, too, is as enthusiastic after eleven years' study as he was when he first began; and, as if he would add another verse to the Benedicite, cries to all the creatures of the invisible world, "Bless ye the Lord; praise Him and magnify Him for ever." And Professor Joblot is also enthusiastic, but his strain is pitched in a different key. He says of one of his infusions that "it gives rise to a most delightful spectacle, so curious to see and watch that I do not think that the diversion of the play, of the opera with all its magnificence, of rope-dancing, tumbling, or of the animal-combats which we see in this superb city, ought to be preferred before them."

It would be unfair to M. Joblot not to add that he is capable of better things, as the following extract shows :
"There is nothing despicable in nature ; and all the works of God are worthy of onr
respect and admiration, especially if we take heed to the simplicity of the means by which God has made and preserved them. The smallest gnats are as perfect as the hugest animals, the proportions of their limbs are equally just, and it seems as if God had even wished to give them more ornaments than He has to the greater creatures, in order to make up to them for the smallness of their bodies. They have crowns, tufts, and other adornments on their heads, which surpass all that female luxury has invented; and we may say that those who have looked only with unaided eyes have seen nothing so beautiful, so fitting, nor even so magnificent, in the palaces of the greatest princes, as that which the microscope shows on the head and body of a simple fly."

About forty years after Joblot, HENRY BAKER, F.R.S., published a somewhat similar work. The first volume, "The Microscope made Easy," treats of the instrument itself; while the second volume, "Employment for the Microscope," describes the various things that may be seen with it.

In the second volume he gives an elaborate account, with figures, of what I believe to be Philodina roseola; as well as descriptions and drawings of Rotifer macrurus, Brachionus pala, B. urceolaris, B. Bakeri, and probably also of Euchlanis triquetra; and of these six species the second and last had not been described before.

His drawings are vastly superior to those of Joblot, especially his figures of the Brachioni. He notices and introduces into his figure the long vibrating styles which crown the head of B. pala, as well as its winter eggs. He failed, indeed, to understand the lorica of Euchlanis; but that is no wonder, for he has had many to bear him company.

It is annecessary for me to say more of a book that is still within everyone's reach; but there is one admirable passage in his preface that I must give myself the pleasure of quoting.
"That man is certainly the happiest who is able to find out the greatest number of reasonable and useful amusements, easily attainable and within his power ; and, if so, he that is delighted with the works of nature, and makes them his study, must undoubtedly be happy ; since every animal, flower, fruit, or insect, nay, almost every particle of matter, affords him an entertainment. Such a man never can feel his time lang heavy on his hands, or be weary of himself, for want of knowing how to employ his thoughts ; each garden or field is to him a cabinet of curiosities, every one of which he longs to examine fully; and he considers the whole universe as a magazine of wonders, which infinite ages are scarce sufficient to contemplate and admire enough."

In Plate B, I have given copies of some of the old figures drawn by these authors, and if the reader will compare them with EHRENBERG's drawings of the same animals, he will see at a glance why the Prussian naturalist's work ' swallowed up as it were the very memory of all his predecessors. Instead of feeble, inaccurate drawings, in which the intermal structure was represented by mere blots and patches, Ehrenberg gave excellently drawn figures full of accurate details; and at the same time described the animals themselves with wonderful exactness, considering the very great number that he studied unaided.

Nor was this all : he had such a grasp of the whole subject, such a minute personal knowledge of the living animals themselves, that he invented a system of classification which has held its own for nearly fifty years.

In addition to its other merits, Ehrenberg's splendid work added more than a hundred new species to those already known, containing among them such remarkable forms as Conochilus volvox, Notommata clavulata, N_{0} copeus, N. centrura, Diglena grandis, Polyarthra plalyptera, Noteus quadricornis, Microcodon clavus, EEistes crystallinus, \&c.

Three years after the publication of "Die Infusionsthierchen," DUJARDIN published his "Infusoires" as one of the volumes of the Histoire Naturelle des Zoophytes in the "Suites a Buffon." The last part of this volume, being one-sixth of the whole, is devoted to the "Systolides" or Rotifera. His book is mainly critical, and, so far as I can find, contains little on the Rotifera that was new, except his observations on Albertia and Lindia.

[^9]His criticisms are shrewd and often just; he points out that Ehrenberg's respiratory tube is probably an antenna; suggests that the convoluted tubes, flickering tags, and contractile vesicle of the vascular system have a respiratory function; calls attention to the varying forms of the mastax and trophi as good characters for classification; and conjectures that the perivisceral fluid is the true analogue of the blood.

On the other hand, he could not see Floscularia's tube; could not make out the striated muscles in any Rotiferon, even in Pterodina patina, of which he gives a figure; could see indeed no difference between the museles and the nerves; doubted the existence, as specialised structure, of either the one or the other; and from want of personal acquaintance with them, affirmed the identity of many of Ehrenberg's species, which are undoubtedly distinet.

But although he has small claim to be considered either an original or an accurate observer of the Rotifera, he made one happy hit in his attempted classification, which will be detailed elsewhere.

Since Dujardin's time the more noteworthy essays that have been published on various portions of our present sulject are by Mr. P. H. Gosse, F.R.S.; Dr. F. Leydig; Professor T. H. Huxley; Herr C. Vogt; Dr, F. Colin; Dr. W. Moxon, F.L.8.; Dr. W. Salensky; Dr. S. Bartsch; and Herr Karl Eckstein.

Mr. GOSSE, in his paper, "On the Anatomy of Notommata aurita," ${ }^{1}$ described with minuteness the organization of this common species, so that the essay became, as it were, a key to the structure of the majority of free-swimming Rotifers. His next treatise, "On the Structure, Functions, and Homologies of the Manducatory Organs in the Class Hotifera," ${ }^{2}$ is illustrated with a great many drawings of the mastax and trophi of various species; and discusses the changes that they undergo, in passing from the typical to the most aberrant forms. It is in this treatise that Mr. Gosse contends that the dental organs of the Rotifera are true mandibulæ and maxillæ; and that the mastax is a mouth; and assigns to the Class a position among the Articulata. In a subsequent paper, "On the Dicecious Character of the Rotifera," ${ }^{3} \mathrm{Mr}$. Gosse extended this character from a single genus, Asplanchna, to five others ; and trebled the number of the known diacious species. Some years later, Mr, Gosse begau, in "Contributions to the History of the Rotifera," 4 a general account of the whole class, arranged according to a classification of his own, and continued it so far as the Flosculariada, Melicertada, and Notommatina, illustrating each family with descriptions and figures of certain selected species. This work, however, owing to the cessation of the periodical, was never completed.

Dr. F. LEYDIG, in "Ueber den Ban und die systematische Stellung der Räderthiere," ${ }^{\text {s }}$ after a full description, accompanied with figures, of many species, three of which are new, proceeds to deal with the structure of the Rotifera as a class, and to arrange them in a system of his own. He further discusses their true position in the animal kingdom, and assigns them a place among the Crustacea.

Professor HUXLEY, in his paper, "On Lacinularia socialis ; a Contribution to the Anatomy and Physiology of the Rotifera, ${ }^{16}$ takes this Rotiferon as his text, and, while minutely describing its strueture, discusses various questions concerning that of the whole class. He enters into the general relations of the Rotifera to other auimals, and arrives at the conclusion that they are permanent forms of Echinoderm larvw.

Herr C. VOGT, in his treatise, "Einige Worte tiber die systematische Stellung der Räderthierchen, ${ }^{\prime \prime}$ combats Leydig's reasonings and conclusion on the position of the Rotifera, and affirms that they must be classed among the Vermes.

In Dr. F. COHN's essay, "Ueber die Fortpflanzung der Raiderthiere," ${ }^{8}$ the males and females of three species are minutely described, especially with reference to their reproductive organs; and the general question of the reproductive system of the whole class is also disenssed.

Dr. W. MOXON's • Notes on some Points in the Anatomy of the Rotatoria" ${ }^{19}$ call

[^10]attention to the right use of the terms "dorsal " and "ventral " as applied to the Rotifera; to the existence, in many species, of three antemne, holding definite positions with respect to the dorsal and ventral surfaces; to the true nature of the entrance to the crop of Floscularia; and to the structure and function of the vibratile tags.

Dr. W. SALENSKY's paper, "Beiträge zur Entwicklungsgeschichte der Brachiomus urceolaris," ' traces the gradual changes in the ovum, from its first division into two unequal spheres, through its complete segmentation, to the formation of the germinal layers, and the evolution of the various organs of the completed embryo. Althongh the paper deals with only a single species, it is our principal contribution to the Embryology of the Rotifera.

Dr. S. BARTSCH, in "Rotatoria Hungarim," 1877, and Herr KARL ECKSTEIN, in "Die Rotatorien der Umgegend von Giessen," ${ }^{2}$ have published treatises containing descriptions and figures of local Rotifera (forty in Hungary and fifty at Giessen), including two or three new species; as well as new classifications of the whole class botifera.

Of Dr. BARTSCH's work I can say but little, as it is written unfortunately in Hungarian. His figures, though somewhat archaic, are well worth the studying; and he gives drawings and descriptions (happily this time in Latin) of six new species, of which two had been recorded in England some years before.

Herr ECKSTEIN also gives many interesting details of his local species, of which two are new ; and adds a general diseussion of the structure, development, affinities, and classification of the whole class. His treatise also contains useful lists of synonyms, as well as a good bibliography of the subject.

The last edition (1861) of PRITCHARD's "History of Infusoria," by Dr. Arlidge and others, is a work differing in character from any of the above. About one-sixth of it is devoted to the Rotifera, and contains descriptions of the whole of the then known species, illustrated by a great many figures. Both the descriptions and the figures have beeu mainly taken from Ehrenberg's work, which is closely followed throughout; but they have been supplemented by others taken from the various treatises mentioned above.

As a compilation, it is not only the best, but almost the only, English work on the subject. It contains, moreover, an admirable and exhaustive treatise on "The General History of the Rotifera" as a class, dealing minutely with their structure, reproduction, development, systematic position, and classification.

This original and most valuable essay may be said to be indispensable to all students of the Rotifera, bringing together, as it does, into one point of view, the opinions of all the best observers, on the many vexed questions that these little creatures have given rise to, not only as to their organization and development, but as to their relations to the rest of the animal kingdom.

A full list of works on the Rotifera, including numerous papers that have been published in various scientific periodicals, will be found at the end of this work.

[^11]
CHAPTER III.

ON THE CLASSIFICATION OF THE ROTIFERA.

Omnis enim systematica divisio clandicat lacunisque laborat; optima est, quæ paucioribus horret, documentum satis splendidum, mortales non e vero visionis puncto Naturam contemplari.- O. F. Müller.

Tous les ordres des êtres naturels ne forment qu'une seule chaine, dans laquelle les différentes classes, comme autant d'anneaux, tiennent si étroitement les unes aux autres, qu'il est impossible aux sens, et à l'imagination même, de fixer précisément le point, où quelqu'une commence ou finit.-Leibnitz.

Dum inter ea, quæ determinatis characteribus discreta, et certis quasi limitibus inclusa sunt, semper intermediæ quædam species reperiuntur, quæ, utriusque proxime accedentis speciei, aliquid possideant, et ita copulationem quasi duarum diversarum specierum constituant; colorum ad instar, qui ita commiscentur et quasi confluunt, ut nemo veros cujusque fines determinare possit.-J. Baster.

OHAPTER III.

ON THE CLASSIFICATION OF THE ROTIFERA,

Four attempts have been made to improve upon Ehrenberg's classification: viz. that of Dujardin in 1841, of Leydig in 1854, of Dr. S. Bartsch in 1877, and of Herr K. Eekstein in 1883. I do not intend to discuss here the various merits and fanlts of these five systems; it is enough to say that they all seem to have the fault of needlessly bringing together animals that are different in structure, while separating others that closely resemble each other; I say "needlessly" because perfect classification appears to be an impossibility, except at that fleeting stage of our knowledge when none but the commoner genera are known to us. These usually differ from each other in a marked fashion, the very fact of their wide-spread co-existence being perhaps due to their differing so as not to interfere with each other.

When, however, continued search has brought to light the rarer forms, these usually prove to be links between the more common ones; and then the troubles of the classifier begin. For these strange forms, which are the delight of the naturalist, are the classifier's despair. Do what he will, no system that he can devise will put into Nature those sharp divisions and well-marked gaps that are so dear to him, but of which she knows nothing.

Nature has but oue law, that of infinite variety; and the utmost that the classifier can do is to group his animals as well as he can round certain typical forms, content to have the symmetry of his plans and the sharpness of his definitions marred by forms that perversely bear the characteristics of two or three of his types, in nearly equal proportions.

He may take comfort, nevertheless ; for, even if he had been able to invent a thoroughly satisfactory classification, it is from the nature of the case written in sandHe can never say as he throws down his pen:

> Exegi monumentum rere perennius;
for it is almost certain that the fresh discoveries of the next ten years will require his work to be re-cast; and no higher praise could be given to Ehrenberg's system than that, in spite of new discoveries and its own obvious faults, it has reigned alone for nearly five times the usual period.

The Rotifera may first be divided into four natural orders, according to their modes of locomotion, and the structure of the foot. The first of these ideas appears in Dujardin's classification, and the second in Leydig's, and they are both excellent; for there are Rotifera that swim by means of their ciliary wreath, and skip by the help of their arthropodons limbs; Rotifera that swim only with their wreath ; others that swim and creep like a leech; and lastly, some that, when adult, are stationary. Moreover, in three of these four orders there is only one form of foot in each order, and that form is unlike those of the other two ; and although in one order there are more forms of the foot than one, still they are all unlike the forms of the other three.

Nor is this all. The natural character of these four orders is further shown by there being other importunt points of structure, in which the animals comprised in each order at the same time resemble each other and differ from those of the other orders.

I have named these orders as follows:
I. RHIZOTA (the rooted). Fixed when adult.
II. BDELLOIDA (the leech-like). That swim with their ciliary wreath, and creep like a leech.
III. PLOIMA (the sea-worthy). That only swim with their ciliary wreath.
IV. SOIRTOPODA (the skippers). That swim with their ciliary wreath, and skip with Arthropodous limbs.
Now, the creatures contained in these orders, with a few exceptions, differ from each other, first in their habits, and secondly in the following points :
I. In the structure of the foot.
II. In the arrangement of the ciliary wreath.
III. In the form of the trophi.
I. In the structure of the foot.
(1) The Rhizotic foot is transversely wrinkled, and ends in a sort of sucking disk (fig. 16) or cup (fig. 17). It is not retractile within the body, it never has telescopic joints, nor is it ever furcate.

(2) The Bdelloidic foot (fig. 18), on the contrary, is telescopic, retractile, furcate, and is never transversely wrinkled, nor terminated by a sucking disk.
(8) The Scirtopodic foot (fig. 19) is unique; it is divided into two unconnected, smooth, jointless styles, each ending in a ciliated expansion.
(4) The Ploimic foot is various in shape, but is always unlike that of any other order; for-
(a) if transversely wrinkled, it is yet retractile within the body, and almost invariably furcate;
(b) if jointed and furcate, it is not also telescopic;
(c) occasionally it is absent altogether.
II. In the arrangement of the ciliary wreath. ${ }^{1}$
(1) The Rhizotic ciliary wreath is of two forms :
(a) The first encircles the body twice, by bending on itself; thus inclosing the mouth, and having a dorsal gap between the points of flexure, figs. 20, 21.

Fig. 20.-Rhizotie wrenth (a), front view. Fig. 21,-Rhizotic wreath (a), side view.

Plg. 22.- Rhizotio wreath (b),
seen from above.
(Flascularia campanitata)
${ }^{1}$ In figs. 20 to $25, c w$ is the ciliary wreath ; $p w$ is the principal wreath ; $s w$ is the secondary wreath; bf the buccal funnel; lp the lips.
(b) The second form is a simple segment of a circle, placed on the ventral side above the mouth, fig. 22.
(2) The Bdelloidic wreath is also of two forms:
(c) The first, like the Rhizotic wreath (a), is a double wreath surrounding the body twice, and inelosing the mouth; but, unlike the Rhizotic, it has two gaps instead of one, viz. a dorsal gap between the points of flexure, and a ventral gap in the upper wreath opposite to the mouth.
(d) The second form of Bdelloidic wreath is a mere furring of the corona on its ventral surface, as shown in fig. 25.
(3) The Ploïmic wreath is very various in shape, but is never Rhizotic, while it is Bdelloidic only in one genus. ${ }^{1}$

Fig. 23.- Bhelloilio wreath (c), from above,
(Rot(fer cierinus)

Fig. 24.- Bdelloilio wreath (c),
side view. sidle view,
(Rotifer citrinus)

Fig. 25.-Bdelloidio wrenth (d). (Adineta enga)
(4) The Scirtopodic wreath is of Bdelloidic type.
III. In the form of the trophi.

If we disregard two genera ${ }^{2}$ of the Ploima (not one-fifteenth of the whole number of Ploimic genera), we can then say that the first three orders differ also in the forms of their trophi. For-
(1) The Rhizotic trophi are either malleo-ramate, ${ }^{3}$ fig. 26, or uncinate, ${ }^{3}$ fig. 27.
(2) The Bdelloidic trophi are always ramate, ${ }^{3}$ fig. 28.
(3) The Ploìmic trophi are of various forms; but are never Bdelloidic, and are Rhizotic only in two genera. ${ }^{2}$
(4) The Scirtopodic trophi are of a Phizotic type, being malleo-ramate, fig. 26.

Fig. 26.- Malleo-ramate. (Melicerto ringens)

Fig. 97-Uneinate.
(Slephanoceror Eichhornii)

Fig. 98.-Ramate. (Rovifer cifinus)

Now, in reviewing the points of agreement and of difference in the four orders, we may at onee set aside the fourth order, the Scirtopoda, as unmistakably separated from the others.

This order contains but one family, which has only one genus, and that genus itself consists of only one species. ${ }^{4}$ In fact, it has been formed to contain that remarkable creature Pedation mirum, which I discovered at Olifton in 1871. This

[^12]Rotiferon has six hollow limbs continuous, in true Arthropodous fashion, with the body. cavity, and worked by opposing muscles passing down them, and is thus plainly linked to the Crustacea and Insecta. Pedalion, in fact, is a Nauplius larva, and is yet a Rotiferon.

Order IV., then, is sufficiently separated from the rest by its Arthropodous limbs, and by the use made of them; and of the other three orders, it has been shown above that, if we disregard some points of only two genera, we may say of orders I. II. III. that they differ inter se in their habits, and in the structure of their feet, trophi, and ciliary wreaths.

This seems a satisfactory first step towards classification; but it is only fair to the reader to warn him that it has been gained by omitting some parasitic Rotifera, as well as a few very troublesome forms, such as Trochosphuera, Apsilus, Microcodon, \&c.

I have dwelt on the differences in structure, as well as in habits, between the four orders, in order to show that these four groups are natural ; but I do not propose to use as ordinal characteristics any others than the mode of locomotion and the structure of the foot; and for this reason, that each of the first three orders has more than one form of the trophi, or of the ciliary wreath, or of both.

The Rhizota, for instance, have two forms of the trophi, and two of the ciliary wreath. The Bdelloida have two forms of wreath, and the Ploima have many different forms of both wreath and trophi.

Before I proceed to divide these four orders into families, I must, however, digress a little to explain and name the various types of trophi, as the classification partly depends upon them.

Mr. Gosse's treatise on " The Manducatory Organs in the Class Rotifera " essays to show that these organs present seven principal types of structure, distinguished from each other by the prominence of some particular part.

To make this clear, it may be as well to re-state that, in the mastax of a Brachiomus, there are two hammer-like bodies or mallei (fig. $29, m s$), which work on a kind of split anvil or incus (fig. 29, is), and that each malleus consists

Fig. 29.-Malleate. of an upper part, the head or uncus (fig. 29, us), and of a lower part or handle, the manubrium (fig. 29, mm); while the incus consists also of two parts, the upper divided into two symmetrical halves, the rami (fig. 29, rs), which are supported on the lower piece or fulcrum (fig. 29, fm).

Now, in Brachionus all the trophi are well developed, but the other typical manducatory organs may be arranged in a series in which the mallei are successively degraded, while continually greater prominence is given to the incus ; at least in all but three types; and in two of these the rami and unci are the prominent parts, while the third is distinguished by the close connection of the mallei and the rami.

The typical trophi may, then, be named as follows:

1. Malleate (fig. 29).

Mallei stout; manubria and unci of nearly equal length ; unci 5 - to 7 -toothed; fulcrum short; as in Brachionus urceolaris.

2. Sub-malleate (fig. 30).

Mallei slender; manubria about twice as long as the unci; unci 3- to 5-toothed; as in Euchlanis deflexa.

$$
\text { 8. Forcipate }{ }^{1} \text { (fig. 31). }
$$

Mallei rod-like ; manubria and fulcrum long; unci pointed or evanescent ; rami much developed und used as a forceps; as in Diglena forcipata.

[^13]
4. Incudate (fig. 82).

Mallei evanescent ; rami highly developed into a curved forceps ; fulcrum stout; as in Asplanchna Ebbesbornii.
5. Uncinate (fig. 27).

Unci 2-toothed ; manubria evanescent; incus slender; as in Stephanoceros Eichhornii.

Fig. 30.-Sub-madleater

Pig. 31,-Forcipate.

Pig. 32.-Incudate.
6. Ramate (fig. 28).

Rami sub-quadrantic, each crossed by two or three teeth; manubria evanescent; fulcrum rudimentary; as in Philodina roseola.

7. Malleo-ramate (fig. 26).

Mallei fastened by unci to rami ; manubria 8 loops soldered to the unci; unci 8 toothed; rami large, with many strix parallel to the teeth; fulcrum slender; as in Melicerta ringens.

Now, the seven Rotifera, made use of above to yield examples of typical trophi, are very distinct from each other, and show that the form of the trophi is one good characteristic for separating the families. But a difference in the shape and disposition of the corona, and of its ciliary wreath, generally accompanies a difference in the manducatory organs; and the three together will serve as good guides to a division of the four orders into families.

In one of the sub-divisions of the Ploima, however, the corona, cilinry wreath, and trophi are often difficult of determination; but just where these guides desert us, a new character, viz, the lorica, comes to our aid, and shows such well-marked differences in shape and structure, as to enable us to divide this sub-order (the Loricata) into fairly natural groups. The Loricata are so called from the integument of the body; which, from the distribution of chitine throughout the tissue, is hardened into a stiffened coat or shell (lorica, a coat of mail) inclosing, more or less completely, the internal organs. In the Il-loricata the integument is soft and flexible; but there is, unfortunately, no very sharp division between the two sub-orders in this respect; as every variety of integument exists, from the hard, dense coat of Dinocharis, to the tough yet flexible covering of Rattulus, and the perfectly soft cuticle of Albertia.

The following scheme, then, is an attempt to divide the four orders of Rotifera into families, by means of the various characters which I have just detailed : of course, there are some genera which do not readily fall into the arrangement; but this is only what is certain to happen to every possible scheme of classification.

Such difficulties must attend every attempt to marshal Nature's endless varieties into

[^14] torm virgate will be applied.
well-marked battalions. Nature knows no hard lines of separation ; and the best of classifications can be only that which contains the fewest faults: as Müller has forcibly said, 'Optima est, que paucioribus horret.'

Order I. Rhizota,

Fixed when adult; foot transversely wrinkled, not retractile within the body, ending in a sucliing disk or cup.

Fam. 1. Flosoulariada (Pl. C, fig. 1).
Corona produced longitudinally into setigerous lobes; buccal orifice central ; ciliary wreath a single half-circle above the buccal orifice ; trophi uncinate. ${ }^{1}$

Fam. 2. Melicertada (Pl. C, fig. 2).
Corona not produced into setigerous lobes ; buccal orifice lateral ; ciliary wreath a marginal continuous curve, bent on itself at the dorsal surface, so as to encircle the corona twice, with the buccal orifice between its upper and lower curves, and having also a dorsal gap between its points of flexure; trophi malleo-ramate. ${ }^{1}$

Order II. Bdelloida,

That swim with their ciliary wreath, and creep like a leech; foot wholly relractile within the body, telescopic, furcate.

Fam. 8. Philodinadee (Pl. C, fig. 8).

Corona two transverse circular lobes; ciliary wreath a marginal continuous curve bent on itself at the dorsal surface, so as to encircle the corona twice, with the buccal orifice between its upper and lower curves, and having also two gaps, the one dorsal between its points of flexure, and the other a ventral gap in the upper curve opposite to the buccal orifice : trophi ramate. ${ }^{1}$

Fam. 4. Adinetada (Pl. C, fig. 4).
Corona a flat ventrally placed surface; ciliary wreath the furred ventral surface of the corona; trophi ramate. ${ }^{1}$

Order III. Ploima.
That swim with their ciliary wreath, and (in some cases) creep with their toes.
Sub-order. Il-loricata.
Foot, when present, almost invariably furcate ; but not transversely wrinkled ; rarely more than fcebly telescopic, and partially retractile.

Fam. 5. Microcodida.

Corona obliquely transverse, flat, circular ; buccal orifice central ; ciliary wreath a marginal continuous curve encircling the corona, and two curves of larg er cilia, one on each side of the buccal orifice; trophi forcipate ${ }^{1}$; foot stylate.

> Fam. 6. Asplanchnada (Pl. C. fig. 7).

Corona two transverse, flattened, confluent cones, with their summits distinct; ciliary wreath single, marginal; trophi ineudate ${ }^{1}$; intestine, cloaca, and foot, absent.

[^15]Fam. 7. Synchatada (Pl. C. fig. 6).

Corona a transverse spheroidal segment, sometimes much flattened, with styligerous prominences ; ciliary wreath a single interrupted marginal curve, encireling the corona ; trophi forcipate ${ }^{1}$; foot minute, furcate, or absent.

Fam. 8. Triarthrada.

Corona transverse; ciliary wreath single, marginal, fringing the buccal orifice; trophi malleo-ramate ${ }^{1}$; foot absent.

Fam. 9. Hydatinada (Pl. 0, fig. 5).

Corona truncate, with styligerons or ciliated prominences ; ciliary wreath two parallel curves, the one marginal fringing the corona and buccal orifice, the other lying within the first, the styligerous prominences being between the two ; trophi malleate ${ }^{1}$; foot furcate.

Fam, 10. Notommatada.

Corona obliquely transverse; ciliary wreath one of interrupted curves and clusters, usually with a marginal wreath surrounding the buccal orifice ; trophi forcipate ${ }^{1}$; foot furcate.

Sub-order. Loricata.
Corona and ciliary wreath various in shape, but never Rhizotic, and Bdelloidic only in the Pterodinada: trophi of different types, but never Bdelloidie, and Rhizotic only in the Pterodinada.

Division I.

Foot jointed, stylate or furcate ; not transversely wrinkled, nor wholly retractile.
Fam. 11. Rattulida.
Lorica entire, cylindrical, without angles ; trophi asymmetrical.
Fam. 12. Dinocharida.
Lorica entire, vase-shaped, sometimes facetted; head distinct, with a chitinous covering; trophi symmetrical.

Fam. 18. Salpinada.

Lorica compressed, cleft down the back, the two halves united by a membrane, so as to form a dorsal furrow.

Fam, 14. Euchlanide (Pl. C. fig. 10).

Lorica depressed, of two dissimilar plates, one dorsal and one ventral, united by a membrane so as to form a lateral furrow.

Fam. 15. Lepadellada.

Lorica depressed, broad, closed beneath; head distinet, surmounted by a retractile, arched, chitinous plate.

Fam. 16. Cohurida.

Lorica compressed, open beneath; head distinct, surmounted by a retractile, arched, chitinous plate.

[^16]
Division II.

Foot transversely wrinkled, wholly retractile, furcate or ending in a ciliated cup; sometimes absent.

Fam. 17. Pterodinada (Pl. C. fig. 9).

Lorica greatly depressed, entire, of two nearly equal plates, soldered together at the edges ; corona and ciliary wreath those of the Philodinada; trophi malleo-ramate ${ }^{1}$; foot ending in a ciliated cup.

Fam. 18. Brachionida (Pl. C. fig. 8).
Lorica depressed, entire, dorsally arched, generally armed with anterior and posterior spines; corona transverse with styligerous prominences ; ciliary wreath single, marginal, fringing the buccal orifice ; trophi malleate ${ }^{1}$; foot furcate, or absent.

Order IV. Scirtopoda.

That swim with their ciliary wreath, and skip with Arthropodous limbs; foot replaced by two dorsal, stylate, unconnected appendages, ending in ciliated expansions.

Fam. 19. Pedalionida (Pl. C. fig. 11).
Corona truncate ; ciliary wreath a marginal continuous curve, bent on itself at the dorsal surface, so as to encircle the corona twice, with the buccal orifice between its upper and lower curves; having also two gaps, the one dorsal between its points of flexure, and the other a ventral gap in the upper curve opposite to the buccal orifice; trophi malleo-ramate. ${ }^{1}$

The further subdivision of each family into genera will be given with the description of that family.
' For description of these technical terms, see pp. 28, 29.

CHAPTER IV.

ON THE HAUNTS AND HABITS OF THE ROTIFERA.

Nonne vides, quæeunque mora fluidoque calore Corpora tabuerint, in parva animalia verti ? Ovid, Metam. xv. 362.

Equidem tum Naturæ rerum gratias ago, cum illam non ab hac parte video, quæ publica est, sed cum secretiora ejus intravi.

Curiosus spectator excutit singula et quærit. Quidni quærat? Scit illa ad se pertinere. Quantum enim est, quod ante pedes jacet.

Seneca, Nat. Quast. pref. (adapted by O. F. Mülleer).
'T is born with all: the love of Nature's works
Is an ingredient in the compound man,
Infused at the creation of the kind. . . .
It is a flame that dies not even there
Where nothing feeds it: neither business, crowds,
Nor habits of luxurious city life,
Whatever else they smother of true worth
In human bosoms, quench it or abate.
Cowper, The Task.

CHAPTER IV.
 ON THE HAUNTS AND HABITS OF THE ROTIFERA.

That the first thing to be done is to catch your game, is a maxim as applicable to Rotifera as to hares; and it is no less true of these that to hunt for them successfully requires some knowledge of their haunts and habits. To carry away from a pond's side a bottle of dirty water full of slimy weed, is by no means a good plan for catching these animals, even the commonest and coarsest. It is true that there are some fine forms which may be found in very dirty ponds, or even in dirtier puddles : for instance, there can hardly be too dark a farmyard puddle for Hydatina senta, which rejoices in the drainings of a manure-heap, even when the water is of so deep a colour that it is impossible to see the animals in it when you have got them. Triarthra, too, and the beantiful Notops ${ }^{1}$ clavulata are to be met with in cattle ponds, where the water is like pea-soup; and Brachioni of all kinds rejoice in such places, especially when green with Euglence and alive with the motile seeds of algæ. Indeed, there is one Brachionus, B. angularis, whose presence in a pond bids us put up our bottles and go elsewhere, as it likes water that will support hardly any Rotiferon but itself.

Floscularia, Stephanoceros, Melicerta, Linnias, and Wcistes are, of course, to be found only in such places as pond weeds will grow in healthily. Old ponds that have been left long undisturbed are their favourite haunts. Floscularia is a very wide-spread genus, at least so far as one or two species are concerned; and these may be looked for with every prospect of success in any such pond. Most of tho finer and rarer kinds have been found in the Scoteh lakes by Mr. Hood, who during the last four years has doubled the number of recorded species by his discoveries in the lochs round Dundee.

Stephanoceros, though by no means a rare Rotiferon, is more partially distributed; it is found often enough in ponds near London and Birmingham; but I have not heard that a single specimen has ever been met with in the neighbourhood of Clifton.

It appears also to be rare in Scotland ; as Mr. Hood has found it only once or twice, in marsh-pools in Perthshire.

Melicerla ringens is to be found almost everywhere. It has even been seen swarming in one of the aquaria in the parrot-house in the Clifton Zoological Gardens. The roots of duckweed, the fibres of algæ, the leaves of Myriophyllum, and of all sorts of water plants, bear this very common species, as they do also the tubes of Limnias and CEoistes. Lacinularia and Megalotrocha have similar tastes, but are less frequently met with, especially the latter. This must be a comparatively rare genus, asit has been sent to me but three or four times in many years. Cephalosiphon is also rare. I once found a large colony of it, on a water weed at Nailsea in the big pond near the railway station, and it has been sent to me from Cheltenham and London; ${ }^{2}$ but I never met with it again.

Conochilus is a lover of clear water. I have found it in Loch Lomond, and Dr. Imhoff has obtained it, in abundance, in the middle of Lake Zug. It is common enough

[^17]in clean ponds round about London, and Mr. Hood has met with it in the Perthshire lochs.

The Notommatala and Philodinada have a very wide range. The alge of ponds always hold many species, and many haunt the sediment that lies on the mud of the bottom. Some of the latter are to be foumd in gatters of houses, in water-batts, on the blades of wot grass, anywhere indeed where dust can fall and moisture can follow. For the eggs of the Rotifera are blown away by the wind from dried-up puldles, and are scattered broadeast through the air ; and some of the creatures they give birth to can exist apparently under almost any kind of moist conditions.

The Asplanchnada fortunately are as indifferent to their quarters as they are large and handsome. I have found them in roadside ditches thickly covered with Lemna, in farmyard ponds, in the clear water of a miniature lake, and in a foul yellow-green duck puddle in which the fluid (it could not be called water) was so thick that it had to be diluted with five or six times its own bulk, before anything could be seen in it. An Asplanchna is the very beau-ideal of a Rotiferon for a beginer. It is very large and transparent; it swims slowly; and it generally occurs in great numbers. Moreover, its male is even more transparent than the female; a mere living bubble, thinner and clearer than the finest blown glass. Unhappily, they are as capricious as they are charming; for a pool may be full of them to-day and deserted to-morrow; and, so far as my own experience goes, they do not occur in the same spot year aftor year as many Rotifera do.

The Pterodinade and Euchlanide are dwellers in clear ponds, and rather solitary in their habits. On a warm sumny day the latter may be captured by skimming off the Lemnu, and floating bits of leaves and stems, that are driven to the leeward corner of a pool. If the bottle be then allowed to stand a few minutes till the water is cloar, a Euchlanis will often be found slowly gliding up the glass with its long toes pressed against it. It is always worth while to capture it at once with a pipette, and put it into a small tube along with any others of the same kind, as a live Euchlanis, properly exhibited under dark-field illumination, is one of the choicest treata that the Rotifera afford.

The Pterodinada are almost always creeping about the alge on the sides of the pond. I never but once have seen any other than solitary specimens, but that exception was a notable one. I then found swarms of them in the small space in which the sluice gate of a pond worked. It was not more than a foot square by about four feet deep, and was mantled over by duckweed. Out of this unlikely spot they were dipped by hundreds, while not one could be found in the pond itzelf. Of course the duckweed came up with the Pterodine, though as little as possible was taken, on acconnt of the disagreeable way in which it clings to every pipette put into the bottle. On this occasion, however, I found it of great service; for, on inspecting the catch at home with a hand-lens, I noticed that the Rotifera were attached in clusters to some of the xoots of the duckweed. Watching for a favourable opportunity, I whipped one of the Lemnee out of the water so suddenly, that the creatures had not time to let go their hold. Then entting off the green head, I coiled the stem into a circle on a glass slip, and covered it with thin glass. It was impossible to conceive a more beautiful sight than this natural cage now afforded me. Thirty or forty shields of living glass were flashing across the field of view in every direction; some were adhering to the stem, swaying backwards and forwards so as to present themselves in every point of view, while others were moored to the glass cover, thus giving an admirable opportunity of making out their structure.

It was a memorable occasion, but I never had such a chance again.
I have yet to speak of the Synchetade among the free-swimmers. Both the genera included in this family are to be found in open water ; and both alike shun dirty ponds; though in different degrees, for Synchata is absolutely intolerant of them; while I have dipped up Polyarthra from the hollows of a muddy bottom where once a pond had been.

Both genera are tolerably common, and are often to be caught in considerable numbers. The habits of the two chief species of Synchata, viz. S. mordax and S.
tremula, are very different. The former is the swiftest and most restless of the Rotifera; it is the very swallow of the waters, ever whirling round and round in endless spirals, and never still for a single instant from its birth till its death; but the latter may be constantly seen drifting along in some gentle current, while twisting round at the end of a long thread spun from its toes, and fastened to some floating objeet.

Of course, creatures with habits like these can be captured only by making random dips in the water, now at the surface, now deeper down-here in the sunshine, and there in the shade ; for even Rotifera have their fancies, and are sometimes swarming in one particular spot, while all the rest of the pond is deserted by them.

I have, however, noticed that they specially affect the neighbourhood of a forest of weeds growing up from the bottom; waltzing up and down outside of them in myriads, like gaats under the trees in summer.

There is yot another free swimmer that avoids the shore, and sails out into the open Bea; viz. Anurea longispina. This curious creature has a lorica like a Greenlander's canoe, or a University eight, and it keeps off from the weeds and alga, as if fearing lest it should be entangled for life if it once got among them. It was discovered by Professor D. S. Kellicott in Niagara water at Buffalo, U.S., in 1879, and was found almost immediately afterwards in the Olton Reservoir, near Birmingham and since then in Lake Zug in Switzerland. It appears to be a rare species, though its rarity may be due partly to the fact that it often requires a boat to catch it; and an ordinary Rotifer hunter can hardly be expected to add this to his apparatus.

The known habitats of the Pedalionide are at present very few. I had the good fortume to be the first to light on Pedalion mirum. It was in July 1871 that I found it in a small roudside pool at the top of Nightingale Valley, close to Clifton. Soon afterwards I dipped it from a fine old pond at Abbot's Leigh, about two miles distant from Nightingale Valley. It reappeared in this pond in the following year, but since then it has not revisited the neighbourhood. It has been met with several times near Chester and Birmingham, and on one occasion it was tolerably abundant in the warm water-lily tank in the Duke of Westminster's gardens at Eaton. ${ }^{1}$

Dr. L. K. Schmarda discovered in Egypt, in 1858, in some brackish pools near El-Kab, a six-limbed Rotiferon, Hexarthra polyptera, which evidently belongs to the same family, though it must be placed in a difforent genus. He says that there were great swarms of them distinctly visible to the naked eye, in a pool of very transparent, colourless water, of a strong brackish taste.

Now, a Rotiferon that is equally at home in dirty puddles, clear ponds, warm-water tanks, and brackish pools, ought not to be a rare one : and yet Pedation is rare.

Possibly its apparent rarity is due to its being constantly mistaken for an Entomostracous larva. I was on the point of throwing the water away, when I first dipped Pedation out of the pool in Nightingale Valley. Its skipping movement is so precisely that of the young of a Cyclops, that I thought I had eanght nothing more valuable than these ever-present nuisances. Fortunately I noticed that, unlike them, my captives seemed to glide along after every skip, instead of stopping stock-still to gather breath for a fresh jump ; and so, thinking that they might possibly be some large sort of Polyarthra, took them home for further investigation. But it is very probable that Pedation has been thrown away hundreds of times, and will be so again, as this happened to me after nearly twenty years' experience in catching Rotifera. ${ }^{2}$

Hotifera may often be seen perched just under the plumed heads of one of the fresh-

[^18]water zoophytos, wisely making use of the stronger currents produced by the ciliated tentacles of their hosts, in order to bring grist more easily to their own mills. I have had sometimes quite "a happy family" of them in the field of view at once; a Brachionus, a Philodina or two, and a Melicerta, all attached to the neek of a Plumatella, and all eagerly whirling their wheels in order to divert to their own throats a portion of the currents that swept down to them from above. Nor was this all; for the Melicerta in its turn had the top of its tube turned to the same use, and bore, as closely under its wheels as possible, the tiny case of one of its own offispring.

Limnias ceratophylli and Melicerta ringens carry this semi-parasitical habit to a great extent. Clusters of two or three generations all attached to one tube are not at all uncommon in the former species; and I once found in Nailsea pond a large Limnias bearing up no fewer than fourteen of its own descendants. Melicerta ringens, too, in America, ${ }^{1}$ is frequently met with in large adhering clusters, but in England it is usually a solitary species. However, this is not invariably the case ; for not long ago I had the pleasure of seeing as many as thirty-four live Melicerta attached to one another. ${ }^{2}$ They were of all ages and sizes, and were grouped round one large tube, so as to form a striking example of a natural co-operative society. Nor is this the only way in which the Rotifera show their capacity for fighting the battle of life. Every animal is limited by its own powers to a certain space, beyond which its excursions cannot possibly extend. Its food and its mate must be found within these limits; and when these two imperious wants are satisfied, there is but little time or strength left for travelling. But it would be an obvious adyantage to many creatures if they could be carried about from one spot to another without tiring their own muscles - ready to slip off, at any favourable opportunity, "to fresh woods and pastures new." Now this is precisely what some of the Brachioni and Philodina contrive to do; for they may be seen riding in clusters on the backs and sides of the Entomostraca, or thickly fringing the legs and side plates of the water woodlouse. ${ }^{3}$

Whenever I have caught a water-flea ${ }^{4}$ so encumbered, and have placed it in a live box to see the Rotifera it carried, they have soon deserted their captive steed, and have swum off as if to search for a more serviceable one.

There are, too, some Rotifera whose structure has been adapted to give them a good grasp of their host, or even to enable them to pierce its skin, and so suck its juices for their own support.

Balatro calvus, for example, has been found ${ }^{5}$ in the Seine (Canton de Genève) creeping on the bodies of small water-worms which it habitually infests, and having two greatly enlarged foot-processes, which probably enable it to take a firm hold.

Another Rotiferon, Callidina parasitica, is always found attached to the thoracio or abdominal appendages of the fresh-water shrimp ${ }^{6}$ and water wood-louse, and limits its journeyings to creeping about on the body of its host ; while the strange creature Drilophaga Bucsphalus holds on by its altered jaws to the hind segments of a freshwater worm, Lumbrioulus variegatus, and sucks the animal it clings to.

This parasitio Rotiferon was discovered in North Bohemia in the great pond at Hirseberg, in the banks of which the Lumbriculus is found in immense numbers. The worm buries the fore part of its body in the mud, and moves its naked hinder segments like a pendulum in the water. But no such gentle motion will unfasten the grip of the Drilophaga, which is so firmly attached to the worm's skin that it can be dislodged only by using considerable force.

[^19]If the Rotifer hunter can rise to a pitch of enthusiasm, which I confess I have never been able to attain to, he may follow Dujardin's example, and, by making incisions ' in the sides of earth-worms and slugs, obtain from the expressed fluids the entozoic Albertia vermiculus. The same creature has been seen inside Nais proboscidea, ${ }^{2}$ and an allied species (Albertia crystallina) in the viscern of Nais Littoralis, ${ }^{3}$ while the Synaptue of the Channel Islands have been found 'to carry within their body eavity a minute Rotiferon only $\frac{1}{50}$ of an inch in length.

But I have not yet exhausted the list of these strange dwelling-places. A pretty little Rotiferon, Notommata parasita, may be found swimming about within the beautiful spheres of Volvox globator, or lodged within the embryo globes when almost ready to escape from the parent sphere. "On examining several specimens of Volvox with a pocket lens we may frequently detect such as are thus tenanted, by perceiving a spot differing from the young clusters in form and colour. These spots are found to be the Notommata, snugly ensconced within the globe, in the spacious area of which it lives at ease, and swims to and fro like a gold fish in a glass vase. We see it for the most part, however, clinging to the inner surface of the circumference, engaged in devouring the green monads with which the gelatinous surface is studded, or else eating away the embryo clusters." Volvox globator is common enough in most neighbourhoods, and may be met with it even in clear rain puddles in quarries and plantations; while in two or three ponds near Clifton it is sometimes so abundant as to give a green hue to the water; and yet I have never seen its guest here, nor do 1 know anyone in the neighbourhood who has; so it can scarcely be a common species.

The reproductive cells of Vaucheria-a thread-like alga which grows on pond walls and in many moist places-are tho homes of another Notommata, N. Werneckii. This parasitic Roliferon passes a small portion of its youth in the open water; but it soon returns to a lifelong imprisonment in the green cells in which it was hatched, and where it undergoes very singular changes of form. Its presence in the Vauchcria may be detected by the unusual size and shape of the reproductive cells, and by their containing a black spot which is the animal's stomach. ${ }^{6}$

Some further means of obtaining Rotifera have yet to be mentioned.
If a little of the mud or rotten leaves at the bottom of a dried-up pool, in which Rotifera have been observed, is brought home and allowed to lie in a vessel of water, the chances are in favour of there being in the mad some of their eggs, and of their ultimately hatching. I have often adopted this plan with success, especially when some rare species has been discovered in a little pool due only to the rain, and drying up after two or three days' fine weather. Unluckily the mud too frequently harbours an abundance of small worms also; and these are disagreeable to see and troublesome to deal with, for they are liable to starve, die, and taint the water.

Rotifera also may be produced at home by placing infusions of hay, leaves, \&e, in some vessel out of doors. No very great variety is to be obtained by such methods; but it is always as well to try it, and to have a good-sized pan in the garden, full of soft water, into which rubbish from pond-gatherings may occasionally be thrown. These, and the chance droppings from the air into the pan, will sometimes give the student, at his own door, species which he would otherwise have to travel far to find.

Many of the Rotifera may be kept indoors in vessels in which there is a healthy growth of Myriophyllum, Anacharis, or other water-weed. Mr. Gosse has tried this plan with
${ }^{1}$ Ann. Sci. Nat. Zool. 2 Ser. vol. x. 1888, p. 176.
: By Mr. P. H. Gosse, in water from a pond at Walthamstow. iny M. Max Selsulze.
${ }^{4}$ By Professor Ray Lankester, Quart. J. Micr. Sci. N. Ser. vol. viii. 1868, p. 54.
${ }^{6}$ Mr. P. H. Gosse, Trans. Mier. Soc. vol. iii, 1852, p. 143.
${ }^{\circ}$ Prof. Balbiani, Ann. Sci. Nai., Zoot. 6 Ser. vol, vii. 1878. I am not aware that Notommata Werneckii has been found in England. Probably it would be, were it deliberately searched for. Mr. F. W. Roper, of Eastbourne, has found a similar species tightly rolled up in a ball inside the leaves of one of the liver-worts, Legounia minutissima.
success, and has lately had thousands of Stephanoceros, Melicerta, Pterodina, dc., thriving in tanks and jars in his study. Mr. J. Hood has been equally successful with Floscularia and Limnias ; and I know of other instances in which a literally constant stock of the tube-making Rotifera has been maintained in these home preserves.

Indeed, if nothing more is desired than to watch the growth of a couple of generations or so, an ordinary zoophyte trough is aquarium enough. All that is necessary is, (1) to take great care that there are not many animals of any kind in it, (2) to keep it in a subdued light, (3) and at a moderate temperature, (4) and especially to provide the Rotifera with plenty of their natural food. For, in the great majority of cases, Rotifera die, when in captivity, of starvation : one moment's examination of their stomachs will make that point clear.

Of course, what is their natural food must first be observed under the microscope, and then it must be provided to them every day by dropping a fresh supply of water containing it into the trough. It will, therefore, always be necessary to bring away from the pond, where they were found, a good supply of pond water free from all other kinds of animals.

Sometimes, however, it is well to make an overfed Rotiferon starve a little, in order to see its internal structure. Hydatina senta, for instance, is frequently so gorged with dark green food, that little else can be seen but its distended stomach ; the organization of Pedalion mirum, too, is often a hopeless riddle, owing to its greedy habits; but drop either of these creatures into a tube of clear soft water for an hour or so, and it may be fetched out again in delightful condition for microscopic investigation, and yet perfectly bealthy.

Summing up the various habitats that I have just recorded, we see that Rotifera may be found in rivers, lakes, reservoirs, ponds, ditches, puddles, gutters, and waterbutts; in the mud of dried ponds, in the dust of dried house-gutters, on wet moss and grass; in the rolled-up leaves of liver-worts, in the cells of Volvox globator and of Vaucheria, in vegetable infusions; on the backs of Entomostraca, and of fresh-water fleas, wood-lice, shrimps, and worms ; in the viscera of slugs, earth-worms, and Naiades, and in the body-cavities of Synapta. Nor have I yet completed the list; for several species have been found in the sea. Mr. Gosse says, ${ }^{1}$ " Synchata Baltica swims at large through the water, never resting; it is self-luminous, and is one of the causes of the phosphorence of the sea. Brachionus Mulleri and Pterodina clypeata occur in brackish water at the mouths of rivers ; and other marine species may often be detected by seareling with a pocket-lens the glass sides of a well-stocked aquarium."

Since then these creatures have so wide a range of habitats, it is hardly possible for anyone, who will take the trouble, not to find some of them near his own home.

To obtain some particular Rotiferon, at a particular given time, is often difficult enough, if not impossible; but for one who is content to study these beautiful creatures as he finds them, there is always a never-ending supply of delightful amusement.

[^20]

CHAPTER V.

FLOSCULARIADE.

Difficultates, quibus laborat investigatio animalculorum microscopicorum, innumeræ ; eorundemque certa et distincta determinatio tantum temporis, tantum oculorum judiciique acumen, tantamque animi compositi ef patientissimi præsentiam requirunt, ut vix aliud supra. Nihil facilius quam animalcula videre, eorumque motu et ludo delectari ; differentias vero in bestiolis simplicissimis, mobilissimis, mutabilibus, in area minimi campi conspectum omni momento effugientibus, percipere, perceptas variosque cujusvis motus verbis significantibus exprimere, hic labor, hoc opus.

Hinc sape post lucubrationem plurium horarum, cum videre et mirari lassus essem, defectu tamen verborum insolitos motus et imagines exprimentium, metuque, ne quæ ipse quidem oculo et mente percepi lectori obscura manerent, chartæ nihul commisi.-O. F. Müller.

CHAPTER V .

Order I. RHIZOTA.

Fixed when adult, usually inhabiting a gelatinous tube excreted from the skin; foot transversely wrinkled, not retractile within the body, ending in an adhesive disk or cup.

Family I. FLOSCULARIADe.

Corona produced longitudinally into setigerous lobes; buccal orifice central; ciliary wreath a single half circle above the buccal orifice; trophi uncinate.

This family, like the one that follows it, contains some of the largest, handsomest, and most attractive of the Rotifera. It consists of only two genera, Floscularia, and Stephanoceros, which closely resemble each other in their habits and internal structure, but differ considerably in outward form. The latter genus, which is represented by only a single species, has its frontal lobes produced into long arms, having sete set round them in whorls; while the former, which contains no fewer than sisteen species, has the lobes comparatively short and expanded, with the setæ radiating from their summits, and frequently edging the whole rim of the corona. The two genera differ also in the kind of tubes that they seerete. The majority of the Floscules have some what irregular tubes of slight consistency; but Stephanoceros has a thicker tube, more regular in slape, and appareutly of greater density.

Both genera are to be found adhering to the common water-plants, frequently in the axils of the leaves; though some species prefer more exposed positions on the stems, or on the leaves themselves. The Flosculariade bear captivity fairly well, and may be easily bred, provided that they have a good-sized trough and a plentiful supply of food; for they are greedy feeders. They live mainly on Monads, ciliated Protozoa, \&e.; but occasionally capture and swallow comparatively large animals, such as Stentors, or even free swimming Rotifera. In one respect, however, captivity often tells on them; for the home-bred specimens, though healthy enough, and breeding freely, are frequently much inferior in size to those that are brought fresh from their native haunts.

Genus floscularia, Oken.

Generic Characters.-Frontal lobes short, expanded, or wholly wanting; setæ very long and radiating, or short and cilia-like; foot terminated by a non-retractile peduncle, ending in an adhesive disk.

Neither pen nor pencil can do justice to the beauty of these animated flowers. It can only be properly appreciated when they are seen by dark-field illumination under the microscope. Then the eye is at once delighted with the filmy transparency of the petaloid head, with the flowing curves of the lobes, and with the pencils of delicate sete radiating from their summits in all directions, and often passing altogether out of the field of view. Should, moreover, the species under observation happen to be a social one, such as F. campanulata, four or five specimens may often be found with their
tubes in juxtaposition, and the whole group can then be well shown under a low power; the animals, in various positions and under different aspects, forming, with their delicate cases and interlacing setæ, a picture that can be hardly rivalled.
F. campanulata, when fully expanded, has been compared to " a long tubular flower with a five-angled petal, the tube swollen, contracted below the lip, and seated on the end of a long stalk." ${ }^{1}$ This description applies very well in most respects to the other species, except that the number of petals is not always five ; for, owing to late discoveries, there is now a regular series of Floscules with seven, five, three, and two lobes; and one species in which the corona is not divided into lobes at all.

The setw also, which crown the lobes, and are so highly characteristic of the betterknown forms, vary quite as much in the newer speeies as do the corone; in some exceeding the Rotiferon's utmost length, and in others diminishing almost to the size of ordinary cilia. Indeed, if the strange genus Acyclus - which must be very closely allied to the Floscules-be also taken into account, as well as the equally curions genus Apsilus, there is a tolerably complete series of forms showing a gradual change from a Floscule, with seven lobes, and long radiating setre, to a Floscule-like Fotiferon in which the setre have entirely vanished, the corona has degenerated into a very delicate protrusile cup, and even the foot itself has shrumk into a mere sucking disk.

The Tube. -The Floseules inhabit a semi-transparent gelatinous tube, into which the animal when alarmed can contract itself with great swiftness. It is secreted by the creature itself, and moulded on its own body by its sudden contractions, and slow expansions. When free from diatoms and extraneous particles (which is seldom the case), it is difficult to be seen, especially by transmitted light: under the dark-field illumination, not only can its outline be seen, but the substance of which it is composed can be traced from the outer surface, far in towards the Rotiferon itself. The tube becomes thinner towards the top, and it is often difficult to trace it there ; but it will generally be found to close in neatly a little under the neck. ${ }^{2}$

A Floscule, emerging from its tube, after one of its contractions, presents the appearance of a pear-shaped body on a transversely wrinkled stalk, with a pencil of long parallel hairs rising from the puckered centre of the rounded upper end. It slowly stretches itself till the wrinkles of the foot have nearly disappeared; and then, after a delay, sometimes provokingly long, the puckers round the setæ relax, and the whole pencil is thrust forward, by the unfolding of the lobes of the corona; which, as they rise, show that they had been drawn down into the body by inversion, as the tip of the finger of a glove may be drawn into it, by pulling it from within. After a little further hesitation, the lobes unfold, and expand into a wide cup, while " the setse seem to fall round it on all sides in a graceful shower." The now fully expanded Floscule consists of five wellmarked portions; the corona, the vestibule, the crop, the trunk (including the viscera), and the foot.

The corona is a delicate nearly hemispherical cup, whose free edge is cut into lobes varying much in size, shape, and number. There are two main varieties of lobe; in the one they are narrow, pointed, and ending in a spherical knob; in the other they are broad, bounded by low convex curves, and knobless. In almost all, the dorsal lobe is conspicnous by its greater size, or peculiar appendages. The corona is furled by the action of delicate muscular threads imbedded in its surface, and expanded by the upward rush of fluid between its outer and inner integuments, due to the contraction of the transverse muscles of the trunk.

The setæ are set either on the knobs that crown the summits of the iobes, or on a thick rim running round them; and they sometimes form a continuous fringe on the

[^21]rim of the corona. Owing to their great delicacy, and to their lying in different planes, it is impossible to see nearly all of them at once. They vary greatly in size, position and arrangement; but their varieties, with those of the forms of the lobes, will be deseribed in the account of each species.

Volvocina, small Infusoria, and floating particles may constantly be seen to enter the bell-shaped corona, and to pass thence down towards the buccal orifice. The setae take no part in this process, beyond that of preventing the return of the captured prey, by interlacing in a close network over the top of the cup, or by individually lashing at a returning object, so as to throw it back again into the gulf. The interlacing of the setie is accomplished by the heads of the lobes approaching each other, and, should the prey be large and vigorous, the lobes are pressed tightly together, so as to completely bar all chance of escape. In most of the species, the motion of the setie appears due to the fitful action of the cuticle, on which they are placed; but in F. trilobata, F. Hoodii, and notably in F. mutabilis, a regular cilia-like motion occurs in the sete ; while in I. mira there is a still wider departure from the ordinary type; since in this Floscule each seta has a constant, slow, independent, amœboid motion.

The Vestibule.-At the bottom of the corona is a second chamber (the vestibule), bomaded above by a higlly contractile collar, below by a diaphragm with a slit in its centre (the buccal orifice), and on the sides by thiek walls. On the upper margin of the collar, and rumning half round it on the ventral side, is a horse-shoe-shaped ciliated rim, ending in two knobs, bearing long, slowly moving cilia; and this rim is so set, that it slopes downwards from the dorsal side to the ventral. This true rotatory apparatus may be easily seen in the large Floscules F. Hoodii and F. trilobata. ${ }^{1}$

A current, due to the action of these cilia, sets down the coronal eap, in a plane at right angles to its base, and carries the food, past the collar, into the vestibule. When once an organism has reached the vestibule, there is no return for it to the upper world. The Floseule often suffers two or three small Infusoria \&c, to wander about round the walls of the vestibule ; but at any attempt to pass the collar, that at once contracts on itself, and closes the passage. In the diaphragm, which is the base of the vestibule, there is a long slit, the buccal orifice, bounded by two chitinous lips (PI. I. fig. 1d, $l p$), from which there haugs into the next chamber, called the "crop," an elastic tube (P1. II. fig. $4, t$, which may be seen always undulating above the mastax. When there are vietims enongh collected in the vestibule to make it worth while to swallow them, the collar contracts violently, the lips dart forward with a sort of smap, and the proy is forced down the tube into the crop. It is evident that this hanging tube is an admirable contrivance for admitting fresh prey into the crop, while at the same time preventing the return of that previously captured. Naturalists plagiarise from the Floseules, when they drop their live specimens through a quill stuck into the cork of a bottle; only the rigid quill is far inferior to the flexible and ever-moving tube.

The crop (Pl. II. fig. 4, cp) is a rounded chamber just under the diaphragm at the base of the restibule. It has very thick walls, which are strengthened externally by two granular spots one on either side of the Floscule's slionlders (Pl. I. figs. 4, 8a). Viewed as opaque objects they are white, like the similar oval knobs on Megalotrocha alboflavicans.

Under the action of small muscular fibres, the sides of the crop contract alternately, and throw the contained food from side to side ; by which means every part of it in turn is subjected to the action of the jaws (Pl. II. fig. 4, ti). These lie at the bottom of the

[^22]crop, attached to the walls of the stomach; and to reach the lattex everything must pass between them. The Floscules are great feeders, and sometimes the crop becomes so distended with food, that the animal, unable to foree it past the jaws quickly enough, seeks relief by expelling the contents of the crop right through the inverted tube. The lobes of the corona are folded back on the body, the diaphragm is pushed upwards and the tube is thrust inside out through the slit in the diaphragm; while through it pours the unmanageable food. Dr. Moxon (loc. cit.) has seen this take place on two separate occasions, and I have seen it onee: in each case the animal was F. campanulata. The appearances due to the tube have been variously described as cansed by moving filaments, laminw, vibratile cilia, and a waving membrane; but these observatiens of Dr. Moxon, confirmed by my own, put the matter beyond doubt.

The Trunk.-The outer wall of the trunk is a tough, elastic, and often slining cuticle, which has an inner and softer layer of varying thickness. This donble covering interferes greatly with a clear view of the viscera, especinlly us it has intercommunicating cavities and chamels containing flaid, which is driven upwards and downwards by the contraction of the muscles, and by the various motions of the body. Nor is this all; for the fluid itself is often rendered semiopaque by grauules floating in it. It is doubtless by means of this fluid that the lobes of the furled coroma are pushed forward and expanded, the transverse muscles of the trunk forcing it into definite channels, which are thus rendered tight and stiff, like the ribs of an umbrella. Mr. Gosse ${ }^{2}$ has described and figured these in the case of F. ornata; and has noticed how the granules flow from the trunk over the neck into the various chanmels of the coronal cup. Mr. Hood, too, has watched a steady stream of granules passing down from the tronk into the foot, and returning again from a point about half way from its extremity. The grauules may be frequently seen, in some degree, in specimens of almost every species, but occasionally they are in such abundance as to render the animal quite opaque; and, by reflected light, of a dead white.

The foot is very long and flexible, and is capable of great expansion and contraction, but cannot be drawn into the trunk. It consists of little else but muscles. The great longitudinal muscles pass down its whole length, and mumerous fine muscular fibres encirele it everywhere, covering it with transverse rings of very variable thickness, from its junction with the trunk to its extremity. This latter contracts to an inextensible, and usually short cord or peduncle, which itself terminates in a sort of disk. In the foot are also the two club-shaped glands (80 common in other genera) which probably secrete a viscous fluid for fastening the disk to some extraneous object.

The Nutritive System.- The food is feebly pecked at by the jaws, while it is in the crop, but it evidently undergoes there some process of digestion. I once saw a Floscule bolt a small Salpina. When inside the crop it was still alive, and it charged from side to side, in the vain hope of escape. The sharp points of its lorica onght to have made its captor uncomfortable; but the only result was, that its outline gradually grew dim, and that before long the whole animal faded into a shapeless mass.

Mr. Gosse ${ }^{3}$ notices the absence of the mastax, and says of the trophi that " the jaws consist of a pair of curved unjointed but free mallei, with a membranous process beneath each. Each malleus (Pl. I. figs. $9 a, 9 b$) is an uncus of two slender arched divergent fingers, united by a subtle web; the back of each curves downwards, where, expanding and becoming membranous, it is conneeted with some delicate but definite processes with rounded outlines, which I should have supposed to be museular bulbs, but that they remain after treatment with potash."

After passing between the jaws the food enters the stomach (Pl. II. fig. 4, s) apparently directly, as no œsophagus is visible. The alimentary canal is divided into stomach (s) intestine (i), and rectum (r), which latter is bent on itself, and ascends to the cloaca ($c l$)

[^23]on the dorsal surface. A partial separation (probably due to a sphineter masele) is usually visible between the stomach and intestine, and the distinction is often made more obvious by the different colour of the contained food. The whole alimentary tract is richly ciliated; and so is the tube (t) that hangs down into the crop. The cilin can be easily seen in the intestine, when it is partially empty; and on the tube, when it is everted by the Floscule's disgorging its crop.

Secreting System.-In the great majority of Rotifera there are two gastrie glands, seated on the top of the stomach. I have, however, never been able to detect them in any Flosoule, neither has anyone recorded their existence except Ehrenberg and Grenacher. The latter describes and figures them of umsual length in F. campanulata, but it is probable that in this matter he is mistaken. He also describes two clab-shaped glands in the foot.

Vascular System.-It is very difficult to trace this in most of the Floscules, owing to the optical difficulties due to their skins. Bnt in 1864 Dr. Moxon (Foc. cit.) published a complete account of it in F. campanulata. His figure of the contractile vesiele (P1. II. fig. $8, c v$), the lateral camals (k), and of four of the vibratile tags $(v t)$, is so clear as to render any verbal description unnecessary. A fifth vibratile tag was discovered by Grenacher in F. campanulata (loc. cit.), in the side of the coronal cup, near the spot where Dr. Moxon (loc, cit.) had anticipated that it would, some day, be found. Parts of this system have been seen in several other species, and doubtless it exists in all. ${ }^{2}$

The museles consist of non-striated fibres. Below the bottom of each depression, between the lobes, a muscle runs downwards in the substance of the coronal cup and vestibule, and is lost on the surface of the body, to reappear again, as it nears and passes down the foot. The anterior portions of these muscles end in two or more branches which diverge to the thickened rim of the coronal cup, and often interlace, as seen in F. coronetta (Pl. II. fig. 2), and in F. trilobata (Pl. II. fig. 6), where they may be seen reaching the summit of the dorsal lobe. There are some half-dozen transverse muscles imbedded in the integument of the trunk; and the walls of the vestibule, with its upper ciliated rim, are all highly contractile.

The Nervous System.-Dr, Moxon (loc, cit.) has described and figured the nervous ganglion in F. campanulata, and I have scenit in F. Hoodit, It is in nearly the same position as it is in Stephanoceros, namely, on the dorsal side of the vestibule; and is, ns nsunl, close to the organ of taste, and not far from the eyes and dorsal antenna; to all of which doubtless it sends out nerrous threads. Dr. Moxon has seen and figured such threads in F, campanulata (P1. II. fig. .9, n.)

In the great majority of the Rotifera the mastax is also not far from the nervons ganglion ; but in the Flosculariade the mastax almost vanishes, while the jaws and ganglion are far apart.

Organs of Sense.-Two red eye-spots lie asually above the ganglion; but, as in the ndults they are doeply imbedded in the integument, they are not easily seen. In fact the ordinary way of attempting to see them, by transmitted light, will scarcely ever be successful; but by treating the Rotiferon as an opaque object, and concentrating a strong light on it, the eyes may often be seen glowing like rubies when all else is invisible. ${ }^{3}$ The eyes are conspicuous in the half-grown animals, and in the young within

[^24]the egg. There are three antenne in F. campanulata, F. coronetta, and F. Hoodiz; and no doubt the same three may with care bo found in the other species. There is one on each side of the neck, and one on the median line near the middle of the dorsal lobe. The two lateral antenne are very short tube-like prominences each carrying a brush of divergent setee; they are very apparent in F. coronetta (PI. II. fig. 2): the dorsal antenna is a mere setigerons pimple. ${ }^{1}$ The setre on the lobes act also as organs of tonch, warning the creatare of the approach of anything detrimental to its delicate cup; and whipping back into it any animalcule that endeavours to escape from it.

On the middle of the contractile collar, which is above the vestibule, and on the dorsal side of it, there is a round projection facing the concavity of the ciliary wreath. It can be easily seen in F. coronetta and F. Hoodii, and is probably an organ of taste, as it is constantly thrust forward to meet any particle which is passing into the vestibule. A very obvious and tongue-like organ holds a similar position, and acts in a similar way, in Stephanoceros.

The Reproductive System.-The ovary, with its clear spherical germs, and frequently with an opaque egg in it, can be seen filling the greater part of the space between the stomach and the ventral surface. No other portion of the apparatus has been made out, owing no doubt to a habit that the Floscules have of contracting themselves sharply into their tube when about to lay an egg. When laid, the eggs are ranged above one another, between the foot and the tube. The ordinary number of female eggs is from two to five; though as many as eight or ten have been seen at once. The male egge, which are smaller, rounder, and more numerous, than the female, frequently amount to as many as nine or ten, and have occasionally been seen in a cluster of eighteen or twenty in the same tube. Both are inclosed in a delicate shell, which is left behind in the tube, when the young Floscule is hatched. Dr. Weisse and Mr. Hood agree in assigning six or seven days as the time from the extrusion of the egg to the birth of the young animal.

The Young Female.- "The infant female Floscule is a white cylindrical maggot (PI.I. fig. 9c), blunt at the front end, with a central orifice, whence protrudes a short brush of cilia; but the margins are capable of unfolding, when the cilia are seen to form a whorl around the truncate summit, swiftly rotating. The margin soon begine to bud forth the little knobs around which the cilia are gathered (Pl. I. fig. 9d); these quickly increase in length, and the angular flower-like coroma gradually forms. Meanwliile the little creature, which was at first free, attaches itself by its hinder end, and assumes the condition as well as the form of the parent." ${ }^{2}$

Mr. Hood has observed in F. calva, that the young animal fixes itself two or three hours after it has burst its shell, and soon begins to form its tube, which at first rises barely to half the height of the foot. By the time it is three days old (Pl. III. fig. 8a) the tube has attained fair proportions.

The same observer noticed that the lobes of the young F. ambigua began to develop from a collar under the ciliary wreath, and were at first merely a dorsal and ventral lobe ; the latter with a small notch. In three or four days the notch deepened and widened so that there were three Iobes; but it was not till the fifth or sixth day that the rudiments of the small side lobes (the fourth and fifth) made their appearance. The young Floscule arrived at maturity at the twenty-fourth or twenty-sixth day, but continued to increase in size after it had deposited eggs ; in fact, did not cease to grow till shortly before its death. The whole lifetime, in a trough, was from forty to forty-six days,

Captivity, however, affected the growth of the animals, even when carefully attended to, and plentifully supplied with food. On one occasion, for instance, a large F. campanulata $\frac{1}{18}$ inch long, from one of the Scotch lochs, was placed in a tank ; and

[^25]the young reared from its eggs, though perfectly healthy and breeding freely, never exceeded ${ }_{78}^{\frac{1}{8}}$ inch in length : their eggs, too, were half the size of those of their parent.

In F. trilobata, occasionally, the egg produces the living young in the body of the parent. Mr. Hood has seen the embryo alive in the egg, within the Floscule, and has witnessed its birth: yet Dr. Collins has seen the same Rotiferon deposit the usual eggs in its tube.

The Male.-Until 1874 no male had been disoovered among the Rhizota ; ' and indeod some observers supposed this group to be moncecious; but in that year I had the good fortune to find the male of Lacinularia socialis, and to study it thoroughly. ${ }^{2}$ Soon afterwards I found that of Floscularia campanulata (Pl. I. fig. 1c) and I have since scen what I believe to be the male of F. mutabilis (P1. III. fig. 2c). Mr. Hood has observed and figured the male of F. calva (PI. III. fig. 3b), and has seen that of F. ambigua actually hatched. The structure of the male Floscule has not yet been thoroughly investigated; but, so far as it has been stndied, it has been found to agree with that of other male Rotifera. The corona is an imperforate many-lobed cushion, surrounded by a simple circlet of long cilia. The nutritive system is wholly absent. Two red eyes are visible just under the surface of the corona; and the longitudinal muscles, for withdrawing the head, are generally obvious. Nearly the whole of the body-cavity is filled with a large sperm-sac (PI. I. fig. $1 c$, and PI. IIL fig. $3 b$; ss) from which the penis (p), a ciliated protrusile tube, proceeds to the dorsal surface, at the junction of the trunk and foot.

The vascular system, ganglion, and antennæ have not yet been seen; but no doubt they are present, as in the males of other Rotifera.

> F. recadis, Hudson.
(Pl. I. fig, 8.)
Floscularia regalis Hudson. J. Roy, Mier. Soc. 2 Ser, vol. Ill. 1883, p. 166, pl. iv, fig. 3.

SP. CH. Lobes seven, knobbed.

The corona is a deep cup with a nearly circular rim, from which project four knobbed triangular processes on the ventral side, dividing that half of the rim into three equal spaces. The processes curve slightly outwards ; and, at the rim, their bases nnite, so as to give that edge of the cup a semi-hexagonal appearance. In the middle of the dorsal side of the rim rises a large triangular knobbed lohe, bearing on each side a short recurved knobbed process, All seven knobs carry pencils of long radiating seta. A true ciliary wreath at the bottom of the trochal cup, and two red eyes, can be easily seen. This remarkable Rotiferon, the only seven-lobed species, was found by Mr. Thos, Bolton in September 1882, near Birmingham.

Length, $\frac{1}{x n}$ to $\frac{1}{5}$ inch. ${ }^{3}$ Habitat. Lakes and clear ponds. Birmingham (T.B. ${ }^{1}$); Perth (J.H., ${ }^{4}$ and W. Dingwall) : not common.

F. coronetta, Cubitl,

$$
\text { (Pl. I. fig. } 5 \text {; Pl. II. fig. 2.) }
$$

Floscularia coronetta . - Cubitt, Mon. Mior. J. vol ii. 1869, p. 133, ph. xxv.
Stephanoceros Horatii + . . Cubitt, Mon. Micr. J. vol. vi. 1871, p. 166.
Flosoularia longilobata . . . Bartsch, Rot. Hungaria, 1877, p. 24, ii. Täb. fig. 14.

[^26]SP. CH. Lobes five, linear, knobbed ; setæ, non-extensile.
The corona has five long narrow knobbed lobes, nearly all of equal length, separated by deep depressions, and forming a miniature coronet. The dorsal lobe is slightly the longest, and the lobes are so set on the front of the body that a plane touching the knobs would be oblique to its longitudinal axis; the dorsal lobe being the furthest forward. All the knobs carry long radiating sete, and the setie are continued all along the edge of the trochal cup (Pl. II fig. 2). The true ciliary wreath and the eyes have been seen in the adult by Cubitt (loc. cit.); but the former with difficulty. The lateral antennæ can be readily seen when the animal is favourably placed, as well as the delicate muscular threads by which the longitudinal muscles act on the corona (Pl. II. fig. 2). As many as seven male eggs have been seen in one tube.

Length, $\frac{1}{25}$ inch. Habitat. In ponds and marsh pools ; rare. Wandsworth Common (Cubitt) ; Forfar, Fife (J.H.).

F. mira, Hudson.
(Pl. III. fig. 1.)
Hudson, J. Roy. Micr. Soc. 2 Ser. vol. v. 1885, p. 609.

Floscularia mira
SP. CH. Lobes five, linear, knobbed; setæ extensile.
The corona is very like that of F. ornata, which species the Rotiferon closely resembles in every respect but two. First, the tube is much more like that of a Stephanoceros than that of an ordinary Floscule. I have seen only one specimen, but Mr. Cocks (its discoverer) tells me that the tubes of the half-dozen specimens which he has seen were all of the same sort. Secondly, in its setæ F. mira is not only unlike all other Floscules, but is unique among the Rotifera : for each seta is in constant independent motion, slowly extending or contracting like the pseudopodium of an Amceba. When the retracted seta begins to extend again, it is often bent into a whip-like shape, a wave of motion overtaking, as it were, the resting anterior portion, and finally driving out the latter with a characteristic flourish of its tip. The sete are of amazing length and abundance, exceeding the total length of the Rotiferon. This very rare and wonderful creature was discovered by Mr. W. G. Cocks in June 1884.

Length, $\frac{1}{s 0}$ inch. Habitat. Unknown; found in an aquarium, in water that probably came from Epping Forest or Walton-on-Thames (W. G. Cocks).

SP. CH. Lobes five, triangular, knobbed; dorsal lobe without any process.
The corona has five knobbed lobes of moderate length separated by broad depressions, the dorsal lobe being distinctly the longest and broadest, and the knobs crowned with long radiating setæ. Ehrenberg describes F. ornata as having usually six lobes, but sometimes five, and draws an example of each case. No doubt it must have been a difficult matter for one of the old observers with only a monocular microscope, and that a poor one, to make out the shape of a delicately transparent and scolloped cup, pre-
sented to him so that its upper and under surfaces were projected on each other. With a modern binocular and dark-field illumination, no tyro would fail to describe correctly the cup with its five knobbed lobes. Elirenberg eredits this species with two "clear spaces" that he considers to be gastric glands. I have male frequent search for such glands, but cannot find them; Elirenberg's "clear spaces" are probably the small bulbs, the rudiments of a mastax, in which the jaws are inserted.

It is most probably Eichhorn's "Der Fanger " (Pl. B, figs. 15, 16), and, if so, it is the earliest known Floseule, having been disoovered as long ago as 1767 . Unluckily, Eichhorn has given two other drawings of it, one with nine, and one with ten knobbed lobes; but, as he complains of the difficulty of rightly understanding and drawing it. it is possible that these numerous lobes represent only the puckers of the half-expanded corona. This is a very pretty species, and, as Eichhorn well says, "no lightning can dart out of the clouds through the air more swiftly " than this little animal can contract upon its prey. Owing to its small size, however, and its lack of transparency, it is not well adapted for the investigation of the internal organs of the Floseules.

Length. From $\frac{1}{d y}$ to $\frac{1}{50}$ inch; average $\frac{1}{50}$. Habitat. Fresh waters everywhere
F. cornuta, Dobie.
(PI. I. fig. 7.)

SP. CH. Lobes five, triangular knobbed; dorsal lobe with flexible process.
This species was first described by Dr. Dobie (loc. cit.) and was afterwards re-named as a new species by Dr. Leydig (loc. cit.). It is like F. ornata, but possesses at the back of the dorsal lobe a curious flexible process, which is probably an organ of touch, though it does not appear to bear sete, or to have any opening. It rises from a swollen base just below the knob, and is suddenly bent over the latter, and then turned up again so as to point forwards and clear the knob. It occasionally moves a little, and slowly alters its shape, taking often an undulating form; but it is not moved about like the antenna of Cephalosiphon or of Rotifer macroceros : it reminds one rather of the slow bendings of the dorsal appendages of F. Hoodii. The eyes cannot be easily seen in the adult, but I have succeeded in exhibiting both together by condensing a strong lamplight on the dorsal surface.

Leydig (loc. cit.) describes and figures the contractile vesiole but places it away from the intestine on the ventral side.

Length, eir. $\frac{1}{\text { ro }}$ inch; Scotch specimens up to $\frac{1}{70}$ inch. Habitat. Widely distributed.

F. cyclors, Cubitt.

(Pl. I. fig. 6, and PI. D. fig. 2.)
Floscularia cyctops
Cubitt, Mon, Mier. J. vol, vi. 1871, p. 88, pl. xciii. figf. 1, 8,
SP. OH. Lobes five, knobbed, very short, variable in length, but sometimes with the knobs almost seated on the rim of the coronal oup, the dorsal lobe rather the longest and stoutest; setæ radiating from the knobs.

This Floscule greatly resembles F. ornata, but it is distinguished by its height, ${ }^{1}$ the length of its foot, and the shortness of its lobes. The fully extended foot is frequently thrice as long as the body. The tube is much wider than usual in proportion to the animal's size, and often symmetrical in shape, like that of F. lonyicaudata. Two eyes are visible in the adult. This species is prolific and has often many eggs in its tnbe. As many as twelve female eggs have been counted in the same tube; and eighteen male eggs in another. Found by Mr. C. Cubitt in 1871.

Length, $\frac{1}{2}$ inch. Habitat. North Brook, Kent (Cubitt) ; ponds and marsh pools, Forfar, Fife (J.H.) : rare.

F. campanulata, Dolie.

(PI. I. Fig. 1.)

SP. CH. Lobes five, broad, without knobs, separated by distinct depressions; peduncle short; setæ radiating from the summits of the lobes, and fringing the whole edge of the coronal cup.

I think that Grenacher (loc. cit.) is right in supposing that Dr. Dobie's F. campanulata is really Ehrenberg's F. proboscidea. Ehrenberg describes the latter as having six lobes, and also a snout-like organ, of cylindrical form, beset with sets like those on the lobes, and rising from the depths of the coronal cup above its rim. Grenacher suggests, as Dujardin had done before him, that this snout-like organ is only the dorsal lobe seen before the corona is fully expanded. I have thought it best, however, to retain Dr. Dobie's name, as F. campanulata has certainly neither a proboscis nor six lobes: I confess, however, that I have little expectation of anyone's ever finding a Floscule with either the one or the other.

The sete often appear to be confined to the thickened summits of the lobes, forming simply a tuft on each. They really, however, fringe the whole circumference of the corona, sloping further away from it as they approach the bottoms of the depressions between the lobes, and even at last pointing backwards towards the foot. The vascular system has been described above, p. 47, and is shown Pl. II. fig. 8. Only four vibratile tags are given in Dr. Moxon's figure ; but Grenacher has seen a fifth, whose position is shown in PI. II. fig. 4. A nervous ganglion has been seen by Dr. Moxon. It is situated dorsally on the neck (Pl. II. figs. 8 and $4, g n$). Nerve threads are drawn by Dr. Moxon, as passing from the ganglion to the three antenne. There is one dorsal antenna, half-way up the coronal cup, and one on each side of the cup close to its junction with the body (PI. II. fig. 8, a). They are little more than setigerous pimples. When the coronal cup is furled, the dorsal antenna may be seen on the summit of the contracted Floscule's pear-shaped body. The discovery of the male has been mentioned above, p. 49. Its sperm-sac (s) and penis (p) are indistinetly shown in PI. I. fig. 1, c; but the dead specimen from which I drew the figure was so lately hatched that its cuticle was more than usually opaque. As many as twenty male eggs have been

[^27]comnted ${ }^{1}$ in one tube. This beautiful Rotiferon is by no means shy, but often attaches itself in closely-packed clusters, of a dozen or more, to the stems or ends of the leaves of water-plants.

Length. Average about $\frac{1}{4}$ inch; but Mr. Hood has found in the Scotch lochs specimens no less than $\frac{1}{18}$ inch long. Habitat. Clear ponds and lakes: common.

F. longioaudata, Hudson. (Pl. I. fig. 4.)

Floscularia longicaudata . , Hndson, J. Roy. Micr. Soc. 2 Ser. vol. iii. 1883, p. 165, pl. iv. fig. 2.
SP. CH. Lobes five, rather pointed, without knobs, the dorsal lobe the largest, the two ventral ones next in size, and the two lateral ones much the smallest; pednncle very long; setæ as in F. camparulata.

This Floseule resembles both F^{\prime}, campanulata and F, ambigua but is distinguished from them by its pointed lobes, very long peduncle, and comparative smallness of its body. The lateral lobes vary in size in different specimens, and even in the same animal at different times, and are occasionally as minute as they always are in F. ambigua. The peduncle $(p d)$ is often $\frac{1}{3} \mathrm{rd}$ of the length of the extended foot, while in other Flos. cules it varies from $\frac{1}{5}$ th to $\frac{1}{2 n}$ th of that length. It is a thin, transparent, non-retractile thread, and is generally thrown into graceful curves and coils. The tubes of all the specimens which I have seen were remarkably compact and symmetrical.

This is a social Rotiferon, and is to be found sometimes in clusters of a dozen or more, of various ages and sizes. It selects exposed situations, perching itself on the edge or point of a leaf, and preferring the convex side to the concave. It is a great feeder, swallowing small live Infusoria greedily ; and, though not so hardy as F, ambigua, yet it will bear being kept in a trough for a fortnight.
F. longicaudata was first discovered by Mr. J. Hood in 1881, on a leaf of Sphagnumb in a pool on Tent's Muir ; and again in Loch Rea, Blairgowrie, in July and August of the same year.

Length. From ${ }_{1}{ }^{\frac{1}{5}}$ to ${ }_{3}^{2}$ is inch. Habitat. Lochs and marsh pools; Forfar, Fife, Perth (J.H.) : rare.
F. ambioua, Hudson.
(Pl. I. fig. 2.)
Nloscularia ambigua . . Hudson, J. Roy. Mior. Soc. 2 Ser, vol, iii. 1888, p. 168, pl. iv. fig. 1.
SP. CH. Lobes apparently three; viz. one large broad dorsal lobe, and two much smaller ventral ones; a pair of minute lateral lobes lie between the dorsal and ventral lobes; setæ, as in F. campanulata.

This broad stumpy Rotiferon connects the five-lobed with the three-lobed Floscules ; for though, at first sight, it seems to have but three lobes, there is also a minute lateral pair. These lateral lobes are frequently reduced to mere thickenings of the rim of the cup, but can ulways be detected by the seter radiating from them. From some points of view F. ambigua closely resembles F. campanulata; and, indeed, I think that Dr. Moxon (Pl. II. fig. 8) may have mistaken the one for the other.

From the body up to the dorsal lobe, as in F. Hoodii, run two ridges of semi-trans. parent tissue, which look like buttresses to the coronal cup; and form, with it and the dorsal surface, a deep hollow, at the bottom of which lies the neck.

The animal has a habit of so contracting itself as to throw its cuticle into deep folds, especially at the neck, and at the base of the body. There often appears ulso to be a
${ }^{1}$ By Mr. W. Dingwall, of Dundce,
well-marked separation between the body and foot, the latter looking as if it possessed only half the width of the body, at the line of junction.
F. ambigua was discovered by Mr. J. Hood in May 1881 on a leaf of Sphagnum, in a mossy pool on Tent's Muir, Fife. Its habits are the reverse of those of F. longicaudata. It selects for its post the axil of a plant, or the under surface of a leaf, especially of a wellcurled one; so that it is difficult to find a specimen that can be easily studied from various points of view. Thus placed as it were in ambush, the burly Floscule draws, with its powerful ciliary wreath, all kinds of organisms into its coronal cup. Nothing seems to come amiss to it, and its appetite never fails. Mr. Hood has seen it devour the young of CEcistes pilula, and of CE. umbella; as well as other free swimming Rotifera, along with all kinds of Infusoria; so that, to use his own vigorous language, "it would eat its own weight in three hours." The same observer has twice seen the male hatched from the egg laid in the tube; and noticed the motion of its spermatozoa in the spermsac.

Length. From $\frac{1}{30}$ to $\frac{1}{40}$ inch. Habitat. Lochs and marsh pools; Forfar, Fife, Perth(J.H.) ; near Birmingham (T.B.) ; Woolston pond (P.H.G.) : sometimes abundant.
F. slgicola, Hudson, sp. nov.
(Pl. I. fig. 8 ; Pl. II. fig. 1.)
SP. CH. Very small; corona precisely that of F. ambigua, but omamented with dots arranged in symmetrical pattorns; tube, if present, undistinguishable.

This pretty little Rotiferon is very like F. ambigua, differing but little from it except in its ornamented corona, small size, and strange dwelling-place. Its coronal cup is ornamented on the outside with minute dots, arranged in a symmetrical pattern, as shown in Pl. II. figs. 1a, 1b. It makes its home in a parasitic growth (Gloiotrichia pisum ${ }^{1}$) on the stems of water plants. Possibly it may in this way avoid the necessity of making a tube, as the parasitical sphere that it lives in seems to consist chiefly of a kind of grey mucus; but I could not be certain whether it had a tabe or not: Mr. Gosse searched with great care, but could see none.

This Rotiferon was found first by Mr. J. Hood in 1882, at Rosemont Loch, Blairgowrie. It was then very abundant.

Length, $\frac{1}{6}$ inch. Habitat. Lochs, Perth (J.H.) : not common.

> F. trulobata, Collins. (Pl. II. fig. 6.) Floscularia trilobata $\quad . \quad . \quad . \quad$ Collins, Science Gossip, Jan. 1872, p. 9, with fig. Floscularia trifolium $\quad . \quad . \quad . \quad$ Hudson, J. Roy. Mior. Soc. 2 Ser. vol. i. 1881, p. 4, pl. ii.

Floseularia trilobata . . . Collins, Science Gossip, Jan, 1872, p. 9, with fig.

SP. CH. Lobes three, large, broadly curved, separated by vory deep and similarly curved depressions : dorsal lobe rather the largest; setæ forming a continuous double fringe round the cntire circumference of the corona; the outer row arranged like those of F. campanulata; the inner row short, slightly curved, and arranged like cilia.

This large and elegant Floscule was discovered by Dr. F. Collins in 1865, in a small pool near Sandhurst, Berks; and he published a short account of it, with a figure (loc. cit.) in 1872. It was afterwards found by Mr. J. Hood, in Loch Lundie, near Dundee, in 1880 ; and I published a description of it (loc. cit.) naming it F. trifolium, as I had considerable doubt of its really being Dr. Collins' species. I have since seen the description and figures which Dr. Collins sent, with some live specimens, to Mr. Gosse in 1865 ; and I have now no doubt that F. trifolium and F. trilobata are the same.

[^28]The peculiarity of a second fringe of sete lying within the principal fringe is shared with it by F. Hoodii aloue. Unlike the ordinary setse, these smaller secondary sete possess a kind of joint action; for when any captive creature tries to escape from the coronal cup, and to pass the setm, those of the outer row either lash separately at it, or are drawn together over it by the converging lobes; while a wave of motion, tike a ciliary wave, runs once or twice round the inner row. The true ciliary wreath can be easily seen at the bottom of the coronal cup, owing to this Floscule's great size and transparency. I saw a small contractile vesicle, but I had no opportunity of tracing the rest of the vascular system. The two lateral antennæ were also obvious.

The first thing that strikes the observer, on watching the protrusion of the furled head, is the great size of the Floscule, and the curiously shrivelled appearance that the lobes of the coronal cup present, as they emerge from the opening head. They look exactly as if the animal were sickly or injured. In a few seconds, however, they gently swell out, the many folds and creases disappear, till at last the eye is gratified with the sight of a lovely transparent tulip, of three petals, their edges all fringed with delicate and motionless hairs. It is a creature of exquisite beauty; from every point of view the flowing curves of the cup are charming, and its great transparency permits the whole of the outline of the rim to be seen at once. The dorsal lobe is rather larger than the other two, and is curved forward over the cup. Across each lobe run delicate muscular threads for furling it, which are specially visible on the back of the dorsal lobe (Pl. II. fig. 6).

Dr. Collins saw eggs, laid by his specimens, remaining attached to them within the tube; but Mr. Hood observed that some specimens, which he reared in a trough, hatched the ova in the ovary, and then gave birth to the living young.

They are voracious feeders on Infusoria and small animalcules, and are fond of stationing themselves in the axils of water plants.

Length, $\frac{1}{15}$ to $\frac{1}{15}$ inch. Habitat. Lochs, marsh and boggy pools; Sandhurst (Dr. Collins and P.H.G.) ; Woolston, Hants (P.H.G.) ; Fife, Forfar, Perth (J.H.) : not common in England, abundant in Perthshire.

F. Hoodn, Hudson.

(Pl. II. fig. 5.)
Floscularia Hoodii . . Hudson, J. Roy. Micr. Soc. 2 Ser. vol. iii, 1883, p. 161, pl. iii. figs. 1, 3.
SP. CH. Lobes three; dorsal lobe much the largest, and carrying two, large, sleevelike, flexible processes; setæ, short, cilia-like, in two parallel rows, fringing the entire circumference of the cororal cup.

This is one of the largest of all the Rotifera; adult specimens being quite $\frac{1}{10}$ inch from the top of the dorsal lobe to the extremity of the peduncle. Its great size, and its curiously shaped three-lobed corona make it sufficiently remarkable; but, in addition to these peculiarities, it has two extraordinary processes, perched one on each side of the back of the dorsal lobe. They appear to be hollow, and to communicate with two lenticular spaces lying between the two surfaces of the dorsal lobe. Fine muscular threads pass along and across them (PI. II. $5 b$), and the animal can contract and expand each independently of the other; and throw them into all kinds of positions. The upper end of each seems to be separated from the lower portion by a constriction, from which a muscular thread runs down to the base. Each of these processes slowly and independently changes its shape and position, now sinking down on the dorsal lobe so as to be invisible, or again bending its free end at right-angles to the lower portion. I have never seen anything like them on any other Rotiferon: they may possibly be organs of touch, but I could detect no trace of setis on them. Mr. Hood tells me that both in young and adult specimens he has seen brown granular matter discharged from their free ends. The thickened rim of the three lobes carries its double fringe of setie
set just as they are in F. trilobata, the larger row stretching outwards, and the smaller inwards ; and the same rapid flicker may be seen on occasions to run all round the edge of the coronal cup. The orifice of the coronal cup alters constantly, now opening in the characteristic way shown in PI. II. fig. 5a, and now reduced to a slit; or even closed in puckers. Two dorsal ridges, as in F. ambigua, run like battresses from the body to the back of the dorsal lobe, and in the lowest portion of the deep hollow between these lie the two pale pink eyes ; both in the neck, and one close to each buttress. The true ciliary wreath is distinctly visible throughout its whole length. It is a long horse-shoe-shaped and ciliated ridge, sloping sharply down from the bottom of the coronal cup into the vestibule. The contractile vesicle is unusually large and distinct; close to it, and apparently situated in it, is a cluster of yellow globules, which look black by transmitted light.

This strange and beautiful Floseule was discovered by Mr. J. Hood in December 1882, in a ditch on Tent's Muir, Fifeshire.

Length, $\frac{1}{10}$ inch. Habitat. Marsh pools; Fife (J.H.) : rare.

> F. calva, Hudson.
> (PI. III. fig. 3.)

Floscularia calva Hudson, J. Roy. Micr. Soc. 2 Ser. vol. v. 1885, p. 610.
SP. CH. Lobes two, short; dorsal lobe the larger; setæ very short, radiating from the thickened summits of the lobes, incapable of cilia-like action; body unusually long and narrow, its outline confluent with that of the coronal cup, so that there is no neck; eyes cervical.

Mr. J. Hood discovered this species in 1884 on a Sphagnum leaf, in a mossy pool on Tent's Muir, only twelve inches deep, and on another occasion found it in Loch Lundie at a depth of ten feet. I have seen only two specimens of it, and those under disadvantageous circumstances; as each had dropped from the plant on which it was found, and was lying in the sediment at the bottom of the tube. The creature appears to attach itself rather to its tube than to the stem of the plant which bears the tube, and so to be easily detached. I am indebted to Mr. Hood for drawings of the young male and female (P1. III. figs. 3a, 3b), each of which he saw hatched from eggs laid in the tube. The male is about $\frac{1}{210}$ inch in length, and resembles that of F, campanulata.

Length, $\frac{1}{6}$ to $\frac{1}{50}$ inch. Habitat. Lochs and marsh pools, on Myriophyllum and Syhagnum ; Forfar, Fife (J.H.) : rare.

> F. Mutalimis, Bolton.
> (PI. III. fig. 2.)
> Floscularia mulabilis . \quad Hudson, J. Roy. Micr. Soc. 2 Ser, vol. v. 1885, p. 609, pl. xii, figs. 1.3.

SP. CH. Lobes two, well developed; dorsal lobe decidedly the larger; setæ rather short, set round the whole circumference of the disk, and capable of cilia-like motion; eyes near the summit of the dorsal lobe.
F. mutabilis somewhat resembles F. calva, but is at once distinguished by its larger lobes, moveable setæ, and by its unique habit of swimming. The animal has not as yet been found attached to any water plant. It looks, when resting in its case at the bottom of a live cell, just like an ordinary Floscule that had been lonocked off its perch, as the setæ are straight and motionless. After a short rest it pulls down the two lobes to a level with the bottom of the depressions between them, and so alters the corona
that it looks like that of an Cecistes ; at the same instant the setex ${ }^{1}$ set up a vigorous cilialike action ; and the animal, case and all, sails slowly, stern foremost, through the water. Two red eyes are very conspicuous in a most unusual position; namely, near the top of the dorsal lobe. I have seen what I believe to to be the male (Pl. III. fig. 2c), but I failod to isolate it so as to make out its internal organs. Its length was about $\frac{1}{180}$ inch. It appeared to have, in addition to the usual ciliary wreath, setie pointing backwards to the foot.

Mr. T. Bolton discovered F. mutabilis in a pond of Sutton Park, near Birmingham, in May 1884. He described, named and figured it, soon afterwards, in onc of the flyleaves sent out with his specimen tubes.

Length. About $\frac{1}{80}$ inch. Habitat. A pond in Sutton Park, Birmingham (T.B.) : rare. F. edentata, Collins.
(PI. III. fig. 4.)
Eloscularia edentata . . . Collins, Science Gossip, Jan. 1872, p. 9, with fig.
"n Hudson, J. Roy. Micr. Soc. 2 Sor, vol, v, 1885, p. 611.

Corona lobeless, transecrscly truncate; setæ very short, ohiefly on the ventral and dorsal portions of the rim; body large and stout in proportion to the animal's total length, and nearly as long as the foot.

Dr. Collins first discovered this ugly Floscule near Sandhurst in 1867. He says (loc. cit.) that it has no masticating organs, and that the food passes directly into a capacious stomach. As his specimen was a female (for it laid an egg while in captivity) this is very unlikely. My specimens were so gorged with food that no internal organs could be seen, except the stomach and a portion of the ovary. One of them was literally crammed full of specimens of Cocconoma, which not only distended the real stomach and the crop, but even protruded above the rim of the coronal cup. How the animal contrived, with its feeble cilia, so to pack itself with these ummanageable diatoms, I cannot imagine.

Length. My specimens, $\frac{1}{3}$ inch; Dr. Collins', $\frac{1}{86}$ inch. Habitat. Sandhurst, Berks (Dr. Collins); Woolston, Hants (P.H.G.) ; Blair Athol (W. Dingwall) : rare.

Genus acyclus, Leidy.

GEN. CH. One dorsal, frontal lobe; setæ absent, the coronat cup edyed with a delicate festooned membrane; termination of foot truncate.

- Acyclus inquietus, Leidy. ${ }^{2}$
(Pl. D. fig. 8.)
Acyclus inquictus . . Leidy, Proc. Acad, Nah. Sci, Pa. 1882, p. 243, pl. ii. figs. 1-6.
The structure of this species has been only imperfectly made out ; but, so far as it has been, the animal appears to be closely allied to the Flosoularia; and so also do the next two species, Apsilus lentiformis, and Apsilus bipera. The characters of Acyolus inquietus given by Prof. Leidy are as follows :-
"Body fusiform, tapering behind into a long narrow tail-like appendage, by which it is attached, not distinctly anmulated, but becoming transversely wrinkled in con-
${ }^{1}$ It is possible that there may be (as Mr. Bolton snys) a row of short cilia round the coronal cup, as well as the larger setie; but my impression is that there is not: I altered my opinion more than once, while watching the creature, but came at last to the conclusion that it swam by meang of ity selee, and not by a subsidiary row of cilia.
${ }^{2}$ Throughout the work the species which are not known to be British will be marked with in asterisk.
traction. A non-ciliated cup-like head prolonged into an incurved digiliform appenlage (as a substitute for the usual trochal diso), contractile and retractile."

The Professor found eight specimens of this strange creature, each surrounded by a group of Megalotrocha alboflavicans, and all attached to the tubes of Phumatella diffusa, in the Schuylkill river, U. S. It is considerably larger than M. alboflavicans, and can be readily distinguished with the naked eye, towering above the surrounding cluster of Megalotroche " like a giant in a crowd." It is a very difficult animal to observe, as it bends abruptly in different directions; suddenly contracting and slowly elongating, and scarcely ever for a moment remaining erect. It is translucent, whitish, with the thicker portion of the body of a yellow or brown hue, due to the colour of the alimentary canal, The corona is a cup prolonged on the dorsal side into an incurved lobe (PI, D, fig. 3). It is capable of being expanded or contracted, protruded or retracted; and when expanded, the dorsal lobe is also extended, but remains somewhat incurved. There are no cilia or setæ on the edge of the cup or lobe, but both of them are bordered by a delicate festooned membrane. When contracted, the lobe is rolled up spirally (PI. D, fig. $3 b$). A narrow, transversely wrinkled neek lies between the cup and the body. No ciliary wreath has been noticed within the cup. There is generally no tube present; but in two instances the animal has been seen in a "copious colourless gelatinous sheath." The cup converges into a pouch (the vestibule) occupying the nock, which is seen to expand and contract from time to time. Longitudinal muscles extend from the neek to the membrane surrounding the coronal cup, passing along its walls. Retractor muscles stretch from the body down the length of the foot. The secreting, vascular, and nervous systems have not been observed; neither have any eyes or antennæ in the adult female. The ovary is in the asual ventral position. and the ova are large, and unsegmented when extruded.

Length, $\frac{1}{1}$ to ${ }_{17} \frac{1}{7}$ inch. Habitat. Schuylkill river, U. S. (Prof Leidy) : rare.

Genus APsilus, Metschnikoff.
GEN. CH. Coronal cup wholly membranous; setæ and foot absent.
*Apsilus lentironams, Metschnikoff.

Herr E. Metschnikoff found many specimens of this Rotiferon at Giessen in 1866, on the under side of the leaves of the yellow water-lily, to which they were attached by a chitinous ring on the ventral surface; both in the young and adult female the foot was absent. The coronal cup is wholly membranous, and destitute of either cilia or setæ. It is capable of having its edge all drawn close together into a point (Pl. D, fig. 4a), and of being wholly withdrawn within the body, so that it acts as a net, closing over any prey that voluntarily enters it, and forcing it down into the chamber below it, which in the Floscules would be called the crop (fig. 4a, cp). At the bottom of the crop is a very peculiar set of trophi (fig. 4c). A broad stomach has a coceal appendage on each side, and a cloacal orifice on what appears to be the ventral side, but is really a portion of the dorsal, having been drawn round by the animal's curving its body when attached to the leaf. There are two pear-shaped glands attached by their narrow ends to the crop. There is a contractile vesicle opening into the cloaca, and from it, above, issues a
duet which divides into two lateral canals. Each canal runs slantingly up to a coil at the side of the body below the cup, and thence sends a branch into the dorsal surface of the cup, anastomosing with its fellow above and below the nervous ganglion (P1. D, fig. 4b), and bearing two vibratile tags on each side of it. The nervous ganglion is a four-side organ in the dorsal wall of the cap; it sends out a nerve thread at each corner, the lower pair passing to two lateral antennæ. No eyes are visible in the adult. The young embryo is developed in the egg in the body of the parent. When hatched, it is a free-swimming Rotiferon (PI. D, fig. 4 d), with a truncate, ciliated, anterior extremity, and with the cloaca, at the ciliated posterior extremity, surrounded by a membranous ring. There are two red eyes, but the characteristic coronal cup is as yet undeveloped. The male, which has a ciliated foot, is so like those already described, that Herr Metschmikoff's drawings supersede description (PI. D, fig. 4e).

Prof. Leidy described in 1857 (loc. cit.) a new Rotiferon, " destitute of wheelorgans," which he named Dictyophora vorax. He obtained, however, some fresh specimens in 1884, and is now of opinion (loc. cit.) that the animal is identical with Apsilus lentiformis, and that the discrepancies between his account and Herr Metschnikoff's are due to the wrinkled condition of his first specimens, which had been forcibly removed from the glass sides of an aquarium.

Mr. S. A. Forbes also described (loc. cit.) a Rotiferon found in a neglected aquarium, and "wholly destitute of cilin or other vibratile structure." He called it Cupelopagus bucinedax, and gave a very characteristic figure of its side view. I have little doubt that this also is Apsilus lentiformis.

Length. Maximum about $\frac{1}{6}$ inch. Habitat. On water plants, Giessen (Metschnikoff) ; Fairmount Park, and Schuylkill river, U. S. (Leidy).

Miss S. G. Foulke, who discovered this Rotiferon, is of opinion that it differs from Apsilus lentiformis sufficiently to warrant its being regarded as a distinct species; the points of difference being the shape of the cup, the absence of ganglion, the presence of a " second stomach," and the ciliation of the cup.

If A. bipera really has two stomachs, one above the jaws and the other below them, and each a closed sae with walls distinct from those of the body-cavity, then it would not only be a new species, but also a perfectly unique one among the Rotifera, It is evident that further investigation is wanted on this and other points; especially as Prof. Leidy is of opinion that Apsilus bipera, Dictyophora vorax, and Apsilus lentiformis are all the same animal.

But whether Miss Foulke's species be a new one or not, to her is due the discovery of a true ciliary wreath within the coronal cup. It consists of two gradually narrowing ridges, fringed with long cilia, and ruming up the inside of the dorsal surface of the oup (fig. $5 a$). Short diagonal lines of finer cilia can bo indistinctly seen between the larger set. This ciliary apparatus is quite unique in position ; and, if A. bipera and A. lentiformis are the same, it is curious that Miss Foulke should have missed the nervous ganglion, and that Herr Metschnikoff should have missed the ciliary ridges.

Length. Up to $\frac{1}{3}$ inch. Habitat. Water-plants in Fairmount Park, U.S. (Miss Foulke).

Genus stephanoceros, Ehrenberg.

GEN. CH. Lobes Tong, slender, erect, convergent; setæ set diagonally on the lobes in parallel bands; foot terminated by an adhesive cup.

S. eichhorni, Ehrenberg.

> (Pl. IV. fig. 1.)

Anyone who has seen Stephanoccros favourably placed, and properly lighted, can well understand the enthnsiasm with which Eichhorn relates its discovery ${ }^{1}$; for it is a lovely creature, and as strange as it is beautiful. A small pear-shaped body, whose rich green and brown hues glow beneath a glistening surface, is lightly perched on a tapering stalk, and crowned with a diadem of the daintiest plumes : while the whole is set in a clonded crystal vase of quaint shape and delicate texture. The tube is denser than it is in the Floscules, is more symmetrical in shape, and is continuous in substance from its outer surface almost to the creature's body. If an empty tube be examined, it will be found that it has a central hollow, which the body and foot will exactly fill.

Mr. Gosse and Dr. Mantell have each seen a young Stephanoceros bore its way through its parent's tube by means of its cilia; just as I have several times seen young Floscules do. The material, therefore, of which it is composed, must be of the flimsiest kind. The commencement of the formation of the tube has been described by Mr. Gosse (loc. cit.) as follows: "A specimen, which was hatched under my eye, swam for ten minutes, and then became permanently attached to the upper glass of the box, so that it was vertical in its position, with the foot next to the eye ; a favourable aspect for observing the development of the case. It presently began to dilate its body; and, in about five minutes from its attachment, I perceived a distinct filmy ring around it, perfectly circular, whose diameter was about twice that of the body (PI. IV. fig. 8). The little animal now began to lean over to one side, and the ring soon had another segment additional, leaning in the same direction (fig. 9). The case, for such it was, looked like two broad hoops of glass, each swollen in the middle and set one on the other but not quite concentrically, at least to the eye of the observer. It was manifest that it was produced from an excretion from the body, owing its form and size to the animal's moving round on the foot as on a pivot."

Ehrenberg's drawing of Stephanoceros has certainly been taken from a crnshed or sickly specimen, and, indeed, in the majority of cases its portrait has been drawn too long after the creature had left its native haunts; for when freshly caught and in vigorous health it arches its five plumes so that its crown almost forms a sphere. ${ }^{2}$ The

[^29]setex are far longer than they appear at first sight, and are not stiff bristles as Ehrenberg has dawn them, but are gracefully eurved, and taper off into lines of exquisite fineness. Those of one arm interlace with those of the arms on either side of it, so as to form a living cage of the finest network, tlirough which it is hardly possible for anything to pass without striking some part of the sensitive meshes. The instant this happens band nfter band of the setee lashes at the runaway, a swift wave of motion runs along each band, and the captive is thrown back into the vortex produced by the wreath at the bottom of the coronal cup, the ciliary armature of which is precisely like that already described in Floscularia. I have also on more than one occasion detected a fitful ciliary wave running round the top of the coronal cup, just under the level of the lowest points of the depressions between its lobes. This has not hitherto been noticed, but I am certain of the fact : the motion was of the briefost duration.

There are considerable differences of opinion about the musoular system. Dr, Leydig (loo. cit.) says that there are four museles which rise in the foot, and each of which divides into a pair, as it crosses the trunk, and then subdivides into smaller branches, as it passes over the coronal cup to the base of the lobes. Mr. Gosse makes them to be five pairs, and says that usually each pair runs up the trunk from the foot in a line with one of the arms; and them, before reaching it, divides into diverging branches which, at remote points, are united to a muscular collar close to the base of the arms. He notices, however, that he has seen cases where the muscles run down direct from the depressions between the lobes without uniting to form pairs.

My own opinion, after prolonged observation of many specimens, is that there are really six pairs of muscles, and that they are arranged in the following fashion. Each pair runs up the foot looking like a single muscle; and the reason why never more than four (pairs) are visible in the foot from any point of view, is that there is always a pair on each side of the unimul (however viewed) which is there lost to sight. At the junction of the foot and trunk each pair begins to open a little; and by the time they have reached the bottom of the coronal cup the constituents of each pair diverge obviously from each other, and terminate usually at the base of some one of the depressions between the lobes: but in such a fashion that the constituents of the same pair never end in the same depression (PI. IV. figs. 2, 8, 4, 7 m). There is, however, an exception to this in the case of the two pairs of dorsal muscles (P1.1V, fig. 2, lm). Here it will be seen that while the outer muscles in each pair end in a depression between the lobes, the inner muscles curve over towards each other and meet so as to form a fine arch, some distance below the base of the dorsal lobe. There are, too, fine hexagonal markings visible on this side of the coronal cup, which are probably the boundaries of large cells : oval nueleated cells are also easily seen in the wall of the coronal cup, when the animal is viewed from either side (fig. 4).

The nutritive and reproductive systems are so similar to those of Floscularia, that they require no separate description. It is enongh to call attention to Dr. Leydig'g figure of the ovary treated with acetic acid (reproduced in fig. 7), and exhibiting the ora in varions stages of growth, as well as its own delicate walls, and the oviduct (ot), which leads into the cloaca ($c l$).

The Secreting System.-Neither salivary, gastric, nor foot glands have been observed in Stephanoceros, but as the animal secretes a large and comparaticely solid tube, it is clear that it must either have some organ for this purpose, or that the substance of which the tube is constructed oozes from the surface of the body.

The vascular system is much better seen in this genus than it is in the preceding. Fig. 4 shows Slephanoceros viewed a little obliquely from the side on the left of the dorsal surface. The left lateral camal (fig. 4, lc) can be seen winding to the left of the nervous ganglion (gn) and having two vibratile tags ($v t_{1}, v t_{2}$) attached to it close to where the left eye (e) is. The lateral canal then divides into two branches ; the right branch eurving upwards towards the dorsal surface to meet its fellow on the median dorsal line (sue fig. 2), while the left branch passes along the side of the vestibule till it nearly
reaches the level of the knobbed ends of the ciliary wreath (ow). Here this left branch joins an offshoot of the right branch; the point of junction being marked by a third vibratile tag $\left(v t_{a}\right)$. A fourth vibratile tag $\left(\nu t_{4}\right)$ is attached to the right branch just where it gives off the connecting offshoot, and a fifth (vt t_{3}) can be seen on the highest dorsal portion of the lateral canal. Fig. 2 shows the same right and left canals, as seen from the dorsal surface, with the same vibratile tags on either side. Each lateral canal winds down the side of the trank and ends at last on the surface of the contractile vesicle. Leydig (loc. cit.) records his having distinctly seen this junction in young specimens, as well as a duct leading from the contractile vesicle into the cloaca ($c l)$.

The Nervous System. What is probably the nervous ganglion is a peculiar organ (figs. 2, 4, 5, $y n$) consisting of large clear cells, lying at the back of the vestibule near the dorsal surface. Above it, and well under the dorsal surface, is a tluree-lobed, granular, semiopaque body (figs. $2,5, x$) with which the nervous ganglion is possibly connected. The nervous ganglion in many of the Rotifera, especially among the Notommatada, shows a marked cellular structure at the lowor ond which loses itself in a granular, semiopaque upper portion; but it must be admitted that if these peculiar bodies ($g n, x$) constitute the nervous ganglion of Stephanoceros, it is rather their position than their shape and structure that would lead us thius to interpret them. From the spot where it adheres to the wall of the vestibule, a sort of protrusile tongue or taster (fig. 4, tr) rises which can be pushed forward so as nearly to fill up the interval between the knobbed ciliated ends of the ciliary wreath. This tongue may be seen incessantly pressing backwards and forwards as the food passes into the vestibule, as if discriminating between the passing atoms, just as the two tasters do in M. ringens, The eyes (fig. $2 e$) lie on either side of the nervous ganglion; they may be seen by darkfield illumination, but as they are small, rather deep down under the surface, and often obscured by other parts, it is not easy to get both into view at once. Mr. Oubitt (loc. cit.) duseribes and figures them as clear globes resting on pigment spots, and with nerve threads attaching them to the nervous ganglion; this is a very probable structure, but I have failed to make it out. Two very short lateral antennæ (Figs. 2, 5, a) ean be seen when Stephanoceros is viowed dorsally: they are mere setigerous pimples.

The development of the young is shown in Mr. Gosse's figures (Pl.IV. figs, 8 to 15), in which fig. 8 represents young Stephanoceros a few minutes after birth; figs. 9 and 10, a little later; and figs. 11 to 14 represent successive stages of growth of a specimen from three to eighteen hours old. Fig. 15 shows the perfectly developed young Stephanoceros, thirty-six hours old ; it exhibits the bands of setæ, the principal viscera, the muscular collars, vestibule, crop, and jaws. Mr. Rosseter (loc. cil.) says that on one occasion he watched the development of a young Stephanoceros and noticed that the lobes of the corona "originate as buds and unroll like the fronds of ferns " (figs. 16, 17). These buds began to appear about eleven hours after the animal was hatched, and when they had risen to a small height gradually unfolded; they remained in a drooping state for two days, but on the third day took the arched form usual in the adult. Dr. Mantell observed a young specimen in which the lobes even after eighty hours from birth were mere rudimentary buds. Such discrepancies in the rate of development noticed by these three observers are common in all the Rotifera, and are doubtless partly due to the various degrees of development that the embryo attains in the ovum before its extrusion. In Stephanoceros (as in a few other Rotifera) the young (as Ehrenberg conjectured) is oceasionally born alive. This has been seen by Mr. Rosseter and Dr. English, ${ }^{2}$ and indeed is almost shown in Dr. Leydig's figure (PI. IV. fig. 7), where the much advanced embryo (y) lying close to the oviduct (ot) already exlibits the eyes and frontal cilia.

[^30]No male has as yet been recorded, but Leydig's fig. 3. Taf, i. (loc, cit.), of a young Stephanoceros forced out of the egg by pressure, has a very masculine look about it.

Disease.-Mr. Gosse (" Popular Sci. Rev." loc. cit.) has noticed that Stephanoceros will occasionally throw off portions of one or more of its lobes, which slough away so as to be reduced to mere stumps. As Mr, Gosse remarks, there is little doubt that Perty's S. glacialis (loc. cit.) is only such an unhealthy specimen of S. Eichhornii. I have seen the same thing; and I have noticed that, when a portion of the lobe sloughed off, the discarded piece would round itself into a globe, and float away urged by the fitful lashing of the setæ on it. ${ }^{1}$

Length, ${ }_{2}^{\frac{1}{4}}$ to $\frac{1}{16}$ inch. Habitat. On weeds in clear ponds in the neighbourhood of London (P.H.G.) ; of Birmingham (T.B.) ; in marsh pools on Sphagnum, Perthshire (J.H.). Very partially distributed; not uncommon about London and Birmingham, but rare in Scotland, and very rare apparently in America. Widely spread on the Continent.

[^31]CHAPTER VI.

MELICERTADE.

Chaque genre de Vers, et j'ose presque dire chaque espèce, offre un objet tout is fait neuf, qui demande à lui seul presqu'autant de travail que les classes entières des grands animaux.-Geoffroy St. Hilaire.

What, dull 1 when you do not know what gives its loveliness of form to the lily, its depth of colour to the violet, its fragrance to the rose! when you do not know in what consists the venom of the adder, any more than you can imitate the glad movements of the dove! when, unlike the wisest of monarchs and of men, far from knowing the trees as he did, "from the cedar tree that is in Lebanon even unto the hyssop that springeth out of the wall," you do not know anything even of the two extremes of Solomon's great knowledge! What, dull! when earth, air, and water are all alike mysteries to you! and when, as you stretch out your hand, you do not touch anything the properties of which you have mastered! while, all the time, Nature is inviting you to talk earnestly with her, to understand her, to subdue her, and to be blessed by her! Go away, man ; learn something, do something, understand something, and let me hear no more of your dulness.-Sir Aathur Helps.

CHAPTER VI.

Family II. MELICERTADE.

Corona not produced into setigerous lobes; buccal orifice lateral; ciliary wreath a marginal continuous curve, bent on itself at the dorsal ${ }^{1}$ surface, so as to encircle the corona twice, with the buccal orifice between its upper and lower curves, and having also a dorsal gap between its points of flexure; trophi malleo-ramate.

The Melicertada are at once distinguished from the Flosoulariada by the difference of the corona, and the unsymmetrical position of the buccal orifice. In all the genera the corona bears two parallel wreaths of cilia, the upper of which frequently presents the appearance of a revolving wheel. The family contains seven genera, which differ from each other mainly in their coronæ, tubes, and habits ; their internal structure being so much alike, that it has been proposed, more than once to reduce the seven genera to two.

There is no more interesting family. It contains animals that build their own tubes, pellet by pellet; and that themselves form these pellets, either out of external materials, moulded in hollows of their own bodies, or out of their own freces. All have social instincts: some rearing their tubes, to the fourth and fifth generation, on those of their ancestors, or forming dense clusters on the stems of water-plants; and others (fixed forms only in a sort of Parliamentary sense) adhering to each other by their posterior extremities, and forming spherical clusters that roll unceasingly through the waters of still lakes and ponds. Most of them are hardy, and luckily all are prolific ; sometimes so amazingly that the water-weeds are literally covered with their tubes, and the fortumate finder can thus have in the small compass of a live box scores of animals of all ages, and in every stage of growth.

Genus melicerta.

GEN. CH. Corona of four lobes ; dorsal gap wide ; dorsal antenna mimute ; ventral antennæ olvious.

The tube varies in all the four species, and its structure and formation will be described mnder each. In all there is an inner gelatinous tube, ${ }^{2}$ and in M. ringens and M. conifera there is also an outer tube, consisting of pellets of extraneous matter; while in M. Janus the pellets are fiecal. In M. tubicolaria the outer tube is entirely absent.

The corona seen dorsally looks somewhat like a heart'g-case, with its four petals lying in a plane; but a side view shows that the two lower lobes are bent upwards, so as to form an oblique angle with the upper lobes. A groove runs round the corona, on both sides, just under its edge ; and on the ventral surface it is confluent with the buccal funnel. There is a gap in the groove on the dorsal surface, so that it does not entirely surround the corona. The edge of the corona is fringed with large cilia, and the edges of the groove and buccal funnel with much smaller ones; and they

[^32]areall in constant motion. The netion of the former, or principal, wreath (Pl. V. figs. $2 c$, 4, $p w)$ draws the particles floating in the water into two spiral currents, which are tangential to the groove on either side of the disk. The action of the latter, or secondary wrenth (PI. V. figs. $2 c, 4, s w$) drags the particles, as in their spiral path they strike the groove, out of that path into the groove itself, and hurries them along its windings towards the buceal funnel. At the two points where the groove on each side joins the buccal fumnel are two fleshy knobs (Pl. V. fig. 2c, tr), which can be seen in constant motion ; either regulating the force of the current, examining the moving atoms, or possibly performing both offices at the same time. The ciliated edges and sides of the buccal fumel conduct a portion of the stream down to the mastax ; while another, and apparently the larger portion, rushes over the ciliated chin. ${ }^{1}$ If a little carmine be added to the water, it is a pretty sight to see the coloured spirals form on both sides of the corona, while two processions of crimson atoms wind in and ont under the margin of the petals, one on the left hand, and one on the right; each starting from the dorsal gap, and dashing at last down the buccal funnel, or over the chin. (Pl. V. figs. 20, 4, ch.) But the whole of the ciliary apparatus has not yet been noticed. Beneath the chin there is a hemispherical hollow (PI. V. figs. $2 c, 4, c c$) which is furred with minute cilia. It is in this cup that M. ringens and M. conifera mould their pellets, as will be described further on ${ }^{2}$; it is present also in M. tubicolaria and M. Janus, but its function in these species is unknown.

The Nutritive System,-The buccal fannel (Pl. V. figs, $2 c, 2 d, 4, b f$) slopes downwards, and somewhat dorsally, towards the mastax. It is ciliated throughout, and has a pair of chitinous lips (fig. $2 d, l p$) similar to those described at p. 6. These lips are in frequent motion, now opening and shutting, now moving up and down the funnel, evidently selecting and rejecting the food: if an objectionable morsel attempts to pass, "it is astonishing to see how the little quick jerk, which the lips give, tosses it up into the central stream of waste and drives it away." ${ }^{3}$ Should this morsel be unusually large, the mastax itself aids the lips in their upward jerk. On each side of the buecal fumel and above the mastax is a clear organ (Pl. V. fig, $2 d, s q$) whose surface is spheroidal. The two have been described as salivary glands by some observers, and as mere stays to the mastax by others. They are obviously elastic, and move ap and down with its every motion. The mastax (fig. 2d, mx) consists of three confluent lobes, presenting a trefoil outline in vertical section; each side-lobe contains a mallens, and the bottomlobe grasps the incus. The malleo-ramate trophi (PI, V. fig. $1 f$) are almost precisely similar to those already described.

The food flows between the lips, and after having been torn by the sharp teeth of the mallei, and crushed by the ridged inner surfaces of the rami, passes through a short ciliated cesophagus (fig. 4, w), and so enters the stomach (fig. 4, s). This is a long cylindrical sac, with very thick walls of large cells, lined with cilia. A partial constriction usually separates it from the intestine (i). The walls of this latter are thinner and more transparent, and their cilia longer. The distinetion between the stomach and intestine is obliterated when the stomach is much distended with food, but is usually present, and is often rendered obvious by the difference of colour in the contents of the two. Those of the intestine revolve under the action of its cilia; and when the pellet thus formed is reuly for extrusion, the animal lifts its cloaca above the rim of its cup pushes up the pellet, bends downwards over it, and then dexterously shoots it across its shoulder into the current flowing from the chin. By this means the faces are carried away out of the currents of the trochal disc.

The Secreting System.-The so-called salivary glands I have already noticed. There

[^33]are two moderate-sized gastric glands (P1. V. fig. $2 d, g g$) in the usual position at the top of the stomach; and Mr. Gosse deseribes in M. ringens " near the tip of the foot on its ventral side, a little granular body connected with the tip by a point, and enlarging at the upper end where it is connected with a small globular vesicle." ' He suggests that this is a foot-gland similar to that in so many other Rotifera.

The Vascular System.-The contractile vesicle is very small, und is generally hidden by the viscera; it lies close to the rectum. When the animal is viewed sidewise, the lateral canals can be traced from a knot of twisted tubes in the shoulder to a similar knot in the corona. Two vibratile tags can be seen at each tonot. The lateral canals lie close to the surface, and can be best found by slowly focussing upwards from any point near the shoulder, and just under the cuticle. It is possible to trace Chem down from the shoulder to the contractile vesicle; but it is not often that the viscera lying beneath permit this to be done.

The Reproductive System.-The ovary is similar in structure to those already described; it is somewhat oblong in shape, and extends between the stomach and ventral surface, over nearly the whole of the latter. The oviduct passes beneath the intestine, and in M. ringens " enters the cloaca near the point where the lower stomach [intestine] opens into the excretory canal." ${ }^{2}$

The Nervous System and Organs of Sense. The nervous ganglion has as yet only been made out in M. ringens. M. Joliet (loc, cit. M. vingens) describes it as a group of big cells of a very characteristic form, and provided with a large nucleus. Many similar cells are placed beside the first, and stretch in different directions. It is not large, and is situated on the dorsal face of the pharynx. The two ventral antennæ (figs. $2 c$ and $4, a$) are very obvious. Between them lies the baccal funnel, as well as the tract which, in M. ringens and M. conifora, is engaged in forming and depositing the pellets; and which contains the chin (ch), the ciliated cup (cc), and a prominent knob lying just under it. The antennæ are tubes, with a short transverse plug in them, carrying a pencil of delicute setie. This plug can be withdrawn into the tube at will, by a muscular thread; the top of the tube itself following the plug, just as in a snail's horn. They are so sitnated that, when Melicerta furls its corona, they stand on the top of the round closed head (fig. $10, a)$. Immodiately opposite to them, in M. ringens and M. conifera, there are two curved sharp hooks (h), which look like weapons of defenee; and between them lies the third antenma, the dorsal one, which is nothing but a setigerous pimple. Two red cyes are visible in the young, but none as yet have been seen in the adult.

The Museular System.-The longitudinal muscles, as in the Flosculariada, run up the foot to its junction with the trunk, where they are fastened. They then cross the trunk till they reach the neck, where they are again fastened; and as they reach the head they divide into branches, which cross the lobes of the corona, and, by their contraction, furl it. Transverse muscles, imbedded in the integuments, encircle the trunk; and, by tho compression of the body-fluids, drive out and unfurl the corona, just as in Floscularia. In M. conifera I have observed a set of longitudinal branching muscles, which are inserted in the neck, just under the ciliated cup, and the prominent knob beneath it (PI. V. fig. $\mathrm{Ic}_{\mathrm{c}},(\mathrm{m})$. It is by their varied action that Melicerta is able to curve and twist its neck, and clinch its pellet on to the top of the tube, by the opposing pressures of the knob and chin.

The male has not yet been certainly recognised. I have seen what is probably the male of M. tubicolaria, ${ }^{3}$ and Judge Bedwell gives a graphic description of the probable male of M. ringens, ${ }^{4}$ and of its coquetting with the female; Mr. Gosse has also seen what there is little doubt was the male of M. conifera. ${ }^{5}$

[^34]M. anveevs, Schrank.
(Pl. V. fig. 1.)

SP. CH. Lobes when expanded, wider than the tube; ohin short, extremity blunt: pellet nearly spherical.

During the hundred and eighty years which have elapsed since Leuwenhoek discovered M. ringens, it has been a source of delight to a long suceession of observers. It has had more than a dozen names given to it, and has been the subject of upwards of three times as many treatises ; and no wonder, for the surprising spectacle of its whirling disk captivates even those who have seen it scores of times before.

Then the building of its tube appeals powerfully to the imagination. Here is a tiny creature which, when barely an hour old, and not $\frac{1}{100}$ of an inch in length, sweeps from the water its food and the materials for its dwelling; and which, at the same moment, and with faultless accuracy, sorts the one from the other, and both from the mere rubbish, drives away the waste, sends a stream of food down its throat, supplies selected atoms to a brick-making machine in its own body, mixes them with cement, moulds them into bricks, and finally (to crown the marvel) lays the bricks one by one around its body in regular order, so as to form a compact and effective dwelling.

Leawenhoek saw, and clearly described, the laying of the pellets and the raising of the tube ; but failed to see how the former were produced. Indeed, even what he did discover was forgotten, so that Mr. Gosse's paper " On the Architectural Instincts of Melicerta ringens" (in which the process of forming the pellets and tube was completely described) roused the greatest desire in all microscopists to see this marvel for themselves.

It is unnecessary for me to quote once more passages that are to be found in every text book, but I will continue the description (interrupted at p. 68) of the various streams that are set in motion by the ciliated borders of the corona, buccal funnel, and chin, and briefly tell how the pellets and tube are formed.

The main stream of waste, that rushes over the chin, has two feeble currents running under the somewhat incurved edges of the buccal fumnel : at the side of its banks, if I may so say. Along these two currents float very minute atoms, at a comparatively gentle rate, while the larger particles dash along in the main stream. As the former glide along the banks of the buccal funnel they come to a notch on either side of the chin, over which they slip and are then drawn by the action of connecting lines of fine cilia into the ciliated cup, that lies close beneath the chin. This cup is nearly hemispherical in shape, and is furred with fine cilia. Soon after it has been emptied of one pellet, another begins to form in it, and a minute sphere of particles, generally of a yellowish-brown colour, is seen whirling in the centre of the cup. As this rapidly
grows in size from the addition of fresh matter, it is easy to see in what direction it rotates, by means of the darker specks on its surface. If these are watched, it will be found that évery now and then the rotation is reversed, and that this happens many times before the pellet is completed. It is needless to credit Melicerta with the voluntary alteration of the motion, for it is obvious that a pellet, kept in the centre of a ciliated cupby the action of its cilia lashing up and down, must be in an unstable position; a very little alteration of its own figure, or of its centre of gravity, or of the relative power of the cilia in different parts of the cup, would be sure to drive it out of its central position to one side or the other. This done, the cilia on that side (say the lower one) would be checked, and those on the upper would have the predominance, and so force the pellet to rotate towards the upper side; which when it had slowly reached, the upper cilia would in their turn be checked, and the lower cilia wonld now have the predominance, and would again draw the pellet towards themselves, reversing the rotation -and so on. The particles in the cup are made to adhere by being mixed with the same glatinous secretion as that which forms the inner tube. This exudes either from the cup itself or (as I believe) from the surface of the large knob just benenth it (Pl. V. fig. 2c). In a minate or two, from the commencement of the process, the pellet is completed, and then the animal bends its neek swiflly over the edge of the cup, and clinches the pellet on to the top of the imer tube, by the opposing action of the chin and the knob beneath. It is obvious that it selects the place in which to deposit the pellet, and it is probably guided to the exact spot by its dorsal antenna, which is generally close to the spot tho instant before the pellet is laid. ${ }^{1}$ It is curious that Ehrenberg should have completely missed the way in which the pellets and tube are formed. He says that the former "are not foreign bodies (as in the tube of Phryganea) nor excrement ; but a peculiar substance mixed with the latter, gummy, and hardening in water " : and he further says that he distinetly saw the pellet discarded from the posterior intestinal opening, and fastened by it to the tube. Mr. Gosse, who calls attention to this discrepancy, suggests that there may possibly be "two species closely allied but differing in this part of their organisation and economy "; and the discovery of M. Janus, which has precisely the habit wrongly ascribed to M. ringens, shows how shrewd was Mr. Gosse's suggestion. The only difficulty about the matter is that Ehrenberg's drawings are certainly taken from M. ringens: while his description of the formation of the pellets and tube seems to be taken from M. Janus. Possibly he may have found first the one, and then the other, and not distinguished between them; though that seems hardly likely.

Melicerta ringens in England does not nsually occur in clusters of adhering individuals, though occasionally one is seen with a young one or two attached to its tube. But in the United States (as I have already noticed) it frequently occurs in large clusters, and some of the tubes of these clusters greatly exceed in size the largest known English specimen. For instance, I possess a cluster in which the central tube is \& of an inch long, and of which therefore the tenant must have been upwards of $\frac{1}{6}$ of an inch in length, thus excceding even the great length of Floscularia Hoodii. I found that this great tube contained upwards of six thousand pellets arranged in about two hundred and forty rows, one above another.

The Male,-Judge Bedwell in the "Midland Naturalist" (loc. cit.) describes a small free-swimming Rotiferon which he saw emerge from a tube of Melicerta ringens. It was not more than of the length of the tube, had a forked foot, and trophi somewhat like an inverted W, which were capable of protusion through the corona. Like the probable male of M. conifere, " "it began to woo and caress the lobes of the female in the most active and elegant manner, almost as if it were nibbling the main wreath of cilia. Now to anyone accustomed to watch Melicerta, it must always be a matter of astonishment to see such a timid, nervous rotifer allow another to touch the cilia with impunity; but in this instance the female never flinched in any way, but accepted the attentions of
${ }^{1}$ Judge Bedwell, Mon. Mior. J. (Loc. cit.). The whole paper is most suggostive.
${ }^{2}$ See Mr. Gosse's description, p. 72.
the little visitor with perfect composure, and continued to feed as if quite undisturbed by its presence." The same observer broke up about fifty tubes of M. ringens in December, and procured ten specimens of the same small Rotiferon from them : in one case there were four males in a single tube.

In the above account, the presence of a forked foot, and of a mastax and trophi, and the fact that the latter were seen to be protruded from the corona, would naturally lead one to say that the Rotiferon recorded was rather some one of the Notommatada than a male Melicerta. On the other hand, its unresented action towards the female was precisely that noticed by Mr. Gosse in the case of M. conifera; and the latter observer has also seen trophi in a very similar creature with similar habits, which he believes to be the male of Limnias ceratophylli. ${ }^{1}$

Length. Varies greatly. Average length of an adult tube about $\frac{1}{30}$ inch. Specimens twice the size are common in Scotch lakes. Those in clusters, in Philadelphia, U.S., extend even to $\frac{1}{9}$ inch. Habitat. Very common on water plants, in stauding or slowly running water.

$$
\begin{aligned}
& \text { M. conifers, Hulson, sp. nov. } \\
& \text { (Pl. V. fig. 2.) }
\end{aligned}
$$

SP. CH. Lobes, when expanded, of the same width as the tube; chin long and pointed; pellet a pointed cylinder.

This Melicerta is somewhat larger, and very much rarer, than M. ringens. It was discovered by Mr. J. Hood in 1876 in a pool on Tent's Muir. He found it again in profusion in the summer, autumn, and even is some of the winter months of 1879 , the weed being quite matted with it. The points of difference between it and M, mingens are persistent, though slight; but the difference in their tubes is striking. This is due to the shape and quality of the pellets. They are much longer in proportion to their diameter than those of M. ringens, so as to resemble a conical rifle bullet; and they are more transparent, and of a clear golden yellow. In consequence of their length the tube is a stout one, and its thickness is shown by a stripe on each side of a different colour from the centre of the tube, and darker or lighter according to the illumination used.

The fully expanded lobes are almost exactly as wide as the top of the tube, but in M. ringens they exceed it in the proportion of ten to nine. The chin, too, differs from that of the common species; it is longer and more pointed.

The Male,-[In water from Epping Forest sent to me by Mr. Henry Davis, I found Melicerta conifera, projected and rotating. Emerging from the mouth of the tubo, about three-fourths extruded, was a male (PI, D. fig, 6) about as long as the diameter of the tube, playing, as it were, with the disk of the female. Two irregular shaped opaque masses were seen in it far apart from each other. I looked away for a mimute to delineate what I had seen, and he was gone: but I presently found him slowly swinming around, which he continued to do, turning on his long axis as he went. There was now only one opaque mass, the hinder ; and this was in contact (whether in comnection I do not know) with a large ovate clear bladder, perhaps an air vesicle. The head is oblique, the face ciliated, the occiput, angled and projecting. The foot is a little knob of flesh. I could see no internal organs, nothing but the clear, colourless tissue, full of corrugations throughout. P.H.G.]

Length. About $\frac{1}{12}$ inch; tube, $\frac{1}{16}$ inch. Habitat. Marsh pools, Fife and Perth (J.H.) ; abundant in a pool at Snaresbrook (P.H.G.) : rare.

M. tubicolaria, Ehrenberg.

(Pl. V. fig. 8.)
Tubicolaria Naias
Ehrenberg, Die Infus, 1886, p. 399, Taf. xlv. fig. 1.

- Leydig, Veb, d. Batk d. Raderth, 1854, p. 14, Taf. i. fig. 7.

[^35]

Lobes, when expanded, more than three times the width of the body; antennæ very long; tube a gelatinous sheath without pellets.

Three striking peculiarities at once catch the eye in this beautiful Melicerta, viz. (1) the great size of the trochal disk; (2) the wonderful length, backward setting, swollen bases, and great flexibility of the ventral antemm; and (8) its semi-transparent tabe, which, though resembling that of the Floscules, has yet a character of its own.

The tube, unlike those of all the other species, bears no pellets at any time. It is of a loose flufly texture, and extends from the surface almost $u p$ to the Rotiferon itself. There is a central hollow, little wider than the creature's body, up and down which the animal moves. Horizontal layers of diatoms, and other foreign bodies, cross the tube at irregular intervals, and mark the height at which the tabe then was, when they were entangled.

The corona is very large. It is more than three times the width of the body; thus considerably exceeding the proportions of M. ringens and M. conifera. Its four lobes are really all curved, just like those of M, rimgens, and are often seen fully expauded and round; but the animal has a habit of bending the corners of the two npper lobes, so as to give the whole disk a butterfly slape.

There is a ciliated cup under the chin, just as in the two former species, but no pellets are formed in it. I examined it earefully several times, but I could find no lines of cilia between the chin and cup, such as Mr. Gosse observed in M, ringens : neither could I see the minute notches in the chin, through which, in that species, minute atoms slip from the buceal funnel, to be conducted by lines of fine cilia to the pellet cup.

The muscular, nutritive, secreting, and reproductive systems, are so similar to those of M. ringens as to call for no further remark.

Vascular System.-Leydig notices the absence of the contractile vesicle, and says that he traced the two lateral canals from the corona, where they originate in two coils, across the body, from the dorsal to the ventral surface, and so down to the cloaca. He says that, after repeated efforts, he at last saw the two vibratile tags in the corona. I was more fortunate, for I made out five vibratile tags on each side of the body, though I could not see exactly where the lateral canals ended. I could find no contractile vesicle, but on two occasions I noticed that the empty intestine became distended and very transparent, and then shot out its fluid contents through the cloaca. While this was going on, the passage from the stomach to the intestine was closed. It would thus appear as if the intestine itself was filled by tho lateral canals, and discliarged the office of the contractile vesicle. It will be seen subsequently that something similur takes place in other Rotifera.

Organs of Sense.-I have failed to discover any eyes in the adult, but they are very conspicuous in the young animal (Pl. V. fig. $8 b$). The antennæ are of great length, twice as long in proportion as those of M. ringens; and, as they are transparent, it is easy to see how the muscle that roms up the centre to the setigerous knob at the top can withdraw the knob, thus infolding the fabe, till the knob comes right down to the base of the antenna. When the animal is contracted into its tube, the antenns are closely pressed to its club-shaped body; and, as it rises, they, too, slowly rise from their recumbent position, while the perivisceral flud, under the pressure of the transverse muscles, drives the knobs up the antennes, and so completely extends them.

The Male:- I believe that the male Rotiferon drawn in PI. V. fig. $3 c$, is the male of M. tubicolaria. I had a small piece of Auacharis with about a score of fomales attached to it, and while observing them I saw this young male circling round one of them, It
was about $r \frac{1}{7}$ inch long; but, owing doubtless to its having just been hatched, the skin was so granular and corrugated that I could not make out its whole structure. The nervous ganglion, sperm-sac (ss), and penis (p), were plainly visible, and I could see the motion of the spermatozoa, though not the individual spermatozoa themselves: neither could I make out the muscles nor the water vascular system. I did not see this creature hatched; still, as there were no other Rotifera present but M. ringens and M. tyro, it was certainly the male of one or the other.

The Rotiferon, I have little doubt, is Ehrenberg's Tubicolaria Naias. He formed the genus to receive a Melicertan that was destitute of eyes at all periods of its life, and lived in a gelatinous tube. But Ehrenberg points out that he has not seen the young, and that therefore the absence of eyes cannot be depended upon as a characteristic. His other characters of the genus are, a four-lobed coroma, two antemas, and a gelatinous tube. Of these, the latter alone is peculiar to Tubicolaria, and as it is not sufficient to found a gemus on, I have placed the animal among the Melicerta.'

Length. Adults from about $\frac{1}{30}$ to $\frac{1}{16}$ inch; the maximum size given is that of Scotch specimens. Habitat. Ponds and ditches, Birmingham (C.T.H.); Chartham, Kent (Col. Horsley) ; Forlar (J.H.); Reading (Tatem) : rare.

M. Janus, Hulson.
(Pl. VII. fig. 1.)
Hudson, J. Roy. Mifer. Soc. 2 Sor, vol, i. 1881, p. 1, pL. i.

Qicistes Janus

Upper lobes deeply divided, lower nearly confluent; dorsal gap minute; antemnæ short; chin two-pointed; pellets facal.

This remarkable Rotiferon is one of those creatures whose form is as irritating to the classifier as it is delightful to the naturalist. For it possesses in almost equal proportions the characteristics of two genera, viz. of Melicerta and of CEcistes, and might, with nearly equal propriety, be placed in either genus. It was found first by Mr. J. Hood in Loch Lundie in 1880, and was most numerous, and in best condition, on weeds at a depth varying from six to ten feet.

When seen from the ventral surface, so that the lower lobes are partly hidden by its tube, no one would suppose it other than a Melicerta; but when it turns and exhibits its dorsal surface, it is seen that the lower portion of the corona resembles that of Ocistes, for, instead of there being a wide dorsal gap in the ciliary wreuth, there is scarcely any at all (PI. VII. fig. 1) ; and the subdivision of the lower portion of the corona is so slight that the outline of its two lobes is almost confluent : in fact, it might almost be said that this is a three-lobed Melicertan. As in CEcistes, thickenings (fig. 1d) cross the corona, which itself is so thin that it becomes nearly invisible under dark-field illumination, while the thicker portions stand out distinetly, especially when seen sidewise (fig. 1b). When the animal begins to open its corona, these portions are thrust forward in a squarish and very characteristic bundle, the thimer parts of the disk lying folded neatly between them. In this respect M, Jamus closely resembles CEcistes umbella.

The cilia of the corona are unusually large, while the groove that lies between the principal and secondary wreaths is broad and deep. Should the larger cilia be cheeked by contact with the side of the cell in which the animal is placed, it is easy to count them, and their whip-like action becomes plainly visible. Individual cilia may now and then be seen even in the secondary wreath.

The chin (fig. 1b, ch) is also peculiar. It terminates, not in one point, but in two

[^36](fig. 1e); and below it, at right-angles to it, are two thin walls (fig, 1a) looking like the supports of a bracket, the clrin being the bracket itself. These supports form, with the chin above, and the ventral surface between them, a cup or recess somewhat like the cup of M. ringens. I could not, however, detect any cilia in it. Below the cup is a large viscons knob, as in the other species, but differing from them in bearing on its upper surface two or more curved bristles (fig. $1 b, h$) pointing to the cup.

The tabe is not nearly so compact as that of M. ringens, or even of Limnias ceratophylli. It is composed of large ovoid faccal pellets, which are laid upon one another somewhat obliquely in rings, as shown in fig. $2 d$.

The pellet is formed in the intestine (figs. $1 b, 1 c, i$), and when it is ready the animal bends down over the cloaca ($c l$), the rectum (r) is everted and pushed forward, and the pellet is shot over the shoulder so that it rubs against the viscous knob and is thus held, partly by the sticky surface of the knob, partly by the curved bristles already mentioned. When it has thus caught the pellet, the creature, with a swift twist backwards, pushes it on to the top of its tube. The intestine (i) is large and usually contains a facal pellet in the course of formation. These are not all appropriated to the construction of the tube, but are often suffered to float away. The gastric glands (gg) are conspicuons, and form an arch over the top of the stomach : they contain large nucleated cells. The two ventral antennæ (a) are short and are placed rather as they are in an Eicistus than in a Melicerta. Mr. Hood tells me that he has seen the male, and that it resembles that which I have figured as the male of M. tubicolaria. He further notices that the young female acquires its perfect form in four days after it has been hatehed. Although M. Janus has so many points in common with the genus EEvistes that I originally placed it there, yet as it really has four lobes in its corona (however inconspicuous two of them may be) I have felt constrained to add it to the Melicerte.

Length, $\frac{1}{16}$ of an inch. Habitat. Lochs only, Forfar, Perth, Ayr (J.H.) : abundant.

Gemus Limnias, Schrank.

GEN. CH. Corona distinetly of two lobes; dorsal gap wide; dorsal antenna ninute ; ventral antennæ obvious; tube without pellets.

The genus Limnias diffors from Melicerta in the shape of its lobes, and the strneture of its tube. The corona is much broader than it is high, and consists of two nearly circular lobes comnected on the ventral side by a hollow opposite to the buccal funnel, and separated on the dorsal side by a gap. The double ciliary wreath, buceal funnel, and chin are similar to those of Melicorta. There is no ciliated cup, though there is a hollow beneath the chin somewhat like one.

The tube is unlike that of Melicerta or Gecistes; it is really tubular in form, widening a little towards the top; it is often opaque, and is not composed of pellets; those of the different species are unlike each other.

The internal structure of the common species, L. ceratophylli, is almost precisely that of Melicerta : it is said by Ehrenberg, and often repeated, that it has no vascular system, but this is a mistake. I have seen, but have not had an opportunity of studying, the rare species L. annulatus; neither have I been able to find any account of its internal structare.
L. ceratophydli, Schrank.
(Pl. VI. fig. 1.)

Limnias ceratophylli	. . .	Ehrenberg, Die Infus. 1838, p. 402, Taf. xlvi. fig. 4.
"	-.	Gosse, Evenings at the Microscope, 1850, p. 302, with fig
"	. . .	Pritchard, Infusoria, 1861, pl. xxxii. figg. 388-892, pl. xxxvi. fig. 2.
Melicerta ceratophylli	. .	Gosse, Popular Sci. Rev. vol. i, 1862, p. 481, pl xxvi. fg
Limutias ceratophylli	, .	Moxon, Trans, Linn. Soc. vol. xxiv. 1864, p. 458,

SP. CH. No horny processes on the dorsal surface below the corona; ventral antennæ very short; tube nearly cylindrioal, smooth, often rendered opaque by extrancous materials, except at the posterior end.

I have already related, in Chapter I., Leuwenhoek's discovery of this the earliest known tube-maker. It has not been much studied, as its tube is often quite opaque, and its own attractions have been eclipsed by those of Melicerta. The tube is of a yellowbrown tint and is generally coated over on the outside with waste matter that falls down on it from the coronal currents above, and with the particles that trickle over the chin, and adhere to the sticky surface beneath it. These latter are rubbed off from time to time on to the tube by the animal, as it bends its head over it. Doubtless this renders the tube smooth and compact. Judge Bedwell (loc, oit.) thinks that there is a chitinous shield below the dorsal gap, whose hard edge is shown at $x z$, fig. $1 d$. He points out that its position corresponds to those of the horny processes of L. annulatus, and the sharp hooks of M. ringens; and he suggests that the tube is smoothed with it "much as a bricklayer smooths over his stuceo with his flat trowel." The tube is generally not coated towards its posterior extremity, and is very imperfectly covered in the young (fig. 1 g). Occasionally adults are met with that have tolerably transparent tubes, ${ }^{1}$ and even large adults have sometimes tubes of an opaque white (fig. 1 b).

Ehrenberg recognises no vasenlar system, ${ }^{2}$ but Dr. Moxon (loc. cit.) has observed part of it, and given a figure of the neck and expanded corona, with two vibratile tags on the same side. I have had no difficulty in seeing the lateral canals, and their accompanying tags, in the upper portion of their course, from a vaseular plexus near the shoulder, up to a similar one in the corona (fig. $1 f, l c, v t$). The contractile vesicle (if there is one) has not yet been noticed.

Besides the two short ventral antennæ (Pl. VI. figs. 1d, 1 f , a) Dr. Moxon (loc. cit.) has observed a winute dorsal one similarly situated to that in AI. ringens.

Prof. Leidy (boc. cit.) says that in many localities of the Schuylkill, almost overy stone exhibits multitudes of bunches of a Limnias, pendent from its sides, and under surface: as many as fifty tubes may be counted in a bunch. Prof. Leidy proposes to call this rotifer L. socialis, on account of its habit of growing in clusters; but as the animal itself is said to be like L. ceratophylli in other respects, and as L. ceratophylli in England has this habit of clustering to a considerable degree ${ }^{3}$ it is unnecessary to make a new species of the American Rotiferon.

Male. [As a Limutias was slowly protruding from its tube, there swiftly pushed past it, out of the mouth of the tube, a young one, which I supposed from its general appearance, a male. ${ }^{4}$ It was a simple cylinder of colourless flesh, slightly tapering behind to a blunt point, with no foot or tail apparent, of about one-third of the total Jength of the parent, filled with minute globules of oil or air. There was a simple crown of cilia around the truncate front, a well-sized and well-made mastax, an enormous blont-pointed brain-sac reaching about two-thirds down its total length, and carrying, on its dorsal side, near its point, a small but clear round eye-spot of crimson hue. Its manners were those conmon to males, swimming swiftly around the parent, often coming close to her for a moment, and then darting finally off on a wide wild voyage. That this was truly a male individual of the species is highly probable, notwithstanding the presence of a mastax, of which there was no doubt, and of a long viscus below which appeared to be a stomach. P.H.G.]

Length. Maximum about $\frac{1}{2 \delta}$ inch. Habitat. On water plants: very common.

[^37]Mr. Tatem (loc. cit.) described and figured a tube-making Rotiferon, somewhat resembling a Limnias, with long curved antennæ. If the bi-lobed condition of the trochal disk (as given in his figure) were permanent, and if there were also an obvious dorsal gap in the ciliary wreath, this would be a species of the genus. Unfortunately Mr . Tatem's description does not make this point clear, and in other respects the animal resembles Wicistes longicornis.
L. annulatus, Bailey.
(PI. VI. fig. 2.)
Limnias annutatus.
Cubitt, Mon. Micr. J. vol. vi. 1871, p. 165, pl. xeviii.
SP. CH. Five horny processes on the dorsal surface below the corona; ventral antennæ moderately long; tube cylindrical, smooth, transparent, and crossed by transverse ridges, at regular intervals.

I have met with this Limmias but once, and then had no time to study it. It appears to be rare in England, though Mr. Cubitt (from whose paper, cited above, the following particulars are taken) found it in abundance in a tributary of the Northbourne Brook, Kent.

Its tube is remarkable. In young adult specimens it is perfectly transparent, with a brilliant orange tint which at the sides becomes a deep carmine, owing to the greater thickness of tube which we there look through. Fine transverse ridges, one-tenthousandth of an inch apart, surround the tube from top to bottom. These are possibly caused by the pressure against the case of two horny processes (figs $2 b, 2 d, h p$) on the dorsal surface. These, under dark-field illumination, show a bright red spot at the top. Three less prominent processes lie in a line below the first two ; the distance between the rings is precisely that between these two rows, so that possibly they may help to form and gauge them.

The foot is long, wrinkled, with distinct museles. When the animal contracts itself into the case it folds the foot as shown in fig. $2 a$; a plan also adopted at times by L. ceratophylli.

Length, $\frac{1}{2}$ inch; Scotch specimens, $\frac{1}{18}$ inch. Habitat. Witlingham, Norwich (Brightwell); Kent (Cubitt) ; Forfar (J.H.) : rare.

Genus cephalosiphon, Ehrenbery.

GEN. CH. Corona nearly circular ; dorsal gap distinct; dorsal antemna obvious: ventral antennæ absent ${ }^{1}$; two dorsal hooks enclosing the dorsal antenna.
C. himnis, Ehrenberg,
(PI, VI, fig. 3.)

SP. CH. Dorsal antenna very long; tube tapering to the foot, compact, strengthened with extraneous material.
' I thought once that I caught sight of a minute setigerous ventrally placed pimple in C. Limnias ; there may possibly be a pair of such ventral antenna.

Ehrenberg formed the genns Cephalosiphon of hie family of the Floscularica to receive a singlo species, C. Limnias, one specimen of which he found on Ceratophyllum at Berlin. His characters of the genus are as follows: "Cephalosiphon, E. Rotatory organ hiJobed, eyes two, sheath or lorica single, two little frontal horns enclosing the siphon; " and those of the species are: "C. Limnias, E. Sheath membranaceous, ringed."

The characters of the genus and species were given in Pritchard's "Infusoria " (cdition 1861), but no one after Ehrenberg seems to have actually seen the animal itself, till Mr. Slack found it in a pond in the neighbourhood of London in 1860 on Anacharis alsinastrum. Mr. Slack supposed it to be the young of Limnias ceratophylli, and gave a brief description of it under that name in 1861 in his "Marvels of Pond Life" (loc. oit.). He noticed the oreature's bi-lobed corona, as well as the great length, flexibility, and peculiar action of the dorsal antenna "thrust on this side, and on that, as if to collect information for its proprietor." Mr. Gosse in the same yeur, in a paper eutitled " A Rotifer new to Britain (Cephalosiphon Limnias)," gave a full description with a plate of three figures of the new Rotiferon, taken from some specimens sent to him by Mr. Slack. These specimens seem to have been injured by the journey, as they did not expand freely, and so led Mr. Gosse to draw the corona with a butterfly-sliape, whfels healthy specimens do not possess. Mr. Gosse, howver, fully worked out the Rotiferon's structure, with the exception of the secreting and vascular systems ; and he deseribed and figured the "frontal horns" or hooks, which are situated like the hooks of Melicerta ringens, one on each side of the dorsal antenna. This Rotiferon is very partially dis. tributed. It was upwards of twenty years after I first began to search for Rotifera in the neighbourhood of Clifton, that I first lighted on it; and Miss Suunders has had a similar experience at Cheltenham. In 1875 I found a group of them on a leaf of a Potamogeton in a pond at Nailsea, near Bristol, and I made a careful drawing of the group (PI. VI. fig. 3). The tube is horn-shaped tapering to the foot; generally neater and more compact than that of CEcistes crystallinus, but coated with much the same sort of yellow-brown material.

The trunk is small compared with the foot, which is long and slender. The animal arches its dorsal side (fig. 8), in a manner common among free-swimming Rotifera, bui unique among the fixed ones, which, in all other instances, arch the ventral side, so as to bring the entrance to the buccal funnel uppermost. C. Liminias has that entrance almost hidden by the bending over of the corona. The arrangement of the double ciliary wreath is precisely that of the other Melicerlade. The usual pair of clear vesicles (salivary glands?) rest on each side of the top surface of the mastax, which is high in the neek towards the dorsal side ; and the ciliated buccal funnel slopes across to pass between them. There are a narrow osophagus, two globular gastric glands, cylindricul stomach, short intestine with upturned rectum, ending in a cloaca rather low on the dorsal surface.

Of the vascular system nothing has been seen; but Mr. Gosse (loc. cit. "Intell. Obser.") describes the nervous ganglion as "a grey clondy mass of irregularly-lobed form, immediately below the antenna, and behind the discal mammilla." I thought once or twice I caught sight of a ventral setigerous pimple just below the entrance to the buccal funnel, but I am not sure ahout it: there may be a pair of them there. The dorsal antenna is the striking feature in C. Limnias. When the animal has closed its corona and retired into its case, this slender transparent rod, with a brush of setie at the top may be seen gently moving about to see if the coast is clear. When satisfied that it may come up sufely, Cephalosiphon hitches its long antenna over the side of the tube, and hoists itself up by it into a great curve ; it then straightens its body and unfurls its corona.

The long antenna is not always straight ; it is occasionally bent into long curves like the process of F. comuta, but its changes of form are slow. Its base is broadened out like that of a rose-thorn, as if to give it a good purchase. Two red eyes are conspicuous in the adult, a little below the dorsal surface, one on each side of the antemna, and close to the nervous ganglion.

The gradual changes of form in the young are shown in figs. $3, x, y, z$, which are all taken from the same individual in different stages of growth. Fig. 3, x, shows it when only gho inch long, and with a sort of hump where the dorsal antenna is to be. Twenty-four hours after, the hump had become a short antenna (fig. $3, y$); in four days the young animal had grown to $\frac{1}{80}$ inch, in six days to $\frac{2}{\sigma \delta}$ inch, and in twelve to $\frac{1}{25}$ inch, by which time, as shown in fig. 3, z, the characteristic antenna was well developed: at this stage of its growth I unfortunately lost it.

I have little doubt that M. du Trochet was the first discoverer of C. Limnias. In the "Amnales du Muséum d'Histoire Naturelle," t. xix, 1812, p, 385, pl. 18, figs. 19 to 21, he describes and figures a tube-maker, Rotifer cruciger, with a fawn-coloured tube and a long dorsal antenna, and he noticed that the animal explores with it in all directions. It is trne that he figures two eyes, "saillants et globulaires," near the summit of the dorsal antenma, one on each side of it ; but these (if the animal were C. Limnias) must have been something extraneous, accidentally attached to the antenna ; possibly two airbubbles.

Length. About $\frac{1}{20}$ inch. Habitat. Neighbourhood of London (Mr. Slack) ; Sandhurst, Berks (Dr. Collins) ; Woolston, near Southampton (P. H. G.) ; Cheltenham (Miss Saunders) ; Lochs, Forfar (J. H.) ; Nailsea, near Bristol (C. T. H.) : Yery partially distributed.

C. candidus, Hudson, sp. nov.

SP. CH. Dorsal antenna very long; tube irregular, semitransparent, gelatinous.
Mr. J. Hood found this very rare Rotiferon in Loch Lundie in October 1880, and again between September and December in the same loch next year. He found a fow specimens in his aquarium, but evidently from eggs on weeds brought from the same spot.

Mr. Hood points out that it differs from C. Limnias not only in its tube, but also in its stout wrinkled foot, which is kept habitually in this condition. I have always noticed that the foot of C. Limnias (when in its tube) is delicate, tapering, and smooth; but Mr. Gosse found that, on his dislodging one from its tube, the foot became of nearly equal thickness throughont (as in C. candidus), and of about one-third the diameter of the body, from which it was abruptly separatod. The whole length, too, was then studded with wrinkles, which at intervals took the form of great thickened rings, The foot terminated in a circular sucking disk. The two species are very much alike; but their tubes differ so much that I have thought it best to keep them apart.

Length, $\frac{1}{\text { we }}$ inch. Habitat. Loch Lundie (J.H.) : very rare.

Genus acistes, Ehrenberg.

GEN, CH. Corona a wide oval, indistinctly two-lobed; dorsal gap minute; dorsal antenna absent ${ }^{1}$; ventral antennæ obvious.

In this genus the tube is extremely irregular and variable in shape; it is usually of a loose fluffy texture, and encumbered with extraneous matters of all kinds. In one species, however, it is compact, like that of Limnias ceratophylli; in another it is formed of fecal pellets; and in a third it resembles that of Melicerta tubicolaria.

The corona is no longer distinctly lobed, and becomes nearly circular ; it is hollowed a little on the ventral side opposite to the buccal fumnel. The ciliary wreath is double, and is on precisely the same plan as that of the preceding genera; only the dorsal gap in it, though distinet, is so minute as easily to escape notice, unless the animal be in a favourable position. Ehrenberg failed to see either it or the secondary wreath; and,

[^38]in consequence, separated it from the Melicertade, and placed it in a family named after itself: an honour it did not deserve. The antennæ vary greatly in length in the different species: some are mere setigerous pimples, others the longest known among the Rotifera.

The internal structure, so far as it has been ascertained, is that of Molicerta. The parts not made out are the vascular system and the nervous system. The male also is unknown.
CE. crystallinus, Elirenberg.
(PI. VII. fig. 3.)

SP. CH. Ventral antennæ cxtremely short, and set wide aparl; tube most variable and irregular in shape, often beset with extraneous matter.

I have frequently met with this Rotiferon in dense colonies, whose dirty-brown tubes gave quite a rusty look to the water plants which they infested. Though small, it is a very pretty object; and, with a little care, the secondary wreath of cilia, the two antennæ and the dorsal gap in the ciliary wreath can be distinctly made out. For this purpose the animal must be so placed that its long axis is nearly in the line of sight. From almost all other points of view the dorsal gap is invisible, and only one antenna can be seen at once, owing to the unusual width between the two. When the case is free from rubbish, it is not difficult to see that the animal's internal structure is very like that of Melicerta. The vasoular system and the nervous system have not yet been observed. Two red eyes are visible in the half-grown young,

Length. About $\frac{1}{50}$ inch. Habitat. Ponds and ditcles: very common.

> (F. Intermedius, Daris.
> (Pl. VII. fig. 5.)
> Davis, Twans. Roy. Micr. Soc. vol. xv. 1867, p. 14, with fig.

CTcisies intermedius
SP. CH. Antennæ short; dorsal gap unusually wide; tube opaque, tapering slighthy from top to battom.

Mr. Davis found this species at Leytonstone, in company with the former. It differs from CE. crystallinus in the width of the dorsal gap in the ciliary wreath, which almost approaches that of a Limnias, and in its neat tube, which exactly reproduces that of L. ceratophylli. In fact, had it not been for its distinctly oval corona, I should have said that it was a variety of the latter species. Mr. Hood, however, tells me that he has found it (sometimes in abundance) in Scotland and always with the oval disk; Mr. Gosse, too, has seen many Scotch specimens, and has no donbt that it is a true species.
[Two specimens, so young that no visible tube was begun, yet attached to a stem by the foot, showed, in the wall of the occiput just below the ciliary rota, two well-defined and conspicuous dark eyes, rather far apart.-P. H. G.]

Length. About $\frac{1}{3}$ inch. Habitat. Leytonstone, Essex (H. Davis) ; marsh pools, Fife and Perth (J.H.) : not common.

> G. serpentinus, Gosse, sp, nov.
(Pl. IX. fig. 1.)

SP. CH. Corona small, circular; foot fully thrice the length of the body, much wrinkled, extensile; ventral antenna a single, simple tubercle; a pair of dorsal hooks below the corona, adnate at the base; tube very short, or absent.
[This very striling species I found on leaves of Anacharis alsinastrum, which had been growing for months in a glass jar in my study-window.

The body and corona do not vary much from those of other species. In the act of expanding, the summit of the head becomes sub-conical, and is seen to terminate in two small hooks having a common stem, which remind the observer of the protruding head of Melicerta ringens (fig. 1b). When unfolded, the corona does not much exceed the greatest diameter of the body: it appears to form a complete uninterrupted circle. A small round laob on a conical eminence constitutes a ventral antenna; a little below which is seen the mastax ; and, about as much below this, but on the opposite side to the antenna (the dorsal side), the cloaca is bounded by a minute wart. The body is of the usual proportions, but the foot is of enormous length, being about thrice as long as the trunk and head. It is rather stout (about half the greatest diameter of the body), and of uniform thickness throughout; thrown for its entire length into transverse close-set wrinkles. These were not obliterated nor perceptibly diminished by the greatest extension that I witnessed; so that, if this corrugation is a provision for indefinite elongation at pleasure, as one must suppose, then the foot would seem capable of stretching to a length more than ten times as great as I have represented! Yet I have seen it on repeated occasions contracted in an instant to a condition in which it was not more than half the length of the body, or one-sixth of its former length.

The investing tube is reduced to extreme insignificance. The one that I saw would not hold half the body, even if it had no foot. It was invisible, save for a few irregular opaque masses here and there, and for two or three eggs adhering to the margin. As if indifferent to concealment, the foot was attached to a point not near the bottom of even this short dwelling.

The trunk is transparent, but tinged with umber-brown. Here and there, within, were multitudes of very small air- (or oil-) globules agglomerated into long masses, which looked like patches of blue-black hue, and had a curious appearance. When I first saw the specimen, two eggs were already laid, and presently a third was added, but not under my actual gaze. The eggs were all of a clear yellow, minutely granular.

The manners of this creature are as odd as its figure. It is not by any means intolerant of exposure : though sensitive, shutting up and violently contracting on a very slight shock or jar, yet in a moment it is again stretched to its length, and quickly has its corona expanded. The foot is endowed with an extreme flexibility and muscular power, for the animal is constantly (I will not say swung, but) shot, from side to side; just as the body of a snake or of a writhing worm is jerked about in tortnous evolutions.

While I was examining and delineating this example, another appeared, in all essential points agreeing with it, but quite destitute of any apology for a case, the foot being unattached to any object; the creature being loose in free water, but lying on the same leaf of Anacharis. The male has not yet been observed.-P.H.G.]

This species in many points resembles Ehrenberg's Ptygura Melicerta. The two agree in the small corona, cylindrical body, dorsal hooks, single ventral antenna, manytoothed jaws, and inconspicuous or absent tube. But the prodigious length and extensibility of the great ringed foot of CF. serpentinus, and the animal's extroordinary actions, none of which are mentioned by Ehrenberg, show it to be a different creature. If Ehrenberg had seen only a solitary specimen for a few minutes, in a contracted state, the two might have been supposed to be the same ; bat he distinctly says that he had met with many examples. Besides, Herr Eekstein has also found Ptygura Melicerta more than once ; and, although he has not seen the expanded corona, his description and figure in all other respects agree with Ehrenberg's.

From the descriptions given by Ehrenberg and Herr Eckstein I am inclined to think that Ptygura is an FEcistes; but it is impossible to determine this till the corona has been thoroughly studied.

Length. Not recorded. Habitat. On a leaf of Anacharis alsinastrum in a freshwater aquarium (P.H.G.).

(E. Longicornis, Davis.

(PI. VII. fig. 6.)
Gevisues longicornis
Davis, Trans. Roy. Micr. Soc. vol. xv. 1867, p. 13, with figs.
SP, OH. Antennæ very long and recurved; tube floccose, irregular.
Mr. H. Davis found this well-marked species, in abundance, in ponds at Leytonstone, Essex. It is the smallest of the tube-makers. The tube is very irregular and variable in shape ; but, in most of the examples which I have met with, small and tubular at the bottom, while wide and unsymmetrical towards the top. On supplying it with carmine, Mr. Davis saw that the fine coloured particles accumulated in the hollow under the chin, and that they were then rubbed off by the Rotiferon, and left on the top of its case. He thus obtained tubes with crimson tops at least one-fourth of the length of the whole, showing how the structure was gradually formed. The long antennæ, curved baek from the ventral surface, and set wide apart, give this GEcistes a very striking appearance.

Length. About $\frac{1}{70}$ inch. Habitat. Leytonstone, Essex (H. Davis) ; Abbot's Pond, Clifton (O.T.H.) ; Woolston, Oheltenham (P.H.G) ; marsh pools, Fifo and Perth (J.H., P.H.G.) : partially distributed.
E. pilula, Wills.
(Pl. VII. Gig. 2.)

Melicerta, variety No. 2 .
Melicerta socialis (7)
Molicerta pilula (?) .
GEcistes pilula

Tutom, Jour. Quekett Mier. Club, vol, i. 1868, p. 124, pl, vii. figa. 3, 4.
Collins, Science Gossip, No. 85, 1872, p. 9, with fig. Cubitt, Mon. Mier. J. vol. viii. 1872, p. 5, pl. xxiv. figs. 2-4. Wills, Midland Naturalist, vol, i. 1878, pp. 302, 317, pl, v. figs. 3, 4.

SP. CH. Antennæ long; tube formed of facal pellets.
The first certain notice of this Rotifer is by Mr. Tatem (loc. cit.). He gave two excellent and characteristio drawings of it; saying merely that it was a two-lobed variety of Melicerta ringens, without a ciliated cup, and inhabiting a "gelatinous sheath" with adherent freeal pellets. Its broadly oval' corona, however, and the minuteness of the dorsal gap in the ciliary wreath, clearly place it in the genus CEcistes.

As in Melicerta Janus, the intestine is large and densely ciliated; and nearly always contains an oval pellet in the course of construction. Mr. Wills (loc. cit.) describes how the animal deposits its completed pellet. He says that it is ejected between the body and the tube, and then caught by the lower margin of the corona. Here it is retained for a few seconds, as if the creature wished to make sure of a proper hold, and it is then, by a sudden retracting of the body, dabbed down on the margin of the tube. The pellets are deposited at irregular times, and the majority of them are so ejected as to be whirled quite away by the coronal currents. Those that form the tube are laid in transverse rings round the body so as to cut the ring obliquely (fig. 2 d). The tubes are generally neat, gradually widening to the top, but I have met with some in which the pellets seemed to have been deposited in a most irregular fashion (fig. 2a). These tubes, however, had probably suffered from some accident. The eyes are visible in the half-grown animal.

Length. Scotch specimens up to $\frac{1}{15}$ inch. Habitat. Sandhurst, Berks (Collins); Sutton Park, Birmingham (A. W. Wills) ; Snaresbrook, the tube of unusually large pellets (P.H.G.) : marsh-pools, Fife and Perth (J.H.) : not common.

[^39](1. brachtatus, Hudson, sp. nov.

> (P1. IX. fig. 2.)
[SP. CH. Corona distinotly two-lobed; ventral antennæ as long as the transverse diameter of the corona, mobile, non-retractile; tube gelatinous, quite transparent, but for adhering matters, subcylindrical.

The front in retraction is rounded, ending in two gominate hooked points. The ventral antennæ rise from swollen bases wide apart, and diverge on each side nearly in the line of the body. They move independently of each other, often quiekly, but not spasmodically. In each can be seen a globose corpuscle within the tip, bearing one seta, whence a double line (probably a tube or a nerve-cord of sensation) can be traced throughout. A mastax of normal form, a long cesophagus, an ample stomach, and a distinct intestine, are plain ; from this last a long up-turned rectum leads to the cloaca, at half body-length. Laid eggs, of very long-ovate form, are usually seen, from one to four in number, in the midale part of the tube.

Below the viscera the body suddenly becomes hyaline, and gradually tapers to a slender foot, twice as long as the body, through which run many pairs of musclethreads. At the bottom, already much attenuated, it abruptly contracts to an excessively fine thread, which adheres by a sucking disk to the base. The investing tube is wide and high, but is absolutely invisible; and can be inferred only from a crowd of minute diatoms (almost wholly of one slender kind) that are entangled in its substance. The cavity of the tube can be easily traced, of equal width throughout, a width determined by that of the body, which, however, rarely retracts sufficiently to enter it. The foot generally displays few transverse wrinkles.

It is not reluctant to display its discal beauties. The corona is that of a Limnias, composed clearly of two circles united; the dorsal gap wider than the ventral. Each half is conspicnously marked with a thick rib (muscle or vessel ?) originating in the common centre, and divaricating, with many branches, nearly to the circumference, But, just within the margin, a concentrie band comnects these branches, forming a submarginal edge, thick and dark, which is constantly thrown into varying puckers by contraction; the whole contributing greatly to the beauty of the corona.

This species, which is among the finest of Rotifera, was discovered in 1882 by Mr. John Hood of Dundee, to whose successful researches this work bears grateful witness. He obtained it from several lochs around; and sent a specimen (which did not survive the journey) to Dr. Hudson, with many notes and sketches. Recently he has favoured me with many specimens, which have freely increased in captivity with me, even in very small phials, so as to be swarming, by scores, for months after their transmission. Thus I have had abundant facilities for study and delineation of the species. It has always occurred attached to filamentons weeds much crowded with impalpable alge.

Length, $\frac{1}{40}$ inch to $\frac{1}{25}$ minch. Habitat. Weeds in Scottish lochs (J.H., P.H.G.): not rare,-P.H.G.]

(E. (?) velatus, Gosse.

(PI. D. fig. 8.)
Megalotrocha velata Gosse, Anm. Nat. Hist. 2 Ser. vol. viii. 1851, p. 198.
Melicerta ptygura (?) Popular Sci. Rev, vol. i. 1862, p. 490, pl. xxvi. fig.d.
[SP. CH. Corona very large, circular, crossed by thick diverging ribs; teeth four in cach ramus; eyes two, cervical, permanent; tube habitually wanting.

This very beautiful form is aberrant, if indeed it is an Cecistes. My attempts to assign it, first to Megalotrocha and then to Ptygura, must both be given up. The
absence of frontal hooks, and the high position of the cloaca, forbid the latter identification. The form of the trophi; the very distinct, small, three-sided intestine (a mark by which the species may usually be identified at a glance), and the absence of any tube-proper, make its position in CEistes doubtful. Dr. Collins, indeed, who has met with it often, and has sketched it in his Note Book, speaks of its occasionally throwing off irregular mucus; but this seems scarcely a tube. I have lately had many specimens, and have never seen an approach to a tube. The presence of two eyes, small but conspicnous, and apparently permanent, is noteworthy. They are situated in the neck, moderately wide apart. Dr. Collins, in one example, figures and describes them as rather close together and near the edge of the corona, which is unaccountable.

The corona is a hyaline disk, of beautifol rotundity and of great size, being twice as wide as the body when well expanded;-shallowly funnel-shaped, but sometimes taking the form of a lovely glass salver, with slightly raised edge, around which the great ciliary waves play nobly. Turbid matters are sometimes poured off through the minute dorsal notch.

The rectum may easily be traced, npward from the bottom of the intestine, to the cloaca far above its summit. I have seen an egg, and also freces, discharged, after which the cloaca protrudes lip-like (8d). Around the outside of the corona, investing it to some height, is sometimes seen what seems a vascular tissue of granular yellowish hue (8b), apparently movable, whence the specific name. A very good view of the mastax enabled me to see that each hemispheric ramus is crossed by four teeth, nearly parallel, whose points project beyond the edge ($8 e, 8 \mathrm{f}$).

I found this fine species near London in 1849, in two examples; but never saw it again for many years. Within a few months, however, Mr. Hood has sent me water from a pond near Dundee, very rich in forms of Rhizota, among which many specimens of © \mathbb{E}. velatus occur. I am tempted to give my ardent correspondent's experience in the procuring of these. It was in the very height of the great snow of early March, in the present year 1886. "I went to the pond to-day to search for velatus-a difficult and hazardous task. The pond is more than twelve feet deep, covered with thick ice and snow. As I knew the exact spot . . . I cleared away the snow, and bored a number of small holes in a circle of eighteen inches in diameter; then thrust down the central plate, which gave me a large hole. I put down my line with sinker and grapnel, but fished a long time with no result. At last a bit of the Myriophyllum came up, to which I hope you will find specimens attached;"-as, I am happy to add, I did.

Length, $\frac{1}{10}$ to $\frac{\gamma}{5}$ inch. Habitat. The Black Sea, Wandsworth (P.H.G.); Sandhurst (Dr. Collins) ; Dundee (P.H.G.; J.H.) : rare,-P.H.G.]
(E. vabella, Hudson. (PI. VII. fig. 4.)

Cicistes umbella
Hudson, J. Roy. Micr. Soc. (1878), vol. ii. 1879, p. 1, pl. i.
Goistes Iongipes . . Wills, Midland Naturalist, vol, i. 1878, p. 317, pI. v. Iige. 1, 2.

[^40]forms a rectangular bundle that is characteristic of the species. The foot is unusually long and slender. Two red eyes are distinctly visible in the adult, just below the surface of the corona.

Length, $\frac{1}{18}$ inch. Habitat. Ponds at Snaresbrook, Essex (F, Oxley); and Sutton Park, Birmingham (A. W. Wills) ; Woolston, Cheltenham (P.H.G.) ; marsh pools, Perth and Fife (J.H.) : rare.

> E. styols, Gosse, sp. nov.

> (Pl. IX. fig. 8.)

SP. CH. Corona ciroular; dorsal gap not perceptible; ventral antennæ mere tubercules. Of large dimensions.
[I found this fine species on September 18, 1885, among impalpable floccose vegetation sent me by Mr. Hood from the Black Loeh, near Dundee; a habitat which has suggested a fanciful appellation, and which it shares with its neighbour and rival CE. brachiatus. It equals that species in size, being about $\frac{1}{10}$ inch in height when expanded; its beautiful clear corona, of exquisite rotundity, being $\frac{1}{100}$ inch in diameter.

The corona is strengthened with thick divergent ribs, very visible when viewed obliquely or nearly laterally; but, in a direet front view, these disappear, and the hyaline disk looks like a circular plate of clear glass, marked by a few almost invisible curves. There are no antenne proper; a pair of minute knobs marking their place. But for this, it might be mistaken for CE. umbella. I saw no trace of eyes. The body, of the usual form, contracts to a long and slender foot; which, at its pedal extremity, dilates into a minute cubical knob, which adheres to a little heap of floccose. A tube of loose gelatinous matter, of brownish hue, surrounds the body, of such a thickness that its diameter is about twice that of the corona. It is undefined to the eye, but carries an agglomeration of extraneous matters entangled in its substance.-P.H.G.]

Length, $\frac{1}{30}$ inch. Habitat. Black Loch, Dundee (P.H.G.) : rare.

Genus Lacinularia, Schweigget.

GEN. CH. Cluster fixed, of many individuals, with adhering golatinous tubes; corona heart-shaped, oblique, with its longer axis placed dorso-ventrally, and a deep ventral sinus ; dorsal gap in the ciliary wreath very minute; trunk without opaque warts; dorsal and ventral antennæ absent. ${ }^{1}$

L. socialis, Ehrenberg. (Pl. VIII. fig. 1.)			
Lacinularia socialis	.	, .	Ehrenberg, Die Infus. 1838, p. 403, Tait, xliv. fig. 1.
". ${ }^{\text {" }}$,		Leydig, Sieb. u. Kull. Zeits. Bd, iii. 1851, p. 453, Tuf, xvii.
" "	,	-	Huxley, Trans. Micr. Soc. vol. i. N.S. 1853, p. 1, pl. f. pl. ii. figs. 20-25.
Meqalütrocha socialis	?	\cdots	Pritchard, Infusoria, 1861, p. 671, pl. xxxvii. figs. 19-25. Gosse, Popular Sci. Rev. vol. i. 1863, p. 494.
Lacinularia socialis	.		Oubitt, Mon. Micr. J. vol. viii. 1872, p. 9, pl. xxiii. figs. 3,
"	,	-	Hudson, Mon. Mier. J. vol, xiii. 1875, p. 45, pl. xci. fig. 8.
" "			Bartsch, Rot. Hungaria, 1877, p. 19, Táb. i. fig. 1.

This common and yery beautiful Rotiferon, the only known species of the genus, is found adbering in clusters, like little balls of grey jelly, to the stems and leaflets of pond-weeds,

[^41]The cluster is a lovely microscopic object for a low power with dark-field illumination, and can be easily placed in a live-trough without injury; so that during the hundred and thirty years which have elapsed since its discovery, it has naturally attracted the attention of many observers, and has been the subject of special essays by Professor Huxley and Dr. Leydig. It has, in consequence, been very thoroughly examined, and only a few points of its structure remain as yet doubtful. These, as might have been expected, are in the vascular and nervous systems ; and these alone require notice, as the rest of its internal organisation, as well as the general plan of the corona, ciliary wreath, chin and buccal funnel, follows very closely that of M. ringens.

The Vascular System.-Professor Huxley describes the two lateral canals as arising from a common origin upon the dorsal side of the intestine (rectum), but Dr. Leydig says that the lateral canals start from a common branch opening into a contractile vesicle, which discharges itself into the cloaca : it will be seen that a similar doubt exists concerning the termination of the cauals in Conochilus volvox, and further investigation is, I think, wanted to make the matter clear.

The Nervons System.-Professor Huxley (loc. cit.) describes and figures a ciliated cup beneath the chin, just as in M. ringens ; and below this cup, underneath the surface, on the ventral side, a " bi-lobed homogeneous mass resembling in appearance the ganglion of Brachionus." This organ he supposes to be the true nervous ganglion. Dr. Leydig, on the other hand, points out two nucleated polar cells, giving off threads, just below the mastax, and two similar ones at the junction of the foot and trunk. These four are, in his opinion, the nerve centres of L. socialis. Now, each of these suppositions is liable to the same objection, viz. that it places the nervous ganglion in a unique position. All the known nervous ganglin in the Rotifera lie towards the dorsal surface, and the great majority are near the mastax, and not far from the eyes; there are no other examples of nervous ganglia on the ventral surface, or in the foot. Besides, in the only one of the Melicertada (viz. Conochilus) in which there is an obvious nervous ganglion, it lies in the normal position; and M. Joliet describes the nervous ganglion of M, ringens as being above the mastax towards the dorsal surface. No antennæ have as yet been observed, and the eyes are visible only in the young.

The Male.- I had the good fortune to discover and stady the male in November 1874, and published (loc. cit.) an account of it, and several other males, soon afterwards. Fig. 10 gives a side view of it. It has a conical head fringed with a wreath of long cilia, a cylindrical soft trunk, and a short, pointed, ciliated foot. There are strong longitudinal musoles for withdrawing the corona into the trunk, and several transverse museular bands in the integument. The nutritive system is wholly absent. Two secreting foot glands are present, as well as the lateral canals and their vibratile tags. I several times thought I caught sight of the edge of the contractile vesicle behind the upper part of the sperm-sac. There is a large nervous ganglion sending threads to a dorsal antenna and two red eyes. A large sperm-sac fills nearly the whole trunk, and ends in a broad tubular, ciliated, and protasile penis.

Length. About $\frac{1}{\frac{1}{2}}$ inch; diameter of large cluster, about $\frac{f}{f}$ inch. Habitat. On water-weeds : common.

Genus megalotrocha, Ehrenberg.

GEN, GH. Cluster fixed, of many individuals without tubes; corona kidney-shaped, oblique, with its shorter axis placed dorso-ventrally, and with a deep ventral sinus; dorsal gap in the ciliary wreath very minute; trunk with four opaque warts in a row on the breast ; dorsal and ventral antennæ absent. ${ }^{1}$

[^42]M. alboflavicans., Ehrenberg.
(Pl. VIII. fig. 2.)

This is a comparatively rare animal, though it has been known for upwards of a century. Had it been common it would never have been supposed to be a Lacinularia without a tube, for only those who have never seen it could make such a mistake. It differs obviously from L. socialis in its shape and habits, as well as in its being ornamented with a necklace of four white opaque knobs, "like a row of pearls," stretching from shoulder to shoulder across the ventral surface. These are so placed, that when the animal furls its corona they border the edge of its then pear shaped body.

The cluster radiates in all directions from a small space on the stem or leaf of a plant, and often consists of both adults and their young. Now and then a young brood will swarm out, as in Conochilus volvox; and, when swimming away, circling round each other in search of a resting-place, may easily be mistaken for a young cluster of that species. The ways of the animal are unlike those of L. socialis, It is a much more timid creature, and does not expand so freely. When a cluster is undisturbed, first one and then another will contract with a sudden twist, to expand in leisurely fashion at its own pleasure ; but every now and then a panic seizes the whole cluster, and they all rush together into a contracted mass, with a curious circular sweep, as if some violent eddy had struek them.

The creature has a peculiar habit of swelling out at times the surface of the corona, so that it is curved up above the cilimry wreath; but in other respects the two ciliary wreaths, the chin, and the bnceal funnel are similar in plan to those of L. sociatis; and so is the whole alimentary tract. The two vesicles, which some take to be salivary glands, and others mere horny stays to the buccal funmel and mastax, are yellowish; and so are the trophi. The gastric glands are somewhat three-sided in outline when seen ventrally. The lateral canals and their vibratile tags are obvious (figs. 2 to 2c), but the contractile vesicle (if any) has not been seen; neither has it been determined how the lateral eanals end posteriorly. No nervous ganglion or antenna has as yet been seen, and the two red eyes only in the egg and young.
[Mr. W. G. Cocks, of Dalston, has been very successful in keeping this and other fine Rhizota in a tank. He has favoured me with many valuable observations on the habits and development of this species; and I am indebted to him for a supply of specimens. I noticed that, in one case, when an egg was discharged in my sight, it separated and fell down among the crowded feet of the cluster ; while, in another, it hung awhile to the cloaca after exclusion. Presently a young one was swimming free, probably hatched in the trough. It was colourless, very trangparent; and swam smoothly, evenly, and swiftly, by the rotation of the cilia on its expanded corona. Then came shooting-by a sleuder creature (PI. D. fig. 9a), about $\frac{1}{260}$ inch long, with truncate, apparently ciliate, front, tapering regularly to the hind extremity. In this, though fall of a bright granulation, I could not detect any viscera, nor other organs. I conjecture this was the newborn male of the same; as fig. 9 is probably a new-born female.-P.H.G.]

In Dr. Weisse's figure (loc. oit.) of the female embryo leaving the egg, it will be noticed that the four opaque warts on the trunk, as well as the eyes and mastax, are already formed.

Length. About $\frac{1}{1 g}$ inch; diameter of large cluster, about $\frac{1}{6}$ inch. Habitat. On plants in gently running streams, Weybridge, Surrey (W. G. Cocks); Kent (Cubitt, Badcock): rare.

-Genus trochosphara, Semper.

GEN. OH. Solitary, frec-rwimming; body a perfect sphere; buccal orifice on the spherical surface; principal wreath dividing the sphere into two hemispheres, and passing above the buccal orifice; dorsal gap in the wreath at the pole opposite to buccal orifice; secondary wreath a fragment on the under edge of the buccal orifice; ventral antennæ cxtremely minute; tube absent.

> T. fequatorialis, Semper.
> (Pl. D. fig. 11.)

Trochosphara aquatorialis . . Semper, Sieb. u. Koll. Zeits. Bd. xxii. 1872, p. 811, Taf. xxiv., translated in Mon. Micr. J. vol, xiv. 1875, p. 237, pls, exx, to exxii.

Who can complain here that a rough wrinkled skin, complicated external form, and huddled-up organs have rendered his utmost efforts almost fruitless? Here is a creature whose outer shape and texture have alike reached the very acme of simplicity; the one translucent as the clearest water, the other rounded into a perfect sphere: an animal created as it were for the study of its internal structure; its organs all symmetrically sprend apart in due array, just as if a skiffal demonstrator had teased them out with delicate needles; no one overlapping another, and all deftly hung to the walls of a hyaline globe which not only upholds them, but also displays them to the utmost possible advantage; for it has a band of cilia girdling its entire circumference, and rolling it through the water, so as to present it in every possible point of view.

Trochosphara has a perfectly transparent spherical body with a principal ciliary wreath running round what may be called the equator, and marking the common boundary of what Prof. Semper calls the "oral "and "ab-oral " hemispheres. In the former lie nearly all the organs of the body; for only one nerve-thread and portions of a pair of muscular bands are to he found in the other. At one spot in the equatorial ring of cilia there is a break in the wreath, and at the opposite extremity of the diameter passing through this spot is the buccal orifice, which has a very small secondary wreath fringing its oral or lower side.

The various internal organs are so well displayed in Prof. Semper's figure, that only a few points require notice. The trophi, though of somewhat peculiar shape, are malleo-ramate. The lateral canals end in the cloaea, not in the contractile vesicle; and this latter, according to Prof. Semper, discharges itself into the intestine. The nervous system can be well made out. From the nervous ganglion ($n g$), which lies close to the mastax ($m x$) , five pairs of nerves pass respectively to the ciliary wreath, buceal orifice, lateral antenne (a^{\prime}), lateral canals (lc), and eyes (e); while a single nerve thread (n) passes to the probable dorsal antenna (a).

The male is unknown.
It is obvious that if the aboral hemisphere were pressed flat, and the oral lengthened out into a cone, we should have, in the altered Trochosphara, a Rotiferon somewhat resembling one of the Melicertade. For it would have a buceal orifice laterally placed; a principal ciliary wreath surrounding the body, with a gap in it on what would then be the dorsal side; a portion of a secondary wreath passing round the edge of the buccal orifice ; trophi of a Melicertan type; two minute ventral antennæ, and a single dorsal one. On the other hand, the absence of an attached foot, and of a complete secondary wreath, and the difference of habit, make it no easy matter to say where Trochosphara should be placed; on the whole, I think it should be put among the Melicertade near Megalotrocha and Conochitus.

Length. Diameter of sphere, ${ }^{\frac{1}{6}}$ inch. Habitat. Ditches in the rice fields of Zamboanga, in the Philippine Islands (Prof. Semper) : rare.

Genus conochilus, Ehrenberg.

GEN. OH. Cluster free-swimming, of several individuals, inhabiting coherent gelatinous tubes ; corona horse-shoe-shaped, transverse; gap in the ciliary wreath ventral; buceal orifice on the corona, and towards its dorsal side; dorsal antennæ absent; ' ventral antennæ obvious.

Take a clay model of an CEistes, and cut off the head by a transverse section through the neck. Lift up the head, and reverse its position, placing the surface of the corona on the decapitated trunk, so that the entranee to the buccal funnel may point towards the centre of the dorsal surface. There will thus be obtained a rough representation of the relative positions of the trunk, corona, and ciliary wreaths in Conochilus. Such a violent alteration in the general plan of the Molicertada might almost seem to entitle Conochilus to a family by itself, but its affinities are so clearly with this group that it may well remain here.

On the surface of the corona, ${ }^{2}$ close within its edge, and parallel to it, runs a groove, which is broadest and deepest opposite to the dorsal surface, where it is confluent with the entrance to the buccal funnel. The groove grows both narrower and shallower on each side as it approaches the ventral surface, and ceases just before reaching a ventral gap in the corona.

The buccal funnel, except at its wide entrance, is covered by a sloping roof, formed of the uplifted corona, which here rises into a kind of pent-house, notched at its apex. The principal wreath runs round the outer edge of the groove, and is joined, at each side of the ventral gap, by the secondary wreath. This latter fringes the groove's inner edge ; and on reaching the buccal funnel, bends sharply back, rising up each edge of its walls, till it has reached the notch described above ; so that in Conochilus, as in other Melicertade, the entrance to the buccal orifice lies between the two wreaths, and is bordered by the secondary one.

The two known species differ considerably in their modes of clustering, and in their antenne: they apparently closely resemble each other in other points, but only one has been really studied, viz. C. volvox. ${ }^{3}$

C. volvox, Ehronberg. (Pl. VIII. fig. 8.)

[^43]SP, CH. Cluster spherical, consisting of many adults and their young; tubes so compressed together as to be indistinguishable from each other; ventral antennæ on the corona, between the bucoal orifice and the ventral gap, adnate at the base.

No microscopic object is more beautiful than this lovely globe of living creatures, each bearing its flashing crown of cilia, its ruby eyes and orange-tinted jaws. Fortunately it is as common as it is beautiful, and is equally at home in the Swiss Lakes, in the Scotch Lochs, and in the pools of Hampstead Heath.

The animals all radiate from a common centre (fig. 8e), the extremities of their feet being close together, though not in actual contact. The action of their ciliary wreaths imparts a slow motion to the globe, which rolls along, rising and falling, and often returning on its course, in a very aimless fashion. The globe is formed by the cooperation of its inmates, each contributing its secretion to the structure. The newlyhatched free-swimming young may be seen circling round each other, with their bodies curved, and the extremities of their feet directed towards a central spot in the group. In this way they will swim off in a swarm, not actually cohering, but keeping all close together. I have not been able to follow the process further ; but, no doubt, all soon begin to form some sort of tube, and their united secretions fix the swarm together, and at last combine them into a small globe, to which fresh additions are constantly made. A young globe increases its size also, not only by the growth of the original company, but by the addition to it of its newly-hatched young; which, us they emerge from the egg, squeeze a place for themselves among their elders.

But the process has its limits. After a time the globe is too thickly packed, and a young swarm starts off as already described. The largest globes often separate into two portions, each of which soon rounds itself into a sphere ; no doubt they are torn apart by the strain on them produced by the opposing action of the ciliary wreaths in opposite hemispheres.

The internal structure resembles that of Melicerta, but a few points require notice. The trophi ${ }^{1}$ are tinted orange-red, and so is the lower end of the buccal funnel, where are the lips which form an entrance to the mastax : these latter resist the action of caustic potash. The stomach appears to be divided into two chambers, which lie symmetrically on the right and left sides of the body; while between and below them the intestine is curved abruptly back towards the dorsal surface; so that its long rectum ends in an unusually highly placed cloaca. ${ }^{2}$ Indeed the whole of the viscera are, as it were, tucked high up into the trunk, leaving its lower end empty of all but the longitudinal muscles. Six of these run from the head over the trunk, down the broad, transparent, spindle-shaped foot. Five or six bands of transverse muscles cross the trunk, at somewhat regular intervals, from the neek to where it joins the foot. This latter is generally drawn up a little into the body, at its junction with it, so as to make there a conspicuous fold in the integoment. The vascular system has no contractile vesiole, ${ }^{3}$ but its function is performed by the cloaca; which I have often watched dilating and emptying at regular intervals. The lateral canals arise in a plexus on each side of the corona, slope downwards dorsally to a similar plexus in each shoulder, and throw out on their way branches, above and below the nervous ganglion, which appear to run into each other. From each shoulder-plexus the canal is continued, still near the dorsal

[^44]surface, down to the cloaca. The vibratile tags can be easily seen. There is a conspicuous nervous ganglion on the dorsal side, just above the neck, and below the two eyes. These latter are beautiful little hyaline spheres (fig. $8 / 2$) resting on patches of crimson pigment. ${ }^{1}$ The two antennæ rise from the corona, on the sloping walls of the buccal funnel between it and the ventral gap (fig. $3 a, a$). They are adnate at the base, and each curries a bristle that can be withdrawn within a tubular sheath (fig. 8 g), as in Melicerta. The ovary is frequently obscured by a large egg, lying across the body, in which the red eyes, moving cilia, and mastax of the young animal are distinetly visible. Ihave frequently noticed living spermatozoa attached to the outside of the ovary : how they can get there it is not easy to see, unless they can find their way from the cloaca, up the lateral canals, and out of the vibratile tags into the body-cavity.

I have watched the formation of an ephippial egg from the first enclosing of a considerable portion of the ovary, through the changes shown in figs. $8 k, 8 l, 8 m$, to the ultimate production of an egg (fig. $8 n$), covered with a deep layer of hexagonal cells, and bristling with spines, from each spot where the angles of the hexagons meet. As Mr. Davis has well observed, it is a misnomer to call these " winter" eggs, for they occur in all seasons of the year.

The male (Pl. VIII. $8 d$ and $3 p$), as usual, consists of little else than a sperm-sac and penis. Its general appearance when swimming is shown by Mr. Davis (loc. cit.) and its internal structure has been worked out by Dr. Cohn, one of whose figures is reproduced in Pl. D. fig. 10. Dr. Cohn (loc. cit.) says that the nutritive system, from mouth to cloaca, is wholly wanting; that the vascalar system is indistinct, though probably present; that the whole head is occupied by a great nervous ganglion; and that there are two eyes, which consist of refracting lenses set in pigment. He also describes, and figures, the spermatozoa (P1. VIII. fig. 3q), which he saw under unasually favourable circumstances ; and noticed their attachment to the outside of an ovum (fig. $8 r$). ${ }^{2}$

Length. Diameter of large cluster, about $\frac{1}{20}$ inch ; length of individual, about $\frac{1}{70}$ inch. Mr. Gosse has counted as many as 70, and Mr. Davis 100, in a single cluster. Habitat. Lakes, clear ponds, and pools : common.

C. dossuarius, Hudson, sp. nov.

(Pl. VII. fig. 4.)
Cephalosiphon dossuarius . Hudson, J. Roy, Mier. Soc. 2 Ser, vol. v. 1885, p. 611, pl, xii. fig. 4.
SP. CH. Cluster unsymmetrical, of one adult and a few of its young; tubes distinct; ventral antennæ below the corona, long, adnate for nearly their whole length.

This rare species was discovered by Mr. Bolton in September 1884 near Birmingham. It is remarkable for the size, shape, and position of the antennæ, which stand on the arched ventral surface like a rifle-sight on the barrel. The specimens that Mr . Bolton sent me were all solitary, carrying with them, as they swam, their cases with the contained eggs; but Mr. Bolton tells me that the clusters which he usually met with consisted of one adult and a few young individuals of various sizes. On one occasion, too, he saw an adult with one large egg, and four much smaller eggs in its tube. If these latter were male eggs, and the former a female one, this observation would, I believe, be unique.

I had no opportunity of stadying the internal structure of this Rotiferon closely; but I detected no difference in this respect between this species and C. volvox.

Length. My solitary specimen was $\frac{1}{60}$ inch. Habitat. Near Birmingham (T.B.).
${ }^{1}$ Dr. Imhoff says (loc. cit.) that in the specimens in Lake Zug the pigment is black, and Dr. V . Eichwald (loc. cit.) found specimens, in ditoh-water at Hapsal, in which the eyes were invisible.

2 The Rev, Lord S. G. Osborne has described (in a letter to the English Mechanic,' March 1, 1878), clusters of Conochilus volvox which bear at their centres bundles of tine stick-like diatoms. I am indebted to his Lordship for a cluster, mounted by himsell, and containing these needle-shaped bodies. They appear to be of three kinds ; they are colourless, and their distinctive markings (if any) are so abscured by the rotiferous jelly, that it is very dificult to say whether they are diatoms or desmids. Lord Osborne's explanation of their presence in the cluster is no doubt the true one: namely, that they are drawn in point-downwards, bit-by-bit, at each sharp contraction of Conochilus into its ball.

CHAPTER VII.

\qquad
BDELLOIDA.

Si quæ de animaleulis infusoriis dici possunt enarrentur, verbaque et oculorum acies sufficerent, dicendi nullus finis esset. Paucissima magnificentir et splendoris Numinis optimi maximi documenta prodere mens humana valet; in plurimis stupet et obmutescit.-O. F. Müller.

He, who feels contempt
For any living thing, hath faculties
Which he has never used;
. . . thought with him
Is in its infancy.
Wordsworth.

CHAPTER VII.

Order II. BDELLOIDA.

Swimming ${ }^{1}$ with their ciliary wreath, and creeping like a leech; foot wholly retractile within the body, lelescopio, ending almost invariably in three toes. ${ }^{2}$

The Leech-like Creepers form so natural a group of animals that all the classifiers of the Rotifera have placed them by themselves. Ehrenberg, Dr. S. Bartsch, Herr K. Eckstein, have arranged them in the family Philodincea; Dujardin, in the order of the Rotiferes; and Dr. Leydig, in his un-named second family of Rotifera "with a long, jointed, telescopie, retractile foot." This extremely characteristic foot is to be found only in the two families of this order, the Philodinade and Adinetade. The longitudinal muscles, which pass down the foot, end at intervals below each other, so that their contraction draws the lowest part of the foot into that just above it, and this in its turn is drawn into the part above, and so on; until the whole foot can be shut up like a telescope, and withdrawn completely into the trunk.

A special interest attaches to the BDELLOIDA. Specimens of various species in both the families have been dried, suffered to lie in that condition for three or four years, and then brought to active life again by being placed in water. ${ }^{3}$ I have no space to give the history of this question, and of the controversies that have arisen about it, some of which, indeed, are still as lively as ever; I shall therefore confine myself simply to a relation of facts whose reality may be easily tested, and of the satisfactory explanation of them given by Mr. Davis. ${ }^{4}$ If specimens of Philodina roseola be placed with a little clear water on a slip of clean glass, and the water be quickly dried up, they will all be killed; no watering will revive them. I have tried this scores of times and never met with a case of recovery. But if the rotifers be placed in a cell that contains a little sand, or moss, then the cell may be dried even in vacuo over sulphuric acid; and yet, when water is again added to it, in the majority of cases, some of the Rotifera will be found to be still alive: or the cell with the water, sand \&c., and the animals may be gradually heated up to 200° Fahr., and yet some of the creatures will probably recover if, when the cell is cool, fresh water be added : or once more, the cell may be laid aside for several years in utter dustiness, and still, on the addition of a few drops of water, the chances are that, in the course of an hour, a few of the animale will revive. Now the real point is obviously this. If a Philodine can be revivified after having been dried in

[^45]sand over sulphuric acid, or gradually heated to 200° Fahr., or left to the neglected dust of years, why will it not recover from the effects of quick evaporation, without sand, on a glass slip, in the comparatively moist air of a sitting-room? It has been suggested that, by burying itself in the sand, the animal obtains a covering to protect its internal fluids. But this explanation does not meet the case of Rotifera heated in sand up to 200° Fahr. Surely hot sand at this temperature would be a poor protection for the natural juices of a soft-bodied Rotiferon. On taking some earth or sand containing dried-up Philodines, we shall see them dotted here and there, adhering to the earth's particles, and looking like little red, orange, or white balls. If one of them be picked out, and a drop of water placed on it, after a quarter of an hour or so, a part of the infolded foot will usually shoot out with a jerk, and the foot itself will then gradually lengthen joint by joint. Often, at this stage, the jaws will be seen to be at work, and the head will be driven out with its corona and wreaths still furled: at last these in their turn open, and the recovered animal begins to roam about, or to work for food. Now if, before we moisten the rotiferous earth, a bright light be thrown down on the ball-like Rotifera, it will be seen that each globe has a nearly smooth glittering surfuce, as if it were coated with a gelatine that filled up the hollows between the stout ridges which run from head to foot. This is the key to the puzzle; for Mr. Davis suggests that the Philodine survives the air pump, oven, and sum-baked gutter, by drawing-in its head and foot into a ball, and then secreting round itself a gelatinous coating which hardens in air and effectually preserves its internal fluids from evaporation. That the gelatinous coat does preserve these fluids Mr. Davis proved by crushing the little balls and finding them all moist wilhin.

But why can the creature do this when sand or moss is present, but fail to do it under much less severe trials in their absence? Here, too, Mr. Davis's explanation is complete. The water dries more slowly when there is sand or moss in it. ${ }^{1}$ The Philodines (who are gutter-lovers) are trained in being dried up under these conditions, They naturally creep to the litle heaps of sand \&e., where the water lingers longest, and, finding it going, contract themselves into a ball, pour out a viscid secretion over their bodies, and prepare for the worst. But all this takes time, and, on the clean glass slip, not only does the water evaporate too quiekly, but the animal is too restless in the unusual conditions in which it finds itself to attempt its ordinary defence, As I have often seen, they roam about, vainly seeking shelter, till it is too late; they are overtaken by the rapidity of the ovaporation, and dry up never to recover.

[^46]All the Rotifera seem to possess the power of secreting a viscous fluid, which they put to various uses. The Rhizota form their cases of it ; the Ploima and Scirtopoda draw it out in long threads from spots to which they have adhered, and thus moor themselves to external bodies; while the Bdelloida, by coating themselves all over with it, not only resist the extremities of heat and drought, but set at defiance Old Time himself.

Family III, PHHODINADE,

Corona a pair of circular lobes transversely placed; ciliary wreath a marginal continwous curve, bent on itself at the dorsal surface so as to encircle the corona twice, with the buccal orifice between its upper and lower curves, and having also two gaps, the one dorsal between its points of flexure, and the other ventral in the upper curve opposite to the buccal orifice; trophi ramate.

The genera of this family resemble each other so closely that it has often been suggested that they should be reduced to one. They differ from each other chiefly in the number and position of their eyes. One genus has them at the free end of the cylindrical frontal column which forms the anterior portion of the head; and within which, through a fold on its ventral side, the rotatory apparatus can be withdrawn. In another genus they are placed within the neck; while in a third they are entirely wanting. Now, strong objections have been made, by Dujardin and others, to Ehrenberg's use of coloured spots for the purposes of classification; mainly on the ground that it is not certain that they are really organs of sight: and it is true that, in many cases, there is little else to be seen in these so-called eyes but an irregular spot of pigment. On the other hand, some of the Rotifera have unmistakable eyes, consisting of a spherical lens seated on a sort of red, black, or purple cushion. Nerve-threads too, in some species, can be traced from the ganglion to the eyes; and by this means the general positions and appearance of coloured spots, that really are eyes, have been established. Moreover (as might have been expected), the undoubted eyes prove to be in these cases good generic characters. When, therefore, pigment spots are visible in positions that the undoubted eyes usually hold, it is reasomable to consider them to be organs of vision however humble, and to make use of them with other characters in elassification. In the genus Rotifer, nerve-threads may be seen passing from the ganglion to the eyes in the frontal column ; and in Rotifer vulgaris Dr. Otto Zacharias has observed "that each of the two carmine-red eye-spots is furnished with a crystalline body." Again, in the genus Philodina the position of the red spots with respect to the nervous ganglion is precisely that which is held by such unmistakeable eyes as those of Conochilus volvox. I have decided, therefore, to retain the old genera with only a few alterations.

Genus pHilodina, Ehrenberg.

GEN. CH. Eyes two, ocrvical.
The Rotifera comprised in the genus Philodina, though technically separated from the rest of the family by their having two eyes in the neek, can be generally recognized at a glance by their greater stoutness of build, by their larger heads, by their more powerful wreaths, and by their habit of so contracting the foot as to form an abrupt division from the trunk. The corona and ciliary wreath would closely resemble those of Limnias, were it not for the break in the latter just opposite to the buccal orifice, by which the upper wreath is converted into two segments of circles. The animal, too, holds itself differently from the Rhizota while it is feeding; for it slightly arches the dorsal surface so as to throw forward its dorsal antenna; while the Rhizota (with the exception of Cephalosiphon) reverse this, and arch the ventral surface so as to throw forward the two veatral antemm. A Philodina or Rotifer, whon croeping, shows no
external sign of corona : the animal tapers to a point in front as well as in rear. It attaches itself by the tip of its head, and then, releasing and shortening its telescopic foot, takes a fresh hold and arches its body like a leech or geometric caterpillar : it then releases the head in its turn, extends its body, and takes hold again. When it wishes to swim, or to feed, the front of the head is arched backwards; and, by the action of the transverse muscles diminishing the visceral cavity and so driving forward the body fluids, the infolded corona is forced out of a puckered slit on the ventral surface, just where the head joins the trunk. As the corona is pushed out, each disk begins to unfold, and its cilia to act; while at the same time the tapering forepart of the head, or column, is thrown backward, falling on the neek, between the lobes of the corona, much as the hood of a cloak fulls upon a lady's shoulders, when it has been dropped from her head. The trunk is frequently marked with longitudinal furrows, which make it difficult to observe the viscera; and in some species it is tinged with reddish yellow, or brown; while the extremities are usually free from colour. The penultimate joint of the telescopic foot, in every species but one, carries a pair of soft tupering processes, called spurs, which appear to be useful in giving the Rotiferon a firm hold. The method of attaching itself is this : the three soft toes, rendered sticky by a secretion that exudes from them, are first fastened to the object; then by the contraction of the longitudinal muscles the last joint is drawn over the tocs, and the penultimate joint over the last; till the penultimate touches all round the object to which the animal is attached, and the spurs also are brought into contact with it. By this means the Philodine is securely fastened so as to be able to resist the action of its ciliary wreaths, or to dart back without letting go.

There are a few points in the internal structure that call for notice. The mastax contains two stout rami, whose appearance is best described by Pl. C. III. fig. ti. They are crossed by two or three principal teeth, with sharp points projecting beyond the internal ridges of the rami, and by a multitude of minute ridges parallel to the teeth. There are also faint indications of the three chitinous loops, attached to each ramus, which are conspicuous in the malleo-ramate type.

The stomach, intestine and rectum (mulike those of Rhizota) are nearly in a straight line, and the cloacn is situated below the janction of the foot and trunk. The walls of the stomach are unusually thick and absorbent; and become tinged with coloured food almost immediately after it is eaten. The stomach, when empty, is reduced to a tube of narrow bore, whose end dilates into a globular intestine ; there appears to be a sphincter musclo separating the two.

Gastric glands, though small in size, are usually visible; and foot glands constantly.

The contractile vesicle can be readily seen symmetrically placed in front of the intestine, and though it is difficult to make out the lateral canals, it is generally easy to see some of the vibratile tags. A large triangular nervous ganglion lies in the neck, its apex pointing forward, and with a red eye on either side of the apex. The dorsal antenna ' is long, tubular, and setigerous; its terminal part can be withdrawn within the basal, in the same telescopic fashion as that in which the foot is shortened. No ventral antenne have been recorded.

The reproductive system has been but imperfectly made out. The ovary, with its contained germs, is distinctly visible on either side of the stomach, but no oviduct has as yet been detected.

When a germ becomes developed into an ovum, it is seen, as it grows, to be gradually separated by a constriction from the rest of the ovary, and at last appears to drop off into the body-cavity, in which the young is sometimes completely hatched.

Both the living young and the egg have been seen to issue from the cloaea, but it

[^47]is difficult to suggest how this is managed, as there appears to be no communication between the body-cavity and the cloaca. ${ }^{1}$

No male has as yet been observed among any of the Philodinada.

P. erythrophthalma, Ehrenberg.

Philodina crythrophthalma . . Ehrenberg, Die Infus. 1838, p. 499, Taf. Ixi. fig. 4. $" \quad "$: Pritchard, Infusoria, 1861, p. 705, pl, xxxviii. fig. 4.
[SP. CH. Body smooth with a thick bulging collar; corona ample with a broad shallow sulcus ; frontal column having no proboscis ; antenna decurved, three-jointed; eyes conspicuous rond-ovate; teeth two; foot stout gradual. Animal hyaline, colourless.

The characters assigned to this and the following species must not, I confess, be pressed with minute exactitude; nor are they all of equal value. Some of the species do not differ very obviously inter se. Still, I think, all are specifically distinct; and the cumulate character, which, with some thought and care, I have assigned to each, may aid the scient in discriminating forms too easily confounded.

This first species of the genus is one of the most difficult to be diagnosed with precision ; though it is of conspicuous size, and of so common oceurrence as to fall very early under the notice of the student. It was almost the first of the Rotifera ${ }^{2}$ which I essayed to describe and delineate, nearly seven-and-thirty years ago, from specimens obtained in the north suburbs of London.

The most readily observable feature is, that below the corona, itself of ample dimensions, there is a thiek prominent neek, bounded by sensible constrietions. Thus it seems inseparable from Professor Ehrenberg's P. collaris; and, indeed, I shrewdly suspect these to be but one and the same species, in different stages of growth. The gradual, instead of sudden, transition of the trunk into the stout foot, is another character easily noticed. The proboscis, which in this family is general at the tip of the frontal column, seems, here, wholly wanting; the truncate tip having only a slight transverse depression. But the point is peculiarly difficult of determination in this species.

The specific name, besides being repulsive from its uncouth aggregation of upronounceable consonants, is unsuitable, because undistinctive. The possession of red eyes is common, not only to all Philodince, but almost to all Rotifera.

Length, $\frac{1}{20}$ inch to $\frac{1}{60}$ inch. Habitat, weedy pools, widely distributed: common.P.H.G.]

[SP. CH. Body smooth, with no constriction nor swelling at the neck; corona moderate, with a deep square sulcus; antenna two-jointed, nearly horizontal; eyes small, oblong, oblique; teeth two ${ }^{3}$; foot stout, gradual. Translucent, ruddy in hue.P.H.G.]

No doubt it was this common and hardy species which Leuwenhoek discovered in

[^48]the form of little pink balls in the dried-up dirt of a house-gutter; and whose revivification he describes. It is very common in ponds, water-batts, and housetops; and will bear to be dried up and reanimated, again and again, without injury. It is, too, most prolific in situations that suit it; and these are sometimes odd enough. Lord S. G. Osborne, for instance, found that the dust of two stone vases in his grounds at Blandford was thick with the little pink spheres of P. roseola, and with the white ones of Adineta vaga (Callidina vaga, Davis); and he supplied his microscopic friends for years with this rotiferous dust.
[The body is sometimes of a delicate flesh tint, often deepening to full rich red in the cellular walls of the ample stomach, but fainter at the head and foot; it is evident that the tint does not depend on the nature of the Rotiferon's food, and it is quite as glowing in the hall-grown animal.

The corona is large, with a deeply cleft sinus, and the two wheels of the ciliary wreath are remarkably fine. The frontal colomn is large, cylindrical, truncate, and strongly ciliated. The proboscis has a soft decurved hook on its very front (fig. 4b), which is probably a tactile organ of great sensibility. I believe that I have seen it used for grasping the slender stems and filaments, laying hold of one between the hook and the face. In progress through clear water the creature often makes a perceptible snatch forward, as if it caught prey with the organ, though none was visible. Only in accurate profile, and full extension can this be seen. The broad head of the stomach embraces the base of the mastax ; and, when the animal is extended, this viscus is so stretched that the midale portions are drawn thin, while the ends are dilated. There is a short round distinct intsstine; and the cloaca is at the base of the first joint of the foot. Two earlike triangular gastric glands are visible, one on either side of the mastax ; and there is a small contractile vesiole which contracts about every thirteen seconds : but the colour of the body and its longitudinal folds interfere greatly with the sight of the internal organs. The eyes are of a beautiful pale red; but are invisible by reflected light. Under pressure eight transverse muscles have been distinctly seen, as shown in fig. 4d. -P.H.G.]

Length. When extended, about $\frac{1}{80}$; in a dricd condition they are globes of ${ }_{4} \frac{1}{0} 0$ to ${ }_{20}^{\frac{1}{0} 0}$ inch in diameter. Habitat. Ponds, water-butts, house-gutters : common.

P. cirnina, Ehrenbery.

 (PI. IX. fig 6.)
[SP. CH. Body smooth with a distinet constriction below the swelling disk, but no collar: corona wide, with a doep square sulcus; antenna nearly horizontal; eyes minute, oblong, oblique ; teeth two ; foot moderately slender, abrupt. Transparent, yellow.

There is great resemblance of form between this and the preceding; but the differences enumerated above, though mostly minute, help to distinguish it. The colour, however, is the main peculiarity. This is normally a rich clear yellow, like a topaz; yet specimens occur in which the hue is much paler and duller: and the extremities are always colourless. Under reflected light the creature is an object of great beauty. The citron hue becomes positive, and brilliant, separated abruptly from the hyaline extrem. ities; while the whole animal assumes a sparkling, glittering appearance, reflecting the rays of light from various points, as if it were carved out of a precious stone.

Though there is no turgid neek, as in P. erythrophthalina, there is a more marked constriction than in P. roseola, the hemisphere which carries the corona being more
ventricose, and marked more distinctly with oblique ridges. The period of the contractile vesicle is about sixteen seconds.

It is lively and sprightly. It breeds freely in captivity; in a phial it congregates at the very margin of the water; if they are numerous, a glance along the water line with a lens gives a pleasing sight; it reveals a whole array of the tiny creatures hanging headdownward, in the ridge of water produced by the attraction of cohesion, their amber-like bodies of various sizes, and their broad white crown-wheels all in full play. They do certainly appear to have the instinct of companionship, as Ehrenberg has observed of another species.

Length, $\frac{10}{100}$ inch to $\frac{1}{80}$ inch. Habitat. Widely scattered, but by no means common. Near London; Widcombe Pond, Bath; Tenby (P.H.G.).-P.H.G.]

P. megalotrocha, Ehrenberg.

(PI. IX. fig. 7.)
Philodina megalotrocha . . Ehrenberg, Die Infus. 1858, p. 501, Taf. Ixi. Fig. 10. ". \quad. . Pritehard, Infusoria, 1861, p. 705.
[SP. CH. Body smooth, with no constriction nor swelling at the neek; corona very wide, with no conspicuous sulcus; antenna three-jointed, unisetate, decurved; eyes large, roundish; teeth two; foot slender, abrupt. Hyaline.

The great width of the expanded corona, and the size of the frontal column and antenna, are very noticeable in this species; as also the plumpness of the body, and its sndden attenuation to form the foot, whence its appearance is somewhat like that of Rotifer maerurus. The spurs are small and the toes short, thick, and truncately conical. The mastax is set more transversely than usual, so as not to be made out in a longitudinal aspect. Two teeth cross each ramus. In certain lights there seem to be three; but a true adjustment with a power of 300 reveals the projecting points, and shows them to be distinctly two. There is a wide sub-cylindrical stomach with a tubular passage, followed by a short and somewhat transverse intestine. This latter discharges, through a narrow but distinct rectum, beneath the second telescopic joint of the foot. Traces of small globose gastric glands are seen beneath the mastax. A small contractile vesiole lies in front of the rectum. No other portion of the vascular system has been recorded. The ovary is large with many clear nuclei. The antenna appears to have only one torminal seta.

Length. About rór inch. Habitat. Ponds, ditches, \&e. : not uncommon.-P.H.G.]

[SP. CH. Body beset with spines, having no constriotion nor swelling at the neek; corona not so wide as the body; antenna two, long-jointed, mobile; eyes large, nearly round; teeth three; foot thick, gradual. Dark brown.

This species is easily recognised by the spines which have given it a name; but I cannot find these appendages nearly so numerous as in Ehrenberg's figures. ${ }^{1}$ Nor are they seattered irregularly over the body, but are arranged in rows on the dorsal aspect. The first row consists of three spines ; the next two rows have two each, and are placed

[^49]near together about the middle of the back, and the fourth has also two at the bottom of a strong constriction where the body begins to be attenuatod: this pair appears to terminate the body (fig. $5 b$) when contracted, the posterior segment being bent up and forward. The upright spines shown in Ehrenherg's figure I have represented in fig. 56 . They are situated one on each side, level with the second pair of dorsal spines. Under pressure, and when seen dorsally, the body assumed the appearance of fig. $5 d$; by which the relative positions of the spines is better shown. The frontal column is large and cylindrical, resembling that of R. macrurus; the tip, which is truncate, but furnished with a little protrusile proboscis, is ciliated, and capable of a rotating vibration. The wheels are large, and the sulcus at the chin is deep.

The antenna is large and prominent ; it is capable of being erected, of projecting horizontally, or of hanging downward. It consists of two joints, the first tapering to the articulation, which is telescopic, the second dilating to the tip, which is distinctly three-lobed. The deep yellowish umber hue of the body, and its close-set longitudinal furrows, effectually impede the discernment of the internal organs; but I could see that there is a capacions digestive canal, which attenuates near the fourth row of spines, and terminates in a cloaca at the end of the next segment. Near this point is a small contractile vesicle. A large oval transparent ovum was seen in the ventral region of the trunk. As it showed the jaws perfectly developed, I presume the species to be viviparous. This species very seldom expands its corona while stationary; it is impatient, restless, perpetually crawling, or pushing about its closed fore-parts in all directions, while attached by the foot. Generally the expansion of the corona is instantly followed by the detachment of the foot, nnd away the creature shoots head-foremost, and glides rapidly about the live-box until it is suddenly arrested by coming into contact with some object.-P.H.G.]

Length. When extended, about of inch. Habitat. Ponds near North London, (P.H.G.): rare.

P. tuberculata, Gosse, sp, nov.

[SP. OH. Scarcely distinguishable from P. aculeata, but the surface beset with rough tubercles, instead of spines. Body much Jluted longitudinally; antenna with a small three-lobed, club-shaped, terminal joint; eyes very small; teeth three, thick; spars long, slender, slighly sigmoid, acute. Dark brown.

A species in most particulars resembling P, aculeata, with like club-shaped antenva, much corrugated and plicated, and of a pronounced wood-brown hue, but having the recurved spines replaced by rough irregular tubereles, has occurred in water sent by Mr. Bolton, Birmingham, from Sutton Park. The sediment of this water, of rich golden brown hue, largely consisting of floccose frecal deposits, as I suppose, full of great Desmids and other algw, has proved usually rich in Rotifera. Among them, grubbing sluggishly, was this uncouth Philodina; the whole body clogged with sediment. For some time I supposed that it might be P. aouleata, the spines modified into tubercles; but I have found P. aculeata repeatedly since, with the spines clear and sharp, exactly as I had drawn them from life thirty-five years ago. And I have also since found numerous examples of this tubercled form, from other waters, in no respect differing from the first; so that I have no donbt of its being an undescribed species. It has very close resemblance to Rotifer tardus, except that the two eyes are not in the frontul column, but on the level of the mastax. It has also the manners of that species, slothful, wallowing in the gelatinous floccose, reluctant to move, but ready to rotate.

The frontal column, when extruded to the utmost, is tipped with vibratile cilia, amidst which a minute proboscis projects, which is double, consisting of two obtuse blade-like clear laminæ, side by side, and slightily divergent.

Length, $\frac{1}{5}$ inch. Habitat. Sutton Park, Birmingham (P.H.G.) : rare.-P.H.G.]

Genus rotifer, Schrank.

GEN. CH. Eyes two, within the frontal column.

At first sight it seems strange that so humble a form as that of Rotifor should have succeeded, not only in attracting universal attention, but also in giving its name to the whole class of animals to which it belongs. But there are good reasons for its having done so. The genus is most widely distributed; it has been found in almost every quarter of the globe: apparently, indeed, wherever it has been looked for. It haunts alike the damp moss on the Great Sidelhorn at a height of 8,000 feet, and the swamps and sea-weeds of the Finnish coast; and seems equally at home under the ice in moorpools on St. Gotthard, and in the irrigating ditches of the gardens at Cairo. It is, too, as prolific as it is common, and breeds in captivity as freely as when at liberty. Moreover, the genus Rotifer exhibits the wonder of ciliary rotation in its most effective form; for its wreath when in full action looks precisely like a pair of escapement-wheels of a watch, whirling round at great speed, the cogs looking "sometimes like the ancient battlements of a round tower ; at others ending in sharp points, and forming a kind of Gothic crown; now bent all the same way like so many hooks, and now with their ends clubbed like a number of little mallets." How a living creature could possess or nse such a contrivance was a hopeless riddle to the early observers; though even some of the earliest expressed the opinion that the appearance was an optical illusion.

But the marvels of the genus did not end here. It had been asserted by Leuwenhoek that the creatures might be dried up for months, and yet be restored to life again. This was enough to fire the dullest imagination ; and as also a brisk controversy sprang up abont the accuracy of this assertion, the charms of a dispute were added to those of a Rotifer, and it was no wonder that the genns secured all its honours; and, like the bramble, was raised by circumstances to a position which it little deserved.

The whole structure of the genus is so nearly that of Philodina, that it requires but little notice. The eyes are placed close together within the column, generally near the extremity, instead of in the neck, as in the case of Philodina. Nerye-threads have been traced to them and light-refracting bodies seen in them, in the case of Rotifer vulgaris, by Dr. Zacharias. The only portion of the internal organization that has not been satisfactorily made out is the reproductive system. Just as in Philodina, no oviduct has as yet been discovered; and no one has explained how it is that the living young pass from their apparently free position in the body-cavity into the cloaca, through which they have been seen to issue. ${ }^{\text {. }}$

The male, too, is equally unknown ; a strange fact, when one considers first that the structure of the female reproduclive organs, so far as it has been studied, is that of a typical Rotiferon; and secondly, that thousands of specimens of this genus must have been watched by many practised observers, during the century and a half which have elapsed since the animals were discovered.

[^50]

SP. CH. Body white, smooth, gradually tapering to the foot; spurs and dorsal an. tenna of moderate length; eyes round, small; teeth two. ${ }^{1}$

The nutritive system of this very common species differs in no way from that of Philodina. The walls of the stomach are thick and absorbent, and become tinged at once after the reception of coloured food. The foot gland and nucleated gastric glands are obvious, and the latter, according to Dr. O. Zacharias (loc. cit.), are three-lobed on the ventral surface, but confluent on the dorsal. The same observer gives the following aecount of the vascular system. The contractile vesicle opens into the dorsally placed cloaca, and a lateral canal with five vibratile tags can be traced, on each side, down to it from the head. * Each tag has the form of a cylindrical beaker seated by its tapering extremity on the excretory vessel. The beaker is open above, and a broad cilium inserted at its bottom projects a little beyond the aperture. . . Under a power of 1,500 diameters the oscillation of the cilia was so violent that the beakers surrounding them were kept in constant tremulous movement," Of the nervous system Dr. Zacharias says: "When examined from the dorsal surface, the anterior portion of the body shows a triangular ganglion placed immediately in front of the mastax. . . The anterior angle of the triangle emits two hardly visible branches towards the eye-spots." Dr. Zacharias thinks that nerve-thrends also pass to the extremity of the frontal column and to the antenna; the former of whicb bears two long tactile seter as well as a circlet of small cilia, and the latter a tuft of setio.

In the same interesting paper, from which I have so freely quoted, there is an account of an oval parasite, Trypanococcus rotiferorum, which Prof. von Stein discovered, and which Dr. 0. Zacharias was at first inclined to consider as a peculiar kind of ovum produced by germination from the inner surface of the cuticle. These parasites were attached to the body-wall at either end of the Rotifer. Each was an oval hyaline vesicle, at the free pole of which was a globular finely granulated structure capable of amoeboid movements. Where the parasite was attached was a small aperture in the body-wall; and near this, inside the parasite, a clear ciliated cavity. From this cavity an cesophagus is said by Prof, von Stein to go to the opening in the Rotifer's body-wall. Dr. O. Zacharias does not seem entirely satisfied that these egg-like structures were specimens of Trypanococcus rotiferorum, but as he found them in abundance it is to be hoped that before long the matter will be cleared up.

The male of R. vulgaris, as of every other species, is unknown.
Length. When extended, about $\frac{1}{80}$ inch. Habitat. Most widely distributed in fresh water: sea-water, Tay Estuary (P.H.G.) : very common.

[^51]
[SP. CH. Trunk dull brown, viscous, with foreign bodies attached, corrugated longitulinally and lransversely; extremities colourless; dorsal antenna swollen at the top, large; spurs long; eyes shaped like long drops, usually broken; teeth two.

This is a large sluggish Rotifer of clumsy build, fond of groping among flocense sediment, or of getting within the hollow bracts of a moss and of remaining suugly ensconced there for some time. It frequently appears contracted, the constrictions alternating with prominent swellings, like a sack tied in many places, while the body is fluted almost as regularly as an Ionic column ; and its whole surface is covered with a viscous secretion to which floccose matter, small Diatoms, \&c. attach themselves : sometimes a long stream of the mucus is dragged behind, with extraneous substances adhering. The colour appears to be wholly external, and to depend, in some degree, on the extraneous matters lodged in the viscous coating; for those portions that are constantly introverted are free from surface-colour, though the viscera have still a slight yellow tint. The corona is large and powerful, and the frontal column is cylindrical, truncate with a minnte proboscis at the tip, which does not seem sensibly hooked, or even lengthened, and which projeets between and over two small disks each carrying a wreath of vibrating cilia. Within the column, and at some distance from its tip, ure the eyes, ${ }^{1}$ which are usually long and drop-like in shape, and often broken ${ }^{2}$-one eye often more than the other. The body tapers gradually to the foot, the last joint of which ends in the usual three toes, of which the hindmost is the shortest; all these are curved and claw-like, but truncate. The penultimate spurs are much developed. The dark colour of the trunk, and its close-set corrugations, nearly destroy its transparency, so as to make it very difficult to demonstrate the viscera. By pressure, however, on one occasion, the intestinal canal was forced out, attached to the mastax, the ligaments of the anal extremity having given way; it appeared then as at fig. $1 d$; a slender tube, permeating a thick cellular mass, forming the stomach. The mastax has two distinctly separated teeth in each ramus. I cannot but think that R. citrinus and R. tardus of Ehronberg are one and the same species.

Length. When fully extended, up to $\frac{1}{\pi}$ inch. Habitat. Near London; Snaresbrook; Birmingham; Woolston ; Dundee (P.H.G.) : not uncommon. P.H.G.],

R. macroceros, Gosse.

> (PI. X. fig. 5.)

[SP. CH. Body hyaline with longitudinal folds; corona large; spurs short, stout; dorsal antenna very long and mobile; eyes small, round; teeth two.

This form, which I discovered in 1850, and deseribed in "Ann. Nat. Hist." September 1851, is indubitably a good distinct species. It has occurred repeatedly of late. The great length of the antenna, being not less than fully one-third of the whole
' If, as I suspect, the Rotifer which Dr. Leydig describes as Rotifer citrinus is really R. tardus, then ench of the eyes of the latter Rotifer (mecording lo Dr, Leydig) hus a erystalline light-refractiog body imbedded in the pigment.-P. H. G.
${ }^{2}$ Herr Eckstein (loc. cit. Taf, xxiii. fig. 12) bas notied a similar anomaly in Fotifer vulgaris, ana Threnberg lias zeen another case in R. macrurus (toc, cit. Taf. Ix. fig. 74).
animal when rotating, is very observable, as are also its stiffness, and yet great mobility, as well as its unusual number of joints. Nor are the actions of this organ less peculiar, for, in a manner of which I have met with no other example in the class, the animal, in the aet of protruding, jerks the antenna from side to side as if feeling with it, wags it about rapidly but not vibratingly, and often taps the water, as it were, with it. As soon as the wheels are quite expanded the antema becomes still. The organ is very slightly fusiform, quite transparent, and has either a tube or a band running throughout its middle, connected apparently with three very short bristles which project from the somewhat enlarged truncate extremity. Perhaps these are very sensitive, and the band may be a nervous thread which conveys impressions to the brain. Indeed, by careful focusing with a high power, the medial bristle (viewed dorsally) is seen to have a sensible diameter, and to be the continuation of the permeating band projected. Within tho first joint, about one-third from the base, the part exterior to it can be retracted. There is not the least bending at these joints; the wagging is solely from the base. Two small pale-crimson eyes are low down in the column, which is normal in form. An ovate body may sometimes be seen so large as almost wholly to occupy the greater moiety of the abdominal cavity, quite transparent and colourless, in the midst of which is a great mastax, not to be distinguished, even in dimensions, from that one which is proper to the animal, but motionless. ${ }^{\text {. This of course indicates an unborn young, and }}$ proves this species to be viviparous. Alongside of this embryo lies a large sae, doubtless the stomach, throughout which the action of vibratile cilia lining the interior is clearly visible. The foot, spurs, and toes are of the usual form. These lowest joints are usually shortened; the animal habitually sitting, when at rest as well as when rotating, in a squat position, so that they are almost, if not quite, concealed, the long antenna always projected. Generally, save when distended cither by digesting food or by an advanced embryo, the whole body is marked with lines, which are longitudinal folds of the skin, not greatly interfering with vision. The corona is unusually large and the wheels more than usually circular; the latter are separated dorsully by a wide sulcus, the lower edge of which is a straight horizontal line. The mallei are evidently two toothed.-P.H.G.]

Dr. Bartsch found this species in the Weilheimer pool, near Tübingen, in company with Floscularia and Melicerta, and pablished an account of it (loc. cit.) in 1870. He describes the great length of the antenna and the creature's curions actions, "stretching its long antenna far forward and moving it up and down as the water-wagtail does its tail"; and, under the impression that it was a new species, named it R. Motacilla. I have met with this species several times in the clear water of Abbot's pond near Clifton. It was always snugly ensconced in a floccose heap on a stem of alga, or in the axil of a water plant; and its presence was usually first betrayed by its long antemna, which could be seen waggling about some time before the animal itself appeared.

Dr. Bartsch in "Rot. Hungarise" (loc. cit.) figures the gastric glands, stomach, ovary, and contractile vesicle.

Length, $\frac{1}{100}$ inch (P.II.G.) Habitat. Near London; Woolston, near Birmingham; Stormont Loch (P.H.G.) ; Clifton (C.T.H.) : not common.

R. hapticus, Gosse, sp. nov.

(Pl. X. fig. 8.)
[SP. CH. Boảy clear, brown-stained, not strongly plicate, not enveloped in mucus ; antenna long, stout, motionless when extended; corona small.

I I believe that I have seen the distinction between the stomach and the intestine; and ntso noother great viscus, which must be the ovary. The cesophagus is wide and short, After sone houri, the mastax of the comhryo worked; but not rapidly, and only at intervals.-P.H.G.

This species I have met with on several occasions in the water from Woolston Pond, though it carnot be considered other than rare. It is one of the larger species, being equal to R. tardus in size, with which from its form and colour it may readily be confounded. The colour, however, is a clearer amber, and the comparative absence of the deep longitudinal folds of the skin gives to this species a bright translucency like that of stained glass. It readily expands its wheels, which are normal but small. The antenna, however, is of unusual dimensions both in thickness and length, equalling R. macroceros in this respect. The organ, however, does not wag to and fro, in the curious manner characteristic of that species ; nor does the animal squat down on ith binder parts, concealing its foot. The antenna is fusiform, and carries a distinct joint at its extremity, which is, I think, retractile; but not tipped with setee that I could perceive. The thick truncate frontal column bears, near its tip, two large, conspicnous dark-red eyes, showing the animal to be a true Rotifor. The specific name (from äлтомаи, to touch or test) alludes to the presumed function of the prominent antenna.

Length. About $\frac{1}{80}$ inch. Habitat. Woolston Pond (P.H.G.) : rare.-P.H.G.]

I. macnunus, Sohrank.

(Pl. X. fig. 4.)

[SP. CH. Body white, hyaline at the ends, plump, suddenty attenuated to a sleniler and very long foot; corona large; spurs small; frontal column long, cylindrical, truncate; dorsal antenna of moderate length; eyes usually small and round; teeth two.

This is a large and well-marked species, imposing and attractive. Its stont corona, large wheels, and plump body are much like those of a Philodina; it can be generally recognized by the sudden break in outline between the trunk and the foot, by the great length of the latter, and by the long stout column, which stands well up above the expanded wheels. The spurs are unusually short for so large a Rotifer, being of about the same length as the three toes. The foot consists apparently of eight joints, almost all of unusual length. There is a short, but bulging neck. The distinction between the stomach and intestine is often visible, and the rectum extends through (what appears to be) the whole basal joint of the foot. There are two oval gastric glands, as well as a pair of club-shaped glands in the foot. A small contractile vesiole can be readily seen, and so, with some little difficulty, can the lateral canals and vibratile tags. Dr. Leydig failed to make out these last, but both Dr, Bartsch (loc. cit. Tübingen) and myself have seen three tags on each side. The nervous ganglon has not been noticed. The shape of the eyes appears to be variable. Dr. Leydig says that he met with some specimens in which the pigment spots were hemispheres much out out in front, and in others wero lengthened out into a row of points lying behind one another. The former had light-refracting bodies seated on them, which the latter lacked. A pair of muscles, inserted into the neek, pass to the great constriction behind; another pair, inserted in the shoulders, pass down into the first joint of the foot ; and a third pair start from near the same point as these last, and pass to points where the first pair end. Each joint of the foot has at least two longitudinal muscles on each side, which pass into the joints above them. Under strong pressure the whole foot is seen to be crossed with transverse muscles of which at least twenty can be counted. High pressure shows numerous museles in the trunk also. These are in the form of broad bands alternating with spaces of equal width. I saw the birth of a young one twenty-four hours after it had (apparently) escaped from an oval membrane into the body-cavity. It passed head-first through the cloaca in a few seconds. It was
compressed during the passage, and the parent's cloaca was but little disturbed. This young one extended, before its birth, from the base of its parent's foot to the base of the column ; and, when born, was $\frac{1}{20}$ of an inch long, or about two thirds of its parent's length.

Length. When extended, about $\frac{1}{33}$ inch. Habitat. Widely distributed: common.P.H.G.]

Genus Actinurus, Ehrenberg.

[GEN. CH. The whole animal excessively long and slender; eyes two, frontal; teeth two, converging.

Technically, there is little but its extreme length and tenuity to distinguish this genus from Rotifer; the only difference that Ehrenberg gives (viz. the number of the toes) being founded on error, since all the Rotifers have three, and not, as he assigns to them, two. Yet he has done well to separate the present form. The diminution of thiokmess, and the great development of length, impart a peculiar facies, which at once precludes the possibility of mistaling it for any species of Rotifer, as soon as seen. Even in contraction the trunk is not sensibly thickened, never swelling in the middle as in the other genera of the family it does.-P.H.G.]

[SP. CH. Frontal column short, carrying the eyes near its base; corona small; trunk long, slender, cylindrical; foot protrusile to twice the length of the trunk; spurs small, two-jointed; toes very long, recurved.

From its excessive length and tenuity the appearance of the creature is very remarkable. It may be likened to a cylindrical tube out of which protrude a great number of draw tubes from both extremities, principally the posterior one. The head is peculiar, when viewed laterally; ovate in form, the frontal column very short, and the eyes being oval, dark and large, with the anterinal tube projecting obliquely backwards, it presents a ludicrously strong resemblance to the head of a rabbit. The rotatory organs are small and seldom unfolded ; the eyes of an intense red, almost black. The eight or nine joints which constitute the foot are of extreme slenderness, and its spurs consist each of two joints; the first club-shaped, the second very slender and acute. The three long, slender, cylindrical, diverging toes, are flexible, and commonly bent outward. Owing to the slenderness of the body the viscera are greatly elongated. The mastax is at a considerable distance from the corona, and is reached by a long buccal fumnel. Each ramus bears two inwardly-converging teeth. The digestive canal is apparently undivided, and originates directly from the mastax : with, I think, two small gastrio glands. I think I detected a contractile vesiole. The viscera, however, can be demonstrated with difficulty, partly owing to the strong longitudinal corrugations in the dorsal region of the trunk, and partly to the creature's incessant contractions and elongations. The ovary is obvious, and the appearance of the egge suggests that the animal is viviparous. This singular creature is lively in its motions; and it is a curious sight to see the immense length of foot suddenly thrust forth from the body, in which it had been completely hidden, the starting out of the horizontal processes, and the diverging of the long toes, as these are successively uncovered.

Length. Fully extended, $\frac{1}{22}$ inch : elosed, $\frac{1}{70}$ imch. Habitat. North London ; Leamington ; Caversham : rather rare (P.H.G.).-P.H.G.]

Genus calimidina, Ehrenberg.

GEN. CH. Eyes absent.

Although this genus differs technically in so slight a degree from those which we have considered, yet it can be generally recognized by its slender, pointed shape, its smaller size, and the abundant corrugations of its skin. Its internal organization, with the exception of the eyes, is so precisely that of Rotifer, that it requires no special description. One of the species (Mr. Gosse's C. bihamata) possesses a very obvious pair of those dorsal hooks which are so characteristic of the nearly related Melicertades, and which are to be found also in the still hambler and more closely connected genus Adincta.

[SP. CH. Body fusiform, abruptly enlarged centrally, strongly fluted, collared; frontal column thick, truncate, ciliate, with a decurved proboscis; jaws with no prominent teeth; foot thick; spurs moderate.

This species, the only one of the genus known to Ehrenberg, I find not uncommon in various waters: but it is only by careful observation that it can be distinguished from its congeners. The corona is scareely wider than the body, the double disk being very little more than a full circle, or two circles very slightly separated, when seen quite vertically. The column is short, unusually thick, with a minate acute proboscis overarching the dorsal edge of its tip. The antenna longer than width of corona, slender, subequal throughout, flexible, truncate, carrying (apparently) a short terminal brush of fine seta. Λ swelling collar above the antenna. The trunk, bounded above and below by a strong transverse fold, is abruptly swollen, impressed with strong longitudinal plaits, frequently visible as the animal turns. The foot is thick; the penultimate spurs middling; the three toes well developed. The outline is very yariable. The trunk is tinged with clear yellow-umber, which is abruptly defined at both ends; the extremities being colourless, and very hyaline when stretched in extension.

The trophi, when viewed quite dorsally, have much of the form seen in the Rhizota, as figured (for Limnias) in my mem. "On Mand. Org." fig. 71: the rami being long and pointed, and having a projecting handle-like knob. After keen scrutiny, I cannot discover any teeth crossing them, or anything to break the uniformity. I hence conclude that there are only the very close minute lineations, which Ehrenberg describes. A vanishing shadow of a curved line on each side may represent the mallei, but quite undefined. The restlessness of the animal precludes fine definition. It is most impatient, incessantly moving, not still for an instant. It rarely swims, but perpetually crawls by alternate elongation and shortening, in a course excessively devious.

Length, $\frac{1}{150}$ to $\frac{7}{5}$ inch. Habitat. Sutton Park Ditch; Woolston Pond: rather common (P.H.G.).-P.H.G.].

> C. Bidens, Gosse. (Pl. X. fig. 8.)

Callidina bidens Gosse, Ann. Nat. Hish. 2 Ser. vol. viii. 1851, p. 202.
[SP. CH. Surface closely corrugated; spurs minute, conical, pointed; teeth two.
I obtained this species at Messrs. Smith and Beck's in 1849, from a nearly putrescent infusion of hay, in which it was swarming almost to the exclusion of everything else. Its manners differ much from those of other Philodinade. It is, if I may use
the term, very wild, shooting about with swiftness in an impatient manner, with a peculiar mingling of swimming and creeping ; proceeding in this way all about the livebox by the hour together, so rapidly and irregularly that the motion of the stage can scarcely keep it in the field. It is much bolder than the other members of the family, keeping its wheels in rotation all the time it is attached; and though a sudden jar, or the impact of another animal, will cause it to close them, it is but for an instant. I have never seen it contract on alarm into a short round bulb; far less remain quiescent in such a condition for hours, as Rotifer and Philodina do. It is spiudle-shaped, the central region of the body always having an angular prominence; but this varies its situation, sometimes the npper part, sometimes the middle, sometimes the posterior of the abdomen, projecting, according to the position of the viscera at the moment; the creature thus assumes various candelabra-like forms, as shown in figs. $8,8 a$. The head, when extended, terminates in a thick rounded column which is ciliated; when the wheels are expanded, the column appears small, square, and truncate, fits in below the wheels, and does not project beyond their surface. The foot is moderate in length ; the spurs of the penultimate joint are very minute cones, and the last joint has one small stiff point behind, and two soft cylindrical protrusile lateral toes, truncate at their extremities. The whole surface of the body is covered with minute irregular and close-set corrugations. The buccal fumnel is very long, and the rami, which are very small, are each crossed with two teeth. A scarcely appreciable cesophagns leads to an enormous and very mobile stomach : in one specimen this organ appeared to be composed of a number of spherical cells; in others of a minutely granulated texture: it ends in a short rectum.

There are two corrugated glands in the foot, and a contractile vesicle (whose period is forty seconds) with the usual lateral canals. A long ovary with double rows of rudimentary ova occupies each side of the stomach, and two large eggs are commonly seen, of a bright pellucid appearance, but sometimes dark and granulate. The whole animal is crystalline, and usually colourless, but I have seen a specimen in which the wheels were of a delicate pale citron-colour, and another in which the intestine was of nearly the same cinnabar hue as in Philodina roseola, though not so brilliant. It is noteworthy, seeing that the creature is eyeless, that the specimens which I first possessed had been kept in the dark; expressly because "it was found speedily to die, if kept in the light." With the phial of water I obtained, I impregnated two vessels, one of which I placed in a window, the other in a dark corner. Five months elapsed, when, on examination, the species was abundant in the darkened phial: but in that in the window I could not find a single specimen.

Length. About $\frac{1}{4}$ inch. Habitat. Pools on Hampstead Heath ; lake in Kew Gardens (P.H.G.),-P.H.G.]
C. parabitica, Giglioli.

(Pl. X. fig. 9.)

Callidina parasitica
Giglioli, Quart. J. Mier. Sci. N. Ser. vol. iii. 1868, p. 237, pl. xi.

SP. CH. Spurs stout, conical, as long as width of the contracted joint; teeth two. Parasitio on the limbs of crustacea.

This species was discovered by Mr. H. Giglioli as an epizoic parasite on the thoracic and abdominal appendages of Gammarus pulex and Asellus vulgaris; and was figured and elaborately described by him loc. cit. According to Mr. Giglioli the body is very transparent and colourless, fasiform in shape, and without the angular prominence at its central region which is so distinet in C. bidens. The corona consists of two small circlets of short cilia, and is rarely expanded ; the animal usually contenting itself with crawling like a leech over its host. There is a distinct alimentary canal surrounded by
a yellowish-green cellular mass, a broad pyriform ciliated stomach, narrowing gradually to a bent intestine, and again widening into a broad and richly ciliated cloaca. No salivary or gastric glands have been seen. There is a large irregular contractile vesicle, with a period of about thirty seconds, and two very small lateral canals; the vibratile tags, however, have not been made out. The dorsal antenna is large, and divided into three lobes at its tip, but no setm were visible. No eyes have been seen either in the adult or young. I found several examples in June 1885, on the thoracic limbs of Gammarus pulex. To Mr, Giglioli's interesting details I have little to add. He says that out of 700 or 800 Gammari, he had not found one free from these Callidina. My experience is not quite confirmatory of this constancy. Out of four Gammari, I found Callidina on only one. They adhered to its limbs merely as other Bdelloids do to auy surface. The "suckers," mentioned by Mr. Giglioli, are no organs of special fanction, connected with parasitism, but are the three truncate toes common to the whole order.

My examples, four in number, crawled off their nurse presently, on the subjection of the latter to pressure in the live-box, and moved actively about in the free water; contructing, and elongating, and readily swimming. Their hue was a pale straw-yellow, becoming clear ochre-yellow in contraction, which deepened to umber in the middle of the alimentary canal, and in the maturing ovum : but of a glassy translucency. The pair of spurs at the bottom of the pennltimate joint of the telescopic foot, are stout, thick, long and pointed. It is difficult with creatures so extremely variable in outline to give any measurements which are not too vague to be distinetive: yet, as compared with these organs in C. bidens, I may say that in C. parasitica they are as long as the diameter of the penultimate joint itself, when thickened to its utmost by retraction; whereas in C. bidens their length does not equal half the width of the joint in the same condition. Their bases are separated by a horizontal space equal to their own breadth (fig. 9d). The joint itself is closely and minately flated.-P.H.G.].

Length. Up to $\frac{1}{\delta_{0}}$ inch. Habitat. Parasitic on Gammarus pulex and Asellus vulfaris (Mr. H. Giglioli ; P.H.G.).

C. minamata, Gosse, sp. nov.

(Pl. X. fig. 7.)

[SP. CH. Frontal column bearing two hooks, mutually crossed.

This species I found in the sediment of a phial of water that had been standing on my study table for more than a month, originally sent to me by Mr. H. Davis, dipped by him from a pool near Suaresbrook in June 1885.

It has not any obvious peculiarity to distinguish it from its congeners, except that the column is terminated by a pair of acute hooks, set on the same plane, and crossing each other transversely, like the blades of a pair of shears. These at first sight suggested the C. vaga of the friend to whose kindness I had been indebted for this stranger. A moment's observation showed that it was not that species, now elevated by Dr. Hudsou to the rank of a genus, Adineta. Yet the peculiar structure in question may well be considered as a marked approach to it. Minute hooks, terminating the column, are, indeed, common to all the species of the Bdelloiza, but usually soft, obtuse, decurved, and single. The whole trunk, somewhat swollen, is strongly scored with longitudinal folds of the skin ; a dozen or more in number. The double corona was readily expanded, and the animal glided freely and swiftly through the free water. It is small, as in Callidina generally: the column with its terminal hooks was projected (or rather not retracted) during the coronal rotation. The dorsal antenna is placed unusually far back (see fig. 7a) ; it is small, obtuse, oblique, connected with a dorsal tubercle; not seated on it, but, so to speak, leaning on its front slope. It is scarcely in advance of the mastax, when this is in its normal position. I did not see on it either cilia or scta.

Length. Estimated at about to inch. Habitat. Pool near Snaresbrook (P.H.G.).P.H.G.]

Family IV, ADINETADA.

Corona a flat, prone surface; ciliary wreath the furred ventral surface of the corona; trophi ramate; frontal column soldered to dorsal surface, and ending in two hooks.

The family Adinetada has been formed to receive one genus, which itself contains at present only one species. It has been separated from the Philodinade on account of its lacking the usual corona of two circlets, and of its having in lieu of it a mere furring of a flattened, ventrally placed, portion of the head, which in some degree resembles the face of the genus Proales. In other respects the organization is that of the Callivina, except that the frontal column, which is so striking a feature in the other Philodinada, and which is tossed aside like a hood when the coronal wheels are expanded, is here soldered as it were to the dorsal surface, and projects slightly beyond it, bearing two curved hooks.

Genus adineta, Hudson.

GEN, CH. Eyes absent.
A. vaga, Davis.
(Pl. X, fig. 10.)
Callidina vaga \quad Davis, Mon. Mier. J. vol. ix. 1878, p. 201, pl. xiv.

SP. CH. Body smooth, colourless, with longitudinal corrugations; spurs short, finely pointed; teeth two.

This species was discovered by Mr. H. Davis in 1867, along with abundant specimens of P. roseola, in a parcel of pink dust sent to him by the Rev. Lord S. G. Osborne, and found in some open stone vases in Lord Osborne's grounds at Blandford. These vases, at times, become partly filled with rain, and the wind drives into them dead leaves and other matters, which by their decomposition seem to afford suitable food.

The front of the head is somewhat like a thumb in outline, and on its dorsal surface is what appears to be the trace of a column soldered to the head, projecting slightly beyond it, and bearing two transverse hooks. The corona, though nothing but the flat ventral surface of the head, yet shows a sort of division into two parts, owing to the absence of cilia on a broad median line leading to the buccal funnel: the rest of the surface is densely furred with minute cilia. The base of the corona, just at the animal's neek, rises on either side above its general plane, and forms a well-marked ridge. Mr. Davis says that each ridge is strongly serrated, and draws them with teeth pointing forwards. I could see no such serrations, though the strong cilia, that here lead to the entrance of the buccal funnel, frequently produced a fleeting appearance of serration : but all my specimens were small and young, and possibly the serrations were not yot developed. The pathway (if it may be so termed), through the coronal cilia, leads straight to a long buccal funnel imbedded in a thick fleshy mass, and ending at the mustax, each ramus of which bears two main teeth and a multitude of fine parallel strix.! When Adineta is feeding, it curves the flat corona so as to bring its two furred Lalves opposite to each other, and at the same time draws together the transverse ridges at its base. In this way a ciliated semi-cylinder is formed as a prolongation of the buccal funnel, and minute atoms may be seen rapidly streaming down the tract clear of cilia, into the funnel's entrance. The stomachs of my specimens were all filled with clear yellowish particles, but of what substance I could not make out. I could see no salivary or gastric glands, but the foot-glands were conspicuous. The contractile

[^52]vesicle was also plainly visible: Mr. Davis says that its period is about twenty seconds in the young, and from two minutes to five minutes in the adult. By compression I obtained an musually distinct view of the lateral canals (fig. 10 b), which showed clear against the grey ground of the ovary. Mr. Davis has seen five vibratile tags on each side, but not the lateral canals; and I succeeded in finding two pairs of tags attached to the canals: one pair just below the transverse ridges of the corona's base, and another mid-way between this point and the contractile vesicle. There is a dorsal antema; but no eyes : the nervous ganglion has not been made out.
A. vaga may be recognised at once by its peculiar movements, which are unlike those of any other Rotiferon I am acquainted with, and are also extremely embarrassing to the observer. It fastens itself by its foot, extends its body to its full length, and then swiftly contracts itself. Nor is this all; for, instantly extending itself again, it alters its direction, as well as its distance from the surface to which it is attached. In this way it will work around its toes, as around a pivot, compelling the observer to make incessant alterations of the stage and focus. In fact very little is to be learned of its structure, while it is permitted to go free. When imprisoned in a very closely flattened drop of water, it is a little more manageable, for it censes then to dart backwards and forwards; but on the other hand it makes up for this by constantly gliding about at a very fair pace. It is quite incapable of swimming in the open, and may now and then be seen rolling ignominiously from the top of the glass cell to the bottom; but it glides with ease over the surfaces of stems, plants, or glass, by the reaction of those surfaces on the ciliated head. It is, if possible, a hardier creature even than Philodina roseola; for Lord Osborne tells me that he has repeatedly found that, in a mixed gathering of the two, A. vaya will survive successive dryings and moistenings which have proved fatal to all the former. ${ }^{1}$

Length. From $\frac{1}{30}$ to $\frac{1}{50}$ inch. Habitat. In some stone garden-vases at Blandford (Lord S. G. Osborne) ; in a mill-pond at Petit Bot, Guernsey (C.T.H.) ; frequently in dried gatherings of Philodina roseola.
' Mr. Davis's experiments (loc. cit.) show that this is not always the case.

CHAPTER VIII.

PLOIMA

(IL-LORICATA).

Curiosum nobis ingenium Natura dedit, et artis sibi ac pulchritudinis suæ conscia spectatores nos tantis rerum spectaculis genuit; perditura fructum sui, si tam magna, tam clara, tam subtiliter ducta, tam nitida, et non uno genere formata solitudini ostenderet.-Seneca.

For Beauty, Good, and Knowledge are three sisters That doat upon each other, friends to man,
Living together under the same roof,
And never can be sundered without tears.
Tennyson.

CHAPTER VIII.

Order III. PLOIMA.

Swimming with their ciliary wreath, and (in some cases) creeping with their toes.
It has been already seen ${ }^{1}$ that our typical Rotiferon was drawn from the ranks of the PLOTMA; and rightly so, for the number of its genera, the abundance of its species, the restless energy, perfection of structure, and superior intelligence of its members, clearly entitle the third order to be considered the typical one. It is true that Pedalion makes a still nearer approach to the Arthropoda in its structure than does any species of the PLOIMA, and must be ranked above them in the scale of the animal kingdom; but it is almost (if not quite) the only representative of its order, and therefore unfitted to be taken as a type of the class.

In the Free-Swimmers the mastax reaches its highest development, and is often used like the mandibles of an insect. Mr. Gosse and I, as well as other observers, have seen these active creatures seize their prey with their jaws, and watched them nibbling the floccose sediment on the stems of wuter-plants, or slitting up the cells of algæ and the skins of infusoria in order to extract their contents. Indeed, the snapping of the protruded jaws among some of the Notommatada is so vigorous that it is difficult to see it and not to fancy that we hear the snap; and on one occasion, even, the fierce atom has been seen to give itself a fatal lock-jaw by its outrageous snatch.

In this order, too, as might have been expected from their habits, the nervous system is conspicuous, the ganglion being large, and the nervous threads from it to the various organs of sense more easily traced than in the first and second orders. The eyes, too, have often obvious lenses, and the tactile organs are numerous and well-developed. The vascular system, whose probable respiratory functions must be of the utmost importance to these restless animals, is unusually well developed. It spreads a network of coiling tubes close under the euticle, and not unfrequently ends in a contractile vesicle so large as to fill, when distended, an important portion of the body-cavity.

In fact, the whole structure of the order shows its members to be well equipped for the energetic life which observation proves them to pursue. They haunt the algee on pond walls, coast along the water-line among decayed leaves and floating débris, dive down to the bottom to explore the muddy sediment, or boldly put off from shore, and sail out even into the middle of such a lake as that of Zurich. No doubt the marvellous coronæ of the Rhisota and Bdelloida will always contmue to attract the expert and amateur alike; but to obtain an adequate notion of the structure of the Rotifera, and of what may fairly be termed their mental capacities, the inquirer must turn to the study of the PLOIMA.

Sub-Order In-Loricata.

Integument flexible, not stiffened to an inclosing shell; foot, when present, almost invariably furcate, but not transversely wrinkled; rarely more than feebly telescopic, and partially retractile.

[^53]
Family V. MICROCODIDE.

Corona oblique'ly transverse, flat, circular ; buecal orifice central; ciliary wreath a marginal continuous curve enoiroling the corona, and thoo curves of larger cilia, one on cach side of the buccal orifice; trophi forcipate; foot stylate.

Genus microcodon, Ehrenberg.

GEN. CH. Eye single, centrally placed, just below the corina.

M. clavus, Ehrenberg.
(PI. XI. fig. 1.)
Microcodon clavus . . Ehrenberg, Die Infus, 1838, p. 395, Taf, xliv, fig. I.
" $"+$ Pritchard, Infusoria, 1861, p. 665, pl, xxxii, figs. 371-9.
" ". . Grenacher, She ל, u. Koll. Zoits. Bd. xix. 1869, p. 487, Taf, xxxyii. fig. 2.

This curious Rotiferon, for which, though the only species of the genus, it has been found necessary to make a new family, was discovered by Ehrenberg in 1880. It has simee been described by Dr. Max Perty and Dr. H. Grenacher (loc. cit.), and has been found in England several times by Dr. Collins, at Sandhurst, and lately by Miss Davies, at Woolstan. It has, however, escaped the notice of the majority of observers during the last fifty years, in some measure no doubt owing to its small size ; for though its whole length is $\frac{1}{12 \delta}$ inch, more than one-half of this is taken up by a long narrow foot, so that the actual body of the animal does not much exceed $\frac{1}{3}$ inch. Ehrenberg placed it in his family Megalotrochoa; but neither in its ciliary wreath, its trophi, nor its foot, does it resemble the Rhizota. The corona is a flat circular disk, set obliquely on the trunk, and with its dorsal edge pointing forwards. ${ }^{1}$ A complete ring of minute cilia edges the disk, and these perform the office of driving the food to the buccal funnel. The entrance to this latter is near the centre of the corona, a little towards the ventral surface. It lies between two curves of large unequal cilia, of such lengths and so arranged that they form on each side an oval border to the buccal orifice. Usually these large cilia are at rest; and Microcodon, under the action of the smaller cilia, either glides along swiftly or oscillates gently to and fro over the same spot, as if it were moored by a thread from its single toe. It is possible that this curious hovering over one place may be due to the mutually opposing action of the minute cilia of the two halves of the corona, but it always gave me the impression that the animal was at these times moored by a viscous thread to some spot on the glass. Every now and then, whether gliding along or hovering, the creature darts suddenly forward with the utmost swiftness, accomplishing this by vigorous strokes from the two rows of larger cilia. It would seem that it has unusual control over this apparatus, for Dr. Grenacher has seen, in an injured specimen, these inner cilia lifted and depressed one by one; and has traced to them what he supposes to be nerve-threads arising from the depth of the corona. A further peeuliarity noticed by this observer is that the corona remains expanded, no matter how the animal be treated.

The trophi (fig. 1c) consist mainly of two ribbed rami, attached to a long narrow plate (the folcrum), which is seen edgewise in the figure. I think, too, that I detected delicate pointed unci on each side of the incus. The whole are included in a long conical mastax, closely resembling that of Polyarthra, and pointing downwards towards the

[^54]ventral surface. Dr. Grenacher says that there is no separation between the stomach and intustine, bat this Mr. Gosse has distinctly seen. The latler says: " When I first detected the animal, the intestine occupying the gibbous swelling of the hind abdomen was clear, save for a considerable well-defined mass of orange-red; but, on resuming my observations on it an hour or so later, the intestine was not distinguishable from the stomach, the whole being of a deep rich sienna-brown, with oil-globules of varions sizes seattered throughout it." The ovary appears to be divided into two distinct portions, and a clear reddish spot, somewhat like an oil-globule, but of unknown function, lies between the stomach and ovary. A contractile vesicle is conspicuous above the foot, and Dr. Grenacher notices lis having seen indistinctly the lateral canals, but not any vibratile tags. There are two spherical gastric glands, and just above these, at the head of the mastax, is a round nervous ganglion, on which is seated a splendid eye. It is a purple ball, resting on purple plates curving round the ganglion, so as to give the whole a curious likeness to a jockey's cap (fig. 1b). 'Two of these stripes appeared to have been displaced in my specimen, but I cannot tell if this was an accident or if their position is normal. I could only make out these details by flooding the animal with transmitted light. There are a dorsal and two lateral antenne, all mere setigerous warts ; and the foot bears just above the toe on the dorsal side three bristles, which Dr. Grenacher says are erectile. The same observer has noticed that the longitudinal museles which move the foot, and are continued down into it from the body, are all striated. The foot is divided into three joints, of which the first and last are small, and it ends in a single toe. It is freely moved from one side to the other, round its basal joint, and is sometimes laid flat to the ventral surface.

The Male.-[A female had been playing in my live-box within an area formed by bounding filaments of Myriophyltum. Presently I saw a slender worm, about as long as this charming subject itself, of almost aerial transparency, very slender, darting about the same limited area. It was a nearly perfect cylinder, but gradually tapering to an acute extremity, which may possibly have been a minute conical toe. The front, slightly bent downward, was transversely truncate; its circular margin carrying a wrouth of locomotive eilia, by whose vibrations it shot vigorously and rapidly about. The whole body was refractive of light, but one vesicle, situate about two-thirds from the front was more intensely refractive. This I suspect to have been the sperm-sac. I could detect no other organ or viscus in the animal, but the entire length and breadth was full of minute granules. My grounds for suggesting that this was the male Microcodon are but inferential. First, the motions were exactly imitative of those which I had just been watching in the female-swift glidings hither and thither, occasionally varied with moments of sudden pausing, and again with still more sudden and invisibly rapid starts and springs to a distance. Secondly, its appearance at the same time, in the same dip, and in the same limited area with the female, which itself is a rarely occurring species with me: and thirdly, the apparent attentions which the supposed male paid to the female, every now and then coming close to her in his devious travels, though only to shoot by her. The area was quite open at one end; yet for a long time, and not till after many sailings to and fro, did he assert his freedom, when she presently followed.P.H.G.]

Length. From $\frac{1}{12 s}$ to $\frac{1}{180}$ inch, of which the foot is more than half. Habitat. Sandhurst (Dr, Collins, P.H.G.) ; Woolston Pond, Hants (Miss Davies, P.H.G.).

Family VI. ASPLANCHNADE.

Corona sub-conical, with one or two apices; ciliary wreath single, edging the corona; intestine and cloaca alisent.

The Asplanchnade, though singularly beantiful Rotifera, are yet of a low type of strueture, for their stomach is a blind sac, and they reject all freal matter through
the mouth. The family contains the genera Asplanchna and Sacculus, which, while separated from all other Rotifera by the absence of intestine and cloaca, differ also from each other in several important points. The incudate trophi of Asplanchna are massive forceps quite free from an inclosing mastax, and capable in consequence of even plung. ing down into the cesophagus; but the forcipate trophi of Sacculus are feeble hooks and blades, inclosed in a grape-shaped mastax, and admitting of only a slight protrusion from the mouth. The stomachs also of the two genera are widely different: that of Asplanchna, a spheroidal bag of moderate dimensions; that of Sacculus, a large sac with six great ereal appendages nearly filling op the whole of the body-cavity; and, further, Sacculus carries its eggs attached by a thread to a hollow of the posterior surface, while Asplanchna produces its young alive.

Gemus asplanchna, Gosse.
GEN. CH. Corona with two apices; trophi incudate, not inclosed within a mastax; stomach of moderate size, spheroidal. Viviparous.

The various species of this genus differ from each other mainly in the presence or absence of the foot, in the shape of the trophi, in the number and colour of the eyes, in the size and arrangement of the vascular system, and in the external shape and appendages of the male.

It was in this genus that the first male Rotiferon was discovered; and. indeed, the great size and transparency of the female, and its habit of producing its young alive, give unusual facilities for the study of the males. Many of the Rotifera deposit their egrs here and there on the stems and leaves of algo \&c., so that it is impossible to identify the males when hatehed; but in the genus Asplanchna the male may be readily seen alive in its mother's ovary. It is a creature of the greatest delicacy, like a bubble of the clearest glass; and yot the various species can be easily distinguished by the differences of figure. In one the mate is a mere reproduction of its parent on a reduced scale; in another it bears two slecte-like processes on its sides; in a third, four such processes ; while one has its veutral surface prolonged into a sheafh for the penis.

A. Ebbesbornit, Hridson.
(Pl. XI. fig. 8.)
Hudson, J. Noy. Mior. Soc. 2 Ser. vol, iii. 1883, p, 621, pls. ix. x.

Asplanchina Ebbesbornii.
Female with one dorsal, one ventral, and two lateral humps; eye single; rami with singly pointed ends, not sorrated; contractile vesicle expanding to more than half the body-cavity; vibratile tags often forty on each side, and arranged in straight lines; ovary horseshoe-shaped; male with two additional, lateral, humps, below the neek.

This fine and rare Rotiferon was discovered by Mrs. Tupper Carey in 1880, in a duck-pond in the vicarage of Ebbesborne Wake; and, strange to say, this, at present, is its only known habitat. It differs from all other species of the genus in its outline, which is not bell-shaped, and in its possession of four sleeve-like prolongations of the cuticle; one on the dorsal surface, one at the hind end of the ventral, and one on each side of the body below the head. All these appendages are empty of organs, and somewhat flaceid when the animal is swimming quietly; but, when it draws in its head, they are driven out stiffly from the general surface. Fine muscular threads tie their extremities to various parts of the body, and serve to shorten the processes when the head is again protruded : the two side appendages have their tips connected by a fibre passing straight through the body from the one to the other. The head is conical with two apices; and in the hollow between them, a little towards the ventral surface, lies the buccal orifice, with two small style-bearing prominences on either side of it. The ciliary wreath is a simple ring of cilia surrounding the coronal cone, and bent down
inwards at the ventral surface, to the buccal orifice. This latter opens directly on the jaws, which are two stout hooked rami with their fulcrum plate imbedded in a horsc-shoe-shaped cushion : doubtless, as Mr. Gosse suggests, the third lobe of the mastax: there are no other lobes, so the jaws are practically free. The muscular bands which open and shat these formidable nippers are shown in fig. 3 e, and can be seen with ease. Immediately below the horseshoe-shaped ring, and partly embraced by it, is a chamber or pharynx formed by a delicate membrane strained over four curved rods, which hang downwards, and are joined together at the bottom by cross pieces. This curions contrivance resembles somewhat in shape the silk well of a lady's work-table. By suddenly pulling the four rods apart at the top, the animal causes a partial vacuum, and any prey near the buccal orifice is instantly engulfed. I have seen this happen often, even to Rotifera of considerable size ; for A. Ebbesbornii, like all the Asplanchnce, is an indiscriminate feeder, and will swallow even such awhward monthfuls as Triurthra longiseta and Brachionus Bakeri; the latter of which 1 have seen with its posterior spines actually piercing the stomach and body walls of the Asplanchua, while the former I saw lieaddownwards in the eesophagus, with its long propellers stretching right up almost to the buccal orifice. From the pharynx, on its ventral side, stretches a very long transparent and extensile œesophagus, down which run ribbon-like muscular threads. Not unfrequently it is loaded with food, so that the creature seems then to have a stomach of twice the usual size. The gastric glands (figs. 3c, 3d) have ench a large duct leading to the stomach, and the cells imbedded in them lie together in clusters of four and five. The spherical stomach has thick cellular walls with a clear round nuclens in each cell; it is often divided for a time into two unequal portions by a deep muscular constriction, as in fig. 8a. There is not a trace of intestine or closea: the lind end of the stomach is merely attached to the body by two fine thrends. The fiecal matter is rejected through the mouth; it is slowly driven up by successive contractions of the stomach and cesophagus, till it reaches the pharynx, where it is grasped by the jaws and tossed out through the buceal orifice. There is a rectangular nervous ganglion just under the corona, touching the buccal orifice on its dorsal side, und currying a crimson eye. A nerve-thread passes from cach of the four corners to one of the antenur. Two of these latter are on the dersal side of the body about half-way down, and two others are on the coronal apices. There is yet another pair on the corona just above thio buccal orifice, and to these branch nerves are sent from those of the second pair. The ovary is horseshoe-shaped, flattened at the ends, and studded with germs which are often clusters of cells (fig. 3 h). The ova are always developed at the hind-surface of the middle of the ovary : and, when they attain some size, they drop off into the ovisac, a funnel-shaped pocket with its broad base attached to the contractile vesicle. The ovisac ends in an oviduct, which opens on the ventral surface in a transverse slit. Occasionally I have met with specimens that had as many as three or four ephippial eggs in the ovisac at once; but generally there is only one maturing ovou, or a young animal lying across the parent with its head presented to the opening of the oviduct. The birth of the young is almost instantaneous; and I have seen it expelled with such force that its stomach was driven right through its mouth, so that it was boru with its ciliary wreath half-way down its body. The ephippial eggs 1 are circular, corrugated, and often tinged yellow ; as is sometimes the ovary itself.

The male (fig. $8 i$) is rather more than half the size of the female, and bears two small additional appendages below the neck. As usual, the entire digestive tract is absent. There are, however, some rounded masses adhering to the dorsal surface, just below the hump. Possibly these may be a kind of stored-up material to compensate for the male's inability to take nourishment.

The sperm-sac with its enclosed spermatozoa, and the penis, are shown in fig. 3j. The penis is a tube with delicate longitudinal furrows sheathed in soft granular masses,

[^55]and having a ciliated opening. It can be drawn back by two pairs of muscles attached to the dorsal surface. Short muscular threads help to draw and direct it forward; but its vigorous outward movement is mainly due to the compression of the body-fluids by transverse muscles. The spermatozoa can be distinctly seen in motion in the sperm-sac, and they are of the two forms drawn in fig. $8 k$. The vascular system (fig. $3 f$) is alike in both sexes, but is much better seen in the male. The floceulent ribbons which support the lateral canals are unusually large and long, and are looped up here and there by threads, and also tied in the same way to the body-walls. They appear, themselves, to be tubes of a loose granular staff, with clear cells (fig. $9 g$) imbedded in their walls. Possibly it is through these cells that the perivisceral fluid finds its way into the tubes and thence into the lateral canals. These latter are much smaller tubes, connected with the first, but meandering along their edge; and they have attached to them an amazing number of vibratile tags; often more than forty on either side. The contractile vesicle, to which the flocculent ribbons and lateral cauals are obviously attached, swells out in the female, at times, so as to occupy nearly two-thirds of the body. In the male it is smaller, but in both sexes it is covered with a fine muscular network, which is conslantly compressing it into ever-varying and graceful shapes. The muscular system is hest seen in the male, owing to the absence of digestive organs, but is so plainly shown in the drawings that it requires no further explanation.

Length. Nearly $\frac{1}{20}$ inch. Habitat. Ebbesborne Wake, Wiltshire (Mrs. Tupper Carey): very rare.

A. Beightwnlli, Gosse.
 (Pl. XII. fig. 1.)

SP. CH. Female without humps; eye single; rami with doubly pointed ends, not servated; contractile vesicle expanding to about one-fourth of body-cavity; vibratile tags on each side varying from about ten to twenty, and arranged in a straight line; ovary horseshoe-shaped; male without humps.

Mr. Brightwell discovered this species in a small pond immediately without the city of Norwich in 1841. Both sexes were in abundance, so that he was able not only to make out the structure of the male, but also to witness several acts of copulation; thus, for the first time, establishing beyond all question the diocious character of at least one species of the Rotifera. The female differs from that of A. Ebbesbornii in the following points. It is bell-shaped, possessing none of those humps which are so striking a feature in the former species. The jaws (fig. $1 b$) differ slightly in their proportions and shape, and Mr. Dalrymple (loc. cit.) detected on either side of the stout rami delicate curved rods, which no doubt are the unci. The gastric glands are kidney-shaped, the contractile vesicle somewhat smaller. The ephippial egg of this species is also circular, but it has on its outer covering a beautiful pattern of concentric circles of overlapping scales. The male (fig. $1 c$) is also humpless, but it is a little squarer in outline behind than the female, from the ventral surface having been produced into a sheath for the penis. ${ }^{1}$

Length. Female, ${ }_{2}^{\frac{1}{7}}$ inch; male, $\frac{1}{58}$ inch. Habitat. Ponds and ditches in many parts of England: not uncommon.
${ }^{1}$ In 1874 I found an Asplanchna apparently not distinguishable from A. Brightwellii, and whose male (Mon. Mier. J. pl. xci.) had only two lateral humps. Mr. T. Bolton has Lutely found both sexes near Birminghnm. I have named it provisionally A, internedia.

A. priodonta, Gosse.

(Pl. XII. Big. 2.)
Asple.nchna priodonta ․ . Gosse, Ann. Nat. Hist, 2 Ser. vol, vi. 1850, p. 18, pls. i. it.
SP. CH. Female without humps; eyes three; rami broadening to the free onds, their inner edges serrated; contractile vesicle about equal to the two gastric glands together; vibratile tags four on each side, attached to a singlo coil of tubes; ovary roundish; male without humps.

Mr. Dalrymple's exhanstive memoir on A. Brightwellii was followed soon afterwards by a similar paper of Mr. Gosse's on his new species, A. priodonta, in which its struetura is described with the greatest minuteness and care. A. priodonta was discovered by Mr. Gosse in the Serpentine, in Hyde Park, in 1850. It is much smaller than A. Brighlwellii, its outline more oval, its head more conical. The jaws are broader: and instead of a projecting tooth on the inner side, they have this edge minutely serrated, with the tip forming two curved long leeth (figs. 2f, 2f). Each carries a spine proceeding from its back and curving round nearly parallel to its extremity. The gastric glands are situated on the cesophagus itself, a little above the stomach, not on it. But the chief differences lie in the vascular and reproductive systems. The contractile vesiele, when full, is globular and small, being scarcely, if at all, bigger than the two gastric glands together. The flocculent ribbons that support the lateral canals have their middle parts wrinkled into a large coil of four or five pairs of doublings, and on this coil are placed four vibratile tags; so that there are only eight tags in all. The ovary is roundish and very small ; it is shown in fig. $2 a$ with its germs, and the ovisac wrinkled up close to it. In fig. 2 it is belind and above the ovisac, which contains a developing ovum with salmon-coloured oil-globules in it. There are three crimson eyes (fig. 2b), one under the centre of the corona and one ou each side of it ; each resting on a nervous ganglion.

The male (fig. 2c) differs hardly at all in its internal structure from that of A. Ebbesbornii, though very different in shape. Its sperm-sac is supported by a strip of tissue that hangs from the head, and resembles in sbape and position the alimentary canal of the female. It is, however, imperforate and structureless, and seems to have no other offico than to support the sperm-sac and penis. The nervous ganglion (fig. $2 d$) is unusually conspionous. Two of its four diverging threads pass downwards to the dorsolateral rocket-headed antennse (figs. $2 c, 2 c$), and two pass upwards to similar antennm on the two apices of the corona.

By slightly compressing a male, I put beyond question the fact that the contractile vesicle empties itself outward through the cloaca; for under slight pressure the vesicle contracted slowly, by stages as it were, collapsing partially in separate efforts instead of elosiug ut once. As it did so, I distinctly saw, ti each effort, the gradual passage of a plug of fluid down the eloaca, dilating its walls as it went.

Length. Female, $\frac{1}{48}$ inch; male, $\frac{1}{75}$ inch. Habitat. Kensington Gardens, Serpentine (P.H.G.) ; ponds and ditches round Clifton and Birmingham (C.I.H.; T.B.) : not uncommon.

[^56]Genus sacculus, Gosse.
GEN, CH. Corona with one apex; trophi inclosed in a mastax, virgate, with unequal mallei, very evanescent; alimentary canal very large, having cight caca; eggs attached after deposition.

S. vibidis, Gosse. (P1. X1. fig. 2.)

Sacculus viridis
Ascomorpha helvetica
Ascommpha germanicu (?)
Sacculus viridis
Ascomorpha saltans (?)

Gosse, Ann, Nat, Hist. 2 Ser. vol, viii. 1851, p. 198. Perty, Zur Kenntniss Kloinst. Lebensf. 1852, p. 39. Leydig, Veb. d. Bau, d. Raderth. 1854, p. 44, Taf. iii. fig. 34. Gosse, Phit, Trans. 1857, p. 320, pl. xv. figs. 24-26.
. Bartsch, Rot. Hungaria, 1877, appendix, Táb. ii. fig. 17.
This beautiful " little green sac " was first discovered by Mr. Gosse, in the summer of 1850 , in a small pool on Hampstead Heath, and was described by him in the "Annals of Natural History " in 1851. It haunts the bottoms of small pools on heaths and in plantations, and I have occasionally found it roaming over the vegetable sediment at the shallow ends of cattle-ponds. It is not a common creature, and it is an extromely difficult one to study, for its skin is thick and rough, and its huge stomach hides almost all the other organs.

The ciliary wreath is a simple ring of cilia with three or four large styles set in it at intervals. Just below the wreath, on the dorsal side, is a comparatively clear space of external surface (figs. 2, 2b), which is shagreened, as it were, with diamond-shaped clusters of granules. Through this can be seen the nervous ganglion, bearing a crimson eye, and (I think) the front portions of two spherical gastric glands. The ovoid mastax can be readily seen in the side view; it contains delicate triangular rami on a long slender fulerum and two rod-like mallei, which Mr. Gosse thinks are of mequal length. The shape of the stomach is very unusual. Seen dorsally it appears to consist of two cylindrical sacs, one on each side, tapering in front, curved towards each other behind, and connected by a broad cross sac, so as to have a rude resemblance to a letter H . A lateral view shows four short, equal sacs hanging down from the long side sacs; two on each. The whole of this strange stomach is stuffed full of beautiful green oval bodies, which are probnbly the zoospores of alga. At each of the four junctions of the short sacs with the long ones there is a dark-brown spot, which seems to consist of decomposing food. No observer has seen any fweal discharge, or detected a cloaca; and although I made several specimens fast for some hours in clear water I failed to obtain one with a comparatively empty stomach. The ovary lies between the four short cecal prolongations of the stomach, and the contractile vesicle lies deep down below the comnecting cross sac. The animal carries its eggs attached to its lind extremity; bearing sometimes one or two female eggs, or occasionally a whole cluster of small male eggs.
[From one of the eggs, which, before maturity, are much clouded and spotted with granules and globules, a young one was produced in my live-box, which was, I doubt not, a male (fig. 2c). I could not detect any eye (though this organ is conspicuous in the parent) nor any internal organisation; nothing but a confased assemblage of granules and globules; even the ordinary opaque masses were not present. The form somewhat resembled that of an amphora with a short wide neck; the frontal cilia were very large, but the motion was not rapid, nor was the animal wild, as male Rotifera usually are.P.H.G. ("Phil. Trans." loc, cit.).]

Length. Female, $\frac{1}{150}$ inch ; male, ${ }_{2} \frac{1}{v}$ inch. Habitat. Hampstead Heath (P.H.G.) ; Clifton (C.T.H.).

Family VII. SYNOHモTADÆ.
Corona a transverse spheroidal segment, sometimes much flatlened, with styligerous prominences; ciliary wreath a single interrupted or continuous marginal curve, encircling the corona; mastax very large, pear-shaped; trophi forcipate; foot minute, furcate.

Genus syncheta.

GEN. CH. Form usually that of a long cone whose apex is the foot; front furnished with two ciliated auricles; ciliary wreath of interrupted curves; foot minute, furcate.

Though this genus consists of only a few species yet it is alike interesting in its structure and its habits. The various species differ from each other chiefly in the shape of the body and of the coronal head, as well as in the number and position of the tactile organs. There is, too, at least one species which is marine, and which has been said by its presence to render sea-water luminous.

In all the species the striking characters are the swift and varied motions, the ciliated auricles, the huge mastax, and the long delicate cesophagus closely resembling that of Asplanchna.

> S. pectinata, Ehrenberg.
> (PI, XIII, fig. 3.)
> Ehrenberg, Die Infus, 1898, p. 187, Taf, liii. fig. 4.
> Sunchata mordax. . . Gosso, Aun. Nat. Hist. 2 Ser. yol. viii. 1851, y. 200.
> Synchata mordax . . . Pritchard, Infusoria, 1861, p. 686, pl, xxxiii. fig. 422.
> " \quad. . . Hudson, Mon. Micr. J. vol, iv. 1870, p. 26, pl. lvi.

Syncheta pectinata
Synchata pectinata . . Leydig, Ueb. d. Bau d. Adderlh. 1854, p. 41.

SP. CH. Body a swollen cone; auricles very long, pointed, usually pendent; coronal head very large and convex; two club-shaped prominences in front, each crovned with a wide brush of sete: four styles, the outer pair somelimes compound.

This is the finest and most vigorous of the Synchata. No one can watch it swimming in ample space, without marvelling at the energy of this living speck, and admiring the grace and ease of its varied motions. No swift is more untiring in its flight. Now it sweeps along in spiral lurns from the surface to the bottom, and now it darts throngh the green branches of the water crow-foot to hang motionless over a leaf like a hovering fly in summer ; motionless, and yet with its front all ringed with the halo of its furiously lashing cilia. The auricles, which seem mere rudimentary stumps, are really most effective organs of locomotion. They are tongue-shaped fleshy protuberances, edged with powerful cilia; and, as they ean be set by special museles at yarious angles to the body, the creature can dart, wheel, and stop, with the greatest ease. The trunk, seen ventrally, appears to be a cone tapering to a small foot divided into two minute toes, but the side view shows the dorsal surface rising behind the head into a distinct hump. The coronal head is nearly half a spheroid. Round its base on the dorsal side are four semicircular curves of small cilia, and two similar curves edge cuplike protuberances on the ventral side. These cups can be lowered or raised a little at will, and their contour altered so as to enable their fringe of cilin to sweep the food effectively between the two into the buccal orifice. This lies near the top of the coronal head towards the ventral side. It can be seen only by looking directly at the top of the head ; no dorsal or side view will show it, and, unluckily, these are the only views that a compressorium will yield. I have, however, on one or two occasions found a Synchata, left in an open cell, swimming feebly in an upright position just before it died ; and I have thus caught sight of the buccal orifice. It is an oval opening between the yentral cups, and overshadowed by two projections each bearing a fan of styles. As the atoms of food are swept towards the orifice, the fans are bent over it, and the styles lash the water to drive downwards any escaping prey. Many Rotifera have a similar contrivance, notably the Brachioni, whose coronal styles form quite a dome over the buccal orifice. The corona bears also four tactile organs, two towards the dorsal, and two towards the ventral side ; and each consisting of one or more styles issuing from a small prominence, and set in a short cylinder. To the end of the cylinder a muscle is attached, so that by this means the styles it carrics can be withdrawn nearly below the surface. There is yet another organ of touch. At the summit of the dorsal hump meet two rocketheaded antenno, each bearing a tuft of setie; and the two tufts issue together from the
same opening. A nerve-thread passes from each rocket-head to a nervous ganglion in the head, on which is seated a bluish-purple eye-spot ' bearing a refractive body, shaped somewhat like a truncated cone.

The great mastax is a pear-shaped body placed so close to the buceal orifice that there is no room for a buccal funnel. The forcipate trophi are driven snapping through the buccal orifice by the great striated muscles shown in fig. 8. A V-shaped one embraces the end of the fulcrum, and one on each side acts on each malleus. The cesophagus closely resembles that of Asplanchna, and like that is often used as a supplementary stomach. Indeed, I have seen it so full that, for a moment, I did not recognize Synchata, and thought that I had found a new Rotileron. The gastric glands are small and round ; the foot glands obvions. The stomach is usually yellow, but sometimes brown; more rarely, pink. It is round, with thick walls formed of very large cells. Sometimes these are studded all over with oil-globules, as in fig. 9. The lateral canals with their vibratile tags can be plainly seen in the lower half of the trunk, but do not appear to run up to the head in the usual fashion. There is a small round contractile vesicle just above the foot. The longitudinal and transverse muscles, as well as those that work the auricles, can be seen in fig. 3, and need no further description.

The male is as yet unknown.
Length, $\frac{1}{70}$ inch. Habitat. Clear ponds and reservoirs: common.

> Synoheta Balica, Ehrenberg. (P1. XIII. fig. 1.)

Synchacta baltica Ehrenberg, Dic Infus. p. 437, Taf. liii. fige 5.
" $"$. Gosme, Tenby, p, 274, pl, siv.
[SP. CH. Body cylindric, becoming conical behind, or bell-shaped: gibbous dorsally; rotatory olusters four; styles four; crest single, sessile. Luminous. Marine.

The form is usually that of a bell, or a long cone, viewed dorsally; but much arched, viewed laterally. The auricular lobes are very small : two equidistant sete radiate from the occiput. There are two ciliated eminences besides the auricles, and a medial crest, smooth-edged. The front is rather wider than the body, whose hinder part tapers to a well-jointed foot, and two very minute conical toes. Conspicuous pear-shaped mucusglands from these run up through the foot.

A large red eye is seated at the end of a cylindrical brain-sae: below which is the vast mastax of normal structure. We see, now and then, a momentary smatching action with this organ, of which I have not been able to define the actual seat. A sudden trembling also occasionally passes through the whole fore parts. A long œesophagus leads to a small sacculate yellow stomach, on which are seated ample gastric glands. A small intestine opens into the cloaca, above which projects a wart, which is a true tail. A band-like ovary, of horseshoe form, the ends forward, lies in the lower belly; and behind this a small contractile bladder, whose period is $2 \frac{1}{2}$ times a minute. The muscular system is very distinct: a cord from the frontal region is inserted in the skin of the back, thrown into sigmoid curves during contraction; other cords procced from the hind-head to various points near the middle of the trunk; one (pair?) proceeds from the mid-back to the side ; five or six bands run transversely across the back. There are, moreover, long diagonal bands down the sides.

The brilliant translucency of this animal makes it a very charming object, particnlarly when well illuminated on a dark ground, when the cye shines out like a ruby, and the whole body resembles a sparkling diamond. Its movements are vivacious and elegant. It shoots rapidly along, or circles about in giddy dance, in company with its fellows, sometimes near the surface, sometimes just over the bottom of its prison. Occasionally the foot and tiny toes are drawn up into the body, and then suddenly thrust down, and bent up from side to side, as a dog wags his tail. Sometimes the two ear-

[^57]lobes are brought forward, and then spasmodically spring back to thieir ordinary position, when the creature shoots forward with redoubled energy. All its actions display vigour and precision; and convey the impression of intelligence and will.

The most interesting fact connected with its history is that it seems to be one of the sources of the phosphoric light which often pervades the waves of the sea. In July, 1854, at Tenby, I saw the water within the harbour splendidly luminous. No trace of light, indeed, appeared on the smooth surface, but when this was agitated it blazed, The finest effect was produced by dashing a large stone down from the quay : every spray that splashed up was luminous; and thas a momentary star of many irregular rays of light was made, some of the lines reaching to fifteen or twenty feet. At the same moment a great circular wave was raised, which took the appearance of a bank, or annular agger, most intonsely lustrous, but so transient that the progression of the wave could not be traced ; the light sank into darkness in an instant. The Bristol steamer was just leaving the wharf, and an impatient stroke or two from her paddes illuminated the dark water under her quarter, and the lowest step of the quay stairs was every instant covered with sparks, like diamond dust, by the tiny wavelets that washed over it. On examination, I found specimens of S. Baltica in it; associated, however, with other animalcules, both larger and smaller, which were indubitably luminous, as Noctiluca and Ceratium.

I first met with this species in July, 1850, in water from the mouth of the Naze, in Essex. Mr. Hood has lately found it in the estuary of the Tay, in Scotland, with many other marine Rotifera; and has communicated living specimens to me, one of which has contributed to the present description.-P.H.G.]

Length, $\frac{1}{10}$ to $\frac{1}{2 \pi}$ inch; width, $\frac{1}{435}$ to $\frac{1}{350}$ inch. Habitat. Sea-water ; consts of England, Wales, and Scotland (P.H.G. ; J.H.).

8. oblonga ?, Ehrenberg.
 (PI. XIII. fig. 4.)
 Synchuta oblonga (\%) Ehrenberg, Dic Infus. 1838, D. 488, Tat. liii. fig. 6.

[SP. CH. Body ovate or pyriform; head very large; auricles wide; " rotatory clusters six; styles four; crest single, sessile"; toe single, minute, wibhout joot. Lacustrine.

A species which I met with in the Watering Pond on Hampstead Heath in 1850, I concluded to be S. oblonga of Ehrenberg, though I could not identify all the characters. But a single specimen occurred, and I have never seen it since, till in November 1885, in a tube dipped from Keoper's Pond, Birmingham, and sent to me by Mr. Bolton, I met with a second example, recently dead, but in fair preservation.

The front has two minute ridges, each with an edging of short comb-like spines ; outside these are the two knobbed antennæ, on which I did not detect any brushes of divergent setix. A good deal lower, on the slope of the auricle, on one side, was a long stiff bristle, doubtless one of a pair. The auricles are very large, and each is pervaded by a chain of globose bodics, possibly ganglia, which, having passed aromd the swollon extremity, turns back at least as far as the base of the bristle. A vast mastax exists, whose chief visible feature is a stout incus, whose wide rami appear as diverging lines. A very long, delicate, corrugated cesophagus leads to a small, globose, saceulate stomach (which recalls the structure common in the Asplanchne) filled with green food; thence a thiek, much-wrinkled intestine passes straight to the extremity, where is a very minute, conical toe, which I could not by any effort divide. A glandular thread runs from the tip to a minute globose vacnole (?) at its base. Three great ova, colourless but turbid, were in the body-cavity, from the appearance of which I should conjecture the animal to be viviparous. Various muscles and nervous ($\%$) threads are shown in the figure.-P.E.G.]

Length, $\frac{1}{5}$ inch ; greatest width, $\frac{1}{10}$ inch. Habitat. Hampstead; Birmingham (P.H.G) : rare.

S. tremula.
(Pl. XIII. fig. 2.) Leydig, Ueb. d. Bau d. Räderth. 1854, p. 41.
Pritchard, Infusoria, 1861, p. 686.

Synchata tremula . . Ehronberg, Die Infus, 1838, p. 438, Taf. liii. fig. 7.

SP. OH. Body a slender cone; coronal head nearly truncate; auricles scarcely protuberant ; setæ four ; no club-shaped prominences ; a sudden diminution in girth below the cloaca.
S. tremula is rather smaller than S. pectinata, and its habits are different. It loves to twirl round its own longer axis at the end of a thread stretching from its toes; and, so twisting, to drift lazily along with the current which bears the object to which it is attached. Its coronal head is almost flat, and the side auricles are nearly in the same plane with it. This makes the animal strikingly unlike S. pectinata in outline. It has no crests on its corona; only four long curved styles, similar to those of S. pectinata. Its stomach is generally full of a rich brown food, and I have sometimes captured specimens with the cesophagus at the same time stuffed with some pinkish substance. Its eye is an intensely dark-red, and Mr. Gosse has detected a refractive body imbedded in the pigment. ${ }^{1}$ There is a rocket-shaped antenna (fig. $2 b$) on each side of the trunk just above the foot: organs that I have failed to detect in S. pectinata. In all other respects the structure of the two species is almost identical.
[In one of the shallow evaporating tanks in my orchid house, I found (at the end of May) this pretty species swarming. It plays, by myriads, just above the dull-green floccose sediment that settles on the bottom. I learn, from this colony, a habit which I think has not been recognised as proper to this genus-viz. that, like the Brachioni and Amurea, and one or two other genera, Syncheta retains its egg after discharge, attached to its own body, just behind the foot. The egg, which I saw, was nearly globular, of a pale yellow hue, granular by the process of segmentation.-P.H.G.]

I found the male (fig. 2c) in the winter of 1870. It is much smaller than the female, narrower for its length, but otherwise much like her in shape, and with the same four styles on the coronal head. I distinctly noticed in it the entire absence of the nutritive system ; but its irrepressible energy prevented me from obtaining more than a fleeting view of the sperm-sac and penis.

Length, $\frac{1}{10}$ inch. Habitat. Clear ponds: common.

[^58]
THE ROTIFERA.
 VOLUME II.

http://rcin.org.pl

THE ROTIFERA;
 OR
 WHEEL-ANIMALCULES

BOTH BRITISH AND FOREIGN.

BY
C. T. HUDSON, LL.D. Cantab., F.R.S.

ASSISTED BY
P. H. GOSSE, F.R.S.

IN TWO VOLUMES, WITH SUPPLEMENT.

V0LUNIE II.

WITH ILLUSTRATIONS.

LONDON:
LONGMANS, GREEN, AND CO. and new york : 15 East 16^{10} Street.
1889.

Those viewless beings,

Whose mansion is the smallest particle
Of the impassive atmosphere,
Enjoy and live like man:
And the minutest throb,
That through their frame diffuses
The slightest, faintest motion,
Is fixed, and indispensable,
As the majestic laws
That rule yon rolling orbs.
Shelley.

Qui curiosus postulat totum suæ Patere menti, ferre qui non sufficit Mediocritatis conscientiam suæ, Judex iniquus, æstimator est malus Suique naturæque; nam rerum parens, Libanda tantum quæ venit mortalibus, Nos scire pauca, multa mirari jubet.

Grotius.

CONTENTS

or

THESECOND VOLUME.

CHAPTER IX.PAGE
PLOÏMA (IL-LORICATA-continued) 1CHAPTER X.
PLOÖMA (LORICATA) 37
CHAPTER XI.
SCIRTOPODA 129
ADDENDA 134
APPENDIX: THE VASCULAR SYSTEM. 135
,, THE SETIGEROUS SENSE-ORGANS 139
BIBLIOGRAPHY OF THE ROTIFERA $1+0$
INDEX 143

CHAPTER IX.

PLOİMA

IL-LORICATA-continued.)

Les actions des bêtes sont peut-être un des plus profonds abimes su quoi notre raison se puisse exercer; et je suis surpris que si peu de gens s'en apercoivent.-Bayle.

Their good is good entire, unmixed, unmarred;
They find a paradise in every field,
On boughs forbidden where no curses hang:
Their ill, no more than strikes the sense, unstretched
By previous dread, or murmur in the rear;
When the worst comes, it comes unfeared; one stroke
Begins and ends their woe.-Young.

CHAPTER IX.

Family VIII. TRIARTHRADA.

Body furnished with skipping appendages ; corona transverse ; ciliary wreath single, marginal; foot absent.

The four genera which form this family resemble each other in one striking particular. Each bears spines, or moveable appendages, by means of which the creature can leap through the water. These spines have no connection with the body-cavity, though they are moved indirectly by the usual longitudinal muscles; which, in sharply withdrawing the head, throw the spines forward. In one genus, Pteroessa, which is known only by its lorica, the spines are very numerous, and are of two distinct patterns; in another, Polyarthra, they are clusters of blades borne upon the shoulders; in the remaining two, Triarthra and Pedetes, there is only one simple spine on each shoulder, but Triarthra carries also a similar spine on the posterior ventral surface. All the genera are more or less loricated. In Pedetes the skin bears hard knobs for the attachment of the spines, while Triarthra has it stiffened chiefly round the edge below the neck. Polyarthra is semi-loricated; the dorsal surface is very tough and there is a still harder shield on each side between the dorsal and ventral surfaces. The ventral surface, however, is soft and membranous. In all, the longitudinal muscles are highly developed, and coarsely striated.

The genera differ in their trophi. Triarthra has the malleo-ramate trophi of Melicerta ringens; in Pedetes the trophi have not been clearly defined; while Polyarthra, widely unlike either, has a mastax and trophi closely resembling those of Synchata. Polyarthra, moreover, is still further separated from Pedetes and Triarthra by having one occipital eye, instead of two frontal.

Genus polyarthra, Ehrenberg.

GEN. CH. Spines in clusters on the shoulders; eye single, occipital; mastax very large and pear-shaped; trophi forcipate.

It is not easy to decide in which family the genus Polyarthra should be placed. Its mastax and trophi are almost exactly those of Synchata; its corona bears styligerous prominences similar to those of S. pectinata; its ciliary wreath is marginal and single, though not broken up into curves ; and, like Synchata, it possesses but one occipital eye. On the other hand its skipping spines naturally place it with Triarthra and Pedetes, which genera it further resembles by its lack of foot, by its habit of carrying its eggs, and by the partial stiffening of its skin into an imperfect lorica.

P, platyptera, Ehrenberg.
 (Pl. XIII. fig. 5.$)$

Polyarthra platyptera' . . Ehrenberg, Die Infus. 1838, p. 441, Taf. liv. fig. 3. Leydig, Veb. d. Bau d. Raderth. 1854, p. 42, Taf, i. fig. 10. Gosse, Phil. Trans. 1856, p. 435, pl. xvii. figs. 44-49.

1857, p. 320, pl. xv. figs. 27-29.
Plate, Jenaisch. Zeits. f. Natur. 1885, p. 16, Taf, i. fig̨, 4.

[^59]SP. CH. Spines twelve broad blades with serrate edges.
When gliding along under the action of its ciliary wreath Polyarthra seems to have a triangular outline; for the body, though itself truncated both in front and rear, carries four clusters of serrated blades fastened to the shoulders; and these trail behind so as nearly to meet in a point, at some distance from the animal's body. Every now and then the blades are jerked vigoronsly forward, and the creature is tossed out of its path, several times its own length. The trunk is partially loricated. There is a kind of chitinous shield running down each side of the body, pointed at its hinder end, and bent at the sides so as to encroach a little on the tough dorsal and membranous ventral surfaces. The edge of the dorsal lorica (if it may be so termed) is plainly visible running across from one cluster of blades to the other. A pair of powerful striated museles, forming a letter V_{1} is fastened to the lower pointed end of the shield, and to the inner surface of the soft tissues, to which, at the upper end on each side, six of the blades are attached. The contraction of these V-shaped muscles drags the soft tissues sharply down over the hard edge of the shield, and makes the blades fly out with great swiftness. The blades are curiously like a bird's feather in general outline (fig. 5 d), having a midrib (fig. 5 e) and being distinctly serrated on both edges. The corona is slightly convex and bears, towards the dorsal surface, two prominences like those of Synchata pectinata, each carrying a brush of styles. There are also two long styles facing these, and springing from the corona towards the ventral surface. Mr. Gosse has, moreover, noticed, besides these tactile organs, a small occipital pimple armed with bristles. The very large mastax points obliquely downward to the ventral surface. Both it, and its trophi, closely resemble those of Synchata pectinata. The contractile vesicle can be easily seen, but neither lateral canal nor vibratile tags have been recorded. Nothing else in its internal structure requires notice. The animal carries the great female egg singly, and transversely, between the points of the two side shields ; but the small male eggs in clusters of half-a-dozen or more at a time (fig. $5 b$). The male was discovered by Mr. Gosse in 1850, and described and figured by him in the "Phil. Trans." for 1856, [Its length is only $\frac{1}{2} \frac{1}{0}$ inch. The head is very large (fig. $5 h$) and the body tapers quickly to the posterior part, but both extremities are truncate. The front bears two warts between which the rotatory cilia are placed, but the cilia are longer (perhaps setre) on the warts. The hinder part is bifid, the smaller division being the caudal extremity or toe-less foot, and the latter a protrusile truncate penis ciliated at the tip. No internal organization was discoverable.-P.H.G.] Dr. Plate's figure (loc. cit.) shows the sperm-sac.

Length. Female's body, 立ण inch. Habitat. Pools and ponds: common.

Genus pteroessa, Gosse.

[GEN. CH. Loriea entire, save for a large oval opening behind; beset with articulate pinnate styles, and simple setæ: foot wanting.

P. surds, Gosse, sp. nov.

(PI. XIII. fig. 9.)
SP. CH. The only known species. Horny yellow; pinnæ twenty-four, in six longitudinal rows.

The form of this remarkable species is that of an ancient amphora; a long oval tapering to an obtuse point, with no foot,forming a constricted neck, in front, and thence

[^60]expanding to a broad truncate margin. Behind there is a great ovate opening, as if a slice had been cut off the entire breadth from the middle to the extreme point. Doubtless this, in life, is covered with membrane, and its edge is thickened. From the upper margin rise two short setæ, jointed to knobs; while from the breast, exactly opposite, there issues another, similarly jointed but of great length, descending far behind the extremity of the body.

But the chief peouliarity of the creature is that four-and-twenty styles, regularly arranged, are affixed to the lorica, giving a most unique aspect to it. For every one is a feather in appearance; the shaft, moderately long and stout, being beset, on its two opposite sides, with regular pinnules like those of a fern (Polypodium, for instance), in considerable number, length, and regularity (fig. $9 c$). These pinnæ are arranged in six longitudinal rows, three on each side, on the ventral aspect, the middle pair of rows consisting of six each, the next pair four, and the outmost two, each. The shaft of each is evidently articulated on a knob of chitine, which is itself a tubercle on a somewhat larger round knob, set in a commensurate orifice in the lorica,-apparently moving freely in it, a true " ball and socket" joint, worked doubtless by proper museles within. Thus, adding the three simple styles, which are similarly based, we have here a wonderful array of exterior articulate members, which well illustrate the claim of the Rotifera to a place among the ARTHROPODA. The pinnules vary much in their number, their length, and the angle of their expansion. The body ends in a blunt point, with no foot, nor other appendage. The anterior extremity, beyond the marked neck, is short, somewhat inclined toward the back, truncate, with an orifice as wide as the widest part of the trunk. Through this, of course, the head is protruded during life; but of this, and of the whole internal organization, I can give no information. The specimen which came under my observation was an erppty lorica, in good preservation, as if recently dead, which I was enabled to revolve under the microseope, and so to examine in several aspects. The whole lorica was of a dark yellow-brown hue, with a dull translucency like that of a smoky horn lantern: but whether this is specific, or only accidental, I cannot tell.

This most curious form occurred in the sediment of a bottle of water, examined on October 20, 1885, but which had been standing on my table since September 23 , when I had received it from Mr. Hood with a colony of Scaridium cidactylotum. From the condition of the lorica I have little doubt that it had come to me alive ; but being ocoupied with the new Scaridium I did not search closely.-P.H.G.]

Length. Of lorica, $\frac{1}{10}$ inch ; to tips of pinne, $\frac{1}{9}$ inch; from brow of lorica to tip of ventral seta, ${ }_{i 4}^{\frac{1}{4} \text { inch. Habitat. Loch near Dundee (P.H.G.). }}$

Genus triarthra, Ehrenberg.

GEN. CH. Spines single, two lateral, one ventral; eyes two frontal ; mastax of moderate size; trophi malleo-ramate.

There are three known species of this genus, and they resemble each other very closely; the main points of difference being the length of the leaping-spines, the distance between the eyes, and the length of the cesophagus. The first of these characters is one that cannot be much relied on except in the case of T. breviseta; for the length of the spines varies very much in the same species. Ehrenberg makes a further point of difference, in the presence or absence of any well marked separation between the stomach and intestine, asserting that T. longisela possesses this separation and that T. mystacina lacks it. This, however, is a character of small value, for the same animal will show at one time an undivided alimentary canal; and, at another, one sharply divided jnto intestine and stomach.
T. losatseth, Ehrenberg.
(PI. XIII. fig. 6.)

Triartima longiseta	
$"$	$"$
a	$"$

Ehrenberg, Die In/us, 1838, p. 417, Taf. Iy. fig. 7.
Hudson, Mon. Mier. J. vol. i. 1869, p. 176, pl. vi.
Grenacher, Sieb, u, Koll, Zeils, Bd, xix, 1869, p. 491, Taf. xxxvii. fig. 3.

SP. CH. Body oval; buccal orifice prominent but not beaked, oup-shaped; spines more than twice the length of the body; eyes wide apart; cesophagus long.

The habit of this interesting creature is to swim slowly forward while turning round its longer axis, and every now and then to dart out of its course by jerking forwards the three long spines which usually trail behind it. The corona is oval, and bears in its centre one broad, low prominence, with a smaller one on either side of it; and just within each of these latter is placed a red eye. The buccal orifice is cup-shaped and has its inner surface lined with cilia. The buccal funnel slopes backwards and upwards towards the dorsal surface to meet the mastax, whose trophi are almost identical with those of Melicerta ringens. The cosophagus is long and narrow, and the stomach and intestine are usually soparated by a deep constriction. The gastric glands (fig. 6a) are curiously shaped, and frequently studded with what appear to be oil-globules. The vasoular system is delicately transparent, and difficult to be seen. I have traced the lateral canals on each side, for some distance down the trunk, from a plexus of tubes in the neek, and have detected just there a vibratile tag. I failed to discover the contractile vesicle, but Dr, Grenacher (loc. cit.) has seen it, in its usual position, close to the cloaca. There is a large ovary ; and the newly laid eggs remain attached to the parent by a thread for some time after their exclusion. The ephippial eggs (fig. 6f) are as curious in shape as the gastric glands, and are protected by a thick layer of yellowish transparent cells. By bringing into foous the central inner portion of the head, seen sidewise, a bluish and roughly rhomboidal mass may be observed; this is the nervons ganglion, and above it are the eyes, and from it threads extend to a setigerous fossa in the neck, as well as to rocket-beaded antennæ, one on each side (fig. Ge) just under the surface. Each eye (fig. 6b) is a clear, colourless, refracting sphere on inch in diameter, resting on, and partly imbedded in, a flat plate of red pigment. The longitudinal muscles are very powerful, and are strongly striated; the strix not being straight transverse lines, but irregular obliquely transverse curves (fig. 6c). Indeed they appeared to me to alter both in direction and in size as I looked at them, giving me the impression that I was looking at illusory strim, produced possibly by looking through separated sheets of striated fibre, lying over each other. There is an unusually powerful muscular collar running round the neck. The spines are stiff quill-like appendages, broadest at their attached bases, and tapering at their free ends. The bases (fig. $6 d$) are like quills that have been obliquely cut across, and it is by these cut surfaces that they are attached, one on each side of the corona, just above the neck; and one on the ventral surface, at the spot from which the foot springs, in those Rotifera that possess one. The spines are notched here and there (fig. 6d), and finely imbricated towards their tips. On looking at fig. 6, it will ba evident that if the muscular collar round the neek be suddenly contracted, and the haad withdrawn, the spines will be first dragged across the stiff edge of the trumk, below the collar, and then jerked forward by the downward pull of the head.

How the third spine is moved is not so clear. Dr. Grenacher suggests that it is dragged forward by the other two, which are often crossed beneath it; but adds that this is a forced explanation. It is probable, I think, that this spine is driven forward by the sudden jerk downwards on its base, when the longitudinal muscles sharply compreag the stiff rentral enticle. Fine muscular fibres surround the trunk at regular
intervals, and unite with the broad band round the neck in driving out the retracted head, and restoring the spines to their usual position.

Length. Without the spines, $\frac{1}{15 \pi}$ inch. Habitat. Fresh-water ponds and ditches: common.

T. mybtacina, Ehrenberg.
(Pl. XIII. fig. 8.)
Ehrenberg, Die Infus. 1838, p. 447, Tat. 1v. fig. 8.

Triarthra mystacina
[SP. CH. Body oval; buccal orifice taking the form of a beake projeoting from the face; spines not twice the length of the body; eyes approximate; ©esophagus invisible.

In July 1849, from the ditch at Dalston Causeway, near London, I took several of the Whiskered Three-beard. The moderate length of the leaping spines, the approximate eyes, and the absence of any manifest cesophagus-the stomach coming into contact with the mastax-marked the species as Ehrenberg's mystacina. The absence of the œesophagus is doubtless only apparent, this duct, as is the case with Polyarthra (see Pl. XIII. $5 c$) and many other Rotifera, issuing from behind the mastax, near its summit. One adult had an egg attached to the hind extremity, which somewhat retarded its motions, as compared with those of its fellows. After a while the spontaneous movement of the embryo became more and more vigorous, and the ciliary rotation energetic ; and a clear globule, as of air, was seen within, while yet the egg remained adherent.

The front is formed of a ring of six or seven sub globose masses, in mutual contact, each of which is crowned by a cluster of divergent cilia. The chin descends in a prominent hook, like a parrot's beak, which appears stiff, and projects between the bases of the two pectoral spines. The two eyes are nearly frontal, small, bright red, and approximate. The mastax appears formed on the plan seen in the Bdelloida. The stomach is large and saccate, and is supplemented by a distinct intestine. The animals are very subject to be infested by two species of Colacium, which are seen in fig. 8. They cling to its spines as well as its trunk, and appear to give it uneasiness. I have counted sisty-five of these parasites on one individual, and nearly fifty on another.

The animal seems to have no power of affixing itself, or of resting. It swims constantly; interrupted only by its spasmodic jerks or leaps, performed by the sudden throwing out of the elastic spines, chiefly, I think, the pectoral pair. These are articulated to shelly knobs, which imply a solidifying of the integument around their bases, to supply the necessary resistance. In the act of springing, these two are ofton shot forward so foreibly as to be projected in front, reminding us of the anal bristles in Podura. This is done with a rapidity that the eye cannot follow; and this, through so dense a fluid as water, requires the exertion of great muscular power. -P.H.G.]

Length. To tips of setm, $\frac{1}{80}$ inch. Habitat. Around London: ditches and ornamental waters (P.H.G.).

T. breviseta, Gosso.

Triarthra breviseta
Gosse, Ann. Nat. Hist. 2 Ser. vol, viii. 1851, p. 200.
[SP. CH. Body cylindrical; breast projecting, but not beaked; spines not one. fourth as long as the body.

This species is more regularly cylindrieal than the others; it is diminished toward the front, which is truncate; the hinder end is ventricose, and extends much beyond the base of its spine; the belly is deeply suleate, with thick collops of the skin between: the breast forms a great rounded projection, but not a beak. Just beneafls this is a constriction, where the very short spines are set, each not more than half the body's width in length, very slender. The whole head cau be retracted as far as this, by which involution of the skin the spines point straight forward, reverting to their normal direc-
tion as the head emerges. The animal has no power of springing by means of the spines, or of nsing them in any appreciable manner. The hind spine is similar, and similarly set in a deep sulcus of the lower belly. All are dilated at their bases.

At the very front are two minute but distinct red eyes, side by side, seated on a small brain-mass, which tapers into a thread that passes to the occiput, probably to an antenna, not detected. The mastax was obseure, but seemed of the Bdelloid pattern. A very slender but long cesophagus leads to a vast sacculate alimentary canal, and this to a cloaca at the very point of the body, belind the spine; which hence, Herr Grenacher's judgment notwithstanding, I conclude to represent the foot. A momentary action, like that of a contractile vesicle, I perceived, but could not define one; and lateral canals run down each side. Several muscles are discernible.

The animal is vivacious, swimming freely and swiftly; I did not see it attempt to spring, nor to crawl; the foot-spine was not whisked about. I frst met with the species in a pond in Holly Walk, Leamington, in July 1850; and again lately in water from Keeper's Pool, Birmingham, sent me by Mr. Bolton.-P.H.G.]

Length, ${ }_{1} \sqrt{2}^{2}$ to $\frac{1}{185}$ inch. Habitat. Warwickshire pools: rare (P.H.G.).

Genus pedetes, Gosse.

[GEN. CH. Body ovate, tailed; toes absent; eyes two frontal; two leaping styles articulated to the breast.
P. saltator, Gosse, sp. nov.
(Pl. XIII. fig. 10.)

SP. CH. Leaping styles thrice the length of the body.

This genus has a very close relation to Triarthra. It may, indeed, be described as a Triarthra with the posterior style wanting. The body, though apparently soft and flexible, must be considered as enveloped in a lorica, since the lmobs to which the styles are articulated, are hard, immoveable, and doubtless chitinous. Its form, viewed dorsally, is ovate, obtasely pointed behind and broadly truncate in front. Viewed laterally (fig. 10a), it is flat on the ventral, and strongly arehed on the dorsal surface. The dorsum rises to a marked conical elevation which is a true tail, for the cloaca opens between it and the foot. The latter (or what represents it) is a small ovate terminal member, within which, close to the tip, is a minute vesicle, possibly the contractile bladder. The rotatory cilia are seated on a number of small projecting eminences, with which the front is beset. On each side of what for convenience sake we call the breast, but rather high up, is a large round shelly knob, apparently hard and immoveable. Dr. Hudson ("M. M. J.") long ago explained the action of the pectoral styles in the parallel case of Triarthra (see T. longiseta, p. 6). We may conclude the mechanism to be the same in both cases; but I am inclined certainly to see more than mere merhanical action in these shelly knobs, viz. special museles for the forcible and definite motion of the styles, by means of a true (perhaps ball and socket) joint. Each style is a highly elastic rod, thick at its origin and for a considerable distance, then gradually tapering to a great attenuation, about thrice as long as the body. On the tips of these, which must therefore possess remarkable firmness, the animal, now and then, suddenly jerks itself away, as on a leaping-pole, with great force ; so that they are in an instant seen stretching out at a right angle, or even more, forward. These leaping-poles are composed of transparent refractive material (chitine), resembling glass in appearance. The brain has not been defined; but two eyes, of a translucent red hue, near together, are conspicuous at the very front. The mastax, far down in the body, with vigorously working mallei, was visible near the middle ; and below this a great globose, sac-like atimentary canal, without visible division. The only specimen I have seen occurred in
a tube, rich in Rotifera, sent me by Mr. Bolton in the antumn of 1884. It had become. in the live-box, accidentally entangled in a small mass of tenacious mucus, which evidently annoyed it, and from which it made vigorous but ineffectual efforts to become free. I have never met with the form since.-P.H.G.I

Length of body (without styles), about ${ }_{T} \frac{1}{\sigma}$ inch. Habitat. A pool near Birmingham (P.H.G.).

Family IX. HYDATINADE.

Corona truncate with styligerous prominences; ciliary wreath two parallel curves, the one marginal fringing the corona and buccal orifice, and the other lying within the first, the styligerous prominences being between the two; trophi malleate; foot furcate.

Ehrenberg's very extensive family of the Hydatinaa, under the name of Hydatinada, is here restricted to three genera, viz. Hydatina, Notops, and Rhinops. They are all alike in their corona, ciliary wreaths, and trophi, but differ from each other in their shape, eyes, and foot.

The head is truncate with a deep cup-like cavity as it were scooped out of it. This cavity lies more towards the ventral surface than the dorsal, so that a transverse slice would be horseshoe-shaped, the bend of the horseshoe being to the dorsal surface. The principal wreath fringes the outer edge of the cup's wall, and the secondary wreath borders the inner; both wreaths are continued down into the buccal orifice, which lies just within a deep notch in the wall of the cup on the ventral surface.

Styligerous prominences rise in the space between the two wreaths, except in the case of Rhinops ; and in this genus the dorsal side of the corona bears a thick proboscis, around the edges of which the principal wreath is continued.

In their habits they in the main resemble each other; for all but Rhinops tolerate even very dirty water, provided that it contains an abundance of the minute organisms on which they feed.

Genus hydatina, Ehrenberg.

GEN. CH. Body conical, tapering towards the foot; foot short, and confluent with the trunk; eye absent.
H. sRspa, Ehrenberg.
(Pl. XIV. fig. 1.)

H. senta is one of the largest of the Rotifera, and its flashing styles, ruddy teeth, and yellow stomach, often stuffed with brilliantly green Euglena, make it a charming object for dark-field illumination. Its shape is conical, the corona being the base, and the toes the apex. When seen, however, from the side (fig. $1 b$), especially if a little arched, the separation of the head and foot from the trunk is distinctly visible. The styligerons prominences are semi-globular cushions crowned with long and rapidly vibrating styles, set fan-fashion. It is difficult to say how many cushions there are, owing to Hydatina's incessant restlessness ; but there are probably ten or eleven. Two are on the median line ; one on the dorsal edge, and one between the first and the cavity of the head. The rest are arranged round the cavity in a sort of quincunx fashion; mainly on the dorsal half of the corona. The great hollow in the corona is not only ciliated on its edge but
also on its whole surface, and may fairly be considered to be the buccal fumnel. At its base, close to the ventral surface, lics the mastax, containing malleate reddish trophi with unci of four arrow-like teeth (fig. 1e). I have often seen these hand-like unei protruded into the funnel to grasp some desired morsel. The thick cellular walls of the stomach are well seen in the young specimen (fig. 1a), in which a thin line of green food marks the hollow of the nearly empty stomach. The secreting and vascular systems are obvious and normal. A rectangular nervous ganglion (fig. 1) below the corona, and just under the dorsal surface, sends off a pair of nerve-threads at each corner. The upper pairs possibly ramify to the styligerous prominences which are very sensitive; and which Mr. Gosse has seen individually depressed below their usual position by muscular threads rising up to them from the depth of the head. One of the lower pairs supplies the two lateral antennæ (fig. $1 a, 1 b$), and the other two nerve-threads pass to the dorsal antenna (fig. 1b). The ovary in the half-grown animal (fig. 1a) is very transparent, and the oviduct is then conspicuous; as are also the fibres that tie the ovary to the body-walls.

The male was described by Ehrenberg under the name Enteroplea hydatina, as he was not aware of its sex. It is often to be met with among the swarms of females that launt dirty farmyard ponds and neglected water-butts. Its general appearance is that of a young female, bat it can be recognised at a glance by the absence of the mastax. Its internal structure is precisely like that of the male of Asplanchna priodonta, and is sufficiently shown in fig. $1 n$.

Disease.-I once found a few specimens of H. senta (fig. $1 m$) with what appeared to be the mycelium of a fungus growing in the perivisceral fluid, and loosely surrounding the various organs. The infected creatures, however, seemed as vigorous as the healthy ones. H. senta, too, suffers from an internal parasite. It is of a narrow oval form, about $\frac{1}{300}$ inch in length, and swims up and down its host's stomach by jerking the contents of its body constantly backwards and forwards (figs. $1 \mathrm{~h}, 1 \mathrm{k}$). There are curious bodies inside the parasite itself something like the globe of a lamp in shape (fig. 1l).

Length. From $\frac{1}{\text { fo }}$ inch to $\frac{1}{50}$ inch. Habitat. In water swarming with Euglence, \&c.: common.

Genus RHinops, Hudson.

GEN. CH. Body conical, tapering to the foot ; a long dorsal proboscis on the corona; foot short, and confluent with the trunk, with two minuto toes clesely pressed together; eyes two, at the ond of the proboscis.
R. vitrea, Hudson.
(Pl. XIV. fig. 2.)
Rhinops vitrea Hudson, Ann. Nat. Hist. 4 Ser. vol. iii. 1869, p. 27, pl. ii. Plate, Jenaisch. Zeits. f. Natur. Bd. xix. 1885, p, 46.

Rhinops vitrea appears to have escaped notice till 1869, when I found it in a pond in Losely Park, near Guildford; so I suppose it must be rare: and yet I have often taken it in the neighbourhood of Clifton, and at times even in abundance. Though not a large Rotiferon, it is easily recognized with a hand-lens by its slow, deliberate way of swimming; a peculiarity which first attracted my attention to it. Its shape is striking. It is a Hydatina without any styligerous lobes on the corona ; but bearing, in lieu of them, a unique prolongation of the dorsal surface into a sort of proboscis. Two splendid ruby eyes are placed on the extremity of this proboscis, and its under surface is furred with cilia like the prone face of Adineta. The outer ciliary wreath is carried up each side of the proboscis ; but the tip between the eyes is free from cilia, and seems to act
as an organ of tonch. The inner ciliary wreath consists of larger cilin which are sometimes held erect. The cesophagus is long and narrow, and the gastric glands so irregularly conical, that they generally appear unlike ; probably owing to their being seldom presented to the eye from similar points of view. The nervous ganglion has an unusual position. It lies near the end of the proboscis, and gives off, above, four parallel nervethreads; the two outer of which pass to the eyes, and the two inner to the sensitive bare spot on the tip of the proboscis (fig. 2c). The rest of the internal structure is both obvious and normal. The young animal quits the egg while yet in the body of the parent, and may often be seen filling up a large portion of the body-cavity. The ephippial eggs closely resemble those of Conochilus volvox.
lhinops vitrea usually swims at a moderate pace, rolling gently round its longer axis as it goes, and every now and then bending back its proboscis, or turning somersaults as Synchata pectinata does, only in a much more leisurely manner. Occasionally it darts forward ; and, at each time that it has done so, I fancied I could see the atom which it wished to secure. Then it glides over the stems of Alga, using its long proboscis just as Adineta vaga does its ciliated face; and, when a larger atom than usual has been drawn into the coronal cavity, it compresses the broad flaps of the corona, and rounds the whole front of the body into a long ciliated tabe. ${ }^{1}$

Length, $\frac{1}{80}$ inch. Habitat. Clifton (C.T.H.) : not common.

Genus notops, Hudson.

GEN. CH. Body not conical; foot long and symmetrically placed with respect to the trunk, or short and wholly retractile within the ventral surface; eye single, occipital.

Of the three remarkable species contained in this genus, two, N. Brachionus and N. clavulatus, are strikingly alike each other, especially in the head and its ciliated protuberances, and also in the trophi. They are, however, carionsly unlike in their outline, and in the relative length of the foot. The third species, N. hyptopus, resembles N. clavulatus in the short foot, and in the odd position in which it is placed; but differs widely from all the Hydatinada in the corona and trophi. Feeble, however, as are its affinities with the two other species of the genus, they are stronger than those it has with any other ; so it has been placed here as the best makeshift that could be devised.

N. nracmonvs, Ehrenberg.

(P1. XV, fig. 1.)

Notomimata brachionus.
Ehrenberg, Din Infus. 1888, p. 433, Taf. I, fig. 8. Leydig, Ueb. d. Bau d. Raderth., 1854, p. 99. Hudson, Mon. Mier. J. vol. xiii, 1875, p. 46, pl, xci. figs. 1-4.

SP. CH. Trunk square; foot one-third of total length, placed in continuation of the body's longer axis, not wholly retractile; trophi malleato.

I found this handsome creature in a small rain-pool in Leigh woods. The summer heat frequently dried the pool up, but a heavy shower or two soon filled it again; and, two or three days after the downfall, I always found N. brachionus there in abundance: no doubt hatched out from eggs deposited on the rotting leaves which formed the bottom of the pool. These strange habitats of the Rotifera are probably due to their eggs being wafted by winds, or carried by birds ; so that it is no wonder that this species should have been captured by Schmarda in a spring near the top of Adam's Peak in

[^61]Ceylon. It is a remarkable Rotiferon, surpassing almost every other in the number and variety of its styles, setis, and cilia. In general shape it is something like a Brachionus, but its head is that of a Hydatina. There are only three styligerous prominences in the corona between the two usual wreaths, and these bear styles arranged fan-fashion and thickened at the base, as if each style passed through a short sheath; a form of style strikingly visible in the young animal, when the styles are short. The whole of the cavity leading to the buccal funnel is ciliated, and at its base is a ring of large curved styles, pointing upwards. On each side of the wedge-shaped opening, at the entrance to the buccal funnel, are large setæ set horizontally above one another in short sheaths, and fringed at their bases with minute vertical sete (fig. 1c). The trophi are malleate, and Mr. Gosse says that they are the exact repetition of those of N. clavulatus (Notommata clavulata) as figured by him in "Phil.Trans." 1856, Pl. xvi. fig. 28. The rest of the mutritive system, as well as of the secreting and vascular systems, is obvious and normal. The ovary is horseshoe-shaped, with its germs set in a single line. There is a nervous ganglion just below the dorsal surface of the head, somewhat rectangular in outline like that of Hydatina senta; and, like it, giving off nerve-threads at its corners, two of which donbtless pass to the large dorso-lateral antennm shown at the lower corners of the trunk in fig. 1. Mr. Gosse, in a side view, has seen that the nervous ganglion is a truncated pyramid, bearing the red eye on its summit.

The Male. $-N$. brachionus carries its egg for some time after exclusion, so that it is possible to identify the male with certainty. The male is very unlike its mother in shape and size, and a side view (fig. 1b) shows that the head slopes back to a hump, on the apex of which is a bunch of tactile setæ. A nerve-thread from the nervous ganglion passes to these, and lies between two fine muscular fibres. A moderately sized sparmsac ends in a ciliated penis just above the foot, which contains two large club-shaped glands. Close to the sac is a small contractile vesicle, the lateral canals of which can be readily traced on either side of the ventral surface,1

Length, $\frac{1}{10}$ inch. Habitat. Ponds and pools; Clifton (C.T.H.) ; Kingswood (P.H.G., T.B.) : not common.

N. clavulatus, Ehvenherg.

(PI. XV, fig. 8.)
Notommake clavulata . . . Ehrenberg, Die Infus. 1838, p. 432, Taf. 1. Ifg. 5.
SP. CH. Body sac-shaped; foot one-ninth of total length, wholly retractile within. the ventral surface; trophi malleate.

At the first glance one would say that this animal was an Asplanchna, which genus it greatly resembles in general shape, in brillinnt transparency, and in the comparative emptiness of the trunk. But a little examination shows that the two are widely unlike in corona, trophi, and alimentary canal. On comparing, however, the apparently dissimilar creatures N. brachionus and N. clavilatus, it will be found that they are, in many important points of their structure, exact counterparts of each other. The coronæ, for instance, are closely alike, although N. clavulatus has a greater number of styligerous lobes, and lacks the ring of curved styles that lie round the base of the cavity of the corona in N. brachionus (fig. 1). The trophi are identical. The muscular and vascular systems are much alike; the latter, indeed, curiously so, for the sharp bend at right angles in the lateral canals, which is rendered necessary by the shape of N. brachionus, is repeated (needlessly, as it were) by N. clavulatus. The contractile vesicle in the latter, however, has much thicker walls, and is sluggish in action. The eye is seated on the

[^62]ventral side of the nervons ganglion in N. clavulatus, and on the dorsal side in N. brachionus; but in other respects the nervous systems are alike; the side view (fig. $3 a$) of the female of the former showing precisely the same nerve-threads to a dorsal antenna which are exhibited by the male of the latter (fig. $1 b$). The ovaries in both species are flat horseshoe-shaped ribbons bearing a single row of germs. The chief points in which N. clavulatus differs from N. brachiomus, besides those of the gencral shape, and of the size and position of the foot, are as follows. The gastric glands are long and cylindrical, and below them there are two pairs of short cerca attached to the dorsal surface of the stomach. The stomach often appears as a long conical tube tapering to a cloaca above the foot, colourless when empty, or tinged above with a faint yellow tint when filling with food. Frequently, however, there is a deep constriction nbove its lower portion, thus forming an intestine ; and on one occasion I saw this constriction suddenly disappear, and the contents of the intestine at the same time drawn up into the stomach. Mr. Gosse noticed that the body had its surface marked with minute oblong points, which were scarcely visible except at the edge. He observed ulso that the discharged egg was carried behind the cloaca, and that its development was extremely slow ; no sensible maturation having appeared even several days after its exclusion. The male is unknown.

Length, $\frac{1}{5}$ ineh. Habitat. Hampstead (P.H.G.); Clifton (O.T.H.) : not common.

> N. Hyptorvs, Ehrenberg. (Pl. XV. fig. 2.)
> Ehrenberg, Die Infus. 1838, p. 426, Taf. 1. fig. 6.

Notommata hyptopus
SP. CH, Corona without setigerous prominences; eiliary wreath single; foot about one-jifth of the total length, arising from the ventral surface and capable of being wholly withdrawn within it; trophi forcipate. Partially loricated.

This must be a rare animal; for, since Ehrenberg found two specimens in 1885, no one but Dujardin and Perty records having seen it. I have myself only seen it twice; but on one of these occasions I fortunately had many specimens, and so I was able to add something to Ehrenberg's rather meagre details. The first thing that strikes the observer is the creature's odd, wabbling way of swimming. This is due, no doubt, to its unusual shape ; for it is greatly compressed, having a narrow dorsal surface, but a broad lateral one. The skin can hardly be termed a lorica, yet there are several places where it is much stiffened. The two curved edges down the dorsal surface (figs. 2, 2a), the undulating edge of the trunk beneath the neck, and the rim of the aperture into which the foot ean be withdrawn, are all thick and unyielding. The corona is truncate, but bulges forward towards the centre. The marginal ciliary wreath is interrupted on each side by a long vibratile style. A grape-shaped mastax, with feeble forcipate trophi, lies close to the buccal orifice. Ehrenberg says that there is neither œesophagus nor intestine ; and if his two specimens had their alimentary canals much distended with food, these orguns would have appeared to be wanting. But in front of the true stomach, with thick cellular walls, there is a very thin transparent chamber (fig. 2a) often empty, and constantly puffed in and out, in ever-varying shapes.

This, I think, is an cesophagus similar to those in Asplanchna and Synchata; and, like them, capable of being distended with food, so as to be confluent with the stomach, or of collapsing to form a narrow tube. The apparent absence of intestine is also a temporary condition of the alimentary canal: my specimens had all a most well-marked intestine. The gastric glands are large and plainly nucleated; and the walls of the stomach are studded with unusually large oil-globules. The contractile vesicle is high on the ventral surface owing to the whole animal being tucked up, as it were, towards that surface. The lateral canals are unusually large and distinct; and lie, with their floccose ribbons, close to the skin: they are well shown in fig. $2 b$. The same figure
shows the chief longitudinal muscles. The ovary (fig. 2a) is very large, and has large germs: a maturing ovum is visible in fig. 2. A large nervous ganglion of Notommatan type stretches back from the corona to the dorsal surface and bears a large red eye. I failed to find any antennæ. The male is unknown.

Length, $\frac{1}{70}$ inch. Habitat. Near Birmingham (T.B.) : rare,

Family X. NOTOMMATADA.

[Corona obliquely transverse; ciliary wreath of interrupted curves and clusters, usually with a marginal wreath surrounding the buccal orifice; trophi forcipate; foot furcate.

The Rotifera associated in this family may be considered the most typical representatives of the whole class. They are permanently free, never affixed to other objects, never to each other in clusters. Their bodies are not inclosed in tubes; their integument is more or less flexible, never hardened into a shelly mail. The body is generally cylindrical, with a length twice or thrice the diameter : the front does not expand into a flower-like disk, but is usually convex, often with a flat versatile face, inclined downwards (supposing the animal to be crawling), beset with strong vibrating cilia, so arranged that their combined action produces two vortices, one on each side of the head. The posterior extremity bears a foot of several diminishing joints, capable, in a slight degree, of telescopic inversion ; and the last of these bears two diverging toes, chitinous in structure, used for support and locomotion.

The trophi are well developed, all the seven constituent elements-the labrum, the two mallei, the two incus-rami, the fulcrum and the labium-corresponding homologically to the labrum, the mandibles, the maxilla and the labium, of insects, ${ }^{1}$ being present, in relative proportions. The mastax is so placed that the jaws can be freely protruded from the buccal orifice, as has been seen in most of the genera, and used, forceps-like, to slit the cells of Alga, to nibble the flocculent matter which grows on vegetable stems, or to seize, retain, and devour active animalcules.

Some of the genera possess a singular apparatus for suddenly augmenting locomotion, in the form of a pair of orguns (auricles), ordinarily concealed, which can be thrust out in an instant, by eversion of the skin. The surface which is then esternal is clothed with cilia, dense, vigorous, and capable of producing ample vortices in the water.

The Notommatade are the most highly organised of all Rotifera ; the most sudden, varied, and energetic in their motions; most highly endowed with external senseorgans; most predatory; most nearly approaching to the Articulate elasses, not only in their manducatory organs, but also in their skin usually firm, elastic, capable of being thrown into transverse folds, or sub-articulations, more or less permanent. If not the most beautiful, they may claim to be the most interesting ; best repaying investigation, while they present the greatest difficulties to the student. As this must be considered the central or typical family, without adopting all the fancies of the Circular theories, we may suggest that the relation between the genus Furcularia and the Loricata, through Diaschiza, is very close: that Proales, with its long prone face, leads to the Bdelloida through Adineta: that the skipping species of Furcularia, as longiseta and aqualis, look towards the Scirtopoda: and that in the mucous investiture common in the genus Copeus, we perceive a reflection of the excreted tubes of the Rhizota, P.H.G.]

[^63]
Genus albertia, Dujardin.

[GEN. CH. Body vermiform, lengthened; ciliated face sub-prone; eyes wanting; jaws minute, forcipate; foot small, one-loed. Entozoically parasitic in Annellida.P.H.G.]
A. intrusor, Gosse, sp. nov.
(Pl. XVII. fig. 18.)
[SP, CH. Body greatly lengthened, nearly cylindric, but swollen behind; foot of one joint, besides the toe, which is a small cone; viscera divided by annular constrictions, within the straight (unconstricted) integument.

This species seems distinct from the A. vermiculus of M. Dujardin, if I may judge from his figures (Infus. P1. 22.1A, B). The general form of that is uniformly cylindrical, slightly tapering to a great conical foot ; of this, cylindrical, gradually swelling to the ventricose hind parts, where a very minute conical toe terminates a small onejointed foot. The mastax and jaws of that species are moderately large; of this, excessively minute. That species is parasitic within earthworms and slugs; this, within water-worms (Nais). The discovery of the following species makes it almost certain that these differences are speeific.

The body is greatly elongated, slender in front, thickening behind the middle, so that the diameter of the hind part is just double that of the fore. As, however, a great ovate egg was mature in the ovary, at the very extremity of the visceral cavity, of the specimen figured, the body may have been more than nsually swollen. The ciliated face is broad and oblique; the mastax minute, displaying a forcipate incus, with broad blades, resembling those of Diglena, to which are attached slender simple mallei, with long straight arms inflexed at their extremities. All the trophi are frequently protruded fully half-way from the ciliated front, and vigorously snapped. A very slender œsophagus leads to a long alimentary canal, which is constricted at short intervals thronghout, but appears to be simple. No gastric, or biliary (?) glands were seen. The ovary is long, and occupies the greater part of the abdomen. In all the specimens that I examined, there were seven or eight amorphous nuclei, and one large well-matured ovum filling up the posterior end; its substance minutely granular, with a vitelline globule near the anterior end. Between this ovum and the intestine was a small contractile vesicle. A minute point projects from the front, which may possibly be a sense-organ, but I perceived no sets on it. A long pointed occipital sac descends far below the mastax, but is destitute of any eye-speck. The whole animal is slightly tinged with yellow; and this is the only trace of colour in it, as the abdomen contains no coloured food, owing to its peculiar economy. For the animal lives as a parasite in the visceral cavity of Naïs proboscidea. I was examining a specimen of this aquatic worm (in Octoher 1854), when a slight pressure of the compressorium caused it to scparate into t , parts. I had looked over it with a lens, but had no suspicion that my Naïs was any other than a single integer, and unfortunately it was not in focus when the separation took place, so that I did not actually watch the process. The next moment, however, I found that I had two perfect Naides; the one which had been the tail differing only by being a little smaller, but with a head, eyes, and proboscis, as perfect as the other. The one which must be called the parent had the hind extremity less distinct than the daughter, and there was a slight trace of jaggedness visible. But my attention was arrested by a vermiform animal shooting swiftly through the water; and presently another. They were evidently Rotiferous, and as I was sure that they had not been in the live-box before, I conjectured that they had been discharged from the body of the Nais, at the moment of division. This was immediately confirmed : for, on examining the Naïs, I found, within the alimentary canal of the parent, near the dividing point, three or more of the parasites snugly nestled, and actively writhing about. All the
specimens agreed accurately with each other, as described above. In the open water they swam swiftly; and it was difficult to confine them even with the compressor; for they soon managed, by contraction and elongation, to wriggle themselves out of the field of view. The Naïs was from a pool at Walthamstow. Examining another Naïs from the same phial, I found a single Albertia in the intestine; in another, an egg of the parasite was within the intestine, attached to a pellet of fecal matter, which pushed it along. The opacity of the bowel prevented my seeing whether any matured parasites were present or not in this case.-P,H.G.]

Length, $\frac{1}{100}$ inch; diameter, $5 \frac{1}{0}$ to ${ }_{1000}{ }^{\frac{1}{0}}$ inch. Habitat, Walthamstow (P.H.G.): entozoic.

A. Nailds, Bousfield, sp. nov. (PI. XVII. fig. 14.)

[SP. CH. Body moderately long, the cervical and pectoral parts the thickest, diminishing to the hind part ; toe minute, soft, papilliform; integament slightly constrioted in the hinder half.

This species was discovered by Mr. Edward C. Bousfield, who has kindly communicated to me his own careful drawings and descriptive MS. notes. He has "several times observed it in situ, in Nalls barbata, hiving free within the cavity of the stomach of its host."
"Body cylindrical, soft, hyaline, vermicular, extremely flexible and telescopic, especially the hinder part. Anterior extremity truncate. Trochal dise small, oblique, on dorsal aspect of body. [One drawing shows that it is invertile, the cilia being depicted far down the buccal funnel.-P.H.G.] Jaws very minute, protrusile, snapping. Alimentary canal conical, extending through the body, opening at the junction of the last two segments. Gastric gland semi-ovoid. Ovary straight, slender, cylindro-conical; the ova developed serially. A minute contractile vesicle.
"Candal appendage [= foot, P.H.G.] papilliform, composed of two joints [of which the terminal is] soft, resembling in its action the finger of an elephant's trunk."
"Habitat. Vicinity of London. Anterior portion of stomach of Nais, in which it moves freely. Egg about one-third of length of parent's body, Length, ${ }_{2} \frac{1}{70}$ inch. ${ }^{1+1}$ -P.H.G.]

Genus taphrocampa, Gosse.
[GEN. CH, Body fusiform or cylindrical, annulose, furnished with two furcate toes; trophi forcipate ; rotatory cilia wanting or very limited.
T. annulosa, Gosse.
(Pl. XVII. fig. 12.)
Tapherocampa annulosa.
Gosse, Ann. Nat. Hist. 2 Ser. 1851, p. 199.
SP. CH. Body cylindrical, short and thick, marked throughout with distinct articulutions; brain opaque; alimentary canal simple, wide, cylindrical; terminal fork thick, conical, acute.

This animal is very larva-like; the body consists of many well-marked rings or segments which are set within the clear cylindrical integument, apparently touching this only at the points. Each of these, if viewed through the longitudinal line, wonld be of a sub-square outline, with four projecting angles, as seen at fig. 12h. In general no vortices are seen, nor any trace of vibratile cilia, so that I long concluded

Thus the three recorded species differ notably in their respective dimensions:-A, vermiculus being $\frac{1}{60}$ inch to $\frac{1}{20}$ inch (Duj.) ; A, intrusor, $\frac{1}{200} \mathrm{in}$. (P.H.G.) ; A. nä̈lis, $\frac{1}{270}$ in. (Bousfield),
rotatory organs to be wanting. Yet, lately I saw one on whose front a strong ciliary action was conspicuous: it seemed as if the ciliate surface were on the prone side of the front. The species, moreover, is furnished with protrusile auricles for augmented locomotion, like Notommata proper. I have not myself seen these, indeed; but the fact rests on ample evidence. Dr. Hudson was assured by Mr. Brayley, the Secretury of the Bristol Microscopical Society, that he had seen a Taphrocampx "put out very small auricles from the head, and swim with a slight vermiform movement." He had made a pen-andink sketch of the creature in both conditions; which sketch is in my possession, and represents indubitably T. annulosa. Miss Saunders, too, a careful observer, writes me under date of June 10: "Watching your Taphrocampa annulosa a long time, I saw it thrust out an ear-like lobe on each side, and swim frantically about in a most headlong fashion; but only one of three did this. The processes were not very prominent, but were quite distinct." This fact affords an interesting link with the present family.

The form of the mastax and trophi, too, though not yet quite satisfactorily defined, is evidently Notommatous, and seems to resemble the pattern seen in some of the Furcularic, and some of the Rattulide also, consisting of an ineus with a long fulcrum and a pair of long incurved mallei. The animal can bring the tips of the jaws to the very front, and nibbles floccose matters with them. An alimentary canal, broad and straight, with no accessory glands, and with no constriction, runs through the cavity to the cloaca close to the forked toes. It is usually empty and colourless. At the occiput, behind the mastax, and almost invariably sharing its motions in contraction and elongation, is a moderate-sized mass of opaque matter, white by reflected light, and probably chalky. Like a similar mass in many Notommate, with which it is another link, it lies at the bottom of a wide and deep sac. I had vainly searched for any trace of red pigment in this mass which might indicate an eye. On one oceasion recently, however, I was examining a specimen under direct sum-light, when there suddenly flashed out from the opaque mass a spark of radiance, as if from an eye-lens, though I could not discern any red hue. What represents the ordinary foot and toes is peculiar. It would seem rather to be a forked tail ; for I have seen, now and then, projecting beneath this, a very delicate rounded lobe, which is possibly the foot, the cloaca opening between these. Or, rather, it is the optical expression of the lower half of the cylindrieal rectum, of which the middle of the crescentic fork forms the upper part or ceiling. The intestine can be traced down to this orifice beneath the fork. The fork, or, if this explanation is correct, the tail, is formed of two incurved taper, chitinous, clear, sharp spines, together making a semicircle; but not separated into toes, nor articulated with the segment that carries them, and so having no power of motion independent of one another, or of their segment. True toes would have both

The animal contracts strongly and continually, like a Notommata; but the sphere of the contraction is the space occupied by the alimentary canal, the parts both before and behind this viscus remaining maffected, while the parts included contract forcibly, and both ways, but chiefly from behind forward. In most of its movements it resembles Chatonotus, crawling sluggishly about the glass, and the masses of sediment. ${ }^{1}$ - P.H.G.I

Length. About $\frac{1}{150}$ inch. Habitat. Pools and ditches : common (P.H.G.).

[^64]T. Saundersias, Gosse, sp. nov.
(Pl. XVII. fig. 11.)
Taphrocampa Saundersioa . . Hud80n, J. Roy, Mier. Soc. 2 Ser. voI. v. 1885, p. 614, pt. xū.

[SP. CH. Body lengthened, fusiform, annulate; brain clear: a decurved frontal hood ; two eyes (?) ; a distinct tail; foot and furcate toes of normal form.

Many examples of this form occurred to my observation in the floccose sediment of water, very rich in Rotiferous life, which was sent me by Miss Saunders of Cheltenham, in May 1885, dipped from a tank which she had used as a preserve of living Rotifera. But Dr. Hudson had observed the same species in water from Birmingham, in July 1884; and bad prepared a notice of it for the "Journ. Roy. Mic. Soc." The publication was delayed, however, throngh press of matter, till the following spring. It is a very distinct species, less ubnormal than T. annulosa, more manifestly Notommatous in its affinities.

The body is divided into well-marked rings, about seven or eight, not so numerous as in annulosa; each of which rises to what seems a sharp edge; but momentary glimpses, which one has as it turns around the weeds, show a number (not only four) of conical points (perhaps about eight in the dorsal half) in the transverse section (as at fig. 11b), the expression of as many series of conical elevations rumning down the whole (possibly dorsal and lateral) surface. The head is rather large, and sub-globose (fig. 11), and seems permanent in outline ; as the restless animal twists and turns itself about constantly, causing much change of diameter, the head remaining undiminished, the neck (so to speak) becomes conspicuonsly slender, to be filled up by the next contraction, in an instant. Very frequent retractation of the hind parts towards the head occurs. There is a marked dimination in these parts, the ultimate segment bearing two moderately short diverging toes; the penult or antepenult segment sending forth a distinct conical projection, which follows the general direction of the body, and may be called a tail, with more breadth than depth, much as in Notomm. tripus, N. pilarius, and others (fig. 11a). The front of the head bears a projection, which, on a lateral view (fig. $11 a$), looks like a proboscis, and often like a sharp hook, bent forward and downward; yet I think it has considerable width, and Dr. Hudson has found it to be a broad arehed hood. Just behind this organ, and so on the very front of the globose bead, are a pair of minute colourless globules, quite conspicuous in all aspects, which may be eye-spots. The mastax consists of two stout, eurved, pointed tetth, capuble of being widely expanded and closed, like the blades of acissors (fig. 11) ; these appear based on an oblong transparent body, probably the muscular bulb requisite for motion. The points can be brought to the edge of the front. ${ }^{1}$ The front is oblique; it is composed of several fleshy eminences, each bearing a crown of cilia, whose vibrations I have distinctly seen, though they do not appear to constitute a disk or rota. The animal's motion in the free water, a smooth and rather swift gliding, is doubtless produced by these frontal cilia. Accurate observation, with the high powers required by its minuteness, is very difficult from its incessant restlessness; as it glides through the open, it is constantly contracting and extending the body; at the nearest atom of sediment it panses, but instantly throws itself into rapid contortions. A long stomach, capable of much width where it proceeds from the mastax, reaches to the cloaca under the tail, while a large ovary occupies the ventral region. The body is transparent, more or less tinged with yellow. The stomach usually contains particles of dark food, sufficient sometimes to impart a blackish hue to the body; while the entire venter may be filled with a dark egg.

I have honoured this species with the name of Miss Saunders of Cheltenham-from

[^65]whom I have received many specimens-a lady, who, for many years, has given intelligent attention to this class of animals, and who has aided me very effectively in my researches.-P.H.G.] ${ }^{1}$

Length, $\frac{1}{120}$ to $\frac{1}{10}$ inch. Habitat. Pools near Birmingham (C.T.H.); Cheltenham (P.H.G.) : not rare.

Genus pleurotrocha, Ehrenberg,

GEN. CH. "No eyes ; mallei one-toothed; foot furcate" (Ehr.).
(There seems nothing very obvious to distinguish this genus from Notommata, but the lack of eyes, both cervical and frontal ; and characters that are merely negative are always somewhat unsatisfactory. The form seems searcely to have attracted attention in Britain. In the close, almost daily, study of the class, which I pursued some thirty years ago, it never occurred to my notice; no example of it appears in Dr. Collins's richly-stored book of drawings ; Dr. Hudson has no record of it ; and in my recent resumption of the study, extending over the last year and more, I have met with but three examples; which, with more or less certainty, I identify with the three recorded species of Prof. Ehrenberg. Doubtless, by us all, it may possibly have been confounded with the obscurer species of Notommatada, and have been overlooked. But yet the common difficulty of discerning the eye in a restless animalcule is more likely to cause a Notommata to be taken for a Pleurotrocha, than a Pleurotrocha for a Notommata.-P.H.G.]

> P. cosstricta, (9) Ehrenberg.
> (PI. XVIIL. fig. 3.)
[SP. CH. Toes moderately long, acute, straight.
If this is identical with P, constricta, the singular and almost unprccedented illustration which Prof. Ehrenberg has given us on the testimony of his own eyes, of its predatory instincts, I may cite as adding to it the greatest interest. He has figured the apparently weak and unarmed Pleurotrocha as watching a specimen of the swift and vigorous Notommata lacinulata; then, as having seized it; then, as sucking out its juices; and then, as having dropped away the now empty skin. Well may he give it the secondary title of The Robber.

I have seen nothing of this in the little delicate creature which I here represent. It occurred to me in the spring of 1885 , and then for so brief a period that I had but just time to make a drawing of it, which is here reproduced. It is indubitably rare. Ehrenberg appears to have seen but two examples, one of which was the above warrior of now historic renown. I had no time for measuring mine, but his length of 1 dr inch would well enough agree with my estimate. But, a few months later, I met with a specimen in water from Dundee represented in fig. 3 , which I conclude to be specifically identical with the above, though there are some slight differences. The front is broader; and, though I could not say that auricles were actually protruded, their presence seemed indicated. (I incline to think the existence of these aids to locomotion more usual in the class than is generally accredited.) The toes also are more slender and more acute. It was active and moderately swift, gliding through the clear water; now and then suddenly darting a little right or left of its course, and apparently seizing some invisible prey. The manner of the action could not be mistaken; it was manifestly predatory.

The mastax was large and conspicuous; but I could not obtain a look at it sufficiently steady to define it. The intestinal canal was ample and filled with dark bistre-

[^66]brown granular food. The toes are usually held close appressed when the animal is gliding ; but often expanded. It was lost before I could complete my observation.

This individual was fonnd in Monk Mire Loch near Dundee, in August 1885, among slender filamentons weed crowded with minute diatoms, making dense masses of impalpable floccose. The former was from Woolston Pond, Hants.-P.H.G.]

Length, İt inch (9). Habitat. Woolston ; Birmingham; Dundee (P.H.G.).

P. leptura (?), Ehrenberg. (PI. XVIII. fig. 4.)

[SP. OH. Toes moderately long, slender, acute, slightly decurved; face oblique.
This species is of equal rarity, in my experience, with its two congeners ; a single solitary example alone having occurred to me, and that at about the same time.

The ciliated front is mnch more prone than I observed in the others, and the mastax was at one time so thrust forward that the trophi were brought to the very face, as we see with many of the Notommats. The outline is gracefully swelling, and tapering behind; and the form and curve of the slender toes are elegant.-P.H.G.]

Length. About $\mathrm{T}^{\frac{1}{2}}$ inch. Habitat. Woolston Pond (P.H.G.).

P. girba (?), Ehrenherg. (Pl. XVIII. fig. 5.)

[SP. CH. Shorl and thick in proportion to its length; toes moderately long and broad, nearly straight.

It is with great hesitation that I attach Ehrenberg's name of gibba to this little species. The general shortness and stoutness of form agree, and, though the lumbar parts of the body want the plumpness whence he has selected an appellation, this may be a variable character dependent on repletion of the alimentary canal. My figure was drawn from life; but the example was lost before I had completed my observations. It was in the early spring of 1885 ; but I made no record of the source whence it was obtained.-P.H.G.]

Length. About $\frac{1}{2} \delta$ inch: whereas Ehrenberg gives $\frac{1}{2} \frac{1}{6}$ inch as the average of his.

Genus notommata, Gosse (nee Elir.).

[GEN. CH. Body not annulose, cylindrical, furnished behind with a projecting tail; special organs (auricles) on the head for locomotion, evertile and protrusile; brain large, containing opaque chalk-masses; trophi virgate. There are species in which one or more of these characters may not be found.

The genus Notommata of Ehrenberg, even as it left his pen, was a heterogenous mass of dissimilar species. Many naturalists have indicated the need of dividing and redistributing the unwieldy group; but none have yet ventured upon the task. I propose to break it up into three distinct genera. The family Asplanchnadee having been already formed, some species of large size, sacciform body, and hyaline transparency, migrate thither ; while others of similar appearance may be associated with the Hydatinade. These being eliminated, there comes the curious species N. copeus, which Ehrenberg distinguished by large dimensions, a fusiform body, a distinet tail, and organs of special sense, projecting from the lumbar regions, as well as from the head. As a number of others, allied to this form, have been discovered, I form them into a separate group with the generic appellation of Copeus. Then there is a group of conspicuous species, marked by auricles, by a more or less distinct tail, and by the brain being unusually
developed, and opaque with chalk deposits. This genus may retain the name of Notommata. There still remain a multitude of species, nostly of small, none of large, size, with characters mainly negative, yet having much in common with each other, a community more easily recognized than described; but having the ciliate face more or less obliquely prone. These make thie genus Proales. The second of these three is characterized above, and shall still prolong the time-honoured title. It is even now a populous tribe, as usual with typical groups : yet not unnaturally associated. Its constituent species are easy of recognition, by three prominent characters, all fairly constant-1, the tail ; 2, the auricles; 8 , the opaque brain. The first is moderately conspicuous, and readily distinguished by being always on the dorsal side of the cloaca, while the foot and toes are always on the ventral. The second is not always available, being often inactive and invisible; but if seen, seen without doubt. The third is the best mark: the opaque brain-mass, like a vast well-defined black olond, striking the eye at the first glance, uumistakably.

The genus is widely distributed in our fresh waters.-P.H.G.]
N. Aumita, Ehrenberg.
(Pl. XVII. fig. 6.)
Notommata aurita . . . Ehrenberg, Die Infus, 1838, p. 430, Tat. lii. fig, iii. Gosse, Trans. Micr. Soc. Lond. 1852, p. 93, pls. xii. xv.
[SP. CH. Body sub-oylindric, ventricose; brain opaque; head wide, furnished with evertile auricles ; tail minute.

Of this moderately large species, of elaborate organization, and of frequent occurrence, the anatomy has been given with so much detail, by myself (loc. cit. supra), that only a very succinct account is needful here. Its opaque brain-mass, looking like a great black ball in the neek, connected by a tabe with the front, renders it conspicuous as soon as it is seen ; and when it glides throngh the clear water, the sudden quickening of its speed, as it everts the great ciliate hemispheres from its two cheeks is hardly less notable. ${ }^{1}$ The foot consists of two very short and small joints, telescopically infolded; bearing two furcate toes, acute cones, also short and small.-P.H.G.]

Length, to to sto inch. Habitat. Fresh waters. Common everywhere (P.H.G.).

N. ansata, Ehrenberg. (PI. XVII, fig. 3.)

[SP.CH. Closely resembling N . aurita in form and structure, but smaller; the brain not opaque ; the toes long.

The examples of this species that I have observed I could distinguish from the preceding only by the points mentioned above. Perhaps it is slightly more slender, more cylindrical. Ehrenberg gives no appreciable diagnosis between the two forms ; nor can his figures be distinguished, save by the lack of opacity on the brain of ansata. The length of the toes is, however, a good mark, and readily observed.

A few specimens have occurred to me in water sent me by Dr. Collins from Berkshire, containing aquatic moss. They moved in the clear, with great impetuosity, driving round and round, and turning on their course, with no apparent aim. One made its way just within the edge of a moss-leaf, where it worked for itself a little hollow, in which it remained several hours, incessantly turning round and round, or to and fro, as fast as it could move, without a moment's intermission. In this example the alimen-

[^67]tary canal was large, not visibly separated, and filled with food of a rich dark-brown hue. The toes are long, slender, neate, and slightly decurved. The auricles, which were freely protruded, are rather small.-P.H.G.]

Length, $\frac{1}{200}$ inch. Habitat. Sandhurst, Berks ; Epping Forest; Woolston, Hants (P.H.G.) ; pools : rare.

N. cyntores, Gosse, sp, nov.
 (PI. XVII. fig. 7.)

[SR. CH. In form resembling N. aurita, but very much smaller, and more slender in proportion; brain intensely opaque; no visible auricles; toes long, decurved.

This little species I had known from a single specimen just dead, in Angust 1851, which I found in water from Widcombe Pond, Bath. I had never met with it again till June 1885, when I found a second in water from Woolston, and subsequently many, from many localities. It much resembles N. aurita; but is smaller; and the toes are slender and decurved. A pair of colourless specks, like air-globules, are in its front, which may be eyes, and a large brain, which carries at its hinder end an aggregation of opaque matter forming a collection of round cells. This, by refracted light, is intensely black, as in aurita, and renders the species very conspicuous, reaching far down into the body-cavity. The mastax is normal; the alimentary canal also large, not visibly divided ; ovary and contractile vesiole as ordinary.

In manners it is particularly sluggish, scareely changing its place, though in constant motion. It roots and nibbles among the floccose sediment, and affects concealment, seeking the shelter of the thin integument of decaying Nitella, and such-like plants, under which it hides; and, if it creep out for an instant, presently betaking itself to its refuge again, where it twists and turns restlessly on its centre.-P.H.G.]

Length. About $\frac{1}{160}$ inch. Habitat. Bath; Woolston; Sandhurst, Berks; Epping Forest; Cheltenham (P.H.G.) ; pools: not common.

N. rrirus, Ehrenberg (nec Leydig.)

(PI. XVII. fig. 4.)
[SP. CH. Body thick, arched dorsally, diminished behind to a conspiouous tail, and furcate toes; tail equal in length to the toes; brain opaque; auricles small, slender.

I know this animal by a single specimen, which I found among Myriophyllum in a tank in my own garden, near London, in 1854. It has never occurred to me again; and I do not feel quite certain that it is the tripus of Ehrenberg. The body is marked by several strong folds of the skin. Viewed from the side it is arched, and the ventral outline is concave; but the ovary was undeveloped, which fact might modify the form. The frontal cilia are set on a large ovate area looking ventrally (fig. 4), so that ordinarily the front appears rounded and free from cilia. Occasionally, however, the front is elevated and expanded somewhat angularly, and an auricle is thrust out on each side, of somewhat serpentine outline, set on its anterior edge with vibratile cilia, whose effect is manifest in accelerated motion. The brain runs down to a long obtuse point in the occiput, whose extremity, in my example, was occupied (fig. 4a) with some irregular granules of opaque matter; seated on the end of which was a large pearshaped red eye. The posterior extremity of the trunk runs out into a prominent tail, a tapering cone, with alternate constrictions and swellings. Beneath this are the furcate toes ; and as the tail is of the same length as these, and diverges at a like angle, forming three angles of a triangle, the animal well deserves its specific name.-P.H.G.]

Length, its inch. Habitat. A garden pan, near London (P.H.G.).

n, pllarius, Gosse, sp. nov.
(Pl. XVII. fig. ह.)
Leydig, Ueb. d. Bau d. Räderth. p. 37. Taf. iii. fig. 28.

Notonmata tripua
[SP. CH. Body (viewed dorsally) rhomboidal in outline, sub-truncate at both ends ; head broad, with great globose auricles; brain pointed, filled to a greater or less extent with opaque matter ; tail and toes as in N . tripus.

This little creature has much likeness to the preceding, from which, however, it sufficiently differs in the trapeziform ontline, tapering from the middle to the foot; in the size and form of the avricles, which are very large, hyaline, and round, more than a semi-globe being exposed; in the conspicuons eye; in the singular overarching of the edges of the dorsal region, like the carapace of an Oniscus. Mr. Perty mentions this peculiarity in his N. onisciformis ; yet a glance at his figure proves that the two species are not identical. The singular effect produced when the little creature suddenly pushes ont, and as suddenly withdraws, its frontal balls of glass, reminded me of the ancient pilarii, or jugglers with balls, and suggested a specific name.

The great transverse diameter of the body is remarkable. The rhomboidal outline has much of the appearance of a lorica; for it is constant, and the viscera within take the form of great sacculate lobes, varying, and more or less receding, from this outline. The brain is a large, perfectly defined opaque mass stretching almost wholly across the head. ${ }^{1}$ There seems to be a very minute crimson eye-speck in the centre of the front, discernible with difficulty. The contractile vesicle is very large ; its period of discharge was just two minutes. The globular auricles are exserted only at uncertain intervals, as when the animal wishes to swim swiftly. We may watch one by the hour, creeping up and down the stems, nibbling ever as it goes, or even now and then slowly gliding through the clear water; yet not once see the crystal balls thrust out by the little juggler. Yet is he unmistakable, in whatever condition, when once familiarly known; and a very pretty, attractive little fellow he is.

I first became cognizant of it in February 1855, when examining a tangle of conferva and Nitella in one of my window-reservoirs at Torquay. But I have since met with it on many occasions and in many waters. It is moderately lively, actively grubbing ubout the vegetation and sediment, now and then swimming across the open spaces, generally with little speed or energy, till the great glassy globes are set to work. The interior structure calls for no special notice.-P.H.G.]

Length, $\frac{1}{200}$ inch; breadth, $\frac{1}{100}$ inch. Habitat. Woolston Pond: common (P.H.G.).

N. foreipata, Ehrenberg.
(PI. XVIII, fig. 1.)
Ehrenberg, Die Infus. 1838, p. 428, Taf. 1i. fig. 5.

Nolommala forcipata .
[SP. CH. Form lengthened, sacoate, large in front, tapering to a small foot, and very minute furcate toes ; occipital end of brain semi-opaque, a small inverted pyramid; eye a broad transverse lens.

This is an active, graceful, attractive animal, somewhat sack- or purse-like, slender behind, but enlarged towards the head, which is in constant contraction. The front is obtuse in the dorsal and lateral aspects; the face is slightly prone. Behind a large mastax of normal jaws, very protrusile, an ample brain descends into the occiput, whose pyramidal tip, for a small space, is occupied by a well-defined grannlation of elear brown tissue, not white by reflected light, and so not cretaceous; on the frontal end of which is seated a broad, somewhat square eye of pigment darkly red. Two small ciliate

[^68]auricles can, at will, be protruded from the head, and I believe there is a small appressed antenna. The cloaca is very manifest, overhung by a minute wart-like projection. Then the foot tapers rapidly, ending in small, sometimes very minute, furcate toes, which about mid-length lessen abruptly, leaving a marked shoulder (fig, 16).

I am indebted to Mr, Bolton for many specimens on repeated occasions.-P.H.G.]
Length, $\frac{1}{80}$ inch. Habitat. A ditch in Sutton Park, Birmingham (P.H.G.).
N. brachyota, Elurenberg.
(Pl. XVII. fig. 1.)
Notommata brachyota . . . Ehrenberg, Die Infus. 1838, p. 435, Taf. Ii. fig. 3.
[SP, CH. Brain clear; body fusiform; auricles small; foot invisible; toes minute; no tail.

Outline rounded and plump, stout in the middle, tapering to each end. The face is obliquely prone; a pair of very small auricles are thrust out from the sides of the head, occasionally, when pushing between stalks of Nitella, and not only when swimming. Fore and hind extremities hyaline, but corrugated longitudinally. Mastax large and round; mallei strong, of several teeth, on a long-stalked incus, much on the pattern seen in N, aurita, which worked vigorously and perseveringly, boring its way into a Nitella stalk, and nibbling till it had cleared a great space of its green pulp-cells. The eye-spot is moderately large, of full crimson. This, in an instant's good view, I discerned to be a regular globe, of which only the hinder half was red, the anterior half being quite colourless ; the two halves being distinctly divided by a clean line (fig. 1b). The clear half was doubtless a crystalline lens of very perfect form and of powerful magnification. This eye is seated near the end of a long occipital brain. I could detect no dark spot, on each side of the eye, as figured by Ehrenberg; but have little doubt of the species. A great sacculate stomach comes up, as a brown granular mass, to the mastax, furnished with the usual pair of ear-like gastric glands. It reaches, without any manifest division, nearly to the clear space around the base of the foot; a contractile vesicle intervening. The foot is soarcely distinguishable, the pair of very minute conical toes apparently emerging from the rounded end of the body. No projection could be called a tail. It was not till I had watched the creature a considerable time, actively engaged, that I suspected the head to be other than simple in outline. Then, as it was swimming smoothly, I noticed its motion suddenly augmented; and at the same instant I saw that two minute clear semi-globes were extruded, but only for a few moments; then withdrawn, and no trace left. The absence of these organs, therefore, must not confidently be inferred from the non-observation of them, particularly in species inadequately observed. The plump body seems very soft, compressible, and flexible; the integument thin, elastic, and yielding. The animal is eager, impatient, persevering, pushing everywhere. It really seemed to have some sense of locality, which its perfectly-formed eye might assist. For though it often strayed to a considerable distance, beyond many stalks, it invariably returned, and sought out its feeding-ground within the Nitella. I was called away ; but, after nearly two hours, there he was, pegging away at the very same hole !P.H.G.]

Length, $\frac{1}{30}$ inch. Habitat, Woolston Pond: rare (P.H.G.).

> N. sлccigeba, Ehrenberg.
(PI. XVII. fig. 2.)
Notommata saccigera
Ehrenberg, Die Infus. 1838, p. 434, Taf. 1. fig. 8 ,
[SP, CH. Slender, obtusely pointed at both ends; face prone, greatly lengthened, ending with a prominent chin; foot and toes small.

The form is unusually thin from side to side, oompared with the length, widening
sensibly at three-fourths from the head, and thence, more or less abruptly, dinnitishing. It is rather deeper (viewed laterally, fig. $2 a$), the dorsal outline rising to about the middle, thence falling to the tail. The ventral line is nearly straight, only that the ciliated face, almost quite prone, extends fully one-third of the length, and there forms a sort of projecting chin. The outline of this part is, however, very flexible and versatile. The dorsum terminates in a minute conical tubercle, beneath which the cloaca opens; so that it is a true tail. Below this is a very short and inconspicnous foot, and two minute furcate conical toes. The front is rounded, and can evolve two small hemispherical auricles, very observable, because they are freely protruded, even when the animal is not swimming, but pushing its way among the tangled alga. The mastax is ample, and the trophi of the normal pattern; behind, the brain descends low into the occiput, and carries a dark red eye near the middle of the sac. I have not seen this sac so pyriform as Prof. Ehrenberg has figured it. It is, in general, turbid toward the lower part, and sometimes quite opaque with angular chalk-masses. A large stomach and intestine, with gastric glands; a wide ovary ; indications of a vascular or branchial system, and a small contractile vesicle, are all normal, and require no remark. The animal is nsually tinged with an olive-brown hue, especially in the abdominal viscera.

Both the form and manners of this species strike the observer, at once, as unusual. It swims almost constantly; and affects the surface when in freedom. It makes a smooth rapid course, devious, and appurently objectless ; probably, however, governed by aims which we cannot appreciate. For it frequently makes little darts and jumps as it goes, with a sensible snap of the jaws, as if it took invisible prey. A number of examples occurred in water collected by Mr. Bolton from a ditch in Sutton Park, Birmingham, and specially marked "surface."

I presume this to be the N. saccigera of Ehrenberg, from the general form, the long pointed head, the long prone ciliated face, the short toes and shorter foot. Yet he has not noticed the auricles, nor the opacity of the brain. The former, however, are retractile ; and the latter varies much.-P.H.G.]

Length, $\frac{1}{\sqrt{8} 0}$ to $\frac{1}{108}$ inch. Habitat. Birmingham (P.H.G.).

> N. salas, Ehrenberg.
> (PL. XVIII. fig. 2.)

Notommata najas .

[SP. CH. Of large size, fusiform; brain clear; head broad, obsourely auricled; foot long; toes short, pointed.

This is a large and imposing form, evidently approaching the genus Copeus, yet showing no visible sense-organs projecting from the trunk. Its claim to a place in the present genus is slight, for the brain has no opacity, there is no tail, and the auricles, if present, are small, and appear to be permanent, as globose ciliated knobs, not evertile. Yet there is no prone face, and the general appearance and structure show affinity with these higher forms. The body is nearly cylindric, somewhat ventricose; the head nearly of the same width, divided into several broad but shallow lobes, the cilia on which make independent whorls. The mastax is ample, the jaws of the normal pattern. A brain descending into the occiput, and carrying a transversely ovate dark-red eye near its middle, ${ }^{1}$ is flanked by a shorter sae on each side;-another point of resemblance to Copeus. A small antenna projects from the occiput. Several annular folds of the ekin -false joints-encircle the body, three in the anterior half, and one distinguishing the trunk from the foot. The latter consists of three well-marked joints rapidly diminishing, terminated by two forked acute toes which are rather short. Two pyriform mucusglands run through the foot from the toes. The branchial system is well displayed:

[^69]a rather thick ribbon, slack, but scarcely convolute, passes down each side, apparently lost in (perhaps beneath) the lateral brain-sac, bearing sundry vibratile tags, and merging into a small contractile vesicle. The alimentary canal and the ovary were both amply sacculate in such specimens as I have examined.

I first met with this fine species on the dichotomous leaves of the Water Crowfoot, growing in a sumken pan in iny own garden near London, in the summer of 1849. It was vigorous and active, swimming rapidly through the water, with a beadlong, pushing violence, or fixing itself slightly by its toes, and thrusting about its head in all directions. It seemed fierce and voracious; for, though I did not actually see it swallow food, it several times munched with apparent greediness the side of a large Rotifer, returning to the attack, and seeming to bite ferociously. The Rotifer, if not materially injured, was thoroughly alarmed. I have since met with the species, but very rarely.-P.H.G.]

Length, $\frac{1}{80}$ inch. Habitat. Near Loudon (P.H.G.) : Sandhurst, Berks (Dr. Collins).

N. tuba, Ehrenberg.
 (Pl. XVII. fig. 8.)

Notontmala tubia
Ehrenberg, Die Infus. 1838, p. 483, Thaf. xlix. fig. 8.
[SP, CH. Body trumpet-shaped; brain clear; a cervical eye ; toes furcate, conical, minute.

My right to mention this species rests on a pencil-sketch which I made from life, many years ago, and which I still possess, but without sufficient detail to warrant description, and of which I have preserved no accompanying notes. In Dr. Collins's Notebook, which is kindly entrusted to me, there is a pencil-drawing to which he has attached this name; but this also is unaccompanied by any note, except the date 1866.

From Ehrenberg's figs. I conjecture that its affinities are with Hydatina, the cervieal eye notwithstanding.-P.H.G.]

N. hicinulata, Ehranberg.

 (El. XVII. fig. 9.)Nolommata lacinulata.
Ehrenberg, Die Infus. p. 428, Taf. 1i. fige i.
[SP. CH. Small; body cylindrical, thick, broadly truncate; brain clear; foot short; toes long; trophi forcipate; incus much developed, hemispheric; mallei very small.

This tiny, sprightly atom is of pleasing form ; vertically viewed, it is a very regular oval in outline, the head dilated, archedly truncate, and of a width, when the hemispheric auricles are out, equal to that of the body; while at the other end the acute divergent toes, set on a very short foot, make an elegant finish to the form. Laterally viewed, the diameter is nearly the same, the fore and hind extremities nearly perpendicular and nearly equal, the dorsal line arched, the ventral straight, the foot and toes set-on at the end of the latter.

The mastax is very large and the trophi peculiar. The incus is remarkably developed, the fulcrum stout and long, the rami forming, when closed, a transparent hemisphere, "so as to resemble, when viewed obliquely from above, a globe of glass standing on a pedestal." (See my mem. "On Manduc. Org." in "Phil. Trans." 1855, p. 482, pl. xvii. figs. 32 34.) The tips of the rami are habitually projected in greater or less degree from the front, so that there is no buccal funnel proper. Behind the mastax there is a large dilated pale-red eye, seated near the middle of a moderate brain, which carries no opaque chalk-granules. ${ }^{1}$ The alimentary canal is ample, usually filled with food of a rich yellow-brown hue, which adds much to the attractiveness of the animal.

[^70]I first found this species in various waters around London in 1849; and have been familiar with it ever since. Wherever filamentous sub-aquatic vegetation grows, it is sure to be abundant. A restless little creature, it ranges among the leaves with incessant activity, now pushing its way through some narrow aperture, using its toes as points of resistance ; now pausing to nibble among the decaying algae ; now scuttling off, by means of its ciliary puddles, to another quarter. The toes, when used as a rest, are often stretched asunder as wide as they will bear. In general a free rover through its tiny ocean, it yet occasionally, though rarely, anchors by the mucous excretion from its toes. These moorings it cannot always loosen when it wishes again to leave port. I have been amused to see one swiftly pursuing its course, dragging after it, at some half dozen times its own length, a bit of floccose sediment attached by an invisible thread. It seemed as it were pursued by an eager persevering enemy through all its windings, which enemy at length proved to be nothing but a bit of inanimate dirt.-P.H.G.]

Length, $\frac{1}{2 b \sigma}$ inch; of toes alone, $\frac{1}{12} \sigma$ inch; of egg, $\frac{1}{10}$ inch. Habitat. Everywhere in still fresh waters of aquatic vegetation : abundant (P.H.G. ; C.T.H.).
N. collagis (\%), Ehirenberg.
(PI, XVI. fig. 6.)

SP. CH. Body cylindrical, tapering to both extremities; ciliated face very long and oblique, projecting far out from the ventral surface just below the mastax; head with small evertite auricles; neek large and swollen; nervous ganglion tri-partite, semi-opaque at the free border; tail distinct; toes minute.

This Rotiferon (probably Ehrenberg's N. collaris) resembles Copeus Oerberus; and, like it, might almost be placed either in the genus Copeus or Notommata. I have only soen one specimen, which from its size (two-thirds of that given by Ehrenberg) was, I think, a young one. It can at once be distinguished from Copeus Cerberus by its singular ciliated face (which, on a side view [fig. 6a], gives the head quite a triangular outline), and by its swollen neck. My impression, when I drew fig. 6, was that this swollen condition of the neek was due to the presence of two unusually large and clear gastric glands, which inclosed the mastax between them, on one side, and pushed out the surface of the body on the other. But on referring to Ehrenberg's figure (loc. cit.), I found that he had drawn the gastric glands as small round bodies, decidedly below the neck. Unfortunately I lost my specimen before I had an opportunity of revising my sketch. The front of the head carries two low ciliated projections, one above each auricle ; the auricles themselves are decidedly larger than those of Copeus Cerberus.

The nervous ganglion consists of three distinct parts : a broad upper portion filling up the head; a narrower truncate part, projecting downwards to the top of the mastax; and a long flask-shaped body, the lower end of which, at times, reaches almost to the bottom of the mastax. There is a splendid crimson eye, and a very well developed vascular system. The rest of the internal structure requires no notice.

It is a sluggish creature, loving to creep among the alge; but at times it will protrude its auricles and swim off into the open, giving one, as it turns, a good view of the peaked gutter, in which the cilinted face projects in front of the mastax, just as in Copeus spicatus and C.labiatus. Although mine was but a young specimen, still it was a handsome Rotiferon; and a full-grown one of $\frac{1}{8 \pi}$ inch (Ehr. loc. cit.) would certainly be one of the largest and most striking of the Notommate. I am indebted to Mr. Thomas Bolton for this rare animal.

Length. My specimen, $\frac{\lambda}{70}$ inch (Ehrenberg's, $\frac{1}{\sqrt{5}}$ inch). Habitat. In water from Sutton Park (T.B.) : rare.

[^71]
Genus copeus, Gosse.

[GEN. CH. Usually of Large size, ventricose behind the midale, furnished with organs of sense' in the lumbar regions; brain usually threefold; body tailed.

The type of this natural group is, as already observed, Notommata copeus, of Prof. Ehrenberg, which I propose to honour with his own name, Copeus Ehrenbergii. As I have myself found several other species closely allied to this, yet quite distinct, in a very brief period, and in one locality, it is probable that future research may considerably augment their number.

The feature which peculiarly marks the genus is the existence of organs, doubtless of some unknown sense, not only in the vieinity of the great brain (where their presence is quite normal), but in the lumbar region of the trunk, far from the brain, where it seems strange to find them, and where the form and conditions of the surrounding parts seem to preclude their advantageous exercise. This, however, is but the expression of our ignorance.

In many cases there is some extraordinary development of the ciliary system, in the shape of wide expansions of the face, or remarkable forms of the auricles, lately described; and sometimes the tuil takes unusual shape and size. The skin, in several cases, has the power of secreting a dense mucus, insoluble in water, so as to constitute a thick coherent mantle for the animal, in which extraneons matters are entangled; and the production and retention of this seem to be subject to the animal's will.

It is perhaps in harmony with this specialty of sense-development that the brain itself is generally of great size, and of complex form ; for there is often, in addition to the central sac, which is sometimes pyriform with a tubular stalk, a secondary sac on each side.

The species are for the most part of large dimensions, heavy and unwieldy in motion, and vegetable feeders.-P.H.G.]

C. Labiatus, Gosse, sp. nov.

(Pl. XVI. fig. 1.)

Notommata centrura . . . Leydig, Veb, d. Band. Fiaterlh. p, 33. Tat, iii. fig, 21.

[SP. CH. Lumbar regions furrished on each site with a stout seta (apparently single) projecting horizontally; tail pointed; chin projected into a long, horizontal, channelled, ciliated process, very versatite; brain threefold.

This noble species I at first thonght to be the N_{s} copeus of Ehrenberg. Yet the dissimilar structure of the head presently showed that it is quite distinct. ${ }^{2}$ There is no trace of the great lateral telegraph-like arms which project from the head in C. Ehrenbergii; what answer to the auricles being small ciliate channels, bent-over at their ends, into which the front is produced on each side. These cilia are continued along the frontal margin ; while from the lower part of the face projects horizontally forward a very moveable lip in the form of a great fold of transparent flesh, of which the two sides, sloping outward, make a channel as long as the width of the head, deep at the base, but coming to a point, its edges, which fold over toward the hollow (see fig. 1a), being fringed with locomotive cilia. From the occiput projects, pointing outward and forward, a stout antenna, of outline swelling to about seven-eighths of its height, then diminishing with an angle, to a truncate end, whence issues a brush of divergent sete, evidently connected by internal nerve-threads with the brain beneath. The ciliation of the face reaches far below the lip on the ventral surface. The longitudinal muscles are very uumerous and conspicuous. Immediately behind the front is a row of (at least) four oval translucent masses, which may be compared with the globose masses in the head of Hydatina
${ }^{1}$ An account of these "sense-organs," "antennex," or "tentacles," in the whole Class, will be given at the end of Part VI,-C.T.H.
${ }^{2}$ Dr. Leydig, who (loc, cit.) has well described and figured this species, assumes that it is the N. centrura of Ehrenherg. But so practised an observer could not have overlooked the great lip, if labriatus had indeed been before him.
senta and Euchlanis deflexa; these appear to be quite independent of the great brain proper. This is here triple; the middle lobe is pear-shaped, depending considerably below the mastax, with a long slender neck, quite pellucid, having a great red eye seated near its mid-length; on each side is a similar but shorter lobe. The trophi are of the pattern in N.aurita : each uncus is somewhat slender, and seems to comprise but two fingers; but, from the opacity of the parts, I am not certain. Under pressure, there seemed to be five, blade-shaped, and closely parallel. A very long cesophagus leads to a wide and ample alimentary canal, divided by a sensible constriction into stomach and intestine, even when there is no diminution in their common outline. But this condition I saw rather suddenly mucF altered; so that the constriction was made as manifest as if a cord had been drawn tightly round. Both stomach and intestine were, in all specimens that I have seen, moderately full of dark yellow-brown granular food, interspersed with orange-coloured oil-globules, brilliantly refractive, most thickly at the pyloric end. The alimentary canal, when moderately filled with food, has a very peculiar appearance, as if divided by constrictions, both transverse and longitudinal, into squares. This is not accidental, but characteristic, being seen in every example that has occurred to me, and distinguishing the species from all its congeners. A pair of ovate, colourless gastric glands are seated on the two shoulders of the stomach, The contractile vesicle is large; the branchise take the form of two very long, and very slender bags, transparent, but much corrugated, rather than of convoluted cords. I counted three vibratile tags, which happened to be all on the same side: one level with the eye, one with the lumbar seta, and one intermediate. The ovary appeared normal. The fusiform body ends in a well-marked tail, stiff, transparent, tapering to a point, but diminishing abruptly in the middle, forming a distinct shoulder there. Through it runs a pair of chain-like glands, resembling those in the toes, supposed to be mucous. A foot of two joints carries a pair of straight, short, conical acute toes.

The manners of this striking creature were rather sluggish, though it moved and turned and twisted about restlessly. I did not see it swim. I had an interesting observation of the character of its food, and of its mode of feeding. The water was much stocked with the finer desmids and diatoms,-great Closterinms, Enastrums, Cosmariums, and the like. I caught my Copers eating a great Epithemia turgida. He had evidently only just seized it with his protruded jaws, and had drawn one end of the desmid into his mouth, and was vigorously biting it. After a while, the frustule was piereed, as was seen by the cloud of dark granules that rushed down the mastax. All the contents were quickly sucked-in, till the shell was as empty and clear as a glass vessel ; to the manifest increase of the dark contents of the alimentary canal. Then it was contemptuously thrown away. Another had partly gnawed through a slender filament of couferva, and had extracted, and was still extracting, the green granules from its interior, just at that part. Afterward I saw it devouring a small crescentic Closterium. This it ate up bodily; and it occupied considerable time, even after the desmid was within the buccal funnel, and the end within its jaws. Thus it appears that this large species is a true vegetarian in diet. I have seen several more, all from a ditch in Sutton Park, Birmingham. All agree in these characteristic details. Each one has been quite clean, and totally devoid of any gelatinons covering.-P.H.G.]

Length, $\frac{1}{70}$ inch; width, $\frac{1}{1} \frac{1}{5}$ inch. Hab:tat. Birmingham (T.B.).
C. spieatus, Hudson. (Pl. XVI. fig. 2.)
Notommata spicata - Hudson, J. Roy. Micr. Soc. 2 Ser. vol. v. 1885, p. 612, pl. xii. fig. 5.
[SP. CH. Lumbar regions furnished with tubules, setigerous at their extremities ; two occipital antennæ; brain threefold; tail saccate.

In this speeies we see two pairs of what we may call tentacles, of consimilar
structure: the one pair (the ordinary antennas) seated on the oceiput, the other on the hinder part of the trunk, one on each side. Each tentacle consists of a tubular column, which has a thickened extremity, whence issues, in the anterior pair, a brush of divergent setse ; in the posterior, a single seta; all of great length and tenuity. The lumbar tubules are much more slender than the occipital, but are twice as long ; and the inerease to the terminal knob is much more gradual.

The general form is sub-cylindrical, becoming more ventricose at the hinder part, then abruptly diminishing. But this form is subject to constant alteration, as the animal is ever lengthening or shortening, swelling one point, and contracting another. A very curious appearance is presented by the two sides at intervals. There is, near the middle of each side, a portion of the outline, which is now and then thrown into folds,-not constrictions of a rounded saceate body, as usual, but presenting the exaet appearance of a single thin tissue, the edge of which is thrown into sharp, minute, and close-set wrinkles, like those of a frill of crimped muslin. The appearance is very frequent, seldom lasting more than a minute or two: not peculiar to one individual, but common and characteristic. I cannot explain it. The body is contracted into a true tail, which is of a thiek sub-cubical form, corrugated with strong folds of the skin, like that of C. pachyurus, presently to be described, but smaller. Below this is a small foot, bearing a pair of furcate toes, short, laper, and drawn out to excessively slender paints, often slightly incurved, the flexure varying in different examples. The frontal cilia appear to be seated on slight eminences. The face projects into a channelled protrusile lip, whose edges are ciliated; agreeing both in shape and structure with the like organ in C. labiatus, but not nearly so large (figs, 2a, 2b). The brain is 3-lobed, composed of three pyriform ovate sacs; the outer two clear, the middle one shorter, and turbid or almost opaque, with a broad red eye lying transversely across its upper part, in shape like a shallow lens. The trophi are large and distinct, of the form seen in Notom. aurita. A long cesophagus leads to an ample alimentary canul, on which are seated a pair of kidney-shaped gastric glands. In the specimen which I have delineated (and I have observed it in others), the alimentary canal formed a great bag, one side of which was smooth and expanded, a most delicate transparent tissue, enclosing many small diatoms and other alge; while the other half was thrown into close longitudinal wrinkles. Within it were four or five oil-globules of brilliant orunge-hue, varying in size, the light refracted through which made very attractively beautifal objects, as the focus was ever and anon changed. The ovary takes the form of a long and slender band, full of clear embryonic vesicles, passing in a sigmoid curve from near the gastric glands to the bottom of the cavity. At its hinder extremity was an ephippial egg, covered with transparent spines, broad-based, much curved, much like the prickles of a rose, of whose development Dr. Hudson has given an interesting account (loc. cit.). Just above this was another smaller egg, maturing and already opaque. The undeveloped portion of the ovary is speckled all over with minute light-refracting dots. The branchize take the ordinary form of slender, somewhat twisted cords, probably tubular throughout, beginning apparently at the front face, by many attenuate ramified channels, with doubtless open ends, to receive the influent water for respiration; ond terminating each on one side of a large contractile vesiele, occupying the hinder end of the visceral cavity. Each branchia has attached to it by a slender stem a pear-slaped hag, which hangs free in the cavity, at about mid-body ; and, a little below this, an ovate enlargement, which is sessile by its whole side. The contractile vesicle takes a globose form when full; when it is seen to have a number of very minute clear glands (?) scattered over its surface. I found the period of filling, between one contraction and the next, to be just three minutes. At the point where the pear-shaped bag is given off, each branchial cord adheres firmly to the epithelial lining of the skin; but is free above and below that point. I searched carefully, but vainly, for any vibratile tags in the course of either branchia. But, in one I saw, in a rery slender offshoot, close to the attachment of the pear-shaped bag, which yet was not a "tag," a vibration exactly similar to that of a
"tag." From each toe runs up a thread, which in the foot dilates into an ovate gland, studded with minute vacuoles. Probably these are mucous glands: but no mucusstrings were visible from the foot, nor any gelatinous envelope of the body, in all the specimens (nearly a score) that I have examined. The brush of each occipital tentacle (antenna) consists apparently of three, or at most four, setm ; each lumbar tentacle carries but a single seta. Through all, lines are seen ranning down from the sete to the base. From the base of each lumbar tentacle the thread which descends from the seta is distinctly seen to pass for some distance up the visceral cavity toward the brain, till it can be no longer distinguished among the multitude of lines. On the other hand, the thread issuing from the base of each antenna may be traced to the very summit of the brain.

This is, perhaps, the largest of all known Rotifera. Some among the Rhisota may exceed it in length, a great purt of which is occupied by the foot of almost linear tenuity, But, bulk for bulk, Copeus spicatus far exceeds them all. It is a noble, as well as a very interesting, member of its class. Viewed on the stage of the microscope, we forget that we are contemplating a speck, such as a lady's cambric needle might prick in a sheet of paper, and are struck with what we are ready to call its gigantio dimensions. For, with a half-inch objective, it almost crosses the round field of view, and with a quarter, such as is needful to interpret the organization of the Rotifera, we are obliged to examine it piecemeal ; for a large portion of the creature is necessarily beyond our vision. Its great size, slow movement, and brilliant transparency make it a subject very favournble for observation. Perhaps this is the finest addition made to our knowledge of the Rotifera since Ehrenberg's magnum opus. And we owe our acquaintance with it to Dr. Hudson, who named, described, and figured it in the "Journ. Roy. Micr. Soc." for May 1885. It was discovered by Mr. Bolton, who sent him specimens, as he has lately sent to me also, obtained from Sutton Park, Birmingham.-P.H.G.] ${ }^{1}$

Length (moderately extended), $\frac{1}{\text { in }}$ inch; width, $\mathrm{T}^{\frac{1}{n}}$ inch. Habitat. Birmingham: Coleshill (T.B.); Sandhurst (Dr. Collins).

C. pactivures, Gosse, sp, now. (Pl. XVI. fig. 4.)

[SP. CH. Front furnished with a pair of long and thick auricles projectile and retractile; lumbar regions with tubules, destitute of sete; tail saccate.

The general accuracy of Prof. Ehrenberg's details, where he gives them, makes me distinguish this species from his N. copeus; though it comes very close to that fine species, perhaps even closer than does Dr. Hudson's N. spicata, or any other. It is, indeed, less than half the size of Copous ($=$ Ehrenbergii), my specimen measuring of ${ }^{\prime}$ inch in length, when moderately extended; I could not be sure that the brain had more than one lobe; the lumbar tentacles are placed far back, as in spicatus, and differ in apparent structure from those of either; and finally the tail is neither a minute conical tubercle nor a long stiff point, but a wide sub-globose sac (as in spicatus, but far larger), whose walls are thrown into stiff sharp folds, as if composed of a firm leathery skin.

Yet the general aspect is that of Ehrenbergii ; the auricles have the same form and direction, and the same comparatively large dimensions. Ordinarily they are quite un-

[^72]suspected, being absolutely concealed within the rounded outline of the head; but, at the will of the animal, are suddenly pushed out horizontally, by eversion of the skin, to a length more than half the diameter of the head. They then form oblique cones, which are truncate at their tips; but the skin there, which seems in some sort double, is at every instant drawn in a little, as if very sensitive. The outer upper corner of each is richly ciliated; and the ciliary action, at this point of each, makes a strong vortex, into which floating atoms are drawn, and whirled round as in those of the Bdelloids. The auricles are often extruded when the animal is not swimming, but grubbing among the sediment ; and they do not sensibly augment the speed, then ; but if extruded during the swimming, they do so notably. Each can be thrust out in varying degrees; and very often one is out while the other remains concealed: they are manifestly very flexible. No antenna from the occiput is visible; and the tentacles on the Iumbar regions are very minute tubules projecting through the internal skin, and connected with a visible basal area on the exterior of a vascular membrane which surrounds the abdominal viscera. I can discern, even with a high power, no setee at the tips of these tubules: but possibly these may be retractile. Indeed, the tnbes themselves are not always apparent. After death, the ventral surface being in view, a thread was distinctly seen on each side proceeding from the base of the lumbur tentacle, dividing into two branches at about mid-length, and going up to the sides of the brain. Each thread, both before and after the division, had a sensible diameter, and showed a double outline. No under lip breaks the uniform rotundity of the frontal outline. But, in a ventral view, when it was still and contracted in dying, I have observed on ovate line, as of a minute orifice, just within the edge (fig. $4 b$), which may possibly have marked the place where a lip had protruded.

The general figure of the animal much resembles that of N, aurita; but is more variable, as if the integument were softer and more flexible. A momentary glance while it was turning left the impression that a segment would be as at fig, $4 a$; as if the ventral surface were dilated and flat. The skin was free from gelatinous envelope.

A stont foot of three joints carries two toes of the blade-form, stout, of uniform width, somewhat long, straight, and pointed. Behind them, separated from them by the cloaca, and from the gibbosity of the trunk by a strong constriction, there is a large bladder-like inflation of the skin, thrown into strong folds or creases, which must be taken to represent the tail. It is colourless, and appears quite empty; it is constantly changing its outline, but ever falls into the same folds. It is slightly bilobed, and seems somewhat dilatable. This great fat ventricose tail is a conspicuous character, by which this species may in a moment be recognised. The internal economy is, in most examples, sufficiently clear. A three-fold brain is seen: the mid-lobe pear-shaped with a long slender neck, the bnlb reaching far below the mastax; the side-lobes comparatively short. I have seen the mid-lobe filled with granular matter, not quite opaque, but darkly turbid. A deep-red eye, large, oblong-square or ovate, is seated on the neck of the mid-lobe. An ample mastax, with normal trophi, nearly fills the breadth of the pectoral region; followed by a vast stomach, in most examples, densely filled with darkbrown conglobate rolls of food; sometimes with no glands visible, at others with two small glands, dark, with a large oil-globule within each, of deep orange hue, whose rich refraction of light has a very striking effect, like a pair of coloured carriage-lamps. The ovary often has a great egg, nearly mature. Lateral canals, one on each side, are more or less clearly discerned, on one of which I have seen one vibratile tag; but I have not been able to detect a contractile vesicle.

In manner of life this, like its congeners, is dull and slothful, rolling stupidly and aimlessly about, and ever altering its form, but not much given to locomotion. Now and then, bowever, it seeks a new locality; and then it shoots away in a straight line, with considerable swiftness and grace, oleaving its path, with dilated front, through the water. I was so fortunate as to be present at the dinner of this species, as I had been at that of C, labiatus. Several large alge were strewn around, among them a Closterium,
dark green, very slender, nearly straight, and longer than the Copeus (perhaps C. lineatum). The unimal attacked two of these in succession, taking hold transversely, yel not attempting access there. But feeling its way, it worked, very cleverly, and with manifest intelligence, till its jaws reached the tip. At this, then, they worked eagerly, drawing it in, so that it stretched out lengthwise from the head. No impression, however, was made on the flinty frustule, and it was presently relinquished, to attuck another, equally in vain. After some hours, I perceived that it was essaying food again; and again one of the same long Closteriums, which now was drawn far down the buccal funnel; while the mastax in its usual position had already eaten a good deal of the desmid, chewing it away, as one would eat a radish. The great auricles (in this very example) were reluctantly and charily put out. They would not be suspected at other times. Daring several hours' observation I saw them extruded only on one occasion, when the creature was gliding through clear water. And then, it thrust out first one and then the other, timidly and tentatively, as it were, and drawing each back before it was nearly out ; then again protruding it; till, by this time, some impediment was reached, and I saw neither any more. Such was very much my experience of others also. The first specimen that I saw occurred in water sent me, in June, by Dr. Collins from his "happy hunting-ground " at Sandhurst. But more recently Mr. Bolton has sent me examples from the prolific ditch in Sutton Park, near Birmingham, where it revels in company with labiatus and spicatus.-P.H.G.]

Length, $\frac{1}{75}$ inch. Habitat. Pools and ditches where the larger Diatomacea abound. Sandhurst; Birmingham (P.H.G.).

C. caudatus, Collins.
 (PI. XVI. fig. 5.)

[SP. CH. Form slender, swelling in the middle; auricles wanting; one ocoipital antenna, and one lumbar tentacle; tail minute.

In "Science Gossip" for 1872, Dr. Collins described and figured this Notommata of singular facies. I had long desired to examine it, having had my curiosity excited, not only by the brief diagnosis of its discoverer, but by numorous pencilled sketehes in his well-filled note-books, committed to me from time to time by his courtesy. At length, by his kindness in sending me samples of water from the original habitat, I have been gratified by the sight of several specimens in healthy activity. It is a species much more abnormal in appearance than in structure: an appearance which depends on the seeming severance of the head from the body by a long interval. The head is large, somewhat square in outline, and, owing to the definition of the brain with its eye, and of the mastax, it catches the observation in a moment. Then follows a neek of nusual length; and though its thickness is scarcely less than usual, its extreme transparency and colonrlessness render it hardly visible till focussed ; and it contains no organs, save on each side the twisted lateral canals, of such filmy mistiness as scarcely to be perceptible when searched for; and so there seems nothing at all, save the cesophagus, a tube of great subtleness and slenderness running through the middle of its entire length. We seem to see an oval abdomen filled with viscera, and a head tied to it at the end of a long string. The head carries at each frontal corner a small globe refractive of light, which I take to be an auricle, though I have not seen them retracted or protruded, nor are they manifestly ancillary to speed, being visible uniformly in the animal's twinings and crawlings. The frontal surface between these auricles bears vibratile sete, as well as ordinary locomotive cilia. A large well-developed brain occupies the whole width, and descends, sack-shaped, far down the occiput, bearing on its facial side a brilliant crimson globular eye, and in its rear, supplying a nerve-thread to the sensitive seta which runs through an antennal tubule, projecting from the back of the head (figs. 5c, d). A mastax of ordinary form in the family has the bent mallei of some thickness. It is figured at $5 b$ from some very good observations, though, from difficulties inseparable

[^73]from the circumstances, I dare not rouch for the minnte details, particularly of the incus-rami. The respiratory organs, in the form of slender cords, loosely twisted together, but, as I presume, tubular, can be traced to the very front of the head; at least to the point on each side where the proximity of the brain to the integument allows them to be no longer discerned; and thence backward without interruption, till their ends ramify and are lost on the walls of the ample contractile vesicle that occupies the termination of the abdominal cavity. It was an operation of much delicacy, but with a $\frac{1}{3} \cdot \mathrm{in}$. obj. I think I satisfactorily followed the entire course described. In the ample abdomen the viscera are large. The alimentary canal is clearly separated into a stomach and an intestine. In all the individuals examined, neither of these held any visible food, but both were tinged with pale umber-brown. An ovary of embryonic vesicles, and a great dark ripening ovum, were conspicuous in one. At the expansion of the long cesophagus into the stomach are the pair of ovate colourless glands, which possibly are biliary, and may impart the prevalent yellow-brown tinge to the digestive canal. The dorsum, just before the point where it contracts into the foot, rises into an angular prominence; which must be regarded as a true tail, because beneath and behind it is the common excrementary outlet, whether for matters urinary or fecal-the cloaca. The anterior side of the orifice is crowned with a bristled tubercle (fig. $5 d$), very closely resembling that projecting from the hind head. It seems a tubular wart with a thickened rim, bearing a rather short seta on the summit. From the base of this are discerned, clearly running down through the transparent tube, two fine lines, which probably are the optical expression of a nervous cord, bending forward to some sensible distance up the body, till lost behind the viscera. I searched (vainly) for some ganglion in the vicinity, with which this thread may communicate. But I rather presume that it runs through the body, and communicates with the great brain at the very front. It seemed to me that each of these tentacular warts, both that on the head and that on the tail, is susceptible of sensible elongation, and of occasional withdrawal, partial or perfect. The foot is slender and colourless, like the anterior parts, and is terminated by two minute and delicate toes; from which two long, club-shaped muscles pass forward nearly to the cloaca.

The species was discovered by Dr. Collins in 1865, in a small pool near Sandhurst Military College, whence he has recently sent me a supply. There seemed here the exercise of a sense of companionship, at least in captivity. After some days this species became rather numerous in the bottle of water-moss, and 1 have had, perhaps, a dozen in my live-box at once, of various ages. I noticed, much too often to be merely fortuitous, that they were in the habit of associating in couples, two being gencrally in close contiguity, and now and then coming into actual contact; the one crawling, in their lithe embracing manner, over the foreparts of the other; separating, however, immediately after, It was not sexual. In young individuals, not more than half as long as the adult, all the characters are developed; except the great length and almost invisibility of the neck, which are not so manifest.-P.H.G.]

Length, $1 \frac{1}{10}$ inch. Habitat. Sandhurst, Berks (Collins); Dundee (P.H.G.).

C. Cerberus, Gosse, sp. nov.

(PI. XVI. fig. 3.)
Notommata contricra - Gosse (nee Ebr.), Ann, Nat. Hist, 2 Ser. vol, viii. 1851, p. 200.
[SP. CH. Tentacles wholly wanting (or unobscrecd); auricles small; brain threelobed; tail a minute tuberole.

This species approaches the ordinary Notommatio, in form and in the absence of those projected organs of sense which characterise the other species of this genus. Yet the general aspect, the sluggish manners, and the three-lobed brain, seem to war-
rant me in placing it in this genus. Indeed, when, five-and-thirty years ago, I first met with it, I concluded that it was identical with Ehrenberg's N. centrura. But I have lately seen several more examples, which have convinced me that it is still an undeseribed species.

The form is rudely cylindrical, with many irregular constrictions, and the abdominal regions somewhat swollen. The front is rondo-truncate, with a minute auricle on each side. These seem scarcely protrusile, though the oval space in which ciliary action is seen appears in each. The ciliated face is prone, and reaches far down; no lip appears. At the hinder extremity there is a distinct tail, small, saccate, almost amorphous, beneath which the cloaca opens, as I saw by the actual emptying of the rectum. A very short foot carries two minute, conical, pointed toes. The brain consists of three sacs, of which the central hangs low, being seen behind the mastax, and as usual forms a long tube at the origin, in which is the eye of lenticular form, and brilliant crimson hue. The lateral sacs are moderately short. All three are more or less occupied with opaque granular matter; but in the central sac this is generally (not always) so much diluted as to be pellucid. The central sac, too, is occasionally seen truncate at its lower end, exhibiting very distinctly at its margin the separate cells of which it is composed. The trophi are normal ; the mallei apparently four-fingered. The alimentary canal is large, saccate, furnished above with small globose gastric glands, and not sensibly divided ; its central longitudinal cavity may usually be traced, full of digesting food of a dark umber-hue, while the thick surrounding walls are tinged with the same. The voluminous ovary, forming a wide horseshoe across the ventral region, its horns directed backwards, is full of clear embryonic vesicles, and often carries a dark maturing egg which I have seen discharged. The branchial system has the usual form of a rather thick cord (probably tubular), not twisted, but hanging so loose as to be thrown into many curves, with at least three vibratile tags on each, and the usual contractile vesicle of moderate size occupying the hind mid-ventral region. Muscles, both longitudinal and transverse, agree with those that I long ago demonstrated in Not. aurita. ${ }^{1}$ The whole head is usually tinted with buff, and the mastax-front with red-brown.

My first example of this species was found in June 1850, in a phial dipped on Hampstead Heath three weeks before. The more recent were in the sediment of a phial sent me by the kindness of Dr. Collins, from the historic pool in Sandhurst Wood. The creature, like its congeners, is slow and deliberate in manners, burrowing and rooting in its floccose surroundings. Its motions are much like those of the water-bears ; indeed, on first catching a glimpse of my subject among the half-hiding sediment, I have repeatedly been doubtful whether I was looking at a Tardigrade or one of these massive Notommatada.-P.H.G.]

A specimen of Mr. Gosse's Copeus Cerberus, which I found in some water from Sutton Park, Birmingham, enabled me on one occasion to obtain an excellent view of the mastax and trophi; for it every now and then slowly turned its head back, so as to bring its ciliated face up to the cover-glass, and thus to rotate the mastax, for me, with all its parts in their natural position. I could distinctly see the massive malleate trophi unusually thick and broad; the short, wide, yet graduated teeth of each uncus opposing each other at the top of the mastax, like the fingers of the two hands brought just to touch at their tips. Immediately above them were two very prominent lips, like a parrot's beak, and evidently of a much larder substance than the rest of the mastax : they were seated upon it, on each side of the opening between the buccal fumnel and the teeth. These I saw repeatedly open and shut as food passed down the funnel to the trophi.

Length, ${ }^{\frac{1}{2}}$ inch. Habitat. Hampstead Heath; Sandhurst, Berks (P.H.G.).

[^74]
Genus proales, Gosse.

GEN. CH. Of moderate or small size; body generally cylindric, or larviform; ciliated face more or less prone; brain clear; aurieles and tail wanting.

This again is an extensive group, containing many species, some of them of familiar occurrence, often obscure, of indefinite character, and hard to be distinguished. Some are entozoically parasitic on other creatures. The vibratile cilia are disposed on a face, along that side of the head which is more or less in the ventral plane. Their bodies are asually lithe, soft, and versatile; their motions rapid and various.

P. decipiens, Ehrenberg. (Pl. XVIII. fig. 6.)

Notommata decrmens , , Ehrenberg, Die Infus. 1838, p. 431, Tat. lii. fig. 6. " vermicularis . . Dujardin, Hist. Nat. Zooph. p. 648, pl. xxi. fig. 7.
[SP. CH. Body cylindric, slender, worm-like; foot undeveloped; toes minuto.
This much resembles a dipterous larva; having a soft, flexuose, slender body, with a rounded front, and two minute, conical toes, without any sensible foot. A large, occipital brain carries a red eye, distinct, though small ; a crystalline lens is conspicuous, seated on, and partly imbedded in, the pigment-globule ; the latter much the larger. (See Duj. loo, cit.) Near the front are two elear colourless granules, usually distinet in the many examples that I have met with. These may be readily mistaken for eyes when the animal is in motion. A mastax with trophi of normal form leads by a very long and slender cesophagus to a cylindric alimentary canal, with usual accompaniments.

I first found this in 1849, in waters near London both north and south. Since then it has occurred repeatedly in varions localities. When I saw my first example, it was spinning round on its long axis. After a while it became less impatient, but still very lively. It frequently bent itself up double, in the manner of a caterpillar, and occasionally shrank up into a wrinkled, shapeless ball, remaining thus awhile quiet. Gliding through the water by means of its rotatory cilia, its motion was not particularly rapid. Though I have called the trophi normal, there is, in the form of the rami, a manifest approach to these organs in Diglena.-P.H.G.]

Length, $\frac{1}{10}$ to $\frac{1}{15}$ inch. Habitat. Near London; Epping Forest; Birmingham; Stapleton Park, Yorkshire ; Dundee (P.H.G.) : pools : not common.

P. feLis, Ehrenberg,

(Pl. XVIII. fig. 17.)

Notommata felis
Ehrenberg, Die Infus. p. 431, Taf. lii. fig. 7.
[SP. OH. Body cylindric, slender; a large decurved fleshy proboscis; eye very large; trophi Diglenoid; foot stout; toes slender, pointed.

Of this little species, the slender trank is strongly fluted longitudinally. The curious projection which Ehrenberg calls a horn, is a thick soft lobe of translucent flesh, which eurves down before the head, perhaps a tentative organ, and recals what we see in some of the Diglence. So also do the pincer-shaped rami; and, as in that genus, they are capable of being rapidly and forcibly thrust forth, with a snapping action. The brain is broad, and descends far ; it bears on its round extremity an eye so large that it occupies fully half the diameter of the body. Yet it is seldom seen; being a lens seated transversely, and edgewise to the observer. The stomach too, with high lateral shoulders, usually densely filled, hinders the observation, not only of the eye, but of all
the viscera. ${ }^{1}$ Its manners are lively and restless; rarely swimming, but incessantly boring and pushing through the yellow sediment in which it chooses to dwell; and that so pertinaciously, that when it comes to the edge of a mass, it will not (or very rarely) go on into the clear, but turns back, and bores its path anew. If it does sail out for an instant, it presently stops short, turns tail, and hurries back to its cover. I have seen the pineer-jaws rapidly protruded almost to their full length. I have seen many specimens, in water and sediment from the ditch in Sutton Park, Birmingham, which Mr. Bolton has so successfully explored.

The new Rotifera Pleurotrocha mustela lately described and figured by Mr. W. Milne ("Trans. Phil. Soc. Glasgow," 1885), is very like the present species. He has represented the male, which closely resembles the female, but is smaller, and devoid of digestive system. The memoir is of high value.-P.H.G.]

Length. About ${ }_{1} \frac{1}{78}$ inch. Habitat. A ditch near Birmingham (P.H.G.); Glasgow (Mr, Milne).

P. GIBBA, Ehrenberg.
 (Pl. XVIII. fig. 8.)

Notommata gibba
Ehrenberg, Die Infus. 1838, p. 430, Tat. lii, fig. 4.
[SP. CH. Body compressed; back mueh arched, deeply incised above the stout foot; toes slender, pointed, slightly decurved.

The fore parts are separated from the trunk by a marked infolding, as well as the foot; this latter constriction, when viewed sidewise, forms a deep sinus. The first example that I met with was in November 1849, in a pond at Battersea Rise. I afterwards found other specimens. The front is prominent and round; over it projects a semi-ovate plate apparently slightly bent downward, on each side of which is a fine seta. Perhaps the more natural place of this species would be in the (restricted) genus Notommata, near lacinulata. But the ciliated face is prone. The brain descends bag-like, into the occiput, and bears a wart-shaped red eye on its very end. The taper rectum terminates in a cloaca, in the deep posterior infolding. A minute contractile vesicle is in almost incessant contraction. The foot, with its curved toes, is often thrown forcibly back, in the manner of Rattulus.

The animal is lively, actively swimming, and contracting strongly as it goes, and throwing the toes backward and forward.-P.H.G.]

Length, $\frac{10}{10}$ to $\frac{1}{200}$ inch. Habitat. Battersea; Stapleton, Yorkshire; my domestic aquarium (P.H.G.) : rare.

P. SORDIDA, Gosse, sp. nov.
 (PI. XVIII. fig. 7.)

[SP. CH. Body nearly oylindrical; head broad, truncate; foot very broad, with a depression through the median line; toes minute, conical.

This is a somewhat clumsy, ungraceful, unattractive species. The whole integument is flexible, and thrown into transverse folds, though seemingly stiff. The corona is broadly truncate, formed by numerous ill-defined globose masses, on which the cilia are grouped. The whole front is capable of little expansion or change, and the motion consequent, not very swift. The mastax is ample, of the Notommatous pattern ; behind which a brain, moderately developed, carries a red eye, on its side. The eye is often invisible ; then suddenly appears as a minute speck (or, as I once saw, two red speeks, apparently in contact), or, often, as a well-defined considerable mass of rich colour. I

[^75]have seen the saccate brain at its hinder end, densely opaque in a great ball, just as in N. aurita, while all the remainder was clear. In every other respect the specimen was a normal sordida. The most observable characteristic of this species, by which it may without fail be identified (for it is quite constant), is the condition of the foot. The linder half of the trunk, viewed dorsally, insensibly diminishes to a width about onethird that of the widest part, where it is abruptly truncate; the hind half of this is separated by a slight fold, and appears to constitute the foot-proper. Yet there are no visible joints in it, and its outline, as I have said, simply continues the gradual tapering. Down the middle of this foot there runs what seems a shallow depression, crossed by two similarly depressed transverse lines, and the whole ends in two small conical toes. When once this peculiarity has been noticed, there is no mistaking it.

I first found the species in a tube sent me by Mr. Hood from Dandee, and since then in water from Miss Saunders of Cheltenham, and abundantly from Woolston, sent by Miss Davies. Some of these last were hyaline, and more active.-P.H.G.]

Length, T10 to $\frac{1}{130}$ inch. Habitat. Many localities in England and Scotland: common in pools (P.H.G.).

P. tigridia, Gosse, sp. nov.

(Pl. XVIII. fig. 10.)

[SP. CH. Body cylindrio or fusiform, ourved in the manner of Rattulus; foot and toes both long, and bent in a sigmoid curve.

This animal, I do not doubt, has been confounded by observers, as it was by myself, with the N. tigris of Ehrenberg, but this latter I now relegate to another genns, in the Sub-order Loricata. The present is certainly il-loricate, and its long ciliate face, alruost absolutely prone, shows its affinities to be here, though it is certainly osculant with Rattulus. Its trophi, too, are symmetrical, and of the Notommatous pattern. The cilia of the face seem set on minute eminences; and there are longer sete among them. The belly line bends upward and then downward to include the base of the deep foot, which again bends upward (i.e. buckward) to the toes, and these bend downward at their tips. So that the whole line from the face to the toe-tips forms a double sigmoid curve of much elegance. In June 1885 I first became cognizant of this interesting form. It was haunting the decaying whorls of Nitella, in water from Woolston Pond, sent me by the kind courtesy of Miss Saunders. It has occurred also in other waters.

It is an energetic animal, given to sudden and rapid changes of motion, shooting through the free water with great celerity, the toes stretching behind straight and parallel; now abruptly turning on itself to pursue another course, now arrested by a cloud of floccose, to dig into the decaying vegetation with apparent determination and vigorous perseverance. The digestive canal is almost invariably dark with granular food, of a deep rich-brown hue. A contractile vesicle is usnally conspicuous. - P.H.G.]

Length, ${ }_{17}$ o inch. Habitat. South and Midland England; pools (P.H.G.) : rare.

P. petromyzon, Ehrenberg.
 (PI. XVIII. fig. 9.)

Notommata petromyson.

[SP, CH. Body ovate; foot long, stout, and very distinct; toes minute.
The form is gibbous ovate, truncate at each extremity, when contracted; the head is rounded, protrusile ; the foot apparently of one joint, very large and long, but abruptly Iess in width than the truncate body whence it issues; the two toes are very minute cones. The character of the foot makes the species particularly easy of recognition.

The siraplicity of the trophi makes them very instructive. The incus-fulerum is
thin and blade-like, straight but slightly incurved at the free end, deeply truncate above where the rami are jointed, which are long triangular blades arching backwards. The mallei are slender rods, each with a process, and an uncus of two fingers. ${ }^{\text {b }}$

Ehrenberg describes the species as parasitic on the branching Bell-vorticels Epistylis and Carchesium, among whose twigs it lays its eggs ; and also in Volvox. I have seen it always free, though repeatedly in close association with both these Infusoria. I have been acquainted with it from many localities since 1850. It is lively in its motions; yet frequently adhering to the glass, and moving by a feeble crawling; it can, however, swim rapidly. Its contractions are almost perpetual, and very vigorous.-P.H.G.]

Length, when extended, ग̀o inch. Habitat. Around London; Walthamstow; Leamington Canal ; Cheltenham; Woolston; Birmingham: pools and garden reservoirs (P.H.G.).

P. pabasita, Ehrenberg.
(Pl. XVIII. fig. 11.)
Ehrenberg, Dic Infus. 1838, p. 426, Taf. I, fig. 1.
Plate, Jenaisch, Zeits. f. Natur. 1885, p. 26, figs. 7, 8.

Notommata parasita
Hortwigia volvocicola
[SP, CH. Body cylindric or gibbous, rounded at each end; foot and toes wanting. Parasitic in Volvox.

To the characters just given may be added that the jaws are long, slender, protrusile, and asymmetric: the mallei being dissimilar in length and curvature; thus recalling the Rattulida. A brilliant crimson eye, wart-shaped, sits on the dorsal corner of a large occipital brain ; from the front of which projects a club-shaped antenna, sometimes drooping, sometimes erect. The prominent round head is elothed with fine cilia, and surrounded by a wreath of stronger vibration; when this is retracted the margin is thrown into puckers.

The habits of this inconspicuous species are curious; for it is parasitio within the spheres of Volvox globator. Examining this elegant ereature, we may, even with a pocket-lens, discern which are tenanted, by a spot differing from the young clusters in form and colour. Such a spot proves to be the Proales, snngly ensconced within the globe, in whose spacious area it lives at ease, and swims to and fro like a goldfish in a glass vase. For the most part it affects the inner surface, engaged in devouring the green Monads that stud the gelationous expanse, or else eating away the embryo clusters. Sometimes laid eggs are present, with the Proales; sometimes eggs alone. The young seems always hatched in a Volvox, and, entering an embryo cluster, is expelled with it. Often they eat their way ont, and swim at freedom. Observing in a globe one large egg, I opened the globe with a needle, and freed the Proales, placing it in water, and adding several Volvoces, all untenanted. But it did not enter one, during several hours' observation. During this period it discharged, loose in the water, an ephippial egg, covered with prickles. I have seen a prickly egg and a smooth one, transparent, with eye and jaws visible, in the same spliere. One of the latter I saw hatched, the young just like the adult. The Volvox appears to suffer little from the depredations of its ungrateful guest. The Proales is lively and energetic in freedom. It glides wildly about, often in a zigzag course, turning from side to side, as it dashes rapidly along. Sometimes it rotates on its axis as it goes; or, becoming stationary, it turns on its blunt extremity, as on a pivot. It is perpetually contracting and elongating, and throwing itself into angular folds and contortions.-P.H.G.]

This is one of the partially loricated Rotifera. The soft front of the head, seen dorsally, is truncate, and much like that of Notops hyptopus. The edge of the trunk, within which the head can be withdrawn, is chitinous, and scolloped in regular curves, just like the edge of a lorica. At the lind end of the trunk, and on the median line of the dorsal

[^76]surface, is a forked projecting pucker of the hardened skin, so greatly resembling the notch in the lorica of a Brachionus, that I thought at first that the structures were identical. Ehrenberg (loc. cil.) says that the creature has a minute, and slightly projecting foot; which, as Mr. Gosse has stated above, it certainly has not: but it is clear, from Ehrenberg's description and figure, that he bas mistaken the forked pucker wlich I have just described for a pair of small toes; a mistake easily made when the dorsal surface is presented to the line of sight from a certain point of view. The animal's dorsal outline reminds one of Notops hyptopus ; which Rotiferon is also partially loricated.

I have ofter seen one of these little creatures ineffectively nibbling at the gonidia of the Volvox which it inhabited; but once I watched one bite its way into what was, I suppose, a softer place than usual ; and a moment after I saw a long stream of bright green globules course swiftly through the mastax, down the cesophagus, and into the stomach. ${ }^{1}$

Length, $\frac{1}{2} \frac{1}{5}$ to $\frac{1}{16 \sigma}$ inch. Habitat. Wherever Volvox is numerous: London, Birmingham, Leamington, Dundee (P.H.G.) ; Clifton (C.T.H.),

Genus Furcularia, Ehrenberg.

[GEN. OH, Body gencrally larviform, cylindrical, with a lendency to enlargement in the lumbar region; usually compressed; front conical, broad, and deop; eye single, frontal, sometimes wanting; incus forcipate, nuch developed, protrusile; toes two furcate, usually conspicuous.

It is not easy to attach to this genus such a definite character as shall be really useful to the student for identification and diagnosis. Ehrenberg is very vague. He gives but two distinctive points,- the frontal eye, and the forked toes. The latter is worthless, as being indistinctive; and the former is unfortunately not constant, or not always available. Eckstein's character for the genus is really but the character of one species, inapplieable to others. Yet it is a good genus (as used by Ehrenberg, not by Dujardin), and easily recognized in almost all its members, by one who is personally familiar with them. Possessing much resemblance to the species of the extensive genus Proales, the Furcularia have an aspect, as woll as habits, of their own. Both aspect and habits are more easily detected than described. The front, more or less a low cone of wide base, in vertical aspect, with a minute but usually conspicuons crimson eye set at the very point, with no lateral developments-this is doubtless highly characteristic. So also are the toes, in general strongly marked, very active, and often thrown spasmodically backward, above the body-plane. There is one feature in their habits which is markedly prevalent: the predilection which many of them show for darkling retreats, and the tenacity with which they cling to them. No hare flees to cover more eagerly, Examples will be given in detail presently.

The species are vivacious, energetic, restless, eager, predatory. The strongly developed rami of the powerful incus, moved by proper muscles, are capable of protrusion from the face of the front, with a fierce snapping action, in which, however, they are rivalled by other kindred genera, sueh as Diglena and Distemma in particular. The recognized species are not numerous. Ehrenberg admitted four. To these I have added five others, including the F. marina of M. Dujardin (if, indeed, mine is identical with his) ; but one of Prof. Ehrenberg's has not been yet met with in Britain. They are wide-spread, and are not very uncommon, in the sediment of pools and ditches. Two species which Ehrenberg placed in his great genus Notommata, I prefer to place here.-P.H.G.]

[^77]F. forficula, Ehrenberg.
(Pl. XX. fig. 1.)
 \(\begin{array}{llll}" n \& n \& Gosse, Ann. Nat. Hist. 2 Ser. vol. viii.
n \& n \& .\end{array}\)

[SP. CH. Body stout, straight, nearly cylindrical; broadest at the head, which comes to a frontal point, where is a single red eye; toes two, furcate, blade-shaped, acute, decurved, the ventral edge of each notched with two strong teeth.

The deep sickle-shaped toes, having their under-edges notched near the base, readily identify this. ${ }^{1}$ Its form is nearly cylindrical, slightly thicker in front; the back is sometimes gibbous, viewed laterally. The head forms a short regular cone, whose base is the width of the head, at the apex of which is placed the small but distinct red eye. The whole front appears set with cilia, which cause two vortices: a turbid occipital brain is visible, carrying the eye at its anterior extremity. In contact with this as usual, is an ample sub-globose mastax, with characteristic trophi. A long cesophagus leads to the alimentary canal, which has thick granular walls, and bears two large gastric glands. At times the dorsal portion of the stomach is inflated into a large clear bladder, which displaces the granular walls around it. As this often appears and vanishes rather suddenly, it has a singular effect. Towards the hinder part the granulation becomes less opaque; bat whether there is any division between stomach and intestine has not been clearly seen. A small contractile vesicle lies around the base of the foot, and I have sometimes been able to trace the lateral canals and vibratile tags. A small oblong or cord-like ovary generally occupies the venter, sometimes dilated into a maturing gramulate ovum. Many longitudinal muscles are visible, but the contractions and contortions of the animal are so incessant as to render it almost impossible to define them. By these contortions the firm skin is thrown into various irregular angular folds. The foot seems composed of two joints, of which the basal is by much the stouter, each enclosing a gland. The curved broad blade-like toes bend downward at their sharp points; each is cut into a strong projecting sharp tooth at its base, and its foot joint immediately preceding has two teeth exactly similar.

Ehrenberg alludes to this animal as very rare. I have been familiar with it for more than five-and-thirty years, and I consider it by no means uncommon. I used to meet with it in the waters around London, and have since found it in very many localities, often among conferva, and in the floccose sediment of ditches. In confinement it is often most restless, constantly swimming about with a swift gliding shooting motion, and throwing itself into frequent folds and twistings. The body is nearly colourless, but for the opacity of the granulate viscera, which appear white by reflected light.

On repeated occasions I have observed, in this species, the curious habits already referred to of inhabiting tubes, for some unimaginable purpose, of its own ingenious manufacture. I eite the following note from my Journal, jotted down while under my eye. "A fine specimen I found tenanting a long curved passage, in the yellow-brown floccose from the ditch in Sutton Park. This was just wide enough to allow it to move freely, and to turn its soft flexible body, when needed. It was about twenty times the animal's length, outwardly undefined, being but a cavity formed in the irregalar mass of accumulated floccose. Within this, semi-transparent in parts, the Furcularia was diligently pushing its way from end to end, turning back on itself the instant the end was reached, not showing its nose out in the clear for a moment, and returning on its course; moving with considerable rapidity, never deviating and never resting. But after doing this a long while, perhaps an hour or two, it began to pause here and there, and to move
' Ehrenberg describes and figures a species, Distemma forficula, of which I know nothing more, with toes closely resembling the above. Only, to judse from his figs., the toes are recurved instead of decurved, and the notching is on the dorsal instend of the ventral edge.
more slowly. I at last picked the sheltering material to pieces with needles in order to be quite sure of the species: for I had not yet had one satisfactory view of it at this time. Yet even then it kept obstinately under the floccose, refusing to come out into the open, even when its tube was torn up." On another occasion, lately, a strihing illustration of the fierce appetite of this carnivorous creature occurred to me. One in the live-box was driving to and fro in its eager headlong way, when its course was suddenly arrested. A Naïs worm had been wounded, probably by the pliers in taking up the milfoil from the phial, and a cloud of the pale flesh-granules had oozed, and was still oozing, out of its side. The Furcularia, aimlessly swimming, had come to the outside of this cloud, and its whole manner was changed instantly. It darted at the mass, snapped and snapped again, turning hither and thither, but not leaving the vicinity. The sharp rapid momentary projections of the head and of the jaws showed how heartily it was enjoying its unexpected meal. This went on for some time; but I was called away, and was compelled to leave my hungry little friend at his dinner.-P.H.G.]

Length, $\frac{1}{5}$ inch to $\frac{1}{100}$ inch. Habitat. Around London, Dundee, Birmingham, Hants, Devonshire, and elsewhere (P.H.G) : by no means rare.

F. Gracmis, Ehrenherg. (Pl. XIX. fig. 14.)

Furoularia graoilis

Ehrenberg, Die Infus. 1838, p. 421, Taf. xlviii. fig. fo
[SP. CH. Body slender, compressed, the ventral line maling a prominent angle; front rounded; face oblique; toes slender, straight, acute.

This well-marked little species is of slender form, as its name imports, nearly equalsided, somewhat compressed, occasionally gibbous at the hind-back, the outline of the belly concave, with a salient angle about two-thirds from the head, whence it abruptly recedes to the short conical foot. The front is rather small, rounded; the face obliquely prone, ample, clothed throughout with cilia. The joints of the foot are not readily separable; the toes, furcate, slender, acute rods, almost straight, are about one-fourth as long as the body, and are usually carried parallel. The eye is small, but conspicuous, of a vivid crimson, situate as usual in the middle of the very front, at the anterior extremity of the brain. A little wart-like projection is seen on the occiput, which is probably an antenna. The mastax is long and pear-shaped, containing a strongly forcipate incus, of which the fulcrum is evanescent, with a pair of long incurved mallei. The rami seem to reach over in a long descending pair of points, probably accessory to, but distinct from, the glassy rami themselves. The latter are frequently protruded from the oblique face, to bite the flocculent matter, adhering to the moss, and to seize atoms with a short snapping action.

I obtained this species in some abundance, near London, in my early researches, among the stems and bracts of a submerged moss. Since that time, it has occurred in widely separated localities, never with any notable variation. Its manners are active, writhing nimbly along with the toes stretched out behind, but now and then, for an instant, widely expanded.-P.H.G.]

Length, $\frac{1}{200}$ inch to $\frac{1}{175}$ inch. Habitat. Pools, wide-spread; London; Stapleton Park, Yorkshire; Woolston; Caversham; Cheltenham; Dundee ; Oban (P.H.G.).

F. cexca, Gosse.

(Pl. XX. fig. 4.)
Furcularia creca Gosse, Ann. Nat. Hist. vol. viii. 1851.
[SP. CH. Body cylindrical, the ventral line straight; front round; head separated by a strong constriction; eye wanting or invisible; toes slonder, slightly recurved, obtuse.

This species is much like the preceding: yet it seems sufficiently distinct. The figure is truly cylindrical, with a hemispherical head, and a short conical foot, each divided-off by a strong fold. Both the folds are bounded body-wards by a distinct tlick?ned ring, the anterior by far the stronger; there is a third fainter transverse fold just behind the mastax. The face is prone; but its plane is curved, not flat as in gracilis. The great obtuse cone which forms the foot has but two separable joints, of which the hinder is notched behind, and carries two furcate slender rod-shaped toes, onethird the length of the body, very slightly recurved at the tips, which are rounded. This last character, which may seem unimportant, is, I think, constant.

The whole visible head, in vertical aspect a perfect hemisphere, appears clothed with short cilia, which extend also over the prone face, as far as the great constriction. No eye was discernible. The toes are commonly held in matual contact, the tips often slightly crossed.

The manners were much like those of the other smaller Furcularice ; it both crawled and swam, but not swiftly. It was found in July 1850, in the sediment of a phial which had been dipped five days before, from Oldham's Pond, Leamington. A few weeks afterward, I met with another in the same phial, which well sustained my judg. ment of the distinctness of the species; while it gave me a few additional details. It had an occipital brain, but again no trace of eye. The alimentary canal has a pair of minute gastric glands; it was traced clearly to the cloaca, which appeared on the dorsal surface of the foot as a minute notch. The cesophagus, a long slender and somewhat sinuons duct, leads from the back of the mastax to the stomach. These two examples have furnished all the information that I possess of it. ${ }^{1}-$ P.H.G.]

Length of body, $\boldsymbol{1}^{\frac{1}{7} \sigma}$ inch ; of toes, $\frac{1}{8 \frac{1}{8} 0}$ inch; total, extended, $\frac{1}{135}$ inch. Habitat. Leamington (P.H.G.) ; Sandhurst (?) (Dr. Collins).

F. GIBBA, Ehrenberg.

(Pl. XIX. fig. 18.)
Furcularia gibba Ehrenberg, Die Infus, 1838, p. 420, Taf, xlviii. fig, 8 .
[SP. CH. Body oblong, slightly compressed, convex on the back, flat on the belly; the gibbosity of the back abruptly falling off steep to the foot; toes furcate, styleshaped, straight aoute, nearly half the body-length.

For more than thirty years I had assumed that this species was well known to me; when at length I discovered that what I had supposed F. gibba was really a loricate form, with a cleft dorsum, presently to be introduced under the name of Diaschiza semiaperta. Lately, however, I have met with an animal precisely agreeing with Ehrenberg's description and figure. Yet I judge it highly probable that other observers have, like myself, confounded the common Diaschiza with the rare Furcularia.

As I have seen but a single example of the real Simon Pure, I can add nothing to the published descriptions, except what may be gathered from the figure.-P.H.G.]

> F. ensifera, Gosse, sp. nov.
(PI. XX. fig. 8.)
[SP. CH. Body gibbous; toes simple, blate-shaped, wider vertically than laterally; foot-joints wanting: eye wanting.

I first observed this rather attractive species in July 1885, in water taken from one of my window jars, where aquatic mosses had been growing for several months. The

[^78]mosses originally came from one of the Scottish lochs, and the ancestors of these Rotifera may have been then introduced. But I constantly rinse out my live-boxes, after an examination, in one or other of my reservoirs; and as I have received samples of water, animals and plants, from many kind friends in various parts, it is impossible to trace the original habitat of any species which either of them may now contain.

In form the present species much resembles caca or gracilis ; it is, however, larger than either, nearly, if not quite, equatling forfioula in dimensions. The gibbosity of the back, its abrupt descent to the cloaca, and the peculiar mode of carrying the toes behind, more easily seen than described, are all characteristically Furcularian.

A remarkable peculiarity, that strikes the eye at the first glance in the vertical aspect, is that the toes seem to be articulated direct to the trunk, without the intervention of the usual foot-joints. This is not an accidental malformation, bat is evidently proper to the species, all the specimens being alike. The toes, too, are wide apart at their bases, the interval being sometimes straight, sometimes running up into an angle (fig. 3). They are in general carried nearly parallel; but they are often stretched so wide apart as to be horizontal, or, on the other hand, crossed. I could detect no eye, nor any brain, nor even turbidity, though I sought diligently. All the examples were brilliantly transparent, but most were tinged with a very delicate shade of canaryyellow, the stomach and intestine usually gorged with food of a warmer hue. The front and free are of a pale orange-tint.

The manners of this species are exactly those of its fellows. In the live-box half-adozen congregated under a single leaf of the moss, neglecting other leaves, though there were plenty more, apparently as eligible; and there they kept restlessly moving to and fro, twining and twisting on themselves, suo more, beneath the translucent green leaf. The freedom and facility with which they turn round within their own length and breadth is remarkable. It is effected with marvellous rapidity, and with no change of place, but only of position. You are looking with a high power at the head or mastax a twinkle, a dimness-and in an instant you see the toes in the very spot! The creature has turned itself quite round, and is off on its steps.-P.H.G.)

Length, $\frac{1}{10}$ inch; of which the toes make about one-fourth. Habitat. The leaves of aquatic moss in a tank (P.H.G.).

> F. marina, Dujardin.
(Pl. XIX. fig. 15.)
Furcutaria marina . . . Dujardin, Hist. Nat. Zooph. 1841, p. 649, pl. 22, fig. 4.
[SP. CH. Body long, cylindrical; toes bladeshaped, simple, deourved, pointed, minute; eye wanting. Marine.

The great length and uniform thickness of this species, trunente at each end, obliquely in front, transversely behind, distinguish it readily from its fellows. There is a lobulate, pointed glandular brain in the occipital region, on which no eye-speck can be detected by either transmitted or reflected light. Behind this are some minute, seemingly isolated bodies, which may be connected with the branchial system. The points of the jaws are frequently pushed out from the oblique front to a considerable distance (fig. 15a), and retracted rapidly and repeatedly, with a snapping action. A minute protrusile antenna (\%), ciliated at the tip, is seen behind the buccal funnel (fig. 15a).

It was in August 1854 that I became acquainted with this interesting species, already made known by M. Dujardin in 1841. I had been keeping a small marine aquarium ever since February; bat during a two months' absence from home in the summer, most of the oreatures had died, and were decomposed on my return. The water, however, remained fairly pure; and I therefore merely removed a good deal of the decayed matter from the botlom, and restocked it, mainly with Actinia. On the sides of the tank, and in the sen-water, I found this pretty Furcularia by thousands, associated with
a species of Euplotes, and a few of a Colurus. I have since found it repeatedly in seawater from the Tay Estuary. It is active and sprightly in its manners, browsing among the flocoose ; frequently elongating and contracting its body, and occasionally swimming in the open water.-P.H.G.]

Length, $\frac{1}{20}$ to $\frac{1}{17 \delta}$ inch. Habitat. A marine aquarium; tide-pools in the Firth of Tay (P.H.G.).

F. Bolmon, Gosse, sp. nov.

(Pl. XX. fig. 2.)
[SP. CH. Front rondo-trunoate; body fusiform; footjoints small; toes conical, about half as long as the foot; eye small. Lacustrine.

This species I at first supposed to be Ehrenberg's F. Reinhardti, which has not yet occurred to British research; but, on mature consideration, there seem important differences, which warrant my raising this to specific rank. Reinhardti is stated to be $\frac{1}{{ }^{20}}$ inch in length, which is not so large as F. forficula and F. gibba; whereas this is ${ }_{d} / 2$ inch in length, and so is a very giant among Furcularia. Then the foot in Reinhardti is half the length of the body: in Boltoni about one-fourth; the toes in the former are minute, one-fifth to one-sixth the length of the foot: in the latter rather long and slender, full half the length of the whole foot and toes. Ehrenberg speaks of "the great eye" as an attractive feature in his species ; but in this, the eye is, as usual, minnte and inconspicuous. Lastly, his species is marine, living parasitically on the branching stems of the well-known polype, Laomedia geniculata; whereas mine occurred in a pool in the heart of England. Thus I venture to pronounce it new ; and honour it with the name of that energetic microscopist, Mr. Thomas Bolton, who sent it to me. It has evidently very elose relation with F. Reinhardti, as is shown by the general form, and especially the spindle-shaped trunk, and abruptly tapered foot. It is a true Furcularia, as to its trophi, of which I had a very favourable observation; the mallei being slight and feeble, while the incus is strongly developed with wide, glassy, arched rami, produced into long decurved points.

The front, in life, is probably conical, as usual ; but in the condition in which alone I have seen the species, the cone was so low that its outline was nearly straight, with a minute but clear red eye-speck occupying the very centre of its edge. The mastax is of the usual large dimensions, followed by a slender cesophagus, an ample stomach with small oval glands, a separate intestine full of dark granulate food, an ovary with a great opaque maturing egg, and what I took for a contractile vesicle. The trunk is thickest at the lumbar region, and that whether viewed laterally or dorsally. Thence it diminishes rapidly to a width less than that of the head, and carries a foot of three joints, of which the first is contained within the trunk-walls, and the others are very small and slender, followed by a pair of furcate toes, which are of a long conical shape, acute, and nearly as long as the three foot-joints together. The whole foot is sometimes thrown up towards the belly.

I first became cognizant of this species in October 1885, a specimen having occurred in sediment collected from a ditch in Sutton Park (a locality most prolific in rotiferous and other microscopic life) by Mr. Bolton and sent to me. The animal was dead, but recently; so that the form was little altered, and the organs were all in situ, and readily identified. I subsequently found a second rather smaller example in the same tube of water, also dead; which afforded me the advantage, always to be prized, of an additional study. A sight of the living animal is still a desideratum.-P.H.G.]

Length, $\frac{1}{62}$ inch to $\frac{1}{60}$ inch. Habitat. A ditch near Birmingham (T.B.),
F. mororus, Gosse, sp. nov.
(PI. XIX. fig. 12.)
[SP. CH. Foot inconspicuous; toes minute, conical. No eye visible.
This small species, known only by a single example, is much like F. forficula in form, but the toes are very small in proportion, being cones whose length little exceeds the breadth of their base. The animal is clear and colourless; very soft and flexible ; constantly contracting and lengthening. The anterior parts are somewhat thick, gradually attenuating to the foot, where the width, both transverse and vertical, is less than half that of the head. An occasional glimpse of the side (fig. 12a) showed that the face was truncate, and obliquely prone; whereas the front viewed dorsally was obtusely conical in outline. But the extreme changeability of form, especially in the fore parts, and the flexibility, were notable. No brain could be defined, nor any trace of an eye. Though, according to Ehrenberg's arrangement, this should be a Pleurotrocha, if the eye is really wanting, yet the whole habit and form of this creature showod its affinities to be with Furcularia. I found the specimen described in water sent me by Mr. Bolton in December 1884, obtained from a boggy ditch in Sutton Park.-P.H.G.]

Length, $\frac{1}{2 \frac{1}{5}}$ inch. Habitat. A ditch near Birmingham (P.H.G.).

> F. Lonaisert, Ehrenberg.
> (Pl. XVIII. fig. 16.)
> Notommata Tongiseta : . . Ehrenberg, Die Infus. 1838, p. 432, Tat, liii. fig. 2.
[SP. CH. Body cylindrio, round at each end; foot thick, one-jointed; toes twice as long as the body, unequal.

The oylindrie body is slightly arched, but retains an uniform thickness. The whole rounded front is ciliate, with a semi-prone face. The toes, jointed on a thick cylindric foot, seem made of spun glass, thick at the base, but tapering to great tenuity, though not very acute. The right is about one-fourth longer than the left. The mastax and its trophi, in situ, closely resemble those of Furcularia gracilis ; but I have not resolved them satisfactorily. A great brain carries an opaque terminal mass at its point. The front, viewed dorsally, has the outline of a low cone, with a single minute red eye at the very point; and now and then I have seen pushed out what seemed minute lateral auricles ; yet with no perceptible acceleration of motion. The contractile vesicle is very large. There is a prominent angle on the occiput, which may indicate a protrusile antenna ; but I have not seen it exserted.

I had this pleasing species in 1851, from a dyke near Stratford, and presently afterward from Maidenhead. Recently it has occurred in water from Snaresbrook sent me by Mr. H. Davis, and from Woolston, by Miss Davies. It swims slowly, often turning to one side; occasionally throwing apart the long toes, and springing when alarmed, so as to fling the body more than its own length in an uncertain direction, the sound made by the toes striking the glass on such occasions being distinctly audible.-P.H.G.]

Length, to tips of toes, $\frac{1}{76}$ to $\frac{1}{150}$ inch. Habitat. Pools in the southern half of England (P.H.G.).
F. xqualis, Ehrenberg.
(Pl. XVII. fig. 15.)
Notommata aqualis
[SP. CH. Indistinguishable from the preceding, save that the toes are equal.
Though the resemblance between these two species is very close, Ehrenberg was
certainly right in distinguishing them. Quite accidentally I have had the two in sight at once, side by side, yet without the slightest mutual recognition, and thus had facilities for comparison. AEqualis has the body longer and slenderer, more taper, where longiseta is gibbous, less divided into apparent joints by constriction, especially at the foot, besides the co-equality of the toes in this. Yet, on the other hand, the gibbosity of the former nearly disappears when extended in swimming, and then they are much alike.

I first saw this species together with F. longiseta, and both in some plenty, in water from Woolston, in September 1885. Though the species showed no association, their manners were exactly the same. The springs made by both and by Scaridium, with which they have apparent affinity, depend, doubtless, on the length and elasticity of the toes: and suggest a certain relation to the Triarthrade, and even to the order Scirtopodn, in which, toes being wholly wanting, the same function is performed by special limbs, long, taper, and elastie.-P.H.G.]

Total length, about $T_{1 \frac{1}{3} \sigma}$ inch. Habitat. Woolston (P.H.G.),

Genus eosphora, Ehrenberg.

[GEN. CH. Body oblong; head dilated and furnished with protrusile aurioles; foot very distinct, with telescopic joints, and furcate toes; eyes three, viz. one large, cervical, two minute, frontal.

Of the four species which Ehrenberg includes under this genus I know but the one which he has not catalogued in its proper place, but which he subsequently mentioned under the head of Diglena aurita. His words are: "Dr. Werneck sent me a drawing of a new Eosphora, very like the Diglena of Berlin. I found, soon after, in the Berlin animal, a pale red point on the opaque sac in the neck, which makes this an Eosphora, if it prove to be an eye" ("Die Inf." p. 444).

Judging by this species, there is little to distinguish Eosphora from Notommata (proper), except the two minute frontal eyes ; ${ }^{1}$ and this distinction is evaneseent, when we remember in how many species of Notommata Herr Eckstein has seen frontal pig-ment-specks. Yet, looking at the form of the trophi, I consider it intermediate between Notommata and Diglena.-P.H.G.]

E. aurita, Ehrenberg.

(Pl. XVII. fig. 14.)

Diglena aurita : : : \quad| Ehrenberg, Die Infus. 1838, p. 444, Tat, Iv, fig. 2. |
| :--- |
| Eosphora aurita : |\quad Gosse, Pop. Sci. Rev, 1863, vol, ii. p, 475, pl. xx.

[SP. CH. Body cylindric; head separated by a neek; front slightly convex; brain an opaque globe at the end of a long slender tube; trophi forcipate; foot slender, cylindric; toes slender, acute, furcate.

This is an attractive species: its form is elegant and symmetrical, particularly when the auricles are everted above the neck; the slender foot and toes well finish the body behind; and the prevalent depletion of the viscera with bright pellucid green food, add brilliancy of colour to the clear glassy vase. To the naturalist, too, it is specially interesting. Far down in the body is a transparent ball, filled with opaque matter, whence a slender tube extends right up the very front: this tube is more or less turbid with like matter. On the ball just where it contracts to the tube is a broad and thick

[^79]lens of crimson pigment, and at the frontal end of the tube, one on each side of it, are two small crimson globules. ${ }^{1}$ All three are beautifully rich and distinct, even by transmitted light. It is indubitably Werneck's Eosphora aurita. The jaws are quite of the Diglena type, but the mallei are stouter, as in Notommata: the points are offen protruded. A curious feature is that the capacious stomach juts up in two long horns, as high as the top of the mastax, distinct from the gastric glands. An ovary and a contractile bladder, both ample, help to fill the cavity ; and the body terminates dorsally in a broad triangular tail, which projects far above the foot, with the cloaca between. On the occipital edge is a minute antennal tube and a bristled wart on each side of it. This triple arrangement is peculiar. The manners are usually sluggish. ${ }^{2}$-P.H.G.]

Length, $1 \sqrt{5}$ to $\frac{1}{10}$ inch. Habitat. Greenwich Park; Hampstead Heath; Birmingham : pools ; not rare (P.H.G.).

Genus diglena, Ehrenberg.

[GEN. CH, Body sub-cylindric, but very versatile in outline, often swelling behind and tapering to the head; eyes two, minute, situated near the edge of the front; foot furcate; trophi forcipate, generally very protrusile.

This genus, while Notommatoid in form, has a certain aspect of vigour and intensity of fumetion peeuliar to it. Though one or two assigned species are massive, the majority are slender, lithe and energetic ; the taper and elongate anterior parts habitually thrown above the general line of progression, in the manner of some lepidopterous and dipterous larve, as if eagerly exploring. The form of the trophi, though on the Notommatous pattern, is very predaceous; and the sharp, formidably-armed rami of the incus can be, and frequently are, thrust far beyond the limits of the head, and forcibly snapped. The front, in most of the species, is furnished with a hooked proboscis. The furoate toes are, in general, long and sharp, sometimes sickle-shaped.

Of the eight species included in the genus by Prof. Ehrenberg, lacustris, conura, and capitata have not been recognised in Britain; aurita is an Eosphora, and has been just described. To the remaining four, seven species are now added.-P.H.G.]

D. grandis, Ehrenberg.
 (PI. XIX. fig. 6.)

[SP, OH. Body massive, sub-cylindric; head rounded, with a frontal proboscis: face nearly prone; a tuberculiform tail; foot large, bullous; toes straight, parallel. edged, abruptly pointed.

Of this imposing species my knowledge for many years was limited to a specimen which I found in September 1851, already dead, in a dyke at Maidenhead. The trophi were beautifully distinct. Their structure was nearly the same as in D. forcipata, but the bristle-like teeth that line each side of the incus were much more conspicuous, and apparently larger ; arranged in double rows. In August 1885, examining an aquatic moss growing in a glass reservoir in my study, I found, first one, and then another, of the same species, alive and active. The agreement in detail with my dead original was exact. Two very minute eyes, nearly close together, are at the front, whence projects a small hooked proboscis; and below this the ciliate face is very prone. The

[^80]brain has a turbid yellowish appearance, at times clearly deflned. The alimentary cannl is very large, darkly granulate, composed of many sacs ; und a slender rectum clearly opens into a cloaca below the tubercular tail. Convoluted lateral canals run down each side ; but no contractile vesicle could be discerned.

The manners are sluggisl; ; it twists and wriggles much, with little change of place. It is a fine large species, not devoid of elegance when extended; but it often contracts into very uncouth shapes.-P.H.G.]

Length; of inch. Habitat. Maidenhead ; an aquarium at Torquay (P.H.G.) : rare.

> D. GIbber, Gosse, sp. nov.
> (PI. XIX. fig. 7.)
[SP. CH. Body encased in a transparent leathery sheath, hunch-backed; face prone; frontal proboscis small; toes long, decurved.

In sediment from one of my window-reservoirs, I found this large Diglena. About the size of D. grandis, it much resembles that fine species in general appearance. Its form is that of a cylinder, flattened along the belly ; the entire soft parts are encasud in what we might call a lorica, only that it is manifestly flexible : a difference, perhaps, merely in degree. This sheath, of a glassy transparency, is almost unchangeable in shape ; yet it has marked creases here and there, which are permanent, serving for needful flexibility. At what might be called the shoulders, it rises to a conspicuous conical hump, diminishing thence by a gradual slope to the hinder parts. The internal organs do not rise above the cylindrical body-wall, leaving thus an ample cavity within the sheath all down the back; quite empty, save that a very delicate conglobate gland, attached by a thread to the hinder extremity, works up and down within it, by the contractions and contortions of the animal. What seemed the trochal front was, through the inclination of the head, nearly on the level of, and continuous with, the ventral surface, and was covered with vibratile cilia. Behind, the body-sheath is cut off obliquely, with a well-marked edge, for the emission of a stout foot, which carries two long curvcd blude-like toes, often thrown widely apart. On each toe, at about one-fourth of its length, there is an abrupt decrease of diameter on its superior edge, with the appearance of a joint ; and a delicate line crosses each near its point.

This individual appears to have been subjected to the remarkable accident of the protrusion of the entire mastax, with all its accessories, from the frontal face, so that it was totally unable to retract it. Whether this was the result of over-eagerness in feeding, producing unguarded muscular exertion, or of violence from some of its predatory foes, I cannot guess. I could discern no mark of any pinch on the body. But there was a great extruded mass of flesh, amorphous and motionless, yet bearing a manifest resemblance in outline to a mastax : while in an occasional glance that I could get at its front, I saw what looked exceedingly like a long incus and a hooked malleus on each side, though only the bottoms of these organs could be shaped, and that very vaguely. Besides, there was not a trace of mastax to be seen within the head, for I searched carefully for it ; the protruded mass was just where it would be, if such a misfortune had occurred; there was a conspicuous constriction behind the mass, evidently proventing retraction; while the mass was apparently of definite and unyielding shape, containing hard and lengthened organs. The frontal disk, both above the mass and also to a small extent below it, was covered with cilia in rapid, but feeble vibration; no whorls were produced in the surrounding floccose ; no swimming or crawling progress was made by the animal; though it constantly contorted its body, and threw about its toes. Its vital power was manifestly stricken, and even the movements gradually grew feebler and feebler. I had not detected the slightest motion within the (supposed) mastax ; its nerves had been probably paralysed at once. But fragments of the floccose sediment kept on adhering to the exposed parts, as if these were glutinous; and this was more manifest at first than after some time. From the summit of the front a minute finger-like proboscis descends.-P.I.G.]

Length. Of head and body, $\frac{1}{100}$ inch; of toes, $\frac{2}{26}$ inch ; total length, abont f_{1} inch; vertical height at hunch, nbout $2 \frac{1}{6}$ inch. Habitat. An aquarium (P.H.G.).

D. forcirata, Ehrenberg.
(Pl. XIX. fig. 2.)
Diglena forcipata . . . Ehrenberg, Die Infus, 1838, p. 443, Taf. Iv, Hig. I.

[SP. CH. Body oylindrie, rather stout, obtuse at each end; face long, prone; trophi typically forcipate; toes scythe-shaped.

This is one of the imposing species; stout, though more larva-like than either of the foregoing. The integument is again firm and thick, and forms tranverse folds, which are constant. The bluntly-tapered head carries the usual decurved fleshy proboscis, whence the ciliated face descends in the ventral plane to a length about one-third that of the body. A turbid brain descends far down the occiput, and bears two minute eyes on the very frontal edge. The mastax and jaws show a fine development of the form normal in this genus, ${ }^{1}$ and perhaps they could nowhere be studied with greater advantage. The digestive apparatus differs little from that of D. grandis, or other species, but there is here no projection above the cloaca. The foot is large and bulbous, severod from the body by one of the strong folds ; it bears two toes, which are stout, shaped like the blade of a pocket-knife or scythe. A large contractile vesicle occupies the lower abdomen, which appeared strangely divided into two by a strong constriction. Small vibratile tags were seen on attenuate threads rumning down each side.

I made acquaintance with this species, crowding the edges of a jar of water dipped from the " Black Sea" at Wandsworth, in January 1850. It was active, but little given to locomotion. Its numerous cilia are in constant agitation, and appear pale blue by reflected light; while the minute ruby-like eyes sparkle on the colourless body, the turbid parts of which are like whitish clouds. What I have called the proboscis may possibly be a broad lip, for it is visible only from the side. The wide spread of the toes is characteristic. ${ }^{2}-$ P.H.G.]

Length, $\frac{1}{8 \delta}$ to $\frac{1}{72}$ inch. Habitat. Domestio aquaria near London, and Torquay (P.H.G.) ; Sandhurst, Berks (Collins).

D. cheinatok, Cosse, sp. nov.

(PI. XIX. fig. 4.)
[SP. CH. Body slender at each end, gibbous in the middle; proboscis acute; mastax moderate; toes slender, strongly incurved.

The fore parts are slender and nearly cylindrical (bat flattened on the oral surface), swelling somewhat suddenly to a great ovate body, gibbous on the back, but flat on the belly ; and as suddenly diminishing behind to a rather thick and short foot, which carries a pair of toes, each one a very regular quadrant of a circle in outline, broad at the base, running off to a very fine point. These toes are decurved, and also incurved towards ench other, like the legs of a pair of calliper-compasses; and often thrown widely apart. The skin is very flexible, and, as the animal is every moment lengthening and contracting, and throwing itself into the most varied contortions, makes many irregular folds; yet the form delineated always recurs, and is evidently characteristic. The under surfice has a remarkable projection (fig. 4a), pointing obliquely backward, more or less conspicuous, visible sometimes on each side in the dorsal aspect (fig. 4). This seems the limit of the ciliated face. The very front is furnished with a hook, which is capable of being thrown forward, as if hinged or jointed; and apparently sidewise also, for it is occasionally glimpsed for an instant, at either side of the head. This process is not a bent finger, but a regularly curved hook, hard and slarp-pointed. After a while

[^81]the slender fore parts were retracted, and then from the gibbous body was seen project. ing a curious little puckered bundle of transparent flesh and skin, as shown at fig. $4 b$.

This species I first found in the sediment of one of my indoor tanks among decaying conferva and milfoil : this was in June 1885. Afterwards it occurred again in a tube sent from Dundee by Mr. Hood. All the features were exactly the same as before; but this was more impatiently restless. I thought I saw a pair of frontal eyes, but I could not be quite positive. In a brief quiescence I made a careful study of the trophi, whose points are in contact with the very skin of the front.-P.H.G.]

Length, ${ }^{\frac{1}{30}}$ inch. Habitat. An aquarium at Torquay ; Dundee (P.H.G.).

> D. Giraffa, Gosse, bp. nov.
(Pl. XIX. fig. 9.)
[SP. CH. Body slender, neeked; eyes distinet, frontal, protuberant; toes slender, straight.

This form, having some resemblance to D. circinator, differs from it, not only in the more marked neek, but in the toes being quite straight instead of circularly curved. For, though this may seem an unimportant character, I think the form of the toes will be found to present remarkable constancy in the same species. In circinator I could not be certain of eyes, but in this species they are well-marked, though minate, of dark hue, situate on the very front of the head, so close to the skin as to be prominent as tiny black warts on the surface. The head is small, and its connection with the body is by a sort of neek which can be greatly lengthened and attenuated, as the animal makes its frequent explorations throngh the free water in all directions, feeling about, very much as an earthworm does in the air. For this the skin is very flexible and versatile. The abdomen is tumid; but not so abruptly gibbous as in circinator. The foot is taper, and the toes moderately long, straight in every direction, not bladeshaped, but regularly diminished to great slenderness, and very fine points. There is notail. Beneath the eyes the front forms a well-marked proboscis, which takes the shape of a decurved hook. At times this appears of equal thickness throughout, and blunt, or even truncate ; then it is distinctly seen in the same individual much lengthened, and tapering to a fine point. Can the terminal part be protrusile? The ciliated face is quite prone, and appears to run far back on the ventral surface, where a chin-like prominence indieates the end of a ciliated furrow. (See Diglena forcipata, fig. 2a.) The skin, though flexible, seems very strong; it is continually thrown into folds by the unceasing contortions and contractions of the animal ; it looks leathery, but is perfectly colourless and brilliantly transparent. It is a lively, vigorous, attractive creature; pusling among the sediment, occasionally swimming with a smooth gliding motion.

Ifound another specimen in the same water, exactly agreeing with the above. It had the odd habit of forcibly contracting the foot, and throwing back the toes, as far as the tapering ontline of the body would allow; and then protruding the foot with a jerk, bringing the toes at the instant to a right-angle with each other, and therefore horizoutal; immediately repeating the curious action; and so for fifty times together. When swimming glidingly, it will suddenly quicken its pace an instant, and make a sensible snap, as if it seized something; and this again and again ; though my eye could detcet no atom in the clear water.-P.H.G.]

Length, rod inch. Habitat. Woolston (P.H.G.) : rare.
D. OAUDATA, Ehrenberg.
(PI. XIX. fig. B.)
Diglena caudata . . . Ehrenberg, Dio Infus. p. 445, Tat. Iv. itg. 6.
[SP. CH. Body cylindric, long, slender; front broadly truncate, with two frontal colourless eyes; foot short, wery thick, with two long straight slender locs.

It is excessively versatile and variable in form, constautly contraeting into indo-
scribable shapes (of which fig. $8 b$ may serve as an example), with various sharp folds and nuigles. Yet it may be said to have a characteristie form, which is sub-parallel-sided viewed dorsally; but which, viewed laterally, is narrow for the anterior third, whene it xises ubruptly to nearly double the height. This is generally maintained to the end of the trunk, where it descends with even a sharper angle to give emission to a thick foot, carrying two long, straight, slender, acute toes. The front is unusnally wide and truncate, viewed dorsally; but laterally, it is seen to project into the usual fleshy hook, which is probably sensitive, and used to collect and test food. The ciliated face is tlmost prone ; behind this is an ample mastax with jaws of the normal pincer-form. The viscera present nothing noteworthy. The whole animal is of crystalline clearness ; and is devoid of colour, so far as I have seen. The eyes, too, if eyes they are, are two colourless globules of considerable size and of somewhat irregular outline, placed wider apart than in Ehrenberg's figure, at the very front. The toes are long, tapering regularly to produced acute points, but slender throughout and quite straight, whereby they differ from those of clastopis. They are frequently thrown forward suddenly to more than a right-angle. (See fig. 8 and Ehrenberg's fig. 4.) The lumbar fold of skin is often strong and sharp; but there is no projection really answering to a tail ; and the specific name is a misnomer. I examined two specimens in September 1885, from water which had stood on my table about four weeks, originally from Woolston Pond.-P.H.G.]

Length. About $\frac{1}{1} \frac{1}{8}$ inch. Habitat. Woolston (P.H.G.); Sandhurst (Collins).

> D. PERMOLLIs, Gosse, sp. nov.
> (PI. XIX. fig. 11.)
[SP, CH. Body extremely soft and versatile in form, swollen in the middle, broad and truncate in front, tapering behind to a thick and long foot; toes two furcate, slen. der, acute.

I am conscious that the above is an unsatisfactory diagnosis of what I am sure is a distinct form. In a tube dipped from a fresh-water loch by Mr. Hood, containing a fow leaves of milfoil thickly studded with Rhizota, I found a Notommatoid creature, certainly new to me, and apparently undescribed. Its most salient character was its excessive softness, as if it had no skin at all, but were a lump of mere jelly, yet intensely active and restless, swelling and contracting, lengthening and shortening, twisting and infolding, without the slightest intermission, for more than two days while under observation. All this made it quite unlike any other Rotiferon I had ever met with. The slender toes, at the end of a rather large foot, are very mobile, ever thrown about to their utmost, or suddenly brought point to point with a snap; in this specimen they had the remarkable peculiarity of what looked like a minute terminal joint, like a separate claw, which, however, was not apparent in other examples. The front is widely truncate, composed of many globose transparent cells; from the midst of which projects the usual soft triangular proboscis. The ciliated face below this is prone, whence frequently the trophi,-an incus with circularly forcipate rami, worked by long mallei,-are protruded with energetic snaps and snatches. Below the mastax is a vast alimentary canal, consisting of nucleate cells; an ovary of embryonic vesieles occupying the venter. I could not detect any eye-spots ; but a rather short brain filled the occiput.

I subsequently obtained other examples from the same quarter. In one was a large contractile vesicle which I saw discharged, but I could not time its period. The corners of the front, when rotating, have almost the appearance of auricles,-P.H.G.]

Length. About ${ }_{1} \frac{1}{0}$ inch. Habitat. A pool near Dundee (P.H.G.)
D. clastopis, Gosse, sp. nov.
(PI. XIX. fig. 5.)
[SP, CH. Body cylindric, long, slender; front rounded, without visible hook; foot lony, slender, with two long decurved toes,

I am not quite elear whether I ought to name this form. But, nssuming that the claster of unequal-sized and irregular-shaped red specks, resembling the fragments of crushed rubies, at the very front of the head, represents two frontal eyes, I place it in this genus, especially as the trophi appear to agree with those of the slenderer Diglena, and there is much similarity to them in general contour and conformation.

Its shape is long, thin, and nearly parallel-sided, viewed dorsally (fig. 5), abruptly narrowed to a very slender foot, and long, thin, acute, decurved toes. Laterally (fig. $5 a$), the lumbar region is gibbous without any marked fold. The eyes, resembling broken fragments, as said, are placed at the very front; and are conspicuous, even in the swift shootings of the animal. The front descends to a blunt angle, which may be the anterior point of a prone ciliated face. I could discern no fleshy hook. I did not detect the brain; but behind the mastax were two opaque globules, which seemed not to be eyes, but were possibly chalk-masses, smaller, and more shapely, than usual. A very long alimentary canal reached far down the cavity, well filled with food of various tints, accumulated in many dark nodules, which imparted to the animal in its movements a very peculiar spotted appearance. Most of the internal structure is as yet undefined.

This is one sample of the very rich harvest of species that I reaped out of a small bottle procured for me from Sandhurst Wood pool, by Dr. Collins, in June 1855. Though I had the specimen under my eye for an hour or more, I conld searcely, in all that time, find it still long enough to permit me to turn to the paper, in order to delineate it ; and if I did, I was almost sure to lose it out of the field, to find it again with difficulty. It is swift and headlong in its course, shooting through the free water rather than swimming, and only now and then entering a cloud of floccose sediment, to push, with persevering violence, a way through it.

Only this single example has been subjected to examination,-P.H.G.]
Length, $1 \frac{1}{1} \frac{1}{5}$ inch. Habitat. Sandhurst, Berks (P.H.G.).

D. catellina, Ehtrenberg.

(Pl. XIX. fig. 10.)
Diglena catcllina . . . Ehrenberg, Dic Infus, 1838, p. 441, Taf. Iv. fig. 3.
[SP. CH. Body cylindric, short, abruptly truncate at each end; toes short, straight acnte, projected from the ventral side, at a right-angle to the body-axis.

This phump, sturdy little creature occurred among my carliest researches in the summer of 1849. It is a trne Diglona, yet is very dissimilar to its fellows, replacing their long, lithe slenderness by a short thick body, having strong skin-folds, often quite abruptly truncate before and behind. Now and then, indeed, a bluff rounded head is pushed out, carrying two eye-points at its front, and a ciliated face, hardly prone. From the broad square stern, a small foot projects at the lower margin, and two small, slender, acute toes, pointing downward, serve the creature for support and for locomotion. The internal organs are little noteworthy. Thure is a large occipital brain, and an enormous mastax, of which the jaws are normal.

Ehrenberg describes this tiny species as both marine and lacnstrine. I have found many specimens from tide-pools in the Tay estuary, collected by Mr. Hood,-P.H.G.]

Length, ${ }_{2} \frac{1}{6}$ to $\frac{1}{1 \frac{1}{S}}$ inch. Habitat. Λ gardon near London; a pond at Snaresbrook (P.H.G.) ; Sandhurst (Dr. Collins) ; marine tide-pools in the Firth of Tay (E.H.G.).

Diglena (9) birapmis, Gossc.
(PL, XLX, 6g. 3.)
Diglena (?) biraphis
Gosse, Amn. Nat. Hist, vol, viii. 1851, p. 200,
[SP. CH. Body oblong, the head and ablomen gently swelling; toes long, slender, straight, and perfectly cven in thicloness; eyes placed close together frontally; jaws
protrusile: alimentary canal very large, projected belinit and above the mastax, always filled with green matter.

This is an animal of no inconsiderable size, which has the technical characters of Diglena, but has little affinity with that genus, in structure or manners. My first ac. quaintance with it was in October 1849. A filamentous plant, growing in a pan sunk in my own garden, was thickly covered with a floccose matter, inhabited by numbers of Stentor polymorphus. Among them were specimens of this Diglena (?). In January 1851, I again found it in the same water, and on a subsequent occasion; but I have never met with it since.

The form is gracefully swelling and vase-like, not at all resembling a Diglena in appearance ; it has much the aspect of being loricate, but it is not. Two eyes are placed at the extreme front ; small, so close together as to be readily mistaken for one, brilliantly crimson. The transparent mastax, in situ, shows a pair of incurved strong pincers, whose approaching tips are two-toothed. These can be extended from the front for half their length, and seem to be a formidable instrument for seizing prey. These are, no doubt, the rami of an inous. What appears remarkable is that a great saccular lobe of the stomach runs up behind the mastax into the occiput, and divides into two lobules. The whole alimentary canal, with these lobes, was, in every example, uniformly filled with round green granules, the exact similarity of which to the component granules of the Stentors and the Loxodes, which abounded in the same water (together with varions species of Euglena), suggested that the normal food of the Rotiferon may consist of the juices of these Polygastrica, especially as its formidable forceps seems to indicate carnivorous propensities. The long straight rod-like toes are now and then turned up, so as to incline over the back; occasionally their tips are crossed.-P.H.G.]

Length, ${ }_{10 \frac{1}{d} 0}$ inch, Habitat. A garden-pan near London (P.H.G.) : rare.

Genus distemma, Ehrenlerg.
[GEN. CH. Body more or less cylindrie, long, slender before, swol'en behind, versatile; two cervical eyes; front furnished with a fleshy proboscis; toes two, furcate.

This somewhat obscure genns Ehirenberg constitutes on four species. These, however, must be reduced to two: for D. setigerum clemrly belongs to the family Rattulider; and D. marinum is one of the Loricata. The others 1 have not met with. But I enumerate three species, apparently undescribed, which seem to come into the genus.

In aspect and manners they closely resemble Diglena, especially in their long, lithe, versatile forms, generally swollen behind; in the presence of soft tentacular appendages to the front; in the forcipate form and protrusile character of their trophi ; and in their fierce raptorial habits. The species inhabit the sea and fresh waters.-P.H.G.]

> D, hartor, Gosse, sp. nov.

> (I1. X1X, fig. 1.)
[SP. CH. Body long, gibbous behind, very changeable; front with a long projectile lip; foot short; toes small, slender, decurved. Marine.

The lithe flexible form is asually lengthened, slender in the middle, becoming high behind, its outline descending in an abrupt curve to the very small foot. This is armed with two toes, whose thickness tapers abruptly at the middle (fig. 1c). It is near D. forcipatum, but is distinguished by this peculiarity of the toes, and by their curvature. And it is marine. The head is rounded, the front produced into three fleshy ciliate points, and a conical projection on each side. The central point is probably the tip of a curious fleshy process, which is now and then rapidly pushed out and in (figs. 1, 1a), quite straight, thus differing from the proboscis of Diglena. The lateral projections, when this
lip is retractod, close against each other, as in Dinocharis. The median line of the dorsum makes a sharp roof-like angle, especially at the lumbar part, but does not rise to a ridge. Eyes are sometimes clear and distinct, one on each side of the mastax, wide apart, highly refractile, very pale red, but well defined; but in some specimens they are quite invisible. The trophi consist of an incus, with rami broad and circularly forcipate, on which work slender bowed mallei (fig. $1 b$). The mastax is often retracted below the middle of the body; then the animal will suddenly elongate, and the mastax will be driven forward and backward, rapidly and far, the rami snapping fiercely. This snapping snatehing action is very observable. Sometimes the mastax is, fully half or more, protruded from the front, and this again and again in rapid succession, the jaws giving a short smap at each time. It is incessantly restless, sudden and rapid in its contractions and turnings, yet not very locomotive, remaining long anchored to the glass by the toe-tips, swaying to and fro, much like a Monostyla, often stretching the toes apart,

I owe my acquaintance with this interesting form to Mr. John Hood, of Dundee, who, lately, at my request, searched for marine Rotifera. He presently sent me contributions of sea-water, from the estuary of the Tay, in which I found many species. Among the stems of a conferva this new Distemma was pushing and snatching.

It seems tenacions of life. The individual first observed lived in a live-box, containing a thin pellicle of water, for parts of three days, during which other Rotifera, its associates, had one by one succumbed. Perhaps from hunger, this specimen roamed incessantly through the clear water, snapping at every atom, now and then seizing a small diatom, and drawing it into the buccal funnel, to reject it instantly. The jaws were protruded and retracted every moment with lightning-like rapidity. Now and then a tiny cloud of floccose would be dragged in and chewed eagerly, then forcibly ejected, The force and energy displayed by so small an atom was remarkable. The sight seems to have a very small range. This one seized and devoured many Monads and even large Protozoa; but it seemed to have no power of discerning them till they were close to its head; then the action was prompt enough.

The highest expression of animal life that I have observed among Rotifera is this little obscure Distemma. As a fowl picks up minute atoms of food from the earth and pebbles and rubbish with which it is mingled, showing sight, observation, discrimination, selection, will, so does this Distemma manifestly snap up its food-atoms, often invisible to our eyes, selecting them ${ }^{1}$ with rupid precision from other surrounding atoms. The jaws are thrust out and withdrawn, as I have said, with a quickness which we cannot follow, and with stroke succeeding stroke, quite as rapidly as a hen's beak picks its morsels, and evidently takes something at each. The way in which it pounces upon animacules that we can discern, and the energetic vigour with which it seizes them, are admirable, and quite unparalleled among Rotifera, so for as my experience goes; and there is hardly a species deseribed in this work that has not come under my observation. If we could descend to his level, and form a personal acquaintance with him, I am sure wo should find this Distemma a person of great decision of character,-P.H.G.].

Length, (as in figs $1,1 a){ }_{13} \frac{1}{g}$ inch. Habitat. Tay-month: tide-pools (J.H.).

> D. collinsif, Gosse, sp. nov.
(PI. XVIII. fig. 18.)
[SP. CH. Body cylindric, long; head large; foot stout; toes two, furcate, long, slender, unnotohed, acule. Lacustrine.

This species is known to me only by a drawing in Dr, Collins's Note-book. It is represented with a long body, a head of increased diameter, a stont foot, and two toos,

[^82]which are thick, decurved at the tips, and of a length equal to one third of the whole animal when extended. The pencil-sketch has not many details of organisation.

The only note which the observer has added is the following:-" It has the power of drawing-in the first joint of the foot into the interior of the body; and has a peculiar manner of separating the pair of curved toes."-P.H.G.]

Length. Unrecorded. Habitat. Sandhurst, Berks (Dr, Collins).
D. (?) Labiatum, Gosse, sp. nov.
(Pl, XVHI. fig, 12.)
[SP. CH. Slender, long, gibbous; front furnished with a protrusile lip; foot long, with two minute furcate, virgate toes.

Beyond what the mere outline suggests, as conveyed in the figures, I can give little information conceruing this species. With much doubt I place it in the present genus ; and that only on the possibility that two obscure spots, dimly seen in the neck, may have been eyes. They may have represented the trophi. In fact my knowledge of this form rests on a single brief observation. I was examining an aquatic moss, which Dr. Collins procured for me in June 1885, when this little creature glided out. I saw in a moment it was new to me, but my attention was already occupied. There were in that live-box, at that instant, three or four Rotifera unknown to me ; as many papers were before me, on which I was labouring to reproduce the portrait of each, feature by feature, as I could eatch it. Here was one more. It was a complete embarras des richesses. What could I do? I hastily threw in the outlines here given, careful to secure correctness in what was produced, but deferring minute examination in the hope of seeing it again ; while I pursued the study of those already in hand. The present subject, however, found speedy concealment among the moss, and I could find it no more; nor has it ever reappeared. The form, particularly in the lateral aspect, recalls the outre shape of Notommata caudata, with its long neck, elevated back, and slender foot; but the resemblance is only superficial. Its chief peculiarities are-(1) a slender parallel-sided, squarely-trumcate proboscis or lip, projecting medially from the front, which is seen in the side view to be somewhat low in position; it seemed retractile to some extent; (2) a long, slender, and tapering foot-joint, furnished with a furcate pair of toes, very minute, of equal thickness throughout, obtuse; like tiny pegs.

I can find nothing in Ehrenberg with which satisfactorily to identify it.-P.H.G.]
Length. About $\frac{1}{150}$ inch. Habitat. Sandhurst, Berks (P.H.G.).
[N.B.-In Dr. Collins's Note-book are pencil-sketches of an evidently large animal, which may possibly be the Triophthalmus dorsualis of Ehrenberg. I have carefolly copied the sketches (PI. xviii. figs. 14, 14a) ; but the details are not sufficient for diagnosis; and there are no descriptive notes. I have not myself met with anything like it. -T.H.G.

CHAPTER X.

PLOIMA (LORICATA).

http://rcin.org.pl

How much weariness has there been in the human race during the last fifty years, because the human race cannot stop politically where it was, and, finding no rest, is pushed to a strange future that the wisest look forward to gravely, as certainly very dark, and probably very dangerous! Meanwhile have the bees suffered any political uneasiness? have they doubted the use of royalty, or begrudged the cost of their Queen? Have those industrious republicans, the ants, gone about uneasily seeking after a sovereign? Has the eagle grown weary of his isolation, and sought strength in the practice of socialism? Has the dog become too enlightened to endure any longer his position as man's humble friend, and contemplated a canine union for mutual protection against masters? No! the great principles of these existences are superior to change; and that which man is perpetually seeking, a political order in perfect harmony with his condition, the brute has inherited with his instincts.
P. G. Hamerton. Chapters on Animals.

Presumption is our natural and original disease. Man withdraws and separates himself from the crowd of other creatures ; cuts ont the shares of the animals, his fellows and companions; and distributes to them portions of faculties and force, as himself thinks fit. How does he know, by the strength of his understanding, the secret and internal motions of animals ?-Montaigne.

CHAPTER X.

Sub-Order Loricata.
Integument stiffoned to a wholly, or partially, inclosing shell; foot various.

Family XI. RATTULIDE.

[Body cylindric or fusiform, smooth, without plica or angles; contained in a lorica closed all round, but open at each end, often ridged; trophi lony, asymmetric; eye single, cervical. Generally subject to abnormal conditions.

This family comes first in the Loricate sub-order, because the loricate structure is in varied condition; for, whereas in some species it is indubitable, in others, which yet cannot be severed from these, the integament is still thin, flexible, and membranous. Ehrenberg, indeed, while he assigned M. carinata to the Loricata, removed his genus Monocerca far away to II-loricata. Yet that carinata and rattus are congeneric camot be doubted by anyone who knows both; bicornis certainly goes with the latter. The sausage-shaped species have many family affinities with these ; though subdivisible inter se. The peculiar form of trophi represented in figg, 60-62 of my Memoir "On the Manduc. Organs" runs with little variation through all.

The most curious peculiarity in the family is its tendency to asymmetry, which appears in many organs. In the mastax the right malleus always differs from the left; when there is an elevated ridge on the dorsum, it is apt to be bent over on one side, and, instead of ruming straight down the middle, to pass slantwise from right to left; when two antennze are present they are unequal. The toes, sometimes normal, are often reduced to a single style, with minute sub-styles grouped around its base. In other cuses they are modified in a most unprecedented manner, described under the genus Colopus. On the whole, it is a group of very peculiar interest, both to the scient and to the intelligent seeker for amusement.-P.H.G.]

Genus mastigocerca, Ehrenberg.

[GEN. CH. Body fusiform or irregularly thick, not lunate; toe a single style, with accessory stylets at its base; loriea often furnished with a thin dorsal ridge.

The terminal style is by no means a tail, but a true toe, however modified. The homology of the sub-styles is not clear. The surface of the body is usually smooth and polished, often elegantly tapered; nor does the thin elevated carina of the dorsum materially interfere with this elegance, which the long taper toe admirably finishes. This organ, though inflexible throughout, is capable of rapid and sudden motions, being bent right and left, and whisked to and fro with great agility. The mastax is usually pear-shaped and very long, but the cesophagus, a sinuate duct, leads from it almost at its very summit occipitally, just where the mallei work upon the incus. Thus the great length of the mastax does not intrench on the needful length of the stomach, since this viscus begins far forward. The muscles, in many species, especially the transverse series, have been well resolved. Muciparous glands are richly supplied. Surprise is often felt that Rotifera with but a single style should be able to maintain so firm a hold upon
glass as to resist the force with which the surrounding water is carried up into a pipette by the pressure of the atmosphere. It is doubtless by the adhesive power of the clear glue secreted and poured out by the oblong foot-glands. In Mastigocerca this may often be seen running down the outside of the toe, its production seemingly subject to the animal's will. When first put into the live-box, it is commonly poured forth abundantly, so as to accumulate around the point, and to drag in a thick glairy stream behind it. I have seen it surround the terminal half of the spine to a thickness four times as great as that of the spine itself. Or it will ron from the base downward, like a thick spiral cord. Sometimes it is not perceptible. The male has not been detected in the family. -P.H.G.]

M. carinata, Ehrenberg.
(PI. XX, fig. 7.)

Mastigocerca carinata
 Ehronherg, Die Iufus. 1838, p. 460, Taf. Tvii. fig. 7.

[SP. ©H. Body long-oval; lorica ridged; ridge high, arched, reaching to middle of body; toe straight, cqual in length to body-and-head; sub-styles very minute.

The height of the dorsal ridge is very characteristic in this familiar species, rising, in the midst of its length, to fully half of the vertical thickness (i.e. from back to breast) of the body. Its cessation, too, just beyond the middle of the back, gives a peculiar humped outline to the forepart, viewed laterally. The belly-line is about equally curved with that of the back. The ridge, as already observed, is not set-on straight down the dorsal centre, but on a line that slants considerably to the left, while in its elevation it leans over to the right. It is manifestly hollow along its base, for the viscera may often be seen extending into it for a little way. It is marked on its basal part, through its length, with close-set corrugations. The front is rounded, with many minute eminences, on which the cilia, which make two distinet vortices, are set; they inerease in size and height to the occiput, where an antenna projects, capable of being erected or inclined. A long occipital brain carries a rather large bright-red eye, set like a wart at its interior lower angle. The mastax, a pear-shaped bag, is enormous, reaching, from the front, half the body-length. It contains an incus with a slender straight fulcrum, the rami of which are obsolescent and the alula very large, and two bent mallei, unequal in size and form. There is a very small contractile vesicle, whose period is shorter than I have observed in any other Rotiferon, twenty-five times a minute. The distension of the viscera conceals the branchial vessels, but I have seen one vibratile tag.

The foot consists of an ovate bulb, to which is jointed the toe as a slender spine in the midst of two or three bract-like accessory styles, one of which is slightly longer than the others, distinctly moveable. The toe moves in all direetions exeept backwards.-P.H.G.]

Length. Of loriea, $1 \frac{1}{5}$ inch; of toe $\frac{1}{150}$ inch; depth to summit of ridge, ${ }_{2} b_{0}$ inch, Habitat. Pools; generally distributed: common.

> M. поннокssa, Gosse, sp. nov.
(Pl. XX. fig. 10.)
[SP. CH. Body long-oval; dorsal ridge reaching to the foot, nearly uniform in height; toe straight, two-thirds as long as body; sub-styles one-third of toe-length.

This I think a well-defined species. The ridge attains nearly to us great a height as in carinata, and is continued to the base of the foot. Its outline rums in several arches, and deseends rather abruptly at the end. It is marked with faint radiating corrugations. The principal toe is a straight slender style, gradually tapering to a fine point, as in carinala, but not quite so long in proportion ; and the accessory styles, of which I could discern two, are of unequal length, the longer equalling fully one-third of the principal; whereas in carinata it is not more than about one-cighth, by very careful mierometric measurement. The nastax and jaws seemed much shorter than usual, but of the common
form. I did not diseern any eye, but do not doubt its presence in life. None of the viseera showed any peculiarity.

This species I met with at the beginning of October 1885, among sediment furnished me by Mr. Bolton. It was just dead; but afforded me a good observation. A week or two later, the empty lorica of another example occurred from the same ditch; and, a little afterwards, in water from Bracebridge Pool, still from Mr. Bolton, I found it yet again. And since, from Mr. Hood. The characters were constant in all.-P.H.G.]

Length, $\frac{1}{60}$ to $\frac{1}{80}$ inch; lorica, $\frac{1}{1+5}$ inch; depth at middle of ridge, $\frac{1}{1 / 5}$ inch. Habitat. Birmingham; Dundee. Pools: rare (P.H.G.).
M. scipio, Gosse, sp. nov.
(Pl. XX. fig. 11.)
[SP. CH. Body sub-cylindrical, slightly larger in front, thick and round behind; the front of the lorica set with three spines; a long low ridge considerably on the right side; toe half the length of the lorica; sub-styles one-fourth the length of the toe. Greatest width about one-cighth of total length.

This and the following two species have much in common; yet are distinguished by details of form and strncture. The general outline differs in each, as shown in the figures. The particulars detailed in the technical Spec. char. of each, though minute, scem trustworthy. What appears distinctive of the present is that the front edge of the lorica, otherwise smoothly truncate, carries three projecting spines, one occipital and two lateral, each of which runs down the outside of the lorica for a short distance as a sharp ridge. There is thus a certain resemblance to M, bicornis.

The general outline is that of a stout straight stick, thickened slightly near the head, with both ends rounded abruptly. At the extremity a very low ridge is seen, which runs up, considerably to the right of the medial dorsal line, almost imperceptibly at length, to the very front. The foot, which is short and bulbous, is contained within the rounded end of the trunk, but carries, attached to it by a very facile joint, a toe in the form of a slender spine, about two-fifths as long as the lorica. The spine, as in carinata, is not quite straight; it bears at its base a short supplementary style on each side, which moves on the basal joint with its own motions. Each is about one-fourth as long as the toe. The mastax is of immense size, occupying much more than half the body-length ; the trophi are often pushed to the very front. Vibrating cilia are disposed on minute eminences, of which the central one is continually lengthened and shortened. An ample brain runs down the occipital region, bearing a conspicuous crimson eye on its cxtreme point. I saw no protruded antenna. Very characteristic (in all the specimens observed) was a long clear blank space, wide at the foot-point, and tapering to near the mid-venter: probably a contractile vesicle; only that I could never see it contract. The whole animal is transparent and colourless.

I first saw this species in the summer of 1885 , on an aquatic moss, growing in one of my window tanks. I subsequently saw other specimens ; one in particular, glued fast to a filament by the toe, illustrating the abundance and tenacity of this excretion, which, evidently, is not always under the control of the animal, so that, if usually it is a convenience, it may become a snare. This individual was not quite dead, yet the turbid matter of the head was already forced out, together with many oil-globules.-P.H.G.].

Length. With the toe, xov inch. Habitat. On water-moss in pools (P.H.G.).

M. macera, Gosse, sp, nov.
 (PI. XX. fig. 12.)

[SP, CH. Body fusiform, thiekest behind the middle; lorica smooth-edged in frout; without visible ridge; toe half the length of the lorica; sub-styles one-fourth the length of the toe.

I can give little information about this species, which yet seems distinct. I have seen but a single example, and that was moribund, if not actually dead. I met with it in June 1885, in water from Woolston Pond, Hants, courteously supplied by Miss Davies. Spontaneous motion had not ceased, particularly in the toe-spines, and the structure of the abdominal viscera was still perfect; yet all the foreparts were one mass of dissolving flesh and air-bubbles, protruding from the front and spreading around. An eye-spot could be detected in the mass; but of the trophi not a trace.

The form recalls M. rattus; but greatly produced in length, and without discernible carina. I hesitate whether it should not be placed in the genus Calopus; for it appears to have two unequal toe-spines, the smaller fitting beneath the other, and about onefourth of its length. But the longer is straight, the shorter curved. So that, in defect of fuller observation, I assume that the shorter is but one of the supplementary styles common in this family; though I could detect other minuter spinelets at the base.

The specimen I unfortunately neglected to measure; but the total length to the toepoint was, approximately, $\frac{1}{\text { vo }}$ inch.-P.H.G.] Habitat. Woolston (P.H.G.),

M. elongata, Gosse, sp. nov.

(Pl. XX. fig. 8.)
[SP, OH. Body nearly cylindric, slightly larger before than behind; lorica smoothellyed in front; ridge long, low, medial; toe as long as the lorica; sab-styles onetwenticth the length of the toe.

This seems a very distinct species. Its smooth, hyuline, arched lorica, with a widely truncate front edge, quite smooth, but tapering in a graceful curve to the hinder end, where a small tubular orifice, also abruptly truncate, allows emission of the foot; is very distinctive from the preceding two species, to which, however, its remarkable length allies it. It is nearer to M. carinata than they; yet sufficiently remote from this by conspicuous characters ; in particular, by the dorsal ridge, which is low throughout, and, as I believe, medial. The greatest depth of the lorica (viz. just behind the front edge) is just one fourth of its length. This front edge, destitute of points, is apparently atteruated to thin membrane, thrown into minate transverse folds, inverted and everted with the motions of the head-mass. The foot is of one minute joint, exterior to the lorica. It bears one toe, a spine of great length and slenderness, almost quite straight, nearly uniform in thickness to the fine point. Its length about equals that of the lorica. Two accessory styles, very minute, are appressed to its base. The mastax is ample, and, as in M. carinata, having two mallei, unequal and dissimilar.

I owe my acquaintance with this charming species to Mr. Hood of Dundee, whose lieen eye had already detected its specific distinctness. He sent me, in November 1885, water from one of the pools near Dundee, containing a number of living specimens. They are sprightly and active, swimming elegantly through the clear water, with a smooth but swift gliding movement.-P.H.G.]

Lingth. Total, $\frac{1}{82}$ inch; of toe, $\frac{1}{1 / \sigma}$ inch ; of sub-styles, $\overrightarrow{\text { roo }}$ meh ; depth of lorica, ${ }^{\frac{1}{7} 0}$ inch. Habitat. Loch near Dundee (J.H.) ; Birmingham (P.H.G.) : not rare.

M. rattus, Ehrenberg. (PI. XX. fig. 9.) Ehronberg, Dic Infus, 1858, p. 422, Tuf. xlviii. fic. 7.

Manocerca rattus
[SP, CH. Body ovate, truneate in front, pointed behind; ridge reaching to heothirds, ceventy arched; toe longer than body-and-head together; sub-styles, very minute.

The lorica is elegantly ovate, subtruncate before, where a thick head protrudes, with a rounded front, on which numerous pimples are beset with bristle-like cilia, making
a single vortex. Behind the head is a strong transverse fold, seen in retraction, but obliterated in extension ; close to which projects horizontally backward a long antenna. The whole structure bears a very close resemblance to that of M. carinata, from which, however, it is distinguishable at a glance. The mastax and trophi are on the same pattern; but the right malleus is even still further reduced, only a slight vestige of it remaining. The dorsal ridge is evident but very low, with an outline regularly and elegantly curved. The foot is small and short; the toe nearly straight, long, slender, acute, closely embraced at its very base by several very short sub-styles. A copious secretion of mucus is often seen running down like a cord, from the base, whose viscosity is attested by the force with which the tip is moored to the glass.

This very elegant and sprightly animal is well named, for its resemblance to a rat is at once manifest, both in form and movement. It moves nimbly about among the vegetation, now nibbling, now turning short, now scudding hither and thither by little starts, whisking its long tail (toe) about in all directions. It swims gracefully and rapidly, revolving often on its axis. The periodic evacuations of its small contractile vesicle are thirteen in a minute. The species is often found in company of the finer Desmidea, and from the alimentary caual being commonly distended with matter of a rich golden-brown hue, I conjecture that some of these may form its ordinary food. In the discharge of feces, I have noticed such a quick closing contraction of the rectum at the point where the intestine merges into it (yet without constriction of the whole tube) as suggests a sphincter there ; and the distinction between the coloured contents of the intestine and the perfect clearness of the rectum is well defined.-P.H.G.]

Length. Of body and head, $\frac{1}{160}$ inch; of toe, $\frac{1}{138}$ inch; total, $\frac{1}{73}$. Habitat. Pools, widely dispersed, not uncommon (P.H.G.).

M, bioornis, Ehrenbery.

(PI. XX. fig. 5.)
Monocorca bicornis . . . Ehrenborg, Die Infus. 1838, p. 183, Thi. xlviii. fig. 8.
[SP, CH. Body fusiform-ovate, with long thick head armed with two projecting unequal spines; loriea not ridged; toe two-thirds as long as boty and-head, with a bulbous base, and no sub-styles.

The integument is truly a lorica. though more flexible than usual. It is trumeate at the neek, whence a thick cylindrical head protrudes, the anterior half of which can contract by bringing the sides together in strong puckers. With much resemblance to both rattus and carinata, there is a marked difference in aspect, from the greater development of this head, and from the unequal spines which project over it; of which the left is medial, much the longer, and decurved. The absence, too, of any dorsal ridge is noteworthy. The toe is slightly swollen at its base, but I cannot detect any substyles, though Ehrenberg speaks of them; it is slightly recurved. The right malleus lias here quite disappeared. The brain is of unusual length, even descending below the long mastax, and the eye, of moderate size and a pale-red hue, is seated near its middle. There are small gastric glands at the base of the stomach, and two similar vesicles attached to the rectal end of the intestine. The contractile vesicle's periods are three in a minute. In other points there seems little to distinguish the species from its fellows. There are, however, two antennæ, also unequal, which project, side by side, beneath the chief frontal spine. I have seen an ogg matured in the ovary, remarkable for its small size: perhaps male. (Cf. Monoc. valga, Ehr.)

In ponds and lakes around London, I met with this species and the preceding, six-and-thirty years ago; I have occasionally found both since, the present the rarer. Yeb I have had this multiply in a phial; so numerous and so large, as to be visible to the naked eye. They glide slowly about, sometimes hanging to the glass, or playing around
the floccose attached to growing Nitella. It forms a charming object under reflected sunlight. The body is colourless, and sparkling as a vase of glass, as are some of the viscera. An advanced egg is conspicuously white; and so is the head of the mastax; the eye comes out like a ruby; the stomach, full of food, is richly brown, or perhaps grass-green; and the rotating front is enveloped in a cloud of pale cobalt blue. Like its neighbours, it is lively in movement.-P.H.G.]

Length. Of body, rio inch; of toe, $\frac{1}{100}$ inch; total, $\frac{1}{56}$ inch. Habitat. Pools near London; Birmingham (P.H.G.).

M. stylata, Gosse.

(Pl. XX. fig. 6.)

Monocerca stylata . . . Gosse, Ann. and Mag. Nat. Hist. Sept. 1851, p. 199.
[SP. CH. Body irregularly oval; head short; lorica flexible, puckered in contraction, not ridged; tos less than half as long as body-and-head, simple, with no substyles.

In several respects this nimble little species resembles the preceding; the lorica (even more flexible and skin-like) opens wide in front to emit the head, and closes with many folds or puckers, converging to a blunt point. The form is more irregular than in any other species, being plump and gibbous; the skin, which is so flexible as scarcely to be called a lorica, is often drawn in, or protruded in angles, which vary the shape. The foot-bulb is enormous, usually inelosed within the body; to this is jointed the toe, a taper acute spine, nearly straight, without a swollen base, and without sub-styles.

The brain is thick and moderately long, carrying a large eye on the middle of its dorsal surface, protuberant as a wart. No antenna has been observed. The protruded head is short, set with cilia, strong and bristle-like, around the margin. The jaws have the asymmetric character already noticed; the one malleus is very long and simply bowed. As in bicornis, there is a long distinct rectum, to which are attached two globular cerea, larger than the gastric glands above. There is a small contractile vesicle. The cloaca is marked by a depression.

Under strong lateral pressure, a very complicated system of muscular bands is seen (6b), mostly transverse, but many irregularly diagonal. I copied them with great care.

I first obtained this species from a garden reservoir near London, in 1850. Its minnteness and its figure, its short foot and grent red eye, may cause it to be mistaken for an Anuraa, which it resembles in its swift, headlong, obliquely-revolving motion. Specimens in a phial may be detected with a pocket lens, rapidly urging their way, generally in a perpendicular direction, upwards or downwards, always with this revolving action. When alarmed, they suddenly increase their speed, shooting across the field of view with such a fleetness that it is difficult to keep them in sight.-P.H.G.]

Length. Of body, $2 \frac{1}{60}$ inch; including toe, $\frac{1}{1 / 0}$ inch. Habitat. South London; Hampstead Heath ; Stapleton Park, Yorkshire ; Birmingham (P.H.G.).

Genus rattulus, Ehrenberg.

[GEN. CH. Body cylindric, curved; lorica smooth, (usually) without a ridge; toes two, decurved, syminetric.

The Notommata tigris of Ehrenberg, with its rounded body, thickest before, its general curvature, and its two coequal toes, continuing the curve of the body, may be considered the type of this genus, which manifestly, however, forms a connecting link with the Notommatade, through Proales tigridia. The genus is a very natural one, inseparable, notwithstanding some diversities, with a common facies readily apparent to the skilled observer.-P.H.G.]

I. tiaris, Miller.

(PI. XX, fig. 18.)
Notominata tigris . . . Ehrenberg, Die Iufus. 1838, p. 431, pl, 1iii. fig, 1.
[SP. CH. Body subcylindrio, largest in front; foot thicle; toes two, stylate, long; sub-styles two pairs, very short; brain clear.

The lorica, though subcylindric, a tube open at both ends, and bent, is wider in front, where a great thick head is protruded, which is invested in an inflexible shelly coat, running off both frontally and mentally into hard sharp points. The face between bears rotatory cilia set on minute eminences. Ehrenberg says "the outer skin appears somewhat firm "; and I have met with the empty.dead shell, as evidently chitinous as that of an Euchlanis. The whole animal is rounded, not only as a tube is round, bnt the outline of the back is the segment of a circle, a form which is unchanged with all the animal's motions. The foot appears to consist of one or two thick joints, and carrics, besides the two toes, which are long taper styles, evenly decurved, sub-styles one on each side of each toe (fig. 18b), usually close appressed and minute. In death the toes are bent up under the belly; but in life they are usually carried straight behind, quite parallel, or often thrown upward, without, however, changing the downward curvature of their points. The ample mastax (fig. 18a) is pear-shaped: the mallei straight, unequally developed. The large brain carries a clear pale-red wart-like eye, on its point. The stomach is usually full of dark-brown food, coarsely granular.

Some points in Herr Eekstein's description of Diurella tigris make me doubtful whether his species and mine are identical. Mine I have had repeated opportunities of studying, both alive and dead.-P.H.G.]

Length, $1 \frac{1}{2 \sigma}$ inch, of which the toes are $\frac{1}{500}$ inch. Habitat. Sandhurst, Berks; Woolston, Hants: rare (P.H.G.).

R. helminthodes, Gosse, sp. nov.

(Pl. XX. fig. 17.)
[SP. CH. Body very slender, especially in front, the width less than one-fifth of the length; toes without accessory styles at the base; brain clear.

This obscure species approaches near to R. tigris in form, and also in the slendernoss and comparative length of the toes. It is, however, much more elongated (even when all allowance is made for the protrusion of the parts in death); and the anterior half is the slenderer, whereas in tigris it is the thicker. The lorica, if I am not mistaken, has a long low dorsal ridge, beginning insensibly near the mid-length, and ending abruptly in an oblique angle (fig. 17) just above the foot. The short, stout, bulbous foot carries two long furcate toes, which are simple styles, very slender, tapering to fine points, decurved, closely resembling those of R. tigris. Yet I was not able to separate any accessory styles at the base of each, such as are seen in that species. Something was there ; if styles, very short and close appressed, but it seemed rather a swelling of the basal part of each toe. It was only a dead lorica that came under my observation; from which the head-mass was extruded by decomposition, as an amorphous turbid cloud. Yet the mastax and its jaws of the normal form were still distinct, and the stomach and ovary were searcely changed. I could not satisfactorily define a contractile vesicle, nor branchial tubes. The toes were turned up close to the belly.

The lorica occurred in a tube sent me at the beginning of November 1885, by Mr. Bolton, of water from Blackroot Pool, near Birmingham, in which Asplancha priodonta had swarmed, all now dead.-P.H.G.]

Length. To tips of toes, ${ }^{\prime}$ or inch ; of toes, ${ }^{\frac{1}{2} \%}$ inch ; width (and depth) of body, ${ }^{\frac{1}{20}}$ inch. Habitat. A pool near Birmingham (P.H.G.).
vol. II.
R. cimonur, Gosse, sp. nov,
(Pl. XX. fig. 14.)
[SP. CH. Body arched, parallel-sided; skin flexible; brain opaque; toes short, blade-like, deourved; no sub-styles.

The brain, descending far into the occiput, is furmished at the end with a large and opaque chalk-mass. This I have signified in the specific name, from к $\mu \mu \omega \lambda i a=$ chalk. Its component cells are vory distinct at the lower margin, which is sub-truncate. When the fore-parts are retracted forcibly, as is frequently the case, the conspicnous chalkmass will sometimes reach to two-thirds of the entire length, displacing the viscera. A pair of small auricles are occasionally thrust out (fig. 14), without any sensible augmentation of speed, while the animal pushes throngh sediment. I have looked in vain for an eye, though it may have been concealed by the opaque cells. The trophi (figs. 14b, c) exhibit the virgate pattern common in the family. The toes are short compared with those of tigris, decurved ; set side by side, and widely expanded (fig. 14).

This seems a quite distinet little species, there being no other with which it can be confounded, on examination. The specimen described was in the bottle with which Dr. Collins favoured me in June 1885. Its movements were by no means rapid, but persevering, foreing its way incessantly through the leaves of water-moss and sedimentary floceose. I have lately found a second in water from Mr Bolton.-P.H.G.]

Length, ${ }_{2} \frac{1}{00 \pi}$ inch. Habitat. Sandhurst, Berks; Kingswood Pool, Birmingham (1.H.G.).
R. camptus, Gosse, sp, nov.
(Pl. XX. fig. 16.)
[SP. CH. Body and toes as in cimolius; brain clear; face furnished with pendent veil-like lobes of flesh. Marine.

This has much resemblance to R. cimolius, but it is larger, and the brain-sac is clear, not opaque. No eye has been visible: the toes are of like dimensions, pattern, and decurvation. A remarkable peculiarity is that in the front a thick and broad veil of transparent flesh hangs down, apparently bilobed, meeting another great lobe of like appearance from below. The function of these lobes I do not know. The body is cylindric, with no visible dorsal ridge. The mastax and trophi conspicuous, but ill-defined. An ample brain descends with a point into the occiput, with neither chalk-deposits, nor eye. A long and slender cosophagns leads to an ample alimentary canal. The ovary occupies the ventral region of the cavity; and a moderate contractile vesicle is behind all.

A single example of this charming little Rattulus I found in October 1885, with many other species of Rotifera, in sea-water, procured for me by Mr. Hood from the tide-pools of the Firth of Tay. In manners it was sluggish, contracting and lengthening itself with uniform persistence without changing its place. It was of hyaline transpareney and colourlessness.-P.H.G.]

Length, $\frac{1}{130}$ inch. Habitat. Tide-pools on the Scottish coast (P.H.G.).
R. sejunctipes, Gosse, sp. nov.
(Pl. XX. fig. 15.)
[SP. CH. Body projecting much above and behind the foot; toes two, coequal, slender, decurved, set side by side, wide apart.

Of this remarkable species Dr. F. Collins has made several graphic sketches in his Note-book. It is of the lunaris form, stout, plump, and curved; the foot consists of a great basal bulb, wholly internal, and a second joint, thick and short, to which are articulated two toes; these are acute slender styles, so curved as to continue the outline of the body, mutually equal, set on the same plane, but (which is most unusual) wide apart.

The hinder body is ventricose, greatly overhanging the foot. There is a great aggregation of minute air-(or oil-)globules in the dorsal cavity. The trophi I supply conjecturally.

Dr. Collins has added to his figures the following note: "Head very large ; rotatory organ compound ; a large eye ; peculiar ganglionic mass or brain lying on dorsal surface. Two toes, which it sometimes crosses; peculiar from being very wide apart, and decurved, as the toe of Rattulus Lunaris. Found in a pool near Wellington Military College, Berks." - P.H.G.]

Length. Unrecorded. Habitat. As above.

Genus calopus, Gosse.

[GEN. CH, Body cylindrical, curved; foot bulbous, inclosed; toes, one broad plate with another laid upon it, in a difforent plane.

A very remurkable deviation from normal structure is found in the species thus associated. Instead of two toes, consimilar and coequal, placed side by side right and left, like the legs of a man; here are two toes very unequal, hollow triangular plates of like shape, but of diverse dimensions, the smaller lying within the hollow of the larger. To use a homely comparison, let us suppose the bowl of a tablespoon, brondly truneate at the top and drawn out to a long point; then the bowl of a teaspoon of exactly the same shape, laid smoothly in its hollow ; the two separately articulated to the foot-bulb, so as to be capable of independent motion to a slight extent.

These organs are so anomalous that it is hard to describe them as "toes." If it could be proved that the cloaca opens between them, we might say without hesitation that the larger and upper represents a true tail, the smaller and lower a stylate toe. But I have no knowledge on this point; which could be settled only by a rare accident,-the observing of the act of evacuation at the moment when the animal was viewed laterally.

In general figure and organization, there is so close an agreement with the formor two genera, that the family affinity is indubitable. Several species I am able to associate as manifesting this structure: and, what is very ourious, I have found it exhibited by a member of a remote genus,-one of the Coluri (q. v. infra).

It is possible that Elirenberg's Rathulus hunaris may represent my C. porcellus. But the absence of any detailed diagnosis, in his text, leaves it doubtful; while his assigning of two eyes to his species is against the identification. The Diurella rattulus, Eyf., described and figured by Herr Eckstein, may possibly be the same thing. The delicate lines that are drawn through the middle of the toe, in his engraving, may be either the inner edges of two normal toes, or the outer edges of a single superposed toe; and the closest examination does not determine this. If the former, it is a species of my genus Rattulus; if the latter, a Colopus. His text also is ambiguous. "Two toes, long, much bent bellyward, and slender," seem to point to Rattulus ; while " at their base they do not stand close side by side, but lie with their points one on the other," appear to indicate the peculiarity of Calopus, ill-understood.-P.H.G.]
C. porcellus, Gosse.
(P1. XX. fig. 18.)
Monocerca porcellus - . . . Gosse, Anit. and Mag. Nat. Hist. Sept. 1851.
[SP. OH. Body cylindric, short and plump; lorica ridged; head with two projecting spines; the longer toe equal in length to the depth of the body. .

This neat, plump little creature always reminds me of a fat young pig. The general form may be compared to that of a well-filled sausage, a little bent, as sausages often are, and the varying shades of brown colour produced by the distended stomach and
ovary, add to the resemblance. The large head is bent downward; the brow and the chin project each in a sharp spine, between which the front is capable of a slight protrnsion, ciliated, und furnished with a tubular antenna. Viewed dorsally, the front is ever and anon closed by the rupid approach of two triangular pieces from the sides, which recede immediately (cf. Dinocharis, \&e.). The movement has no connection with the mastax. When the animal is confined by pressure, not sufficient to hurt it, it protrudes the jaws; and besides this a sort of veil is thrust forward, very thin and membranous, seemingly stretched between the frontal and mental points, and from an intermediate point (fig. 18b). The action, though frequent, is momentary, and the withdrawal is complete. The lorica terminates anteriorly by a strong transverse fold, at its full width, whence the mobile head is emitted, of much less apparent diameter. The difference, however, is mainly owing to a rather high dorsal ridge, which rises abruptly from the fold, and continues nearly equal in height to three-fourths of the body's length; or even, in some cases, to the whole. The basal joint of the foot is a round transparent bulb of great size, ahnost wholly enclosed within the body-walls. It must not be confounded with the contractile vesiole, which is much smaller, and lies upon it. To this foot-bulb is so articulated as to allow very free vertical motion the remarkable form of toe which has been just described. It is usually bent forward toward the belly, but can be thrown out behind, particnlarly in swimming. The trophi resemble those of Mastigocerca: the fulcrum of the incus a long slender rod with the back elevated into a thin ridge; no trace of rami can be discerned, but their pendent divergent alula, which are unequal. The whole mastax is covered with fine transverse lines. A wide and long brain, of the normal form and position, carries near its middle a great deep crimson eye. On killing one by sudden pressure, the branchial vessels were severed from their connection with the contractile vesicle, and forced out, displaying some details of their structure. They appeared as a single tubule on each side, striate in parts with cross lines; towards their hinder parts are seen a number of transverse branchlets, whose ends have been torn off, suggesting not one but many communications with the contractile vesicle. There are also very minute structures attached at intervals to them, one near the head, resembling a twig of several leaves. These I cannot explain.

With this very attractive little creature I have been familiar since October 1849 , when I met with it at Clapton, near London. It has occurred in many localities since. Its manners are sprightly and elegant. It is perpetually in motion, threading its way through the tangled conferva wires, and swimming across the open spaces, with a rapid gliding movement, turning on its long axis as it goes. The clear viscera, resembling bladders of various shapes and sizes, some filled with richly-coloured food or feces, others granulate, or oceupied with embryonic globules, all interspersed with orangecoloured fat-bubbles, and all seen through the transparent skin, have a most charming effect, as the animal thus revolves. It frequently arrests its roving course to examine the plants, and now and then to nibble at them, when the mastax is brought to the very front, and the jaws themselves are seen projecting from the head, and eagerly biting. Sometimes it swims round and round ${ }_{4}$ in a circle of which the curved outline of the back forms an are.-P.H.G.]

Length, Tin $_{10}^{1}$ inch, of which the double toe forms about one-fitth. Habitat. Pools and lakes : widespread through Midale and South Eughui (P.H.G.).

C. tenuior, Gosse, sp. nov,

(Pl. XX. fig. 19.)
[SP. CH. Body cylindric, dcourved, slender; lorica reithout sensible ridge; head defended by two or three projecting points; toe with two sub-styles.
' I am almost sure that the ridge is inclined; its edge bending over towards the right. I have seen it distinctly wrinkled along the base, as seen in M. carinata.-P.H.G.

This species has manifest affimity with porcellus ; but it is much slenderer, and its proportions are different. The width of the body to its length (exclusive of the foot) is as $1: 4$; whereas in porcellus it is as $1: 2 \frac{1}{2}$. The toe is here beset with a short sub-style on each side (as in Mastigocerca) ; whereas in porcellus I can see no trace of these. The lorica, moreover, is not elevated into any sensihle dorsal ridge. In all other respects it appears to agree with the preceding, except in being somewhat longer.

The species first occurred to my notice in water from Woolston Pond, sent me in September by the courtesy of Miss Davies. Several examples occurred, but all dead. A few days later I found it alive in water sent by Mr. Bolton from Birmingham, as weII as another dead.-P.H.G.]

Length, $\frac{1}{10}$ to $\frac{1}{1 \frac{1}{24}}$ inch; depth, $\frac{1}{500}$ to $\frac{1}{650}$ inch. Habitat. Weedy pools. Woolston: Sutton Park and Coleshill, Birmingham (P.H.G.).

C. brachyurus, Gosse.
(P1. XX. fig. 21.)
Gosse, Ann. and Mag. Nat. Hist. Sept. 1851.

Monocerca brachyura
[SP. CH. Body cylindric, short, plump, decurved; lorica not ridged; head without spines ; toe-length less than the depth of the body.

This species I described in 1851 from a single example taken on Hampstead Heath. It died before I had completed my observations; but I have since seen it on repeated oceasions, from various localities, though always searce. With much resemblance to C. porcellus, it is notably smaller ; there is no trace of ridge; the twofold toe, though exactly similar, is proportionally shorter; the front is obtusely truncate, seen dorsally and laterally, and is destitute of projecting spines. When viewed endwise (as on many occasions), the transverse outline appears quite circular, so far as the back and sides are concerned. A long depending brain carries a great red eye at its tip. The singular appearance of a second eye in the breast, mentioned in my original diagnosis, occurred in no other specimen; it must have been illusory, though unaccountable. The viscera agree with those of porcellus; the contractile vesiele very large. The toes are almost always thrust up under the belly.

In manners this varies much from its lively predecessor, for though constantly in motion it is singularly slow and sluggish, creeping to and fro on the leaves of the milfoil, nibbling ever as it goes.-P.H.G.]

Length (without toe), $\frac{1}{175}$ inch; toe, $\frac{1}{8} \frac{1}{6}$ inch; total, $\frac{1}{135}$ inch. Habitat. Hampstead Heath; Sandhurst; Woolston; Caversham (P.H.G.) : pools : rare.

> C. cavia, Gosse, sp. nov.
> (Pl. XX. fig. 22.)
[SP. CH. Body elevated and globose, very protuberant behind the foot; lorica without ridge or frontal spines.

In the summer of 1885 Mr . Henry Davis kindly collected water for me near Suaresbrook in Epping Forest. Among other treasures found therein I met with this pretty little creature, which at first I was inclined to identify with C. brachyurus. It differs from it in form, however; the great elevation of its hinder quarters, and partieularly the development of its buttock into a great plump breech, gives it the aspect of a squatting mouse or guinea-pig, and makes the double curved toe proceed (in appearance) from a notch in the belly, far forward. The mastax agrees with that of its congeners, of moderate size ; but the brain is very large, and so is the eye at its point. The stomach was ample, filled with yellow food. Face truncate, slightly prone. The little thing was rather swift at first, but not wild.-P.H.G.]

Length (without toe), $\frac{1}{50}$ inch. Habitat. Epping Forest (P.H.G.).
(I suspect the Distemma setigerum of Ehrenberg to belong to this genus. He himself alludes to the liability of confounding it with Rattulus, as well as to tho difficulty of resolving the very slender toe, which, at first sight, seems single ; and to his inability to see any proper foot-joint. Yet he assigns to the species two eyes; which does not accord with any true species of Calopus known to me,-P.H.G.]

Cesfopus (?) minutus, Gosse, sp. nov.
(PI. XX. fig. 20.)
[SP. OH. Two eyes, wide apart; mastax and rotating cilia (apparently) wanting ; body rotund, minute.

Little as 1 know of this tiny animal, enough is manifest to show that it is one of much physiological interest. Though for convenience of reference, and because of certain conspicuous resemblances, I place it with the Calopods, it must be considered a species incerte sedis. The general figure, plump and round, recalls C. porcellus and cavia, and so do the short, curved foot, thick at its base and tapering to a sharp point, and its manner of articulation. Yet, whether the structure of this member is that peculiar to Celopus,-a secondary spine lodged within the inferior concavity of the principal,-I cannot certainly affirm. I strove hard to determine this point, bat could not obtain absolate certitude. It appeared single and indivisible.

But it is at the anterior extremity that the chief anomalies of the little creature are found. Two cervical eyes are seen, tiny globelets, brilliant and distinet, set wide apart, close within the outline on eilher side, in a dorsal aspect (fig. 20). I could find no trace of mastax or trophif, in general so largely developed and so conspicuous in this family; but instead of it what seemed a simple slender duct or tube, formed by the union of two short branches which communicate with the front, and open into a great saceulate stomach ; as if the csophagus had been continued upward,-the mastax being atrophied, -to the very front, or rather merged into the buceal funnel. Again, with the closest scrutiny I could detect no cilia nor any ciliary action.

Only a solitary example has occurred to my observation, from the Black Loch, near Dundee. It was alive but inert, and to a certain extent glued fast to the glass by an excretion from the foot.-P.H.G.]

Length, $\frac{1}{50}$ inch. Habitat. Black Loch, near Dundee (P.H.G).

Family XII. DINOCHARIDE.
Lorica entire, vase-shaped, or depressed; sometimes facetted, often spinous; head distinct, with a chitinous covoring; foot and toes often greatly developed; trophi symmetrical.

Of the three genera, which together form the Dinocharide, two, viz. Dinocharis and Scaridium, resemble each other in the great length of the foot and toes, and in their conspicuous condyles. Both these genera are also completely loricated; but whereas in Scaridium the chitinous cuticle is thin, somewhat flexible, smooth, and transparent, in Dinocharis it attains a greater development than in any other genus of the Rotifera. For, not ouly is the trunk completely enclosed in a dense lorica shagreened with little lonobs, ornamented with ridged facets, or bristling with spines, but the head and foot also are similarly protected, and the lorica stretches down even to the base of the toes. The third genus, Stephanops, resembles the first two in having a chitinous covering for the head, and in bearing stiff spines, which are not organs of locomotion, on various parts of the trunk; but its skin can hardly be termed a lorica, and its foot, though well-jointed and often spinous, is never immoderately long. The head-gear in the
tluee genera is also very different, and Stephanops has two eyes remote from the mastax, while Dinocharis and Scaridium have but one, closely applied to it. In all, howerer, the trophi are symmetrical, the family differing widely in this respect from the Rattulida.

Genus dinocharis, Ehrenberg.

GEN. CH. Lorica vase-shapel, dense, shagreened; facetted, and with projecting plates, or armed dorsally with spines; head retractile within a chitinous cap; eye single, apparently attached to the mastax; foot and toes very long, the former bearing spines.

Two of the species of this genus, viz. D. pocillum and D. tetractis, resemble each other very closely; the main difference being that the former has, on the last joint of the foot, a small spine between the two toes. But the third species, D. Collinsii, is strikingly unlike the other two, in several respects. Their lorice are vase-shaped, facetted and spineless; whereas its lorica is quadrangular, much depressed, free from facets, but notched round its edge and bearing long dorsal spines. The head-coverings are also unlike. Those of the first two species consist each of quadrantal pieces that can be brought close together so as to enclose completely the withdrawn corona; but in the latter species the head is protected on the dorsal surface by a notched shelly hood, and is uncovered on the ventral surface.

> D. pocillum, Ehrenberg.
> (P1. XXI. fig. 1.)
> Dinocharis pocillum . . Ehrenberg, Die Infus., 1838, p. 472, Tat. lix. fig, 1.
> Gremacher, Sieb. u. Koll. Zeils. Bd, xix, 1869, D. 497.
" "
SP. CH. Lorica vasc-shaped, sub-cylindrical, facetted, withwnt spines; foot and toes very long, and together nearly twice the length of the trunle; spurs curved; a short spine between the toes.

The vase-shaped lorica of this species has a flat portion with sealloped edges down the centre of its dorsal surface ; and a similar, but somewhat protnberant, portion on the ventral surface. These two plates are connected by stippled coneave surfaces, which pass from a dorsal scallop to a ventral one and meet oach other in stout transverse ridges, which are very prominent in a side view ; and, when the creature is viewed directly in front, so as to obtain transverse views of the trunk, it is evident that the lorica, as shown in the elegant figure 1 c , is produced on either side into delicate winglike plates at right-angles to its surface. The head is protected by a complete cap, consisting of two pieces, which can fit together closely so as to conceal the corona, or fall back on each side into a fold in the neek in order to permit the hend to protrude. The loricated foot, which is as long as the trunk, has three joints ; on the last of which are two slender toes, decurved, bent outwards, and as long as the foot itself. Between the toes is a short clitinous spine. The first joint bears two stout spurs, usually about as long as the joint that bears them, but occasionally more than double the length. The front is rounded and get with small cilia; it is difficult to say what is the esact structure of the corona, or the arrangement of the ciliary wreath. There are a large mastax with sub-malleate trophi; two conical gastric glands; a broad eylindrical stomach; short intestine; moderate ovary; and very large contractile vesicle. This latter lies athwart the body whon distended, and in that condition fills up more than onsthird of the body-cavity: its time is four minutes. The lateral canals can be readily seen on the rentral surface, but I detected only one vibratile tag. There is a large crimson eye on the under surface of the nervous ganglion, which overlies the mastax so that the eye seems attached to this latter. Dr. Grenacher (loc. cit.) has seen two lateral rocket-headed antennæ on each side of the lower third of the dorsal surface.

This is an elogant and curious creature. With its toes well apart like a pair of com
passes, and its foot either thrown into one long curve or oddly bent zigzag fashion, it grabs among the sediment of the live-box; and sometimes it glides gently away by the action of the coronal wreath, with its long toes trailing gracefully behind it, just like Scaridium eudactylotum.

Length, $\frac{1}{x 0}$ inch. Habitat. Clear ponds and ditches, Hampstead Heath; Keww Gardens; Woolston (P.H.G.) ; Clifton, Birmingham (C.T.H.) : not very common.

D. tetractis, Elurenberg,
 (Pl. XXI. fig. 2.)

Dinocharis tetractis

Ehrenberg, Die Infus, 1838, p, 473, Taf. lix. fig. 2.
SP. CH. Lorica vase-shaped, narrowing to the hind extremity, facetted, without spines; foot and toes very long, together more than twice the length of the trunk; spurs curved; no spine between the toes.

This species is extremely like D. pocillum, differing from it chiefly in having no spine between the toes on the last joint of the foot. The trunk viewed dorsally has a somewhat triangular outline, the apex of the triangle being towards the foot, and is shorter in proportion to the foot and toes than it is in the former species. Mr. Gosse has observed in this species that the lorica runs off at the hind end into three, thin, transparent, and radiating plates, of which one is dorsal ; and that this latter is not continued so far forward as the lateral plates, so that a transverse section shows no trace of the dorsal radiating one, but rather a slight depression between two gibbous swellings. This is well shown in fig. $1 c$, a transverse section through D. pocillum. Mr. Gosse has also seen many specimens of D. tetractis, in which the spurs on the penultimate joint were more or less deteriorated; so that in some they were reduced to short tubercles, or even effaced altogether. These latter specimens were precisely Ehrenberg's D. pauper, which can no longer, therefore, be entitled to rank as a species.

Length. Up to $\frac{1}{\square 5}$ inch (P.H.G.). Habitat Clear ponds and ditches throughout Fugland and Scotland (P.H.G.; C.T.H.) : common.

D. collinsin, Gosse.

(PI. XXI. fig, 8.)

SP, CH. Lorioa depressed, sub-quadrangular, with semated edges and eight dorsal spines; spurs straight; foot and toes short, together as long as the trunk.

Though this Rotiferon is clearly a Dinocharis, it is a very singular one. The foot is short, the toes small, the lorica depressed, and a chitinous dorsal hood protects the head. The lorica is somewhat rectangular in shape, but broader in front than behind, with its fore corners rounded off, and its lateral edges serrated. At each hind corner a sharp spine projects, while six others rise from the dorsal surface. There is an outer pair attached to the shoulders, pointing down the back; and an inner pair, slightly decurved at the tips, rising from the central highest point of the lorica, and pointing diagonally outwards and upwards. A third pair, sharp and straight, rises from the hind end of the lorica, one on each side of the foot, and pointing outwards and upwards; while the first joint of the foot itself carries a pair of sharp chitinous spurs. The lorica is closed, much arched dorsally, lighest in front, and flat on the ventral surface. The dense lorica, which is stippled in the central region, makes it difficult to define the internal structure; but Mr. Gosse, from whose Memoir (loc. cit.) this account is taken, succeeded in observing a globose mastax, ample alimentary canal, and rich ruby eye.

This Dinocharis was discovered by Dr. F. Collins in 1866, in a small pool in a wood near Sandhurst. Dr. Collins sent it to Mr. Gosse, who figured and described it (loc. cit.) in 1867. Dr. Max. Perty's Polychetus subquadratus may possibly, but not probably, be the same creature; if so, it is most inaccurately drawn and described. Mr. Archer's Polychatus spinulosus is undoubtedly D. Collinsii.

Mr. Gosse says of its habits that "it is rarely still, rooting among the sediment or swimming with a smooth gliding motion of no great speed. If I may judge of its behaviour in freedom from what is seen while under our notice, it seems to be a specially bottom-frequenting form."

Length, $\frac{1}{1 \frac{1}{26}}$ inch. Habitat. Sandhurst, Berks (Dr. F. Collins); Clifton (Mr. Brayley) ; Carrig and Callery districts, Ireland (Mr. T. Archer) ; Dundee (P.H.G.) : rare.

Genus scaridium, Ehrenberg.

GEN. CH. Lorica vase-shaped and compressed; or pear-shaped and depressed in front; very thin, transparent, smooth, without spines or projecting plates; head with a chitinous cuticle, except in front; eye single, really or apparently attached to the mastax; foot without spurs; toes very long.

In the genus Scaridium the foot and toes (especially the latter) are remarkable for their great length, for the distinct condyles, which give them such free action, and for the powerful striated muscles, which enable the animal to jerk its long toes widely apart, and to strike the water violently with its foot, so as to make it an effective organ of locomotion. In both species the lorica is a transparent, thin, stiff skin, which appears to be continued over the foot; but its shape in the two species is very different: for, while the lorica of S. longicaudum recalls that of Dinocharis pocillum, the lorica of S. eudactylotum somewhat resembles in general outline that of a Brachionus. In each species the eye appears to be attached to the mastax, instead of to the nervous ganglion; this would be a very unusual arrangement, but it is possible that the appearance is due to the nervous ganglion's being closely applied to the mastax, and more than usually transparent. ${ }^{1}$ The habits of the two creatures are similar. They swim quietly for a time, trailing the foot and toes behind them in an elegant curve; and then, with a sudden leap, they dart off into a new course.

S. longicaudum, Ehrenberg. (Pl. XXI. fig. 5.)

Scaridium longicaudum . . . Ehrenberg, Dic Infus. 1838, p. 440, Taf. Liv. fig. 1.
" ". Gosse, Phil. Trans. 1856, pl. xvii, figs. 64, 65.
[SP. CH. Body compressed ; front truncate; eye adherent to mastax; body, foot, and toes of about coequal length.

The most remarkable peculiarity of this species is the anomalous character of the eye,-a large flattened capsule, with crimson pigment not quite filling it, permanently attached to the surface of the mastax, and apparently not connected, as usual, with the occipital brain, which, however, presses upon it from above and behind. The trophi, too, are very abnormal. (See my Mem., loc. cit.) The animal, with its long unwieldy foot and toes, reminds us, not less by its movements than by its form, of Dinocharis. It is active, swimming with unequal, not very swift, action, with little movement of the foot and toes. It has the habit of making sudden springs, using, apparently, for this purpose, the fore parts, not the toes.-P.H.G.]

[^83]Length, $\frac{1}{80}$ inch. Habitat. Stratford; Maidenhead; Cheltenham; Birminglam; Starmont Loch, Dundee (P.H.G.) ; pools and dykes : rare.

S. eudactydotem, Gosse, sp, nov.

(Pl. XXI, fig. 4.)
SP. CH. Lorica pear-shaped, depressed and narrowed in front; toes as long as all the rest of the animal.
[S. exdactylotum was discovered in September 1881 in a small loch in Perthshire, by Mr. Hood, who sent me a tube of the water. This I found well peopled with this charming species. It is much more globose than longicaudum, and mueh more translucent, looking like an oval bubble of clear glass. The head is small, formed of several ciliated eminences. Among the turbid cloads, which are probably brain-matter, thero are one or two oval spots, which refract the light strongly ; but I cannot interpret them. As a small red eye always moves to and fro with the movements of the mastax, I conclude that they are organically united as in longicaudum. The incus and mallei are much more normal than in that species. The manubria, however, are tripartite, and the midale joint is largely and somewhat irregularly looped. The apparatns is unusually minute, obscure, and difficult. The mastax is distinetly three-lobed. There are a long cesophagus, wide stomach, intestine, and small ovary with nueleuted ovarian vesicles. In one example was a small maturing egg. The longitudinal muscles are numerous, and unusually conspicuous, owing to the brilliant transparency. But the most remarkable feature is the foot of three articulations, with strongly marked condyles, and a pair of furcate toes of excessive length and tenuity. They are usually straight, bat are sometimes a little curved outward at their tips. It is graceful and elegant in its motions. I have never seen one resting, but invariably swimming with a smooth even gliding, not at all rapid, often varied by a sudden spring or skip to one side, like its fellow S. longicaudum. The toes are very flexible, and highly elastic; sometimes when the animal suddenly turns, I have seen the toes bent almost double, but recovering their straightness in a moment. That tho integament is a proper lorica, closed and vase-like, is undeniable; yet it is so thin and flexible that the head retracted every instant carries with it the in-turned delicate front edge, which is again everted. At the moment of eversion I have repeatedly seen what I believe to be un antennal seta of excceding tenuity ; but certainly no tubule or pimple. - P.H.G.]

The lorica is tolerably flat on the ventral surface, but on the dorsal is distinctly gibbous behind and depressed in front. Like that of Brachionus, it deepens down to the hinder third of its length, and then suddenly drops with two abrupt curves. Viowed dorsally (fig. 4), it can be seen that a central portion of the lower third is arched above the general surface, and kept so bent by transverse muscular fibres. The head on the ventral surface is scooped into a hollow above the buccal funnel, and the corona bears two hemispherical ciliated prominences. On the long cesophagus, at a litlle distance from the stomach, are two small stalked glands (fig. 4a) similar to those in Pterodina and other Rotifera. The gastric glands are of unusual size and form. They are Y -shaped (fig. 4), and each has its stem attached to the top of the stomach, and its outer branch continued up to, and round, the inner dorsal surface of the Iorica, to which it is attached, Each inner branch hangs down, pointing inwards, towards the ventral surface, to which it is probably tied by a fine fibre. These glands are distinctly, though delicately, spotted with nuclei. The vascular system is best seen from the ventral surface (fig. 4b), where the lateral canals, surrounded by wide ribbons of delicate floccose matter, seem to adhere to a considerable portion of the loriea, keeping chiefly toward the sides. The contractile vesicle (fig. 4b) looks as if it consisted of an oval central chamber, surrounded by several smaller: an appearance probably due to the muscular fibres crossing it in a somewhat regular pattern. It is rather large, and a side view (fig. 4a) shows that it lies by itself at the hind end of the inmer ventral surface, while the rest of the viscera
follow the arch of the dorsal. I detected four vibratile tags (fig. $4 b$) on each side: one near the top of the lorica one about the middle, and two on a plexus of tubes lower down. The muscles that pass down the foot to move it and the toes are very conspicuous and are coarsely striated ; and the condyles of the toes (fig. 4c) are remarkable. The nervons ganglion (figs, 4, 4d) is so extremely transparent, that in can hardly be detected except by a chain of dark spots round its lower edge, which betray its presence when it moves. It is very long, cylindrical, with a rounded free end, and lies across the mastax and eye (fig. 4d). It may possibly be attacbed to both. Two rocketheaded antennæ can be seen, one on each side of the dorsal surface (fig. 4), and about one-third of its length from its base. I am indebted to Mr. J. Hood for the numerous specimens of this beautiful creature which enabled me to make drawings of it from various points of view, and to supplement the details given by Mr. Gosse.

Length, $\frac{1}{7}$ inch. Habitat. Pools near Blairgowrie (J.H.): very rare.

Genus stepianops, Ehrenberg.

[Lorica cylindrical or pyriform, entire; head bearing a permanent, wide, circular shield; toe (or toes) often surmounted by a toe-like tail.

The species which constitute this well-marked group are in general easily recognized by the beautful glassy shield which protects the head, and which, seen dorsally, instantly recalls the ring of glory which surrounds the heads of sacred persons in medieval pictures. This differs from the frontal hood in the Colurides, by being non-retractile, and having no motion apart from the whole head. Several of the species have spines affixed to the lorica or to the foot. The foot is habitually exserted, composed of joints which are stout, long, and distinct.-P.H.G.]

S. Lamellaris, Ehrenherg.
(Pl. XXI. fig. 7.)
\section*{Stephanops Lamellaris . . . Ehrenberg, Dio Infus, 1838, p. 478, Tat. Lix. 6g. 13.}

[SP. CH. Lorica pyriform, having a narrow neck, and slightly prolonged behind into three sub-parallel slender acute spines; foot furnished with a toe-like spino.

The form is swollen and vase-like, with a marked everted rim or neck, within which the whole head has a slight motion, surmounted by its lovely round glory-shield, which equals the loriea in breadth. Under its shelter is seen the conical front with its rotating cilia, its oblique points, and its two ruby eyes, very wide apart. Below the rim or neck the trophi are conspicuous, formed on the pattern seen in Euchlanis. The viscera are normal, including an ample transversely-ovate contractile vesicle. The hind part of the loriea is deeply trmeate, and the three spines are limited to the dorsal end. The foot cousists of three joints, long, and strongly marked, of which the last (save the toes) carries a very slender spine seated on a tubercle on its dorsal side, not quite so long as the two toes. The foot joints are permeated with two long chain-like glands.-P.H.G.]

Length, $\frac{1}{100}$ inch. Habitat. A garden tub (P.H.G.) : rather searee.

> S. muticus, Ehrenberg.
(Pl. XXI, fig. 6.)
Stephanops muticus
[SP. CH. Lorica oylindrio, having a distinot thick neck, and prolonged behind into a spoon-like shield, which is unarmed, as is also the foot.

What I identify with Ehrenberg's muticus agrees better with his description and figures than with Eckstein's. Can the latter have made his drawing from two indivi-
duals, lamellaris and muticus, which he supposed one and the same? I confess I have had suspicions that these are but one species. I have had specimens in my live-box of what seemed lamellaris, with the three caudal spines clear enough; yet in a few minutes I could find only specimens of muticus, with no spines at all to be discerned, to my great bewilderment. It seemed as if the spines could at will disappear, but I cannot conjecture how. This has happened repeatedly. Except the greater development of the neck, there is little else to discriminate the two.-P.H.G.]

Length, rdo inch. Habitat. Fresh waters around London; an aquarium at Torquay (P.H.G.): searce.

$$
\begin{array}{ll}
& \text { S. UNisetatus, Collins. } \\
& \text { (Pl. XXI. fig. 8.) } \\
\text { Stephanops uniseta } \quad . \quad . \quad & \text { Collins, Science Gossip, 1872, p. 11, figs. } 9 a, b .
\end{array}
$$

[SP. CH. Lorica ovate, its hinder end without points, but bearing a dorsal spine, very slender, straight, as long as the body; foot with a slender tail and two toes.

The discoverer of this interesting form has furnished me with a number of examples from its original hahitat: all inhabiting the leaves of a subaquatio moss. In the "Jour. Roy. Micr. Soc." 1885, Dr. Hudson has suggested the identity of Mr. Lord's species ${ }^{1}$ with this; but I think its thick fore-parts, the curvature of its spine, and several other peculiarities, indicate their diversity. If so, we have five dorsal-spined species. The spine here is so attenunte that it may well be called a seta. According to my observations, it vibrates with the tremulous motions of the body, but has no proper separate motion. Its base is attached to a shelly knob, level with the bottom of the mastax; it is quite straight, and its point reaches the tips of the toes. The hind edge of the lorica is truncate and unarmed, as in muticus. There are two slender pointed toes, and a minute spinous tail at right-angles from their base.

The species affects concealment, but occasionally comes out to swim with a smooth gliding motion in the open interspaces ; often subject to a momentary vibration through-out.-P.H.G.]

Length, $\frac{1}{200}$ to $\frac{1}{100}$ inch. Habitat. Sandhurst (Collins ; P.H.G.) ; not rare,
S. chlzna, Gosse, sp. nov.
(Pl. XXI. fig. 9.)
[SP. CH. Lorica cylindric, forming a semicircular occipital shield, without any constriction; toe single.

Ehrenberg's S. cirratus (not yet recognized with us) appears to lead to this, the sides being straight without any neck. The face is oblique, wider than any other part, beset with irregular fleshy lobes, with a retractile lobe forming a kind of chin. A great saclike brain carries one minute eye, very difficult to be seen. The lorica, without any diminution in width, ends behind in three points, and resembles a short cloak reaching to the loins. From this descends a thick and long foot, whose penultimate joint carries an acute spine at a right-angle, which is a proper tail ; thence a stout taper pointed toe, along whose middle a line may be dimly seen, suggesting two toes soldered into one. The rectum may be traced to a cloaca between the tail and the toe. Its manners are those of its fellows. In swimming, its movements, already rapid, are accelerated now and then by sudden starts, probably predatory.-P.H.G.]

Length, $\frac{1}{200}$ to $\frac{1}{150}$ inch. Habitat. Sandhurst: Woolston (P.H.G.) ${ }^{2}$; pools : rare.

[^84]Mr. J. G. Tatem (" Quart. Journ. Micr. Sci." vol. vii. 1867, p. 252, with figs.) described and figured a Stephanops (S. longispinatus) with one long dorsal spine, no posterior spines, and two short straight spines (one on each side) on both the first and second joints of the foot. Mr. T. Bolton (in 1884) published among his fly-leaves a Stephanops (S. bifurous) with one long dorsal spine, and one short posterior spine slanting buekwards and upwards, from the end of the lorica; both spines on the median line, and none on the foot. Mr. J. Hood in the same year sent me a drawing of yet another species (S. armatus) with one long dorsal spine, and two short posterior spinos, one on each side of the end of the lorica slanting slightly upwards and outwards, and somewhat convex to the lorica. This species also had no spines on the foot. Mr. Hood's figure is given in pl. xii. of the "Journ. Roy. Mier. Soc." 1885.

Family XIII. SALPINADÆ.

[Body more or less completely inclosed in a firm lorica, which is open at cach end, and divided down the back by a fissure whose sides are united by membrane; two furcate toes always exposed.

We come now to forms which are indubitably and manifestly loricate, the integument permeated by a peculiar chemical principle known as chitine, which imparts hardness and stiffness to it without diminishing its transparency. This substance is unaffected by alkalis, which immediately destroy all the flesh and membranous parts : a fact which is often useful to the scient, as by the addition of a minute drop of caustic potash to the cell containing a specimen to be examined, he can in an instant obtain the external form unchanged, generally clear and bright, with all the internal organs, that had marred distinet vision, dissolved away.

The animals we have now to consider are clothed in a coat-of-mail (lorica) more or less complete, of which the edges are sharply marked. Thus they display an evident analogy with the shelled MOLLUSCA, and one more close with the Entomostraca, with which, in its bivalve tribe Ostracoda, the present family may be advantageously compared,

The lorica here consists of two lateral segments of an ovoid box, open in front and behind, for the emission of the head and the foot, the two edges parallel and approximate along the dorsal line, and either widely open along the belly, as in Diaschiza, or united and soldered into one there, as in Salpina and Diplax. The front is composed of ciliated prominences, not protected by an arching hood; the foot is provided with two furcate toes.-P.H.G.]

Genus diaschiza, Gosse, gen. nov.

[GEN. CH. Body compressed ; the dorsal half of the trunk inelosed in a carapace, which is split medially; one eye present, usually cervical; trophi virgate, not distinguishable from those of Furcularia; toes long, blade-like, furcate.

This well-marked group, now consisting of seven species, was wholly unsuspected a few months ago. One after another has occurred to my own observation, within the past year, and I strongly suspect that other species will yet be discovered. The genus forms a very striking link of comnection between the Lorieate and Il-loricate sub-orders, as will be shown, more in detail, under the remarkable species D. semiaperta.-P.H.G.]

D. valga, Gosse, sp. nov.
 (PI. XXII. fig. 12.)

[SP. CH. Lorica decurved; eye occipital, small; toes long, slender, much decurved. Among filaments of Myriophyllum, growing in an aquarium, very thickly beset with various Diatomacea, \&c., appeared in March 1885 an active, restless, little creature,
which, at first, I thought one of the common forms of the minuter Notommata or Furcularic. But I presently perceived that it had peculiarities of structure, which were quile unfamiliar to me. Its figure is nemrly that of a cylinder, somewhat bowed downward at each end, and a little arched along the dorsal line. A small truncate foot carries two slender toes, about two-thirds as long as the body, much decurved, so as to form a segment of one-fourth of a circle; these are usually carried wide apart. A large brain bears a red eye-point considerably anterior to its extremity, visible only at intervals; in subsequent specimens, however, sufficiently conspicuous.

The whole form and matners of this animal indicate its affinity with species which are il-loricate. The situation, dimensions, and structure of the manducatory apparatus are indistinguishable from those of Notomm. lacinulata; yet the dorsal parts are inclosed in a semi-cylindrical shell of transparent chitine, reaching about half-way down each side, with a straight edge; and cleft throughout the dorsal line, into two parallel halves, moderately separated (reminding us of a Salpina, or still more of my Diplax compressa), reaching to the end of the body, where each terminates in a point slightly over-arching. Anteriorly this bifid carapace terminates transversely at what may be called the neck, allowing the soft tissues of the head to be partially retracted for an instant, when the lateral angles of the lorica are seen as two unchanged blunt points. It is remarkable that, in a lateral view, the very front itself appears as if the integument were so stiffened with chitine as to project both above and below in slightly obtuse points (fig. 12a). I soon after found two individuals among conferva in a ditch at Coffin's Well, near Torquay; and still later in waters from many widespread localities. I find little variation in them. The dorsal cleft is shallow, but always visible when the animal turns.P.H.G.]

Length. Of body, $\frac{1}{260}$ inch; of toes, $\frac{1}{20}$ inch; total, $1 \frac{1}{4}$ inch. Habitat. Torquay; Woolston; Sundhurst; Birmingham ; Cheltenham ; Oban (P.H.G.) : not rare.

D. exigua, Gosse, sp. nov.

(P1. XXII. fig. 18.)
[SP. CH. Minute; lorica flexible, constantly thrown into folds; eye cervical; toes thiok at their base, less than one fourth of total length.

On one or two occasions I had met with this little species in water sent me by Miss Saunders, from a window tank in her residence at Cheltenham. I had marked differences between it and D. valga, but yet set it down as that species, waiting for further light. More than five months afterwards, I was examining some of the pale impalpable floccose alga that grows thickly around the filaments of certain pond-weeds, originally from Dundee, but which had been several weeks on my table, when I saw this little thing in some number, and perceived that its peculiarities entitle it to specific rank. Though valga is a small species, this is not half its size ; its proportions, too, are different. It is much plumper and more gibbous behind; the toes, instead of slender rods uniform in thickness, are long cones, tapering to acute points ,and only one-third of the length of the head and body. The investing integument is evidently very flexible, every contraction and every turn throwing it into strong folds. Yet, thin as it is, it is a true lorica, reaching halfway down each side, as in valga, and displaying the dorsal fissure quite distinctly, as one views it from behind; when it is seen to be very shallow. No other points in its economy seem noteworthy.-P.H.G.]

Length, $\frac{1}{325}$ to $\frac{1}{200}$ inch; toes alone, $\sqrt{\frac{1}{3}} 00$ to $\frac{1}{2} \frac{1}{20}$ inch ; lorica, ${ }_{5} b_{0}$ inch. Habitat. Alge in fresh-water aquaria (1.II.G.) : rare.
[SP. CH. Body gibbous and ventricose behind; dorsal cleft narrow, parallel-sided; eye cervical; toes rather short, blade-shaped, acute, decurved, one-fifth of total length.

This little species comes near to D. valga, but is considerably larger, and more swollen in the posterior half of the body, whether viewed dorsally or laterally. The toes afford the most obvious discrimination between them. In both, each toe is a segment of a circle : in valga it is a slender rod of about equal thickness throughout its length, which is nearly equal to that of the lorica. In Hoodii it is shaped in one aspect like a carvingknife, in another like the half of the moon when three days old. As I bave observed the forms of the toes in Rotifera generally to be very constant, I am disposed to rely much on them in specific diagnosis.

Only one individual occurred; and of this my observations were imperfect. I found it in the pale floccose alga, which invests aquatic plants near Dundee. In memory of this origin I honour the little Diaschisa with my respected correspondent's name. A few weeks after this, I was so fortunate as to find another example, in water sent me by Mr. Bolton, from Blackroot Pond, near Birmingham. In the former specimen I had not perceived any eye ; but in this it was very conspicuous, of large size, and of somewhat pale rose-red hue, though brilliant, resembling D. pata in colour, but in a less marked degree. It is cervical, occupying the extremity of an ample brain.-P.H.G.]

Length. Not measured, bat about one and a half that of D. valga. Habitat. Loch near Dundee ; pool near Birmingham (P.H.G.) : rare.

> D. PETA, Gosse, sp. nov.
(PI. XXII. fig. 11.)
[SP. CH. Body thick, widest in front; lorica with the dorsal cleft very narrow, its edjes parallel and ridged; eye cervical, very large, pale; toes blade-like, reourved.

In June 1885, soon after I had discovered D. valga, a little water was sent me by Miss Saunders, from Woolston, in which were a good many specimens of that species, some much smaller than I have described. In the same water, however, I found one much larger, which proved a second species of the same genus. Again was I deceived into the supposition that I was dealing with a Notommata, or a Furoularia, such as F. gibba, till I caught sight of the cleft down the back; and particularly, when, as the creature turned, I for a moment saw it from behind, and looked up along the furrow.

The lorica seems again to be a mere carapace, reaching no more than half-way down the sides, and cleft in a straight line along the back. It has an elevated ridge throughout; so that the cleft forms a furrow between the low walls; and these are much closer together than in D. valga, so that the furrow is very narrow. The dorsal posterior terminations do not run off into curved points, but make nearly right-angles. I judge the lorica to be very thin and flexible. The toes are slender, pointed blades, somewhat recurved, often carried parallel when the animal glides forward. The mastax is Iarge, and seems formed quite on the pattern seen in Furcularia. Behind this is an ample brain, carrying at its sacculate extremity a very large globose eye, of extremely pale, transparent, carneous hue; this species differing thus from the former, in the position, size, and colour of the eye,-itself a well-marked and conspicuons distinction. The digestive canal is divided into stomach and intestine, both which are large and sacculate; and there is a contractile vesicle. The forepart of the abdominal viscera was, in this example, delicately tinged of a salmon-colour. At the cloaca, as if a minute portion of the intestine, there was protruded a little clear globose vesicle ; perhaps accidental.

This species is in manners restless and recluse, seeking its food and shelter under
the skins of decaying alga, and other aquatic plants. It seems reluctant to swim in the open water; but yet can glide along, smoothly and swiftly, when it pleases.

Three months had nearly passed, and I had met with no second example of this beautiful species, though examples of valga and sciniaperta lad been numerous. But then, in water from the same fruitful pond at Woolston, a specimen occurred, which seemed the counterpart of peta, except that the great brain was destitute, so far as I could discern, of the pink eye, which had been the most conspicuous distinction of the species. Presently, however, another appeared; and here the whole occiput was instantly scen to be radiant with the soft, rose-red tint ; the eye, in fact, or at least its pigment, occupying, just as in my first example, the whole lower part of the ample cerebral sac. Hence I infer that the rosy hue, normally pale, may sometimes become so dilute as to be practically undiscernible.-P.H.G.]

Length, 1 io inch. Habitat. Woolston Pond; Sandhurst, Berks : rare (P.H.G.).

D. semblaperta, Gosse, sp. nov.

(PI. XXII. fig. 10.)
[SP. CH. Body compressed, highest behind; loriea with the dorsal cleft closed in front, yaping behind, the ventral edges apparently approximate; eye frontal; toes long, slender, recurved.

In describing Furcularia gibba (supra, ii, 43) I have spoken of the resemblance borne to that species by the preserit, a resemblance which extends to other species.
D. semiaperta bears much likeness to D. pata, but is still larger; it is, too, higher behind, and the brain has no pink colour. There is, indeed, a well-defined oval eye, of deep red hue, but of moderate size, and situate near the front (fig. 10b). The brain is large, descending far down the back of the neck, quite clear, and strongly defined in outline. The locomotive cilia appear set on minute eminences over the whole rounded front, making no wheels, but visible as a simple fringe. The trophi are unusually large (fig. 10 d^{\prime}). The lorica, though split all down the back, has the edges of the fissure in contact at first, so that only the hinder half is open, and this but narrowly, In a succession of fair views that I had of one which was dying, looking down the back from the front of the head, not only was the gape of the lorica well seen to be but partial, but it evidently appeared that the eleft part was not elevated into a ridge, as it is in other species. The lorica-halves appear even to approuch along the belly, as they do along the back. But I am not certain of this. Each division terminates behind in an obtuse, slightly-decurved point (fig. 10), often obliterate.

One individual of this species had two globose bladders protruding from the cloaca, as I have described in D. pata. It may indicate a prevalent form of disease in the genus. In one specimen was a large dark egg, nearly matured. Another had the alimentary canal greatly distended, and of a greyish-blue hue, an unusual colour in Rotifera; but the mystery was explained by the fact that a colony of the Blue Stentor (S. carvieus) was established on the same sprig of water-moss; and it became evident where the Diaschiza had obtained its dinner.-P.H.G.]

Length. Total, $\frac{1}{120}$ to $\frac{1}{88}$ inch. Habitat. Cheltenham; Woolston, numerous ; Birmingham; Stormont Loch, Scotland (P.H.G.) : pools, rather common.

[^85]D. tenulor, Gosse, sp. nov.
(PI. XXII. fig. 14.)
[SP. CH. Body sub-cylindrical; dorsal cleft of lorica wide throughout; toes thick, nearly straight, obtusely pointed.

Here is a species which bears a relation to Furcularia gracilis, ${ }^{1}$ similar to that which D. semiaperta bears to F. gibba. In September, 1885, while I was examining water, sent me by the courtesy of Miss Davies from Woolston Pond, my attention was arrested by first one and presently another, of what appeared indubitable F. gracilis. Each was either half-concealed, as it burrowed in the floccose matter, or in swift motion as it glided through the clear water; so that, while I conld recognize the form and general character as accurately agreeing with drawings which I had carefully made of that species, many years before (except that these were of rather stouter build), I could get no opportunity of testing the condition of the back. Presently, however, I was so fortunate as to catch sight of the integument of a dead specimen of the same, perfect in form, but empty and transparent, the mastax in situ. By imparting currents to the water in the live-box, while the object was under my eye, I could turn it into various positions; among others, one in which I could look along the line of the back. It was distinetly donble-ridged, and rather wide-cleft. The gap is of nearly uniform width from the occipital edge of the lorica to the hinder edge just over the foot. I have said that the form was stouter than of F. gracilis; it appeared stouter now than in the two living restless examples that had first attracted my attention. But I reflected that the dead lorica would naturally be broader than in life, because, the tegumentary membrane of the venter having been ruptured by decay, the elasticity of the dorsal shields would naturally cause their lateral expansion.

Circumstances prevented my further study of the two living specimens; and I can give no further information of the anatomy than what was to be learned from the dead body. ${ }^{2}$ The features, however, that were visible were, from the very stillness of death, definable with precision. The toes, in particular, are diverse from those of any other known species, being not sensibly recurved nor decurved, but straight, or nearly, not blade-shaped, but round, rather thiek, abruptly brought to a point.-P.H.G.]

Length. About $\frac{1}{1} \frac{1}{20}$ inch. Habitat. Woolston Pond; Dundee (P.H.G.) : rare.

Genus diplax, Gosse.

(Amn. Nat. Hist. 2 Ser. vol, viii. Sept. 1851, p. 201.)
[GEN. CH. As Salpina, but the eye is wanting, and the lorica is destitute of spines in front and rear; foot and toes long and slender.

The two species of this genus I found both in the same water, Oldham's Pond, Leamington, and both on one day, July 18, 1850. Of the first, only one specimen occurred ; the second was numerous. With a single exception of the latter, I have never again met with either. They both approach very close to Salpina, but the absence of spines is notable, and the toes are proportionally more attenuate and longer. The head is seated in a flexible tube, cleft at the occiput, which is capable of entire involution within the lorica. It seems an approach to the persistent neck-tube of Dinocharis, to which genus the present is allied by the condyles of the foot, and by the length and slenderness of the toes,-P.H.G.]

[^86]D. compressa, Gosse. (Pl. XXII. fig. 8.)
Diplax compressa
Gosse, Ann. Nat. Hist. 2 Ser. vol, viii. Sept. 1851, p. 201.
[SP, OH. Body much compressed; lateral outline of lorica nearly a parallelogram.
The lorica consists of two trapezoidal plates, of which the ventral is the longest side, connected together a little within the dorsal edges, so as to leave a double ridge. The plates are bowed outward, laterally, and seem to be conjoined below. The whole lorica may be rudely compared to a cell made by two spoon-bowls soldered edge to edge. The transparent dorsal ridges oan approach and recede, and are probably connected mérely by elastic skin. The whole frontal region is occupied by the brain, which descends saclike into the occiput, but shows no trace of eye. The mastax is small, and the trophi obscure. A digestive canal, very wide at its origin, almost opaque from granulation, diminishes, with no apparent constriction, direct to the eloaca in a straight course. The ovary was normal, and I saw an ample contractile vesicle of sluggish action. No lateral vessels were traced, but one vibratile tag was seen. Along the line which, in the lateral view (fig. 8), indicates the bottom of the dorsal cleft, there are seen three oval scars, possibly insertions of muscles for closing the valves. The foot consists of three lengthened joints, two of which are decidedly condyliform (as in Dinocharis), labitually protruded; it carries two divergent toes, straight, rod-like, acute.

The manners of the single specimen found were much like those of Salpina, but it swam more, rarely resting on its toes. It was found among the sediment in the phial, ufter several days' keeping.-P.H.G.]

Length. Of lorica, $1^{\frac{1}{7} \sigma}$ inch ; total, when rotating, $\frac{1}{10}$ inch. Habitat. Leamington (P.H.G.): rare.
D. Tmigona, Gosse.
(Pl. XXII. fig. 9.)
Diplas trigona . . . Gosse, Ann. Nat. Hist. 2 Ser, voI. viii. Scpt. 1851, p. 201.
[SP, CH. Body triangular in section; lateral outline of lorica ovate.
There is much resemblance between this and the preceding; but the ventral side is flat, and about equal to each of the lateral sides; and the longitudinal outline of the back forms one third of a circle. The peotoral edge, which in D. compressa is but slightly notched, is in trigona indented with a broud and deep sinus (fig. 9). The neck-tube which incloses the head is only so far retractile, that, when its sides are brought together, they protrude between the lorica-edges, in form of a thin fold (fig. 9a). The frontal cilin are strong and bristle-like, grouped on prominences; behind which a very small brain-sac descends, with no visible eye. The trophi, of the common Salpina pattern, and the internal structure genorally, are as in the preceding; almost always obscured by a vast aggregation of air-bubbles. A thick tortuous vessel runs down each side. The toes are very slender, straight rods, in some examples much longer than here figured. The surface of the lorica is delicately punctured,-P.H.G.]

Length. Of lorica, $\frac{100}{}$ inch; total, $\frac{1}{0}$ inch. Habitat. Leamington; Stratford (P.H.G.): rare.

Genus salpina, Elwenberg.

[GEN. CH. Loriea an oblong box, furnished with spines, but widely open at each end, split down the back; head and foot protrusile; toes furcate, long, straight; trophi sub-malleate; eye single, cervical.

A homely illustration of this common and well-marked genus may be obtained by supposing a Notommata or Diglena of long straight toes inclosed in a transparent shell. This shell, the lorica, may be compared to a pillow-case, open at the two ends, with one
long side (the dorsal) unsewn, whose edges remain approximate, yet separate. Both ends run off into projecting points, which are grouped into four series, ocoipital and pectoral in front, lumbar and alvine behind; and these terms may be convenient for definition. The head can be retracted wholly within the lorica ; but the foot only partially, and the toes never. These are moderately long, blade-shaped, acute, straight, divergent. The eye is usually conspicuous, single, rather large, placed on the occipital end of an ample brain. The mastax is large, globose, the mallei and incus welldeveloped, the former many-fingered. A bristle-bearing antenna is protruded between the oceipital spines.-P.H.G.]

> S. arucronata, Ehrenberg.
> (PI. XXII. fig. 1.)
> Salpina mucronata \quad. \quad Ehronberg, Die Injus. 1838, p. 469, Tal. Iviii. fig. 4.
[SP. CH. Oceipital spines two, procurved; pectoral two, wide apart, separated by a deep sinus; lumbar single, short; alvine two, recurved, separated by a wide and deep sinus; dorsal parts of the lorica minutely stippled.

The lorica is somewhat three-sided, the back arched, and doubly ridged, with a narrow but deep furrow ; the sides gracefully swelling; the belly uearly flat. The two occipital spines, antler-like, are bent forward and slightly approximate at their points, with a deep sinus between their bases. From the two edges of this sinus spring the two dorsal carine, arching to the middle in an elegant curve, and meeting in the conical lumbar spine. The two pectoral spines are short and nearly lateral, as are the two alvine; both pairs are matually severed by a broad and deep excavation of the ventral surface of the loriea, while a similar sinus, less deep, bounds each of these pairs on the right and left. The flat ventral surface bulges out abruptly to form the pectoral spines. The head is very large, and is composed of many globose lobes, each of which carries a group of rotating cilia. An ample brain carries a small horizontal antenna, and a large cervical crimson eye. The trophi are frequently seen to protrude obliquely from the front, to nibble the floccose matters on which the animal feeds, which are, I think, exclusively vegetable. The alimentary eanal, large and very sacculate, following a short cesophagus, carries two ovate clear glands, and leads (apparently without division) to the cloaca. In an experiment, it readily received carmine. An ovary often shews embryonic vesicles; and sometimes a great maturing egg adds to the size and to the beauty of the animal. The lorica is elastic; in looking up along the cleft I have distinetly seen the ridges approach and recede, sometimes nearly closing up and then gaping widely. The latter is coincident with retraction of the head-parts, and at the same time some of the viseera are forced up between the ridges, considerably above the level of their basal line (fig. 1).

Though active, it does not swim much. It chiefly courses up and down among the roots of the duckweed, which it affects, examining each in detail. It is not very sensitive to alarm, caring little for taps or jars upon the instrument. The toes are often expanded and closed. It is nearly colourless.-P.H.G.]

Mr. E. C. Bousfield has seen a male Salpina attached by its penis to a female which was probably S. mucronata. It seemed to him that the male organ pierced the ventral surface of the foot at the base of the first joint. This appearance was doubtless due to the male's adhering externally by the broad end of the retroverted penis. Dr. Plate ${ }^{2}$ says that the male of Hydatina senta pierces the female, anywhere, with its penis. He admits that he has never seen the organ within the female's body, and that he never could find any aperture after the apparent penetration; but suggests that the cilia of

[^87]the penis make very minute punctures in the skin, and that the rod-like spermatozoa find their way through these. Such hypothesis scarcely requires serious notice; but I may mention that Mr. Brightwell, Mr. Gosse, Mr. Hood, and myself have all seen coitus take place, in various Rotifora, at the cloaca.

Length. About $\frac{1}{16}$ inch; lorica, $\frac{1}{150}$ inch. Habitat. Weedy pools ; duckweed; around London (P.H.G.) ; Sandhurst, Berks (Dr. Collins).

S. spinigera, Ehrenberg.
(Pl, XXII. fig. 2.)
Salpina spinigera . . . Ehrenberg, Die Infus. 1888, p. 470, Tat. Iviii. 应. $\overline{\text { o }}$.

[SP. CH. Occipital and pectoral spines scarcely diverse from the preceding; lumbar a long, slender, acute spine, slightly recurved; alvine pair slightly divergent and decurved; sinuses separating the occipital from the pectoral, and the humbar from the alvine, with straight bottoms.

The species of this genus are so consimilar that little more is needful than an enumeration of the points of technical difference. These will be better discerned from the figures than from verbal description. Though minute, they are constant, and I think, therefore, specific. The most marked, here, is the production of the lumbar point into a true spine in which the ridges meet, and which takes a direction different from their outline. The sides have oblique corrugations; and the general surface is coarsely stippled in various degrees. The eye is large and pale red. It is certainly a rare form; yet I have met with it on various occasions,-P.H.G.].

Length. Of lorica, $1 \frac{1}{60}$ inch. Habitat. Pools at Battersea Rise ; Hampstead Heath; Leamington ; on Ceratophyllum (P.H.G.).

> S. Brevispins, Ehrenberg.
> (Pl. XXII. fig. 4.)

Salpina brevispina

Ehrenberg, Die Infus, 1888, p. 470, Taf, 1viii. fig. 8.
[SP CH. Ocoipital spines wholly wanting; pectoral pair short and straight; lumbar and alvine as in mucronata.

The total lack of the pair of occipital spines to the lorica is a clear distinction of this species, the anterior extremities of the dorsal carine not sensibly projecting beyond the level of its truncate front, which, however, is not quite a straight line. The dorsnl arch, and the lumbar joint which terminates it, are nearly as in mucronata, only the point is much shorter, and the sinus between it and each alvine spine is circular. The surface is delicately stippled or covered with impressed dots. The ventral plane of the lorica has not that abrupt bulging, which marks both the preceding species ; the dorsal is more strongly arched than in either.

This species is sufficiently common in the fine-leafed aquatie vegetation of ponds and ditches. Its manners are precisely such as have been recently described. I do not know how to distinguish between this and the S. redunca of the same author,-P.H.G.]

Length. About $\frac{1}{150}$ inch. Habitat. Lakes and pools : very common (P.H.G.).
S. macracantha, Gosse, sp, nov.
(Pl. XXII. fig. 6.)
[SP. OH. Occipital spines wanting; pectoral pair short, straight; lumbar spine and alvine pair long, straight; the latter much longer than the former; the anterior and posterior ends of the ventral side of the lorica deeply excised; lorica-surface not stippled.

The lorica of this fine species is ventricose; the dorsal cleft is widely gaping. The lumbar union of the carino forms a true spine comparatively long and slender, yet is
much exceeded by the stout straight and long alvines. For many years I knew it only by a single dead specimen found in a pool at Maidenhead in September 1851. But recently (March, 1885) I met with a healthy example on Myriophyllum in one of my reservoirs at Torquay, which enabled me to complete my diagnosis and delineation.

The great head is sub-lobate, beset with brushes of cilia, stout in the middle, becoming more slender on all sides. A great occipital brain carries a very large and brilliant red eye, and a rounded antennal lobe, bearing a few setre. The great mastax, when feeding, is protruded through the mental sinus. The abdominal viscera are normal, except that the gastric glands seem wanting; and there appear to be two contractile vesicles, into which the two lateral canals open by a trumpet-shaped mouth.

The manners were similar to those of other Salpina, nibbling eagerly and perseveringly, as it crept, the vegetable surface of the milfoil, with its protruded trophi.

After it had remained in energy for several hours, I killed it, by mingling with the water in the live-box a minute drop of sol. caust. pot., whereby all the soft parts were instantly dissolved. There remained, however, uninjured, 1 , the great red eye, which, in one aspect, had a quadrate form : 2, the two toes: 3, the whole manducatory apparatus. A few minute air-bubbles were scattered through the visceral cavity. I could now discern that the surface of the lorica is not at all seabrous, by which (as well as by the other peculiarities already adduced) it may well be distinguished from Ehrenberg's S. ventralis, to which it yet approximates.-P.H.G.]

Length. Of lorica, $\frac{1}{75}$ inch; breadth and depth, each $\frac{1}{20 \sigma}$; length of toes, $2 \frac{1}{60}$. Habitat. Maidenhead; Torquay (P.H.G.).

S. mustala, Gosse, sp. nov,
 (Pl. XXII. fig. 5.)

[SP. CH. Occipital spines wanting ; pectoral pair short, incurved; lumbar spine conical, short, arched; alvine pair very long, stout, and incurved; dorsal cleft narrow, of equal width.

The lorica is gracefully ventricose, the back and sides being much arched, the belly slightly. The great alvine spines strike attention, as a conspicuous feature in all aspects ; they being long, thick at their bases, and incurved to the points, which are obtuse and approach each other. The lumbar spine is the united termination of the two dorsaI ridges; it is only half the length of the alvines, conical and sharp-pointed, slightly arched on the dorsal edge. The dorsal cleft, narrow and of equal width throughont, reaches to the very front edge, which then is nearly horizontal on each side, but on reaching the pectoral side, after a deep sinus, rises to a short sharp spine. The whole surface of the lorica, ventral as well as dorsal, appears stippled or punctured with minute sunken dots. But, in some examples, this is hardly perceptible; while, in others, it is coarse and conspicuous. The head, viewed laterally, is about as deep as the body; the front is made up of an intricate series of eminences (carefully delineatud in fig. $5 a$) ; one large lobe, toward the mentum, is crowned with stout and long cilia, which curve forward uniformly when in vigorous motion; other lobes carry much finer, shorter, and straighter cilia. There is a thick, obtuse, antennal lobe, bearing a brush of fine setre near, but not at, its extremity; and, within its walls, are seen curves and lines connected interiorly with a great descending brain, near the point of which is a round red eye. The internal structure is, in general, normal. But what appears peculiar is that there are (if I have not greatly erred) two coequal and consimilar contractile bladders symmetrically placed, large and conspienous, each of which receives the dilated end of a lateral vessel. ${ }^{1}$. And this does not seem to be a series of twisted cords, buta long slender sac, dilated here and there, where globular vacuoles are seen within.

[^88]This large and handsome species, one of the finest of the Salpina, I was at first inclined to identify with S. redunca of Ehr.; but it is more than double the size of that species, and the great development of its alvine spines sufficiently distinguishes it. It may be regarded as bearing the same relation to redunca as S. macracantha bears to ventralis. I have seen several examples; one from the Lake at The Grove, Stanmore, the residence of my esteemed relative, Mrs. George Brightwen.-P.H.G.]

Length, $\frac{1}{8 E}$ inch; horizontal width, $\frac{1}{15}$ inch; depth, $\frac{1}{235}$ inch. Habitat. Woolston; Stanmore (P.H.G.) : rare.

S. sulcata, Gosse, sp. nov.
 (Pl. XXII. fig. 7.)

[SP. CH. Occipital spines two, slightly procurved; pectoral two, straight, acute; lumbar single, short, with a widenod base; alvines lonjer, straight; dorsal eleft very wide, with outcurved edges.

The lorica is of the usual outline, but somewhat wide, both in the vertical and lateral aspects. Of the anterior spines the pectoral are the shorter and straight, the occipital incurved. In the rear, the alvine pair the longer, and recurved; the lumbar short, straight, acute, with an abruptly widened cuneate base. From this lumbar point two dorsal ridges run up, curving outward to the occipital spines (figs. 7, 7b), inclosing a shallow depression, which appears covered with only membranous integument. The lorica, on the ventral surface, is quite continuous and evenly rounded. I had some protracted and satisfactory sights of the creature in various positions, particularly from a point directly in the rear, and at different angles, by which I distinctly saw the dorsal furrow. One of these views is carefully delineated at fig. 7 b .

I know this form only from a single specimen just dead (but with the soft parts not yet decayed), which occurred, Sept 14, 1885, in water from Woolston Pond, sent me just a month before. It seems to be undescribed, yet well-marked by its broad dorsal furrow, widening forward. It has no relationship with Ehrenberg's S. bicarinata, from which, however (to judge by his figures,-for of diagnosis he gives none), it is sufficiently distinct. It is a small but interesting form.-P.H.G.]

Length. Of lorica, without toes, $\frac{1}{100}$ inch; transverse width, 315 inch. Habitat. Woolston (P.H.G.) : rare.

I am indebted for my knowledge of a very distinet species, S. mutica, to Dr. Collins's Note-book of pencilled sketches, minute but carefully executed. I have enlarged his figures (Pl. xxii. fig. 3). He has added no note to this form; but his delineations were made from specimens procured from a secluded pool near Sandhorst Military College, in December 1866. He identifies the species with S. mutica of Herr Perty.

From these it appears that the lorica does not vary much from the normal form (as in S. brevispina, for instance) ; save that the front is straightly truncate, without any spines, that the dorsal fissure is narrow and shallow throughout, and that it slightly widens behind, where its edges terminate in two very slightly prominent lumbar points: alvines seem wholly wanting. This species looks toward the genus Diplax, as sulcata looks toward Diplois, yet both appear to be true Salpina.-P.H.G.]

Genus DIPLoIs, Gosse, gen. nov.
[GEN. CH. Lorica, more or less depressed, ovate in outline; formed of two subequal plates, united by elastic membrane; the dorsal plate arched, ridged, and split down the middle; the ventral flat; toes straight, furcate; eye single, cervical.
shaped expansion, into the upper obtuse point of the bladder. (See the description of the preceding specics.)

Of the two noble species for which this genus is constituted, the general form and aspect suggest their location in the next family, while the technical characters fix them here. At the first glance at their elegant forms, like ample oval plates of the elearest glass, evidently broader than deep, we hesitate not instantly to pronounce them normal Fuchlanes; but a moment's observation reveals a fissure through the back, so charaeteristic of the Salpinada. The affinity between Diplois propatula and Salpina sulcata is very close.

The internal organization, so far as observed, agrees with that of Euchlanis.
It is possible that the E. bicarinala of Herr Perty and the E. Weissii of Dr. Leydig may belong to this genus; but I have seen no diagnosis, or figure, of either.-P.H.G.]

D. propatula, Gosse, sp. nov.

(Pl. XXIV. fig. 2.)
[SP. CH. Dorsal oleft wide before, closed bohind; ventral plate considerably less in outline, furnished with three spines behind; toes very long, of uniform thickness.

This species is broadly ovate, sometimes nearly circular, in outline, the dorsal plate strongly arched, and medially ridged; the ridge cleft so widely that the lorica is obliterated at its front in a vertical view, forming an acute point at each side. Each side of the fissure, from the lateral point, approaches the other in a graceful curve, till, at the hind-back, they unite at an acute angle. The posterior margin of the plate extends beyond this, forming the uninterrupted segment of a circle. The ventral plate is of similar outline, but very much smaller, and quite flat. It ends behind in three acute spines, of which the laterals diverge and the middle one projects from the general level. The foot, of strongly marked articulations, is protruded between the plates; the toes, of great length and tenuity, are straight, of uniform thickness throughout, with blunt points. No setæ have been detected on the foot-joints. The internal organization presents nothing distinctive, so far as it has been observed. ${ }^{1}$

The interspace between the lorica-plates is considerable ; and this, together with the great width of the dorsal cleft, produces a curious effect, as the animal twists about, making the triple character of the lorica, with its points and angles, very apparent.

This distinct and imposing form has but recently come under my personal observation. But it is figured by Dr. F. Collins in his Note-book, from specimens obtained twenty years ago near Sandhurst Mil. Coll. Figs. 2 and $2 a$ are carefully copied from his pencil sketches. ${ }^{2}$ On two separate occasions I have found the species, at each time in water sent from the original pool, which thus is its only recognised habitat. Its motions are elegant and lively, and its appearance most attractive.-P.H.G.]

Length. Fully extended, about ol inch. Habitat. Pool at Sandhurst, Berks (Dr. Collins ; P.H.G.) : rare.
D. Daviesie, Gosse, sp. nov.
(Pl. XXIV. fig. 8.)
[SP. CH. Dorsal cleft narrow, parallel-sided, open throughout; ventral plate nearly equal, with no posterior spines; toes blade-shaped.

This species occurred in water dipped from Miller's Pond, Woolston, The lorica is decidedly triquetrous, the dorsal plate rising with sides slightly bulging, to what would

[^89]be a sharp medial line, but that it is split throughout, and so forms a narrow furrow with low walls. Though the fissure can be distinctly traced to the occipital edge of the lorica, I am not quite sure that the ridge, or wall, begins to rise above the dorsum-level quite so early ; perhaps not till the middle of the length, and then gradually. The two strong sharp points at the hinder end of the dorsum, so conspicuous in many aspects of the living animal, are but the optical expression of the ends of the dorsal ridges seen vertically. The ventral plate is sensibly less in outline than the dorsal : it is ovate with the pectoral edge truncate ; flat, thin, and glassy; at each extremity it becomes delicately membranous. The foot consists of three distinct joints, long, and regularly diminishing; they are habitually extruded between the plates, perhaps in a sinus of the ventral; but I am not sure of this. The toes are moderately long, slender, blade-shaped, being (very slightly) dilated beyond the middle, and then rather abruptly pointed. No setm are visible. The condition of the dorsal cleft is not invariable. Sometimes it is seen to extend not more than half-way up from the tip: or even to be closed nearly to the points, expanding there rather suddenly. Possibly the lorica is elastic, and subject to the animal's will; for I have certainly seen the fissure wide throughout. The hyaline transparency of the whole, while it enhances the beauty of the creature, increases the difficulty of discerning all particulars of its structure, even those that are external; especially as, from the incessant movements and changes of axis in swimming, it is almost impossible to focus any one part in any one position. The front consists of a number of low prominences, each rising to an obtuse cone, and each crowned with a row of vibrating cilia. The mastax, an oblate sphere, presents nothing noteworthy; the brain descends saclike behind it, with a round deep-red eye near the middle of its internal side, distinctly crowned with a refracting lens. The stomach and intestine, not separable, occupy a large space in the body-cavity, usually filled with contents of an uniform rich deep-brown hue. This greatly adds to the animal's beauty, as it constantly roves up and down the narrow cells made by the crossing filamentous leaves of Myriophyllum in the live-box.

In general form and appearance this species very closely resembles the larger Euchlanes, which all its manners and actions perfectly represent, and do not in the least remind one of a Salpina. It is a fine addition to our Rotiferous fauna. Since it appears new, I honour it with the name of Miss Davies, of Woolston, Hants : a lady who has long made the Rotifora her special study, and to whose courtesy I am indebted for my first knowledge of the species.

Specimens have come under my observation, not only from the extreme south of England, but, on repeated occasions, from Scotland. It is, however, rare,-P.H.G.]

Length. Extended, $\frac{1}{50}$ inch. Habitat. Woolston; Dundee (P.H.G.).

Family XIV. EUCHLANIDA.

Lorica of two dissimilar plates, one dorsal, one ventral, united so as to form two confluent cavities, of which the upper is much the larger; foot jointed, furcate.

Genus evchlanis, Ehrenberg,

GEN. CH. Dorsal plate with the medial portion arohed; ventral plate nearly flat, usually with a flange on either side; eye single, just above the mastax.

There are no more beautiful or perplexing Rotifera than those contained in the genns Euchlanis. Their large size and brilliantly transparent loricæ render them most attractive objects for dark-field illumination; and it is by this method of exhibiting them that the true structure of their lorica can be best determined. The animal must have room enough to swim at its ease, and there must be a few bits of algo for it to creep on. Then, as it turns while swimming, or as it works its way over and round the weeds, the crenture will display all the beauties of its glassy armour ; which, invisible at one moment, will tlash out at another in broad plates and unsuspected surfaces.

To get a clear notion of the form of the lorica, ${ }^{1}$ suppose that the shell of a tortoise las its flat base split longitudinally down the middle ; and then that half of each part, on either side of the split, is bent down at right-angles to the flat base. Further suppose that a second flat oval plate, smaller than the base, is cemented to the free edges of the bent-down parts, and the resulting form will closely resemble the lorica of an Euchlanis. It is obvious that a small box will thus be formed below the true base of the tortoiseshell, and that its cavity will be continuous with that of the shell, and that its bottom will project on either side as a flange. Moreover, on the outside of this box, on either side of it, will be a long furrow, bounded by the oval plate above, the flange below, and by the side of the box. In the actual lorica of Euchlanis the portion corresponding to the small box, below the true shell, contains a considerable portion of the viscera; while the furrow (when the animal is viewed sidewise) often presents the edges of the two bounding planes so as to look merely like two parallel lines running from front to rear. If we further suppose that the altered tortoise-shell, with its attached second plate, is made of glass, and that it is held up so as to have the lower plate fully exposed to view, it is clear that we shall see three sets of edges. First the outside edge of the proper base of the shell ; secondly, within the first and parallel to it, the smaller oval edge of the lower attached plate; and thirdly, within this latter oval, the edges of the bent portions to which the lower oval plate is attached, and which connect the upper oval plate to the lower one. All these lines can be plainly seen in the ventral surface of E. dilatata (Pl. xxiii. fig. 5); where a is the edge of the dorsal plate, b is the edge of the ventral plate, and c the edge of the connecting portion at right-angles to both. The position of the inner two of these three lines varies greatly with the different species, according to the relative sizes of the upper and lower flat plates; and so does the distance between these plates, and consequently the breadth of the longitudinal side furrows. These differences are great helps in distinguishing the species, which have been much confounded. Another assistance is the presence or absence of a sharp notch (II. xxiii. f g. 2b) in the occipital dorsal surface of the loriea. In some species there is no such notch, but a wide gap (Pl. xxiii. fig. 5a), and the dorsal portion of the lorica near the head is membranous ; so that it has no constant outline when the head is retracted.

Mr. Gosse is of opinion that his two species, E. deflexa and E. pyriformis, as well as a third lately discovered by him, have no ventral plate, but have a ventral membrane instead of it. On this account, as well as on account of a peculiarity in the structure of their rami, he would separate them from Eluchlanis as a new genus, under the name Dapidia. As, however, we do not agree on the first of these two points, we have thought it better to leave the creatures, for the present, with their names unaltered.

Elirenberg has made use of delicate setæ, which are sometimes found on the foot, in order to separate the species ; but neither Mr. Gosse nor myself thinks this a character that can be trusted. For the setse are difficull to be seen, are liable to injury, and are certainly not constant in their presence in the same species. The internal strueture of the various species is so closely alike that a description of it in one species will very nearly serve for that in any other.

E. LyRA, Hudson, sp. nov.

(Pl, XXIII. fig. 1.)
SP. CH. Lorica long, narrow, oval, depressed; transverse section a low cirenlar segment; dorsal occipital edge membranous; hind dorsal edge without a notch; ventral plate with a very narrow flange, of wavy outline, elliptical and broadest at the hind end; setæ absent.

[^90]I found this large and beautiful new Euchlanis, in June 1885, in water sent to me by Mr. Thos. Bolton, from Sutton Park, Birmingham. It can be easily recognized by its long oval dorsal plate, which has not a trace of a notch behind, and by the curiously rounded end of the flange of its ventral plate, which, mlike that of any other Euchlanis, is widest at the hind end, and elliptical there in outline. As in E. dilatata and E. macrura, the dorsal plate is membranous near the head. The oreature is very transparent, and it has a way of jerking its toes apart and then keeping them open, which is very characteristic. It has mnusually large foot-glands, and shows the adhesive nature of their secretion by slowly twirling round, first on one toe and then on the other, for several minutes at a time. From the ventral surface it is easy to see the structure of the corona. It is truncate, and gouged out, as it were, above the buccal orifice, somewhat in the fashion of Hydatina senta (Pl, xiv. fig. 1c). A fringe of small cilia surrounds its outer and inner edges, and on the face of the corona itself are curves of larger cilia, whose ground plan is shown in black lines in Pl. C. fig. 10. Two papillm rise from the same surface, very visible on a dorsal view, which seem to be tubular, but in which I have never detected anything like a tactile organ. Dr. Plate' figures the similar organs in E. dilatata with a triradiate passage down their length. He says that they are covered with a very delicate membrane, and suggests that they serve for respiration. The trophi are sub-malleate with five teeth in each uncus. The stomach is tied on either side by muscles, which are attached to the border of the lorica at one end and to the middle of the alimentary canal at the other. From these latter points muscular fibres pass diagonally upwards along the surface of the stomach, and by their perpetual contractions throw it into ever-varying folds; while at the same time the lateral muscles twitch the stomach from one side to the other. Yellow oil-globules, often prettily arranged in quincunx fashion, are imbedded in the thick stomach-walls; and in the intestine, which is usually most obvious, the furious motion of its lining cilia can be seen with ease. The gastric glands are curiously lobed on the ventral side (fig. $1 a$) and contain large nucleated cells. The foot-glands are very long, club-shaped, and bent over almost to the edge of the lorica ; they are continued down the short three-jointed foot, and end in each toe in what appear to be three very delicate, adhering, quill-shaped vessels (fig. 1b), with their pointed ends near the toe's extremity. The toes are two short, stout, sword-like blades ; and, so far as I could see, without setw. The vascular system is conspicuous. Two intertwined lateral canals, hanging in bold loops just on a level with the mastax, and at the summits of the foot-glands, run down each side of the loriea to a large and normally placed contractile vesicle. I have seen four vibratile tags on each side: one close to the head, one at the upper loop, another at the lower, and one midway between them; doubtless there is a fifth. The ovary is a large cushion-like mass stretehing across the venter with unusually large germs: fig. $1 a$ shows a maturing ovum. The nervous ganglion (fig. 1) is very large, with nearly parallel sides, a scalloped front edge, and a rounded hind end, which is distinctly cellular. It stretches far below the mastax, in front of which, on its inner surface, it bears a darkred eye. Two small setigerous pimples rise from the corona behind the tubular papillw mentioned above. On the neek is another setigerous eminence, the dorsal antenna. I have not succeeded in finding any dorso-lateral antenno. There are two pairs of longitudinal muscles for withdrawing the head, which are plainly striated ; the rest of the muscular system is very similar to that already described (i. p. 8) in Brachionus rubens.

Length, $\frac{1}{30}$ inch. Habitat. A pond in Sutton Park (O.T.H.) : rare.

E. dilatata, Ehrenberg.

(PI. XXIII. fig. 5.)
Euchlanis dilatata . . . Ehrenberg, Die Infus. 1838, p. 463, Taf. 1viii. fig. 2 .
" " Cohn, Sieb, u. Koull, Zeils, ix. 1858, p. 289, Taf, xiï, 0ig. 4.
' Jenaisch. Zoits. f. Natur. 1885, Taf. ii. fig. 18.

SP, CH. Lorica a broad oval; dorsal plate dopressed in front, arched behind; transverse section (throught the highest point) a low circular segment; dorsal occipital edge with a broad gap, joinel to the head by a membrane; hind dorsal edge notched; ventral plate flat with a broad flange of oval outline; trophi with five teeth in each uncus.

This species, like that which precedes and that which follows it, has no occipital notch in the dorsal plate, but has a broad gap (fig. 5a), which is only visible when the head is completely withdrawn. The edge of the gap is mited to the head by a softer continuation of the lorica, which effectually obliterates the gap when the head is protruded. The lorica, though depressed, slopes upwards a little to a point not far from the top of a posterior notch in it, and then drops abruptly as if pinched in on either side of the notch. The ventral plate is nearly as wide as the dorsal, and a ventral view shows the edge of its flange running parallel to the edge of the dorsal plate just within it. A side view shows the two edges as two parallel lines near together, and drawn along the animal's side from end to end. Ehrenberg says that there are no seter on the foot, but both Dr. Moxon and Herr Eekstein draw a pair of pedal sete, and I have met with specimens bearing setw in no other respect differing from those that lacked them. Dr. Cohn (loc. cit.) gives a full description of the male. It is a reduced copy of the female wilh a sperm-sac and penis taking the place of the alimentary canal and mastax, which as usual are entirely wanting, Dr. Cohn has seen the wand-like spermatozoa "swarming " in the sperm-sac.

Length. Female, $\frac{1}{70}$, male, $\frac{1}{0<}$ inch. Habitat. Clear ponds and ditches: common.

$$
\begin{gathered}
\text { E. macrura, Ehrenberg. } \\
\text { (Pl. XXIII. fig. 6.) } \\
\text { Fuchlanis macrura - } \quad \text { Ehrenberg, Die Infus. 1838, p. 463, Tat. lviii. fg. } 1 .
\end{gathered}
$$

SP. OH. "Closely resembling E. dilatata; lorica a narrover oval; toes somewhat longer; trophi with seven teeth in each uncus ; a pair of recurved setæ on the foot."

I have met with an Euchlanis, whose figure is given in fig. 6, which had all the above characteristics given by Ehrenberg, but I doubt whether E. macrura is a good species, as none of the corresponding characters seem constant in E. dilatata, except the number of teeth in each uncus ; and, unfortunately, I found several specimens, of what I should otherwise have termed E. macrura. with only five teeth in each uncus.

Length. About $\frac{1}{7}$ inch. Habitat. Clear ponds and ditehes : not uncommon.
E. thiquetra, Ehienberg.
(Pl. XXIII. fig. 4.)
Euchlanis triquetra . . . Ehrenberg, Die Infus. 1838, p. 461, Taf. Ivii. fig. 8. Hudson, Mor. Mier. J. viii. 1872, p. 97, pl. xxviii.
SP. OH. Lorica oval, with a high flat median plate at right-angles to the dorsal surface; transverse section (through the highest point) triangular; dorsal oceipital edge notched; hind dorsal edge notched; ventral plate concave, and (with its flange) two-thirds of the width of the dorsal plate; trophi with five teeth in each uncus.

This most beautiful species is often to be found among the confervoid growth on the walls of old ponds. Its lorica rises in a high thin plate, and is not unlike a delicate glass dish-cover set over an inverted glass dish somewhat narrower than itself. The vertical plate, that thus rises like a crest from the dorsal surface, is very flexible and elastic, and can be easily bent aside by the compressorium without injury. The ventral plate is curved downwards all round its edge, so that the lateral furrow between the two plates is wide ; and, as shown in fig. $4 b$, its flange stretches barely half-way across the base of
the dorsal plate. The outline of the dorsal portion of the lorica, when seen directly from the front or rear (fig. 4c), is triangular ; the section, so obtained, having a base just twice its height. There is a well-marked occipital notch (fig. $4 b$) in the dorsal plate, through which a short, stout, dorsal antenna usually protrudes. Dr. Grenacher has detected two dorso-lateral antomie close together "lying near the crest of the lorica." Ehrenberg says that there are no setæ on the foot; but I have never failed to find two when using dark-field illumination. The rest of the structure requires no further notice, as it is a tolerably close repetition of that of E. lyra.

This is one of the choicest of microscopic objocts, when shown in n dark field; especially when it is quietly gliding over and round a few tangled alga. Its strange armour is now invisible, and now blazes out as it catches the light; while the ruby cye, the daintily-tinted stomach studded with glittering drops on canary-coloured quiltings, the ruddy intestine softened by the tremor of its ceaseless cilin, and the restless heud crowned with an ever-varying halo of flashing seta, form a picture that once seen can never be forgotten.

There is a variety of E. triquetra, with a lower vertical plate, which I have metwith now and then; and which, on several occasions appeared to have but one long seta on the foot. Possibly this is Leydig's E. uniseta (Pl. xxiii. Gig. 3).

Length. Up to $\frac{1}{5 \delta}$ inch. Habitat. Clear ponds and ditches ; not nucommon.

E. deflexa, Gosse.

(Pl. XXIV. fig. 1,)

Euchlanis deflexa

Gosse, Ann. Nat. Hist. 2 Ser, vol. viii. 1851, p. 200.
[SP. CH. Outline of lorica ovate; ventral gape wide, equal, with deep walls : toes broad, blade-shaped ; lateral horns of ineus straight.

This is a large and very beautiful species. It is not to be distinguished at first sight from a true Euchlanis, but the carapaee, which is highly arched, turns in at the lateral edges, and aftor proceeding for a space horizontally, i.e. across the ventral surface, is bent down at a right-angle to a considerable width and then terminates, as if we might suppose the ventral plate to have been originally flat and continuous; then to have been slit down the middle, and each side to have been bent down at a line midway between the slit and the outer margin. Thus the abdominal cavity is enlarged, and the viscera are protected only by the common integument which is stretched across from edge to edge. This being flexible, a variation of contained space is allowed, for development of eggs, for distension of the alimentary camal, \&c., which, in Euchanis, is obtained by the flexibility of the skin that connects the two plates. The lorica is almost circular behind, where a very minute central notch admits the two sides to overlap in the slightest possible degree. The foot issues, of course, from the ventral hiatus; it bears two toes, which are thin, flat, and wider in the middle part. The penultimate joint of the foot proper has on its dorsal side a curved projection, which arches over a deep excavation. It carries two pairs of long setæ, one or both of which are sometimes wanting. Each toe has a corrugated mueus-gland (?) running through it. The broad head is composed of many (ten ?) transparent globate lobes; the front is divided into several pairs of lobes, which carry bundles of cilia. The three strong lines which (with the front) form a square, reaching behind the mastax, are puzzling, but I believe they represent the wide, clear brain. The sacculate stomach is enormous, with two gastric glands ; and two glands, beside, are attached to the mastax : there is a small, distinct intestine in which the epithelial cilia may occasionally be seen; a great ovary, with embryonic vesicles, and sometimes one (or more) dark ovum maturing. The branchial tubules, two or more, contorted and very loosely twisted, carrying four vibratile tags on each side, open by two distinct mouths on each side, into an ample contractile vesicle, just before the clonen, whose periods are very irregular, even in the same individual : now emptying once in two minutes, then several times per minate. Many museles are seen, some induhitably
striate. An eye-spot which appears to be unconnected with the brain, is situate nearer the pectoral than the dorsal side.

I found this species in 1849 in ponds around London, and have seen it often since. It has sometimes occurred so large that even with the naked eye I have had no difficulty in distinguishing the head from the foot.-P.H.G.]

I once found among a number of speeimens of E. deflexa a perfectly empty lorica, belonging to this species, and fortunately standing up vertically, so that it turned round and round on its pointed end, as on a pivot (Pl. xxiv. fig. 1c). I was thus enabled to see with the utmost distinctness that it was closed everywhere except a large opening in front, where the head had protruded, and a small one behind, that had given a passage to the foot. The ventral plate (fig. $10 ; v$), as I term it-the ventral membrane as Mr. Gosse considers it-had no flange, but seemed to me quite as stout and stiff as (not to say stiffer than) the other ventral parts of the lorica. Whatever it was, whether chitinous plate or membrane, it had remained with the rest of the lorica while the softer tissues of the animal had disappeared.

Length, $\frac{1}{60}$ to $\frac{1}{\ldots}$ inch; breadth, $\frac{1}{100}$ inch. Habitat. Pools and lakes (P.H.G.; C.T.H.) : widespread.
E. pybiformis, Gosse.
(PI. XXIII. fig. 2.)

Euchlanis pyrijormis Gosse, Ann. Nat. Hist. 2 Ser. vol. viii. 1851, p, 200,
[SP. CH. Outline of lorica constricted in the middle; ventral gape narrow, widest in front, with shallow walls; toes narrow, rod-shaped; lateral horns of ineus overouroed.

The peculiar narrowing of the edge which gives to this species a pear-shaped outline is caused by the edge of the upper plate being curved right under on each side, this edge being formed by two surfaces thinned off to great tenuity, so as practically to become but one layer at some distance from the edge. The under sides then proceed inwards till they nearly meet, when they are bent downwards into shallow walls, just as in E. deflexa, which recede from cither to form projecting lateral points at the front; while behind they merge into a shallow groove and small sinus, at the end of the upper plate. Along this the foot is extruded, which usually has two setæ, a prominence and notch, as in the preceding, and two long toes, quite straight, slender, of equal width, except that they are abruptly pointed. The brain and whole internal organization scarcely differ from those just described; but the four slender horns that stand up from the sides of the incus are curiously bent over outwardly in the form of hooks. The eye is small, as in the preceding. In both species the beauty is much enhanced by a line of minute corrugations, running parallel with, and a little within, the margin of the lorica, like the "milling" around the edge of a new coin. Muscles in much profusion, longitudinal, transverse, and oblique, are to be defined in this very fine species.

I obtained it first at Battersea Rise, only the day before my discovery of E. deflexa. Few specimens occurred, and it has always been a rarity with me. It swims with swiftness and grace ; is of sprightly manners ; is beautiful and attractive, and being large and brilliantly transparent, is well suited for study.-P.H.G.]

The transverse section (fig. 2a), was obtained by viewing the unimal, which I have drawn in fig. 2, directly in front; it is taken through the turned-in portions of the dorsal plate. It shows that at these spots, the flange of the ventral plate (according to my interpretation of the lorica), almost touches the dorsal edge. These curiously bent portions varied somewhat in different specimens; but all my examples had four setæ on the foot. The hind portion of the nervous ganglion was darker, denser, and more obviously cellular than the fore-part, from which it was separated by a wavy outline. Its front edge was also scalloped like that of E. lyra.

Length. Up to $\frac{8}{x 0}$ inch; of lorica, $\frac{1}{82}$ inch; of toes, $\frac{1}{10 s}$ inch. Habitat. Or,amental waters (ए.H.G.) ; garden pond, Clifton (C.T.H.) : rare.

Family XV. CATHYPNADE.

[Body inclosed in a lorica, open at each end, of two plates; the dorsal more or less elevated; the ventral nearly flat, the two divided by a decp lateral longitudinal sulous, covered with flexible membrane; toes two, or one, always exposed.

This is a well-marked, ensily recognised, and compactly coherent group, the two divisions of the lorica, and their connection, readily identifying its members, notwithstanding the diversity in toes. The appearance, viewed from behind, reminds one of a pair of bellows, if we only imagine the upper board arched instead of flat; the leathers representing the lateral sulci. The toes, in two of the genera, are two, furcate; in the others there is but a single toe: yet the form, position, and use of these organs are so exactly identical, and yet so peculiar, that the genera cannot be dissociated. An ample brain, descending into the occiput, carries a single eye, usually conspicuous. The trophi are large, the mallei much more developed than the incus, virgate.

All the genera are marked by a common habit, which is not found elsewhere. One will rest on the tip of its toe (or toes), and having bent down the whole body, remain motionless, and as if asleep, for a long interval, the whole fore-parts retracted. Then it will seem to awake, and languidly swing round the body, first to the one side, aud then to the other, without letting go its moorings, and without protruding its head; and then, perhaps, go to sleep again. Or it may rouse itself into activity, and begin to grope away among the floccose, or glide deliberately off, soon coming again to anchor.

Five species were known to Ehrenberg, who placed the two with furcate toes in the genus Euchlanis, with which, however, they have no close affinity.-P.H.G.]

Genus cathypna, Gosse, gen. nov.
[GEN. CH. Lorica sub-circular horizontally, usually much arched verlically; lateral inangulation wide and deep; toes two, furcate.

The characters by which the species of this genus are distinguished are sometimes minute, and even obseure, yet constant; the shape assumed by the toes, and especially by the extreme points of these organs, demanding attention. In one group they are narrow, parallel-sided, like a carpenter's rule; in another, much widened in the middle, with the sides curving to the point : the former I call rod-shaped, the latter blade-shaped. The former, too, do not taper gradually to the tip, but are abruptly narrowed with a right-angle, so as to make a sensible shoulder, whence the point descends as a marked claw. And this may be only on one edge, or on both edges ; the toe being one-shouldered or two-shouldered.-P.H.G.]

C. Luna, Ehrenberg.
(P1. XXIV, fig. 4.)
Ehrenberg, Die Infus. 1838, p, 462, Taf. 1vii., fig. 10.

Euchlanis luna
[SP. CH. Dorsal and ventral plates of lorioa sul-equal, ocoipital cige crescentic : toes rod-shaped, two-fifths as long as lorica, clawed; the claw one-shouldered, one-fifth as lony as toe.

The lorica, broadly ovate in horizontal outline, ending in front by a crescentic excavation, and in rear by a small sinus between two points, and the toes, very narrow, parallel-edged, generally carried in contact, with short, sharp claw-tips, may easily serve to identify this common species. The dorsal and ventral plates are of nearly the same form and curvature ; high and deep behind, they come into contact in front, at least at the lateral edges, which project in two acute points. During the long retractations of the fore-parts, the lorica may be considered shut by this contact. When activity is resumed, the plates soparate, and a broad head protrudes, the front of which is trumeate,
with two equidistant incisions, at each of which appears a bristle (fig. 4). The rotating cilia are set along the edge. A mastax of very ample dimensions, with a pair of long mallei, but rather small incus, is always conspieuous. Behind this the occipital brain carries an eye, usually large and brilliant. A great saccate stomach, without sensible esophagus, with large gastric glands, and followed by a separate intestine, passes obliquely across the dorsal region ; and the ovary, as usual, occupies the ventral. ${ }^{1}$ In the adult, the surface of the lorica is smooth, and the whole animal is transparent and colourless.

Though individuals swim actively now and then, yet the babitual sluggishness and inertia of the species cannot fail to attract attention. As described, it will balance itself, by the hour, on its united toe-tips, with an occasional lazy swaying to and fro; or even loosen this feeble hold, and allow its body to sprawl away at right-angles to the food-surface, free in the water, the foot being bent up to the belly.-P.H.G.]
 common everywhere.

C. rusticula, Gosse, sp. nov.

(Pl. XXIV. fig. 6.)
[SP. CH. Lorica regularly ovate, with the frontal oponing very narrow; dorsal surface coarsely tesselated; ventral plate nearly flat; toes blade-shaped.

This fine species is very hyaline, notwithstanding that the broadly-oval and arched surface is cut into facets. These are not very regular, nor very distinctly marked, having the appearance of folds in leathery skin. They appear to be limited to the carapace. This is turned-in along each side, with a sharp lateral angle meeting the edge of the ventral plate, similarly turned-in, as is clearly seen when the creature is viewed from behind (fig. 6b). The union is doubtless completed by a flexible and extensible membrane.

The head is included between firm plates, which, seen vertically (fig. 6), appear as two lateral projecting points, between which the front, of many conical lobes that carry vibratile cilia, works to and fro. The brain and its lozenge-shaped eye aro normal; and so are the great trophi, the stomach with trigonal gastric glands and distinct intestine, and the ovary. A contractile vesicle is sometimes conspicuous, but no details of the respiratory nor of the muscular systems have been defined. A rather thick and short foot, rounded laterally, bears the two toes, which are articulated with round condylos. They are moderately thick blades of fusiform outline, when seen laterally, thinner towards the base, and rather bluntly pointed.

I first met with this form, in July 1885, in the sediment of water in which aquatic weeds had been sent from the north of London. Subsequently other examples occurred, in water from Caversham and Woolston, and from near Dundee, in December.

The earlier specimens were even more clumsy and sluggish than ordinary, moving waywardly from side to side, as if not quite under control, adhering all the while by the toes. Hence I called it rusticula. This, when too late, I would have changed; for some were much more attractive, transparently beautiful, with the eye large and of a lovely rose-pink hue, and so sprightly in manners as to be worthy of a more courtly designation. In these, too, the digestive canal was distended with food of a clear rich orangebrown hue. These were Woolston specimens. Scottish examples bred freely and increased in my phials.-P.H.G.]

Length, $\frac{1}{160}$ inch. Habitat. Pools throughout England and Scotland (P.H.G.): common.

[^91]C. sulcata, Gosse, sp. nov.

(Pl. XXIV. fig. 5.)

[SP. CH. Lorica broadly ovate, much elevated; anterior edges straight; ventral plate much smaller in outline than dorsal, both strongly fluted; toes blade-shaped.

The general form and appearance of this species may canse it to be easily confounded with luna, especially when viewed from the side. The arched carapace comes to a sharp edge all round, bending far-in abruptly; then bending outward again with a like angle, and coming to a like edge, to form the ventral plate. This, when seen sidewise (fig. 5a), seems to be of the same dimensions as the dorsal; but when seen direct from below it is much less all round (fig. 5c), except in front, where the pectoral edge is parallel with the occipital, both being transversely straight, but bounded, as usual, by two small lateral points. Both surfaces are coarsely and deeply fluted; the incised lines of the dorsal passing round and beyond the inbent edge. The bulbous foot projects slightly through an excavation in the dorsal plate's thickness : it is kidney-shaped; in its hollow the toes are articulated. The lorica is, by the graving of its surface, rendered so opaque that the internal organs are not easily defined. There is, however, a small but conspicuous crimson eye in the occiput, and, by inference, a brain. The mastax is so large that, when the head is withdrawn, it occupies fully one-third of the visible area, at the middle of the lorica. Below this appears the ample stomach, dark with digesting food, and (in the condition just named) pushed far up above the mastax on either side.

This well-marked species I obtained in a number of examples, both alive and dead, haunting aquatic moss, in water sent me by Dr. Collins from his historic pool at Sandhurst. For awhile I thought I had got hold of the Euchl. lynceus of Ehrenberg, but examination of his text and figures forbade the identification. It is of the usual manners. It often swims smoothly and swiftly, contimuing the exercise for long periods without rest, the toes usually carried behind, in mutual contact; yet at intervals anchoring, retracting the head and foot, and assuming still repose, broken, now and then, to sway wildly in all directions, on its glued toes, as on a pivot, more E. lunce.-P.H.G.]

Length. Extended, $\frac{1}{18 \sigma}$ inch; of lorica, $\frac{1}{60}$ inch; of toes, $\frac{1}{86}$ inch; width of lorica, ${ }_{-}{ }^{\frac{1}{3} s}$ inch. Habitat. Pool at Sandhurst, Berks (P.H.G.) : uncommon.

Genus distyla, Eolkstein.

[GEN. CH. Lorica of the form of a long ellipse, open and membranous beforc, olosed behind, depressed, higher before than behind; lateral inangulation feeble; toes two; " selvage-like thickenings of the lorica around the foot."

Herr Eckstein has described and figured two species of this genus, whose toes bear the same relation to each other as those of C. luna and rusticula. The genus is closely linked with the preceding; yet the lengthened and flattened form, the habitual protrusion of the head, and the more constant activity of the species distinguish it. Only one of Herr Eekstein's species has occurred with us, but I add (doubtfully) another.-P.H.G.]

D. Gissensis, Eckstein.
(PI. XXIV. fig. 8.)
Eckstein, Sieb, u. Koll. Zcils, xxxix. 1883, p. 383, pl, xxvii,

Distyla Gissensis
[SP. CH. Lorica round behind, broadly truncate in front, with short lateral points; toes rod-shaped, thick, obscurely two-shouldered, claws small; brain simple.

The outline is that of a narrow ellipse abruptly cut-off a little before the middle, so that the lorica, at its truncate front edge, is scarcely diminished in width. It becomes,
however, very thin and flexible, so as to be subject to much inversion in retraction. The head, very freely extruded, is thick and large, a truncate cone, with a slight auricle at each lateral angle, and a central bladder-like lobe, which is retractile. The whole head, which is very mobile, projects between two pointed shelly shields. In death, the head being abnormally extruded, these appear as stout oval (or lozengeshaped) shields, quite separate from the lorica. The foot, of one apparent joint, is bulbous and kidney-shaped; to it are jointed the toes, which are much stouter and shorter than in Cathypna luna. They terminate in similar small acute claws, but the shoulders are less sharply angular. It is very thin, viewed laterally (fig. 8a). The dorsal plate comes down to a blunt edge on each side, with feeble duplication; the hinder ventral parts, inclosed in membrane, being small, and much overlapped by the clear thin edge of the lorica. A very favourable sight of one, as it deliberately turnedup endwise (so slowly, indeed, that I could carefully focus it as it moved), showed that the ventral plate is co-extensive with the dorsal ; but is very thin at the edge, sloping upward toward the middle half; this forms a downward arch to contain the viscera.

Herr Eckstein describes the brain in D. Ludwigii, as divided into three long sacs, like as in Copeus centrurus and C. Cerberus. In the present species there seems to be a broad base rather abruptly diminished in width, bnt forming only one sac, which carries a great crimson ovate eye, at its very point.

I have received the species rather plentifally in water from Mr. Hood; and more sparsely from Mr. Bolton; the former averaging much larger size. Its mamers are much more sprightly than those of Cathypna. I have also found it (with lorica very flexible and expansible) in spring, in a domestic aquarium of my own, which had remained unchanged for more than a year.-P.H.G.]

Length, $\frac{1}{150}$ to $\frac{1}{10 \sigma}$ inch; width, $\frac{1}{36 \sigma}$ to $\frac{1}{2 \delta \sigma}$ inch. Habitat. Bracebridge Pool, Birmingham : rare. Starmont Loch, Dundee: abundant (P.H.G.).

D. Flexilis, Gosse, sp. nov.

(Pl. XXIV. fig. 7.)
[SP, OH. Lorica narrow, nearly parallel-sided, corrugated, flexibibe, plicate.
I am not by any means sure that this is entitled to specifie rank; fol, if it is. whether it ought to be placed in the genus Distyla. It may be but the impatureeondition of some other species, such as C. sulcata. Yet the condition, at birth, of the lorica of M, cornuta, appears to forbid the conelusion that flexibility and corrugation are marks of immaturity in this family. A lorica is evidently present, soft and flexible, covered with irregular wrinkles; marked also with a series of longitudinal folds, scarcely amounting to flutings. The eye is large, rectangular, bright rose-red, seated on the inner side of the brain, close to its point. The other organs are normal.

Its manners are lively, often wild, searching the edges and surfaces of the watermoss which it haunts, and often creeping within them. It sometimes anchors by its toes, and appears to go to sleep, just like its brothers and cousins.-P.H.G.]

Length. Expanded, $\frac{1}{200}$ iuch. Habitat. Sandhurst, Berks (P.H.G.) : rare,

Genus monostyla, Ehrenberg.

[GEN. CH. As Cathypna, but that there is only a single too.

This group, consisting of numerous species, is so exactly the counterpart of Cathypna, except for the toe, that one can scarcely avoid the conclusion that this is, structurally, of slight importance. The details of the form, the habits (as the use of the toe as a pivot, and the frequent and long-continued inertia), and even the specific variations in the shape of the toe, all are so accurately the reflection of what has been described as to

[^92]suggest that Cathypna is Monostyla with the toe eleft through the middle, or that Monostyla is Cathypna with its two parallel toes soldered into one.-P.H.G.]

M. lunaris, Ehrenberg.
 (Pl. XXV. fig. 2.)

Monostyla lunaris

Ehrenberg, Die Infus. 1888, p. 460, Taf. lvii, flg. 6.

[SP. CH. Lorica broadly orate, the dorsal plate round and greatly elevated, the ventral nearly flat; both in front projected into wide, triangular, flattened points, between which the edge is deeply excavate; toe straight, rod-shaped; claw protruded between two slender spines.

The gibbous lorica descends abraptly before it is produced into the wide clear triangular lobes in front. And there seems no noticeable difference in outline, either of the lobes or of the intervening sinus, between the dorsal and the ventral plates. For, in retraction, these are very firmly appressed, with a common outline; so that no change of position, and no focusing, makes the eye cognizant of more than a single, somewhat thickened, crescentic line. The general figure is so elevated that it is more than half a sphere, if we negleet the inangulation of the lateral sulcus, which, in this species, is not deep. The foot-bulb appears to lie in a hollow of the ventral plate; it is wide and kidney-shaped behind, where the straight-edged, rod-like toe is articulated. This terminates in a slender acute claw, not with a rectangular shoulder; but with a pair of fine points, between which the claw is, as it were, imbedded. Herr Eckstein describes certain appearances, which he interprets of the thickened loricastructure, for strengthening the foot against the violent strains endured as the animal throws itself to and fro. He also depiets certain pale-red specks and excessively fine lines, going upwards from the claw, which he would connect with the nervous system, as well as with the mucous glands. "The rotatory organ is simple, but almost retired, so that only a slight elevation with a single seta projects out of the lorica. When it is extended, we discern two great lobes, which overlap the lorica-edge on each side, overreaching each other dorsally, but ventrally rumning off into the buccal orifice " (Ibid.).

A specimen in my possession, anchored by the toe to the glass of the live-box, threw itself vigorously into all possible positions, for twenty-four hours, without once removing; ' all that time, so far as observed, active in this special way, but close shut-up. The movements, indeed, though constant, were not incessant, but very forceful, spasmodie, and sudden. In general the animal is clear and colourless : of this specimen, the whole body was stained of a yellow-brown hue, like sherry wine, so deep, while yet clear, that no definition of viscera was possible. Yet the red eye was now and then defined, and, under direct sunlight, came out very rich, and of a deep crimson hue. The great triangular lobes of the lorica, being very thin, were quite colourless and glass-like.-P.H.G.]

Length. When extended, $\frac{1}{} \mathbf{1 0}$ to $\frac{1}{1 \pi n}$ inch. Habitat. Woolston; Sundhurst ; Thames, near Reading; Snaresbrook (P.H.G.) : mostly in pools ; not uncommon.

M. cornuta, Ehrenbery.
(PL. XXV. fig. 1.)
Ehrenberg, Die Infus. 1838, p. 450, Taf. Ivii. fig. 4.

Monostyla cornuta
[SP. CH. Lorica ovate, moderately depressed, the front shallowly incurved; toe somewhat blade-shaped, the claw without a distinct shoulder.

This species is very much like M. lunaris, so as, when retracted, scarcely to be distinguished from it except that the anterior dorsal edge of the lorica is slightly less ineurved. It is smaller, and rather more oval in outline; in the act of extruding the

[^93]frontal disk, and when it is extruded, there is an appearance of two lateral, slender, incurved Lorns, and between them two spots which look like a pair of ill-defined eyes; neither of which we see in lunaris. But these are not what they seem; the horns are the optical effect of the somewhat thickened and atiffened edges of the extruded head-mass, which, in the process of contracting and expanding, incline to each other, resembling conical knobs; and the spots are only the summits of certain fleshy eminences, which bear vibratile cilia. There is a true eye-spot of large size and crescent form, and of pale-red hue, seated on the inner side of the brain-mass, that hangs behind the mastax.

The ventral plate has its pectoral margin quite straight; it is considerably less than the dorsal along each side, while commensurate with it behind. There is a square hollow in it for the reception of the foot-bulb, which is somewhat kidney-shaped. The toe, viewed vertically, is more blade- than rod-shaped, for the outer margins bulge outward in a greater or less degree, the widest part generally (but not invarinbly) near the point. This point has often the semblance of a claw ; but this is illusory, for there is no true angled shoulder. The trophi are of the normal form, but of unusual length. It is a very common species, and from its sluggish habits, combined with its minuteness, the observer is apt to pass it by with contemptuous neglect.-P.H.G.]

Length. Of lorica, $\frac{1}{20 \pi}$ iuch; lotal, extended, $\frac{1}{\delta 0}$ inch. Habitat. Still waters (P.H.G.): common everywhere.
M. bulla, Gosse.
(Pl. XXV. fig. 4.)
Monoityla butla Gosse, Ann. Nat. Hist. 2 Ser. vol. viii., 1851, p. 200.
[SP. CH. Lorica a pointed oval; dorsal and ventral plates both gibbous, and nearly co-equal; toe rod-shaped in vertical aspect, with a two-shouldered claw, but decurved and gradually tapering in lateral aspect.

This speeies I found in a small pool on Hampstead Heath, in August 1850, and, soon after, in the lake of Richmond Park, abundant. Lately it has occurred in water from Woolston, and from Caversham. The yellow hue is not, as I first supposed, invariable. Some are quite colourless, except for the digesting food. The great rotundity of the ventral plate; the regular decurvation of the tapered toe; and the deep narrow sinns in both the occipital and the pectoral fronts of the lorica,- these are the true distinctions. The oval outline is so acute in front that the sinuses are bounded only by two obtuse points. The gibbous dorsum ends behind with an oblique retrocession, showing laterally a great rounded foot-bulb. The liead projects in two receding lobes, ciliated on their inner surfaces, just as in cornuta. The mallei are certainly two-fingered. The animal burrows among Chare, Coufervw, \&e.-P.H.G.]

Length. Expanded, 1 io inch; of lorica, $1 \frac{1}{15}$ inch. Habitat. Pools (P, I.G.).

> M. Lordit, Gosse, sp. nov.
> (Pl. X XV. fig. 5.)
[SP. CH. Dorsal plate of lorica tesselate, its hinder end excavate, the excavation forming three sides of a square; toe rod-shaped; claw shouldered.

This is a rare species, bearing much the same relation as Cathypna rustienda doeseach to its congeners. Indeed, they are so much alike as to be easily confounded till the foot is seen to be two-toed in that case, one-toed in this. It in general resembles M. cormuta, but is much more transparent. The single toe is more slender in proportion to its length, and much longer in proportion to the whole animal ; it is a straight parallel-sided rod, with a minute acute claw apparently forming a separato joint. If this is the case, we should perhaps consider this joint as itself the toe, and the long rod as the penultimate joint of the foot. The shoulder is double, viewed vertically, but single and much rounded, viewed laterally. The outlines of the toe, however viewed, are always a little uneven ; suggesting that the surface is irregularly pitted. The lorica
is ovate, not so pyriform as in cormuta. The edges of the upper and lower plates come closer together; for the anterior two-thirds the edge of the dorsal plate is about level with that of the ventral, but much exceeds it in length. The dorsal is straightly truneate behind, with the margin on each side, following the ovate outline and descending much farther, so as to form two points. The dorsal surface is somewhat coarsely tesselated, like that of Cathypna rusticula, but with the pattern slightly different (PI. XX1V., fig. 6). The whole surface appears as if irregularly crumpled, interfering with distinct definition in spite of the transparency. The head is a low truncate cone, produced into a number of slight frontal eminences, on which the locomotive cilia are arranged in tufts or bundles. These do not appear to create sensible vortices in the surrounding water.

This species is, I conjecture, the fig. 22 of Mr. J. E. Lord ("Microsc. News," June 1884, page 146), as M. cornuta is his fig. 21. I therefore distinguish it with his name. I have met with it myself, on rure occasions recently, among decaying vegetation in the water of Woolston Pond, and abundantly in water kindly sent me by Miss Saunders.

Leugth, $\frac{1}{200}$ to $\frac{1}{600}$ inch. Habitat. Woolston; Newbury ; Dundee (P.H.G.) : rare.

There is a form,-of which I am almost inclined to make a separate species,-in general like Lordii, but remarkable for the excessive length and slenderness of the toe, which almost equals the length of the lorica. It may be but an extreme var. of the present form. Yet the lorica seems to lack the square excavation behind, and to be more pyriform in outline, running off in frout into broader lobes, as in lunaris. This I have found in water sent me by Mr. Bolton from Sutton Park.-P.H.G.]

M. quadridentata, Ehrenberg. (Pl. XXV. fig. 8.)
Ehrenberg, Die Infus. 1838, p. 459, Taf. Ivii., fig. 5.

Monostyla quadridentata
[SP. CH. Lorica nearly circular, greatly depressed, especially behind; front deeply cleft, with two horn-like spines decurved and expanding at their tips.

The horns well distinguish this form. During retraction these are drawn together, and made even to cross each other (fig. c). Besides these, and outside them, the dorsal plate projects into a broad-based triangular point on each side; while the pectoral margin forms a flexible membrane, very deeply cleft in the middle, and further deepened at will. The hind part is exceedingly flattened, merging into the foot, of which the last joint is cubical, with a central noteh. Here is articulated the toe, rod-shaped, but that the outline of each side, instead of being straight, is strongly waved: an appearance which may possibly indicate the waves of a tenacious mucus. At one-fifth from the tip a double shoulder, rounded rather than rectangular, leaves the usual acute claw. The head protrudes (fig. b), much as described in cornuta. Of the trophi, the mallei (fig. d) are remarkable for a conspicuous horn projecting upward from each angle. The gastric glands are large; there is a large separate intestine, and also an ample contractile vesicle.

Several examples have occurred to my observation. In one I was witness to a curious phenomenon. A large shelled Infusory, Arcella vulgaris, was within the Monostyla, though how it had managed to foree its way in, I cannot imagine, for it almost filled the cavity of the lorica. Its fleshy processes were protruding in front, and, by the death of the Arcella, unable, I suppese, after it had devoured its host, to get out, these processes gradually lengthened inordinately. It was a curious sight.-P.H.G.]

Length, Ifo to $\frac{1}{25}$ inch; of lorica, $\frac{1}{160}$ to $\frac{1}{170}$ inch. Habitat. Barking ; Stratford; Maidenhead; Hampstead (P.H.G.) ; among duckweed, in pools and ditches; rare.

Family XVI. COLURIDA,

[Body inclosed in a lorioa, usually of firm consistence, variously compressed or depressed, open at bolth ends, olosed dorsally, usually open or wanting ventrally; head surmounted by a chitinous arched plate or hood; toes two, rarely one, always exposed.

The arching hood over the front, looking, in a lateral view, like a thin hook, movable, und so distinguished from the "glory-crown" of Stephanops, always conspicuous, is the most notable mark of this family, in which I propose to unite the mostly flat Metopidica with the high-backed Coluri. As no subdivision above species exists in nature, but all (as Genera, Families, Orders, and Classes) are arbitrary collocations, made simply to facilitate the study of the species, which alone is natural history; it follows that the more constant, and the more obvions, the characters on which we found our Divisions, the better. Hence I would not choose the form of the trophi, the presence or position of the eye-specks, or the distribation of the cilia, for distinction-if I coull get others ; because all these are found, in practice, so very difficult to determine. The existence of eyes in some Coluri and Metopidia, for instance, is so very uncertain and indeterminable, that I incline to agree with Dujardin in rejecting some of Elrenberg's genera. The distinction between Lepadella, Metopidia, and Squamella, is more than doubtful; while in Metopidia and Colurus, individuals of indubitably the same species are found, some displaying eye-specks, and others in which no search detects them.-P.H.G.]

Genus colurus, Ehrenberg.

[GEN. CH. Body subglobose, more or less compressed; lorica of two lateral plates, open in front, wnited on the back, gaping belvind, and (in general) wholly so up the belly; frontal hood in form of a hook, not retractile; foot permannently extruded, of distinot joints, terminaled by two furcate toes.

A very familiar group, of minute dimensions, agreeable form, and sprightly action, the Coluri give the impression of being, while sub-circular in lateral outline, very thin in transverse diameter. This, however, is an illusion, arising from their being most frequently presented to the eye in the lateral aspect. When we do catch a glance at one in turning or swimming, we see that the body is moderately broad, ventricose, and evon globose in the middle. The lorica consists of two glassy shells, each a segment of a hollow sphere, which are, normally, soldered edge to edge, at the fore-back, and begin to gape at the loins, the cleft then passing round behind, usually widening for emission of a stout foot, and passing up the belly to the front, by which time it has generally become as wide as the body itself. So constructed it may be imagined to be highly expansile, and in fact we observe that its width is constantly increasing and diminishing. The fore edges of the two plates, in the retraction of the head, are appressed so close as to seem but one lamina ; but separate for the protrusion of the head with its rotating cilia. The hood, a decurved plate, often broad but sometimes narrow, of hyaline delicacy, is not retractile, but is seen when the lorica is shut up, resembling a semi-crescentic hook. The foot consists of three strongly marked joints bearing straight, acute, slender toes, often thrown wide apart, but, in some cases, so uniformly adherent that it is difficult to see whether they are two or one. The whole foot is often stretched behind; but much more commonly it is projected forward under the belly, through the ventral gape. The presence, the position, and even the number of eyes, seem subject to much variation,

Most of the known species are lacustrine in habit, but some are exclusively marine.
It is a characteristic habit of the species of the genus, particularly of C. obtusus, to elevate themselves to the utmost on the toe-point as on a pivot, and then awkwardly tumble over, as if they had not power to maintain their balance. The Monostyle perform in somewhat similar style, but though their posturings and gyrations are wild, they seem to have better control over them.

In general, the species cannot be discriminated, while in life and activity, without extreme difficulty ; their differences are so very slight, their dimensions so minute, and their restlessness so incessant.-P.H.G.]

C. Deflexus, Ehrenberg.
(Pl. XXVI. fig. 1.)

Colurus deflexus . . . Ehrenberg, Die Infus. 1838, p. 476, Taf. lix. fig. 9.
[SP. CH. Lorica, viewed dorsally, broadly ovate, bluntly pointed before, produced behind into two aoute spines, separated by a wide, deep sinus: viewed laterally, the outline is the quadrant of an oval: the venter oleft from ond to end; foot robust, with two short, slender, acute toes.

If I rightly identify the species, there is little difference of aspect between this and biouspidutus. In this the posterior spines are said to point slightly below, in the other slightly above, the horizontal line. Yet as this depends on the angle at which the animal is viewed, which is every instant varying, the distinction is evanescent, and, I fear, worthless. Yet, on careful study, this, which is by much the more robust species, is seen to have the two halves of the lorica severed all round, except in the middle of the back. The fore edges of these halves, deeply truncate, but a little out-curved, are firmly pressed together in retraction; and the effect of this appression, when seen from above, is the dividing line of the blunt cone, which is seen minutely opening and closing every moment. A muscle-band passes, in relaxed curves, from the front of each of the appressed sides to the surfaces of the retracted organs seen in a confused heap far down, evidently for the purpose of pulling out the trochal apparatus when required.

A large pale crimson eye seated on an ample brain-sac; a mastax of the Euchlanidan pattern; a cylindrical stomach succeeded by a wide intestine; an ovary often containing a nearly developed egg; and a small contractile vesicle ; are usually seen. But in the middle of the back, just under the lorica, are two curious organs, each apparently an agglomeration of minute, clear vesicles, perhaps of air, perhaps of oil, observed long ago by Elrenberg. He declared them inexplicable; and I cannot supply the explanation.

When, after a self-inflicted imprisonment, it may be of hours, the Colurus opens its closed cheok-plates, a trochal mass of conglobate lobes, fringed with wreaths of cilia, is thruct out, by whose vibration the creature smoothly but rapidly shoots away. The frotial hooked-plate, which, even in the inert state, has been discernible by the delicate, thiin, carved line of its edge, moves to and fro, and under very favourable circumstances we may see that its inferior surface is fringed with vibratile cilia. I judge it to be an organ of touch; Herr Eekstein's opinion to the contrary notwithstanding.-P.H.G.]

Length. Of lorica, $\frac{1}{20}$ inch; from hook to toes, $1 \frac{1}{2}$ inch. Habitat. Ponds and ditches; quite common (P.H.G.).

C. bicuspidatus, Ehrenberg.

(Pl. XXVI, fig. 2.)
Colurus bicuspidatus
[SP, CH. Almost exactly those of C. deflexus, except that the lorioa is not cleft either dorsally or ventrally; but only excavato behind, slightly on the dorsal, deeply on the ventral side.

I have seen only a fow examples of this form, all from Sutton Park, Birmingham. It is, I presume, Elrenberg's bicuspidatus, his figares showing a lorica undivided beneath. In examples long under examination, I became quite certain that neither thic dorsum nor the venter was cleft ; but a narrow sinus, reaching to more than one-third of the lorica in length was excavated up the flat ventral plate, and a very slight one out of the dorsal end. Through this orifice the foot is thrust, of rapidly dimimisling joints,
and what appears a single, slender, acute toe. At least I could not, with close watching, detect any sign of its division. In the dorsal view the frontal hood (fig. 2) appears not as the segment of a sphere, but somewhat indented in front. It ever moves backward and forward, as protruded and retracted. The venter appears quite flat, the semi-globose dorsal plate rising abruptly from it with a sharp angle. In one, as it turned slowly, I saw distinetly the form. If we suppose one-third of an egg to be removed longitudinally, and replaced by a flat plate, we shall gain a fair idea of the general outline.

This is certainly an uncommon form. My acquaintance with it is limited to a very few examples, obtained from Woolston Pond, and Sutton Park, Birmingham. Its manners are peculiar. It swims constantly, never resting to grope, as other species do, but sailing deviously and deliberately about; now and then quickening its pace; almost constantly with the venter at the glass of the cell ; so that whereas I obtained plenty of ventral views, I got few dorsal, and scarcely one good lateral.-P.H.G.]

Length. Extended, $\frac{1}{3 \circ \sigma}$ inch; transverse width $\frac{1}{6 \sqrt{50}}$. Habitat. Woolston; Birmingham (P.H.G.) ; very rare.

C. oxeinatus, Ehrenberg.

Colurus uncinatus
Ehrenberg, Die Infus. 1838, p. 475, Taf. lix. fig. 6.
[SP. CH. Lorica, viewed dorsally, broadly voate, truncate before, produced behind into two short spines: viewed laterally, the outline is rondo-triangular, high in the middle of the back, the posterior spines short, blunt, and abruptly set-on; venter widely cleft throughout; toes two, short, slender, acute. Lacustrine.

The lorioa is turgid, the back not ridged but smoothly rounded ; its ventral gape parallel-edged, the edges apparently bent downward (as in Euchlanis deflexa), making an angle with the swell of the sides, the anterior portion lengthened into a short tubular neck. The hook is narrow and spoon-shaped. The internal structure is obseure, partly from its sphericity; yet the mastax, stomach, intestine and cloaca, the ovary and the contractile vesicle, can be defined. It is usually of minute dimensions, and, though widely spread, rather rare. I have known it since 1849.-P.H.G.]

Length. Lorica, from $\frac{1}{\frac{1}{20}}$ to $a^{\frac{1}{d} \sigma}$ inch. Habitat. Clapton; Battersea; Bath; (P.H.G.).

C. obtusus, Gosse, sp. nov.

(P1. XXVI, fig. 3.)
[SP. CH. Loriea ovate in all aspects, the posterior ends rounded without any points, ventrally cleft throughout, gradually expanding for the foot-orifice, the fissure reaching round to the back, both before and behind; foot small, with two minute slender, expanding toes. Lacustrine.

This little unrecognised species, which I find not uncommon, is clearly marked by the blunt ends of the lorica. The lateral plates are separate for above three-fourths of their circumference, being soldered together with a sharp suture, only in the very middle of the back, and generally much compressed. The foot and toes together are about onothird as long as the lorica ; the toes, like setme for tenuity, with no shoulder, are often separate. The internal economy is normal; including the common bubbles in the back; two colourless refractile globules have been seen on the brain, which may be eyes. Its manners are sluggish, swimming laboriously, with jerks.-P.H.G.]

Length. Without foot, $\frac{1}{80}$ to 3 to inch. Habitat. Near London; Woolston; Leamington ; Dundee (P.H.G.) : not uncommon.

C. caudatus, Ehrenberg.
(Pl. XXVI, fig, 6.)
Colurus caudatus
Ehrenberg, Die Infus. 1838, p. 476, Tal. lix. fig. 8.

[SP. OH. Loriea, in dorsal aspect, pear-shaped, widest behind; dorsal hind sinus shallow, between very short terminal points, not at all produced; ventral cleft close, abruptly becoming a semi-circular foot-orifice; toss slender, frequently expanded; foot and tocs three-fourths as long as lorica; eyes two. Lacustrine.

There are several species which may, almost equally well, serve as the caudatus or Ehrenberg, to distinguish which requires minute examination. The above characters are carefolly noted from many observations, and need not be repeated. The free expansion of the long toes, nuusual in this group, is noteworthy. The frontal hook is normal, and I have repeatedly seen two eyes just beneath it. On the ventral surface the abrupt expansion of the fissnre from a linear cleft to a broad round opening for the emission of the wide basal foot-joint, should be noticed.-P.H.G.]

Length. Total $\frac{1}{300}$ inch. Habitat. Birmingham; Woolston (P.H.G.) : weedy pools.

C. amblytelus, Gosse, sp, nov.

(Pl. XXVI. fig. 5.)
[SP. OH. Lorica, in dorsal aspect, broadly ovate, the hind ends rounded, without projecting points; ventral cleft gaping, widening before and behind; toe single, long, with a medial depression; foot and toe two-thirds as long as lorica; eyes cervical. Mavine.

This species also may be very readily confounded with O. caudatus, but the characters above given, though minute, seem to distinguish it satisfactorily and constantly. The lorica is arched, so that its dorsal outline forms about one-fourth of a circle, split at its occipital end, and also for a littlo way above the foot; the two lateral extremities being rounded. When the animal in its turnings shows the ventral side, even though slightly, we seem to see sharp points to the lorica; but this is an illusion, for the points are but the ends of the curved plates seen edgewise; another turn, and they at once become again obtuse. On the ventral surface, which is nearly flat, the edges of the two plates are either wide apart or very closely approach each other, or may even overlap, but recedo on each side of the foot, so as to leave the orifice nearly circular. The single long slender toe, running off to a fine point, has a medial mark throughout, as in those Metopidia, \&c., which keep the toes ordinarily appressed; but I have never seen a separation, and the most delicate focusing with high powers fails to divide the fine point. The usual hood is displayed. The mastax and its trophi are normal. The brain, large and turbid but undefined, occupies the occiput ; and two minute red eyes, rather close together, are situate on it cervically. The other interior organs are as ordinary. One oil-globule (sometimes two) occupies in general the middle of the back, and is conspicuous.

This species seems exclusively marine. I have found it somewhat numerous among alge, collected by Mr. Hood from tide-pools at low-water at Taymouth, near Dundee, and also in Torbay. It is very restless, ever roaming, yet mainly affecting the conferva, at which it nibbles constantly; when swimming it shoots along with smooth rapidity. The form is plump and round, the blunt corners low-descending ; the body hyaline and colourless, the taper toe stretching far behind. ${ }^{1}-$ P.H.G.]

[^94]Length. From hood to ends of lorica, $\frac{1}{250}$ inch; foot and toe, $\frac{1}{20}$ inch; total, $\frac{1}{1 / 5}$ inch. Habitat. Marine pools at low tide (P.H.G.).

C. Dhotylotus, Gosse, sp. nov.

(Pl. XXV. fig. 12.)
[SP. CH. Lorica wide in front, shallowly tubular behind, without points; foot very short but wide ; toes thicle, large, and curved. Marine.

A somewhat thickset form. The lorica is ovate, viewed dorsally, with a broad anterior gape, out of which what seems another shelly valve projects, connected by an involute joint with the lorica (as seen in fig. 12a), a sort of hood, protecting the ciliate front and answering to the usual hooked plate, but of very different form. The front consists of several fleshy eminences (fig. 12) bearing vibratile cilia.

The lorica ends behind in a short truncate tube, through which the foot finds exit. This is exceedingly short and inconspicuous, though broad; the toes are furcate, thick at their base, blunt-pointed, and slightly decurved, when seen laterally (fig. 12a).

I have seen but a single example, in sea-water from tide-pools near Taymouth.P.H.G.]

Length, $1 \frac{1}{175}$ inch. Habitat. Marine pools (P.H.G.).

C. peditus, Gosse, sp. nov.
 (PI. XXV. fig. 18.)

[SP. CH. Lorica cleft behind, ending in two square points; foot stout, tong; toes minute, straight, Marine.

Two examples of this little insignificant species occurred in water sent by Mr. Hood, from the Tay Firth marine pools. They were both in the same live-box as C. dactylotus. The thick foot-joints and the very small toes forming a small cone, when closely appressed as they usually are, will distinguish the species from all others. It is somewhat less than its congener just named. I detected nothing in it worthy of record besides.-P.H.G.]

Length. About $\frac{1}{160}$ inch. Habitat. Marine tide-pools; rare (P.H.G.).
C. caslopinub, Gosse, sp. nov.
(PI. XXVI. fig. 4.)
[SP. CH. Toe very long and slender, consisting of a narrow plate laid within a similar, but wider plate, and closely appressed to it. Marine.

In the form of the toe we have here an example, quite unique in this genus, of the structure which characterises the genus, hence named Calopus, in the Rattulidm. The toe consists first of an extremely long, tapering, hollow, thin plate of transparent chitine, such as would be presented by the bowl of a glass spoon, if drawn out to excessive length and tenuity. Then suppose a similar plate of glass, but narrower throughout, to be laid in the hollow of the former, fitted exactly to it, and reaching its taper point far before the other. What is the relation of the one spine to the other, and of both to the body; what their functions, what their movements, separately or conjointly, I know not. I have met with but one example, and that a dead and nearly empty lorica. The occurrence of such is often of great value. It is true that it may give little or no information of the internal structure, and, of course, none of manners. But of the external form and its appendages, composed of undissolved chitine, we can often obtain views of beautiful clearness, given with a minute precision that we can seldom hope for from a living animal. For the object is perfectly still, and remains so as long as we choose, while it is generally feasible to make it revolve in various directions by producing mechanical
currents in the water, and so to examine its appearance in other aspects. Thus was this creature delineated, and I vouch for its accuracy so far as the details are given.

The lorica seems (I can suy no more) to be widely severed on the ventral aspect, and to end in rectangular points behind. The frontal hook appears normal.-P.H.G.]

Length, to tip of spine, $\frac{1}{163}$ inch; of which the spine is about one-fourth. Habitat. Among conferve in tide-pools in the Firth of Tay (P.H.G.); rare.

Genus metopidia, Ehrenberg.
[GEN. CH. Lorica usually depressed, entire, with an opening at each end for the emission of the head and foot; frontal hood in form of a hook; foot and toes as in Colurus; eyes usually two.

For reasons already given I include in this genus, not only the species so named by Ehrenberg, but also his genera Lepadolla and Squamella; thus agreeing in principle with Dujardin ("Infus." p. 632) while I cannot accept his details. They seem to fall into the same natural family as Colurus; for thongh the prevailing plate-like form seems at first sight to differ greatly from the compressed Coluri, yet this form is not invariable, M. oxysternum and M. triptera presenting notable exceptions; while in the arched frontal hook there is a remarkably conspicuous feature in common. Some of the species are among the most familiar of Rotifera.-P.H.G.]

> M. LepadelLA, Ehrenborg. (PI. XXV. fig, 6.)
> Metopidia lepadella Ehrenberg, Dio Infus. 1838, p. 477, pl. lix. flg 10.
[SP. CH. Lorica oval, much depressed, ovenly rounded above; its ventral plate shorter behind than the dorsal, and slightly excavate.

That Ehrenberg's Lepadella ovalis, Squamella bractea and S. oblonga, and Metopidia lepadella are but species of one genus, I camot doubt, and even the specific differences between them are very evanescent. The number, and even the visibility, of the eye-specks vary in individuals, and cannot be trusted for diagnosis. The present is a common form in most fresh waters. The lorica in its dorsal outline, both longitudinal and transverse, is a segment of a circle, and the ventral is straight. Seen from above it is oval, pointed at both ends, and yet truncate; the ventral plate round behind, and so considerably shorter, and slightly emarginate for the emission of the foot. The frontal hood agrees with that in Colurus, slightly protrusile, and is used for raking the rubbish among which it feeds. The cilinte face is almost prone, and the trophi can be brought to its surface.

I think I have seen the male ; a minute creature, in form a very long cone, tapering to a point, with two slender toes; in frout, quite truncate, with a sharp horn projecting from its forehead. No organization was visible within, save two conspicuous clear vesicles, side by side in the middle of the body, not at all like oil-globules, being irregularly oblong: nor accidental, being found in each of a large number of individuals, seen at different times. A pair of fine lines ran far down the two sides of the body, and in the hinder part was a large angular web of thin yellowish tissue. Else the whole seemed structureless and of hyaline clearness. It contracted into a shorter oval figure.-P.H.G.]

Length. Of lorica, $\frac{1}{300}$ inch. Habitat. Fresh waters everywhere (P.H.G.).
M. solidus, Gosse.
(Pl. XXV. fig. 11.)
Metopidia solidus Gosse, Ann. Nat. Hist. 2 Sor. vol. viii. 1851, p. 201.
[SP. CH. Lorica nearly circular, depressed, with a low rounded ridge above; ventral plate commensurate with the dorsal behind, but deeply cxcavate; dorsal having a submarginal line of corrugation.

This charming species, though in technical characters very similar to the preceding, is yet readily distinguished when once it is known. It is very much rarer, averages nearly twice its size, while its outline, in retraction, far more nearly approaches a circle. This, with its crystalline brilliance, recalls the lovely Pterodina, of which it is no unworthy rival ; and its resemblance to them is much augmented by a delieate line of corragations, which run round just within the margin, like the "milling" within a shilling. It was this feature that suggested the specific name, and no allusion to the adjective solidus. The arch of the lorioa is much lower than in lepadella, especially towards the edge, while down the middle there runs a very low, rounded ridge. The fore and hind excavations are nearly as in lepadella. Besides the frontal hood, there is another clear disk which appears to protect the rotating cilia, and a transparent bulb is placed on each side of this, within each of which is seen a minute red eye, so that these organs are widely separated.

Some curious facts connected with digestion were illustrated by mixing a little carmine with the water. Particles were readily imbibed, and soon appeared as a red cloud in the fore part of the stomach. Presently this pellet passed into the upbent viscus at the bottom, which I supposed the intestine ; and a second pellet, swallowed at the same instant, took the vacated place. After an hour, the whole alimentary canal had assmmed the appearance of fig. 11f, the supposed intestine being only a lobe or pocket of the stomach. The pellet No. 1 now moved rapidly down to the cloacal extremity of the twofold viscus, but, instead of being discharged, it swiftly passed up (as between the dotted lines) to its first position at the base of the stomach; then returned to the cloacal end, and quickly again mounted ; repeating these movements several times, till at length it coalesced with the second pellet. All the while the whole interiors of both chambers were full of an incessant quivering from the action of epithelinl cilin. From all this, it really seems as if something analogous to rumination occurred in these minute creatures. The gastric glands and the lateral canals are very abnormal ; and the contractile vesicle is sometimes ample, sometimes totally wanting.-P.H.G.]

Length, ${ }^{\frac{1}{5} 0}$ inch. Habitat. Walthamstow ; Leamington ; Birmingham; Woolston; Dundee (P.H.G.).

> M. acuminata, Elurenberg.
> (Pl. XXV. fig. 9.)
> . Ehrenberg, Die Infus. p. 477, Tat. lix. fig. 11.

Mctoprulia acuminata
[SP. CH. Lorica ovate, ending behind in an acute point; occipitally deeply notehed between projeoting spines; the edges very thin.

Besides the above peculiarities there is little to mark this obscure little species, which yet is amply distinct. When seen sidewise it has much likeness to a Colurus, save that its form is flatter; and the decurved frontal hood is more conspicuous. It is an eager and persevering feeder, raking with its hood-edge among the floccose.-P.H.G.]

Length. Of lorica, $\frac{1}{500}$ to $\frac{1}{3 i 0}$ inch. Habitat. North London; Leamington; Sandhurst (P.H.G.) ; very scarce.

> M. oxysternum, Gosse.
> (Pl. XXV. fig. 8.)
> . Gosse, Ann. Nat. Hist. 2 Ser. vol. viii. 1851, p. 201.

Metopidia oxysternon
[SP. CH. Loriea an ovate box of tesselated surface; with a thin ridge running down the dorsum ; venter with a similar medial ridge terminating abruptly in mit-length.

This is a very curious form. It is a depressed rhomboid-oval, with a rather high and thin arched ridgo cumming down the back from the bottom of a deep frontal sinus. The ventral surface is also ridged as far as the mid-length, where the ridge ends, like the sternum of a bird. Then the surface is deeply excavated, and again projects, forming a prominent sheath for the emission of the foot. The whole lorica is cut into facets, as
in Notous and in many Anurceas, and all minutely shagreened. The hoad is deep, forming three lobes, all ciliated. In retraction the two sides of the lorica close on each other, leaving within a large clear space, exactly as in many Coluri, to which a further resemblance is borne by the position and direction of the foot and toes ; the former inclined forward, and the latter bent abruptly backward. A rather small brain carries an eye as large as half the mastax (possibly two suffused, since in some specimens two are observed), pale but rich, transparent rose-red. In retating a narrow, parallel-sided, truncate lip is seen thrust out in front, as in M. triptera. The trophi are on the plan common in the Euchlanida, and neighbouring families.

I first obtained the species in an ornamental water near London in 1849; recently in a ditch at Coffinswell, near Torquay, and in water from the Black Loch, Dundee, in company with Weistes Stygis and E. brachiatus. It is of lively manners,-P.H.G.]

Length, 1 to inch. Habitat. London; South Devon; Dundee (P.H.G.) : rare.

> M. rhombomes, Gosse, sp. nov.
> (Pl. XXV. fig. 10.)
[SP. CH. Loriea rhomboid-ovate in outline ; dorsal surface tectiform, lower behind, ending in an obtuse point; ventral surface flat.

This seems to come between oxysternum and triptcra. The cosophagus is long, and often thrown into curves. The gastric glands are peculiar, being placed at the ends of two long threads, probably tubular, which are seated on the corners of the stomach, the globular glands themselves being affixed to the lining of the lorica.-P.H.G.]

Length, $\frac{1}{1}$ inch. Habitat. North London (P.H.G.) : very rare.

> M. TRIPTRRA, Ehrenberg,
> (Pl. XXV. fig. 7.)
> Metopidia triptera $\quad . \quad$. $\quad . \quad$ Ehrenberg, Die Infus. 1838, p. 478, Tat. lix. fig. 12.
[SP. CH. Lorica nearly circular, as viewed dorsally, dilated into three wide, but thin, wings, one dorsal and two lateral.

The aspect of this tiny living jewel, viewed dorsally, is almost exactly that of M. lepadella, and so it is if viewed sidewise. But an instant turn, or a slight change of level, and the broad planes come into view, with an effect that surprises. Each of these is, speaking loosely, a semi-oval, formed of two thin glassy plates, soldered into one for about half their width, then diverging to constitute, with the like structure of the vertical plate, a sub-cylindrical sheath, in whieh the organs and viscera are inclosed. The foot finds its exit by a sinus excavated out of the lower part of the cylinder, whose fore end is truncate for the extrusion of the bead. This is surmounted by a broad chitinous hood descending in front to a sharp edge (as usual hook-like in lateral perspective), quite distinct from the tripterous lorica, within which its base is slightly retractile. It is conspicuous in all aspects. From above, the ciliate front, with its minute crimson eyes, one at each extreme lateral joint, is clearly discerned through its transparency.

It is a most exquisite little creature, of crystal brilliance, and sprightly in manner, without being swift. It swims little, but serapes and pokes in the parasitic floccose. Here, as it turns and twists deviously about, we see constantly changing aspects of the three shining planes, whose surfaces and edges are ever crossing each other, all visible through each other, from their perfect translucency. Thus, though the difficulty of resolving the organic detuils of the active atom is augmented rather tantalisingly, one cannot but be charmed by the beauty and variety displayed. I have seen one, slowly gliding in a straight line, go on revolving on its axis, bringing the six surfaces into view in quick succession, with a striking effect. On another occasion one came sidling up to a noble Euchlanis. The contrast, and yet the resemblance, was curious; the one could have lain comfortably within the ample mastax of the other.-P.H.G.]

Length, $\frac{1}{2 \& 8}$ inch. Habitat. Sandhurst (Collins) ; Woolston; Dundee (P.H.G.): rare.
M. bractea, Ehrenberg.

Squamella bractea . . . Ehrenberg, Die Infus. p. 480, Taf. lix. fig. 16.
[SP. CH. Lorica oval, much depressed, its front deeply excavated especially on the pectoral side; dorsal plate ending behind in two minute projections; ventral deeply excavate ; eyes four.

The differences perceptible between this and lepadella are exceedingly small; the four minute eyes, set in square, are very rarely discerned; but I have seen them. One deposited an ephippial egg, clothed with very long spines, while under my observation. P.H.G.]

Length. Of lorica, $3 \frac{1}{3} \sigma$ inch. Habitat. Pools and infusions ; common (P.H.G.).

Genus monura, Ehrenberg.

[GEN. OH. As Colurus, but the toe is a simple style.
It is mainly in deference to the great Prussian zoologist, that 1 retain the generic distinction between this and the preceding group. With the recollection that in C. leptus I can discern no trace of a medial depression in the toe, that in C. amblytclus there is the depression, which I have never seen separated, that in C. caudatus there is the depression apparently as inseparable, which, yet, on occasion, palpably opens and expands; to build a genus exclusively on this condition of the toe is most precarions.-P.H.G.]

> | M. colurus, Ehrenberg. | |
| :---: | :---: |
| (Pl. XXVI. fig. 7.) | |
| Monura colurus $\quad . \quad$. | Ehrenberg, Die Infus. 1838, p. 474, Taf. lix. Ag. 4. |

[SP. OH. Lorica ovate, much compressed, highest at the front, with the hind ends rounded; eyes two, approximate. Marine.

Viewed vertically this animal has the form of a mussel, gaping widely all along the venter and around each extremity, with no sensible change of outline for the emission of the foot, and linged only along the middle of the dorsum. In a lateral view the lorica forms the half of a very long ellipse, flattened ventrally, obtuse behind, thence gradually rising till it is highest at the front, whence it descends in a bold curve to rejoin the belly side. Thus the outline is markedly different from that which is characteristic of Colurus, though the difference depends on minute peculiarities.

The round anteriors of the valves are, often and long, firmly appressed (fig. 7a), the whole head and viscera being far withdrawn, and a wide hyaline space left, within whose edge a very delicate corrugation marks the line of mutual contact. At intervals the valves part, and a head is protruded, armed with long and coarse cilia, and overarched by a conspicuous frontal hood. This has the unusual appearance of a wide veil of exceeding tenuity, strengthened by an acute taper hook of chitine running through its medial line. Under the base of this organ are seen two brilliant crimson eyes, moderately neur each other. Slight indications of a manducatory apparatus are seen, and occasionally the globose form of the mastax ; but all so evanescent as to defy definition. A large sacculate stomach, divided by constriction from a still ampler intestine; an ovary and a small contractile vesicle, with the cloaca at the dorsal base of the foot, are all normal. The foot itself is prominent, moderately thick, of three long, wellmarked joints ; the toe, a single, long, acute style, thick at base, and suddenly diminishing in its dorsal outline, has the remarkable peculiarity of being as flexible and elastic as whalebone. The extruded foot and toe are two-thirds as long as the lorica.

I first met with this species, congregating in great numbers around my marine
aquarium, in September 1854. Its mamers agreed with those of the larger Coluri, shutting itself within its valves, and that so stubbornly, as to die rather than open them. Lately I have received specimens from Mr. Hood, found in marine tide-pools in the Firth of Tay ; and have taken many in Torbay.

Length. Of lorica, $\frac{11}{\frac{1}{8} \pi}$ inch; of foot and toe, $\frac{1}{5 \frac{1}{2 \pi}}$ inch; total extended, $\frac{1}{4 h \pi}$ to $\frac{1}{2 \pi}$ inch. Habitat. Marine pools in Forfarshire and Devonshire ; domestic aquarium (P.H.G.).

Very recently specimens of what I suppose M. dulcis, Ehr., have been sent me, from fresh water, by Mr. Lord of Rawtenstall. The lorica is acute, instead of obtuse, behind.-P.H.G.]

Genus mytilia, Gosse, gen. nov.
[GEN. OH. Body ovate; Iorica as in Colurns, but the head and neck habitually protruded, as well as the whole foot ; no frontal hook.-P.H.G.]

> M. tavina, Gosse, sp. nov.
> (Pl. XXVI. fig. 8.)
[SP. CH. Eyes two, frontal, wide apart. Marine.
The lorica is essentially similar to that of Colurus (though the facies of the animal is quite different), being a shell of two lateral valves, like that of a mussel, unbroken on the dorsum, descending on each side, and open all along the venter. Behind they are patent, where the thick foot emerges ; but their edges approach, or even overlap, as in Pterodina, at the pectoral front. A massive head, and an equally thiek, distinet neck, both about equal to that part of the trunk that adjoins them, are normally projected from the lorica, and not, as in Colurus, concealed between the valves. As there is, moreover, no trace of the hood, or hooked plate, that shields the face in kindred forms, the difference of aspect is very marked, and one of the Illoricate forms is involuntarily suggested.' This is augmented by the circumstances, that the foot is long and thick, especially at its base, that it tapers there gradually from the thickness of the trunk, and that it is habitually carried in the line of the body. Wheress, in Colurus and Momura, it is much smaller than the visible body, is usually projected at a sensible angle, and appears to come out between the ventral edges of the valves. The lorica, too, is of much less depth in proportion to its length; for, whereas, in Colurus the depth to the length may be about $2: 3$, in Mytilia it is about 2:5. It is obliquely truncate at the hind margin, the lateral edges diverging thence till they meet at the pectus. The body, which is arched on the dorsum, diminishes along the lumbar line, and forms a minute conical projection, representing a true tail, behind which the cloaca opens, whence the foot proceeds, in a similar ratio of diminution and in the same line, for a considerable length, terminating in two stout pointed toes, often jerked widely apart. Each is permeated by the usual mucus-gland, long, thick, and clavate. The internal structure is with difficulty defined. The extreme restlessness of the creature, combined with its minuteness, renders an examination during life almost impossible ; and, nfter death, the outlines of the delicate organs become blurred, and soon obliterated. I believe I have perceived, on repeated occasions, and in many specimens, two minute eye specks at the front, rather wide apart. The mastax is comparatively large, and the trophi normal (as in fig. 8 c). But the whole interior is almost opaque from granulation, and so, very difficult to penetrate.

It is a pretty little creature, sprightly and attractive, with much in its manners and ways that reminds us of its kindred Coluri, one of which, C. amblytelus, is its constant

[^95]associate. The species is another of the discoveries of Mr. Hood, of Dundee. He finds it in sea-water, and has sent me many specimens in vigorous health.-P.H.G.]

Length, $\frac{1}{180}$ to $\frac{1}{100}$ inch; width and depth equal, about $\frac{1}{435}$ inch. Habitat. Tidepools at the mouth of the River Tay (J.H.) ; and in Torbay (P.H.G.).

Genus cochleare, Gosse, gen. nov.

[GEN. CH. Lo:ica not half the length; foot long, annulate; toes two, furcate.
The two species which I include in this genus are minute and inconspicuons, but peculiar. The lorica is quite a subordinate feature, the parts behind this greatly developed into what appears a very stout and long foot, of many annulose joints, terminated by two minute toes, on which the creature usually elevates itself, and turns as on a pivot. Both the species are lacustrine.-P.H.G.]

C. staphylinus, Gosse, sp. nov.

(Pl. XXVI. fig. 9.)
[SP. CH. Lorica hemispheric.
The integument is wrinkled irregularly, and scarcely firm enough to be called a lorica. It is nearly circular in outline, arched dorsally, and flat ventrally, abruptly attenuated to the stout and long foot of four distinct joints, ending in what looks like two acute toes soldered together, frequently turned up in a threatening manner. Eyes and internal organs dim and uncertainly discerned. I have found but one specimen, in a dyke near Stratford, in 1851.-P.H.G.]

Length, $\frac{1}{155}$ inch ; width, $\frac{1}{30}$ inch (P.H.G.).

> C. turbo, Gosse, sp. nov.
(Pl. XXVI. fig. 10.)
[SP. CH. Lorica three-sided.
The form of the lorica may not be constant, yet the facies of this differed so much from that of the preceding, that, until we have more knowledge, it is well to treat them ns distinct. The flexible lorica is nearly parallel-edged, but rises to a dorsal angle, like a roof; yet each of the sloping lateral surfaces consists of two planes, very slightly inclined to each other. The head appears as if it had a broad hood like that of Stephanops chlana, but flexible, for sometimes a lobe of it flaps inward. The front is formed of two half-cones, ciliated on their inner faces, which approach and recede at will, making two vortices. A large occipital brain bears a red eye near its point. The toes are distinetly furcate.-P.H.G.]

Length, $\frac{1}{6 \sigma}$ inch; width, $\frac{1}{150}$ inch. Habitat. Black Loch, near Dundee (P.H.G.).

Family XVII. PTERODINADA.

Lorica entire, various; corona and ciliary wreath those of the Philodinadm; trophi malleo-ramate; foot wholly retractile, transversely wrinkled, jointless, toeless, ending in a ciliated cup;-or foot absent.

This is a singular group of Rotifera. Unlike all other loricate free-swimmers, Pterodinade possess a corona of a Bdelloidic, and trophi and foot of a Rhizotic type. The corona is that of Philodinada, the trophi are those of Melicerta, while the foot (when present) would be very like that of (Ficistes serpentinus, but for its extremity. The two genera of which the family consists differ in the shape of the lorica, and in the foot.

In Pterodina the lorica consists of two delicately thin, and nearly flat plates, soldered together at their edges; in Pompholyx it is continuous, flask-shaped, and without edges. In the former the ventral plate is perforated for the emission of a long, wrinkled, toeless foot ; the latter is footless.

Genus pterodina, Ehrenberg.

GEN. CH. Lorioa entire, greatly depressed, of two oval, but nearly circular plates soldered together at their edges; foot wholly retractile, transversely wrinkled, jointless, tocless, ending in a ciliated cup.

The species of this genus differ from each other chiefly in the flexibility, shape and adorning of the lorica. In all, the corona consists of two circular lobes, whose ciliary wreaths, seen from above, present as perfect an appearance of two revolving wheels as in Philodina or Rotifer. The cylindrical foot is encircled by deep constrictions, which cease abruptly at some distance from its free end, and is remarkable not only from its being the foot of a fixed Rotiferon, but also from its ending in a richly-ciliated hemispherical cup. There are, too, some other points common to all the species, that deserve notice. The salivary (?) glands on the cesophagus are very numerous, and the gastric glands are of unusual length and shape. They are attached to the junction of the cesophagus and stomach by long tapering stalks; and, crossing the lorica transversely, are fastened to the dorsal surface by their broad ends. Between these attached ends of the gastric glands, and the lowest portion of the head, lie curiously-scalloped foliations (of a delicately blue-tinted substance) of which it is difficult to say whether they are continuous with the gastric glands, or are expansions of the lobed masses investing the base of the head, or are something analogons to the floccose ribbons which in so many Rotifera surround the lateral canals. They are very conspiouous in P. patina, but only faintly visible in P. valvata; and the upper portions of the lateral canals, with the attached vibratile tags, lie across them. ${ }^{1}$. The contractile vesicle appears to be absent. The longitudinal muscles are coarsely striated, and the two eyes are distinct, eolourless, transparent spheres resting on ruby pigment. I failed to find any dorsal antenna, but the dorso-lateral antenne lie with their rocket-shaped heads close to the surface of the lorica near its edge at about one-third of the semi-circumference from the top.

P. patina, Ehirenberg.

(Pl. XXV1. fig. 11.)
Pterodina patina . . Ehrenberg, Die Infus. 1888, p. 517, Tuf. Lxiv, fig. 4.
Eekstein, Süb. u. Köll. Zoits. xxxix. 1883, p. 401, Taf. xxvii. fig. 59.
SP. CH. Lorioa inflexible, nearly circular, stippled just within the edge, especially on its upper third; bosses absent from the lorica; gastric glands wilh broad, lobed ends. Lateral foliations very conspicuous.

This is the common species; but, though no rarity, Muller has rightly described it as "Animalculum crystallinum, splendore nulli secundum"; for it is a lovely creature. The dorsal and ventral plates are pressed close together into a glassy shield of marvellous thinness. The former is more or less roughened round the edge; and, about the level of the mastax, this rougheming spreads inwards to some distance. Occasionally, too, I have met with specimens in which there were faint traces of bosses, at irregular intervals, within the edge; but usually these are absent. A side view enables one to sce that the ventral plate bulges out along the longitudinal axis, so as to form half of a hollow cone, whose broad end is forward, and whose point lies on the ventral surface at

[^96]a distance of about one-third of the axis from the edge of the lorica. From the broad front opening the head protrudes; and here the cone is slit down a little, and the flaps rounded off, to give the head a freer passage. When the head is withdrawn, the flaps are drawn by muscles close together, up to the under side of the dorsal plate. Just below the pointed end of the conical hollow, there is a circular opening in the ventral plate, through which the foot can be protruded or withdrawn. The gastric glands are very conspicuous. They are unusually long pear-shaped bodies, stretching from the top of the stomach at right-angles to the animal's length, and having their broad heads fastened to the inner lining of the lorica. Round these points of attachment spread out wide foliations of a filmy substance, curiously and deeply scalloped, and passing upwards towards the head, and outwards nearly to the edge of the shield. It is not easy to see either the lateral canals or the vibratile tags, as they are often obscured by other organs. Lately, however, I succeeded in holding a P. patina firmly down in a clean drop of water, without hurting it; and, as its head moved backwards and forwards, I could see one of the thick, striped, longitudinal muscles bend aside, and permit a view of two vibratile tags, as well as of the lateral canals to which they adhered. The former lay about midway between the gastric gland and the bottom of the head; while the latter sloped upwards and inwards, towards the funnel in which the head moved, and were cut off abruptly below by the edge of the gastric gland, at about its middle point: I could see no trace of a contractile vesicle. Two pear-shaped glands are attached by long stalks to the œesophagus just below the mastax, and lower down is a cluster of similar glands crowding round the spot where the esophagus enters the stomach. The stomach and intestine lie usually side-by-side, and distinctly separate. The latter no doubt discharges through a cloaca at the root of the foot, on its dorsal side, just where it issues from the circular opening in the ventral plate. ${ }^{1}$

Length. Of lorica, $\frac{13}{} \frac{1}{5}$ inch. Habitat. Clear ponds and ditches : tolerably common.

P. valvata, Hudsom.
(Pl. XXVI. fig. 18.)
Hudson, Mon. Mier. J. vol. v. 1871, p. 25, pl. lxxii.

Pterodina valvata
SP. CH. Lorica capable of being folded down on each side, nearly circular, smooth; bosses studding the edge at regular distances; gastric glands very long, club-shaped, with rounded ends. Lateral foliations inconspicuous.

I found P. valvata at Abbot's Pond, near Clifton, in the summer of 1871. It was in great abundance, and in company with P. patina; and in captivity it increased so amazingly, that the glass sides of my aquarium were frosted with the adhering Rotifera, The lorica is remarkably transparent, and is ornamented within its edge with ten bosses, which add greatly to its beauty. When the two species are present together, the difference between them is recognized at a glance; for, delicate as P. patina is, P. valvata far surpasses it in filmy transparency. While watching some of the new Pterodina, I was surprised to see one of them sailing by with its lorica folded down (fig. 18a) like the flaps of a Pembroke table: ${ }^{2}$ its outline was so altered that it scarcely seemed the same animal. This curious infolding of the lorica is due to the contraction of two conspicuous transverse muscles, which do not necessarily act together ; as a friend, who was watching with me, saw some specimens with only one side folded at a time.

The gastric glands have not such broad heads as those in patina, and are altogether

[^97]narrower. The foliations are so slight as to permit the lateral antenne with their nerve-threads to be easily seen. Their rocket-shaped extremities lie close to the lorica, not far from its edge, and between the first and second bosses on either side : they are therefore, in an unusually forward position. The lateral canals can also be traced, in many convolutions, from the lower part of the head, to the point where they are abruptly cut off by the gastric glands. In young specimens, in which the ovary is a small, transverse, pyriform sac, and so does not obscure the view, they are seen again below the gastrie glands on either side of the stomach; and, passing behind it, appear to end below it on either side, in small pear-shaped expansions. I could never find any contractile vesicle; but, under favourable conditions, I have seen three pairs of vibratile tags: one a little above the heads of the gastric glands, one on a level with the middle of the stomach, and one not far from the pear-shaped sacs in which the lateral canals seem to end.

Length. Lorica, $\frac{1}{2 \pi}$ inch. Habitat. Abbot's Pond, Clifton (C.T.H.) ; not common. Abundant near Torquay (P.H.G.).

I met once with an empty lorica (Pl. XXVI. fig. 17) which I suppose to be that of Ehrenberg's P. elliptica. It came from a pond in Sutton Park, Birmingham.

P. mucronata, Gosse, sp. nov.
 (Pl. XXVI. fig. 15.)

[SP. CH. Lorica usually circular; dorsal plate furnished with an acute mucro projecting from its front. Lacustrine.

In April 1885, associated with P. patina and P. valvata, which were swarming in one of my window reservoirs, I first met with this very pretty form. It never became very nnmerous; but, in the course of a few weeks, during which I was paying special attention to the genus, I met with more than thirty examples. The thought occurred that it might be the young condition of one of its larger fellow-species ; and, if so, valvata would be the more probable. Yet I have found the young of valvata no larger than mucronata, but with no trace of the mucro: and I have seen a nearly mature egg in mucronata, which, though not conclusive, angments the probability of adult condition. On the other hand, slight unevenness of frontal outline is not rarely discernible in adult specimens of both the larger species. The matter is still sub judice; but for the present mucronata seems worthy of specific rank.

The lorica has not only the intra-marginal granulation of its fellows, which gives them so elegant a resemblance to a new silver coin, but is shagreened or studded with close-set rugosities over the entire surface of the dorsal plate, so delicate, however, that the hyaline transparency is not interrupted. What I consider the branchial organs are small; the efferent lobe, answering to the pyriform (gastric gland), is generally inconspicuons, and the afferent tubes are clustered in form of a cone around the base of the sub-horizontal muscle. I have not satisfactorily observed the existence of eyes. The pair of diagonal muscles is unusually well-developed. The lorica has about twothirds of the diameter of valvata.-P.H.G.]
Length. About $\frac{1}{150}$ inch. Habitat. A domestic aquarium (P.H.G.) : rare.

P. clypeata, Ehrenberg.

 (PI, XXVI, fig. 14.)Pterodina olypeata
Ehrenberg, Die Infus. 1888, p. of 18, Tat. Isiv. Gg. 6.
[SP. CH. Loriea elliptical, truncate at each end; coronal disks widely separated. Marine.

I first formed acquaintance with this attractive species in July 1850, in sea-water from the Essex coast ; and lately it has been sent me in abundance by Mr. Hood from
the Firth of Tay. I have been able to preserve it in health for many weeks in phials of sea-water. Its ovate outline well distinguishes it from lacustrine forms; and this outline is subject to some variation by the action of a stout transverse muscle-band across the venter, drawing together the two sides ; the medial length of the ventral plate being membranous and flexible, and the pectoral edge being cleft and overlapping. It is well suited for illustrating the branchial system. The plexus of the anastomosing afferent tubes is wide and particularly clear, and seems to be distributed on all sides of the great funnel. And the union of these can be readily traced into a large sac, which (placed on the ventral surface) presently bends dorsum-wards into a great pyriform vessel (as in P. valvata) on each side, and so pours its deoxygenated water by a slender duct into the asophagus. The abdominal viscera are rather small. The long and flexible foot appears to be furnished with a central piston which protrudes and retracts its ciliated end ; this is endowed with considerable power of adhesion.-P.H.G.]

Length. Head and foot extended, $\frac{1}{8 \pi}$ inch. Width, $\frac{1}{2} \frac{1}{25}$ inch. Habitat. Among conferve in tide-pools; mouth of the Naze, and of the Tay (P.H.G.) : not rare.

> P. Truncata, Gosse, sp. nov.
> (PI. XXVI. fig. 16.) \quad Gosse, Ann. Nat. Hist. 2 Ser. vol. viii. 1851, p. 203.

Pterodina elliplica
[SP. CH. Lorica ovate, somewhat pointed behind, the occipital edge abruptly truncate and slightly notehed, the pectoral widely cleft. Laenstrine.

I know this from a single specimen only, which I took in the autumn of 1850, in the expanse of water locally known as the Black Sea, at Wandsworth. My study of it is imperfect ; for though it rotated freely, I was called away before my observation had proceeded far, and when I returned it was retracted and soon died. The eyes are small, remote, and almost colourless. The extrusile foot, the trophi, the digestive apparatus, the pair of diagonal museles, and (so far as secn) the plexus of branchial tubales on ench side, were all generally normal.-P.H.G.]

Length. Of loriea, $\frac{1}{1 \text { as }}$ inch. Habitat. A lake near London (P.H.G.): very rare.

Genus pompholyx, Gosse.

[GEN. CH. Lorica entire, bottle-like; foot wanting; two frontal eyes; corona double behind, united before; eggs allached after extrusion. Lacustrine.

Two species, so far as we know, compose this genus; both small, obscure, and rarely seen. The one was found by myself in 1850 ; the other by Mr. Bolton in 1884.-P.H.G.]
P. complanata, Gosse.
(PI. XXVII. fig. 1.)
Pompholyx complanata . Gosse, Ann. Nat. Hist. 2 Ser, vol, viii. 1851, p. 203.
[SP. CH. Lorica two-sided, nearly circular, with rounded edges; occipital edge obtusely pointed, pectoral edge notched.

The form is that of a round flat scent-bottle. The corona is composed of two disks. resembling those of a Bdelloid, but united in front, with a deep occipital sulcus, wherein an antenna protrudes. The eyes are placed one on each side of this sulcus, large, globular, ruby-red, and highly refractile. The jaws and alimentary canal seem of the Pterodina pattern, but the minuteness of the animal precludes definite observation. The cloaca appears at the end of the lorica, as a round orifice, with a slightly raised edge around it. Yet the great size of the egg suggests either that this orifice must be expansible, or that there must be a separate duct.

In manners it resembles the Pterodince; but it revolves as it goes like the Anur.e.e.

It is somewhat slow of motion. The medial line of the venter is a salient angle; and this has a curious effect as the creature revolves.-P.H.G.]

Length. Of lorica, 300 inch. Habitat. Pond at Lower Clapton (P.H.G.).
P. sulcata, Hudson.
(Pl. XXVII. fig. 2.)
Pompholyx sulcata . . . Hudson, J. Roy. Mior. Soc. 1885, p. 618, pl. xii. figs. 7, 8,
SP. CH. Lorica entire, divided into four convex lobes, by four longitudinal furrows.

The lorica of this species is very unlike that of Mr. Gosse's P, complanata. In the latter the dorsal and ventral surfaces are so compressed that they are slightly concave, while in the former both these surfaces are sharply convex, and so are the connecting lateral surfaces. A transverse section, consequently, consists of four segments of circles, as shown in fig. $2 b$. It is easy to obtain this view, as well as a good sight of the corona with its two wheels and red eyes, for the animal is fond of swimming upright close to the cover-glass, or of exploring the bottom of the live-box, head downwards. I had little opportunity for studying the creature, but I noticed that the lorica had an aperture in its lower, pointed, and somewhat curved extremity.

I am indebted to Mr . Bolton for this pretty little Rotiferon, which he discovered in company with Conochilus dossuarius in the summer of 1881.
[A curions habit which this genus has in common with Brachionus is that of carrying the eggs, after they are successively discharged, until the young burst the shell. These are nearly circular (absolutely so as often presented to the eye), very large in proportion to the animal, each connected by a highly elastic thread to the hindmost part of the lorica, between its two terminal points. This thread can be lengthened or shortened at the will of the animal, and this in a surprising manner; for by very careful observation I perceived that, in elongating, the slender elastic thread was actually projected, the egg of course being inert, and nothing pulling or even touching it. And to a surprising extent; for I have seen the thread to equal in length the longer diameter of the egg.

The front edge of the lorica rises to a rounded projection dorsally, and two of less elevation laterally; these latter appear to be separated by a shallow sinus pectorally. The mastax is small, the trophi formed on the pattern seen in Pterodina, an incus with small fulorum and quadrantiform rami, and with obsolescent mallei. I have seen retraction of the anterior parts to such an extent that the foot of the incus was very nearly at the bottom of the visceral cavity.-P.H.G.]

Length, $\frac{1}{20}$ inch. Habitat. Near Birmingham (T.B.) : rare.

Family XVIII. BRACHIONIDE.

[Lorica box-like, open at each end, generally armed with anterior and posterior spines; foot long, excessively flexible, wholly retractile, wrinkled, ending in two toes.

Genus Brachionus, Ehrenberg.

GEN. CH. Loriea without elevated ridges, gibbous both dorsally and ventrally; foot very flexible, uniformly wrinkled, without articulation, toes very small. Lacustrine and marine.

This genus contains Rotifera mostly of large size and of showy appearance, being inclosed in glassy shells of regular outline, adorned with symmetrical projections, and always presenting a broad surface to observation. They have been favourites with observers from the dawn of microscopy; and they are still. Fortunately most of the species are common and easily accessible. The form of the foot is peculiar; it is a long
and thick musenlar tube, very transparent, covered with minute and close wrinkles, full of muscles, which admit of rapid protrusion and retraction, and of motion in all directions, with amazing flexibility (so that I have actually seen it tied in what, for the moment, looked like a knot!). The toes,-so small and apparently feeble,-have considerable power of grasping. They are sometimes used as a pivot on which the animal revolves. The mutual relations of the sexes are very distinct ; as I have shown in detail in my Memoir "On the Diœecions Oharacter \&c." (Phil. Trans. 1856). The female carries the excluded eggs attached to her body till they are hatched.

The distinction of the species rests mainly on the number, dimensions, and relations of the spines. Yet recent observations on B. pala throw doubt on the validity of such characters.-P.H.G.]

B. pald, Ehrenberg.

(P1. XXVII. fig. 3; and P1. XXVIII. fig. 8.)

SP. CH. Lorica thin, smooth, transparent; with four, long, sharp, occipital spines.
B. pala has a colourless, smooth and transparent lorica, armed with four long spines in front, but unarmed and rounded off behind. The lorica is flexible, and generally dragged-in a little on either side, round the attachments of the long dorsal muscles. The opening for the foot is a mere slit, through a pap-like protuberance at the end of the lorica; and its sides can be brought close together when the foot is withdrawn. The animal's internal organization is very like that of B. rubens, which has already been so fully described in Chapter I. that, beyond a reforence to Pl. A, vol. i., and PI, XXVII. fig. 8 , only a few points require notice. The mastax is very large; and so are the transparent vesicles which are seated on it on the ventral side, and may possibly be salivary glands, By transmitted light they show only two curved lines (their outer bounding walls) rising from the mastax to the head. The gastric glands are stalked, as in B. rubens, but the stalks are generally hidden behind the brond triangular ends of the glands. ${ }^{1}$ The vascular system is very conspicnous, and the five tags on each side can be readily found. I once obtained an admirable view of the top of a vibratile tag, which was pointing up the microscope. It was not at all like that of Euchlanis dilatata given by Dr. Plate, and taken from the same point of view. Dr. Plate figures the summit of the tag as an oval with pointed ends. I found that of the lowest tag of B. pala to be a thin straight edge, like that of a chisel. If there be an aperture there, it must be extremely narrow. As the animal moved, the tag turned too, so as to present also the two characteristic appearances given in PI. XIII. fig. $8 b$.

Along with the undoubted specimens of B. pala were a good many of what appeared to be Ehrenberg's B. amphiceros, with two short thorn-like spines on the lumbar regions, and two others still smaller, one on each pap-like protuberance by the foot (fig. Sc). Ehrenberg says that B. amphiceros differs from B. pala in its smaller size, in having no coronal styles, in having four sharp posterior spines on the lorica, in lacking side muscles in front, and in having four vibratile tags instead of three. Moreover he says that he could not find a dorsal antenna. Now I carefully examined these specimens with four posterior spines, and found them to be of the same size as B. pala, with styles on the corona, with side muscles in front, and possessing a large dorsal antenna. In fact they were the exact counterparts of pala. I may add, too, that both those which had, and those which had not posterior spines, showed, under favourable circumstances, five vibratile tags on each side. Nor is this all: for I found some specimens with two

[^98]lumbar spines but none on the foot-paps (fig. 3d), and others with spines on the footpaps but none on the lumbar regions (fig. Se) ; and, in all, the size and structure were the same. From this I conclude that Ehrenberg's B. amphiceros is only a variety of B. pala. [As is also, I have little doubt, my B. öon ("Ann, and Mag. N, H." Sept. 1851.-P.H.G.] The lateral, or lumbar-spines are very variable, and occasionally reach an extravagant length, as shown in PI. XXVIII. fig. 3, where they are nearly as long as the body of the lorica. In this specimen the spines were hollow nearly to their ends, and were, in fact, true prolongations of the body-cavity. They were, too, as flexible as the lorica, so that they could be brought all four together at the tips, or even crossed.

Length. Lorica, $\frac{1}{7}$ s inch. Habitat. Ponds and ditches: common.

> B. dorcas, Gosse.
> (Pl. XXVIII. fig. 4.)
> Brachionus dorcas . . Gosbe, Ann. Nat. Hist. 2 Ser. yol. viii. 1851, p. 203. Phil. Trans. 1857, pl. xv, figs. 15-19.
[SP, CH. As B. pala; but the occipital spines longer and more slender; and the antlers curved forvard; pectoral edge undulate, with a central notch.

This, too, may possibly prove only a variety of pala; but the appearance of the antlers struck me as unique ; particularly the elegant sinnous curvature, like that of the horns of the Gazelle Antelopes, which suggested the specific name. I had ample opportunities of studying it in both sexes, and in all ages, from Forest-school Pond at Walthamstow, in 1850 ; but I have not met with it since. The figures, in which I have delineated its anatomy in detail, will render much description needless. I could find no contractile vesicle in any specimen, but distinotly traced the lateral canals of each side to a common termination at the cloaca. An excellent sight of one of the vibratile tags, endwise, showed these organs to be attached by a very minute papilla, and to be flattened on two opposite sides (as at fig. 4d). The parent carries her eggs after exclusion.P.H.G.]

Length. Of lorica, $\frac{1}{0}$ inch; width, $\frac{1}{35}$ inch. Habitat. Wallhamstow (P.H.G.): rare.

B. ureeolaris, Ehrenberg.

(Pl. XXVII, fig. 6.)
Brachionus urceolaris .
Ehrenberg, Die Infus. 1838, p. 512, Tat. Ixiii. fig. 3.
[SP. CH. Lorica with six straight occipital spines and a deep sinus in the middle ; the pectoral edge rising slightly to the middle, which is slightly excavate: orifice for the foot bounded by two papilla.

We have now species whose front is armed with six spines, usually low, but variable in height. In the present each spine is the origin of a shelly ridge, which runs for some distance down the lorica. Viewed dorsally, its outline is that of an elegant rounded cup; but, laterally, the occipital spines, and the gibbous dorsum descending below the flatter venter, destroy the resemblance. A round, or sub-square, orifice gives emission to the very agile wrinkled foot, as rapidly retracted. The lorica is somewhat scabrous. The internal organization is that common to the genns. The lateral canals begin at the highest point of the head-funnel, at the bases of the lateral spines. They pass down into close contact with the gastric glands, each of which is of great size and of retortshape, ${ }^{1}$ and each canal has at that contact a dilatation into an oblique plexus. Before it reaches its end, it is tied to the lorica, and makes an abrupt angle, to join the contractile vesicle at the very neck of its discharge.

Females carry, attached to the base of the foot, many small eggs which produce males, or few large eggs which produce femules. (Phil. Trans. 1856, pl. xv. figs. 3-5;

[^99]
BRACHIONIDE.

where the species is named rubens.) The eye consists of three cells of ruby crimson, from the edges of each of which, under sunlight, brilliant reflection is seen.-P.H.G.].

Length. Of lorica, $\frac{1}{8}$ inch; total, foot and head extruded, $\frac{1}{6}$ inch. Width 10 inch. Habitat. Ponds and ornamental waters near London; Birmingham (P.H.G.) : rather uncommon.

> B. nubens, Ehrenberg.
(PI. XXVII., fig. 5 ; and PI. A.)
Brachionus rubens.
Ehrenberg, Die Infus. 1838, p. K13, Tat. Lxiil, fig. 4.
[SP. CH. Nearly as the preceding, but the occipital spines have the form of sawteeth, sloping inward; and of the pectoral edge the central elevation is more marked.

I have strong doubts whether B. urccolaris and B. rubens are specifically distinct. Very different individuals may, indeed, readily be presented; but a series do certaimly run into each other. Considering them for the present as distinct, I refer to the figs. on Plate A, and its explanation, in which it has been selected for illustration as typically representing the organization of the whole class. In examples which we may call more characteristically rubens, we may see the gastric glands in a very peculiar condition; each consisting of two sacs, quite distinet, each separated by a long duct, and the inner one leading by a duct to the cesophagus, while the outer is manifestly united with the lateral canal. Then the canals themselves form several distended sacs with necks, just before they enter the contractile vesicle, which is here unusually small, for the genus.-P.H.G.]

Length and Habitat. As the preceding.

[SP. OH. The occipital spines reduced to low saw-teeth, much wider than high, with their outer edges sinuate; the pectoral line nearly straight, notehed into round lobes. Marine.

This is a very fine, elegant, and attractive species ; and its marine habitat at once distinguishes it. I obtained it on the Essex coast six-and-thirty years ago ; and recently Mr. Hood has sent it to me in abundance from tide-pools in the Firth of Tay, and Mr. Brightwell from Norfolk. It is a good traveller and lives long in small phials. I have had it in abundance in my own marine aquarium.

Each gastric gland is a great sac divided nearly to its base, so as to appear two ; and these vary greatly in shape and in relative size. They are very distinctly connected with the lateral canals. Both male and female eggs are carried, and males are produced in abundance. The middle of the body in this sex is occupied by the spermatic sac, a great pyriform vessel connected by a bottle-like neck with the head-mass. On pressure this sac is seen to be full of bodies having a vermicular motion; and, on the pressure being continued, it bursts, freeing about thirty spermatozoa of unusual size, each being $\frac{1}{50}$ inch long, a slender body merging into a long whip-like tail which maintains a quivering undulatory motion for several minutes after exclusion.-P.H.G.]

Some fine specimens sent to me by Mr. J. Hood enabled me to make a drawing of the ventral aspect of this Brachionus (PI. XXX. fig. 8), and to add a fow notes to the above. The transparent vesicles which embrace the buccal funnel, and, resting on the mastax, reach up to the head, are here unusually large and conspicuous. The lateral antennm can be readily seen protruding the tips of their heads from a dent in the lorica on either side just below the gastric glands: they are here, as is often the case, attached also to the filoccose investment of the lateral canals, and their nerve-threads are obvious.

On the dorsal surface it is easy to bring into view the four bases of the muscles which work the foot; and which show as four spots nearly in a line crossing the lorica where it first begins to lessen in width.

Length. Lorica, $\frac{1}{100}$ inch; width, $1 \frac{1}{10}$ inch. Habitat. Sea-water, Essex and Norfolk coasts ; Firth of Tay (P.H.G.; C.T.H.) : common.

B. Bakeri, Ehrenberg.

(PI. XXVII. fig. 8.)
Brachionus Bakeri
Ehrenberg, Die Infus. 1838, p. 514, pl. Ixiv. fig. 1. Gosse, Phil. Trans. 1857, pl. xy, figs. 11, 12.
[SP, CH. Occipital spines six, the intermediate pair almost obliterate; the pectoral line nearly level, undulate; behind two large lateral spines, and two smaller bounding the orifice for the foot. Lacustrine.

This species has been dedicated to an early English microscopist ; and it is both named and figured in Adams's great work on the Microscope, published just a century ago. It is a common species, and from its elegant form and ample breadth very attractive. Individuals differ much in the length, stoutness, and direction of the spines; the bind lateral pair being sometimes bent inward. The ventral surface is marked with minute granules, which are arranged in a pattern of some regularity. The gastric glands are again large, retort-shaped, with long neeks, and are in contact, if not in union, with the lateral canals, which open into a small contractile vesicle at its cloacal end.P.H.G.]

Length. Of lorica, $\frac{1}{02}$ inch: width, $\frac{1}{13}$. Habitat. Fresh waters around London, and widely spread (P.H.G.) : rather common.
B. anaularis, Gosse.
(Pl. XXVII. fig. 4; and Pl. XXX. fig. 9.)
Brachionus angularis .
Gosse, Ann. Nat. Hist. 2 Ser. vol. viii. 1851, p. 203.
" " . . . ${ }^{\prime}$ Phil. Trans. 1857, pl xy, figs. 13, 14.
[SP. OH. Occipital spines reduced to slight undulations, with a slight (usually) rounded sinus in the middle; pectoral edge nearly straight; hind extremity with two short, blunt processes; outline more or less angular.

The figure, jutting out into blunt angles, though characteristic, is not absolutely invariable; for I have seen a specimen whose dorsal outline was as regular as that of urceolaris. I first found it in the pond at Walthamstow in 1849 ; then in the ornamental water at Kensington Palace; and on many occasions since; often associated with B. pala. The parent carries both male and female eggs to the hatching. The male I have described and figured elsewhere. I have seen the sexual coitus. The internal structure presents nothing notable. It is of lively, restless manmers.-P.H.G.]

The highly-arched dorsal surface of the lorica is not only facetted (as I have shown in PI. XXX. fig. 9) but is carved out into curious hollows that are well seen in Pl. XXVII. figs. $4,4 a$, which drawings I made from an empty lorica of unusual beauty. The ventral plate is quite overlapped by the dorsal, which hangs down all round it; so that the ventral surface, taken as a whole, is concave, although its middle portion is convex. Nothing is easier than to clip the creature gently by its sides, so as to be able to look into the ventral hollow; and then, with dark-field illumination, and the binocular, the true shape of this curious lorica can be seen at a glance. A side view shows also the very stout, wide-based dorsal antenna ; which, as usual, plays in the hollow between the occipital spines. The lateral antennæ are well worth notice. The tip of each rocket-shaped head lies at an aperture in the lorica (PI. XXX. fig. 9) which has, raised round it, a small chitinous ring ; through which the brush of sete can be seen to protrude
(Pl. XXX. fig. 9a). This is a little advance on the structure in Noteus quadricornis, in which Rotiferon two distinct circular perforations, with smooth edges slightly raised above the general level of the lorica, give passage to the antennal brushes.

Length. Of lorica, $2 d \sigma$ inch. Habitat. Near London; Birmingham; Duudee (P.H.G.) ; Clifton (C.T.H.) ; pools of fresh water ; not uncommon.

Genus noteus.
GEN. CH. Lorica facetted, and covered with raised points; gibbous dorsally, flat ventrally; foot obscurely jointed; toes moderately long; eyes wanting.

N. quadricornis.
(Pl. XXVIII. fig. 5.)

The lorica of this handsome creature, the sole species of the genus, consists of two saucer-like plates ; the dorsal one convex, facetted, and stippled; the ventral concave all round the edge but bulging in the middle, stippled and not tesselated. The front of the ventral plate is a concave circular segment with a minutely serrated edge, and the front of the dorsal plate has a similar, but unserrated, edge, with its outline broken by two projecting strips of the lorica which curve gradually over the head. At the hind end, the lorica is armed with two long, and nearly straight spines, widely separated by a straight edge set with a row of minute dots. The passage for the foot is a deep funnel-shaped cavity at the bottom of the ventral surface, covered by a loose flexible skin attached to its lower, inner edge, and also to the foot. The head is something like a broad and very thick basin. Seen from above, it shows the sides as circular lobes, connected on the dorsal side by an arched ridge. Its central hollow is small, and is laid open on the ventral surface by a V-shaped gap. The edges of the gap bear stout cilin, and there is a fan of similar cilia on the centre of the arched ridge connecting the circular lobes. On each side of the corona, apparently on the edges of the circular lobes, is a pimple bearing one or two styles. The rest of the corona is edged with ordinary cilia. The foot has three feeble false joints, and two rather long and sharp toes, which have the usual power of adhering to glass; though the two dusky objects running down its whole length are, I think, muscles for moving the toes, and not secreting glands. The mastax has a high position, and the trophi are weak examples of the sub-malleate type. The gastric glands are of unusual size and shape. They spread out like fans up into the extreme front corners of the lorica, and appear to be thin and delicately corrugated. They are joined to the apex of the stomach by long ducts, Just below the mastax there are small pear-shaped, and probably glandular, bodies attached by their stalks to the cosophagus. The contractile vesicle is large, and the lateral canals and vibratile tags are very conspicuous; the canals edging the lorica all round down to the base of each hind spine. In the individual shown in fig. 4, a narrow ovary had one ovum beginning to form near its smaller end; and below this ovum lay, in wrinkles, the empty pointed end of the ovisac. The side muscles for moving the head, a pair on each side, are unusually stout and obvious; the others are much as in Brachionus. A small heart-shaped nervous ganglion, with its broad end downwards, lies on the occiput between the frontal horns; and, seated ou it, sloping downwards, is the conical sheath of the short dorsal antenna, whose tip just emerges at the base of the gap in the lorica between the horns. Dr. Plate (loc. cit.) has seen two
lateral antennæ protruding from small orifices on the dorsal surface of the lorica: one on each side, between the edge and the five-sided facets on the centre of the buck. ${ }^{1}$

This is a bottom-haunting ereature; and, in my experience, not a very common one. When captured it betrays its presence by its slow gliding motion, trailing foot, and white lorica: a whiteness due to the minute dots of chitine with which it is frosted, Happily the lorica is very thin, so that it is easy to see the viscera, in spits of the ridges, facets, and frosting.

Length. Of lorica, $\frac{7}{7}$ inch. Habitat. Ponds and ditehes, near London, (P.H.G.); Clifton (Mr. Brayley; C.T.H.) ; Birmingham (Mr. Bolton junior) ; not very common.

Family XIX. ANUREADE.

[Lorica box-like, broadly open in front, behind open only by a narrow slit; usually armed with spines, or clastio seta; foot wholly wanting.

The genus Anuraa of Ehrenberg, already extensive, and now augmented by many new species, ought to constitute a distinct family, very different in form, structure and habit from the Brachionida; and including several genera. The body is inclosed in a compact box-like lorica, open in front and rear. They have no foot, and therefore are incessant swimmers, never resting. The trophi differ from those of the Brachionida in that the manubria, though usually clubbed, never take the expanded semi-circular shape. The cilia, too, are not set around a two-flapped corona, but on three large eminences, each of which terminates in a globose lobe, crowned with stout sete. One eye is conspicuous, cervical. They are both marine and lacustrine.-P.H.G.]

Genus anurea, Gosse, nec Ehrenberg.

[GEN. CH, Lorica an oblong box, open widely in front, narrowly in rear; dorsal surface usually tesselated; the occipital edge ahways, the anal sometimes, furnished with spines; the egg after cxtrusion is carried attached to the lorica. Lacustrine.-P.H.G.]

A. curviconnis, Ehrenberg.
(Pl. XXIX. fig. 9.)
Ehrenberg, Die Iufus, 1838, p, 505, Tat, Lxii. ig. 5.

Anurea curvicomis
[SP. CH. Lorica oblong, rounded behind, tesselated, armed with six occipital spines, of which the middle pair are procurved; no spines behind.

Of the tesselations, the medial row alone is perfect, of five facets ; the posterior three are hexagons, the next square, the foremost an incomplete hexagon. From the lateral angles other ridges proceed laterally, forming other polygons, which are usually evanescent. Of the spines, the central pair (antlers) are strong, and curved forward, sometimes mutually approaching, sometimes receding. The lateral pairs are short, straight and pointed. From the outmost pair descends a prominent ridge on each side, making a sharp lateral edge to the lorica (fig. $9 a$). The eye is very large and brightly conspicuous; the mastax is a wide oblate spheroid, with mallei and incus well developed. A wide sacculate stomach follows, crowned with normal gastric glands, and descending with no distinct constriction to the hind end of the lorica, where there is a small orifice, through which I have seen the rectum protruded for a short distance, and then retracted. There is an ample contractile vesicle. The three main lobes of the rotatory organ are large and prominent when in action, each bearing a great round fleshy papilla, besides a smaller one on each side; each carries a divergent fan or brush of stout setæ. The

[^100]cilia produce vortices, but not wheels. A curved tubular antenna, with terminal bristles, issues from the sinus between the antlers.

This pretty species occurred by myriads in one of my garden pans near London in the autumn of 1849 ; and I met with it again in the watering pond on Hampstead Heath; but I have no record of it since. A great Bursaria, as well as Asplanchnce, feeds voraciously upon it. It swims giddily, to and fro, with some swiftness.-P.H.G.]

Length, ${ }^{\frac{1}{6} \sigma \sigma}$ inch. Habitat. Near London; Birmingham (P.H.G.): not rare.

> A. HYPELASMA, Gosse.
> (PI. XXIX. fig. 6.)
> Gosse, Ann. Nat. Hist. 2 Ser. vol. viii. 1851, p. 202.

Anuraa fissa .
[SP. CH. Lorica without spines, consisting of two plates, the dorsal arched, the ventral flat, commensurate; and widely cleft through its medial line.

When I obtained this species, in 1850, I conld not satisfactorily determine the character of its ventral plate ; but subsequently, on many occasions, and with great precision, I saw that it is a thin flat plate, of the full width, apparently connected with the dorsal only by membrane. It is, moreover, divided down the middle by a fissure of varying width; I have even seen the pectoral edges of the fissure overlapping. These peculiarities, combined with the straight transverse occipital edge, might almost entitle this species to generic separation. The egg is (proportionally) of vast size, nearly half as large as the whole animal; and not symmetricul, for, from the side at one end, projects a nipple, by which it remains attached to the parent. One I saw hatched. The young escaped at the part where the pedicle was, head foremost, rotating freely. It was exactly like the parent, and fully three-fourths of its size. There is evidently an anal orifice, whence frequently protrudes a very delicate membrane (doubtless the rectum), with its end expanded and recurved (fig. 6). When the rotating front is retracted, there are seen two shelly lobes rising from within the lorica, which approach to contact, and thus protect the head (fig. 6a). The internal structure is normal. Some specimens were thickly infested with a minute Infusorium (Colacium?).-P.H.G.]

Length, $\frac{1}{220}$ inch. Habitat. Near London; Leamington; Stapleton Park, Yorkshire; Dundee; Torquay (P.H.G.) : rather common.

> A. тecta, Gosse.
> (Pl. XXIX. fig. 10.)
> Gosse, Ann. Nat. Hist. 2 Ser. vol. viii. 1851, p. 202 ,

Anuraa tecta .
[SP. OH. Nearly as curvicornis, but more pointed; and the tesselations are larger, and arranged on each side of a mesial dorsal ridge, which gives to the back the form of a vaulted roof.

Of this pretty little species I have slight record. The arrangement of its facets sufficiently distinguishes it. It is high and nearly circular in transverse section. One that I saw carried a large egg-shell,-P.H.G.]

Length, $\frac{1}{20 \sigma}$ inch. Habitat. Near London ; Birmingham (P.H.G.): rare.
A. aculeata, Ehrenberg.
(PI. XXIX. fig. 4.)
Anuraa aculeata Ehrenberg, Die Infus. p. 508, Tat. 1xii. fig. 14.
, brevispina. . . Gosse, Ann. Nat. Hist. 2 Ser. vol. viii. 1851, p. 202.
[SP. CH. Lorica oblong-square in outline, slightly arched dorsally, flat, or concave, ventrally; the normal occipital spines six, of which the antlers are procurved; cach of
the two posterior angles produced into a slender straight spine of varying length; surface minutely punclated, and hexagonally tesselated.

The form of this very abundant species exactly resembles, whether viewed from the back or side, that of a wicker hand-barrow familiar in some parts of the country. When the empty lorica is seen, it is a beautiful microscopic object. The rotating head, and whole internal organization agree with those common to the geaus. It swims rather swiftly, in a peculiar style, continually revolving, both on the long and the transverse axis, throwing perpetual somersaults. Its irregular plunging and rolling strongly remind me of the motion of a ship in a heavy sea.

My A. brovispina (loc, cit.) (PI, XXIX. fig, 5) is, I feel assured, only a var. of this species, with the spines degenerate, and the puncturing nearly evanescent. Ehrenberg's A. testudo and A. valga will, I think, fall into the same category.-P.H.G.]

Length (including spines), $\frac{1}{15}$ inch; width, $\frac{1}{2 n o}$ inch. Habitat. Pools and lakes (P.H.G.) : very common.

A. cochlearis, Gosse.

(PI. XXIX. fig. 7.)

Anuraa cochlearis .

Gosse, Ann. Nat. Hist. 2 Ser, vol. viii. 1851, p. 202.
[SP. CH. Lorica spoon-shaped, ending behind in a straight slender spine; the back ridged and tessclate, as in A. tecta.

This bears the same relation to A. stipitata, Ehr., as A, tecta bears to A. curvicomis; differing from stipitata by the roof-like back, and the mesial division of the facets, which latter (as shown in Ehrenberg's figures) are decidedly of the hexagon pattern. The outline, too, of stipitata is that of a broad, or even triangular shovel ; whereas that of cochlearis is decidedly spoon-shaped, broadly ovate. It is delicately punctate or stippled. The protrasile front is very ample ; a great chin of two fleshy lobes is seen sidewise, besides the lateral and frontal lobes. The eye is manifestly on a lens, which sparkles in focusing, like a gem, but pale in hue. An egg of enormous proportions is carried before the caudal spine, reaching nearly to the chin. The spine varies much in length, from a mere tubercle to equal length with the loricn-body.

The species is not uncommon in clear waters, often associated with Asplanchna, of which it forms a common article of food. I have taken an Asp. priodonta with an An. cochlearis in its stomach, which, aftor an hour or two, was ejected, and instantly swam about, as lively, and apparently as uninjured as ever !-P.H.G.]

Length (including spines), $\frac{1}{500}$ to $\frac{15}{50}$ inch. Habitat. Clear ponds ard lakos (P.H.G.); common.

A. serbulata, Ehrenberg.
 (PI. XXIX. fig. 8.)

Anurea serrulata

Ehrenberg, Dic Infus. 1838, D. 508, Taf. Ixii. fig. 13.

[SP. CH. Lorica oblong-square, much as the shorter-spined forms of A. aculeata; dorsally tesselate with hexagons, except that the hind row of facets are two great polygons mesially divided; ridges serrate; both surfaces punctate.

The most prominent character of this species is its extreme roughness, the edges of all the facet-divisions, and the back of every spine being jugged with minute round excavations, which stud every part of the surface. I have counted about seyenty punctures in one facet. This roughness varies in degree. The antlers are often greatly developed in stoutness, length, and curvature: the hind spines are sometimes nearly obliterate. The pectoral edge makes two arches (each with an intra-marginal line) with a notch between them. The viscera sometimes protrude in a globose form beyond the end of the lorica: I think this is when the contractile vesicle is filling. The frontal lobes take the form of three short cylinders, each with its fan, of vibratile setre ; each of
the lateral pair projects from the midst of a much thicker cylindor. There are two square antennæ. The eye is large, sparkling in sunlight, and refractile.-P.H.G.]

Length, ${ }_{11}{ }_{2}$ inch. Habitat. Near London; Birmingham; Dundee (P.H.G.): common.

Genus notholca, Gosse, gen. nov.
[GEN. CH. Lorica ovate, truncate and six-spined in front, sometimes produced behind; of two spoon-like plates united laterally; no hind spines ; dorsal surface marked longitudinally with alternate ridges and furrows; expelled cgg not usually carried. Lacustrine and marine.

The genus thus indicated may include the species biremis, striata, inermis (young ${ }^{2}$), acuminata, and foliacea (?) of Ehrenberg, together with others, which appear to bo hitherto undescribed.-P.H.G.]

> N. acuminata, Ehrenberg. (Pl. XXIX. fig. 3.)
> Ehrenberg, Die Infus. 1838, p. 506, Taf. Ixii. fig, 9 .

Anurea acuminata
[SP. CH, Lorica produced behind into a long truncate point, spoon-shaped; ventral plate concave, one-third shorter than the dorsal.

The form is very elegant. Of the frontal spines the antlers are nearly straight, the laterals moderately long, the intermediaries very short. From their six points, and from their five interspaces, run strongly marked lines throughout the lorica, of which the former are elevated, the latter depressed angularly. The junction of the ventral plate is about one-third from the point where the cloaca opens. Here two muscle-threads are affixed, connected with the rectum, which they draw down. An ample contractile vesicle receives on each side a conspicuous branchial duct, which in some parts is slender, in others much expanded and corrugated, including many vacuoles, and carrying two vibratile tags each. A remarkable structure is seen in apparent connection with these organs, which recalls the pyriform sacs seen in Pterodina. The cesophagus is long, and attached to it on each side is a small vessel which seems the ordinary gastric gland. But somewhat behind these are seen a pair of sacs, connected with the stomach on each side, and each giving off two threads, by one of which it is fastened to the lining membrane of the lorica, while the other runs down for some distance parallel with, and close beside, the tortuous vessel (branchia?), and is then attached to the interior, where two remarkable shelly bosses are seen. The stomach itself is tied to the lorica by threads, which are probably muscular.-P.H.G.].

Length, $\frac{1}{83}$ inch. Habitat. Ornamental waters near London (P.H.G.) : very rarc.

N. Longispina, Kellicott.

(Pl. XXVIII. fig. 6.)
Anuraa longispina Kellicott, Amer. J. Micr. iv. 1879, p. 20, with fig.

SP. CH. Lorica greatly produced behind so as to resemble a frontal spine; dorsal and ventral plates commensurate; of the six occipital spines the central pair consists of one very long curved spine, and of one aborted straight spine; the lateral pair, of two long, and curved; and the remaining pair, of two short, and straight; the ventral plate has a morable flap with a straight pectoral edge.

Notholca lomgispina does not readily lend itself to any theory on the cause of an
animal's form ; as it is hard to see how its extravagantly long spines can be of much service to it, They evidently forbid its approach to the conferve and floating rubbish that are the favourite haunts of its class, under penalty of being probably anchored for life to the same spot; and they can searecly serve as doats, for the animal is a heavy swimmer, as if overburdened with these great projections, and is usually found four or five feet below the surface. Neither can they be very serviceable as weapons of defence, for even the fry of a gudgeon would soon learn to snap it sidewise. At any rate it is a most interesting form, and though rare and impatient of captivity it is easily managed in the compressorium, as it can be firmly yet lightly held by its long enrved spines without injury. The lorica is triangular in outline, the dorsal surface convex both lengthwise and across, the ventral slightly concave and rather more sharply curved ns it approaches the hind end. Six spines spring from the anterior edge of the lorica. Two are lateral, and are continuations of thickened ridges running part way down the edges where the dorsal and ventral surfaces meet. They are equal in size, taper to a point, and curve first outward and then upwards and inwards. Then, on either side of the median dorsal line is a strikingly unmatched pair. One, the largest of all the six, is stout at the base, tapering to a point, and curved first downwards and then upwards, with a graceful sweep. The other is an abortive looking spine, of uniform thickness, about one-fifth of the length of its partner. In the gap between these two lies the dorsal antenna; and, as this antenna is exactly on the median line, it follows that the longest spine is not in the middle of the lorica (as it has been hitherto drawn '), but slightly on one side of it. There is yet another pair of spines, of equal length, considerably shorter than the lateral spines, and lying one on each side between the dorsal and lateral pairs. The hind end of the lorica flows off into yet another tapering spine curving downward and then upward, like the longest ; and, with it and the body, presenting on a side view an elegant sigmoid curve. At the top of the ventral surface the lorica has a square flap, which can move, as on a hinge, to permit the head to come out, and which closes over it, when it is withdrawn. There is also a slit, like a trap-door at the hind end of the ventral surface, through which the cloaca is emptied. All the front spines are rough, but the hind spine is smooth. The corona has a thick dorsal wall crowned with ciliated eminences, and surrounding a deep cavity leading to the buccal orifice. This cavity is thrown open on the ventral surface by a scalloped V-shaped slit; and is gnarded at each side on the top by two teat-shaped protuberances armed with stout vibrating styles. All the edge of the corona is ciliated, and so are the edges of the ventral slit, at the bottom of which lies the buccal orifice. The mastax with its sub-malleate trophi is close to the buccal orifice. There is a distinct cosophagus bearing two stalked glands below the mastax, and a cluster of rather larger glands just above the stomach. The gastrio glands, stomach and intestine require no notice. A contractile vesicle lies just below the latter, close to the eloaca; the lateral canals and vibratile tags are conspicuous. The muscular system is like that of B. rubens (i. p. 8) ; and it is curious to see how, owing to the flexibility of the lorica, the longitudinal muscles can draw tugether all the frontal spines. As these are really continuations of stout chitinous ridges in the lorica itself, the approaching spines, with the flexible lorica folding up between them, look exactly like a closing umbrella. My specimens died before I had seen the nervous ganglion; but there is a dorsal antenna, protruding between the longest and the abortive spine when the head is expanded, and pulled in when the head is withdrawn. The adult had a single red eye, at the lowest part of the occiput, near the dorsal surface. Mr. Levick says that many of the first specimens that he found had two eyes; and that he thinks these animals were young ones. It would be very curious shonld it prove to be the case that two eyes in the young approach with age, and coalesce in the adult ; especially as Brachioni

[^101]have an eye which has every appearance of being a coalesced pair. The extruded egg is carried on the ventral surface just above the hind spine.

Dr. Kellicott discovered this fine Anuraa in Niagara water at Buffalo, and soon after Mr. Levick found it in Olton reservoir. I am indebted both to Mr. Levick and Mr. Dumlop for many living specimens, and to Mr. Levick also for several mounted.

Length. Total, $\frac{1}{60}$ inch; of longest spine, $\frac{10 \pi}{10}$ inch. Habitat. Buffalo, U.S. (Dr. D. S. Kellicott) ; Birmingham (Mr. J. Levick) ; Greenock (Mr. M. F. Dunlop).

> N. thalassia, Gosse, sp. nov.
> (PI. XXIX. fig. 2.)
[SP. CH. The two lorica-plates commensurate; dorsal arched, long-ovate in outline; ventral, with pectoral edge straight. Marine.

The antlers and lateral spines are moderate, nearly straight and snb-equal : the intermediate pair mere tubercles. The pectoral edge has no conspicuous unevenness. The lorica is scarcely changeable in outline, as if it were stiff and anyielding. Yet the shelly substance merges so insensibly into thin and evanescent membrane at the hind end (where a very delicate membrane, like a truncate tail [rectum? ? is protruded), that we cannot determine the point of transition. The form and lobes of the front, and the array of fan-like seter; the brain and great eye; the mastax and jaws; and the abdominal organization, do not notably vary from what we see in Anurea. The broad protrusile and retractile membrane at the cloaea excretes muens for temporary anchorage. One which I saw forcing its way through thick clusters of diatoms, emerged with several of them glued to its rear, which were then detached with some difficulty. In free swimming it is headlong and rapid, and very restless. In one examplo the intestinal canal was full of the frustules of diatoms. It is exclusively marine-P.H.G.]

Length, $1 / 8$ inch. Habitat. Tide-pools in the Firth of Tay (P.H.G.) : common.

> N. scapha, Gosse, sp. nov.
(Pl. XXIX. fig. 1.)
[SP, OH. Lerica nearly as lroad as long; dorsal plate greatly exceeding the ventral in width; pectoral edge sinuate. Marine.

The transverse outline is highly rounded, resembling the half of an egg-shell, far within the margins of which a flat (ventral) plate is fixed across the cavity, leaving wide overhanging edges. The loriea is very flexible, so that, when the fore-parts are forcibly retracted, the dorsal outline suddenly appears perfectly circular, except at its spinous front edge, and then bears much resemblance to that of a Brachionus. The cloacal orifice is a very short and thin fissure at the extremity, and does not extend sensibly up each side.

In swiftly swimming, the wide but thin wing-like expansions of the dorsal plate are very conspicuous by their glassy clearness, and by their peculiar form, especially when seen end-wise ; and this gives a very distinct aspect to the species, which is more than usually attractive. Wheu alarmed it suddenly retracts with a snap; and if it happens to be presented sidewise at the moment, the frontal spines close with the sinuous pectoral edge, so as to cross and interlace. I saw one eagerly feasting on an Actinophrys, and watched it for half-mn-hour. At first the frontal cilia worked energetically at it, gradually drawing it into the open front of the lorica, and holding it there. But the jaws were not applied to it; and it seemed as if the ciliary action alone were drawing off invisible gelatinous juices into the buccal fumnel. Yet, when at length the Notholca relinquished its hold, the prey seemed uninjured. The species has been sent me by Mr. Hood, associated with the preceding, in sea-water from the estuary of the Tay. - P.H.G.]

Length, $1 \frac{1}{60}$ inch. Habitat. Firth of Tay (J.H.),

Genus eretmia, Gosse.

[GEN. OH. Lorica neither tesselated nor ridged; destilute of spines proper, but furnished with long attenuate rigid bristles.

This seems to be a natural group, containing numerous species. They appear to be destitute of the spines common to Anuraa, pointed extensions of the lorica itself; for the slender appendages are quite different in form, and probably in function.-P.H.G.]
E. pestathrix, Gosse, sp, nov.
(Pl. XXIX. fig. 12.)
[SP. CH. Five long bristles projected from the lorica; one dorsal and two from each side: no frontal or posterior spines.

This species I know only from a single dead and empty lorica which I found in the sediment of water, dipped in June, from a pool at Sandlrurst, Berks, by Dr. Collins. The lorica is ovate, truncate in front, with no spines of the ordinary pattern, but bearing attached to the medial line of the dorsum a long stiff seta, or attenuate spine, the base of which is deep but very thin, the depth gradually diminishing. From the sides, about two-thirds down, spring a pair of similar bristles of less basal depth; and, at a short distance from the round extremity of the lorica, another pair. All radiate from the surface of the lorica, and are consimilar in length and tenuity. No trace of the internal organs was left.

This has evident affinities with the A. biremis of Ehrenberg, which he describes from a single specimen obtained in the Baltic Sea. That species, however, has four frontal spines.-P.H.G.]

Length, unrecorded. Habitat. Pool near Sandhurst Mil. Coll. (P.H.G.) : very rare.
E. cubeutes, Gosse, sp. nov.
(Pl. XXIX. fig. 11.)
[SP. OH. Lorica bag-like, round behind, truncate before; with a diverging seta from the dorsum and one from the venter; four straight spinous processes from the rounded end; the whole surface cut into cubical tessera.

This minute and very curious form I place in the genus Eretmia, though the body processes seem rather spines than setz. I have found it, but only as a dead lorica, on two separate occasions, and in water from widely distant localities; but Mr. Hood has since found it living, and sent me a good drawing of it, which well agrees with my own. All were in auturnn and winter of $1885-86$.

The lorica edge is not spined, but notched. Yet the notches are but the intervals between the tessera of the front row, of which three are seen beside the lateral two. For the entire surface of the lorica is marked with two series of depressions, those of each series parallel to each other, but the two series crossing each other at right angles (or nearly) ; so as to leave a multitude of square tesseræ, or cubical knobs,-like dice set corner-wise :- a form of surface quite unique, so far as I know. I was, indeed, disposed to think it an Arcelline Infusory of the genus Diflugium, till I received Mr. Hood's report, which showed it a true Anuraad. He describes the rotatory front as bearing the normal three great ciliate lobes. The large red eye I had myself seen.-P.H.G.]

Length (including spines), $\frac{1}{360}$ inch (P.H.G.) ; $\frac{1}{200}$ inch (Hood). Habitat. Birmingham (P.H.G.) ; Black Loeh, Dandee (Hood) : rare.

CHAPTER XI.

SCIRTOPODA.

VOL. II.

Cætera de genere hoc mirande multa videmus,
Que violare fidem quasi sensibus omnia querunt:
Nequidquam; quoniam pars horum maxima fallit
Propter opinatus animi quos addimus ipsei
Pro visis ut sint, quæ non sunt sensibus visa.
Nam nihil ægrius est quam res secernere apertas
Ab dubiis, animus quas ab se protinus addit.
Lucretius, De Rerum Natura, Lib, iv, 1. 404.
The life of the brute has commonly one immense compensation in its favour; the perfection of the individual existence is so rarely sacrificed to the prosperity of the race. It is not necessary, in order that one hippopotamus should cut his food conveniently, that another hipponotamus should lead an unhealthy existence like a Sheffield grinder; nor does the comfort of any bird's nest require that another bird should slowly poison itself in preparing acetates of copper, sulphurets of mercury, or oxides of lead. The pride and beauty of a brute are never based upon the endaring misery of another brute. The wild drake's plumage, splendid as it is, suggests no painful thought of consumptive weavers, of ill-paid lacemakers, of barassed over-worked milliners; and the most sensitive of us may enjoy the sight of it without painful thoughts; for it is God's free gift, causing no heart-burning of envy, no care nor anxiety of any kind. -P. G. Hamerton, Chapters on Animals.

We are then in a world of spirits, as well as in a world of sense; and we hold communion with it, and take part in it, though we are not conscious of doing so. If this seems strange to anyone, let him reflect that we are undeniably taking part in a third world, which we do indeed see, but about which we do not know more than about the Angelie hosts ;-the world of brute animals. Can anything be more marvellous or startling, unless we were used to it, than that we should have a race of beings about us, whom we do but see, and as little know their state, or can describe their interests, or their destiny, as we can tell of the inhabitants of the sun and moon? It is indeed a very overpowering thought, when we get to fix our minds on it, that we familiarly use, I may say hold intercourse with, creatures who are as much strangers to us, as mysterious, us if they were the fabulous, unearthly beings, more powerful than man, yet his slaves, which Eastern superstitions have invented.-Newman, Parochial Sermona, 'The Invisible World.'

CHAPTER XI.

Order IV. SCIRTOPODA.

Swimming with their ciliary wreath, and skipping with Arthropodous limbs; foot absent.

The fourth order, Scirtopoda, although it contains but two Rotifera, each in a genus by itself, is one of no little importance, as it is that in which the Rotifers and Crustaces most nearly touch. The true position of the Rotifers in the animal kingdom has long been a matter of keen dispute, and the chief authorities have taken opposite sides: Professor Owen, Dr. Leydig, and others, rank them among Crustaces '; while M. Milne-Edwards, Dr. Cohn, Professor Huxley, with the majority, would consider them as vermes. Nor is this surprising; for the Rotipers possess many characters that are common, in various degrees, to ARTHROPODA and vermes alike; and, so far as their nutritive, reproductive, or nervous systems are concerned, might with little difficulty be placed in either sub-kingdom. But there were three respects, before the discovery of Pedalion and Hexarthra, in which the Rotifers appeared to differ from ARTHROPODA, and to resemble vermes. These are, first, that they do not possess pairs of jointed appendages, articulated to the body, with muscles prolonged into their interior ; and on this point great stress was laid. Secondly, that they swim by means of ciliary wreaths; and thirdly, that they possess a vascular system, with ciliated tags, whose chief function is probably a respiratory one.

But the discoveries of Pedalion and Hexarthra have shewn that Rotifera exist whose internal structure is perfectly normal, and which yet possess three pairs of unquestionably Arthropodous limbs ; and these diseoveries have in consequence disposed of the chief objection to the ranking of the Rotifera among arthropoda. It may, on the other hand, be fairly urged that the balance of argument even now inclines towards those who are in favour of the opinion that the Rotifers, as a class, are nearer to vermes: yet no one, I think, who has studied both Pedalion and the Nauplius larva of one of our fresh-water Entomostraca, would feel satisfied with their being placed in two distinct sub-kingdoms.

In conclusion, I see no reason why the Rotipert should be assigned solely to vermes or ARTHROPODA; and I would propose to consider them as a class that links these two sub-kingdoms together. ${ }^{2}$

Family XX. PEDALIONID※.

Arthropodous limbs six; head truncate; corona of two concave lobes ; ciliary wreath as in Philodinade; trophi malleo-ramate.

The family contains two genera, Pedalion and Hexarthra, each containing only a single species. The two are much alike ${ }^{3}$ in the possession of six Arthropodous limbs

[^102]ending in fans of imbricated setse, in the conical shape of the body, and in the broad truncate corona; but they differ strikingly in the way in which the limbs are set on the body : for in Pedalion they are arranged around it parallel to its longitudinal axis, whirle in Hexarthra, as in the Nauplius larva, they radiate from the centre of the ventral surface. Nor is this the only difference. Hexarthra's limbs are in three graduated pairs, while Pulation's ventral limb is far longer than any of the others: moreover, Hexarthra lacks two long stylate appendages, ciliated at the ends, which are to be found on the posterior end of Pedalion's dorsal surface.

Genus pedalion, Hudson.

GEN. OH. Limbs arranged round the body in pairs, and parallel to its longitudinal axis ; two stylate, ciliated appendages on the posterior dorsal surface,

P. mirum, Hudson.
(Pl. XXX. fig. 1.)
Pedalion mirum . . . Hudson, Mon. Micr. J. vol. vi. 1871, p. 121, pl. xciv.; and p. 215. " Quart. J. Micr. Sci. vol. xii. 1872, p. 333 , pl. xis.
". Mon. Micr. J. vol. viii. 1872, p. 209, pl. xxxiii.
Lankester, Quart. J. Mior. Sci, vol, xii. 1872, p. 388.

SP. CH. Ventral limb much the largest; dorsal limb on the median line; lateral limbs in two unequal dissimilar pairs; the bases of all the limbs, lying in a transverse section dehind the dorsal antenna; their free ends terminating in fans of imbricated seta.

It was in July 1871 that I had the good fortune to discover this remarkable Rotiferon in a small road-side pond near the head of Nightingale Valley at Clifton. On placing a specimen of it under the microscope I for a moment fancied that I had brought home by mistake some Entomostracous larva, for its outline, its six limbs ending in fans of imbricated sete, and its habit of jerking itself through the water, made it resemble the ordinary Nauplius of a Cyclops. However, a brief examination showed it to be a true Rotiferon, with a splendid corona and with internal organs much like those of Triarthra longiseta. The external form is extraordinary ; not only has it six well-developed limbs, but all these limbs are hollow, communicating with the body cavity, and containing pairs of opposing muscles prolonged into their interior. The arrangement of the limbs too is more effective for locomotion than that in a Nanplius ; for in Pedalion they are attached in pairs to its anterior end, and lie parallel to the longitudinal axis of the body, so that their united stroke acts at a great mechanical advantage ; but in the Nauplius larva the limbs radiate from a spot on the ventral surface; and, in consequence of this inferior method of attachment, produce a very feeble skip compared with the furious rush of Pedulion. The corona is unnsually large, and consists of two oval sancer-like lobes, so set as to give together a heart-shaped appearance to the head. The ciliary wreath is double, and precisely on the pattern of the Philodinada (Pl. C, fig. 8). Between the upper und lower wreath is the usual groove along which the food is conducted to the mouth. On either side the lower wreath dips down to the buccal orifice, which is prolonged ventrally into a great curved lip, fringed with very large cilia. The rather small mastax has two

[^103]chitinous lips, which may be seen constantly advancing and receding in the buceal fumel, and apparently selecting the morsels which are allowed to reach the trophi. The cesophagus is short, and the nearly cylindrical stomach has very thick elastio walls; in a dying specimen I have seen the food expelled, and the walls close in quite upon themselves. The gastric glands are somewhat oval ; and I think that I have seen two small stalked glandular-looking bodies attached to the cesophagus. The intestine is a broad short chamber with thicker walls and coarser cilia than those of the stomach. The two ciliated straight processes, on the hind end of the dorsal surface, have also a glandular structure and seerete a viscous fluid, by threads of which Pedalion may be found moored to alga, or to the floating masses of floccose sediment.

These processes vary greatly in length in different individuals; they are always very short in the newly hatched female, and are wanting in the male. It is unusually difficult to demonstrate the vasoular system, as its parts are so frequently obscured by the alimentary canal and the limbs. There are two lateral canals, each commencing in a plexus close to an eye and bearing a vibratile tag. Hence the canal runs down to a second plexus, halfway down the body, with two vibratile tags; and, skirting the side, finally unites with the cloaca. There is no contractile vesicle. The ovary requires no notice. Pedalion carries its extruded egg attached to its posterior extremity till it is hatched. Of the large oval female eggs only one at a time is so carried; the small, round male eggs are carried in clusters: the eggs of different sexes are never present together. The newly hatched female resembles its mother, and passes through no change but that of growth. The muscular system is very greatly developed. There are at least forty striated muscles arranged in pairs of elevators and depressors, not mere repetitions of each other like the muscles of a caterpillar, but very various in shape and arrangement, and obviously intended for different duties. Figs. $1 d, 1 e, 1 f$ show these pairs very carefully drawn and, with the printed explanation facing PI. XXX., render any detailed account superfluous. The nervous ganglion lies closely applied to the dorsal side of the buecal funnel, and has above it two eyes, widely apart and close to the surface of the corona; one in each of its lobes. They are clear refractive spheres set on plates of red pigment. Nerve-threads pass from the ganglion to lateral rocket-headed antennæ, one on each shoulder; and another nervous thread supplies a similar antenna which moves up and down in a protuberance on the dorsal median line (figs. 1a, $1 b$) just behind the dorsal gap in the ciliary wreath.

The male (figs. $1 h, 1 k$) is the merest caricature of the adult female. The large, shapely corona, with its flowing curves has become a ciliated knob; the six limbs, with their fan-shaped plumes, have been altered into three littlo stumps, with a bristle or two at the end of each; even the huge ventral limb has vanished, and the whole creature has shrunk up to barely one-fifth of the length of the adult female. It swims very differently from its mother; for it spins constantly round its own length, like a joint on a spit, while at the same time moving forward, Now and then it jerks its side limbs, and it uses them to free itself from its shell. There are two longitudinal museles for retracting the head and a pair of red eyes, but I could discover no other internal organs except the testis and penis. This latter I have seen protruded to a length quite equal to that of half the animal.

Length. Female, corona and body, $\frac{1}{2 \pi}$ inch ; from corona to end of ventral limb, excluding sets, $\frac{1}{8}$ inch: male, $x \frac{1}{2}$ inch. Habitat. Clifton (C.T.H.) ; Birmingham (T.B.) ; warm water-Lily tank in the Duke of Westminster's gardens at Eaton, and ponds in the neighbourhood of Chester (Mr, Thos. Shepheard): very rare.

The only other Rotiferon in this Order is Hexarthra polyptera (Pl. XXX. fig. 2), ${ }^{1}$ which was discovered by Dr. Schmarda in some brackish water near El Kab in Egypt, in March 1853. He describes the body as a blunt cone with a right and left group of cilia on its broad end. The trophi resemble those of Triarthra. The stomach is short and broad; the

[^104]intestine is frequently constricted and narrow towards its end. The gastric glands are two lobed. He further notices the lateral canals, and a bladder-like organ which he conjectures to be the testicle, but which was probably the contractile vesicle. Two red globular eyes are seated in the corona, not far asunder. The mature eggs, which are green, are carried at the posterior end of the body. There are three pairs of limbs attached to the ventral surface. The foremost pair is the longest, the middle pair is less, and the lowest pair is the least. Two streaked muscles ron down the first pair of limbs, and one muscle down each of the other four. All the limbs are terminated by fans of setæ. H. polyptera does not appear to have any ciliated processes on the dorsal hind surface.

ADDENDA.

[Asplanchna myrameleo, Ehrenberg (vol. i. p. 128 : footnote). This interesting species is no longer an alien. Mr. Hood has lately sent me, from Dundee, living and healthy examples. They seemed to possess no contractile vesicle.-P.H.G.]
[Eretmia trithrix, Gosse, sp. nov. (Pl. XXVIII. fig. 2). Lorica a three-sided box, of which the posterior end is a triangle, and carries a long elastic seta at each angle: egg, when laid, carried between the alvine setæ. Length, $1 \frac{1}{6 y}$ inch. Lacustrine.-P.H.G.]
[Eretmia tetrathrix, Hood, sp. nov. (Pl. XXVIII. fig. 1). Lorica shaped like a deep obconic wine-glass, of which the foot is represented by a very long straight seta: three similar setæ stand up from the occipital margin. Length, of lorica, rov inch; total $\frac{1}{900}$ inch. -Lacustrine.-P.H.G.]

Notommata Werneckir, Ehrenberg. I am indebted to Mr. Fred. Bates for some threads of Vaucheria sessilis bearing many of the galls caused by this parasitical Rotiferon. Mr. Bates says that he has found the animal in abundance inhabiting these galls, which may occur anywhere along the thread of the Vaucheria: but that he has not found the parasites in the reproductive cells (see vol. i. p. 89).

Length (according to Balbiani), $\frac{10}{100}$ inch. Habitat. Neighbourhood of Leicester (Mr. F. Bates).

Eitstes ptygura, Ehrenberg (PI. XXX. fig. 8). This is no doubt Ehrenberg's Ptygura melicerta. It has a two-lobed corona; a wide dorsal gap; no visible ventral antennæ; a pair of large dorsal hooks, adnate for half their length; a stout wrinkled foot; and an irregular floceose tabe. It was found last May, at Twickenham, by Mr. G. Western, who lindly sent me the living specimen, from which fig. 8 has been drawn. Its position, in one of the axils of the plant to which it was attached, prevented me from measuring it ; but it seemed to be about the size of an ordinary CEicistes crystallinus.

The following remarkable Rotifera are as yet unknown in Britain.
Balatro calvus (Pl. XXX. fig. 6), Ed. Olaparde (15). Thís is an il-loricated Rotiferon, parasitic on different specios of Oligochata. Its peculiar hind extremity is shown in the figure. Mastax very small, containing two minute curved rami ; stomach, simple and straight; ovary large; ciliary wreath and antenna wanting; nervous, and vascular systems apparently absent.

Drilofthaa bucerhalus (Pl. XXX. fig. 5), F. Vejdovský (150). An il-lorioated Proales-like Rotiferon, parasitic on Lumbrioulus variegatus; it adheres by its trophi to the worm's hinder segments, and sucks its juices; nutritive, secreting, and vascular systems normal.

Setson Gruber (Pl. XXX. fig. 4), C. Claus (17, 18). A doubtful Rotiferon; il-loricated, of extraordinary form, parasitic on Nebalia; clliary wreath a few cilia at the mouth; secreting system highly developed; nutritive system present in the male as well as in the female; vascular system very rudimentary; jaws rotiferous.

APPENDIX.

THE VASCULAR SYSTEM.

\because The numbers in brackets, as (188), refer to the memoirs in the Bibliography, pp. 140-142.

1. This system of vessels, in its usual form, has already been described in vol. i. p. 8 . There are three ${ }^{1}$ principal varieties of it, including that already given above.
(i.) The lateral canals open into a contractile vesicle, which discharges itself into the cloaca. This is the ordinary plan.
(ii.) Each of the lateral canals ends in an expanded portion which dilates, and contracts, and discharges into the cloaca. This doubling of the contractile vessel is to be found, among others, in Conchilus volvox ${ }^{2}$ and Salpina macracantha. ${ }^{3}$
(iii.) The lateral canals pass unexpanded directly into the cloaca, and the contractile vesicle is absent. ${ }^{4}$
2. It is probable that the contractile vesicle is filled by a fluid flowing into it through the lateral canals, and it is certain that it usually ${ }^{5}$ empties itself outwards through the cloaca. This has been directly observed ${ }^{6}$ in Asplanchna priodonta and in Hydatina senta by myself, and can be easily verified. It has been suggested that a return current of fresh water is drawn up by the expanding contractile vesicle through the cloaca; but no one has seen any appearance of this in the cloaca itself; and though Dr. Cohn ${ }^{7}$ thinks that he saw a return current draw partieles of carmine towards the opening of the cloaca of Brachionus militaris, after the outward current had driven them away from it, no one else seems to have succeeded in repeating the observation. ${ }^{8}$ Occasionally the contents of the cloaca are driven into the intestine. Dr. Moxon has seen this in Euchlanis dilatata, ${ }^{9}$ and Dr. Semper has seen it in Trochosphera equatorealis. ${ }^{10}$ In each case it was effected by closing the aperture of the cloaca and opening that of the intestine simultaneously; but this is not the usual action, and (as Dr. Moxon suggests) seems only to be a method of obtaining a natural enema for a clogged intestine.
3. In all the three plans, given in $\$ 1$, the lateral canals sometimes appear surrounded by a filmy, floccose substance, through which they meander (generally two on each side)

[^105]in many loops and curves, and occasionally forming a plexus of complieated intertwinings. Attached to the canals by long stalks are the little flickering bodies called vibratile tags. The canals are generally visible just under the head, near a plexus, and run down each side of the body, from one plexus to another, till they reach the surface of the contractile vesicle. There are usually five vibratile tags on a side, and a plexus is a favourite point of attachment.
4. The tags are of various shapes. In some they seem to be simple cylinders, or cones with their bases at the free end. In others they are somewhat wedge-shaped; so that they have a broad triangular surface from one point of view, and a narrow spindleshaped surface from another. If a tag happens to point straight up the microscope, a full view may be obtained of its free end ; and the outlines, so obtained, of these free ends, vary considerably : in the case of Euchlanis dilatata it is a narrow oval with proIonged pointed ends ; ${ }^{1}$ and in that of Brachionus pala, ${ }^{2}$ only a fine straight edge. Whenever I have obtained a distinct edgewise view of a tag, it has had the appearance of being closed at its free end with a knob. Down the length of the tag (when so seen) run an endless succession of swift undulations; which, on several occasions, in the dying animal, I have seen slowly slacken, till they have gradually resolved themselves into what seemed to be one stout, tapering, undulating cilium, of the length of the tag itself, attached by its broad base to the knob mentioned above, and pointing its taper extremity to the lateral canal.

But when the tag presents its broad triangular surface to the observer, there is a totally different appearance; and it seems to be crossed by quivering, parallel, straight lines that stretch from one side to the other (PI. XIII. fig. 8b). It is obvious that no single cilium could present such an appearance. Possibly an undulating membrane might, the cross-lines being the summits of the waves which happened to be in focus; but the lines seem to be too sharp for this. Dr. Moxon suggests that the cross-lines are produced by rows of extremely minute cilia on each inner broad surface of the tag. It is not easy to imagine what such an apparatus might look like when seen in motion sidewise ; but possibly the apparent waves produced by the cilia on either side might together cause the illusory appearance of an undulating cilium as long as the vibratile tag. That many of the inner surfaces of the Rotifera are lined with minute cilia has long been known. The whole alimentary tract is so ; and, what is more to the point, this very appearance of a long undulating cilium is certainly produced in the tube of Floscularia campanulata by very minute cilin rumning in straight lines down its length, ${ }^{3}$
5. The next point is whether these tags are open or closed at their free ends. On this point it is enough to say that direct observation bas entirely failed to decide the question. The chief authorities have come to opposite conclusions, and there seems to be no hope of settling the point by the microscope. The close analogy between the vibratile tags of the Rotifera and the appendages on the water-vessels of the Naids would, however, leed us to infer that in the former case, as well as in the latter, the tags in spite of appearances may be open funnels, furred inside with minute cilia. A similar difficulty awaits us when we inquire how the lateral canals originate in the head. In some cases the canals on either side are said to have their fore ends on the surface ${ }^{4}$ in communication with the free water, in others to cross from side to side and anastomose ${ }^{8}$; so that the whole apparatus forms a loop with its two ends attached either to the cloaca or to the contractile vesicle; while in the great majority of cases it is impossible to say what is the real arrangement.
6. In attempting to determine the use of this apparatus we are met by this obvious difficulty; that we are not sure of the facts. Are the vibratile tags open at their free

[^106]ends, or are they closed? Do they contain an undulating membrane, or are their inner surfaces furred with minute cilia? Does a current pass through them (supposing them to be open funnels) towards the lateral canals, as it seems to do, or in the opposite direction? Are the lateral canals open at their upper ends, or are they blind passages having no outlet save at the contractile vesicle? Is the substance surrounding the lateral canals a glandular secreting substance, or a mere mechanical support for the canals? Does the contractile vesicle fill itself by drawing up fresh water through the cloaca, or is it filled by fluid passing into it from the lateral canals?

I do not know how these questions are to be answered with any approach to certainty, and I have no expectation of their receiving any answers that will meet with general acceptance, for on all these points the best observers disagree : I shall, therefore, do no more than state, in the following paragraph, the view of those who consider the vascular system to be an excreting one; and leave to my colleague the advocacy of the opinion which he has long held, viz. that the system is mainly branchial, with, possibly, a subordinate excreting function.
7. The perivisceral fluid is in part ${ }^{1}$ derived from the products of digestion which pass by endosmose through the cellular walls of the stomach; and it is out of this fluid that the various organs are repaired, and at its expense that the animal moves and grows. This growth, repair, and action change the constitution of parts of the perivisceral fluid, and render an excreting organ a necessity. The vascular system is this excreting organ; nud, indeed, no other has ever been suggested as having an excreting function. The lateral canals with their flocoose investments, or the vibratile tags, ${ }^{2}$ or both, are the excreting vessels; while the part played by the contractile vesicle is one probably of storage and discharge ; for the contractile vesicle varies extremely in size and frequency of action in different Rotifera, and in some is altogether absent.

The oxygenation of the perivisceral fluid, both in males and females, probalily takes place at the fore part of the head, where the skin is never loricated, but appears to bo thin ; and, where, too, it is possible that there may be definite spots, covered with delicate membrane, so as to take advantage of the constant rush of water, drawn to the head by the ceaseless action of the cilia.
8. Now it is obvious (from § 6) that the above explanation (given in § 7) of the vascular system, rests ou a number of assumptions which it is impossible to verify. But then as much, I think, may be said of the explanation that would make the function of this system a branchial one, or a combination in various degrees of both.

[^107]The conclusion seems a lame one, and yet I fear that it is hardly possible to bope for a better, when dealing with an apparatus of whose structure we know so little; one which we are anable to examine except with our eyes, and yet one in which we have strong reasons for suspecting that, on crucial matters of detail, our sight deceives us,

P.H. G. on the Vasoular System.

[My opinion is,-as it was in 1850 ("On the Anat, of Not. aurita; " Tr. Mier. Soc. Lond., iii. 98),-that the vascular system is a proper respiratory system, and that the lateral canals are proper branchis. The water enters at the head, circulates, and is poured out at the cloaca. I believe these three facts may be prodicated of the entire class, Accessories to the process are : (1) the afferent tubules ; (2) the "gastric glands;" (8) the vibratile tags; (4) the contractile vesicle.

1. In so many species that I consider the arrangement universal, I trace up the canals to the fumnel through which the head-mass constantly moves up and down. The canals never partake of this motion, and it is evident that they are attached to the wall of the funnel, which I presume to be perforated with minute orifices through which the external water constantly percolates into the afferent tubules. In many species these appenr to be numerous, and they are seen to branch and to anastomose very irregularly into each other, forming single, double, or multiple canals, which run, sometimes nearly straight, but more commonly bent sinuately in various degrees, throughout the length of the animal. In Ptcrodina, (especially in patina and clypeata) the tubules ramify and spread into broad fan-shaped plexuses of flat laminse (which I consider tubular, and ciliate within), filling the wide triangular areas on each side of the mastax. Then they begin to unite again, and presently (in P. valvata especially), bending abruptly from the ventral to the dorsal side, form one broad and long pyriform sae which narrows to a long slender duct, and joins the cesophagus one on each side, pouring the effete water into the alimentary canal, and ultimately through the cloaca, without the intervention of a contractile vesicle.
2. The "gastric glands."-The organs thus named have usually been considered as ancillary to the digestive system. But their evident connection with the aquiferous system in Pterodina makes this doubtful ; and a number of other curious facts are observable, which confirm, more or less manifestly, this connection.

Sometimes these organs take the form of large reservoirs of delicate texture and wrinkled surface, joined to the cesophagus by long ducts, and affixed by threads (perhaps tubular) to the lateral canals, or to the lorica. In Metopidia solidus, each appears as an aggregation of saccules into a large three-sided and three-angled body, one angle passing up to the origin of the canal, and another by a long duct to the cesophagus, while the canal seems in some inexplicable way united with both. This, excessively slender at its origin, expands as it proceeds, becoming corragate, till it attains a width almost rivalling the plexus of Pterodina patina, just before it enters the cloaca, without the intervention of a contractile vesicle. Yet, in some individuals, the contractile vesicle itself and its action are quite distinot.

In Notholoa acuminata the "gastric gland" much resembles the pyriform of Pter. valvata, with a slender duct to the long œesophagus, and another duct from an outer angle leading down for some distance closely parallel with the lateral canal, and connected with it by a short transverse duet at each end.

Cathypna luna has a structure somewhat like this ; and, in a less degree, Metopidia rhomboides.

Several species of Brachionus display anomalies in these organs. Thus in B. Beteri and B. urceolaris each is a great wrinkled sac of very delicate tissue, and of retort-shape, at the end of a long neck. In B. rubens there are two sacs on each side, united by a long sinuous duct. In B, Milleri there is but one on each side, but it is cleft almost to the base into two varying portions. In all these the organs seem to have more or
less obvious comection with the expansions of the lateral canals. But, in one example, which I cannot distinguish from urccolaris, the sae is, at its outer extremity, indefinitely expanded, fore and aft, and seems to merge into the length of the canal itself, which yet begins clearly in the wall of the head-funnel, and terminates normally in a contractile vesicle.

On the other hand, in Asplanchna, the glands, which are small oval organs, are connate, on each side of the very long œesophagus, remote from, and apparently quite uncomected with, the canals.
3. Of the "vibratile tags " I have little to say of direct observation. In Pterodina they seem to me wholly wanting. I judge it nearly certain that they are tubular, and that something is driven through them, whose course is from the lateral canal to the bodycavity. ${ }^{1}$ Assuming that the function of the system is the separation of oxygen from the water, may it not be that the tags are reservoirs in which pure oxygen collects, and from which it is pumped into the perivisceral blood, while the hydrogen left pursues its course, perhaps to fulfil some office still, mechanical or vital?
4. Of the contractile vesiele, the normal position, form, structure, and function are well known. ${ }^{2}$ But in the two largest species of Salpina, macracantha and custala, there are two of these organs, of ample dimensions, one on each side, into which the comparatively straight and thiek lateral canals empty by trumpet-months. Strange to say, in the former species the "gastric glands" seem wholly wanting.

In the great Asplanchnce, the organ, though manifest enough, is very small; in Metopidia, as already mentioned, it is only now and then present; while in Pterodina, it is (according to my experience) invariably wanting.

On the whole, then, I judge that Rotifera possess a well-marked branchial system, which has several striking parallels with that of the Annellida-the Lumbricide in particular.-P.H.G.]

THE SETIGEROUS SENSE-ORGANS.

The nervons system of the Rotifera is simple. It consists of one nervous ganglion situated on the dorsal side of the buccal funnel, usually near the mastax; and sending out मervous throuds to the eyes, ${ }^{3}$ and to certain organs of sense, which have been tormed antenne or tentacles as they are possibly tactile organs; but whose function is by no means certain. They consist of knobs or cylinders, which usually carry a bunch of fine sete at their outer extremity. Sometimes they are enclosed in tubular sheaths rising from the surface of the body; and at others their extremities lie close to apertures in that surface, through which the sete may be seen to protrude. The antenme are in two pairs. Of these the upper pair is invariably dorsal ; and its constituents, though sometimes widely separate, ${ }^{4}$ are most frequently pressed close together, ${ }^{5}$ or fused into one. ${ }^{6}$ The lower pair is to be found sometimes on the dorsal surface, ${ }^{7}$ sometimes on the ventral, ${ }^{8}$ and sometimes on the line between the two. ${ }^{3}$ In one case this lower pair is also fused together, ${ }^{10}$ and the creature has but two antenna ; both dorsal, and both on the median line. It is only necessary to add that, in many species, one or other pair appears to be absent; notably the lower pair in all the Philodinada: but in some of these cases their absence may be only apparent; as the antenme are often reduced to minute setigerons pimples, and so can be easily missed.
I The perivisceral fluid, or blood, is surely neither effused from the body, nor augmented in quartity, sensibly.
= Sinee a special reservoir would seem needless for the mere discharge of the effele water, un urinary office may belong to this bladdor.
${ }^{2}$ When there is onily one eye it is generally scated on the nervous ganglion itself.
${ }^{4}$ As in Asplanchina priodonta, PL, xii, fig, 2e: Copeus spicatus, Pl. xxx. fig. 7: and Brachiontus $1^{\text {licatilis (117). }}$
${ }^{5}$ As in Syncheata pectinata; Pl. xiii. fig. 8e. . The common case.
${ }^{\text {T}}$ As in Notops Brachionus; Pl. xv. fig. $1 . \quad$ As in Melicerta ringens; Pl. v. fig. 4.
${ }^{9}$ As in Stephanoceros Eichhornii ; Pl. iv, fig. 2. ${ }^{10}$ As in Copeus cautalus ; PL xvi. fig. 5a.

BIBLIOGRAPHY OF THE ROTIFERA.

N.B. The references marked thave been copied from Herr Eckstein's list in "Sieb. a. Koll. Zeits.," Md. xxaix. 1883, p. 433; and those marked " from Mr. Darcy W. Thompaon's "Bibliography of Protozoa, Sponges, Coelenterata, and Worms," 1885. I possess, or have had access to nearly the whole of these momoirs, but have been unuble to consult those which are marked §.

1. Archer, W. . . . Polychetus spinulosus, Qaart. Journ. Mier. Sci., viii., 1868, p. 72.
2. Atwood, H. F. . . § Brachionus conium, Amer. Mon. Micr. Journ., ii., 1881, p. 102.
3. Badcock, J. . . . Eyes of Rotifers, Journ. Roy. Mier. Soc., ii., 1882, p. 512.
4. Balbiani, S. . . . Notommata Werneckii, Ann. Sci. Nat. Zool., vii., 1878 , (1 pl.)
5. ". " . . . " Journ. Roy. Micr. Soc., ii., 1879, p. 580, (1 pl.)
6. Barrois, J. . . . Embryology of Pedalion (Synchæta), Rev. Sei., 1877, p. 808.
7. Bartsch, S. . . . Die Raderth. b. Tübingen, Stuttgart, 1870 .
8. Bedwell, ". . . . : . Motatoria Hungaric, Budapest, 1877, (${ }^{4}$ pls.) Melicorta ringong (building apparatus), Mon. Mior. Journ., xviii., 187̣7, p. 214, (2 pls.)

THE ROTIFERA.
111. Leydig, F. . . . Hydatina senta, Maller's Arehiv, 1857, p. 404. (1 pl)

112, Joord, J, E. . . Notes on free-swimming Iotifors, Mier, Nows, 1884, p1, 72, 145, 177, 118 . 233 ; (with tigs.)
113. Maggi, L. . . . § Primo elenco d. Rotif. d. Valouvia, Atti d. Soc. Ital, d. Sci. Natur. xxi., 1878, p. 320.
114. Marion, A. F.
§Rotateurs parasites des Nébalies, Comptes Rendus, Ixxív., 1872, p. 1115.
115. Metsehnikoff, E. .
116. Milne, W. . , .
117. Mobius, K.
118. Moxon, W. . . Some points in anatomy of Rotatoria, Trans, Lim. Soc., xxiv., p. 455, (1. pl.)
119. Nägeli, H. . . . § Zur Entwicklungsgeschichte d. Räderthiere, Zurich, 1852.
120. Peirce, C. N. . . Stephanoceros Eichhornii, Proc. Acad. Nat. Sci. Pa., 1875, p. 121.
121. Peltier, A. . . Sur une nouvelle cspdce de Floscularia, Ann. Sci. Nat. Zool, 1838, p. 41.
122. Pereyaslavtseff,C. §Development of Rotifer Inflatus, Mem. Novorossian Soc.,ix.,1884,(1 pl.)
123. " " Development of Rotifer Inflatus, Nature, xxxii., 1885, p. 579.
124. Perty,"M. . . . Zur Kenntniss Kleinst. Lebensf., Bern, 1852.
125. Plate, L. . . Zur Kenntniss d. Rotatorien, Zool. Anzeig., Oct., 1884, p. 578.
126. " " Zur Naturgesch. d. Rotatorien, Jenaische Zeits. f. Natax., xix., 1885, p. 1, (3 pls.)
127. Plessis, G. Du . Note sur L'Hydatina senta, Bull. Soc. Vand., 1875, p. 167.
128. Poggenpoh1, . . Strophosphara ismailoviensis, Trans. Nat. Hist. Soc., Moscow, x. p. 9.
120. Pritchard, A. . . 4 hislory of Infusoria, including Desmidiacee and Diatomaced, London, 1861.
180. Reiter, H, H. . . + § Conochilus Volvox, Naturhistoriker, iii. Jahrg., No. 12, p. 92.
131. Rosseter, T. B. , Stephanoceros Fichhornii, Journ. Roy. Micr. Soc., 1884, p. 169 (1 pl)
132. Rolleston, G. . . Forms of animal life (Rotifora), Oxford, 1870, p. cxxxviii.
133. Salansky, W. . . Entwicklungsg. a. Brachionus urceolaris, Siob. th. Köll. Zeit5., xxii., 1872, p. 455, (${ }^{3} \mathrm{pls}$.)
181. Schmarda, L. K. . Zur Naturgesch. Ägyptens, Akad. A. Wissensch, math, natur. Kl, Wien, 1854, (7 pls.)
135. " ${ }^{\prime \prime}$. Neue wirbellose Thiere (Rotatoria), Leipzig, 1859, p. 47. (pls. xii.-xv.)
136. Schmidt, O . . . D. Organisation d. Räderthiere, Archiv fur Naturgesch., 1846, p. 67,
187. Scoch, G. . . . § Die milkrosk. Thiere d. Süsswassoraquariums, ii,, Die Rüderth.s Leipzig, 1869, (8 pls.)
188. Semper, C. : . Trochophora aquatorealis, Siob. u. Kall. Zeits., 1872, p. 811, (1 pl.)
139. " " Trochosphara aquatorealis, (Translated), Mon. Mier. Journ,, xiv., 1875,
139. " " p. 287, (3 pls.)
140. Slack, H. J. . . Cephalosiphon limnias, Intellectual Observer, i., 1862, p. 53, (with flg8.)
141. " " . On a apceies of Triarthra, Quart. Journ. Micr. Sci., i., 1861, p. 182, (with fig.)
142. Smith, F. H. . . § On animal life in water containing frec avids, Mem. Phil. Soc. Man. chester, 1876, p. 185.
148. Stein, F. . . . § Üb, d. Münnchen: v. Diglena de., Tageblatt d. Leipzig, Naturforsch., 1872, p. 140.
144. Tatern, J. G. . . On a new Melicertian fc., Journ. Quek. Micr. Clnb, 1868, p. 124, (2 pls.)
145. " " . . Stephanops longispinatus do., Quart. Journ. Micr. Sci., vii., 1867, p. 252 , (with figs.)
146. Tóth, A. . . . Die Rotatorien dc.: v. Pest-Ofen, Verhandl. d. Zool. bot. Gesellsch. Wien, xi., 1861, p. 188.
147. Udekem, J. d' . . Le système circul. d. Lacinularia nocialis, Ann. Sci. Nat. Zool., xiv., 1850, p. 146.
148. " " . § Flosoularia cornuta, L'Institat, 1851, xix. p. 228.
149. Up" de Graff, T. S. Anurca Gleasonii, Proc. Amer. Soc. Mieroscopists, Chieago, 1883, p. 118. 150. Vejdovský, F. . . Drilophaga Bucephalus, Verlag d. könıgl. böhm. Gesellschaft, Prag, 1883, p. 391.
151. Vogt, C. Üb. d. system. Stellung d. Räderth., Sieb. u. Köll. Zeits., vii., 1856, p. 193.
152. Weisse, J. F. . . Zur Oologie d. Räderth., Mem. Acad. Imp. St. Petersb., 1862, p. 1, (1 pl.)
153. " " . . Zur Oologie d. Räderth. Zweiter Beitrag, Bull. Acad. St. Petersb,, 1865, p. 208, (1 pl)
154. Werneck, W.
155. Williamson, W.C.
156. Wills, A. W.
157. " " .
158. Zacharias, O. . . Rotifer vulgaris, (Reproduction and Development \&c.), Sieb. u. Koll. Zeits., xli., p. 226.
159. " " . . Rotifer vulgaris, (translated), Ann. Nat. Hist., 1885, p. 125, (with figs.)

160, " " . . §Relationship of Rotifera and Nematodes, Biol. Centralbl, v.,1855. p. 228.
161. " " . Relationship of Rotifera and Nematodes, nbstracted in Journ. Boy. Micr. Soc., 1885, p. 1006.

GENERAL INDEX．

			Vol．	Page		Vol．	Page		Vol．	Prge
Charaification ．		，	1	30	EEsophagus	1	7	Types of foot		26
Eig ．	－		i	10	Reproductive system	i	10	Types of ciliary wreath．	i	27
Glands ．－	－．		I	7	Rotifen n ，defined ．	1	4	Types of trophi ．	i	28
Male	－．	，	I	10	－typical one dexcribed	i	5	Vascular system，brief de－		
Mastax	－．	，	1	6	Rotifern，discovered before			seription of（0，	1	8
Muscles	－．	．	i	8	1898.	i	17	－its function（C．T．H．）．	ii	185
Nervous sysfem	－．	，	1	9	Setigerous sense－orgaus ．	ii	139	-- （P．II．G．－	ii	138
Organs of seuse	．\cdot		i	9	Stumach and intestine．	1	7			

INDEX OF THE ORDERS，FAMILIES，GENERA，AND SPECIES DESCRIBED IN THIS WORK．

	E	$\begin{aligned} & 8 \\ & \stackrel{8}{E} \end{aligned}$	范	家		$\underset{>}{\square}$	$\frac{8}{4}$	咅	官		$\frac{\square}{8}$	总	$\frac{3}{\frac{3}{R}}$	\％
Actinurus	i	108			Cephalosiphon	i	77			Diplax trigona	ii	82	XXII	9
Actinurus neptunius	1	108	X	6	Cephalosiphon can－					Diploĭs	ii	86		
Acyelus ．	i	52			didus	1	79			Diplois Daviesire ．	ii	87	XXIV	3
Acyclus inquietus Adinetade	1	57	D	3	－limnias Cachleare	$\begin{aligned} & \text { i } \\ & \text { ii } \end{aligned}$	77	VI	3	$\overline{\text { Distemma }}$ propatala ：	ii	87 54	XXIV	2
Adineta	1	112			Cochleare staphy					Distemma Collinsii．	ii	65	XVIII	13
Adineta vaga ．	i	112	X	10	limus．	ii	111	XXVI	9	－forticula	ii	41		
Albertia．	ii	15			－turbo．	ii	111	XXVI	10	－labiatum	ii	56	XVIII	12
Albertis intrusor	ii	15	XVII	18	Corlopus．	ii	67			－raptor	ii	54	XIX	1
－naidis	ii	16	XVII	14	Coelopus brachyurus	1 L	69	XX	21	Distyla ．	ii	96		
Anurieadie	ii	122			- cavia.	ii	69	XX	22	Distyla flexilis	ii	97	XXIY	8
Anurwa ．	ii	122			－minutus ．	ii	70	XX	20	－Gissensis	ii	96	XXIV	8
Anurea aculeata	ii	123	XXIX	3	－porcellus ．	ii	67	XX	18	Diurella rattulus	ii	67		
－acuminata．	ii	125			－tenuior	ii	68	XX	19		ii	65		
－brevisppina．	ii	128 124	XXIX	7	Colarida． Colurus	ii	101 101			Drilophaga buce－ phalus	ii	134	XXX	5
－curvicornis ．	ii	192	XXIX	9	Colurus amblytelus	ii	104	XXVI	5	Enteroplosa iyda－				
－fissa	if	123			－bicuspidatus ．	11	102	XXVI	2	tina＊．	（i）	10		
－hypelarma．	ii	123	XXIX	6	－caulatus ．	ii	104	XXVI	6	Eosphora		47		
－longisplas．	i	125			－ceslopinus．	ii	105	XXVI	4	Eosphora aurita	ii	47	XVII	10
－svrrulata	$i 1$	124	XXIX	8	－dact ylotus ．	ii	105	XXV	12	Eretmia ，	ii	128		
－spinoss	ii	125			－deflexus ．	ii	102	XXVI	1	Eretmin culveutes	ii	128	XXIX	11
－tecta ．	11	123	XXIX	10	－obtusus	i1	108	XXYI	3	－pentathrix．	it	128	XXIX	12
Apsilus C Apoilus lentiform	！	58			－pedatus ．		105	XXV	18	－tetrathrix		184 184		$\begin{aligned} & 1 \\ & 2 \end{aligned}$
Apoilus lentiformis． －bipera	1	59	D	$\frac{4}{5}$	$\begin{aligned} & \text {-uncinatus , } \\ & \text { Conochilus } \end{aligned}$	ii	89			Etrithrix		184 68	XXVIII	2
Ascomorphn anglica	4	122			Conochilus dossun－					Eachlanis	$i 1$	88		
－germanica．	I	124			rins ．．	1	91	VIIT	4	Euchlanis deflexa	ii	92	XXIV	1
－helvetica		124			－volvox	1	89	VIII	3	－dilatata．	it	90	XXIII	Δ
－saltans ${ }^{\text {a }}$		124			Copers ．．		28			－luna．		84		
Asplabehnade	i	119			Copeus candatus	ii	33	XVI	5	－lyra．	ii	89	XXIII	6
Asplanchna	i	120			－eerberus ．	iif	84	XVI	8	－mancrurn＊	i	91	XXIII	$\begin{aligned} & 6 \\ & 9 \end{aligned}$
Asplanchna Bowesii	i	122			－lnbiatus		28	XVI	1	－pyrifarmis ．	ii	93	XX111	
－Brightwellii	1	122	XII	1	－pachyuras ．		31	XVI	9	－triquetra	ii	91	XXIII	4 3
－Ehbeshornii		121）	XI	8	－spricatus	ii	20	XVI	9	－uniseta		92 48	XXII	3
－priodonta		123	XII	2	dax	i	58			Floscularia ：	i	43		
Balaro calvas．	1	134	XXX	6	Diaschiza		77			Floscularia algicola	i	54	1	8
Bdelloida	1	95			Diaschiza exigua	ii	78	XXII	18	－ambigua ．	i	53	1	2
Brachionida	ii	116			－Hoodii ．		79	XXII	15	－appendiculata	1	51		
Itrachionus ．	ii	116			－preta．	11	79	XXII	11	－calva．．	I	56	III	1
Brachionus amphi－					－semi－aperta		80	XXII	10	－campanulata	i	52	1	1
ceros ${ }^{\text {a }}$	ii	117			－tenuior		81	XXII	14	－cornuta	i	51	1	7
－augularis．	ii	120	XXVII	4	－valga ，		77	XXII	12	－coronetta	i	49	I	5
－Bukeri ．	ii	120	XXX	9	Dictyophora vorax．		58			－cyclops	i	51	I	6
－Bakerì	ii	120	XXVII	8	Diglenn ．．		48			－edentata	i	37	III	4
－dorcas	ii	118	XXVIII	4	Diglena aurita		47			－Hoorlii	i	55	II	4
－Arulleri		1	XXVII	8	－liraphis		53	XIX	10	－longioundata	1	53	1	4
－oön	ii	118		8	－caudata		51	XIX	8	－mira．	i	50	III	1
－pala	ii	117	XXVII	3	－circinator		50	XIX		－mutabilis	i	56	III	2
－polyacanthus	ii	117			－clastopis	11	52	XIX	5	－ornata	1	50	I	9
－rubens ．	if	119	XXVII	5	－forcipata		50	XIX	2	－proboscidea	1	52		
－urceolaris	11	119	xXVII	1	－gibber		49	XIX	7	－regalis	1	49	I	8
－urceolaris	ii	118	XXVII	6	－giraffa ．		51	XIX	9	－trifolium		54		
Callidina	i	109			－grandis		48	XIX	11	－trilobata	i	54	11	6
Callidina bidens	i	109	X	8	－permollis ．		52	XIX	11	Furcularia	ii	40		
－bihamata	i	111	X	7	Dinocharidx		70			Furcularia mqualis	ii	46	XVIII	15
－elegans	I	109			Dinocharis	ii	71			－Bolton	ii	45	XX	2
－parasitica	i	110	X	9	Dimeharis Collinsif	ii	72	XXI	3	－caeca	ii	42	XX	1
Cathypnadue	ii	94			－pauper ．	ii	72			－ensifern		48	XX	3
Cathypna	ii	94			－proillum	ii	71	XXI	1	－forficula		41	XX	17
Cathypna luna	ii	01	XXIV	4	－tetractis		72	XXI	2	－gibba		48	XIX	13
－rusticula	ii	95	XXIV	6	Diplax ．	ii	81			－．－gracilis		42	XIX	14
－sulcata	ii	9	XXIV	5	Diplax compressa	Ii	82	XXII	8	－longiseta		16	XVII	16

	$\begin{array}{l\|l} \overrightarrow{0} & \frac{5}{2} \\ \overrightarrow{1} & \frac{1}{2} \end{array}$	E	2		$\left\lvert\, \frac{\stackrel{7}{3}}{2}\right.$	$\begin{gathered} 5 \\ \text { B } \\ \hline \end{gathered}$	$\frac{\#}{\#}$	妾		迬	$\frac{E}{2}$	$\frac{3}{18}$	范
Furendaria marina	ii 44	XIX	15	Notommata ansata	Ii	21	XVII	3	Pturudima	ii	112		
－mieropus．	It 46	XIX	12	－aurita	ii	21	XVII	6	Pterodina clypeata，	ii	114	XXVI	14
－Reinharddig volvoci－	it 35			－brachionus	11 ii	24	XVII	1	－mucronata．	ii	114	Xxy1	15
cola．．	（1） 39			－oeutrura	$\frac{11}{11}$	28			－patina	II	112	XXVI	11
Hexarthra polyptera	If 138	XXX	2	－clavilata	if	12			－truncata	11	115	Xxyl	16
Hydatinade ：－	ii 9			－collaris	ii	27	XVI	6	－valvata	ii	118	$\mathrm{X} \times \mathrm{V}$	13
Hydaina ．	ii			－copeus	ii	28			Pteroessa	ii	4		
Mydntima sunta	ii 9	XIV	1	－cyrtopus	ii	22	XVII	7	Pteroessa surda	i	4	XIII	9
H－Loricata	117			－decipiens	ii	36			Ptygura melicerta	ii	134		
Lneinularia	i 85			－felis．	ii	36			Rnttulide	ii	69		
Lacioularia albo－				－forcipata	ii	23	XVLII	1	Rattulus ．	ii	64		
flavicans	$\begin{array}{ll}1 & 87\end{array}$			－gibba．	ii	37			Rattulus calyptus	ii	66	XX	16
－socialis ：	$\begin{array}{cc}\text { i } & 85 \\ \text { ii } & 106\end{array}$	VIII	1	－Granularis．	$\begin{aligned} & \text { ii } \\ & \text { ii } \end{aligned}$	12			－cimolius	ii	66 65	XX	${ }_{17}^{14}$
Lepadella	ii 106 ii 106			－hyptopus：	$\begin{aligned} & \text { ii } \\ & \text { ii } \end{aligned}$	13 26	XVII	9	－helminthodes	ii	65	XX	17
Lepadela ovalis	（1i 100			－longiseta：	ii	26 46	XVIT	9	－sejunctipes．	ii	66	XX	10
Limnias annulat	177	VI	2	－myrmeleo	1	123			－tigris．	II	65	XX	18
－ceratophylli	175	VI	1	－naĭas．	ii	25	XVIII	2	Rhinops	Ii	10		
－socialis ．	$\begin{array}{ll}1 & 76\end{array}$			－parasita ．	ii	39			Rhinops vitrea	ii	10	XIV	2
Loricata ．	$\begin{array}{ll}\text { ii } & 59 \\ \text { ii } & 59\end{array}$			－petronyzon	ii	88			Rhizota－		48		
Mastigocerca ．	ii 59			－pilarius ．	ii	23	XVII	5	Rotifer	\mathbf{i}	108		
Mastigocerca bicor－ nis	ii 68			－saccizera．		24 123	XVII	2	Rotifer citrinus －hapticus	$\begin{aligned} & \mathbf{i} \\ & \mathbf{i} \end{aligned}$	$\begin{aligned} & 105 \\ & 106 \end{aligned}$	X	3
－carimata ：	$\begin{array}{lll}\text { i1 } & 68 \\ \text { if } & 60\end{array}$	XX	5	－Sicboldi	ii	123 29			－macroceros．	i	105	X	5
－clougata．	ii 62	XX	8	－syrinx	i	128			－macrurus	1	107	X	1
－lophnessa	i． 60	XX	10	－tigris．		65			－motacilla	i	105		
－macern	ii 61	XX	12	－tripus	ii	22	XVII	8	－tardus	i	105	$\underset{5}{\text { X }}$	$\frac{1}{2}$
－raltas	ii 62	XX	9	－tuba．	ii	26	XV11	8	－vulgaris	i	104	X	2
－scipio．	ii 61	XX	11	－vermícularis	ii	36			Sacculus ．		124		9
$\overline{\text { Megalotrocha }}$	$\begin{array}{cc}\text { ii } & 64 \\ \text { i } & 86\end{array}$	XX	6	－Werneckii ．	II	134 11			Sacculus vir Salpinadæ	ii	77	II	2
Meralotrucha albo－	186			Notops brachionus ．	ii	11	XV	1	Salpina ．	ii	82		
flavicans ．．	i 87	VIII	2	－clavulatus	ii	12	XV	3	Salpina brevispina．	ii	84	XXII	4
－socialis ．	I 85			－hyptopas ．	ii	18	XV	2	－eustala	ii	85	XXII	5
－velata	i 83			Ecistes ：	1	79			－macracantha	ii	84	XXII	6
－volvox	i 89			CEistes brachiatus	i	83	IX	3	－mucronata．	ii	83	XXII	1
Melicertadm	167			－crystallinus	i	80	V11	3	－mutica	ii	86	XXII	3
Melicerta	i 67			－intermedius	i	80	V11	5	- redunca		86		
Melicerta exphalo－				－Janus．	i	74			－spinigera －sulcata	$\begin{aligned} & \text { ii } \\ & \text { ii } \end{aligned}$	81	$\begin{aligned} & \text { XXII } \\ & \text { XXII } \end{aligned}$	$\frac{2}{7}$
－siphout ．${ }_{\text {－}}$	i π i $\frac{7}{75}$			－longicornis	1	82 81	V1I	6	－zulcata －ventralis	$\begin{aligned} & \text { ii } \\ & \text { ii } \end{aligned}$	86	XXII	7
－coratophyifi	1 7	V	2	－pilula．	1	82	VII	2	Scaridium	，	73		
－crystallina	i 80			－ptygura．	ii	134	XXX	8	Scuridium eudacty－				
－janus．．	174	VII	1	－serpentinus	i	80	1X	1	lotum．	ii	74	XXI	4
－pilala．	182			－Stygis ．	i	85	IX	3	－longicaudum	ii	73	XXI	5
－ptygura	i 83			－umbella	1	84	VII	8	Scirtopoda ${ }^{\text {Seisan Grubei }}$		131		
－ringens	i 70	V	1	－velatus	i	88	D	8	Seison Grubej Squamella	ii	134 106	XXX	4
－socialis	i 82			Pedalionida		131			Squamella bractoa		106 109		
－tubicolaria	1 1 72 18	V	3	Pedation ．	$\begin{aligned} & \mathrm{ii} \\ & \text { ii } \end{aligned}$	132 132	XXX	1	Stephanoceros．		til		
Metopidia ${ }^{\text {tyro }}$	1 i 78 106			Pedalion mirum		102			Stephanoceros Eich－				
Metopidiascuminata	ii 107	XXV	9	Pedetes saltatar	ii	8	XIII	10	hornii．	1	60	IV	1
－bractea	ii 109			Philodinada	I	97			－glacialis		60		
－lepaitella．	ii 106	XXY	6	Philodima	I	97			－Horatii		49		
－oxysternum	ii 107	XXV	8	Philodinn aculeata．	，	101	1X	5	Stophanops Stephanops armatus		75		
－rhombuides	11208	XXV	10	－citrina	i	100	IX	6	Stephanops armatus －bifarcas		77		
－solidus ．	ii 106	XXV	11	－erythrophthalma	i	99 101			－chliena		76	XX1	9
Mierucodide ：	1 108 i 118	XXV	7	－megalotrocha	i	101 99	IX	4	－lamellaris．	ii	75	XXI	7
Miorocudon	i 118			－tuberculata	i	102			－lonjispinatus		77		
Microcodon clavus．	1118	XI	1	Pleurotrocha ．	if	19			－muticus ．		75	KXI	6
Monocerca－	it 59			Pleurotrocha con－					－unisetatus ．	ii	76	XXI	8
Monocerea bicornis	ii 63			stricta ．	ii	19	XVIII	3	Strophosphzera				
－porcellus	ii 67			－gibba．．		20	XVIII	5	mailoviensis		124		
－rattus	ii 62			－leptura		20	XVIII	4	Synchnetada－		124 125		
Msiylata ．	ii 64			Ploüma ．．		117			Syncheta Syncheta baltica		126	XIII	
Monostyla	（1） 97			Polyarthra Pay	ii	3			Synchseta baltica	i	126	XIII	1
Monostyla bulla	ii 999	XXV		Polyarthra platy－			XIII	8	－oblonga	i	127	XIII	
－cornuta ：		XXV	5	trimla	ii	3 8	XIII	0	－pectinata	i	125	XIII	8
－lunaris ．	ii 98	XXV	2	Polychetus spinu－					－tremula	i	128	XIII	2
－quadridentata	ii 100	XXV	3	losus ．	ii	72			Taphrocampa．．	ii	16		
Monura ．．	ii 109			－subquadratus	ii	72			Taphrocampa annu				
Monura colurus	ii 109	XXVI	7	Pompbolyx ．．	ii	115			Losa ${ }^{\text {cos }}$	ii	18	XVII	12
Mytilia	ii 110			Pompholyx com－					Triarthradse	ii	18	XV11	11
Mytilia Tavina	if 110	XXVI	8	plnnata ．	ii	115	XXVII	1	Triarthradæ ．	ii	8		
Noteus ．．	ii 121			－sulcata	ii	116	XXVII	2		ii	5		
Noteus quadricornis	if 121	XXVIII	5	Proales ．	ii	36			Triarthra breviseta	ii	7	XIII	7 6
Notholea ${ }^{\text {a }}$ ，	ii 125 if			Proales decipiens	ii	36	XVIII	${ }_{1}^{6}$	－longiseta．	ii	6 7	XIII	6 8
Notholca acuminata	ii 125	XXIX	4	－felis．	ii	36	XVIII	17	Triophthalmas dor－	i1	7	XiII	8
－longispina ．	ii 125	xxvili	6	－gibba	ii	37 39		$\begin{gathered} 8 \\ 11 \end{gathered}$	sualis			XVIIt	14
－scapha －	（ii 127	XXIX	2	－parasita		88	XVIII	9	Trochosphaera	i	88		
Notommatada	ii 14			－sordida		37	XVIII	7	Trochospharasequa－				
Notommata ．	11.20			－tigridia		38	XVIII	10	torealis	1	88	D	11
Notommata equalis	ii 16			Pterudinadie		111			Tubicolaria naĩas		72		

Iificesenter $\quad \rightarrow$

28

THE

\section*{WTITERA (z)

\section*{

WSON d OSS TEXT

(6)

[^0]: ${ }^{1}$ Cf. Dr. Moxon, Trans. Linn. Soc. vol. xxiv, 1864, p. 455.
 ${ }^{2}$ From mentum, the chin.

[^1]: - A namesuggested by Mr. Cubitt in lieu of trochal dish.
 ${ }^{2}$ Baker on the Microscope, vol. i. Plate VIII. fig. 6, 1785,

[^2]: ' For a full description of the complex action of the trophi see Mr. Gosse's paper "On the Structure, Functions, and Homologies of the Manducatory Organs in the class Rotifora," Phil. Trans. 1856, p. 419.

[^3]: ${ }^{1}$ As in Pedalion, Conochilus, do.

[^4]: I So namod by Prof. Haxley from the resemblance to the lasting-eggs of the Daphnia. These latter were called "ephippial" by Müller from their shape, which is that of an ephippium, or saddle.

[^5]: 1 "On the Diacious Character of the Rotifera." Phil. Trans. 1857, ๆ19.

[^6]: ${ }^{1}$ Phil. Trans. vol, xix. 1696.
 ${ }^{3}$ Phil. Trans, No. 295, 1705.
 ${ }^{2}$ Phil. Trans. No. 283, 1703.
 ${ }^{4}$ Phil. Trans. No, 337, vol. xxviii. 1713.

[^7]: ${ }^{1}$ The question will be found fully discussed farther on in the genernl account of the family Philodinade.
 ${ }^{2}$ See chap. III. On the Classification of the Rotifera.
 ${ }^{3}$ Beitrage sur Naturgescluichte der keteinsten Wasserthiere.

[^8]: ${ }^{1}$ See PL, B, fig. 14.

[^9]: ${ }^{1}$ Dic Infusionsthierchon; Leipzig, 1838.

[^10]: ${ }^{1}$ Trans. Micr. Soc, 1852.
 ${ }^{2}$ Phll. Trans. 1856.

 - Leipzig, 1854.
 + Sicb. u. Ǩill. Zeits. 1856.
 ${ }^{3}$ Phil. Trans. 1857.
 - Trans. Mior. Soc. 1853.
 - Trans. Linn. Soc. 1864.

[^11]: ${ }^{1}$ Sieb. u. Küll. Zeits. 1872.
 2 Sicb. u. Koll. Zoits. 1883.

[^12]: ${ }^{1}$ Pterodina.
 2 Triarthra and Pterodina.
 ${ }^{3}$ For the explanations of these technical terms, see p. 29.
 ${ }^{4}$ I pass over for the present Dr. Schmarda's Hexarthra polyptera, and will discuss it under the Pedalionida.

[^13]: ${ }^{1}$ In Furcularia, and in a few other genera, the rami as well as the mallei are rod-like; and the

[^14]: whole apparatus looks like one forceps within another. To this variety of the forcipate trophi the

[^15]: ${ }^{1}$ For description of these technical terms, see pp. 28, 29.

[^16]: ${ }^{1}$ For description of these technical terms, see pp. 28, 29.

[^17]: ${ }^{1}$ Notommata elavulata; Ehr.
 "Miss Saunders, to whom I am indebted for the specimens, says: "It is curious I never before came across this tube-dweller in the huudreds of pools I have searched."

[^18]: ${ }^{1}$ M. J. Barrois described, in the Revue Scientijique, No. 18, 1877, p. 303, a marine Rotiforon under the name Pedalion, and gave an account of its embryology. His description, however, shows that the animal was of the genus Symeñala.
 ${ }^{2}$ It is a pity that Pedalion is not more frequently met with, as there are some points in its struoture that yet remain ta be oleared up; and as it is such a striking link botween the Rotffera and the Arthropoda. Mr. T. Bolton, of Birmingham, has, however, succeeded in preserving specimens as microscopie objects, and thoy can generally be obtained from him.

[^19]: ${ }^{1}$ I am indebted to Mr. Galloway C. Morris, of Philadelphia, U.S., for this information. A oluster of tubes that he sent to me contains twenty-eight specimens of various sizes adhering together.
 ${ }^{2}$ It was found near Clifton by Mr. E. C. Bousfield, and is drawn in Pl. V. fig. 1, o.
 ${ }^{3}$ Asellus vulgaris. 'Daphnia pulex.

 - By M. Ed, Claparède. See Ann. Sci. Nat. Zool. 5 Ser, vol, viii. 1867.
 a Gammarus pulex. Mr. H. Giglioli, who discovered this species, says that he has never found it anywhere else; and that ont of 700 Gammari from different localities, not one was free from the parasite. Quart. J. Micr. Sci. N. Ser. vol. iii. 1863, p. 237

[^20]: ${ }^{1}$ Marine Zoology, purt i. 1855, p. 107. See also Tenby, 18556, p. 274.

[^21]: ${ }^{1}$ Gosse, Popular Sci, Rev, vol, i. 1862, p. 160.
 a Though the tube is of the flimsiest material, and lighter than water, it certainly proteets the animal from its enemics. I have wutclsed a sharp-jawed larva trying to bite through a Floscule's tube, and it was as completely foiled by its swaying about from side to side at cvery touch, as a boy at Hallow E'en is bafled by a floating ayple, when trying to seize it with his teeth.

[^22]: ' Dr. Dobie described the two cilinted knobs in F. campanulata, Ann. Nat. Hist. 1819. Mr. Gosse inferred the existence and position of the true rotatory organ from the motion of particles in the coronal cup (Tenby, p. 307). Dr. Moxon suys that "the alimentary eanal above the gizzard is divided by a highly irritable cilium-clothed sphineter of iregolar outline" (Trans. Linn. Soc, vol, xxiv. 1864, p. 457). In 1867 I published a fulf description of the rotatory organ of P. campanatata in the Trans. Bristol Mice. Soc. In 1869 Mr. Cubitt did the same for Stephanoceros and F. coronetto (Mon, Micr. d. vol. ii. 1869, p. 188).

[^23]: ${ }^{1}$ Fig. 1. PI. D, is a copy of Dr. Moxon's drawing, showing the tube turned fuside out and proIruded through the slit in the diaphragm : the lobes (l) are shown drawn down close to the body.
 ${ }^{3}$ I'opular Sci. Rev. vol. i. 1862, p. 160, pl, ix.
 ${ }^{2}$ Phil. Trans. 185゙6, p. 119.

[^24]: ${ }^{1}$ Sieb. u. Koll. Zeits. Bd. xix. 1869, p. 483.
 ${ }^{2}$ Dr. Leydig saw the contractile vesiole in F. cormula; Veb.d. Bau d. Raderth. 1854. Dr. Bartsch has seen the contractile vesicle, lateral canals, and vibratile tags in his F, longilobata (F, cononetta) Rot. Hungaria, 1877.
 ${ }^{3}$ Mr. Gosse (Popular Sci. Rev. vol. i. 1862, p. 166) observed one eye at a time in F. cornuta. Mr, Cubitt (Mom. Mier, J. yol, iii. 1870, p. 245) saw the eyes in F. corometta; and I have recorded (J, Roy. Micr. Soc. 2 Ser. vol, iii. 1883, p. 163) my having observed them in F. Hoodit and F. regalis. Herr K. Eckstein (Sieb, u. Koll. Zeits. Bd. xxxix. 1883, p. 347), unaware of the ahove observations, says "the Floscules have been hitherto regarded as cyeless," and records his having seen the eyes in B. comuta.

[^25]: ${ }^{1}$ Dr. Moxon (loc, cit.) first called attention to their existence in the Floscules. Herr Grenacher (loc. cit.) mentions his having discovered the median antenna in F. proboscidea (F. campanulata) ; but was unaware that Dr. Moxon had senn and described all three, five years before.
 ${ }^{2}$ Mr. Gosse on F. campanulata. Popular Sci. Eev. vol, i. 1862, p. 166.

[^26]: ${ }^{1}$ Mr. Gosse (loc. cit. p. 487) described some probably male eggs in M. ringens.
 ${ }^{2}$ Mon. Micr. J. vol. xiii. 1875, p. 45.
 ${ }^{3}$ As the Rotifera vary from $\frac{1}{3}$ to $\frac{1}{50}$ ineh, no attempt has been made to draw them to in flxed senle. The actual length of each species will be given at the end of its description.

 + Throughout the work the following initials will be nsed in the Habitat:-J, H, = Mr, Jolm Hood; T. B. $=$ Mr. Thos. Bolton; P. H. G. $=$ Mr. Gosse ; C. T. H. - Dr. Hudson.

[^27]: I To obtain a correct notion of the completely expanded animal, the foot and case in PI. I. fig. 6, should be supposed to be continued quite two inches below the bottom edge of the page on which the tigure is drawn. A small, correctly proportioned ligure, is given in P1. D, fig. 2,

[^28]: ' Kindly identified by Dr. Cooke in a letter to Mr. Gosbe.

[^29]: ${ }^{1}$ P. 18, supra.
 ${ }^{2}$ Mr. Gosse has found that healthy specimens, removed from an nguarium and inspected at once, have their five arms more frequently produced into a cylindrical form, with their extremilies incurved, than arched into a sphere.

[^30]: 1 (Pl. V. fig. $2 c, t r$).

 - See Mr, Rossetex's paper (locr cil. y, 171).

[^31]: ${ }^{1} \mathrm{Mr}$. Newlin Peirce (loc. cil.) has written a strange account of a Stephanoceros that accumulated a mass of debris in the upper portion of its tube; and then, dividing itself transversely at the level of the debris, deserted its tube, carrying the accumulation with it, and attached itself to another stem of the plant to which it was originally fastened. Here it gradually became a perfect animal in a new tube ; and it then repeated the process. The whole account is incomprehensible.

[^32]: ${ }^{1}$ In one instance (that of Conochilus volvox) read ventrul for dorsal.
 ${ }^{2}$ This inner tube can be seen in the young animal (Pl. V. fig. $1 d$ and PI. VI. fig. $1 g$) before the outer tube has been completed.

[^33]: - Judge Bedwell (Mom. Mirr. J. vol, xviii, 1877, p. 216) describes in M, ringens a hemispherical enshion, placed at an angle on that side of the buceal funnel which is opposite to the chin. He thinks that it is a highly sensitive organ, which, by altering its facial confgaration, directs the streams that go down the buccal fannel and over the chin, and drives snitable particles in appropriate directions, I have not, however, been able to contirm those observations.

 F Pp. 70, 71. Judge Bedwell (loc, cit).

[^34]: ' Quart. J. Mis. Sci. vol, i. 1853, p. 71, pl, if, fig. 22.
 ${ }^{7}$ Professor Williamson, Quavt, J, Micr. Sci, vol, i. 1853, v, 1.

 - Seo p. 73 aml PL. V. fig. 3 cc .
 - Müland Naturatist, vol. i. 1878, p. 245; see also D. 7h.
 - See p. 72 .

[^35]: ${ }^{1}$ See p. 76.

[^36]: ${ }^{1}$ It must be admitted that Ehrenberg's figure is very urilike mine. The corona is barely the width of the body, and the antenne are very short; but I think that both disk and antennw are intended to be represented in a contracted state.

[^37]: ${ }^{5} \mathrm{Mr}, G o s s e$ (loc. cil.), p, 303.
 ${ }^{2}$ Sce p. 38 ; PI. VI. Gig. 1 c.
 z "Kiemen und Gefasse sind nielst erkannt."
 ${ }^{4}$ Pl. D. fig. 7.

[^38]: ${ }^{1}$ Probably a minute setigerous pimple, which has escaped observation.

[^39]: I Mr. Cubitt's and Dr. Collins's drawings make the corona so like that of a Limnias that I am by no means sure that they are deseribing Evistes piluda.

[^40]: SP. CH. Corona large, nearly circular, crossed with thick ribs; ventral antennw long; tube loose, very irregular, clay-coloured.

 Mr. F. Oxley sent me, in June 1878, several specimens of this large and handsome species, which he had just discovered in a pond at Snaresbrook, on the leaves and in the axils of a Sphagnum. Its corona is so strengthened by thick ribs as to look somewhat like an umbrella. Two of these ribs are very broad, and run across from the ventral to the dorsal side, and when the corona is viewed sideways are seen to project a little above its surface. There is also on either side a branched rib with a triangular space within it like a gusset. When the Retiferon eloses its corona it brings the ribs together, the thinner portions being olded up between them. The thus infolded corona

[^41]: ${ }^{1}$ Possibly they may ke very minute setigerous pimples, which have escaped observation.

[^42]: ${ }^{1}$ Possibly they may be very minute setigerous pimples, which have escaped observation.

[^43]: ${ }^{1}$ Possibly very minute.
 ${ }^{2}$ Ehrenberg misunderstood the coronn of C. volvox, and described it as surrounded with a single wreath of cilia and bearing four papille on its surface. He placed the buccal orifice on the ventral side, where the ventral gap is ; and suggested that the four papillm might be a sort of upper lip to the mouth, the edge of the disk itself being the lower one. Dr. Cohn, in his otherwise admirable paper (loc. cit.), draws the buccal orifice on the ventral side, and wrongly places the antennee between it and the dorsal surface. His conical protuberance over the antenna is also singularly out of shape and proportion. The corona and antennw were first correctly described by Mr. Davis (loc, cil.), whose observations I have repeatedly verified.
 ${ }^{2}$ Strophosphera ismailoviensis (Poggenpohl, N. Mem. Mosc. L. x. 1876) is, I think, a Conochilus; with two short separate antenne lying between a pair of ventral hooks.

[^44]: 1 Judge Bedwell (loc, cil.) gives a minate, careful, and original account of the structure and action of the trophi.
 ${ }^{2} \mathrm{Mr}$. Gosse (loc. cit.) described anil figured the facal pallats, which he supposed to be egge. His nocount of them is as follows:-"Their form is very peculiar; it appears to be nearly circular, flatiened on one side and conves on the otber; there is considerable difference in their size; thoy are of a pale yellow hue, marked with several blackish specks."
 ${ }^{3}$ Dr. Cohn (loc.cit.) says that each lateral canal ends in a dilated portion or small contractile bladder, which empties itsolf into the cloaca, and that the two act alternately. The arrangement, however, seemed to me to be that given in the text. I have drawn in Pl. VIII. fig. $3 i$ what I saw. The Ggure shows a lateral canal ($l \mathrm{c}$) ending in what I supposed to be the clonea (cl), and which dilated and contracted regularly. Unfortunately, I have not been able to procure a specimen of C. volvox sfince I read Dr. Cohn's paper.

[^45]: ${ }^{1}$ The swimming faculty in this order is very subordinate. We never see a Philodina or a Rotifer sailing smoothly hither and thither, turning waywardly on its course, and roving about with no apparent aim, like a Microcodon or a Euchlanis. It will bore through a mass of vegetation, and, on coming to its margin, shoot straight away on a voyage of discovery. But the very first new bit of sediment that it meets arrests it; it instantly creeps into this, and makes this its home for a while : as if its natatory powers were used merely for change of place, as distinguished from actual enjoyment in swimming.-P.H.G.]
 ${ }^{2}$ All the known British species havo three toes. Dr. L. K. Schmarda has described some foreign species with only two toes; but I think it probable that he is mistaken.
 ${ }^{*}$ Mr. Jabez Hogg (English Mechanic, Jan. 16, 1885) says that he has seen rotifers revive "after fifteen years' careful seclusion."

 - Mon. Mier. J. vol. ix. 1873, p. 206.

[^46]: 'It has been questioned whether the presence of sand in a cell, or in a gutter, does retard the evaporation of the water. An experiment or two would soon satisfy a doubter; and a little consideration will show the cause of the retardation. When a drop of water is enolosed by three or four morsels of silex, nearly in contact, it is protected by the silex from evaporation everywhere except at the surface. In fact it is in a similar condition to water in an uncorked bottle. of course the water will dry up in such a bottle at last, but it will evaporate very much more slowly than it would do were it poured out on a marble slab.

 If Philodines be left in a zoophyte trough, they will often be found dried up in one of its corners, for the water lingers longest in the angle formed by the bottom and sides. Their instinct leals them too, when other defences fail, to gather together in clusters so as to protect the evaporating water by their own nearly-touching bodies. The Rev. E. J. Holloway, taking advantage of this habit, has succeeded in drying up groups of P. roscola, on slips of clemn puper, quite free from sand or rubbish of any kind. He kindly sent me two or three of these slips; and an inspection of them under the microseope confirmed the correctness of Mr. Davis's theory. The fibres of the paper hiad evidently delayed the evaporation long enough to cnable the rotifers to resort to their customary defence. Each Philodine is the centre of a patch of glutinous secretion, which meets the similar patches, surrounding its neighbours, in a succession of straight lines; so that the whole group has quite a tesselated appearance. Here and there, where fibres pass over or through a group, long tongues of the secretion stretch from the animals to the fibres ; and, ingone ease, a rotifer, that had tried to squeeze itself under some interlacing fibres, had been eanght ; and, so held, had, been moored to half-adozen others by radiating viscous cords. The efficiency of the protection was at once shown by dipping one of the slips into water, and watching the Philofines revive as the secretion dissolved.

[^47]: 1 The occipital antenna is normally three-jointed, but in some species the third joint is habitually concealed, in others protruded. Yet this, though characteristic, is not invarinble. The terminal joint is three-lobed, each lobe carrying a projociing seta.-P. H. G.]

[^48]: I See footnote, p. 108, for a suggested explanation of the difliculty.
 ${ }^{3}$ [It was the second. Euchlanis dilatata was the very first.-P.H.G.]
 ${ }^{3}$ Lord Osborne kindly sent me many beautiful specimens of the trophi of P. roscola, which he had mounted both plain and tinted with carmine. They were in every possible position, so as to admit of a thorough study of the jaws. Among these I found several with two teeth only in each ramus, and n few with two in the one and three in the other. I am aware that, when not aceurately focussed, this appearance will be sometimes improperly obtained; but I took care, by delicate focussing, to be able to count the pointed onds of the teeth in each case. Dr. Oskar Schmidt has noticed the same thing in Fiotifer vulgaris (Archiv f. Naturgeschichte, xii. Jahrg., 1 Bd. 1846, p, 69, Tuf, iii. 6g. 4).-C. T. H.

[^49]: ' Ehrenberg draws as many as twenty-seven spines, irregularly placed, on the dorsal surface. Dujardin (apparently following Ehronberg's description) saya that the body is 'tout hérissé d'épines molles.' Herr Eckstein's description and figure, however, exaetly tally with those of Mr. Gosse, only the two spines, which in Mr. Gosse's figures $(5 b, 5 \bar{d})$ of the contrwoted animal point forwards, arm drawn pointing backwards in Herr Eckstein's figure of the uncontracted animal. Very likely tha direetion of the spines is liable to be reversed by the creuture's contortions, - C. T. H.

[^50]: I It is possible that the long thread, which is often seen to pass from the postorior end of the ovary towards the cloaca, may really be, not a muscle, as is usually supposect, but the collapsed oviduct terminating in the cloaca. Should this be the case, then the ovum, when it drops from the ovary, does not fall into the body-cavity, as has been supposed, but simply stretehes out over itself that portion of the delicate investing membrane, which had up to that moment been shrivelled into a mere cord. As the mombrune investing the ovary is of extreme tenuity, it is just possible that it has esouped observation when extended, not only over the ovary, but even over the developed young, If this expla. nation prove correct, there is nothing abnormal in the reproductive system of Eotifer. Mr, Gosse quite concurs with me in taking this view of the case: a view which had occurred to him before he real my note,

[^51]: - [Since the dingnosis of all the Bdelloida inter se is somewhat indistinct at best, every distinction is valuable. And it may be added to that of this familiar species (R. vulg.) that it is so strongly, closely, and evenly fluted, as to resemble the Calliding; that its length and slenderness, in proportion to its thickness, are peonliar; and that in crawling it often elongates the foot to such an extent as to recall (without any maet visomblunce) R. macrurus.-P.H.G.]

[^52]: ${ }^{1}$ Mr. Davis measured these, and found there were from thirty to forty thousand in the inch; in my specimens the strix were about filty thousund to the inch.

[^53]: 1 P. 4.

[^54]: ${ }^{1}$ Ehrenberg says that its shape is that of a trunsverse figure 8; but Dr. Grenacher, Dr. Collins, Mr. Goase, and myself all agree that it is oircular. Mr. Gosse, however, points out that, when the corona is inclined to the line of sight, it does look somewhat like that of a Limnias.

[^55]: ${ }^{1}$ Two cruipqial egge are thown in fig. 3.

[^56]: ${ }^{1}$ Ehrenberg's Notommata syrinx is wonderfally like A. priodonta, but is said to have a cloaca, and a minate foot and toes. His N. myrmeleo is unknown in England, but Leydig has made it clear (U.b. d. Bau, d. Raderth. p. 20, Taf. iv. fig. 36) that in this instance Ehrenberg has made a mistake, and that the Rotiferon has not got the cloaca whieh Ehrenberg describes. It is therefore an Asplanchana with a foot; one much resembling that of Notops clavutata. Its jaws, ovary, vascular system und eye resemble those of A. Brightwellit.

 Leydig (loc. cit.) has described anothér Notommata, N, Sieboldii, which is a true Asplanctura. The timale olosely rescmbles A. Brightwellii; but the male, which is conical in shape, has four bumps, two lateral ones and two on the ecels, just like those of the male of A. Ebbesbornii,

[^57]: ${ }^{1}$ Crimson by lamp-light and dark-field illumination.

[^58]: ${ }^{1}$ [On the oceipital aspect of the brain-mass is seated an eye-spot, always conspicuous both from its great size and from its intense colour, a red so deep as to be practically black. Its outline varies much ; but normally it is a hemisphere, or rounded cone ; often it seems homogeneous, but occasionally we see that it is composed of a multitude of pigment cells agglomerated together and inclosed within a transparent capsule, whose walls I have frequently detected of a thickness greater than that of one of the pigment cells. But more than this: I have seen, so often as to have no doubt of its presence, an ovate transparent cell, let-in, as it were, into the coloured body of the cye, the dark pigment rising on each side so as to embrace the base of it. I venture to think this a crystalline lens.-P.H.G.]

[^59]: ' Ehrenberg's P. trigla is possibly P. platyptera with the blades seen edgewise.

[^60]: ${ }^{1}$ An observation of Mr. Gosse's leads him to think that the rectum is turned far forward as in the Rhisota; and that it is capable of considerable protrusion, though ordinarily invisible.

[^61]: ${ }^{1}$ Dr, Plate (loc. cil.) says that R. vilira has but one toc. I thought so myself, fill I saw the cresture, of its own accord, separate the apparently single toe, into two.

[^62]: 1 Ehrenberg found a female with a cluster of male eggs; und, misled by their size and number, supposed that the issuing young were those of a Notommata which he named N. granularis, and which be credited with laying its eggs on the backs of Brachionus pala and Notops brachionus. Lieydig explained the exror (fors eit).

[^63]: ${ }^{1}$ See my mem. "On Mand. Organs," Phil. Trans, 1855 p. 449.

[^64]: ${ }^{1}$ There are two very distinct varieties of the above, well-marked and constant; yet with hardly sufficient dissimilarity to warrant our separating them as species. The one smaller, with the articulation strong, the lateral projections of dark tissue into each segment clearly seen, the caudal points short, stout, and straight. This was the form first recognized, is the form above deseribed, and is by far the more common. The other much larger, the articulation and the interior projections both indistinct, often imperceptible; the caudal points long, slender, crescentic, wider at their bases, and making together a regular semicircle. In this variety, an excellent observation which I obtained showed the mastax, mallei, and incus, almost exactly of the sume familiar pattern as in Notommata alurita (Phil. Trans, 1856, pl. xvi. figs. 16-21),

[^65]: I These seem to be the blades of an incus (of the pattern Fig. 21 of my memoir in Phil. Trans. 1856. pl. xvi.) ; the mallei apparently quite aborted.

[^66]: ' In one specimen I observed, on a side view, a long egg-shaped contractile vesicle lying between the hind end of the stomach and the ventral surface, and terminating in a delicate tube entering the eloaed. The vesiole filled and emptied every $2 \frac{1}{2}$ seconds.-O.T.H.

[^67]: ${ }^{1}$ Herr Eckstein (Sieb, u. Kzll. Zcits. 1883, p. 361) describes in this, as in many other Rotifera, specks of crimson pigment near the front, each in conneotion with a setigerous sense.organ. He conclades these to be secondary eges. I have myself never detected them; neither has Dr. Hudson, nor Dr. Plato.

[^68]: ' From thie transverse development of the opaque chalk-masses, I infer that Dr. Leydig's tripus is this spocies.

[^69]: I Eckstein figures two tentacular brushes of setæ on the front, with a crimson eye-speck at the have of each.

[^70]: - Eekstein finds his usual two red specks at the ciliate front, in addition to the Inrge red eye at the bottom of the brain; but he does not associate them here with tentaoular sota.

[^71]: I I once saw half a dozen of these lively creatures, all in a row, altached by their toes to a delicate green filament, and whirling round it like gymnasts on the horizontal bat,-C.T.H.

[^72]: ${ }^{1}$ A side viow of this fine Rotiferon has been accidentally omitted from pl, xvi.; but will be given in pl. xxx . It shows that the two occipital antenne are connected by a transverse ridge crossing from the base of the one, to that of the other. My solitary specimen had a semi-transparent gelatinous covering, out of which peeped the ends of the four tentacles. The ephippial egg, when I first saw it, was quite smooth, and separated by a elesr space from its outmost covering. I saw its prickles begin to grow, and watched them slowly stretching across to the outer shell. Two hours elapsed before they had accomplished the distance.-C.T.H.

[^73]: VoL, it.

[^74]: - Trans. Mier. Soc. Lond. vol. iii. p. 101, pl. sv.

[^75]: ${ }^{1}$ Herr Eekstein (SieJ. u. Kbll. Zeits, 1883, p. 363, fig. 29) describes and figures a pair of minute dark-red points one on each side of the front, whence a brush of setse springs. These I have not seen, but cannot doubt that they are of the nature of antennm, and that the red speck is imaginary. He describes the proper eye hesides, and notices the distinct refracting lens, by whioh it is embraced.

[^76]: ${ }^{1}$ See Phit. Trans, 1855, ph 432, pl, xvii, figs. 27-31.

[^77]: ' Dr. Plate (loc. cit.) has described P. parasita (Notommata parasita, Ehr.), male and female, ns a new species under the name Hertwigia volvocicola, on account of its having no toes. Dr. Cohn gave an excellent figure of the male in Sicb. u. Koll. Zcils. 1858, but drew the female with two minute toes.

[^78]: (Except that Dr. Collins, in his Note-book kindly communicated to me, has pencil sketches of what he supposes to be this species, taken at Sandhurst, Berks. Its lorm, however, is much more gibbous bebind than that of mine.

[^79]: ${ }^{1}$ The frontal specks Dr. Leydig denies to be eyes, in the species aurita; but I have no hesitation in pronouncing them to be strietly analogons with what we call eyes throughout the class.

[^80]: 1 Eekstein says that these are connected with the great cervical eye by nerve-threads.

 * Eyferth (On the Lowest Forms of Life, 1878) says that Triophthalmus of Ehrenberg is but the young condition of Eosphora; and that, even in the egg, are seen two dark specks, near the eye, which subsequently disappeur. But Eckstein (Sieb. u. Koll. 1883) holds this conelusion doubtful, till the entire development from the egg has been watched. He confronts the points of consimilarity with those of dissimilarity in two instructive tables,

[^81]: ${ }^{1}$ They are described and figurod in my Mem. "On the Mand, Org." (Phil. Tr. 1856) 435, figs, 50, 51.
 ${ }^{2}$ The animal described and figured by Mr. J. E. Lord (Microsc. News, 1884, p. 146, figs. 23a, b, c) is, I Fave little doubt, the present species.

[^82]: 1 "The power of choice is the distinctive peculiarity of a mental being." "All netivities that are indicative of ehoice [excopt reflex actions] are indicative of consciousness. Wherever wesee a living organism apparently exerting intentional choice, we may infer that it is conscious choice; and therefore that the organism has a mind."-Romanes, Ment. Evol, in Anim. Pp, 47, 17.

[^83]: ${ }^{1}$ I suspect this to be the case in S. oudactylotum; but in S. Tongicaudum Mr. Gosse is confident that the eye is inseparably seated on the mastax.

[^84]: ' Micr. News, vol, iv, 1884, p. 146, fig. 24. The figure of this Stephanops has one dorsal spine, and one short spine, or tail, sloping upwards, just above the toes.
 ${ }^{2}$ There are differences in form and size between the Sandhurst and the Woolston specimens, so cousiderable that possibly these may be distinct species : the former much larger, more slender, the front not sensibly lobular; the whole animal yellow-tinged.-P.H.G.

[^85]: ' This drawing was made from a protracted and excellent observation of a recently dead specimen, completed without any reference to my published figs. (Phil. Trans. 1886). Yet it is seen how exactly the details agree with those figs. ($35-40$), and especially with 39 and 40 of the Memoir, In examining many dead specimens of D. semiaperta, I have obtained accurately the appearance of fig. 37 ; the long produced, decurved points of the incus explaining what had seemed so inexplicable in situ. I am, however, almost sure that these arching points proceed from tho futorum between the rami, and are not prolongations of the wide glassy rami themselves.

[^86]: ${ }^{1}$ I strongly saspect that Herr Eekstein's delineation of F. gracilis (Sicb. u. Koll. 1883, pl. xxvi. fig. 43) has aetually been drawn from a specimen of Diasch. tenuior.
 = Recently (March 1886) I have found it, in an aquatio moss sent me by Mr. Hood. It was very restless, but I saw that the trophi, viewed dorsally, were on the pattern of Notomunata lacinulata.P.H.G.

 VOL, I1.

[^87]: 1 The dorsal fissure is not of fixed width, but variable at the will of the animal. An example (not quite mature) of S. brevispina, which was sitting quite still, end-on, so as to give me an excellent sight, had its dorsal eleft rather wide open; while I looked at it, it deliberately closed up the sides to mutual contact.
 ${ }^{7}$ Jematsch. Zeits. f, Natur, 1885, p, 37,

[^88]: ${ }^{1}$ These vesicles were exactly alike, cach subtrigonal, seated (optically) on each side of the circular orifice for the outlet of the foot. Each was evidently the terminus of the respiratory apparatus of its side, which, a rather wide ribbon or bag of clear tissue, containing several vacuoles, opens by a trumpet-

[^89]: ${ }^{1}$ It will be observed, however, that while in my own figure (2a) the gastric glands are of the ordinary form, Dr. C. has represented a pair of large pyriform sacs, each containing a vacuole, with long and slender ducts which lead from (or into) the oesophagus. These suggest the remarkable structure found in Pterodina, to which I refer the reader.
 ${ }^{2}$ The toes are here represented as out-curved; whereas, in the living examples I have seen, these organs were quite straight. Dr. Collins is a very accurate observer, and the length and curvature of the toes ("slightly eurved") are distinctly mentioned in his MS, notes. In his transverse section, morcover, the lorica-plates are much eloser together than I have seen them. Possibly, in both theso particulars, there is nome individual varintion.

[^90]: ${ }^{1}$ Ehrenberg quite misunderstood the loriou of Euchlanis, whioh he imagined to be open down the ventral surface between the two inner lines c, c (pl. xxiii, fig. 5). This mistake, and the omission to draw or account for the line b, b, has led to endless confusion in dotermining the species. Dr. Colin, however (in Sicb. u. Foll. Zeits. Ix. 1858, p. 289), fully explainel the error about the lines c, c; but missed the flange of the ventrul plate with its edges b, b.

[^91]: ${ }^{1}$ In one example the ovary was fastened, by two threads with swollen enlargements, to each side of the lorica, near the middle; and the gastric glands were also tied to the same points (fig. 4). Long threads (muscular ?) with like enlargements were seen to pass from the foot-bulb to near the same points, if not highor.

[^92]: voL. II.

[^93]: ${ }^{1}$ During the latter part of the time, however, it lecame very sluggish, and less willing to move and jerk about.

[^94]: I I am very confident that other species of this long-toed group exist, in both our fresh and salt waters. But though I have some drawings and notes, I have not as yet materials sufficient for satisfactory diagnosis.-P.H.G.

[^95]: 1 I cannot avoid a lurking suspicion that under Ehrenberg's figure of Distemma marinum may have lain Mytilia tavina, notwithstanding discrepancies.

[^96]: ${ }^{1} \mathrm{Mr}$. Gosse differs from me concerning the use of the "gastric glands"; the presence of the vibratile tags; the struoture of the foliations; and, generally, concerning the Branchial System in Pterodina. His account of this structure will be found in the Appendix.

[^97]: ${ }^{r}$ Herr Eckstein (loc. eit.) says that the foot is not an organ of prehension, but is the intestine, the ciliated cup being the cloaca. He does not, however, state that he has ever seen the faces discharged through the foot; and, indeed, such a statement would seem incredible. Mr. Gosse, however, has witnessed the fwoul discharge, and says: "As well as I could sec, it takes place at the upper side of the orifice through whioh the foot protrudes, projoeted in a strong current, and not immediately diffused."
 : [Δ s a rule the folding of the valves is somewhat rarely porformed. I have observed, probably. hundreds at various times, and I think I have not seen batt-a-dozen folded.-P.E.G.]
 voL. II.

[^98]: 1 The lower ends of these glands are tied to threads, which are attached to the lorica just above the heads of the lateral antenne, and at their other extremities to the stomach. Mr. Gosse discoverad and frew this arrangement, as well as the lateral antenna themselves, in 1850.

[^99]: - In one specimen the gastric glands evidently merged into the substance of the lateral canals.

[^100]: ${ }^{1}$ I missed these in the living animal, but, afterwards, found the apertures (fig. $5 a, a^{\prime}$) easily in an emply lorica, in the spots mentioned by Dr. Plate.

[^101]: ' Dr. Kellioott, Mr. Leviok, and Dr. Imhoff, all place the largest frontal spine exactly on the median line of the lorica, and half-way between two small spines; I am satisfiel that this is a mistake. Dr. Imhof's figare shows four small frontal spines besides the three long ones: this also is wrong; there are only three, the abortive spine and a pair.

[^102]: ${ }^{1}$ II consider the Rotrrans a class of the sub-kingdom ARTHROPODA, co-equal in rank with Insecta and Cbubtacka.-P.H.G.]
 ${ }^{2}$ Of course I am here treating the matter simply as one of formal classification; and from this point of view it is enough to say that if we knew none but the humbler forms of the Rorrfrra, we should call them VERMES; whereas if Pedalion and Hexurthra were our only examples, we should call them the lowest forms of ARTHROPODA.

 - Mr. Julien Deby, in the J. Roy. Micr. Soc. 1879, p, 384, has suggested that the two Rotifera are

[^103]: identical, and that the differences between my description and Dr. Schmarda's "reside principally in the incompleteness of the detuils given by the lutter, and are consequently differences of omission rather than anything else." It is difficult to understand hov it can be an "omission " to describe and draw all the six legs as radiating from a spot on the ventral surface, while (on the supposition of the identity of the two creatures) there is only one on that surface, and all lie round the body and parallel to its length. Neither can it well be an "omission" or an "incomplete detail" to say that thure are two legs of equal size longer than all the others, when there is only one such leg. Indeed, were Dr. Selmarda really capable of the gross blunders attributed to him by Mr. Deby, the whole of his observations would be worthless.

[^104]: ' Copied from Dr. Schmarda's fig. 1, Zur Naturgesch. Ägyptens, Taf. iif.

[^105]: ${ }^{1}$ Dr. Semper (138) says that in Trochosphara aquatorealis there is a contractile vesiele which has no connection with the lateral canals ; if this is really the case, it would be unique. Mr. Gosse has deseribed, p. 138, another variety of the vascular system in Pterodina, and in other Rotifera; but, as we differ widely here about the facts, as well as about the inferences drawn from them, I have (for the sake of brevity and clearness) omitted this variety from my account.
 ${ }^{2}$ Vol. i. p. $90 . \quad$ Vol. ii. p. 85.
 ${ }^{4}$ Professor Huxley (91) states that this is the case in Lacinulario socialis; but Dr. Leydig (108) says he has seen a small contractile vesicle in this Rotiferon. Neither Pcdalion mirum, Pterodina patina, nor P. valvata appears to have any contructile vesicle.
 ${ }^{3}$ See below ; same paragraph. ${ }^{\text {© Vol. i. p. } 123 .}{ }^{*}$ (21).
 " I have never scen B. militaris, which from the great size of its contractile vesicle is admirably ndapted for such observations.
 ${ }^{3}$ (118). ${ }^{10}$ Vol. i. p. 88.

[^106]: ${ }^{1}$ Dr. Plate (126) Taf. ii, fig. 19, c. ${ }^{2}$ C.T.H. vol, ii. p. 117.
 ${ }^{2}$ Pl. D, fig. 1; also Dr. Moxon (118).
 ${ }^{4}$ As observel by Mr. Gosse in Pterodina patina and P. valvata, vol. II. p. 138.
 s As observed by Professor Huxley in Lacinularia socialis (91) ; by Dr. Leydig in the same (108) ; and by myself in Stephanoceros Eichhornii, P1, iv, figs. 2, 4.

[^107]: ${ }^{1}$ Loydig is of opinion (110) that water passes by endosmosis into the body cavity. This, indeed, seems probable; for indigo-coloured water when swallowed (e.g. by R. vulgaris) almost instantly imparts a blue tint to the thick cellular walls of the stomach up to their outmost boundary. It can hardly be supposed that it goes no further, if the products of digestion do. It seems unlikely that the inner walls of these stomach-cells should be pervious to the products of digestion, and to water, alike; and that the outer walls should be pervious to the former, and impervious to the latter. It has, however, been objected, that we never see the indigo-coloured water in the perivisceral fluid. But it is hardly to be expected that we should. When we look at the blue stomach-walls, we are looking at a colour produced by a depth of solntion equal to that of one or two thick cells; whereas the coloured flaid, oozing out through the stomach-walls, would be presented to our eyes in films of almost infinitesimal thinness ; whioh would never be suffored to aceumalate and so become visible, but would be at once broken ap and lost, by the constant motion of the perivisceral fluid. Besides the blue tint after a time disappears from the cells. It secms more Fikely that this is due to the indigo-solution continuing its course through the cells into the body cavity along with the products of digestion, than to its parting company with these latter at the outar wall, and then alone reversing its course, and returning into the stomach.

 I If the vibratile tags be supposed to be open ciliated funnels, through which the perivisceral ffuid passes into the lateral canals, to be discharged through the clonca, then we are met with the difficulty that this supposition would imply the frequent discharge of a fluid analogous to blood. But, on the other hand, if it were admitted that, in the perivisceral fluid, the products of digestion are Inrgely diluted with water (see previous note), the force of this objection would bo much weakened; for the supposed difficulty would be mainly due to our laving applied, to so simple a fluid, the name of suoh a highly organised product as blood.

